A Non-Linear Multiple-Model State Estimation Scheme For Pipeline Leak Detection And Isolation

Emara-Shabaik, HE; Khulief, YA; Hussaini, I

PROFESSIONAL ENGINEERING PUBLISHING LTD, PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING; pp: 497-512; Vol: 216

King Fahd University of Petroleum & Minerals
http://www.kfupm.edu.sa

Summary

Model-based monitoring schemes are known to have a great potentials in detection and localization of leaks in pipelines. Fluid flow in pipelines is characterized by a system of non-linear-coupled partial differential equations. Since state estimation can provide the basis for real-time monitoring of fluid flow in pipelines, a suitable numerical scheme is employed to formulate the problem in state-space form, which enables the development of state estimation techniques. A modified extended Kalman filter (MEKF) in conjunction with feed forward computations to anticipate the leak magnitude provides the core of the adaptive multimodel state estimation technique used in this paper. Numerical simulation results show that the developed state estimation scheme effectively detects and locates small leaks in pipelines within a short time duration.

References:
7. Eramashabaik HE, Unpub Computational
8. Eramashabaik HE, 1981, AUTOMATICA, V17, P411
10. ISERMANN R, 1984, AUTOMATICA, V20, P387
11. ISERMANN R, 1985, 7 IFAC IFIP C DIG CO, P51
13. KINSLER LE, 2000, FUNDAMENTALS ACOUSTI
15. LIOU JCP, 1994, PD ASME, V60, P51
17. SIEBERT H, 1980, AUTOMATION SAFETY SH
18. SIEBERT H, 1981, PROCESS AUTOMN, V2, P90
20. STECKI JS, 1986, P I MECH ENG A-POWER, V200, P229
22. WANG GZ, 1993, IEEE T INSTRUM MEAS, V42, P68
23. WILSKY AS, 1976, AUTOMATICA, V12, P601
24. YOON S, 1988, OIL GAS J MAY, P77

For pre-prints please write to: abstracts@kfupm.edu.sa