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Abstract

The reduction in the useful service-life of reinforced concrete structures in the Arabian Gulf is of
concern to the construction industry. In this region, reinforced concrete structures rarely serve their full
design life. In such environments, both concrete and reinforcing steel need to be protected. Among other
alternatives, this protection can be achieved by the use of concrete surface treatment materials. While
several studies have been conducted on the effectiveness of such coatings in inhibiting reinforcement
corrosion, data are lacking on their performance in environments characterized by the presence of
chloride and sulfate salts. Furthermore, the effect of thermal and moisture variations, typical of that
prevailing in the Arabian Gulf environment, on the performance of concrete surface coatings are not fully
elucidated.

In this study, the performance of six concrete surface treatment materials were evaluated. The
results indicated that silane/siloxane with top coat was the most efficient in delaying the concrete
deterioration in most of the exposure conditions. Among all the surface treatment materials used in the
this study, silane/siloxane with top coat, silane and acrylic coating were the most effecive in providing
adequate protection and hence reducing the rate of reinforcement corrosion. Furthermore, these three
surface treatment materials were the most effective in reducing reinforcement corrosion in in-service
structures. Also, silane/siloxane with top coat was most effective in reducing sulfate attack, as compared
to other coatings. The concrete specimens treated with silane, silane/siloxane with top coat and acrylic
coating exhibited the least water absorption and reduction in compressive strength as a result of thermal
and moisture variations. Silane/siloxane with top coat and acrylic coating were effective in reducing
carbonation of concrete.
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The reduction in the useful service-life of reinforced concrete structures in the Arabian Gulf
is of concern to the construction industry. In this region, reinforced concrete structures rarely
serve their full design life. In such environments, both concrete and reinforcing steel need to
be protected. Among other alternatives, this protection can be achieved by the use of concrete
surface treatment materials. While several studies have been conducted on the effectiveness
of such coatings in inhibiting reinforcement corrosion, data are lacking on their performance
in environments characterized by the presence of chloride and sulfate salts. Furthermore, the
effect of thermal and moisture variations, typical of that prevailing in the Arabian Guif
environment, on the performance of concrete surface coatings are not fully elucidated.

In this study, the performance of six concrete surface treatment materials were evaluated. The
results indicated that silane/siloxane with top coat was the most efficient in delaying the
concrete deterioration in most of the exposure conditions. Among all the surface treatment
materials used in this study, silane/siloxane with top coat, silane and acrylic coating were the
most effective in providing adequate protection and hence reducing the rate of reinforcement
corrosion. Furthermore, these three surface treatment materials were the most effective in
reducing reinforcement corrosion in in-service structures. Also, silane/siloxane with top coat
was most effective in reducing sulfate attack, as compared to other coatings. The concrete
specimens treated with silane, silane/siloxane with top coat and acrylic coating exhibited the
least water absorption and reduction in compressive strength as a result of thermal and
moisture variations. Silane/siloxane with top coat and acrylic coating were effective in
reducing carbonation of concrete.
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CHAPTER 1
INTRODUCTION

1.1 CONCRETE DURABILITY IN THE ARABIAN GULF

The reduction in the useful service-life of reinforced concrete structures in the
Arabian Gulf is of concern to the construction industry in this region [1]. In this
part of the world, reinforced concrete structures rarely serve their full design life.
As a result, considerable resources have to be diverted towards repair and
rehabilitation of these deteriorated structures. The deterioration of these structures
is mainly attributed to the environmental and geomorphic conditions, which are
characterized by severe ground and ambient salinity and high temperature and

humidity regimes [2].

The major types of concrete deterioration, in this region, in decreasing order of
importance are:
(i) reinforcement corrosion, -
(ii) sulfate attack,

(ii1) salt weathering, and
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(iv) plastic and drying shrinkage cracking.
However, the overwhelming number of cases of concrete failure due to

reinforcement corrosion overshadows that due to other causes.

The last decade has witnessed, on a global level, a growing concern for problems

of corrosion damage in reinforced concrete structures. Bridge-deck deterioration

and corrosion damage to parking garages in the USA, deterioration of coastal

structures due to attack by sea water and salt Spray, corrosion in many structures

due to the use of chloride-based accelerating agents, and highly prevalent and
premature corrosion deterioration of concrete construction in the Arabian Gulf
states together constitute probably the largest group of reinforced concrete

structures undergoing deterioration due to a single causa] factor. Field surveys

conducted in an area which is typically representative of the conditions along the
Arabian Gulf seaboard indicate that the premature deterioration of concrete in the

Gulf states can be attributed to a number of factors [3]. These include, poor

quality concrete, inadequate cover to reinforcing steel, and a high level of chloride
contamination in concrete, inducted mainly through chloride-bearing constituent

materials, such as aggregates and mixing and curing water.




(V5]

Portland cement concrete provides both chemical and physical protection to the
reinforcing steel. The chemical protection is provided by the highly alkaline
nature of the pore solution (pH > 13). At this high pH, steel is passivated in the
presence of oxygen, presumably due to the formation of a submicroscopically thin
Y - Fep03 film [4]. Hime and Erlin [5] suggested that the passivating layers on
steel surface could have a composition other than that of y - FepO3- According to
Page [6], the lime-rich layer, which is observed at the steel-concrete interface,
provides further protection to the steel. This was confirmed by Leek and Poole [7]
who reported that the interfacial layer consists of an aggregate-free zone of
portlandite (Ca(OH)3) of variable thickness (5 to 15 pum ) disrupted by inclusions
of calcium silicate hydrate (C-S-H) gel. This layer is thought to screen most of the
surface of the steel from the aggressive ions and to act as an alkaline buffer to pH
reductions resuiting from the hydrolysis of corrosion products [8]. According to
Sagoe-Crentsil and Glasser [9], both Ca(OH)) and C-S-H gel form a buffering
pair, and a high pH is as readily maintained by C-S-H gel as by Ca(OH), . The
physical protection to steel is provided by the dense and impermeable structure of
concrete which retards the diffusion of the aggressive species, such as chlorides,

carbon dioxide, oxygen and moisture, to the steel-concrete interface.



Depassivation of steel occurs by the reduction of the pore solution pH, due to
carbonation, or by ingress of chloride ions to the steel-concrete interface. A
number of mechanisms by which chlorides break down the passive layer have been
proposed, e.g., the chemical dissolution of the film [10], the built up of the metal
holes at the film-substrate interface [11], and due to high chloride concentrations at
the iron oxide-pore solution interface which leads to local acidification and pitting
[12]. Leek and Poole [13], based on SEM-EDS studies of the passive film
breakdown on steel in mortar prisms, have shown that chloride ions initiate

reinforcement corrosion by breaking the bond between the film and the metal.

Irrespective of the mechanisms controlling the depassivation of steel due to
chloride ions, it is clear that these ions play a dominant role in initiating
reinforcement corrosion. From this perspective, ACI 318-85 [14] limit, the water
soluble chlorides to 0.15% by weight of cement. ACI Committee 224 [15]
adopting a more conservative approach has suggested that the acid-soluble
chloride concentration should not be more than 0.2% by weight of cement. The
British Standards BS 8110 [16] allows a maximum chloride content of 0.4%. The
Norwegian Code, NS 3474,_allows an acid soluble chloride content of 0.6%,
RILEM permits 0.4% and the revised Australian Standard for Concrete Structures,

AS 3600, allows an acid soluble chloride content of 0.8 kg/m3 of concrete (0.22%



by weight of cement for a typical concrete mix). Rasheeduzzafar et al. [17]
indicated that the chloride threshold limits for cements with upto 8% C3A agree
very well with the ACI 318 limit of 0.15% water soluble chlorides. Additionally,
they reported that ACI, BS and Australian Code limits, however, appear to be
conservative for concretes made with high C3A cements. Lambert et al. [18]
suggested that the critical level of chloride below which there was no significant
probability of reinforcement corrosion was around 1.5%. They attributgd the
increased chloride tolerance in their specimens, (compared to BS 8110 limit of
0.4%), to the protective nature of concrete produced under well-controlled

laboratory conditions.

Recent research findings, however, have shown that cement alkalinity also
significantly influences the chloride-binding and hence the free chlorides
[19,20,21,22]. Taking into account the concomitant effect of chloride and
alkalinity, Hausmann [23] suggested the critical Cl~/OH- ratio to be around 0.6.
Gouda [24] using the pH values of the electrolyte representative of concrete pore
solution indicated that the threshold Cl-~/OH- ratio was 0.3. Lambert et al. [25]
investigated the relationship between CI/OH- and corrosion current density in
various cements. Their investigations indicated that the passive conditions of steel

in concrete, (characterized by corrosion current density ( I, ) substantially lower



than 100 nA/cm2) were maintained until a threshold CI/OH- ratio of
approximately 3 was exceeded. There was a considerable scatter in the values of
Icorr recorded at Cl7/OH- ratios in excess of 3 and even at Cl-/OH- ratios as high
as 15 to 20, there were instances of bars suffering no significant corrosion.
Mangat and Guruswamy [26] reported that for steel fibers in concrete under
conditions of marine exposure, no visible signs of corrosion were present at Cl-
/OH-" ratios as high as 320. Mangat and Molloy [27] indicated that a universal
threshold Cl~/OH- level is not applicable to different cement concretes. In their
investigations, reinforcing steel corrosion was observed in the control matrix when
the pore fluid CI-/OH- ratio was 13, while at values of 17 and 18, in the silica fume
cement concrete, reinforcement corrosion Wwas insignificant. Minimal
reinforcement corrosion in the silica fume and blast furnace slag cement mortar
specimens placed in the aggressive environment of sabkha, even at CI-/OH- of 3.3

and 6.5, respectively, was reported by Al-Amoudi et al. [28].

Chloride ions are often unintentionally inducted into concrete through the
constituent materials like salt contaminated aggregates or water, and some times
intentionally in the form of chemicals to accelerate the setting of concrete.
Moreover, they may penetrate the hardened concrete if exposed to aggressive

environment. Typical cases are structures exposed to marine environments, bridge



decks and parking garages exposed to deicing salts, and structures situated in salt
laden environments. In the case of structurally damaged concrete, the diffusion of

chlorides is made even more easy.

The harmful effects caused by chlorides are :
(i) depassivation of the passive film,
(ii) increase in the electrical conductivity of concrete, thereby facilitating the
flow of electric current from the anodic to the cathodic sites and vice-versa,
(ii) hydration of the calcium silicates, influencing the long-term strength

improvement and impermeability.

While the chlorides contributed by the constituen: materials can be controlled by
strict adherence to improved construction practices, the ingress of chloride ions
from the service environment can only be controlled by producing a good quality

concrete and/or coating with impermeable membranes.

To circumvent the problems stated above, it is not uncommon to incorporate
additional methods of corrosion protection in concrete construction. Many options
are available including applying coatings (impermeable membranes) to concrete.

using corrosion inhibitors and coated reinforcement.



1.2 NEED FOR THIS RESEARCH

As discussed earlier, deterioration of concrete structures is a widely spread
phenomena all over the world. Vast resources are directed every year on repair
and rehabilitation of concrete structures. In slabs, beams, foundations, under
ground structures, and columns, low quality porous concrete significantly
increases the ingress of chlorides, oxygen, moisture, sulfates and carbondioxide to
steel-concrete interface. This situation is ideal for the initiation of reinforcement
corrosion and subsequently increases rate of deterioration due to corrosion of
reinforcement, specially if the cover to the reinforcement is insufficient or due to
low quality concrete. In walls and foundations, porous and permeable concrete is

extremely vulnerable to degradation due to sulfate attack.

Some parts of the structures, such as piers and footings, frequently come into
contact with the sulfate and chloride ions. The chloride ions, when they penetrates
concrete and reach the steel-concrete interface, cause reinforcement corrosion,
while sulfate ions react with the hydrated cement paste to reduce the strength of
concrete. One method to reduce this problem may be to stop the supply of oxygen
and moisture to the concrete which are essential for the reinforcement corrosion to

OcCcur.



This can be achieved by applying surface treatment materials on the concrete.
This method can also be used to rehabilitate corroding structures. In view of these
facts, it is very important to investigate the performance and effectiveness of some
concrete sealers and coatings in reducing reinforcement corrosion in in-service

structures.

Of all the methods of protecting and preserving the existing structures and
converting them into serviceable and usable elements, the use of surface treatment
materials has the unique advantage that they can be applied to protect new and in-
service structures, or as part of a program of refurbishment of damaged and

deteriorating structures.

Although, some studies have been conducted to evaluate the performance of
penetrating sealers, data on the performance of these materials in chloride and
sulfate bearing environments are scarce. Carbonation and corrosion of reinforcing
steel are also serious problems. which are not adequately investigated for surface
treated concrete. Also. there.is hardly any data on the performance of sealers in

the heat-cool and wet-dry environments.
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Therefore, there is a need for research to evaluate the performance of some
surface treatment materials in the Arabian Guilf environment. The aforesaid
situation necessitates an evaluation of surface treatment systems in environments
contaminated with chlorides and sulfates, and their effectiveness as low-oxygen

and low-carbon dioxide permeation materials.

The need for such a protective systems for concrete construction in the Arabian
Gulf states is all too obviocus in view of the prevalent corrosion deterioration

problems in the region.

Furthermore, the other difficulty with penetrating sealers and coatings is the
wide range of such materials available in the market, it becomes extremely
difficult to choose the right type of material since sealers of similar generic types
are known to have considerably different diffusion characteristics. The nature and
severity of exposure, due to extreme weather conditions, such as large variations in
temperature and humidity, is a major factor in determining the performance
characteristics of these materials. Although certain sealers can significantly reduce
the intrusion of chloride il}to concrete, the long-term protection in severe

environments, such as in the Arabian Gulf, is still need to be further elucidated.



1.3 RESEARCH OBJECTIVES

The general objectives of this research were to evaluate the performance of some
penetrating sealers and coating materials under the conditions simulating those of
the Arabian Gulf environment.

The specific objectives are :
1. to evaluate the chloridg diffusion co-efficients in the concrete specimens coated

with sealers and coatings,

[§8)

. to monitor the performance of concrete specimens coated with sealers and

coatings in a sulfate environment,

3. to evaluate the corrosion protection offered by concrete specimens coated with

sealers and coatings,

4. to assess the performance of sealers and coatings when exposed to thermal

variations,

5. to investigate the effect of wet-dry cycling on the integrity of the sealers and

coatings.
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6. to evaluate the effectiveness of sealers and coatings in preventing carbonation of

concrete,

7. to assess the usefulness of sealers and coatings in reducing reinforcement

corrosion in in-service structures, and

8. to provide recommendations for the selection of sealers appropriate for the
Arabian Gulf environment.

The experimental variables are shown in Figure 1.1.
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CHAPTER 2
LITERATURE REVIEW

2.1 PREVENTIVE METHODS

As discussed in the preceding chapter, the environmental and geomorphic
conditions in the Arabian Gulf necessitate the production of a very dense and
impermeable concrete. In addition to the normal construction practices, both,
concrete and the reinforcing steel need to be protected to extend the useful service-
life of the reinforced concrete structures. Protection to reinforcing steel is
provided by the use of chemical inhibitors or coating the bar itself. Additional

protection can be provided by coating the concrete with sealers and/or coatings.

While there is a growing awareness of causes of reinforcement corrosion,
however, there is no universal answer to its mechanism. This has led to greater
attention being diverted towards the preventive measures. In particular, greater
consideration is given to surface treatment materials and/or epoxy coated rebars

which can protect reinforced concrete structures from deterioration.



Penetrating sealers are used basically to prevent the corrosion of reinforcing steel
caused by aggressive agents such as chlorides and sulfates. The effectiveness of
surface treatment materials in preventing chloride and sulfate ions from
penetrating the concrete matrix depends on their own ability to penetrate and there
by protect the concrete matrix. This is largely dependent on the concrete matrix's
void system and quality. If the concrete matrix has large voids then the

penetration of sealers will be greater [29].

Surface treatment materials are generally categorized as follows:

2.1.1 Penetrants

These are low viscosity liquids which can penetrate into concrete and line its
pores. They have little effect on the appearance of the structure, as, they are
colorless. They protect concrete from deterioration by forming a hydrophobic
layer and thus repel water. which not only causes corrosion of reinforcing steel,
but also provides the medium for the diffusion of chlorides and other aggressive
species. The important feature of the penetrating sealers is that, they do not block
the pores of concrete and there by allow the evaporation of water vapor and other

gases from the concrete mass.
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2.1.2 Sealers
Sealers are intermediate between penetrants and coatings. They protect concrete
by blocking the pores. They are more viscous than penetrants and generally form

a film on the surface of concrete.

2.1.3 Coatings

Coatings are still more viscous than sealers and provide protection to concrete by
forming a thick film on the surface. Because of less breathability, these materials
do not allow ingress of potentially harmful, water vapor and other gases, and may

cause concrete deterioration.

During the past decade, numerous sealers have been used, such as oils. resins,
petroleum products, silicones, and other organic materials. However, only few of
them were effective in preventing the intrusion of deleterious materials, such as

chlorides, sulfates, oxygen, carbondioxide and moisture [30].

A wide range of organic polymers are used as sealers and coatings, while the
most widely used penetrating materials tend to be siliceous which line the pores of

concrete forming silicone resins providing protection through their water repellent



properties. There is another class of penetrating material whose action is to block
the pores of the concrete such as epoxy resins [31]. Although significant variation
in their performance exist, there are certain specific formulations of different
chemical materials which exhibit very good to excellent performance. These
materials are able to reduce the intrusion of chloride by 80 to 99 percent when

compared to uncoated concrete [32].

Certain sealers appear to offer added corrosion protection to embedded steel
when cracks are present. This observation suggests that cracks in such members
could be given multiple coats of these sealers to achieve even better corrosion

performance [33].

In concrete structures containing chloride, the use of a vapor permeable surface
on its own will be of limited value, although it may give the structure a more
uniform appearance and will help shed water [34]. In repairs involving possible
chloride contamination and/or permeable concrete, sealing of the concrete adjacent
to the repair with a penetrating resin sealer would be of considerable benefit
provided it blocks the diffusion of oxygen to the cathodic areas of the
reinforcement. The sealer used must soak in to the concrete and not simply

penetrate the first few microns. With use of a right type of sealer, significant
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penetration in slightly permeable concrete can be achieved, reducing its
susceptibility to the ingress of moisture or moisture laden sulfate and chloride
salts, specially in the case of foundations. In the formulation of penetrating sealer,
both the viscosity and the molecular size of the resin are important, low viscosity
on its own does not permit significant penetration of many concrete surfaces which
are micro porous in nature. Conventional water based coatings do not penetrate
significantly into concrete, but there are now becoming available polymer
dispersions in water where the particle size of the solids in the dispersion is
approximately 0.01 mm, which will penetrate into porous concrete. Alternatively,
resin solutions in volatile solvents can be used effectively to reduce the
permeability of concrete. Deep polymer impregnation would involve the removal
of evaporable moisture in concrete to a depth which goes as close to the
reinforcing steel as the technique permits. This would be followed by soaking of
concrete with a catalyzed monomer for a time sufficient to permit penetration to

the dried depth and polymerization of the monomer by the application of heat [33].

In the history of surface treatment materials, linseed oil is one of its kind.
Usually it is supplied in the market as a solution of 50% boiled linseed oil and 50%
mineral spirits or kerosene. Performance of linseed oil depends on several factors

such as type of linseed oil, type of solvent and application conditions. But, to
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achieve greater penetration, diluted linseed oil is preferred. Because, lime

contained in concrete reacts with linseed oil resulting in saponification of oil [36].

Review of literature indicates that epoxies are also used since a long time. They
have been routinely used as penetrating sealers and as coating materials. The
solids content is generally in the range of 17 to 100%. It is a two component
material. These two components react chemically to form a protective film. Two
coats are usually recommended to reduce pinholes. A major disadvantage with
this material is that, they choke the concrete pores when subjected to ultra-violet
radiation and also have limited breathability. As, thermal expansion of epoxies is
higher than that of concrete, it causes cracking and subsequently permitting the
ingress of deleterious materials. The other disadvantage is that they lose their

waterproofing effect after being subjected to abrasion. Also, they are expensive.

Many other varieties of synthetic resins are also used, including acrylics,
polyurethanes, and hydrocarbon resins. Acrylic resins are used with different
solvents. In this case also two coats are recommended. Acrylic resin is also, one
of the most effective sealers. 'However, because of the less flexibility of the cured

film, of acrylic resin, it may crack and thereby provide an access to the deleterious
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materials. Therefore, to provide a good bond the concrete surface has to be

prepared properly.

Urethanes were first proposed in Japan because of their reportedly excellent
resistance to water, weathering, and cracking [37]. They are excellent UV,
abrasion and acid resistant than epoxies, but less alkali resistant. The added
disadvantage with urethanes are low penetration, adhesion and breathability. More
recently, two types of silicone compounds have been used as surface treatments.
One type consists of impervious coating which seals the surface so that neither
liquid water nor water vapor will penetrate. The other type consists of water
repellents which prevent the passage of liquid water but do not stop the water
vapor. It has been shown that, although silicones reduce the initial rate of
absorption of water, after continued immersion, the total water absorbed in the

treated and untreated concrete is similar.

Silane is one of the surface treatment material which is presently under
consideration among most of the researchers around the world. It is marketed as a
waterproofing material. ~ljhey exhibit both hydrophilic and hydrophobic
properties, as they possess a non-polar as well as polar component. In the silanes

used to preserve buildings, vehicle for water repellent action is the non-polar



organic alkyl group. The effectiveness, durability and stability of a water repelling
agent depend on the size and nature of this group. The remainder of the four
possible bonds of the central silicon atom are linked to alcohol groups. They are
hydrophilic and react with water in a reaction called hydrolysis, thereby splitting
of the alcohol. The silanol created in this way can be formally regarded as an alkyl
silica. The speed at which this occurs is governed by the surrounding pH. A
chemical compound of this type combines the properties of the organic alkyl group
and those of the inorganic silicate. This alkyl silica is highly reactive. With the
neighboring molecules it forms compounds with low-degree of polymerization but
is also able to react with the inorganic surface of the building material. The
surface of chemically bonded alkyl groups formed in this way makes the substrate
water repellent. A frequent argument against the use of monomeric silane is their
volatility. Up till now there are no confirming results about this problem.

Therefore, it is necessary to test this material comprehensively.

Siloxanes are the recent development in the family of penetrating sealers. Very
limited data is available on the performance of this material. It is claimed by most
of the marketing agencies thgt they are penetrating and surface reactive, but, as
they are slightly big, they are less volatile. Therefore, they reside longer on the

substrate and allow greater time for penetration and reaction. However, it is



claimed that, despite being larger in size than the monomeric silanes, siloxanes can

still penetrate deeply.

Numerous laboratory studies [38,39,40] have been conducted to evaluate the
effectiveness of sealers in protecting concrete surfaces against the penetration of
moisture and chloride solution. However, no standard test method has been
developed to evaluate water absorption, water vapor transmission and chloride ion

intrusion and also there is no standard specimen size for these tests.

Cabrera and Hassan [41] have indicated that the use of an "effective treatment"
does not only protect concrete against penetration of harmful substances, but also
improves the performance properties of badly cured concrete by allowing the
redistribution of its internal moisture. They used ponding test to determine the
chloride diffusion coefficients. Treated and untreated specimens were immersed
in 15% NaCl solution for one year. Chloride profiles were drawn and diffusion
coefficients were calculated. The effectiveness of the surface treatments were

studied by monitoring water absorption upto one year immersion.

Chloride ion penetration is the major cause of the corrosion of the reinforcing

steel in concrete. Ordinary portland cement concrete even at high cement content



and low water cement ratio does not constitute an effective barrier against chloride
penetration and therefore, using surface treatment is a necessary requirement to

protect concrete structures exposed to chloride ladden environments [42].

Pfeifer and Scali [43] presented data on tests made with 21 treatment compounds
which were used to protect concrete against chloride penetration. Treated concrete
cubes were immersed in 15% NaCl solution for 21 days. These results indicated
that epoxies, methyl methacrylates, urethanes and silane provide an excellent

barrier against the ingress of chloride ions into concrete.

Work by Swamy and Tanikawa [44] indicated that even in the case of chloride
contaminated concrete, surface treatments can still play a significant role in
protecting steel by preventing the ingress of oxygen, water and chlorides in

concrete exposed to sea water.

Sealers were found to be more effective on good concrete than on inferior
concrete.  Substantial differences were found in laboratory tests on the
effectiveness of various sealers. Some sealers decreased water absorption of

concrete to approximately one third of that of untreated concrete, while others had
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little effect or even an increase in the water uptake by as much as 30 % was noted

[45].

Fluckiger et al. [46] studied the effect of organic coatings on water and chloride
transport in reinforced concrete. They concluded that the surface coatings strongly

reduced the water and chloride uptake of concrete.

Porter [47] indicated that some surface treatment materials increase the
durability of concrete. The materials used in his study were, linseed oil,
flourosilicates, epoxies, latex paints, synthetic rubber and neoprene. Freezing and
thawing while submerged in water, freezing by refrigerated air and thawing by
water immersion, freezing in air while partially submerged and weathering were
among the test variables. 3” by 6, concrete cylinders and 3” by 3” by 16.25"
prisms were used to develop data on the objectives mentioned above. Cylindrical
specimens were examined and weighed periodically, and were considered to have
failed when 25% of their original weight had been lost due to crumbling or scaling.
Prism specimens were tested periodically to determine their fundamental
transverse frequency and thg number of cycles of freezing and thawing which
caused 40% reduction in the square of the frequency, was used as a failure

criterion.



Jones et al. [48] studied the effect of exposure temperature on chloride diffusion
resistance of seven widely used surface treatment materials. Silane/siloxane,
epoxies and methacrylates were among them. In this study, only diffusion co-
efficients and film thickness were measured. It was noted in this study that, as the
temperature increased, the diffusion resistance decreased. Among all the surface
treatment systems, silane/siloxane performed satisfactorily at all the temperatures,

except 45° C.

Sealers can be sprayed, roller applied or brush applied. The material cost for
these excellent performance materials may range from about $0.15 to $0.5 per sq
ft. Application costs may vary significantly depending on the shape of the
structure. However, they are solvent based materials and require safety
precautions. These materials generally cause a color darkening of concrete. One of
the best performing materials is a true penetrant that does not cause any color

change.

Ohama et al. [49] studied the water tightness and resistance to chloride ion
penetration of concrete treated by silane. They used one component and two

component type alkyl alkoxy silane. In one component type alkyl alkoxy silane,
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they used five types with different percentages of solid content, ranging from 40.9
to 5.3. In two component type they used alkyl alkoxy silane as an under coat and
acrylic resin and polymethyl methacrylate as top coat. To measure the penetration
depth of sealer, the cured cylindrical specimens were split and the cross-sections
were sprayed with a small amount of water. The depth of unwet rim of each cross-
section measured was taken as sealer penetration depth. Similarly, to determine the
chloride ion penetration depth, the specimens immersed in NaCl solution, were
split and the cross-sections were sprayed with 0.1% fluorecein sodium and 0.IN
AgNo3 solution. The depth of rim of cross-section that changed to white color

was measured and taken as chloride ion penetration.



CHAPTER 3

EXPERIMENTAL PROGRAM

The experimental program was planned to develop data on following parameters :
1. Effectiveness of sealers and coatings in reducing the water absorption by

concrete.

2. Performance of coated and uncoated concrete specimens in Wet-Dry

environment.

3. Performance evaluation of surface-coated concrete specimens as compared to

uncoated concrete specimens subjected to Heat-Cool cycles.

4. Protection to steel reinforcement from corrosion provided by sealers and

coatings.



5. Performance of surface-coated concrete specimens relative to uncoated

specimens against sulfate attack.

6. Evaluation of sealers and coatings in CO, environment.

7. Performance of concrete specimens coated with sealers and coatings relative to

uncoated concrete specimens in inhibiting chloride diffusion.

8. Effectiveness of sealers and coatings in reducing reinforcement corrosion in in-

service structures.

The methodology used to attain the objectives of this study are discussed in the

following sections.

3.1 MATERIALS
3.1.1 Cement

ASTM C150 Type I Portland Cement was used to make the concrete specimens.



3.1.2 Aggregate
The coarse aggregate used in this study was crushed limestone procured from
Abu-Hadriah. The specific gravity and absorption of the coarse and fine
aggregate were determined according to ASTM C127 and are shown in Tables
3.1 and 3.2, respectively . The grading of coarse aggregate selected confirmed

to ASTM C33 and is shown in Table 3.3.

3.1.3 Surface Treatment Materials
The sealers and coatings investigated in this study are :
1. Sodium Silicate (S1)
2. Silicon Resin Solution (S2)
3. Silane/Siloxane (S3)
4. Reactive Silane/Siloxane with Top Coat (S4)
5. Alkyl alkoxy silane (S5)

6. Two Component Acrylic Coating (S6)

3.2 CONCRETE MIX DESIGN

The following parameters were kept invariant in all the mixes.
Cement Content: 350 kg/m’

Effective W/C ratio: 0.45



Coarse / Total Aggregate ratio: 0.63

3.3 SPECIMENS

For corrosion studies, 3”x6™ height cylindrical reinforced concrete specimens
with a 12 mm diameter steel bar were used, while for other tests unreinforced

concrete specimens of similar dimensions were utilized.

3.4 SPECIMEN PREPARATION
3.4.1 Mixing of Concrete and Specimen Casting
The concrete constituents were mixed in a revolving drum type mixer for

approximately 3 to 5 minutes to obtain uniform consistency. The concrete was

filled in the molds in three layers and vibrated for consolidation.

3.4.2 Curing

After casting, the specimens were covered with a wet burlap, as shown in
Plate 3.1, followed by a plastic sheet. They were demolded after 24 hours of
casting and curing was continued for two weeks. The burlaps were wetted from

time to time. Following the curing period, specimens were kept in the oven for



24 hours at 70° C to expel the moisture. Further, the specimens were air dried at

room temperature for 24 hours prior to coating them with sealers.

3.4.3 Surface Preparation

Preparation of the substrate prior to the application of a surface coating
significantly influences the effeciency of a sealer/coating. Failure of the surface
coatings in many instances was attributed to the improper surface preparation
[50]. All concrete surfaces, whether new or existing, should be cleaned to
remove laitance, oil, grease, or surface contamination. The specimens were
cleaned as per the manufacturer’s specifications prior to the application of the

sealer/coating.

3. 4. 4 Application of Sealers/Coatings

After surface preparation, the sealers/coatings were applied with the brush as per
the manufacturer’s specifications. Two coats of sealers/coatings were applied on
the concrete specimens allowing a drying time of 2 hours between each. In some
cases, to achieve the required application rate, recommended by the supplier, more
than two coats were necessary. Table 3.4 shows the rate of application of the

sealers and coatings used in this study.
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3.5 EXPERIMENTAL TECHNIQUES

3.5.1 Chloride Profile

The primary aim of exposing the specimens to the chloride solution was to
determine the chloride diffusion coefficients in the coated and uncoated
concrete specimens. To achieve this, the concrete specimens were kept in a 5%
NaCl solution, as shown in Plate 3.2, for three months at 40 °C. Unidirectional
diffusion of chloride ions was ensured by applying the sealer on one surface and
the other surfaces were coated with wax. The solution concentration was

periodically checked and maintained at the required level.

After one and two months of exposure, the specimens were retrieved, washed,
and dried to remove the surface moisture and salt, and thin slices of concrete
were obtained at 5, 15, 30, 50, 100 and 150 mm intervals by dry cutting. After
slicing, the specimens were crushed and ground to a fine powder passing ASTM
No.100 sieve. Three grams of the powder was taken and washed into a beaker
with 10 ml of hot distilled water, to which 3 ml of concentrated nitric acid was
added. The mixture was then shaken for thorough mixing. The volume of the

solution was made to 50 ml by adding distilled water and was left to boil for one
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minute. After the digestion process, the solution was filtered and the filtrate

was made up to 100 ml with distilled water.

Chloride concentration was determined using a chloride ion selective
electrode in conjunction with a double junction reference electrode. This was
done using a microprocessor based ionalyzer. The chloride profile so obtained
was used to evaluate the diffusion coefficients solving the Fick’s second law of

diffusion with appropriate boundary conditions, using an algorithm developed at

KFUPM [51].

3.5.2 Sulfate Resistance

After applying the sealers, half of the specimens were kept in a 3.1% Na»SQOg4
solution and a the other half were placed in the potable water. After 2,3.4 and 6
months of exposure, three specimens from the sulfate solution and the potable
water were retrieved, washed to remove the salt and tested to determine the
compressive strength. The sulfate resistance was evaluated by determining the

reduction in the compressive strength, using the following formula:



Re = (CW-CS)
CW

Where
Rc = Reduction in compressive strength, %

CW = Compressive strength of specimen placed in water

CS = Compressive strength of specimen exposed to the sulfate solution

3.5.3 Reinforcement Corrosion

For reinforcement corrosion studies, two groups of concrete specimens
measuring 3”x6” with a 12 mm diameter steel bars were cast. After two weeks
of curing, the specimens were coated with different surface treatment materials.
The first group of specimens were kept in 3% NaCl solution and reinforcement
corrosion, was evaluated by monitoring corrosion potentials and measuring

corrosion current density at regular intervals.

The corrosion potentials were measured using a high impedance voltmeter

and a saturated Calomel electrode (S'CE). Corrosion current density was



(92
W

determined by linear polarization resistance method (LPRM) using a
Potentiostat/Galvonostat. ~ Figure 3.5 shows the schematic diagram of
experimental set-up to measure the corrosion current density. The resistance to
polarization (Rp) was determined by conducting a linear polarization scan in the
range of + 10 mV of the corrosion potential. A scan rate of 0.1 mV per second
was used. The corrosion current density was determined using Stern - Geary
formula [52].

Icorr=B/Rp

where : I = corrosion current density, pA/cm?

Rp = Polarization Resistance, Ohm. cm’

B = (Ba. Bc) /2.3 (Ba + Bce)

Ba and PBc are the anodic and cathodic Tafel constants, respectively.

Anodic and cathodic Tafel constants of 120 mV were used in this investigation.
Lambert et al. [18] have indicated a good correlation between corrosion current
density measured using LPRM and gravimetric methods, using these values.

In the second group of specimens, reinforcement corrosion was accelerated by
impressing an anodic potential of 2 Volts. For this purpose, the bars in the
concrete specimens were connected in series to a DC power source. Stainless
steel plates were used as cathodes. The current supplied to each of the

specimen, due to the application of a fiXed potential of + 2 V, was monitored at
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30 minutes interval by measuring the potential drop over a | Ohm resistor. The
two leads of the resistor were connected to a data acquisition system for
monitoring the current. The current supplied to each specimen was plotted
against time. The time-current curves were used to evaluate the time to

cracking of concrete due to reinforcement corrosion.

3.5.4 Heat - Cool Treatment

To evaluate the performance of sealers and coatings under the hot weather
conditions, the concrete specimens were subjected to heat - cool treatment.
After coating them with sealers and coatings, the concrete specimens were
placed in the oven, as shown in Plate 3.3, which was maintained at 70° C for 8
hours and then at room temperature (23° C) for 16 hours to complete one heat-
cool cycle. At the end of 30.60,90 and 120 cycles the water absorption and the
compressive strength of the coated and uncoated concrete specimens was

determined according to ASTM C 642 and ASTM C 39, respectively.

3.5.5 Wetting and Drying
To evaluate the performance of sealers/coatings in the splash zone of a marine
environment, the coated and uncoated concrete specimens were exposed to wet-

dry environment. The wet - dry cycles were simulated by wetting the
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specimens for one day and drying them for two days. The effect of wet-dry
cycles on the coated and uncoated concrete specimens was evaluated after
10,20.30 and 40 cycles by measuring water absorption and compressive

strength.

3.5.7 Carbonation

In certain areas of the world, carbonation is the major cause of reinforcement
corrosion. In the presence of moisture, carbondioxide forms carbonic acid which
then reacts with the hydration products of cement, particularly calcium hydroxide,
to form calcium carbonate.

CO,+H,0 —»  H,CO, (3.1)

Ca(OH), +H,CO; —  CaCO;+2H,0 (3.2)

Because the conversion of Ca(OH)> to CaCOj decreases the alkalinity,
reinforcement is susceptable to corrosion. The experimental set up used to
evaluate the effectiveness of sealers/coatings in preventing carbonation of concrete
is shown in Plate 3.4. To distribute CO3 uniformly, it was passed through 3" deep
water and specimens were kept 17 above the water level. After continuous storage

in the carbonation chamber for 1,2.3,4 and 3 weeks, the specimens were retrieved
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from the carbonation chamber and cut at four levels. The carbonation depth was
measured by spraying phenolphthalein on a freshly broken surface. The
phenolphthalein indicator gradually changes from colorless to pink at broken
surfaces with a pH of greater than 9 - 9.5, while the carbonated surface remains
colorless. The specimens were cut at four levels, and atleast 10 readings spread all
over each section, i. e; 80 points on each specimen, at each test period, were

measured and average values were recorded.

3.5.8 Rehabilitation

Figure 3.6 shows the schematic diagram of the concrete specimens used to
evaluate the performance of concrete sealers and coatings in reducing
reinforcement corrosion in in-service structures. 2.5” x 4 x 12” prism concrete
specimens were used to simulate the actual partially immersed column structures.
Before the application of sealers and coatings, the steel in the reinforced concrete
specimens, was corroded by impressing an anodic potential of 4 V. After the
reinforcement corrosion became well established, the corrosion potentials and
corrosion current density was measured, as discussed in the section 3.6.3. Surface
treatment materials were then applied on the top 8 of the concrete specimens.

leaving bottom 4” portion uncoated.
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After the application of surface treatment materials the concrete specimens were
exposed to 5% NaCl solution and the effectiveness of sealers and coatings was
monitored by measuring corrosion potentials and corrosion current density at

regular intervals.

Table3.1: Absorption and Specific Gravity of Coarse Aggregates

Size Absorption (%) Bulk Specific Gravity
3/32” 1.712 2.609
3/16” 1.621 2.607

3/8” 1.477 2.605

1/2” 1.034 2.643




Table 3.2 : Grading of Coarse Aggregate

40

Size Wt. Retained | Cum.Weightet % Passing ASTM C33
Rained, % No. 7
3/4 0 0 100 100
1/2” 10 10 90 90-100
3/8” | 45 55 45 40-70
3/16™ 40 95 5 0-15
3/32” 5 100 0 0-5
Table 3.3 : Absorption and Specific Gravity of Fine Aggregate
Absorption % Bulk Specific Gravity
1.562 2.55




Plate 3.1 :

Curing of Concrete Specimens
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Table 3.4: Manufacturer’s Coverage Rates of Sealers and Coatings

Sealers/Coatings Coverage Rate
Sodium Silicate 0.55 L/m?
Silicone Resin Solution 0.5 L/m’
Silane/Siloxane 0.4 L/m’
Silane/Siloxane with Top Coat 0.15 L/m?
Silane 0.25 L/m?

Two Component Acrylic Coating

2.5 Kg/m®




Plate 3.2 :

Heaters used to Maintain the Temperature of the Chloride
Soluiton



Potentiostat/Galvanostat

Computer [<— Data Logger [ =7 0.ImV/Sec
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Concrete Specimen with Embedded Steel bar

Figure 3.5: Schematic Diagram of Experimental Set-Up to
Measure the Corrosion Current Density
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Plate 3.3 :

Specimens Exposed to Heat-Cool Treatment



Plate 3.4 :

Carbonation Chamber with the Specimens
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Figure 3.6 : Schematic Diagram of Concrete Specimen used to
Evaluate the Performance of Sealers and Coatings in in-Service

Structures



CHAPTER 4

RESULTS

4.1 ABSORPTION

The 48-hour absorption in the uncoated and coated concrete specimens, cured for
14 days under burlap, are shown in Figure 4.1.1. Figure 4.1.2, shows the
compressive strength of the coated and uncoated concrete specimens before
exposing to heat-cool and wet-dry environments. Figures 4.1.3 and 4.1.4 show the
rate of water absorption and rate of moisture loss in the coated and uncoated
concrete specimens, respectively. The water absorption in the uncoated concrete
specimens was around 3.94%, while it was in the range of 0.29 to 4.38% in the
coated concrete specimens. The absorption in the concrete specimens coated with
acrylic coating, silane and silane/siloxane with top coat was 0.29, 0.4 and 0.67%,
respectively. The water absorption in the concrete specimens coated with sodium
silicate increased by 10% and that in the concrete specimens coated with two
component acrylic coating it decreased by 93% compared to the uncoated concrete

specimens. The increase in water absorption in the concrete specimens coated

48
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with sodium silicate, as compared to the uncoated concrete specimens, may be
attributed to the fact that, sodium silicate is soluble in water. The absorption in the
concrete specimens coated with silane/siloxane with top coat was less than those
coated with silane/siloxane only. The compressive strength in all the coated and
uncoated concrete specimens, before exposing to heat-cool and wet-dry
environments, was more or less similar to each other (Figure 4.1.2). In fact the
compressive strength in the concrete specimens coated with silicone resin solution
and sodium silicate was slightly higher than those coated with other coatings and

sealers.

Although the performance of surface treatment materials, cannot be evaluated by
measuring the water absorption only, a performance grading system can be

suggested, based on this test to aid in the selection of sealers.



The suggested performance rating are shown in Table 4.1.1

Table 4.1.1 : Suggested Performance Grading for Sealers and Coatings

GRADE REDUCTION IN WATER ABSORPTION
A 90-100%
B 80-90%
C 70-80%

According to the above rating, silane and two component acrylic coating fall
under grade A and silane/siloxane with top coat can be classified under Grade B.
Silicone resin solution and silane/siloxane did not perform satisfactorily as the
reduction in the water absorption was less than 75%. The water absorption in the
concrete specimens coated with sodium silicate was more than that in the uncoated

concrete specimens.

4.2 WET - DRY TREATMENT

The effect of wet-dry cyvcling on the water absorption in the coated and uncoated
concrete specimens is plotted in Figure 4.2.1. A decrease in the water absorption

was observed in all the coated and uncoated concrete specimens (Figure 4.2.1),




after 10 wet-dry cycles. This reduction in the water absorption can be attributed to
the densification of concrete due to hydration of cement. However, after 10 wet-
dry cycles, there was a steady increase in the water absorption in all the coated and
uncoated concrete specimens, because of formation of micro cracks within the

concrete due to moisture variation.

The water absorption in the concrete specimens coated with acrylic coating and
silane/siloxane with top coat, decreased by 93 and 86%, respectively, compared to
the uncoated concrete specimens, after 40 wet-dry cycles. In the concrete
specimens coated with silane, silane/siloxane with top coat and two component
acrylic coating there was no significant increase in the water absorption after 20
wet-dry cycles. The water absorption in the concrete specimens coated with

sodium silicate was higher than that in the uncoated concrete specimens.

The variation in the compressive strength of concrete specimens subjected to
wet-dry treatment is plotted in Figure 4.2.2. No significant reduction in the
compressive strength was observed in the coated and uncoated concrete
specimens, upto 10 wet-dry. cycles (Figure 4.2.2). Thereafter, a continuous
reduction in the compressive strength was recorded with increasing wet-dry cycles.

In the uncoated concrete specimens and those coated with sodium silicate there



was 12.36 and 12.78%, reduction in the compressive strength, after 40 wet-dry
cycles. Inthe concrete specimens coated with other coatings an average reduction
of 6.8% in the compressive strength was noticed, except in the specimens coated
with silicone resin solution, in which the reduction was 10.13%. These data
suggest, that silane/siloxane, silane/siloxane with top coat, silane and two
component acrylic coating were effective in reducing the damage due to wet-dry

cycling.

4.3 HEAT-COOL TREATMENT

The water absorption in the coated and uncoated concrete specimens, exposed to
30, 60, 90 and 120 heat/cool cycles are shown in Figure 4.3.1. These values
increased with the number of heat-cool cycles in all the concrete specimens, except
those coated with silicone resin and silane/siloxane. This increase in the water
absorption, with increasing heat-cool cycles, may again be attributed to the
formation of micro cracks within the concrete due to thermal variation. The water
absorption in the concrete specimens coated with silane/siloxane, silane/siloxane
with top coat and silane was more or less similar, with an average value of 1.85%

after 120 heat-cool cycles. The water absorption in the concrete specimens coated
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with sodium silicate was higher than that in the uncoated concrete specimens. The
least water absorption, after 120 heat-cool cycles, was indicated in the concrete
specimens coated with the acrylic coating. The water absorption in these

specimens were one-fifth of those in the uncoated concrete specimens.

Figure 4.3.2 shows the effect of heat-cool cycles on the reduction in the
compressive strength, in the coated and uncoated concrete specimens. A steady
increase in these values was indicated in all the specimens due to heat-cool
treatment. The highest reduction in the compressive strength was indicated in the
concrete specimens coated with sodium silicate and silicone resin solution. The
reduction in the compressive strength in uncoated concrete specimens and those
coated with sodium silicate and silicone resin solution was 17.63, 16.36 and
13.76%, respectively, after 120 heat-cool cycles. An average strength reduction of
7.8% was observed in the concrete specimens coated with other coatings. Among
the coatings investigated, silane/siloxane, silane/siloxane with top coat, silane and
two component acrylic coating were effective in minimizing the damage due to

heat-cool treatment.



4.4 ACCELERATED REINFORCEMENT CORROSION

BY IMPRESSED POTENTIAL

As discussed in chapter 3, reinforcement corrosion was accelerated by
impressing an anodic potential of 2 Volts and the resulting current was plotted
against time. The time-current plots for the uncoated concrete specimens and
those coated with sodium silicate, silicone resin solution, and silane/siloxane are
shown in Figures 4.4.1 through 4.4 .4, respectively. These curves were analyzed to
evaluate the time to cracking of concrete due to reinforcement corrosion. Plates
4.4.6 through 4.4.12 show the cracked and uncracked concrete specimens. The
time to cracking of concrete, due to reinforcement corrosion, was taken as the
point at which a significant increase in current or a change in the slope of time-

current curve occurred.

The time-current curve for the uncoated concrete specimens is shown in Figure
4.4.1. The current in the uncoated concrete specimens was high, right from the
initial stages, indicating low resistance. The current in all the three uncoated
concrete specimens, increased to a maximum value after about 144 hours of
impressed potential. At the same time, corrosion products and hair line cracks

were observed on the surface, as shown in Plate 4.4.12. Thereafter, the current



55

decreased continuously, starting from the point at which the first crack appeared,
upto 648 hours, after this time a sudden increase in the current was again noticed.
This decrease in the current, after first point of cracking is mainly because of

filling of cracks with the rust prdducts.

Among the coated concrete specimens, those treated with sodium silicate
cracked first. The time-current curves for these concrete specimens, as shown in
Figure 4.4.2, indicate continuous increase in the current upto 176 hours of
impressed potential and at this exposure period all the three specimens cracked.
The concrete specimens coated with silicone resin solution cracked when the
current was 0.7 mA corresponding to 685 hours (Figure 4.4.2). The behavior of
these concrete specimens was similar to that of uncoated concrete specimens after
first point of cracking. The concrete specimens treated with silicone resin solution

performed slightly better than those coated with sodium silicate.

The concrete specimens coated with silane/siloxane performed better than those
coated with the above mentioned two sealers. In these specimens current was very
low, initially. But a steady increase in the current, because of reduction in the

resistance, was noted upto 2125 hours of impressed potential, after which hair line
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cracks and corrosion products were observed on the surface of these specimens

(Plate 4.4.8).

The specimens coated with silane/siloxane with acrylic top coat, silane and two
component acrylic coating did not crack at all, as shown in Plates 4.4.9 through
4.4.11, and the current was very low even after 4350 hours ( 180 days ) of
impressed potential. Among these, the concrete specimens coated with
silane/siloxane with acrylic top coat performed better than those coated with silane
and two component acrylic coating, as the current required to maintain a potential

of +2V in these specimens was the least, as shown in Figure 4.4.5.

4.5 REINFORCEMENT CORROSION

The effectiveness of surface coatings in reducing reinforcement corrosion, in
normal chloride-environment, was evaluated by measuring the corrosion potentials

and the corrosion current density at periodic intervals.



4.5.1 Corrosion Potentials

The corrosion potential curves for the uncoated concrete specimens and those
coated with silicone resin solution and sodium silicate, are shown in Figure
4.5.1.1. The corrosion potentieﬁ curves for the concrete specimens coated with
silane/siloxane, silane/siloxane with top coat, silane and two component acrylic
coating are shown in Figure 4.5.1.2. Each point in these figures is the mean of
readings taken on triplicate specimens with similar treatment and exposure
conditions. These curves were used to evaluate the time to initiation of
reinforcement corrosion based on the ASTM C 876 criterion. According to this
criterion, if the potentials are numerically less than -270 mV SCE, there is a 90%

probability of reinforcement corrosion.

Table 4.5.1.1 shows the time to initiation of reinforcement corrosion, based on
ASTM C 876 threshold potential of -270 mV. The time to initiation of
reinforcement corrosion in the uncoated concrete specimens and those coated with

sodium silicate was more or less similar, being 10 and 12 days, respectively.

Among the coated concrete specimens, those treated with sodium silicate.
silicone resin solution and silane/siloxane were not able to reduce reinforcement

corrosion for a long time. The concrete specimens coated with silane/siloxane
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performed slightly better than other coated specimens and could resist
reinforcement corrosion only upto 55 days of exposure, after which the corrosion
potentials were less than -270 mV SCE. The corrosion potentials on steel in the
concrete specimens coated with silicone resin solution were very high initially and
increased with time. After about 40 days of exposure the corrosion potentials

reached -270 mV SCE indicating the initiation of reinforcement corrosion.

The corrosion potentials on steel in the concrete specimens coated with
silane/siloxane with top coat and silane were more than -270 mV SCE upto more
than 300 days of exposure. However, the time to initiation of reinforcement
corrosion in the concrete specimens coated with silane/siloxane with top coat and
silane was indicated after 320 and 340 days of exposure to 5% NaCl solution

(Table 4.5.1.1).



4.5.2. Corrosion Current Density

The variation of corrosion current density ( Icorr ) on steel, with time, in the
coated and uncoated concrete sp;cimens exposed to 5% NaCl solution is shown in
Figure 4.5.2.1. These curves for the uncoated concrete specimens and those coated
with sodium silicate, silicone resin solution and silane/siloxane are shown in
Figure 4.5.2.2. Figure 4.5.2.3 shows the I on steel in the concrete specimens

coated with acrylic coating, silane and silane/siloxane with top coat.

The Iy on steel in all the coated and uncoated concrete specimens initially was
less than 0.02 pA/em’ (Fig. 4.5.2.1). However, it increased with time in the
uncoated concrete specimens and those coated with silicone resin solution, sodium
silicate and silane/siloxane. The Icqp in these concrete specimens, after 360 days

of exposure, was 0.328, 0.31, 0.286 and 0.193 ;,LA/crnl, respectively.

Silane/siloxane with top coat, silane and two component acrylic coating were
very effective in reducing the rate of reinforcement corrosion. The I¢gp on steel
in the concrete specimens coated with these coatings was very low throughout the
testing period. The [cor on steel in the concrete specimens coated with

silane/siloxane with top coat and silaﬁe was 0.0058 and 0.0061 pA/cm’,
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respectively. It should be noted that these values were less than 0.01 pA/cm?
which is considered as the maximum value for long-term maintenance-free
performance [53]. However, the corrosion current density on steel in the concrete
specimens coated with acrylic c&ating was 0.0108 pA/cm?, after about 360 days of

exposure to 5% NaCl solution.

4.6 SULFATE ATTACK

Figure 4.6.1 shows the reduction in the compressive strength in the uncoated
concrete specimens and those coated with sodium silicate, silicone resin solution,
silane/siloxane, silane/siloxane with top coat, silane and two component acrylic
coating. These specimens were exposed to sulfate solution for a period of 12
months. Plates 4.6.2 through 4. 6. 8 shows the appearance of coated and uncoated
concrete specimens immersed in the sulfate solution, compared to those cured in

the water for 330 days.

After two months of immersion in the sulfate solution, the reduction in the
compressive strength was very low and there were no signs of sulfate attack in all
the coated and uncoated concrete specimens. However, after three months of

exposure, softening of the cement paste around the aggregates was observed in the
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uncoated concrete specimens and those coated with sodium silicate and silicone
resin solution. After six months of exposure, sulfate attack was predominant in the
uncoated concrete specimens and those coated with sodium silicate and silicone

resin solution.

A steady reduction in the compressive strength was measured in all the coated
and uncoated concrete specimens (Figure 4.6.1). After about 330 days of
exposure, a reduction of 41, 39 and 36% was noted in the uncoated concrete
specimens and those coated with sodium silicate and silicone resin solution,

respectively, compared to similar specimens cured in water.

The deterioration of concrete due to sulfate attack was observed in the specimens
coated with silane/siloxane after 6 months of exposure, and the reduction in
compressive strength was 26.8% -after about 300 days of immersion in the sulfate

solution.

There were no signs of sulfate attack, upto eight months of exposure, in the
concrete specimens coated with silane. However, after this period aggregates were
exposed because of softening of cement paste. The behavior of specimens coated

with two component acrylic coating was similar to that of specimens coated with
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silane. After about 240 days of immersion in the sulfate solution, cracks were
observed within the coating. This coating was most effective in minimizing the
damage due to sulfate attack, among all the surface treatment systems used in this
study, upto 6 months of expoéﬁre. A reduction of 1.95% in the compressive
strength was noted after about 180 days of exposure to the sulfate solution, which

increased to 19.63% after eleven months of exposure.

Among all the surface treatment systems, silane/siloxane with top coat was
effective in minimizing the damage due to sulfate attack. There was only 0.3%
reduction in the compressive strength after about 2 months of exposure and it
reached to 8.3% at the end of the test, corresponding to 330 days of immersion in
the sulfate solution. No signs of cracking of the coating or softening of cement

paste around the aggregates was observed.

4.7 CARBONATION

The carbonation depth and weight gain curves for coated and uncoated
cylindrical concrete specimens are shown in Figures 4.7.1 and 4.7.2, respectively.
After continuous storage of the coated and uncoated concrete specimens in the

carbonation chamber for 1, 2, 3, 4 and 5 weeks, the depth of carbonation was
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measured by spraying phenolphthalein on the cut cross-sections of the specimens.
Plates 4.7.3 and 4.7.4 show the phenolphthalein sprayed cross-section of
specimens coated with silane/siloxane with top coat and two component acrvlic
coating respectively, after 180"days of continuous storage in the carbonation

chamber.

In the uncoated concrete specimens and those coated with sodium silicate,
silicone resin solution carbonation started within seven days of exposure. The
carbonation depth and weight gain in the uncoated specimens, after about five
weeks of continuous storage in the carbonation chamber, was 28.3 mm and 84.8 g..
respectively. The concrete specimens treated with sodium silicate performed
slightly better than those treated with silicone resin solution, silane/siloxane and
silane, the depth of carbonation being 13.1 mm and the weight gain was 65.8 g..
after about five weeks of exposure. Among all the coated specimens those coated
with silicone resin solution, silane/siloxane and silane did not perform well and
were not effective in preventing carbonation. The depth of carbonation in these
specimens was 24.8, 23.9 and 25.1 mm, respectively after five weeks of exposure.
Initially the carbonation process in the specimens coated with silane was verv

slow, but it accelerated after three weeks of exposure.
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Plates 4.7.5 through 4.7.8 show the phenolphthalein sprayed cross-sections of
specimens coated with sodium silicate, silicone resin solution, silane/siloxane and
silane, after about 14 days of exposure to accelerated carbonation environment.
Plate 4.7.9 shows the extent ot:.carbonation in the uncoated concrete specimens

after two weeks of exposure.

4.8 CHLORIDE PROFILE

Variation of chloride concentration with depth in the uncoated concrete
specimens and those coated with sodium silicate, silicone resin solution.
silane/siloxane, silane/siloxane with top coat, silane and two component acrylic
coating, for 30 and 90 days of exposure, is shown in Figures 4.8.1 through 4.8.7.
Figures 4.8.8 and 4.8.9 show the chloride profiles in the coated and uncoated
concrete specimens, exposed to 5% NaCl solution maintained at 45° C, for 30 and
90 days, respectively. Table 4.8.1 shows the chloride diffusion coefficients for

these concrete specimens.
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A significant reduction in the chloride concentration with depth was observed in
all the coated and uncoated concrete specimens, upto a depth of 50 mm. Beyond

this depth, the chloride concentration remained more or less unchanged.

The chloride concentration, at all depths, in the uncoated concrete specimens and
those coated with sodium silicate, was more than any other coated concrete
specimens. There was considerable reduction in chloride concentration, in the
concrete specimens coated with silane, silane/siloxane with top coat and acrylic
coating, as compared to the unccated concrete specimens. The chloride
concentration in these specimens did not change much, as the exposure period
increased from 30 to 90 days (Figures 4.8.4, 4.8.5 and 4.8.6). As expected, the
chloride concentration, in the other coated and uncoated concrete specimens,
increased gradually, with the period of exposure. The penetration of chloride ions

was found to be influenced by the type of coating.

As stated in Chapter 3, the solution to Fick’s second law of diffusion, as shown
in equation 4.1, was used to calculate the chloride diffusion coefficients. The
solution contains the followiqg parameters, the chloride concentration Cy, at any
depth x, the chloride concentration at the surface of the concrete specimens Cg and

the time t at which the chloride concentration was measured. The surface
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concentration was calculated by regression analysis of the experimentally

calculated chloride profile.

Table 4.8.1 : Chloride Diffusion Coefficients in the Coated and Uncoated
Concrete Specimens

Sealer/Coating Diffusion Coefficient, cm?/sec
Sodium Silicate 20.06 x 10°®
Silicone Resin Solution 16.86 x 107
Silane/Siloxane 14.83 x 10°
Silane/Siloxane with Topcoat 7.83x10°%
Silane - 9.86 x 107
Acrylic Coating 8.18x 10°®
Uncoated Concrete 21.83x10°
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Cx X
Cs -1~ 2 (Det)"™ (4.1)

The diffusion coeffecients for_the uncoated concrete specimens and those coated
with sodium silicate were much higher than those coated with sealers and coatings.
The diffusion coefficient for the concrete specimens coated with silane/siloxane
with top coat was 7.83 x 10°* cm¥/sec, whereas it was 21.83 x 10 cm*/sec in the
uncoated concrete specimens. Silane and two component acrylic coating were also

effective in reducing the diffusion of chloride ions.

4.9 REHABILITATION

Figure 4.91 and 4.9.2 shows the variation of corrosion potentials and corrosion
current density in the coated and uncoated concrete specimens before and after the
application of surface treatment materials. Each point in these figures is the mean

of readings taken on triplicate specimens with similar treatment and exposure

conditions.
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4.9.1 Corrosion Potentials

The corrosion potentials of steel in all the coated concrete specimens increased
after the application of surface treatment materials except those coated with
sodium silicate. The corrosion i;otentials in the uncoated concrete specimens and
those coated with sodium silicate were almost unaffected by the application of
surface treatment materials. Highest increase in the corrosion potentials was
indicated in the concrete specimens coated with silane. The corrosion potentials in
the concrete specimens coated with silane before the application was -597 mV, and
it increased to -318 mV after the application. This increase in corrosion potentials
in the most of the coated concrete specimens was mainly due to the reduced supply
of oxygen. Furthermore, sodium silicate was not effective in reducing the supply

of oxygen to the concrete.

4.9.2 Corrosion Current Density

There was decrease in the corrosion current density in all the coated concrete
specimens, after the application of surface treatment materials, except those coated
with sodium silicate. The corrosion current density in the uncoated concrete
specimens and those coated with sodium silicate continued to increase throughout

the exposure period.
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The largest reduction in the corrosion current density was observed in the
concrete specimens coated with silane. The corrosion current density in the
concrete specimens was 0.315 pA/cm’® before the application of surface treatment
material and it reduced to 0.141 A-uA/cmz after the concrete specimens were treated

with silane.

The performance of concrete specimens coated with silane/siloxane and silicone
resin solution was not better than those coated with silane/siloxane with top coat

and acrylic coating.
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Plate 4.4.6 : Concrete Specimen Coated with Sodium Silicate Subjected
to an Impressed Anodic Potential of 2 Volts
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Plate 4.4.7 : Concrete Specimen Coated with Silicone Resin Solution
Subjected to an Impressed Anodic Potential of 2 Volts



Plate 4.4.8 : Concrete Specimen Coated with Silane/Siloxane Subjected
to an Impressed Anodic Potential of 2 Volts
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Plate 4.4.9 : Concrete Specimen Coated with Silane/Siloxane with
top coat Subjected to an Impressed Anodic Potential of 2 Volts
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Plate 4.4.10 : Concrete Specimen Coated with Silane Subjected to an
Impressed Anodic Potential of 2 Volts
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Plate 4.4.11 : Concrete Specimen Coated with Acrylic Coating
Subjected to an Impressed Anodic Potential of 2 Volts
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Plate 4.4.12 : Uncoated Concrete Specimen Subjected to an Impressed
Anodic Potential of 2 Volts
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Table 4.5.1.1 : Time to initiation of reinforcement corrosion, based on
ASTMC 876 |

Sealer/ Coating Time to initiation of reinforcement corrosion,
days

Uncoated Concrete 10

Sodium Silicate 12

Silicone Resin 40

Silane/Siloxane 55

Silane - 340

Acrylic Coating 225

Silane/Siloxane with top coat 320
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Plate 4.6.2 : Concrete Speciméns Coated with Sodium Silicate Immersed in the
Sulfate Solution and Water for 330 days
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Plate 4.6.3 : Concrete Specimens Coated with Silicone Resin Solution Immersed
in the Sulfate Solution and Water for 330 days
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Plate 4.6.4 : Concrete Specimens Coated with Silane/Siloxane Immersed in the
Sulfate Solution and Water for 330 days
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Plate 4.6.5: Concrete Specimens Coated with Silane/Siloxane with top Coat
Immersed in the Sulfate Solution and Water for 330 days
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Plate 4.6.6 : Concrete Specimens Coated with Silane Immersed in the Sulfate
Solution and Water for 330 days
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Plate 4.6.7 : Concrete Specimens Coated with Acrylic Coating Immersed in the
Sulfate Solution Water for 330 Days



Plate 4.6.8 : Uncoated Concrete Specimens Immersed in the Sulfate Solution and
Water for 330 days
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Plate 4.7.3 : Carbonation in the Concrete Specimens Coated with Silane/Siloxane
with Top Coat
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Plate 4.7.4 : Carbonation in the Concrete Specimens Coated with Two
Component Acrylic Coating
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. SODIUM SILICATE (S1)

Plate 4.7.5 : Carbonation in the concrete Specimens Coated with Sodium Silicate
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SILICON RESIN SOLUTION (S2)

Plate 4.7.6 : Carbonation in the Concrete Specimens Coated with Silicone Resin
Solution
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SILANE SILOXANE (S3)

Plate 4.7.7 : Carbonation in the Concrete Specimens Coated with Silane/Siloxane
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Plate 4.7.8 : Carbonation in the Concrete Specimens Coated with Silane
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Table 4.8.1 : Chloride Diffusion Coefficients in the Coated and Uncoated
Concrete Specimens

Sealer/Coating Diffusion Coefficient, cm¥/sec
Sodium Silicate 20.06 x 10°®
Silicone Resin Solution 16.86 x 10°*
Silane/Siloxane 14.83x 107
Silane/Siloxane with Topcoat 7.83x10%
Silane 9.86 x 107
Acrylic Coating 8.18x 10°
Uncoated Concrete 21.83x 10
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CHAPTER 5

DISCUSSION

~

-

5.1 EFFECT OF HEAT-ébOL AND WET-DRY CYCLING ON
THE WATER ABSORPTION AND COMPRESSIVE

STRENGTH

The effect of heat-cool and wet-dry cycling on the water absorption and
compressive strength of the uncoated and coated concrete specimens was
evaluated over a period of 4 months. Tables 5.1.1 and 5.1.2 summarize the water
absorption and reduction in compressive strength of specimens subjected to wet-
dry and heat-cool treatment after 4 months. The increase in the water absorption
with the increasing heat-cool and wet-dry cycles may be attributed to the formation

of micro cracks within the concrete due to thermal and moisture variations.

Among all the surface treatment systems, silane, silane/siloxane with top coat
and two component acrylic coating were the most effective in improving the
properties of hardened concrete. The improved performance of these three surface

treatment systems may be attributed to an effective barrier against the moisture
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ingress into the concrete matrix. Another important conclusion from these results
is that the effect of heat-cool and wet-dry cycling is minimal in the specimens
coated with these specimens. The performance of concrete specimens coated with
sodium silicate was not better than the uncoated concrete specimens. The probable
explanation for the poor performance of concrete specimens coatéd with sodium
silicate is that, it can react with calcium hydroxide present in the concrete to form
secondary calcium silicate hydrate. This calcium silicate hydrate is not stable and
leaches out of concrete in wet environments, there by increasing the permeability
of the concrete. Among all the sealers and coatings investigated in this study,
silane, silane/siloxane with top coat and acrylic coating were effective in

minimizing the damage due to thermal and moisture variations.

5.2 REINFORCEMENT CORROSION

The effectiveness of surface treatment systems in reducing reinforcement
corrosion was evaluated by measuring the corrosion potentials and corrosion
current density on steel in the concrete specimens exposed to 5% NaCl solution.
The time to cracking of concrete under an impressed potential of +2 V was
evaluated. Table 5.2.1 summarizes the time to cracking of uncoated concrete
specimens and those coated with sodium silicate, silicone resin solution.

silane/siloxane, silane/siloxane with top coat and acrylic coating. Concrete
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specimens coated with silane, silane/siloxane with top coat and two component.
acrylic coating did not crack at all, while the time to cracking in the specimens
coated with other coatings was more than that in the uncoated concrete specimens.
Table 5.2.2 shows the summary of corrosion current density on steel in the
uncoated and coated concrete specimens, after about 360 days of e-xposure, to 5%
NaCl solution. The data in Tables 5.2.1 and 5.2.2 indicate that, sodium silicate,
silicon resin solution and silane/siloxane may prolong the time to initiation of
reinforcement corrosion, but its rate may not be much different from the uncoated
concrete specimens. The low corrosion activity in the concrete specimens coated
with silane/siloxane with top coat, silane and acrylic coating is mainly because of

reduced supply of oxygen and moisture content to concrete.

The results obtained from the accelerated reinforcement corrosion by impressing
an anodic potential of 2 Volts and corrosion current density on steel in the
reinforced concrete specimens exposed to 5% NaCl solution are consistent. This
indicates that the impressed potential system can be used to quickly evaluate the

performance of any material in reducing reinforcement corrosion.

Table 5.2.3 shows the average corrosion current in the uncracked concrete

specimens after 4350 hours (180 days) of impressed potential. These specimens



128

were coated with silane, silane/siloxane with top coat and acrylic coating. The
average current was well below the cracking current, which was around 0.7 mA.
Low current requirement in the concrete specimens coated with silane/siloxane
with top coat, silane and acrylictoating indicates that the cathodic reaction are not
supported due to lack of oxygen. -Among the penetrating sealers,- silane was the
most effective in reducing reinforcement corrosion. The probable explanation for

this may be attributed to its enhanced penetration into the concrete matrix, thus

inhibiting the ingress of oxygen and moisture.

5.3 EFFECTIVENESS OF SEALERS AND COATINGS IN

REDUCING SULFATE ATTACK

Table 5.3.1 summarizes the reduction in compressive strength, in the coated and
uncoated concrete specimens immersed in the sulfate solution for 330 days. The
strength reduction in the specimens coated with silane, silane/siloxane, acrylic
coating and silane/siloxane with top coat was less than the uncoated concrete
specimens and those coated with sodium silicate and silicone resin solution.
Minimum strength reduction' was noted in the concrete specimens coated with
silane/siloxane with top coat. The effective performance of silane/siloxane with

top coat could be attributed to the fact that, top coat forms a layer over the concrete
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and provide a barrier against the diffusion of sulfate ions. Further, silane/siloxane.

provide additional protection.

5.4 EFFECTIVENESS OF SURFACE TREATMENT SYSTEMS

IN PREVENTING INGRESS OF CARBONDIOXIDE

Table 5.4.1 summerizes the depth of carbonation in the coated and uncoated
concrete specimens, after 5 weeks of exposure to accelerated carbondioxide
environment. No carbonation was detected in the specimens coated with acrylic
coating and silane/siloxane with top coat even after about 210 days of exposure.
All the penetrating sealers were ineffective in inhibiting the diffusion of
carbondioxide. In all the specimens coated with the penetrating sealers, the
carbonation depth was higher than the usual cover provided over the reinforcing
steel, particularly in the slabs. This may reduce the pH of the pore solution and
make the protective oxide layer unstable. However, the coatings investigated in
this study, namely silane/siloxane with top coat and acrylic coating were effective

in reducing the ingress of CO>.



5.5 EFFECTIVENESS OF SURFACE COATINGS IN REDUCING
DIFFUSION OF CHLORIDE IONS

Table 5.5.1 shows the chloride concentrations. in the coated and uncoated

concrete specimens at 5 mm depth, exposed to a period of 90 days.” The reduction

in the chloride concentration in the specimens coated with silane, silane/siloxane
with top coat and acrylic coating. as compared to the uncoted concrete specimens.
may be attributed to reduced permeability of concrete. Furthermore, the chloride
diffusion coefficient in the uncoated concrete specimens. made with a cement
content of 350 kg/m’ and a w/c ratio of 0.45 w/c ratio is in agreement with the data

reported previously [51].

5.6 EFFECTIVENESS OF SEALERS AND COATINGS IN
REDUCING REINFORCEMENT CORROSION IN

IN-SERVICE STRUCTURES

Table 5.6.1 shows the change in corrosion current density on steel in the coated
and uncoated concrete specimens after 4 months of the application of surface
treatment materials. The reduction in corrosion current density on steel in the

concrete specimens coated with silane/siloxane, silane/siloxane with top coat.
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silane and acrylic coating was 44, 54, 55 and 47%, respectively. The corrosion
current density on steel in the concrete specimens coated with the silicone resin
solution reduced to a lesser degree, while an insignificant change was observed in

the uncoated specimens and those coated with sodium silicate.

- -

The reduction in the corrosion current density on steel, in most of the coated
concrete specimens, may be due to reduction in the oxygen content at steel-
concrete interface. Therefore, a reduction in corrosion current density on steel in
the concrete specimens coated with silane, silane/siloxane with top coat and acrylic
coating indicates that, these surface treatment materials can be used to rehabilitate

corroding structures.



5.7 COMPARISON AND EVALUATION OF DIFFERENT
SURFACE TREATMENT SYSTEMS

The basic purpose of using surface treatment materials was to prevent rapid
deterioration of concrete struc_tu?es by retarding penetration of water, chloride ions.
sulfate ions, oxygen and carbondioxide. The experimental program was designed
to extensively test these surface treatment materials in all aspects of durability of
concrete. It has been established that there is no ideal sealer which can completely
protect the concrete from deterioration. However, some existing sealers can
protect concrete from detérioration exposed to a particular environment. The
following discussion focuses on the merits and disadvantages of the sealers tested

in this study.
5.7.1 Sodium Silicate

Among all the surface treatment systems used in this study, the performance of
sodium silicate treated concrete was significantly inferior. According to all the
experimental results, except carbonation depth, the performance of sodium silicate
was even worse than the uncoated samples. It was partly effective in reducing

carbonation of concrete. The poor performance of sodium silicate may be
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attributed to the fact that it is readily soluble in water, thereby its leaching in wet

environment is possible.

5.7.2 Silicon Resin Soluti_oﬂ

5 7
B

The performance of silicon resin solution was also not good and it failed to
reduce the deterioration of concrete. However, it performed slightly better than
sodium silicate. The penetration depth of silicon resin solution was very less
because of the fact that thése materials are much higher in molecular weight than
silanes and siloxanes. Normally, these materials are not reactive and dry by
solvent evaporation to leave a surface film of resin. Therefore, it is not advisable
to use silicon resin solution to protect concrete from deterioration for long period

of time.
5.7.3 Silane/Siloxane

Siloxanes are more correctly described as oligomeric alkyl alkoxy siloxanes. The
performance of silane/siloxane treated concrete in this study was moderate.
According to all the experimental results, silane/siloxanes were effective in

reducing the deterioration of concrete only for a short period of time. The
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siloxanes have all the advantages of silane with respect to reactivity and water.
repellency, but their large size makes them less effective in penetrating concrete.
This may be the factor which affected the performance of silane/siloxane treated
concrete. -

5.7.4 Silane s~

Silane is more commonly known as alkyl alkoxy silane. Among all the
penetrating sealers used in this study, the performance of silane treated concrete
was significantly superior. However, it did not performed satisfactorily in the
sulfate and Co, environment. Silane contains relatively smaller size molecules
dissolved in a volatile solvent. When applied to concrete, silane penetrates and
obtains its water repellent characteristics from two stage chemical reaction. Most
of the sealers available in the market protect the concrete by filling the capillary
pores thereby decreasing the permeability of concrete. Ludwig and Sideris [54]
have determined the reaction of a particular alkyl alkoxy silane as follows :

Hydrolysis in an acid or alkaline medium: (1)

OC,H; / OH
CH, - SI Z_OQHS +3H,0 = CH;-SI 7—OH + 3C,H,0H
OC,H, , OH

(methyl-triethoxy silane) (methyl-silanol) (ethanol)



Reaction with Substrate Surface: (2)

— SI —OH - — SI—- O
| : l \ _
O O SI-CH,
| =T |
~— SI — OH OH _SI—O/
|
(l) + 2CH; - ST “— OH = é) O + 6H,0
I
— AL—OH OH —AL-O
! | \
? O SI-CH;,
— SI— OH - él— O/
| I
(substrate surface) ( bonding of silanol group onto

substrate surface)

As seen in the above equations, the reaction products form a water repellent
surface. Consequently, the absorptivity of concrete treated with silane is markedly

reduced.

5.7.5 Silane/Siloxane with acrylic top coat

Among the two coating materials used in this study, the performance of
silane/siloxane with top coat was better than two component acrylic coating. The
specimens coated with silane/siloxane with top coat performed well in the

impressed current testing, the current being 0.002 mA. It is clearly evident from
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the experimental data that, in all aspects of durability of concrete silane/siloxane.
with top coat performed well and it was effective in reducing deterioration of
concrete for a considerable span of time. But one of the disadvantages was that, at
high temperatures air bubbles appeared within the top coat and it increased the
water absorption. Silane/siloxane *vith acrylic top coat, is a comﬁination system,
formulated to provide maximum protection possible to concrete structures.
According to the results obtained in this study, this system can provide excellent
chloride-resistance and inhibit diffusion of CO, gas. The specimens coated with
this combination system, éompletely prevented the carbonation process and the
reduction in the compressive strength, was the lowest compared to other coated
specimens when exposed to sulfate-bearing environment. The better performance
of silane/siloxane with top coat may be attributed to its low viscosity and volatility
due to which it penetrates the-substrate and gives the system its resistance to
aggressive species, such as water and water soluble salts. The acrylic top coat
forms a protective layer over the surface of concrete and gives the system its

resistance to aggressive species including moisture, oxygen and carbondioxide.



5.7.6 Two Component Acrylic Coating

The effectiveness of two cdmponent acrylic coating in preventing deterioration
of concrete was acceptable, but not as good as silane/siloxane with top coat.
Unlike silane/siloxane with tgp’coat, the two component acrylic coating did not
perform well in the sulfate-bearingenvironment. In other aspects .of durability of
concrete, such as reinforcement corrosion, water absorption, resistance to thermal
and moisture variations, carbonation and chloride diffusion, its performance was
satisfactory. The two component acrylic coating retards the deterioration of
concrete by blocking the péres and forming a thick layer of coating on the surface

of concrete.

5.8 ECONOMICS

The durability performance of concrete can be improved by the following
approaches:
1) Using High Quality Concrete,
2) Applying Protective Concrete Surface Coatings,
3) Using Fusion Bonded Epoxy Coated Reinforcement,
4) Applying Cathodic Protection and

5) Using Special Concrete Admixtures.
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Although, every method has its own advantages and disadvantages, the use of.
protective concrete surface coatings can be applied to old and new concrete. The
selection of a particular method or combination mostly depends on several factors
including cost ease of application, effectiveness in retarding deterioration of

concrete and maintenance. ez

One of the main difficulties with the concrete surface coatings is that, with the
wide range of such coatings available in the market, it becomes extremely difficult
to choose the right type of material for a particular exposure condition. The choice
and the selection of the surface treatment system is most important and depends on
the specific requirements of the structure. There are several factors to be

considered before selecting a particular surface treatment material.

They are:

a) Cost,

b) Carbondioxide diffusion resistance,
c) Chloride ion ingress,

d) Water vapor diffusion resistance,
e) Ultra violet light resistance,

f) Crack bridging ability,



g) Chemical resistance,
h)  Abrasion resistance,
I) Ease of application and

1)) Aesthetic appeararce.

The total cost for using these materials generally includes, material, cost of the
surface preparation, and application. Table 5.6.1, shows the cost of the materials

used in this study. The cost of surface preparation and application are not

included.

Although, most of the materials used in this study, were not effective in all
aspects of durability of concrete, some of them can be specified to suite a
particular situation. Among all the penetrating sealers, silane proved to be the
most effective and can be used in many cases, except in situations where the
environment is saturated with sulfate-salts and carbondioxide. Silane/siloxane
with top coat, was also effective and can be used virtually in all the situations. The
cost of silane/siloxane with top coat, is slightly above the cost of other materials.

However, the advantages gained may be many.
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Table 5.1.1 : Summary of Water Absorption in the Uncoated and Coated Concrete
Specimens Subjected-to Wet-Dry and Heat-Cool Treatment after 4
months of Exposure

WATER ABSORPTION, %

SEALER/COATING WET-DRY HEAT-COOL
Sodium Silicate ' 5.133 5.891
Silicone Resin Solution 2.68 2.506
Silane/Siloxane 2.723 1.781
Silane/Siloxane with Topcoat | 0.663 1.68
Silane 1.12 1.75
Acrylic Coating 0.338 1.239
Uncoated Concrete 5.04 5.51
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Table 5.1.2 : Reduction in Compressive Strength in the Uncoated and Coated
Concrete Specimens Subjected to Wet-Dry and Heat-Cool Treatment
after 4 months of Exposure

REDUCTION IN COMPRESSIVE STRENGTH, %

SEALER/COATING WET-DRY HEAT-COOL
Sodium Silicate ' 12.3 16.36
Silicone Resin Solution 10.13 13.76
Silane/Siloxane 8.23 8.73
Silane/Siloxane with Topcoat i 6.46 8.49
Silane 6.86 6.81
Acrylic Coating 5.78 7.81
Uncoated Concrete 12.78 17.63
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Table 5.2.1 : Summary of Time to Cracking.of Concrete Specimens Subjected to a
Impressed Anodic Potential of 2 Volts.

Sealer/Coating Time to Cracking, Hours
Control Specimen 144

Sodium Silicate 176

Silicone Resin Solution 672
Silane/Siloxane 2125
Silane/Siloxane with Topcoat 3 No Cracks

Silane No Cracks
Acrylic Coating No Cracks




Table 5.2.2 : Summary of Corrosion Current Density on steel in the Coated and

Uncoated Concrete Specimens after 360 days of exposure to 5%
NaCl Solution for 360 days.

Sealer/Coating CORROSION CURRENT DENSITY,
pA/cm?

Uncoated Concrete 0.328

Sodium Silicate 0.286

Silicone Resin Solution 0.31

Silane/Siloxane 0.193

Silane/Siloxane with Topcoat 0.0058

Silane 0.0061

Acrylic Coating: 0.0108

Table 5.2.3 Average Current in the Uncracked Coated Concrete

Specimens
Sealer/Coating CORROSION CURRENT, mA
Silane 0.095
Silane/Siloxane with Topcoat 0.0023
Acrylic Coating 0.0396
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Table 5.3.1 : Summary of Reduttion in Compressive Strength in the Uncoated and
Coated Concrete Specimens Immersed in the Sulfate Solution for

330 days. . 7
Sealer/Coating REDUCTION IN COMPRESSIVE
STRENGTH, %

Uncoated Concrete 4 41

Sodium Silicate 393

Silicone Resin Solution 36.1

Silane/Siloxane 26.8

Silane/Siloxane with Topcoat ‘_ 8.3

Silane 243

Acrylic Coating 19.63
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Table 5.4.1 : Summary of Carbonation Depth in the Coated and Uncoated
Concrete Specimens after 5 Weeks of Exposure

Sealer/Coating CARBONATION DEPTH, mm
Uncoated Concrete 283
Sodium Silicate . 13.1
Silicone Resin Solution 24.8
Silane/Siloxane 23.9
Silane/Siloxane with Topcoat 0

Silane ] 25.1
Acrylic Coating 0




Table 5.5.1 : Chloride Concentration in the Coated and Uncoated Concrete
Specimens, at 5 mm Bepth, Exposed to a Period of 9C days

146

Sealer/Coating CHLORIDE CONCENTRATION, %
Uncoated Concrete 0.457
Sodium Silicate 0.451
Silicone Resin Solution 0.269
Silane/Siloxane 0.258
Silane/Siloxane with Topcoat 0.164
Silane i} 0.2216
Acrylic Coating 0.218




147

Table 5.6.1 : Change in corrosion current density after 4 months of application of
sealers and coatings

-~

Corrosion Current Density, uA/cm2
TYPE OF COATING Be.fore: After 4 Mor}ths Chz}nge in
Application | of Application | Corrosion Rate*,
%
Uncoated Concrete ) 0.289 0.311 +7
Sodium Silicate 0.165 0.169 +2.4
Silicone Resin Solution 0.235 0.161 -31
Silane/Siloxane 0.217 0.121 -44
Silane/Siloxane with Topcoat - 0.38 0.173 -34
Silane 0315 0.139 -55
Acrylic Coating 0.242 0.127 -47
* + Indicates Increase in Corrosion Current Density

- Indicates Reduction in Corrosion Current Density
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Table 5.7.1 : Material Costs of Sealers and Coatings Used in this Study

Sealer/Coating ‘ MATERIAL COST, SR/m’
Sodium Silicate 7
Silicone Resin Solution 6
Silane/Siloxane 8
Silane/Siloxane with Topcoat -~ 14
Silane 9
Acrylic Coating 18
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CHAPTER 6

CONCLUSIONS & RECOMMENDATIONS

The effectiveness of surface treatment materials in reducing deterioration of
concrete and corrosion of embedded reinforcement was evaluated. The effect of
concrete surface treatment systems on the compressive strength, water absorption,
initiation of reinforcement corrosion, cracking due to corrosion and depth of
carbonation were investigated. The performance of these surface treatment
materials were evaluated under heat-cool, wet-dry, high chloride, high sulfate and
carbonation environments. The effectiveness of these materials in reducing
reinforcement corrosion was evaluated by impressing an anodic potential of 2V
and measuring the time to cracking of concrete specimens. The performance of
these materials, in reducing corrosion activity, in chloride-environment was
evaluated by immersing them in 5% NaCl solution, and monitoring the corrosion
potentials and corrosion current density at periodic intervals. Also, the chloride
diffusion characteristics of concrete specimens coated with these surface treatment

materials was evaluated.
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From the data developed in this study, the following conclusions can be drawn :

L. The water absorption in the concrete specimens coated with sodium silicate was
10% more than that in the uncoated concrete specimens. There was 42 and
51% reduction in water absorption was observed in the concrete specimens
coated with silicone resin solution and silane/siloxane, as compared to the
uncoated concrete specimens.» Among all the penetrating sealers, silane was
the most effective in reducing water absorption in concrete and there was 90%
reduction in water absorption was indicated in these specimens, as compared to
the uncoated concrete specimens. The water absorption in the concrete
specimens coated with silane/siloxane with top coat and two component acrylic
coating was only 0.67 and 0.29%, respectively, which indicates 83 and 93%

reduction, as compared to the uncoated concrete specimens.

2. The water absorption in the uncoated and coated concrete specimens
continuously increased from 10 to 40 wet/dry cycles. The performance of
uncoated concrete specimens and those coated with sodium silicate was
similar. After 40 wet/dry cycles, the water absorption in the concrete specimens
coated with sodium silicate was the highest among all the other treated

specimens. The best performance was indicated by silane, silane/siloxane with
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top coat and two component acrylic coating. The performance of concrete

specimens coated with silicone resin and silane/siloxane was average.

3. A continuous increase in the water absorption and decrease in the compressive
strength was noted in the coated and uncoated concrete specimens subjected to
heat-cool cycling. The water absorption in the uncoated and coated concrete
specimens subjected to heat-cool cycling was higher than that in the specimens
subjected to wet-dry cycling. In this test also, the performance of uncoated
concrete specimens and those coated with sodium silicate was similar. Sodium
silicate and silicone resin solution were not effective in minimizing damage
due to continuous heating and cooling. Among the coating materials, acrylic
coating performed better. Silane and silane/siloxane, proved to be more
effective, among all the penetrating sealers used in this study. Silane/siloxane
with top coat, performed well and was also effective in minimizing the damage

caused by heat-cool cycling.

4. The uncoated concrete specimens cracked within 144 hours of testing when an
impressed potential of +2V was applied. The performance of sodium silicate
was not satisfactory and the concrete specimens coated with this material

cracked after about 172 hours of exﬁosure. The performance of concrete



specimens coated with silicone resin solution was average. Silane/siloxane, a
penetrating sealer was effective in reducing reinforcement corrosion for long
period of time and the concrete specimens coated with this coating cracked
after 2125 hours. In all the uncoated and coated concrete specimens, cracking
occurred only when the current exceeded 0.7 mA. Among all the penetrating
sealers, the performance of silane was the best and the concrete specimens
coated with this material did not crack after 4350 hours of exposure. The
average current in the specimens coated with silane was around 0.095 mA after
about 4350 hours of testing . Silane/siloxane with top coat and two component
acrylic coatings were the most effective in preventing reinforcement corrosion

and the average current was around 0.004 and 0.04 mA, respectively.

5. The corrosion potentials on steels in the concrete specimens coated with
silane/siloxane with top coat, silane and two component acrylic coating were
less as compared to the threshold potential, even after 360 days of exposure.
Sodium silicate, silicone resin solution and silane/siloxane were not effective in
delaying the time to initiation of reinforcement corrosion. The behavior of
uncoated concrete specimens and those coated with sodium silicate was

similar.



6. The penetrating sealers investigated in this study were not effective in reducing
the deterioration of concrete due to sulfate attack. However, silane/siloxane
and silane were partly effective in resisting sulfate attack. Among these two
coatings, silane/siloxane with top coat was the most effective in reducing the
sulfate attack. The reduction in the compressive strength, due to sulfate attack.
for the concrete specimens coated with silane/siloxane with top coat was 8.3%,
whereas it was 41% in the uncoated concrete specimens. Two component

acrylic coating also performed satisfactorily upto 8 months of exposure.

7. None of the penetrating sealers studied were totally effective in preventing
carbonation of concrete. However, silane/siloxane with top coat and acrvlic
coating performed better than other sealers and coatings. The depth of
carbonation in these concrete specimens was very minimal even after 6 months
of continuous storage in the carbonation chamber. The depth of carbonation in
the concrete specimens coated with sodium silicate was 13.1 mm as against
28.3 mm measured in the uncoated concrete specimens. After 5 weeks of
exposure, the carbonation depth in the concrete specimens coated with silicone
resin solution. silane/siloxane and silane was 24.8, 23.9 and 25.] mm.

respectively.
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8. The chloride concentration and diffusion coefficients were found to be strongly
influenced by the type of coating. The performance of concrete specimens
coated with silane, silane/siloxane with top coat and acrvlic coating was
improved with reduction in water permeability. The rest of the coating
materials were not effective in retarding the diffusion of chloride ions.

9. Silane, silane/siloxane with top coat and acrylic coating were most effective in
reducing reinforcement corrosion in in-service structures. The highest
reduction in corrosion current density on steel, was observed in the concrete

specimens coated with silane.

In general, the performance of sealers and coatings investigated in this study is of
the following order:
Silane/Siloxane with top coat > Acrylic coating > Silane > Silane/Siloxane >

Silicone Resin solution > Sodium Silicate



The preferred sealers/coatings for various environments are summerized below:

Table 6.1 :  Preferred sealers and coatings to suite environmental conditions

Exposure Conditions Preferred Sealers/Coatings

Wet-Dry Silane/Siloxane with top coat, Acrylic Coating, Silane
Heat-Cool Silane/Siloxane with top coat, Acrylic Coating, Silane
CO, Silane/Siloxane with top coat, Acrylic Coating, Sodium Silicate
Sulfate Silane/Siloxane with top coat

Chloride Silane/Siloxane with top coat, Silane, Acrylic coating

Based on this study and previous conclusions, the following recommendations,

pertaining to the future study, can be made :

1. The performance of sealers and coatings in actual service environment has to be
studied.

2. The effectiveness of sealers and coatings in combination with the blended
cements can be investigated.

3. Also, the effectiveness of sealers and coatings exposed to UV radiation should

be elucidated.
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