The Influence function technique in the numerical
analysis of plate bending of arbitrary plan form

Ali Husain Al-Gadhib
Civil Engineering
September 1982
Abstract

A numerical method for the solution of thin plate problems of arbitrary plan form and subjected
to arbitrary loading and boundary conditions is presented in this thesis. The method is an extension of the
Wu-Altiero method where use has been made of the force influence function for an infinite plate, whereas
the work contained in this thesis is based on the use of the moment influence function of an infinite plate.
The technique basically involves embedding he real plate into a fictitious infinite plate for which the
moment influence function is known. N points are prescribed at the plate boundary at which the boundary
conditions for the original problem are collocated by means of 2N fictitious moments placed around
contours outside the domain of the real plate. A system of 2N linear algebraic equations in the unknown
moments is obtained. The solution of the system yields the unknown moments. These may in turn be used
to compute deflection, moments or shear at any point in thin plate.

Finally, the method is extended to include influence functions of both concentrated forces and
concentrated moments. This is obtained by applying concentrated moments and forces simultaneously on
the contours located outside the domain of the plate.
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ABSTRACT

A numerical method for the solution of thin plate problems
of arbitrary plan form and subjected to arbitrary loading and
boundary conditions is presented in this thesis. This method
is an extension of the Wu-Altiero method where use has been made
of the force influence function for an infinite plate, whereas
the work contained in this thesis is based on the use of the
moment influence function of an infinite plate. The technique
basically involves embedding the real plate into a fictitious
infinite plate for which the moment influence function is known.
N points are prescribed at the plate boundary at which the
boundary conditions for the original problem are collocated by
means of 2N fictitious moments placed around contours outside
the domain of the real plate. A systemlof 2N linear algebraic
equations in the unknown moments is obtained. The solution of
the system yields the unknown moments. These may in turn be used
to compute deflection, moments or shear at any point in thin
plate.

Finally, the method is extended to include influence
functions of both concentrated forces and concentrated moments.
This is obtained by applying concentrated moments and forces

simultaneously on the contours located outside the domain of

the plate.
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chapter 1

INTRODUCTION

The analysis of the bending problem of isotropic thin-
plates is one of the most common problems in structural
engineering. Plate theory and methods of solution can be
traced back to the early eighteenth century, where a lot of
contributérs including Euler,Bernoulli and Lagrange were
involved in the development of plate theory. In this century,
Nadai, Love, Huber, Timoshenko, and Lekhnitskii, to name a
few, are well-known for their work related to plate problems.

Mathematically the thin-plate bending problem is a
typical boundary value problem inasmuch as the problem may be
reduced to the solution of a fourth order partial differential
equation subjected to certain boundary conditions. One can
obtain a solution analytically for special cases of simple
geometrical form and boundary conditions. The problem is
complicated if the plate is not of simple plan form. In such
cases, analytical approaches essentially breakdown and one is
forced to employ numerical techniques such as finite diffe-
rence [1] or the finite element method [2,3]. Although it is
well-known that the finite element method is a powerful
technique, it has some disadvantages including a large quantity

of input data making implementation tedious and computer time



lengthy. Thus there has been a recent effort to formulate
alternative methods, one such effort being the extension of
the finite strip method [4], and another is the application
of boundary integral techniques [5] to the problem of linear
plate theory.

One such method from the family of boundary integral
techniques is the Wu-Altiero method [6], where use is made of
the force influence function of an infinite plate. The work
contained in this thesis is an extension of the Wu-Altiero
method and it is based on the use of the Green's function
of an infinite plate for the analysis. The technique basically
involves embedding the real plate into a fictitious infinite
plate for which the Green's function is known. N points are
prescribed at the plate boundary at which the boundary condi-
tions for the original problem are to be satisfied. Since
there are two boundary condition equations to be satisfied at
each boundary point, a set of 2N fictitious moments are placed
around contours outside the domain of the actual plate. A
system of linear algebric equations in termsof the unknown
moments is obtained, which is then solved for all the ficti-
tious moments. The deflection and bending moments any where
inside the plate may now be obtained readily.

There are eight chapters in this thesis. Theoretical preli-
minaries of plate analysis, including the derivation of the govern-

ing fourth order partial differential equation for isotropic thin




plates and its associated boundary conditions are presented
in Chapter 2. Chapter 3 introduces the idea of Green's
function and the concept of the Wu-Altiero method [6].
Chapter 4 consists of two parts, namely (a) the flow chart
depicting the main features of the program that was built
up to solve the plate problem using the Wu-Altiero concept,
and (b) results for the cases dealt with by Wu and Altiero.
Using the program developed here at UPM, the conclusion is
drawn that this method works irrespective of the value of
the arbitrary radius "a" of the infinite plate, in contrast
to conclusions drawn by Wu and Altiero, where they restrict
the validity of their approach to a certain range of the
arbitrary radius "a". Chapter 5 introduces the idea where
use is made of the moment influence function in lieu of the
force influence function and presents the necessary deviations.
Chapter 6 explains features of the program written for the
moment influence method in the form of a flow chart and the
method by solving the cases considered by Wu and Altiero.
After verifying the point force method and developing and
establishing the validity of the point moment method, the
superposition of both point forces and moments acting
concurrently is the topic of Chapter 7. Chapter 8 concludes
the thesis with a discussion of the results and a bit

summary of the main features.




chapter 2

THEORETICAL PRELIMINARIES

2.1 Background

The purpose of this chapter is to give the necessary
background of plate theory, including the governing diff-
erential equation and the accompanying boundary conditions.

A plate can be defined as a three dimensional object
where two dimensions are much greater than the third dimen-
sion (thickness h). The plane which is parallel to the faces |
of the plate and divides the thickness into equal halves is E
termed the midsurface of the plate Fig. 1. Now consider the
isotropic thin plate of small deflection in Fig. 1, in which
the x, y plane coincides with the midsurface. When one talks
about the deflection of the plate, the actual reference is
to the deflection of the midsurface. The z coordinates of all
the points forming the midsurface is zero. The governing
differential equation in terms of the plate deflection may be

developed by making the following assumptions

1. The deflection of the midsurface is small in comparison
with the thickness of the plate. The slope of the

deflected surface is much less than unity.
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2. There is only vertical displacement of the middle plane
of the plate, i.e. the midsurface of the plate suffers
no displacement in the x or y directions.

3. Planes initially normal to the midsurface of the plate

remain normal to the midsurface of the plate after

bending.
4, The normal stresses in the direction transverse to the

plate can be neglected.

In order to obtain the governing differential equation of
the plate, one starts with the equilibrium of differential
element of area dxdy subjected to a distributed load q of
plate in Fig.l and for the load to be carried, internal moments
and shears must be developed that is shown in Fig. 2 after

exaggeration.

Apply equations of equilibrium to the element of Fig. 2

9Q 2Q
= _x _X =
ZFz 0 ax oy *q 0
oM oM
= Xy y . =
IM, 0 X * Ty Qy 0 (2.1)
oM oM
= yX X . =
ZMY 0 5y * 3% Q.= 0

Eliminating the shearing forces Qx and Qy from the above

equations leads to
32M 3ZM

32M
e Y42 XY o g (2.2)
ax2 dy? 3X3y




ﬁbx
. 1%
i
e ‘
1 Q+ —=d
: l X 9x X
]
| 7'@ v
dx
- My —D x

M M
Mx + K dx
q
/] v

- x

Figure 2 : Infinitesimal Plate Elements with Internal Stress Resultants
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Now we want to express the moment in terms of deflection.

By referring to Fig. 3, point A, which has undeformed

coordinates (X,, Y,, 0), after application of the external |
load, will suffer a deflection w as shown in Fig.3. Since

w . .
v 1s very small, one may write

ax
W _ 3w _ _u = ., OW
tan 3x T X Z e T
(2.3)
Similarly along the y direction
v = =z 3w
oy

where u,v represent the displacements of point B (Fig.3b)
in the x,y directions, respectively.

Strain-displatement Relationships

_ du
Ex T 3x
e = v 2.4
y oy
o =2u, 3V

Xy oy 0X

2
Ex = -2 L
9x?
2
[ =-zaw (2'5)
y 3y2
2
Y = -2z L

Xy 9X3y
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Stress-strain Relationship

T
Xy

Using (2.5)

Xy

_E_
l-vz(ax + vey)
E
€. + VE
1-v2( Y x)
-E
2(1+Vv) ny
in (2.6)
2 2
-2k (3 w9 Wy
-v? 3x? dy?
2 2
-2 3°w v W
1-v2 3y ox?
-zE 3%y
1+v 9X9y

Moments-strain Relation

MX

=
]

=
]

h/2
S zoxdz

~h/2

h/2
f d
20,,dz

-h/2

h/2

J zt_.dz
-h/2 XY

(2.6)

(2.8)

11
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Using (2.7) in (2.8) :

2 2 !
M = -D (a Wo,y2 w)
X ax? dy?
32w 2w
M = -D + Vv
y (Byz dxz) (2.9)
2
Mo = -D (1 -v) ¥
Y 9Xady
where :
D = -——E—L
12(1-v?)
Using (2.9) in (2.2)
3'w 5, _3'w . o'w _ g (2.10)
ax* 3ax23y? ay" D

Equation (2.10) is the governing differential equation of
plate or in concise form A'w = % .
2.2 Boundary Conditions

Knowing the governing differential equation, one needs
to know the different types of boundary conditions. The boun-
dary of the plate may be any combination of the following
three types, clamped edge, simply supported edge, and free
edge provided that the plate is stable. If all the plate

boundaries are denoted by B, then the following can be written

as



where :
BC represents
BS represents

Bf represents
as shown in Figure

For the clamped or

13

|
the clamped portion of plate l
|
the simply supported portion of plate |

the free portion of plate.
4.

simply supported boundaries, deflection

equals to zero as indicated in Equation (2.11). Also for

clamped edge, the slope of the deflection with respect to the

outer normal equals to zero as indicated in Equation (2.12).

For the simply supported edge or free edge, the bending moment

equals to zero as indicated in Equation (2.13). For the free

edge, Kirchoaf's shear is zero indicated in Equation (2.14).

w = 0 on BC+BS (2.11)
oW oW _
nesx * ny 3y ° 0 on BC (2.12)
32w 32w 32w
£, + £, + f3 —— =0 on BS+Bf (2.13)
ax? axdy 3y?
3 3 3
g1 o W + g 9°w + g, o°wW
ax3 Z ax%sy axdy?
3
+ g, XX - on B, (2.14)
3y

where nx(x,y), ny(x,y) are components of the outer normal

directed unit normal to B and f, through g, are given by the

following relationships

[6].
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Figure 4

: Plate of Arbitrary Plan Form
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X
2(1 - v) ann

Dn_?2 + vDn_?
Yy

Yy
anx2+ Dnyz

2y . 2
an (1 + ny ) anxny

2 - -
any (1 + n, ) + 2(1 V) Dny3 anzny

2 - -
vDn (1 + ny ) + 2(1 v) an3 anny?

2y _ 2
Dny (1 + n, ) anx,ny
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chapter :E’

FORCE OR WU-ALTIERO METHOD

3.1 Green's Function for Finite Rectangular Plate of Simply
Supported Boundaries

The Navier solution for a rectangular plate with simply
supported boundaries under the action of a concentrated force

P as shown in Fig. 5, is given in [1] as

. MTE . mwTn . _mmTxX . mny
o © sin—= sin sin sin
wix,y) = 4P s 3 a b a b
n*abD m=1 n=1 ( m? . Ei)z
a? b2
3.1)

where w(x,y) is the deflection at any point (x,y) of a rectan-
gular simply supported plate subjected to concentrated force
P located at x = §, y = n.

Consider the following expression

4 P o sinmgE sinmgn sinmgx sinmgy
I(XSY9E’n) = z z
m*abD m=1 n=1 ( Ei + Bi 2
a2 b2
(3.2)

which is the same as (3.1) for the concentrated force P = 1.

Expression (3.2), which gives the deflection at any point (x,y)




> x
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Figure 5 : Concentrated Force P at x = £, y = n
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when the unit force is applied at x = £, Yy =n of the
rectangular simply supported plates is called the Green's
function of the plate associated with the simply supported
conditions. Thus the Green's function is nothing but the de-
flection caused either by unit load (or unit moment) located
at x = £, y = n of a plate. One may obtain a variety of
Green's functions for plates of different shapes and boundary
conditions.

The deflection due to a distributed load may be found by
means of the force influence function (Green's function). The
distributed load can be represented by a set of concentrated
loads at £'s and n's and by the principle of superposition,
the deflection due to the distributed load is approximately the
deflection due to these set of concentrated loads as in
Equation (3.3).

wix,y) = PiI(x’y’gi’”i) (3.3)

nMs
[

i
where

P, = f(E,n)i (Area)i (3.3a)

and n is number of concentratéd loads.
The exact deflection of the plate due to the distributed
load is to use Equation (3.3) and change the summation by

double integrals and replace Pi by (3.3a) which then yields

wix,y) [/ S f(g,n) I(x,y,E,n) d&dy (3.4)
A (= loaded area)
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3.2 Green's Function of an Infinite Plate |

Our interest is to find the Green's function of an
infinite plate of arbitrary radius a.

Load P which is located at x = £, y = n causes a
deflection at point (x,y) of the infinite plate of radius a ?

(See Fig.6). This deflectionisgiven in [1] as

2
w(x’y) = PL an
87D a
or
2 2
w(x,y) = EI° gn I (3.5)
167D a?

and from this expression, one can get the Green's function
of the infinite plate of arbitrary radius a by setting
P=1

T2 r? | .
I(X’Y,E’n) = &n — (3-6)
167D a?

3.3 The Wu-Altiero Method

The Wu-Altiero method is easily explained if one
considers the problem of the bending of beams. The deflection
of the beam shown in Fig. 7 (a) due to the action of a
uniform distributed load q may be solved by the superposition
of two cases - Case one in Fig. 7 (b) when one finds the
deflection caused by the uniformly distributed load q of the

real beam on an infinite beam, and the second case where one



Figure 6

ove
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obtains the deflection due to unknown fictitious forces

placed outside the domain of the real beam as shown in

Fig. 7 (c). Thus the deflection of the real beam in Fig.7 (a)
is the superposition of the two cases as shown in Fig.7(b) and
Fig.7 (c) and given by the following equation

N

v(x) = Vyp (x) -2 Vp (X) (3.7)
i=1
where

Pi = The ith fictitious load

$UDL = Deflection of the infinite beam when subjected to
uniformly distributed load which is acting on
the real beam

$Pi = Deflection of the infinite beam subjected to
fictitious force Pi

N = Number of fictitious forces

The first part of Equation (3.7) may be obtained readily
and the second part is not difficult to obtain if one knows
the magnitude of the fictitious forces. The main task is thus
reduced to finding these unknown fictitious forces and this

may be done by the collection of the following boundary

conditions
deflection = 0 at x =0 i.e. v(0) =0
deflection = 0 at x =L i.e. Vv(L) =0
2
moment =0 at x =0 i.e. EI d’v(0) = 0
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Figure 7 : Physical Interpretation of Wu~-Altiero Model

as Applied to Beams
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d?v(L) _
dx?

moment El 0

[}
o
3]
(a3
~

]
=
[
o

In doing so, one obtains four algebric equations in
terms of the unknown forces. Thus one can have fictitious
loads equal in number to the boundary conditions. Now after
knowing all the unknown forces, one can compute v{x) in
Equation (3.7) completely.

Exactly almost what was true for the beam is true for
the plate. The solution of plate deflection involves embedding
the real plate into a fictitious infinite plate of the same
material as in Fig.8. The deflection of the real plate is the
superposition of two solutions - one solution being the
deflection of the infinite plate when subjected to actual
loading of the real plate and the other is the deflection due
to ZN fictitious unknown forces placed outside the domain of
the real plate in the form of contours - and the total solution,
composed of the two previous solutions forced to satisfy -°
the boundary conditions at N discrete points (Xi, yi) on the

boundary B of the plate may be expressed as

W(X,}’) = J‘;\f I(xi’ yi’ £, n) q(Esn)dng\
2N
-z I(Xi,}’i,ikmk)Pk (3.8)

The first solution which is the deflection of the infinite
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Figure 8 : Plate With Parallel Contour (Point Force
Method)
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plate under the forcing function can be calculated using

the aid of the force influence function of an infinite plate
Equation (2.6) and the other solution can be easily found if
one knows the magnitude of the fictitious forces. This may

be handled by forcing the deflection as given by Equation (3.8)
to satisfy the boundary conditions as given by Equations

(2.11) through (2.14) that will result in 2N linear algebric

equations for the solution of 2N unknowns, Py's, k =1, 2ZN.

Using Equation (3.8) in Equations (2.11), (2.12), (2.13)
and (2.14) respectively, yields

2N
kil I P = ﬁ{ qudgdn ((xi,yi) on BC+BS)) (3.9a)
2N 2N
"x o 2 (59 ik Px * "y ( )1k k - & ” (55); 9dEd
+ny ff (8y)i qd&dn ((x;,y;) on B.) (3.9b)
2N 2 2N 2N 2
321 321 321
£1. D (D P+ £, 1 (. P+ s 1 D,
k=1 3x? ik X 7 k=1 sxsy 1K K k=1 ay2 ik 'Kk
2 2
= 105 D), adean + £,55 AL, qdean
R 9ax? R 3xdy

2
ey (—:-—i ; adgdn  ((x;,y;) on Bg*B))  (5.9c)
y




931 931 931
g, ¥ (—)., P, + g, I .1, Pp + g3 I .
k=1 ax? 1k "k k=1 ax%py 1k Kk k=1 axay? ik "k
2N 3 3
+ gukzl(g—%-ik P = & ﬂ{ (3_%'i qd&dn
3°1" 931
+ g2 ST ( ). qd&dn + g3 SS( ). qd&dn
R ax?ay ?! R axay? !

331
+ g3 fRf (_—?)i ngdn ((Xi’yi) on Bf)

oy
where
Iik = I(Xi,}'i,ﬁk,nk)
and Ii = I(Xi,}’i,i,n)

The set of equations (3.9) can be written in a matrix

form as

AP = B

where

P is the fictitious unknown load vector PT = [P ,P

A is the following matrix of size

2N x 2N
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(3.94d)

(3.10)

s

...P

ZN:|




[~ 2N 7
kil Iik on BS-I-BC
2N

al 91
El(nx(a_x')ik * 1y (550 51) on B
A =
2N 2 2 2
0°1 0°1 9°1
El (fl(;(?) ik + fz(axay)ik + fa('a_y;)ik)on BS+Bf
2N 3 3 3
0°1 9°1 9°1
Eo(g1(=);p + g2 Jip * 83a( )
k=1 ax3 ik sx2gy 1K axay? ik
3%1
+ g“(aya)ik) on Bf
B is the right hand side vector as given by
g{ qudgdn on BS+BC
Ir ol a1
R [nx('ﬁ)i DY(W)i] ngdn on BC
B = . 321 321 321
JT £, (=), + £, ( ). + £3(==).]qd&dn on Bg+Bg¢
R ax2 1t axsy ay2 1
3 3 3
Iy + g (21, v (2L,
R ax3 ax23y axay?
3°I
gu(—3); adédn] on B
| 3y ]
where :
k is the column number k = 1, 2N

i = 1,N, and because for each coll
boundary conditions that will

which will be number of rows.
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ocation point i two
generate 2N equations




28

Matrix A accomodates all the possible boundary conditions.
Depending on the type of the plate boundary, one chooses the
appropriate part of matrix A. For example, if one is solving
for a plate with its all edges simply supportéd one needs to
use only the first and the third rows of summation of matrix
A. Likewise, if all edges of the plate are clamped, one will
use the first and the second rows of summation of matrix A,
since these are the two boundary conditions dealing with the
clamped edge. However, if the plate edges consist of all
types (BS+BC+Bf), then all the rows of matrix A are to be
needed.

What has been said about Matrix A is equally true for
the load vector B. i.e. if one chooses a part of matrix A,
one should also take the corresponding part of vector B.

Once again the determination 6f the fictitious load
vector PT =[P, P ... PZN] is the result of solving
Equation (3.10). However, in order to be able to solve
Equation(3.10), one needs to determine the matrix A and the
load vector B which involves derivatives upto the third order
of the force influence function I(x,y,E€,n). These derivatives
are evaluated in Appendix A. Subsequently, after solving for
the fictitious loads, one can find the deflection any where
in the real plate from Equation (3.8). The moment M, and My

can also be obtained any where in the region of the real plate

from the equations which result from substitution of Equation

(3.8) into the formulas for the moments as given by Equation (2.9).
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chapter £

APPLICATION OF WU-ALTIERO METHOD

4.1 Evaluation of the Load Vector B

As mentioned in Chapter 3, in order to solve for the fic-
titious forces, one needs to generate the matrix A and the
load vector B by using Appendix A which includes all the
necessary derivatives. The use of different symbols for the
different derivatives will facilitate in the programming.

Recall the force influence function for an infinite

plate is

1 = (x-8)%+ (y-m)? - (x-E)%+ (y-E)?
167D a?

Let Z = £, A =n, and Q, = (x-£)2 + (y-n)?
The Green's function and its derivatives may then be

written as the following

- = o Q
I AIA 167D in a2
%;Iz = Ay = ((X-2)/8mD)X (&n(Q:/a?) + 1)
2 - 2
%1 _ Az:s_l_(ZnQL+2(XZ+1)
) D a2 Q

%I _ (X-2) 8(x-7)?2
o1 - a, 161TDQl(12 > re )



5 =B = G5p (n By

a.2
2 _AY 2
371 = B2 = _—8':[1'[D (‘Q'n gl + Z(YQ ‘A)_ + 1)
3)’2 a2 1
3°1 Y-A 8 (Y -A)A
v 0 T Tewday (12 - =577 (4.1)
4
321  _ - (x-2)(y-A)
sxoy - AP T g
931 Y-A 2(X-2)2
= AB = - 1 - 27
5%2dy ? 7 Ty %)
3 _ _AY 2
_a I = AB; = _Y A (1 - Z-(.Y—___.A) )
9x9y? 471DQ, Q

For evaluating the load vector B which involves a

double integration, an approximation by summation is resorted

to. The domain of the loaded part of the plate can be dis-
cretized to small areas (elements), A;, A,... ANL’ and the
distributed load effect can be approximated by the total
effect of a set of concentrated loads, each of magnitude
qLAL’ where L = 1 - NL and NL = the number of discretized
elements as in Figure 9. These concentrated forces are
to be placed at the centroid of the area A .

In Figure 9, the loaded area of the plate is (a;1xb;)
and that area is discretized into twelve elements. Each

ai1b,

element has an area of =7 thus resulting in a concentrat-

ed load of magnitude ggfgl at the centroid of each element.




re 9 : Discretization of Plate Domain for Evaluation
of (Load * Area) Integrals
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Employing a summation approximation for the double
integral, one obtains
NL

J/I:q9.d€dn= 3§ I

i TinAy (4.2)

Furthermore, if the distributed load is uniform and the
loaded domain of the pPlate is discretized into equal
elements, one may rewrite Equation 4.2 as

NL

gA I I
L=1

fRfquidgdn (4.3)

iL

If the plate is not of simple geometry one can still
handle the evaluation of the load vector B by means of a
program similar to that used in finite elements. Such a
program will discretize the loaded part of the plate into
small triangular elements (areas), which may not necessarily
be equal to each other and also yield the centroid of each
area in which the concentrated load has to act. In this
case, if the plate is subjected to a uniformly distributed
load, Equation 4. 2 may be written as

NL

JI139;%dnz q 1§ 1
R L=1

A (4.4)

il”L
Thus equation (4.2) can be used when the distributed load
is not uniform and the elements of discretized area are not
equal to each other. Depending on the situation, one may

use the appropriate equation.
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Let us write the matrix A and the vector B in

33

programable fashion using (4.1) and (4.3), with the previous

definitions of matrix A and vector B.

This is on the

assumption that solution is to be generated for a plate

subject to uniformly distributed load and discretized into

equal elements.

2N
z

2N
z
2N
z
2N
z
—
qA
B =|qA
gA

qA

]

k=1

(AIA)ik on BS+B

(Nx(Al)ik + Ny(Bl)ik) on BC

[FICAZ)ik + FZ(ABl)ik + F3(B2)ik] on

[G1(As) ) + Ga(AB2),, + Gs(AB3)q

+ G“(Ba)ik] on Bf

NL

Z (AIA). on B_.+B
L=1. iL S
NL )
NL

I (R/Az2+ F.AB,+ F&Bz)iL on BS+B
L=1
NL

Z (G.As+ GzABy + GiAB; + G.Bs)., on B
L=1 iL f

B

C

S

+Bf

(4.5)

I |

(4.6)

—

One may now use Equations (4.5) and (4.6) to solve the
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matrix equation
AP = B

for the set of fictitious forces P.

4.2 General Flowchart of Force Method

START
{ Read, input data 1/)7

Generate the
algebraic equations
of the form
AP = B

l

Subroutine to solve
simultaneous equation
for the fictitious forces

matrix (2Nx2N)
load vector (2Nxl)
fictitious forces

YUw
nnun

Calculate deflection
and moments using the
obtained fictitious
forces and deflection
and moments formulas

b
( sTtoP )

General Flowchart for the Point Force Method
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lisum = 1sumens ()]

CALCULATE
Fi, B, B, (4, G2 G3,Gu

[ rsT=1suM-Ns(N)+1]

SUMI=SUMI+ATA
SUM2=SUM24NXA
+ NYB,

SUMI=SUMI+ATA

SUM2=SUM2+F A,
+F,AB,
+FaB;

SUM1=SUMI+F,A;
+ F2AB )+ FaBa,

SUM2=SIM246 A, AC(I NI )=SUMI W
Hi: AB)HI AR, (.81 JARZAD
Hi By A(JHNS N1 ) =SUM2*XLOADS
Calculate Ay, Ay, ®AREA
B AB),
\
SUMZ = (1.0 YES
NO
[ KK=KK+2% NS(N) 1
-
;
YES YES
]
Calculate the fictitious
forces from the matrix
equation :
AP = B
CALCULATE

Ay, A2, Ay, By, By, B,
AB;, ABa, AB,y, AJA

K+]1

A(J,K)=F1A,+F2AB+ F3B;
A(J4NS,K)=G A3+ G,AB;
+ GaABa+ GuBy

A(J,K) = AIA
A(J+NS,K) = FjA; + F;
+ F3B;

A(J,K) = AIA
A(J+NS,K) = NXA;+ NYB,

Calculate deflection and
bending moments

!

Calculate error percen-
tage in deflection and
bending moments

1]¥3




Input Data and Their Meanings

NSIDE
X, (1)
Y, (1)
X, (1)
Y, (1)
NS(I)

INDEX (I)

NC

NL

Area

XLOAD
XL (L)
YL(L)

RAD
PIE
NDP
XD(J)
YD(J)

Number of plate sides (edges)

the x-coordinate
the y-coordinate
the x-coordinate

the y-coordinate

36

of the left end of edge I
of the left end of edge I }
of the right end of edge 1I
of the right end of edge 1I

Number of collecation points on side I

INDEX (I)
INDEX (I)

INDEX (I)

indicate type of edge

1 (free edge)

2 (simply supported edge)
3 (clamped edge)

Number of contours to which the fictitious

forces or fictitious moment placed around

Number of loaded areas

Area of discretized element

the intensile of the load

the centroidal x-coordinate of area L

the centroidal y-coordinate of area L

flexural rigidity

Poisson's ratio

the arbitrary radius a

m

Number of field points

the x-coordinate of field point J

the y-coordinate of field point J



4,

WT(J)
XMT (J)
YMT (J)
XB(I)
YB(I)
XP (X)

YP(X)

N
NTOT
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the theoretical deflection of field point J

" " M : " " " "
X

1" " M " 1" " 11]

y
the x-coordinate of collocation point I

the y-coordinate of collocation point I
the x-coordinate of the fictitious force k

or the fictitious moment k

the y-coordinate of the fictitious force k
or the fictitious moment k
Number of collocation points

2N = Number of the fictitious forces

Application of Wu-Altiero Method

Using the previous flowchart, a program can be written

to solve for any plate problem of irregular shape when

subjected to a uniformly distributed load with a variety of

boundary conditions, provided that the plate boundaries may

be approximafed by straight edges. By a very slight modifi-

cation in the previous flowchart, the program may solve for

a plate of irregular shape subjected to any type of loading.

In the work contained herein, results of two cases are to

be presented

(a) a square plate subjected to a uniformly

distributed load and (b) a triangular plate subjected to a

uniformly distributed load. There are also two cases that
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Wu-Altiero have considered in their work.

Case 1

A square plate of size 10 x 10 m and acted upon by a

uniformly load q = 1N/m?

E = 2.068 x 105 Mpa
v = .3
h=.01m

all other information are shown in the Figure 10°

Case 2

An equilateral triangular plate subjected to uniformly

load q = 1IN/m? . All edges are simply supported as in Figure 11

E = 2.068 x 105 Mpa
v = .3
h = .01m

The results of deflection and moments (Mx and My) are shown
in separate tables for the two cases. Also shown in these
tables is the percentage of error as compared to the

theoretical solution.




Contour C;

Edge 2 (BF)

Edge 3 (BS)

4 m-—sl

.\
A"
>
»
»

39

/~—— Contour C»

M| G

¢
¢
@
) ° °
f 15 14 13?
el eﬂ-—ze&£
m

2 m
Edge 4 (Bc)
» Field point
° Boundary point
» Loading point
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Table 4.1 : The force method

Square Plate
a=80m n =40, DP

MMMWn zAM“mnnv zhwca.v Error % ZWMM”an zmmnﬂa.v Error % ZMMMannv ZMM”“B.V Error 2
1 1.856 1.932 -4.087 3.687 3.843 -4,231 0.000 -0.011 0.000
2 4.790 4.981 -3.991 8.266 8.516 -3.029 0.000 0.006 0.000
3 5.881 6.113 -3.945 9.760 9.934 -2,294  0.000 0.008 0.000
4 1.405 1.453 -3.389 3.142 3.178 -1.157 1.020 1.039 ~1,885
5 3.618 3.740 -3.364 6.933 7.045: -1.618 2.289 2.307 -0.798
6 4,438 4.586 -3.345 8.096 8.232 -1.680 2.692 2.710 -0.683
7 0.949 0.976 -2.791 2.360 2.374 -0.590 1.068 1.034 3.150
8 2.426 2,494 -2,788 4,912 4,958 -0.933 2.387 2.344 1.824
9 2.966 3.048 -2.778 5.618 5.675 -1.020 2.79% 2,747 1.684

10 0.504 0.517 -2.513 1.332 1.323 '‘0.714 0.378 0.338 10.593
11 1.271 1.302 =2.457 2.364 2.359 0.211 0.555 0.493 11.258
12 1.545 1.583 =2.435 2.560 2.558 0.065 0.519 0.447 13.835
13 0.087 0.089 ~-2.516 -0.247 -0.289 -17.078 -1.772 -1.837 -3.646
14 0.211 0.216 -2.389 -1.084 -=1.135 -4.711 = -4.802 -4.916 -2.367
15 0.254 0.259 ©=2.074 ~1.416 -1.468 -3.659 =5.927 ~6.055 -2.160

a = The arbitrary radius .

n = Number of collocation points

DP= Double precision
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Table 4.2 : The force method

Triangular Plate
a = 80, n = 30, DP

Point W(exact) W(Num.) MX(Exact) Mx(Num.) MY (Exact) MY (Num. )

No. o m Error % Nemmm Nemm Error 2~y oo Nemm . Error %
1 0.000 -0.000 0.000 0.000 0.004 0.000 0.000 0.012 © 0.000
2 0.005 0.005 -3.957 -0.392 -0.409 -4.237 0.612 0.655 ~7.030
3 0.034 0.034 -1.678 -0.345 -0.367 -6.290 1.125 1.124 0.107
4 0.091 0.092 -1.474 0.010 -0.004 145.002  1.526 1.567 -2.664
5 0.166 0.168 -1.353 0.540 0.523. 3.150 1.800 1.795 0.302
6 0.242 0.244 -0.946 1.111 1.104 0.675 1.934 1.970 -1.877
7 0.294 0.297 -1.005 1.597 1.585 0.754 1.913 1.903 0.531
8 0.302 0.306 -1.152 1.860 1.855 0.264 1.732 1.755 -1.332
9 0.253 0.256 -1.199 1.770 1.762 0.467 1.350 1.336 1.038
10 0.147 0.148 -0.870 1.194 1.193 0.121 0.781 0.809 -3.531
11 0.000 -0.000 0.000 0.000 -0.003 0.000 0.000 -0.009 0.000
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chapter E;

MOMENT METHOD

5.1 Moment Influence Function

In section 3.2 we have the force influence function as

2
I(x,y,g,n) = L gn I_
167D a?

where

r? = (x-£)2 + (y-m)?
which gives the deflection of an infinite plate at point (x,y)
when the unit forced is placed at x =f, y = n with respect to
the global system (x,y) as shown in Fig. 6 Sometimes it is
easier to deal with local coordinates rather than the global
coordinates, especially when it comes to the expression of
the moment influence function. Let us write I1(x,y,&,n)
(which is originally in terms of global coordinates (x,y))

in terms of the local coordinates (o, X)

if (0, %X ,s,n)

&n — (5.1)
167D a?
where

r? = (0-s)? +(x -n)?

Equation (5.1) gives the deflection of an infinite plate at
point (0,x) when unit load is placed at (o0 = s, x = n) as

shown in Fig. 12. }
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influence function is in terms of local coordinates (0,%;5)
and since the boundary conditions are in terms of global
coordinates (x,y), one needs to reduce all the boundary con-
ditions from the global coordinate system to the local

coordinate system (o,x ).

5.2 Moment Method Concept

The solution of the deflection of the real plate involves
embedding the real plate into a fictitious infinite plate of
the same material as shown in Fig.14. The deflection of the
real plate is the superposition of two solutions as given by
(1) the deflection of an infinite plate due to the actual

loading of the real plate and
(ii) the deflection created by 2N fictitious unknown moments

placed outside the domain of the réal plate around
contours.
This yields

2N
w(x,y) = ffI(xi,yi,E,n) qi(g,n)dgdn - kglIM(Xi,Yipgksnk)Mk

(5.5)
The first part of Equation (5.5) can be evaluated easily
after knowing the force influence function of an infinite
plate. The sécond part of the right hand side of Equation
(5.5), which involves the determination of the fictitious

moment, can be handled by forcing the deflection equation,




(o,s)

(y,n)

ove
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—p (x,€)

Force contour

coordinates of F in
local system
coordinates of plate
domain point in local
system

coordinates of F in
global system
coordinates of plate
domain point in
global system

Figure 12 :

Infinite plate

Local and Global Coordinate
Systems for Fictitious Force F



One can differentiate the force influence function of
Equation (5.1) to get the moment influence function in terms

of local coordinates as in Equation (5.2) [7].

2
IM (0, X ,8,n) = L an Il cos ¢ (5.2)
81D a2
where
r? = (0-s)2? +(x -n)?

Equation (5.2) gives the deflection of an infinite plate at
point (o,x) when a unit moment is placed at (o=s, x=n) as in

Fig. 13. From Fig.13 the angle ¢ is defined as

¢ = tan™1 (%%%Q
cos¢ = X°n
x -n)%+ (o-s)?
X -n
cos¢ = (5.3)
T

Using Equation (5.3) in Equation (5.2), one obtains

- 2
IM (o0,x,s,n) = Xn oonIZ (5.4)

87D a?

Expression (5.4) is the moment influence function that
is used instead of the force influence function as used by

Wu-Altiero used. The only difference is that the moment

46
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(o,s)

— X,E

Moment contour

Infinite plate

Local and Global Coordinate Systems for

. Figure 13 :
Fictitious Moment M



Fictitious
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moments

Plate Domain

Parallel Contour

Infinite plate

Figure 14 : Plate with Parallel Contour
(Point Moment Method)

ove
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Equation (5.5) to find the deflection any where inside the

actual plate. The bending moments may also be found any where
inside the real plate by using Equation (5.5) in the formulae
for the bending moments. |

After forcing Equation (5.5) to satisfy all the boundary

conditions, one will have a matrix equation of the form

AM = B

where

T

M is the unknown moment vector M = [M;, Mao... MZN]

A is a matrix of size 2N x 2N

2N M
r 1I. on BC+BS
k=1 K »
2N M M
31 31
= (0 G3x dik * My Gy 4x) on B
A =
2N 2 M 2M 2+M
321 51 321
pe1 1 Gga dik T BT dax v F () ydon BBy
ZN 3 3 M 3 M
31 331 371
I [g1(=).q + g2l )i * 83l ).
- ax? 1k ax23y 1K axay? 1K
M
931
+ gu(ays )ik ] on Bf

B is the right hand side or the load vector as given

by



Ir ded N
K Ii qd&dn on BC+BS
1 31
ﬁ{ [nx(§§ it ny(§7 )i]ngdn on B,
B = 321 321 321
I I 1= ) + £.(=—= ); + £a( );Jadgdn on Bg+B,
R ax? ax3y 3y 2
3 3
N D T e PR N e ke S
R ax? 3x23y 3x3y?
+ gt»(g-a-l ):lgdead on B

Matrix A and vector B contain
conditions. Depending on the type
will choose the corresponding part
as explained earlier in Chapter 3.

A with its load vector B, which is

50

all the possible boundary
of boundary of plate, one
of matrix A and vector B,
Thus by solving matrix

a system of 2N x 2N linear

algebric equations, one obtains the unknown fictitious moments.

The question now remains as to how to

vector B. Both matrix A and vector

generate Matrix A and

B are in termsof global

coordinates (x,y), but the moment influence function is in

terms of local coordinates (o,x). Thus one needs to express

all IM(x,y) and its derivatives in terms of IM(c,x) and its

derivatives. In other words, the global moment influence

function and its derivatives of matrix A and vector B must be

expressed in terms of the local coordinates moment influence
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function and its derivatives. These details are shown in
Appendix C. Thus, by using Appendix C, one can generate matrix
A and vector B that will solve for all the unknown moments.
After that, one may use Equation (5.5) to find the deflection
any where inside the real plate, and in conjunction with bend-
ing moments formulae, one can also obtain Mx and My any where

inside the real plate.
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chapter S

APPLICATION OF MOMENT METHOD

As mentioned in Chapter 5, in order to find the f
magnitudes of the fictitious moments, one needs to generate
matrix A and the load vector B and that is achieved by
using Appendix B which involves all the necessary deriva-
tives. The boundary conditions are expressed in terms of
the global coordinates (x,y), but the moment influence
function is in terms of local coordinates (o,x). Thus one
is forced to express the global moment influence function
and its derivatives in terms of the local moment influence
function and its derivatives. This is shown in the second
part of Appendix B. The third part of Appendix B expresses
the moment influence function and its derivatives in terms
of local coordinates explicitly.

The use of different symbols for the Green's function
and its derivatives will assist in programming and in
making the flowchart. The moment influence function for
an infinite plate of arbitrary radius "a" in terms of the

local coordinates is

- - 2 _ 2
IM (0,%X,s,n) = X oon (o-8)° + (x-n)
8™ a2




If the plate is subjected to

the magnitude of load vector

™M - aaIA
M M 2 M
o1 _ 31" _ 921" _
—-)(_ = A_A]_ '—y = AB]. axay AABI
2 M 2 M 3 M
871 - A, 81 - aB, 8’1 - aaB,
ox? dy?2 ax2%ay
3+M 3:M 3+M
i SV 31 - 4B, 81 - AaB,
ax? dy?® 3x3y?
Now one can write matrix A in section 5.2 as
[N
L (AAIA).
k=1 ik on By + BC
2N [ ]
- X N_(AA;) + N_(AB,;)]. :
A= k=1 X y ik on BC
2N
£ [Fi(AA2) + F2(AAB,) + F3(AB2)];, on B + By
k=1
2N
I [Gi(AAs) + G2(AAB2) + G3(AAB3) + Gy (AB3)] i on B
k=1

a uniformly distributed load

B remains the same as derived

earlier and given by Equation (5.6). Considering the case
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(6.1)

f

where the loaded area is descretized to equal areas (elements),

one writes using Equation (5.

vector B,

3) for evaluation of the load
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— .
NL
gA I (AAIA). |
L=1 iL on BS"'BC J
NL
qA = [N, (AA1) + N (AB1)];, on B
B = NL (6.2)
qA I [Fi(AA2)+ F,(AAB,) + F3(AB2)]., on B _+B
L=1 iL s °f
NL
qA I [G:i(AA3)+G2(AAB2) + G (AAB3)
L=1
+ Gu(ABa)]iL on B

Using (6.1) and (6.2) one may solve the following matrix
equation

AM = B
for the set of friction moments M. At this stage, one can

get deflection and moments anywhere inside the plate readily.
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GENERAL FLOWCHART

( START ) g

p

1{/ Read, input data ;;7

4

Cenerate the
algebraic equation
of the form

AM = B

matrix (2Nx2N)
load vector (2Nx1)
fictitious moments

= Wy
mowu

Solve simultaneous
equations for the
fictitious moments

L

Calculate deflection
and moments using the
obtained fictitious
moments and deflection
and moments formulas

]
< STOP>

General Flowchart for the Point Moment Method
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MOMENT METHOD FLOW - CHART

' 2
lisumM = 1stM 4ns (v 1

CALCULATE r T
Py B, Fy, G, Gy G3 G, SUMI=SUML+AATA

SUM2 = SUM2

l1sT=15UM-NS(N) + 1]

SSUH] = SUMI
+ AATA

SUM2=SUM2+F, AA;
+ F2AAB+ F3AB;

1] = 134]
J = KK +1J

SUM2=SUM2+G;AA;
4G AAB; + GyAABS A(J  N1)=SUMI *XLOAD

*AREA
H GyAB; A{J+NS ,N1)=SUM24XLOAD
SAREA

Jculate AA), AA:
AB1,AB;

Ca
AA

h(x = KK + 20Ns(N) |
to local

Transformation of global
fictitious forces coordina-

JJ = JJ4]
IC=IC+1 YES
NO
@ fo
‘Transfomtion of global

Solving the matrix

collocation point coordinate equation :

to local

NO

AM = B
for the fictitious moment

[k=1x-wp(ic,oa) + 1] YES

Calculation of

Calculation of deflectionJ
m.MiAgAs .mxA.ABz +ABj ,AAB, |

and bending moments

*

Calculation of error
percentage in deflections
and bending moments

< STOP ,

A(J,K)=F1AA )+ F,AAB,
4+ F31AB,
A(J"'NS.R)"‘G]M;"‘G:MB:
+ G3AAB3+ GuAB;

A(J,K) = AAIA
A(J + NS,K) = F AA;
+ FoAAB, + F3AB;

A(J,K) = AAIA
A(J+NS,K) = NX AA;+NYAB,

s173
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Using the previous flowchart, a program can be written to
solve for any thin plate problem of irregular shape when sub-
jected to a uniformly distributed load with a variety of
boundary conditions, provided that the plate boundaries may

be approximated by straight edges. By a very slight modifica-

tion in the previous flowchart, a program can be written to
solve for a plate of irregular shape subjected to any type of
loading. 1In the work contained herein, results of the previous
two cases in section 4.3 are presented again using the moment
method. The statements of the two problems have been mentioned
in section 4.3 and also shown in Figure 10 and Figure 12.
Tables (6.1) and (6.2) contain the deflection and moments for

the square and triangular plates,respectively.
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Table 6.1 : The moment method

Square Plate

a = 80m, n = 40, DP

wMMWn ZAM“mnnv 2h“=s.v Error % zwmmﬂmnnv ZMM”MB.V Error % zwmmwmnnv zmmnﬂs.v Error 2
1 1.856 1.933 -4.126 3.687 3.826 -3.764 0.000 0.008 0.000
2 4.790 4.982 -4,013 8.266 8.518 ~-3.049 0.000 0.005 0.000
3 5.881 6.114 -3.968 9.760 9.989 -2.343 0.000 0.005 0.000
4 1.405 1.453 -3.402 3.142 3.179 -1.163 1.020 1.039 -1.834
5 3.618 3.740 -3.376 6.933 w.oom. -1.627 2.290 2.307 -0.766
6 4.438 4.587 -3.357 8.096 8.233 -1.687 2.692 2.710 -0.663
7 0.949 0.976 ~2.798 2.360 2.374 -0.590 1.068 1.034 3.155
8 2.426 2.494 -2.795 4.912 4.958 -0.937 2.387 2.343 1.838
9 2.966 3.049 -2.785 5.618 5.676 -1.025 2,79 2.747 1.698

10 0.504 0.517 -2.516 1.332 1.322 0.720 0.378 0.338 10.618

11 1.271 1.302 -2.461 2.364 2.359 0.210 0.555 0.492 11.302
12 1.545 1.583 =2.,440 2.560 2.559 0.063 0.519 0.447 13.889

13 0.087 0.089 -2.483 -0.247 -0.290 -17.321  -1.772 -1.834 -3.710

14 0.211 0.216 -2.391 -1.084 -1.135 -4.713 -4.802 -4.916 -2.371

15 0.254 0.259 -2.077 -1.416 -1.468 -3.663 -5.927 -6.065 -2.165
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Table 6.2 : The moment method

Triangular Plate
a=80m n= 30, DP

Point W(exact) W(Num.) MX(Exact) MX(Num.) MY (Exact) MY (Num. )

No. - m Error % Nemm Nemm Error % N-mm Nemm _Error %
1 0.000 -0.000 0.000 0.000 0.045 0.000 0.000 -0.007 0.000
2 0.005 0.005 -4.101 -0.392 -0.408 -3.981 0.612 0.658 -7.457
3 0.034 0.034 -1.703 -0.345 |o.umu -6.220 ° 1.125 1.124 0.081
4 0.091 0.092 -1.480 0.010 -0.005 145.274 1.526 1.567 -2.674
5 0.166 0.168 1.356 0.540 0.523 3.152 1.800 1.795 0.298
6 0.242 0.244 -0.948 1.111 1.104 0.674 1.934 1.970 -1.878
7 0.294 0.297 -1.007 1.597 1.585 0.754 1.913 1.903 0.530
8 0.302 0.306 -1.153 1.860 1.855 0.263 1,732 1.755 -1.332
9 0.253 0.256 -1.200 1.770 1.762 0.466 1.350 1.336 1.038
10 0.147 0.148 -0.871 1.194 1.193 0.113 0.781 0.809 -3.517

11 0.000 -0.000 0.000 0.000 -0.000 0.00  0.00 -0.000 0.000
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chapter 7

MIXED MODE METHOD

In Chapters 3 and 4, where Wu-Altiero method is used,
very good solution of the deflection of both rectangular
and triangular plates is obtained. Also in Chapters 4 and
5, the numerical technique as developed in this work of solving
the same plate with the aid of fictitious moments was
verified to be very good. Knowing that the use of ficti-
tious forces or fictitious moments gives almost identical
results with a sufficient number of collocation points, the
superposition of both fictitious moments as well as
fictitious forces is expected to give reasonable answers
and this is the topic of this chapter. The technique basi-
cally involves embedding the real plate into a fictitious
infinite plate of the same material for which the Green's
function for force and moment is known. N points are pres-
cribed at the real plate boundary at which the boundary
conditions for the real plate are to be satisfied by means
of N fictitious moments as well as N fictitious forces
placed outside the domain of the real plate. The solution of
the real plate is to superimpose three cases, one being the

deflection of an infinite plate due to the actual loading
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and the second and the third being the deflection due to
N fictitious forces and N fictitious moments, respectively,

as shown in Equation (7.1) and Figure 15.

N
w(x,y) =[//1(x,y,&,M) q(&,n)d&dn - k§1 L(x,¥58 5 MLy

2N
-1 MGy, e L] (7.1)
k=N+1
where

Lk for k 1 >k =N are the fictitious forces

and Lk for k N+1 - k = 2N are the fictitious moments

The first part of Equation (7.1) can be evaluated
easily just by knowing the force influence function of an
infinite plate of the same material as the real plate. The
other two parts of Equation (7.1) involve the unknown N
fictitious forces and N fictitious moments, which may be
obtained by forcing the total solution (Equation 7.1) to
satisfy the boundary conditions of the real plate (Equation
2.11 - 2.14) resulting in a matrix equation of the form

AL = B
which may be solved for the N fictitious forces and the N
fictitious moments.
where :

A is the matrix given by
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Fictitious Porces
and Moments

Plate Domain

Infinite plate

Figure 15 : Plate and Contour Geometry
(Mixed Mode Method)

ove




N 2N
r I. + z TI. on B. + B
k=1 1K k=N+1 1K C S
N 2N
kil [ (r)lk n ( )lk] +k=I§]+1[n ( )lk
M
31
+ ny(5§— 1kJ on BC
={ N 2 2
At s ey, + £ I)k+f3(—)1k]
k=1 ax? 3xdy dy
2N M ale
+ 2[1( k¥ fal )ik fa( )kJ
=N+1 axay ! oy 1
on Bs + Bf
N 3 3
) [gl(—-) +ga (B + g ()
k=1 ax? 3x%dy 3xdy
ZN 3 M 3 M
33 1 I 3%1
+ 8«( + 2 g1( )- + ga( )
1k] [ ax 3 ik axzay
M M
3%1 9°1
+ g3 )., + gu( ) on B
axayz lk ay3 ] f
LT = {L,, L., L L., L L L.}
b BEs B3cee BNY UN+1? UN+2 2N
where

L, » LN are the N fictitious forces

and LN+1 -> L2N are the N fictitious moments

The load vector B is given as

63
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———

|
Q{Ii qd&dn on BC *+ Bg | E
|
/1 0y L n, (&) qdedn on B |
ax i y ayk a C f
B = ff[fl(——) e 5 L £33 1)1 qdtdn on Bg+B,
R ax? o0Xoy dy? |
3 3 |
(e Gy + g2 (21 v g (2L
R 3x dx2ay 1 dxay? 1
3°1
+ gu( 1] qd&dn on Bf
ay31

L )
———

For the same plate when subjected to the same load the right
hand side vector is the same for all the three methods.
Depending on the type of plate boundaries, one may
use the corresponding part of matrix A and the corresponding
part of vector B. For generating matrix A one needs to refer
to Appendix A to use the derivatives of‘the force influence
function, and refer to Appendix C to use the derivatives of
the moment influence function. However, for generating vector
B, only Appendix A is needed. By generating matrix A and
vector B one obtains 2N algaibric equations that may be
solved for both the N forces and the N moments. Deflection
any where inside the plate can be found using Equation (7.1).
Also, Equation (7.1) can be used in conjunction with the

bending moments formulae to yield the bending moment anywhere

inside the plate.
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With the aid of the force and moment flowchart, one can
get the mixed mode flowchart from which a program may be written.
Tables (7.1) and (7.2) contain the deflections and moments
for both the square and triangular plates using the mixed
mode method. The statements of the two problems have been

mentioned in section 4.3 as shown in Figures 10 and 11.
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Table 7.1 : The mixed mode method

Square Plate
a = 80m, n = 40, DP

MX(Exac) MX(Num.) MY (Exact) MY (Num. )

mmwwn zAMHmnnv zhncs.v Error % Nemm Nemm Error % Nemm Nemm Error %
1 1.856 1.931 -4,038 3.687 3.818 -3.557 0.000 ~0.001 0.000
2 4.790 4.980 -3.966 8.266 8.510 -2.953 0.000 0.009 0.000
3 5.881 6.112 -3.927 9.760 9.981 -2.266  0.000 0.009 0.000
4 1.405 1.452 -3.373 3.142 3.178 -1.140 1.020 1.040 -1.937
5 3.618 3.740 -3.348 6.933 7.044 - -1.606 2.289 2.308 -0.821
6 4.438 4.586 ~-3.329 8.096 8.231 -1.670 2.692 2,711 -0.698
7 0.949 0.975 -2,782 2.360 2.374 -0.593 1.068 1.034 3.154
8 2.426 2.493 -2.779 4.912 4.958 -0.927 2.387 2,344 1.810
9 2.966 3.048 -2.768 5.618 5.675 -1.014 2.794 2.747 1.671
10 0.504 0.517 ~-2.508 1.332 1.323 .0.691 0.378 0.338 10.610
11 1.271 1.302 =-2.450 2.364 2.359 0.315 0.555 0.493 11.201
12 1.545 1.583 -2.429 2.560 2.558 0.070 0.519 0.448 13.767
13 0.087 0.089 -2.546 -0.247 -0.288 -16.823 -1.772 -1.835 -3.527
14 0.211 0.216 -2.383 -1.084 -1.136 -4.780 © -4.802 -4.915 ~-2.350
15 0.254 0.259 -2.067 -1.416 -1.468 -3.7011 -5.927 ~6.054 ~2.146
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Table 7.2 : The mixed mode method

Triangular Plate
a=80m, n = 30, DP

Point W(exact) W(Num.) MX(Exact) MX(Num.) MY (Exact) MY (Num.)

No. o m Error % Nemm N-mm Error % Nemm N-mm .Error %
1 0.000 -0.000 0.000 0.000 0.038 0.000 0.000 0.005 0.000
2 0.005 0.005 ~4,245 -0.392 ~0.4066 -3.712 0.612 0.656 -7.261
3 0.034 0.034 -1.697 -0.345 -0.367 -6.327  1.125 1.124 0.070
4 0.091 0.092 -1.478 0.010 -0.004 145.161 1.526 1.567 -2.670
5 0.166 0.168 -1.355 0.540 0.523 3.150 1.800 1.795 0.300
6 0.242 0.244 -0.947 1.111 1.104 0.675 1.934 1.970 -1.878
7 0.294 0.297 -1.006 1.597 1.585 0.754 1.913 1.903 0.530
8 0.302 0.306 ~-1.153 1.860 1.855 0.263 1.732 1.755 -1.332
9 0.253 0.256 -1.200 1.770 1.762 0.466 1.350 1.336 1.038
10 0.147 0.148 -0.871 1.194 1.193 0.120 0.781 0.809 -3.531
11 0.000 -0.000 0.000 0.000 ~-0.003 0.000 0.000 -0.009 0.000
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chapter 8

DISCUSSION AND CONCLUSIONS

The work described here-to-fore confirms the validity
of the point force method as described by Wu-Altiero [6],
in addition to the point moment and the mixed model methods

as developed herein.

The salient features of the three methods may be

summarized as

(1) The technique of influence function usage in the
solution of the plate problem is based on the use of
the Green's functions of an infinite plate with an
arbitrary radius "a". These functions may be force
or moment influence functions. From the numerous
results obtained and shown in Tables 8.3 through 8.8,
it is clear that the magnitude of the arbitrary radius
"a'" has no influence on the computed values of deflec-
tion and moments in the plate, provided that double
precision computational mode is used. This is in
contrast to the conclusions drawn by Wu-Altiero in [6]
where the validity of the approach is restricted to a
certain range of the arbitrary radius "a" for example,

in the case of a square plate 10 m x 10 m, "a" is
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restricted to 80 m < a < 8000 m for non-oscillatory

results. This is a rather significant conclusion,

inasmuch as it appears to relieve the user of this

technique the responsibility of guessing an appropriate
value of "a" for any given problem.

Another important conclusion of this work is the effect
of the use of the double precision computational mode
in programming. This may have been necessitated due to
the fact that the technique requires inversion of a
large sized matrix, which is not handed and nor is
symmetric. The program associated with each of the three
methods is run twice, one using a single precision
computational mode and the other double precision. It
is clear from Tables 8.3 through 8.8 that single preci-
sion programming leads to results which are somewhat
erroneous, whereas the double precision mode leads to
accurate and stable results.

In addition to deciding a value for the arbitrary radius
"a'" prior to the usage of this program for a given
problem, the user must also decide the location of
contour(s) outside the domain of the plate. It appears
that the number of contours should preferably be
greater than one for reasons of stability of numerical
results over a greater range of contour location. The

case of the use of two contours for the square plate
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(10 m x 10 m.) was studied in this work, where the
location of one contour (C1) was fixed and a range
obtained for the other parallel contour (C;). The
results of this study are depicted in Figure 18, where
the range of C, is plotted as the ordinate and different
fixed values of (C, plotted as the abscisa. The bell
shaped curve is interesting inasmuch as it shows that
the range of C, is restricted when C, is taken "very
close" or "quite far". from the plate edge. This inter-
action may be explained on the behavior of the

influence function for small and large values of its
arrangement for forces on contour C; requiring a
numerical balancing effect from forces located on C,.
Such an argument may be extended to the preferred use of
contours numbering greater than one.

The rate of convergence for the three methods as a
function of the number of collocation points has been

investigated, using the following three error criteria

I = lwtheo. } wnum.lmax
N
= 2 -
I E (wtheo. num )i/N 1
i=1
and
N

13 = .Z

as shown in Figure 17.



(5)

71

Also the first error criteria for mix bending as a
function of the number of collocation points has been

investigated for the three methods as Shown in Figure 19.

Philosophically speaking, the method is a general
technique for the solution of linear boundary value
problens. The contour point forces or moments may be
thought of as the "homogeneous' part of the solution of
the differential equation, chosing such that the complete
solution satisfies boundary conditions in a discrete
sense. Thus this method may be extended to the analysis
of other problems in mechanics or other engineering
systems which are modelled as boundary value problems,
provided the influence function is available for the
basic governing equation. It may also have use in
non-linear problems, where the technique would be used

in an iterative sense.




Table 8.1 Three Methods Deflections

Square Plate
n=40 DP a=80m

D emeom  Omm mm e

method Method Method

1 1.8560 1.9319 1.9326 1.9309
2 4.7900 4.9812 4.9822 4.9800
3 5.8810 6.1132 6.1144 6.1119
4 1.4050 1.4526 1.4528 1.4524
5 3.6180 3.7397 3.7402 3.7391
6 4.4380 4.5864 4.5870 4,5858
7 0.9490 0.9755 0.9755 0.9754
8 2.4260 2.4936 2.4938 2.4934
9 2.9660 3.0484 3.0486 3.0481
10 0.5040 0.5167 0.5167 0.5166
11 1.2710 1.3022 1.3023 1.3021
12 1.5450 1.5826 1.5827 1.5825
13 0.0870 0.0892 0.0892 0.0892
14 0.2110 0.2160 0.2160 0.2160
15 0.2540 0.2593 0.2593 0.2593
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Table 8.2 Three Methods Deflections

Triangular Plate

n =230, DP a = 80

ore

D sewom mm o tome wee
method Method Method
1 0.0000 -0.0001 ~0.0002 -0.0002
2 0.0052 0.0054 0.0054 0.0054
3 0.0337 0.0343 0.0343 0.0343
4 0.0906 0.0919 0.0919 0.0919
5 0.1660 0.1682 0.1683 0.1682
6 0.2420 0.2443 0.2443 0.12443
7 0.2940 0.2970 0.2970 0.2970
8 0.3020 0.3055 0.3055 0.3055
9 0.2530 0.2560 0.2560 0.2560
10 0.1470 0.1483 0.1483 0.1483

11 0.0000 -0.0000 -0.0000 -0.0000
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Table 8.3 : Deflections using the force method
2 Triangular Plate
n = 30, SP
Point
e " S,w_w..ﬁ 4 200 1800 3000 7200 14000 1,000,000 10,000,000
(exact)mm
1 0.0000 0.0070 1.6576 0.0087 0.0247 0.0043 -0.1667 0.0106 0.2671
2 0.0052 0.0046 1.3869 0.0129 0.0252 0.0111 -0.0628 0.0149 0.0704
3 0.0337 0.0210 1.2589 0.0488 0.0512 0.0389 0.0712 0.0217 0.3096
4 0.0906 0.0838 1.5605 0.1103 0.1089 0.0950 0.2407 0.0964 0.3254
5 0.1660 0.1603 0.3972 0.1769 0.1838 0.1690 0.2272 0.1628 0.3141
6 0.2420 0.2345 ~0.8402 0.2561 0.2562 0.2465 0.3073 0.2550 0.2166
7 0.2940 0.2882 -0.6950 0.2988 0.3101 0.2972 0.3508 0.2936 0.1316
8 0.3020 0.2947 -1.0594 0.3031 0.3188 0.3049 0.2966 0.3108 0.4864
9 0.2530 0.2473 -1.1156 0.2556 0.2686 0.2561 0.2454 0.2604 0.2218
10 0.1470 0.1363 -0.9183 0.1508 0.1587 0.1484 0.2036 0.1575 0.2293
11 0.0000 -0.0100 -1.3932 0.0069 0.0083 0.0010 0.1151 0.0021 0.0561

n = Number of collocation points

SP
DP

Single precision

Double precision
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Table 8.4 : Deflections using the force method

Triangular Plate

n = 30, DP

Point

e N 200 1800 3000 7200 14000 1,000,000 10,000,000
1 0.0000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
2 0.0052 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054
3 0.0337 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343
4 0.0906 0.0919 0.0919 0.0919 0.0919 0.0919 0.0919 0.0919 0.0919
5 0.1660 0.1682 0.1682 0.1682 0.1682 0.1682 0.1682 0.1682 0.1682
6 0.2420 0.2443 0.2443  0.2443 0.2443 0.2443 0.2443 0.2443 0.2443
7 0.2940 0.2970 0.2970 0.2970 0.2970 0.2970 0.2970 0.2970 0.2970
8 0.3020 "0.3055 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055
9 0.2530 0.2560 0.2560 0.2560 0.2560 0.2560 0.2560 0.2560 0.2560

10 0.1470 0.1483 0.1483 0.1483 0.1483 0.1483 0.1483 0.1483 0.1483

11 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
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Table 8.5 : Deflections using the moment method

2 Triangular Plate
n = 30, SP

Point

e N 200 1800 3000 7200 14000 1,000,000 10,000,000
1 0.0000 -0.0000 -0.0057 -0.C161 -0.0280 0.0254 - -0.0034 0.0201 0.0382
2 0.0052 0.0054 -0.0011 -0.0128 0.0206 0.0254 -0.0040 0.0189 -0.0364
3 0.0337 0.0341 0.0279 0.0202 0.0458 0.0529 0.0249 0.0307 -0.0261
4 0.0906 0.0911 0.0864 0.0798 0.1031 0.1103 0.0819 0.0966 0.0202
5 0.1660 0.1670 0.1630 0.1553 0.1801 0.1813 0.1688 0.1676 0.1463
6 0.2420 0.2422 0.2396 0.2334 0.2575 0.2536 0.2487 0.2435 0.1861
7 0.2940 0.2944  0.2929 0.2878 0.3104 0.3066 0.2984 0.3005 0.2079
8 0.3020 £ 0.3021  0.3003 0.2962 0.3146 0.3135 0.3141 0.3080 0.2718
9 0.2530 0.2532 0.2531 0.2512 0.2593 0.2646 0.2633 0.2659 0.3095

10 0.1470 0.1442  0.1461 0.1441 0.1510 0.1506 0.1528 0.1530 0.1912

11 0.0000 -0.0042 -0.0022 -0.0063 0.0021 0.0021 0.0004 0.0005 0.0380
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Y Trianpular Plate Table 8.6 : Deflections p.umubm the moment method

n = 30, DP

Point

e " Cfiee .4 200 1800 3000 7200 14000 1,000,000 10,000,000

(exact)mm

1 0.0000 -0.0005 -0.0002 -0.000L -0.0001  -0.0000  -0.0000  0.0002 0.0003
2 0.0052 0.0054 0.0054 0.0054  0.0054  0.0054  0.,0054  0.0054  0.0054
3 0.0337 0.0343  0.0343 0.033  0.0343  0.0343  0.0343  0.0343  0.0343
4 0.0906 0.0919 0.0919 0.0919  0.0919  0.0919  0.0919  0.0919  0.0919
5 0.1660 0.1683 0.1683 0.1683  0.1683  0.1683  0.1683  0.1683 0.1683
6  0.2420 0.2443  0.2443  0.2443  0.2443  0.2443  0.2643  0.2443  0.2443
7 0.2940 0.2970 0.2970 0.2970  0.2970  0.2970  0.2970  0.2970 0.2970
8  0.3020 10.3055  0.3055 0.3055  0.3055  0.3055  0.3055  0.3055  0.3055
9 0.2530 0.2560 0.2560 0.2560  0.2560  0.2560  0.2560  0.2560  0.2560

10 0.1470 0.1483 0.1483 0.1483  0.1483  0.1483  0.1483  0.1483  0.1483

11 0.0000 -0.0000 -0.0000 -0.0000 -0.0000  -0.0000  -0.0000  -0.0000  ~-0.0000
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© Table 8.7 : Deflections ‘using the mixed mode method
~ Triangular Plate
n = 30, SP
Point
No.
W A 200 1800 3000 7200 14000 1,000,000 10,000,000
(exact)mm
1 0.0000 -0.0356 -0.0087 -0.0248 0.0022 0.0025 0.0116 -0.0001 0.0024
2 0.0052 -0.0173 0.0279 0.0244 o.oomw‘ 0.0045 0.0192 0.0062 0.0060
3 0.0337 0.0078 0.0735 0.0603 0.0353 0.0314 0.0407 0.0355 0.0332
4 0.0906 0.0585 0.1261 0.1239 0.0945 0.0883 0.1034 0.0898 0.0862
5 0.1660 0.1393 0.2017 0.1997 0.1686 0.1655 0.1757 0.1667 0.1625
6 0.2420 0.2092 0.2823 0.2778 0.2442 0.2425 0.2472 0.2461 0.2384
7 0.2940 0.2612 0.3273 0.3269 0.2970 0.2935 0.2998 0.2947 0.2902
8 0.3020 1 0.2675 0.3348  0.3395 0.3050 0.3026 0.3095 0.3037 0.2964
9 0.2530 0.2116 0.2853 0.2858 0.2538 0.2517 0.2578 0.2541 0.2457
10 0.1470 0.0920 0.1775 0.1678 0.1443 0.1465 0.1490 0.1479 0.1426

11 0.0000 -0.0585 0.0316 0.0766 -0.0078 -0.0019 -0.0009 0.0014 -0.0051
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Table 8.8 : Deflections using the mixed mode method

79

Hnwmnmrwwn Plate
n = 30, DP

Point

e " n%.wpﬁ Y 200 1800 3000 7200 14000 1,000,000 10,000,000
{exact) mm

1 0.0000 ~-0.0003 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002
2 0.0052 o.oomb. 0.0054 0.0054 o.oomb. 0.0054 0.0054 0.0054 0.0054
3 0.0337 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343
4 0.0906 0.0919- 0.0919 0.0919 0.0919 0.0919 0.0919 0.0919 0.0919
5 0.1660 0.1683 0.1683 0.1683 0.1683 0.1683 0.1683 0.1683 0.1683
6 0.2420 0.2443 0.2443 0.2443 0.2443 0.2443 0.2443 0.2443 0.2443
7 0.2940 0.2970 0.2970 0.2970 0.2970 0.2970 0.2970 0.2970 0.2970
8 0.3020 ©0.3055 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055
9 0.2530 0.2560 0.2560 0.2560 0.2560 0.2560 0.2560 0.2560 0.2560

10 0.1470 0.1483 0.1483 0.1483 0.1483 0.1483 0.1483 0.1483 0.1483

11 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000




Table 8.9 :

Triangular Plate

Rate of convergence using I;

80

L= thheo._ whumeax
Number of Wu-Altiero Mosient Mixed Mode
Collocation Method Method Method
Points '

6 407.60589 2106.51575 325.24887
12 88.30607 201.18038 166.68727
18 5.85533 474.59918 31.65217
24 3.5645 3.58030 3.60287
30 3.47890 3.48307 3.48158

or¢




Table 8.10 : Rate of convergence using I,

Triangular Plate

81

I = 1% (wtheo. wnum?.i/(N D
Number of Wu-Altiero Moment Mixed Mode
Collocation Method Method Method
Points
6 267.86127 1156.76660 116.47147
12 29.48783 65.80098 25.14574
18 3.00183 159.41538 4.,50355
24 2.16505 2.19994 1.80809

30 2.10048 2.10467 1.60715

orve¢




Table 8.11 : Rate of convergence using I;

Triangular Plate

or¢

N
Is = iéll(wtheo.— wnum).l/N
Number of Wu-Altiero Moment Mixed Mode
Collocation Method Method Method
Points
6 238.21047 1001.12583 116.47147
12 14.78288 31.06171 25.14574
18 2.44435 76.37418 4 .50355
24 . 1.65768 1.75889 1.80809

30 1.59045 1.60650 1.60715
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APPENDIX A

Influence Function for an Infinite Plate and Its Derivates

Let I(x,y,&,n) represent the force influence function for

an infinite plate.

= r(x-8)2+ (y-n)? (x-£J%+ (y-n)?

I (6y,8,m) = [FEogtt¥oMTy gpp ~ 2]
g_){ - (g;_g)[zn [(X-E)Z;Z(}"H)ZJ + 1]
321 1 (x-£)2+ (y-n)? 2(x-£)2

= [2, [ ] + + ]_]
ax2 8™ -0 a2 (x-8)2%+ (y-n)?
331 = (x-E) [12 - 8(X'£)2
ax3 167D ((x-€)2+ (x-n)?2) [(x- £)2+ (y-n)?]

L (remipg, (o0 (yon)2y, gy

3y a2
921 _ 1 (x-8)%+ (y-n)? 2(y-n)?
= [en [ ] + + 1]
3y? §mD a? (x-£)%+ (y-n)?
31 _ (y-n) [12 - 8(y-n)*

3y3 167D (x-&)%+ (y-n)? (x-£)%+ (y-n)?




dxoy?

(x-£)_(y-n)

4nD [(x-&)2+ (y-n)?]

(y-n)
4mD[(x-&) 2+ (y-n)?2]

(x-£)

47D [(x-£)%+ (y-n)2]

{1

2(x-£)2
[(x-8)2+ (y-n)2]

N 2(y-n)?
[(x-£)2+ (y-n)2]
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Appendix B-1

Trans formation of Global Coordinates in Terms of Local
Coordinates

X, y are the gloabl coordinates

0, X are the local coordinates

From Figure (16) one can write the following

X = X; + x cos® - o sin®

Y = yi1 + X sin®é + ¢ cos6
or

X - X3 = X cos8 - o sin®d

Yy -y = X sin® + o cos®

and by using Cramer's rule y and & can be abtained

X - X; - sine6

Y - ¥y cos6

X = = (x - x1) cos8 + (y - y;) sin®
cos® - sind

sinbd cos®

cosf X - X,

L

sinb Yy - Y1

c = = (y - y1) cos® - (x - x1) sin®
cosB- siné
sin®d cosb

X = (x - x1) cos® + (y - y,) siné

(1)

0 = (y - yi1) cos® - (x - x;) sin®é
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Plate domain

—— il

Transformation of Coordinates

Figure 16



Appendix B-2

Transformation of thé Global Derivatives of the Moment
Influence Function in Terms of its Local Derivatives

X, ¥y are the global coordinates

o, X are the local coordinates
M

I is the moment influence function in terms of
local coordinates (o,X)
st _ oM a0, atM oy
9x o0 9X 9% 90X
(2)
st _ atM a0, atM a8y
ay a0 y ax Yy
Using Equation (1) oné can obtain
90 _
ﬁ = siné
a0
a = coso
2 (3)
X =
3% cos6
QX. = 3
3y sinb
Using Equations (3) in (2) one can write
M M M
al . . sind 3l cosb 3l
3X 30 ax (4)
s M I 1M

n
(g]
o
n
<D
+
(7]
)
=
<D




Equation (4) report the gloabl first derivatives of
the moment influence function in terms of the local first

derivatives. Similarly one can obtain the higher order

derivatives.

2 +M 2rM 2.-M 2-M
7L . sin?e LA 2sin6 cosg L1_ 4 cos2p &L

9x2 3g?” 3909y ax2

2 M 2 I‘i 2 M 2 M
i S cos2p 21, 2s5in6 cosg L1 4 sin2g 2L

dy? 902 309y 3x?

3 M K] M 3 M 3.M
o°L cos®e 3L . 35in26 cosf —o L . 35in® cos?p —o 1

ax3 oy 3 3023y doay?

_ sin%e 21"
Yo i

3 M M oM s M
9’1 cos®e 3L . 3sin6 cos?e — 1 _ 4 35in%0 cosf —o1

dy?3 903 3023y 3032

M
+ sinle 3
ax?

2 M orM or M 2rM
3’1 = (cos?8 - sin?p) 971 + sin® cos® (a "3 I)
3x3y 303 3x2 302

M M M

3
C : = sin?p coseo aqa + cos?6 sineg gj%—+
9X<°3y aqM 90 9X aqM

+ ——— (sin3p-2sinp cos?g) + (cos3e
3023y 9x290

- 2sin?6 cosH)



3 1M

3x9y?

M

= - cos?0 sine ==- + sin?0 cos6

do?

- 2sin%0 cos8) +

33 M

3x%90

g™ 5aM

(cos?®8
3x?3 9029y

(2sin® cos?6 - sin?e)



Appendix B-3

The Local Moment Influence Function and its Derivatives

™ (o,x,s,n) = X2 gn [{928)% + (x-m)*;
8nD b2

at™ _ 1(o-s) (x-n)

o 4mB[ (6-s)2 + (x-n)?]

a2 M _ 1(x -n) . (c-s)% (x-n)

902 47D [(0-s)2%+ (x-n)?] 2D [(o-s)2+ (o-n)2?]2
3™ - -3(0-s) (x-n) + _2(0-5)°(x-n)

303 21D [(o-s)? + (x-n)2]* npl(o-s)2+ (x-n)2]
a1, [(o-s)?+ (x-m)2], _ 2(x-n)2

X 87D b2 8mD [ (0-s) 2+ (x-n)?]
p21M _ 7(x-n) i (x-n)®

ax? 8mh [ (o-s)%+ (x-n)2] 2m [(o-s)?+ (x-n)?]?
- 6 ) 3(x-n)?

ax? 8m [(o-s)* (x-n)?] m [(o-s)% (x-n)?2]?

. 2(x-n)"

M (o-s)2+ (o-nJ2]3



521 - 1(c-5s) ) (o-s) (x-n)?
303Y 47p (o-s)?+ (x-n)? 2mp {(o-s)%+ (o-n)?}?2
53 M - 1 4+ _2(0-s)%(x-nm)?

3023y 4nD [(o-s)2+ (x-n)?] D [(o-sj%+ (x-n)?]3

e S 2(x-n)*(o-s) . 3(x-n) (o-s)
ax%30 ™ [(o-s)2+ (x-n)2]°3 2m [(o-s)? + (x-n)2]?




