Genetic Algorithm Based Simultaneous Eigenvalue Placement Of Power Systems

Abdel-Magid, YL; Bettayeb, M; Selim, SZ
KING FAHD UNIV PETROLEUM MINERALS, ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING; pp: 63-77; Vol: 25

Summary

This paper demonstrates the use of genetic algorithms to design a single output feedback control law for the simultaneous eigenvalue placement of a power system running over a wide range of operating conditions. The task of selecting the output feedback gains is converted to a simple optimization problem with an eigenvalue-based objective function, which is solved by a genetic algorithm. An objective function is presented allowing the selection of the output feedback gains to place the closed-loop eigenvalues in the left-hand side of a vertical line in the complex s-plane while shifting a specific mode of oscillation to a vertical strip and with bounds on the damping ratio. Simultaneous placement of the closed-loop eigenvalues of the power system operating at different loading conditions, using a single output feedback stabilizer, is demonstrated. The effectiveness of the output feedback stabilizer in enhancing the dynamic stability of power systems is verified through eigenvalue analysis and simulation results.

References:
1. ABDELMAGID YL, 1976, P I ELECTR ENG, V123, P697
2. ANDERSON PM, 1977, POWER SYSTEM CONTROL
3. CHAN WC, 1983, IEEE T POWER AP SYST, V102, P1738
4. CHEN CL, 1987, ELECT POWER SYSTEM R, V12, P37
5. DAVIS L, 1991, HDB GENETIC ALGORITHM
7. FELIACHI A, 1988, IEEE T POWER SYSTEMS, V3, P1676

http://www.kfupm.edu.sa
8. FLEMING PJ, 1993, 470 U SHEFF UK
9. GOLDBERG DE, 1989, GENETIC ALGORITHMS S
12. HSU YY, 1986, IEEE T POWER SYST, V1, P46
15. LARSEN EV, 1981, IEEE T PAS, V100, P3017
17. LUENBERGER DG, 1966, IEEE T AUTOMAT CONTR, V11, P190
18. MOUSSA HAM, 1972, IEEE T PAS, V91, P1166
19. RAINA VM, 1976, IEEE T POWER APPARAT, V95, P677
20. SCHLEIF FR, 1968, IEEE T PAS, V87, P1426

For pre-prints please write to: abstracts@kfupm.edu.sa