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Abstract— In operational networks, nodes are connected via
multiple links for load sharing and redundancy. This is done
to make sure that a failure of a link does not disconnect or
isolate some parts of the network. However, link failures have
an effect on routing, as the routers find alternate paths for the
traffic originally flowing through the link which has failed. This
effect is severe in case of failure of a critical link in the network,
such as backbone links or the links carrying higher traffic loads.
When routing is done using the Open Shortest Path First (OSPF)
routing protocol, the original weight selection for the normal state
topology may not be as efficient for the failure state. In this paper,
we investigate the single link failure issue with an objective to
find a weight setting which results in efficient routing in normal
and failure states. We engineer Tabu Search Iterative heuristic
using two different implementation strategies to solve the OSPF
weight setting problem for link failure scenarios. We evaluate
these heuristics and show through experimental results that both
heuristics efficiently handle weight setting for the failure state.
A comparison of both strategies is also presented.
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I. I NTRODUCTION

OSPF is an intra-domain routing protocol that uses link weights
to make routing decisions and compute the shortest paths. Different
weight assignment strategies have been discussed in the literature [1]
including the Unit OSPF, Inverse Capacity OSPF, Random OSPF
etc. A better selection of the OSPF link weights can lead to efficient
network utilization [2], [3]. Iterative heuristics have been extensively
used [4], [5], [6] and implemented using different strategies to achieve
this goal. However, all strategies work on the assumption that the
topology is fixed and there are no failures in the network. A network
may experience a link failure resulting in a change in topology due
to the loss of a link. when the network state changes (Failure State)
due to link failure, the routing paths are also not the same as in the
original state(Normal State). The optimized weights for the original
topology and demand may no longer be good enough for the new
topology with the failed link. The absence of the failed link causes the
traffic which was originally flowing through this link to flow through
other available links. The fact that the network was not optimized
for these flows, can result in an inefficient mapping of traffic on to
available links. This may also cause congestion in some parts of the
network, specially in the case of higher demands.

One solution to this issue is to apply a new set of OSPF weights
to links which optimize the new topology (Failure State). However,
it is cumbersome to change the weights on each link in the entire
topology and also not very practical in case of larger networks. One
would suppose that once the set of OSPF weights have been fixed,
the operator would not want to change these weights in order to

adapt for such changes in the state of the network. Hence, it is
required to adapt the original heuristic to optimize link weights taking
into consideration single link failure scenarios. In other words it
is required to find a set of weights that work for both the normal
and failed state of the network without considerable degradation in
performance in both states.

Link failure scenarios require dealing with two states of a network.
The first state where all links are functional is denoted as Normal
state and the other state where a link has failed is denoted as
Failure state. In this paper, two different strategies are devised and
implemented to address this issue. The first strategyviz. LinkFailure-
FT is similar to the approach adopted by Fortz and Thoroup [7]
with some modifications. Another new strategyviz. LinkFailure-SS
is proposed, where the weights are first optimized for the Failure
state. Keeping these weights fixed, all combinations of weights are
tried for the added link to find the best cost for the Normal state.
Both strategies are discussed further in this section.

Similar problem has been attempted by Fortz and Thoroup [7].
In their approach, a set of links was considered as critical, and in
each iteration one of these links was failed based on the maximum
utilization among critical links. The cost of normal topology and the
resulting failed topology was averaged and the search was driven
to find a solution which minimizes the average cost. One of our
implementations in this work is similar to this approach but with the
modification that the link failed is always the one connected between
nodes carrying the highest demand. This simulates the worst case
scenario.

The rest of the paper is organized as follows; The OSPFWS
problem statement and the cost functions proposed in the literature are
presented in Section II. The two Link Failure algorithms are discussed
and analyzed in Section III. This is followed by the experimental
results including the comparison of both algorithms under Normal
and Failure state in Section IV. Finally, we conclude in section V.

II. PROBLEM STATEMENT AND COST FUNCTION

The OSPF weight setting problem can be stated as follows: Given
a directed network of nodes and arcsG = (N, A), a demand matrix
D, and capacityCa for each arca ∈ A, determine a positive integer
weight wa ∈ [1, wmax] for each arca ∈ A such that the objective
function or cost functionΦ is minimized. When routing is done using
OSPF the assigned link weights completely determine the shortest
paths, and hence the traffic flows. Based on these traffic flows the
partial loads on each arc for a given destination is computed. This
is done for all destination nodes. The aggregated partial loads for all
destinations on a particular arc gives the total loadla on that arc.
The cost of sending traffic through this arc is given byΦa(la). The
cost value depends on the utilization of the arc and is given by the
linear function proposed by Fortz and Thoroup.



Φ
′
a(l) =



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1 for 0 ≤ l/ca < 1/3,
3 for 1/3 ≤ l/ca < 2/3,
10 for 2/3 ≤ l/ca < 9/10,
70 for 9/10 ≤ l/ca < 1,
500 for 1 ≤ l/ca < 11/10,
5000 for 11/10 ≤ l/ca < infinity

(1)

The Fortz cost function is given in equation2.

Φ =
∑
a∈A

Φa(la) (2)

The objective is to minimizeΦ, subject to these constraints:

la =
∑

(s,t)∈NXN

f (s,t)
a a ∈ A, (3)

f (s,t)
a ≥ 0 (4)

in constraint 3, for traffic between source destination pair (s,t),
f

(s,t)
a indicates the amount of traffic flow that goes over arc a.

The detailed steps showing the formulation of this cost function
can be found in the literature [1], [4].

III. LINK FAILURE
Handling link failure scenarios requires dealing with two states of

a network. In the Normal state, the topology is said to haven + 1
links. There exist a set of weights W which optimize the cost for this
topology. The cost function for this is denoted byΦ(n+1)OH , where
OH stands for Original Heuristic andn+1 indicates a topology with
n+1 links. In the case of failure, these weights for the new topology
will result in another cost and is denoted byΦ([n+1]−1)OH . Here,
[n + 1]− 1 indicates failure of link and topology change fromn + 1
to n links. The above functions are representative of the costs when
the Normal state topology was optimized using the original heuristic.

A. LinkFailure-FT
In LinkFailure-FT strategy, to find optimum weights representing

both the normal and the failed states, the idea is not to minimize
the cost of each state individually but to minimize the combined or
average cost of both states. For a given solution or set of weights
W for the Normal state, the cost is denoted byΦ(n+1) and for the
Failure state with the same set of weights minus the failed link (W-a)
the cost isΦ‘(n). The objective is to find the set of weights which
minimizes the new cost function:

ΦAvg = 1/2 (Φ(n+1) + Φ‘(n))

Starting with a random initial solution for the Normal state
(TNorm) the same set of weights, except the weight of the failed
link, are transferred to the failed state (TFail) and both topologies
find the shortest paths and the cost of the initial solution. Tabu Search
is started onTNorm by making random moves, and every time the
same move is again transferred toTFail. Both topologies find the
shortest path and the corresponding cost after a move. The cost of
the new solution forTNorm is denoted asΦ(n +1)Avg and the new
cost ofTFail is denoted asΦ(n)Avg. The cost of the current solution
ΦAvg is the average ofΦ(n + 1)Avg andΦ(n)Avg.

ΦAvg = 1/2 (Φ(n + 1)Avg + Φ(n)Avg)

Here,Φ(n + 1)Avg andΦ(n)Avg indicate the cost ofTNorm and
TFail respectively while optimizing the average cost function. We
continue Tabu Search and compute the average cost for each iteration

until the termination criteria is met. The set of weights which gives
the least value ofΦAvg is the best solution obtained by the new
heuristic.

Algorithm: LinkFailure-FT

S0: initial solution.
S: solution.
Sb: best solution.
a: failed arc.
Wi: Weight of arc i.
TNorm: Normal state.
TFail: Failure state.
Begin:

TNorm:
1. GenerateS0;
2. Transfer{S0- a} to TFail;
3. ComputeΦ(n + 1)Avg;

TFail:
4. ComputeΦ(n)Avg;

do
TNorm:

5a. Move(i,Wi);
6a. ComputeΦ(n + 1)Avg;

TFail:
5b. Move(i,Wi);
6b. ComputeΦ(n)Avg;

7. ΦAvg = 1/2 (Φ(n + 1)Avg + Φ(n)Avg;

While (Termination criteria is not met)
8. Sb = S for min(ΦAvg);
End:

Fig. 1. Structure of the LinkFailure-FT algorithm.

B. Performance Evaluation of LinkFailure-FT
The performance of this strategy can be evaluated by comparing

the cost obtained forTNorm andTFail using this heuristic with that
of the original. The difference between the costs of the original and
the new heuristic would indicate a gain or loss in the solution quality.
For TNorm, this difference would be:

δNorm = Φ(n + 1)OH - Φ(n + 1)Avg

Optimizing weights using the original heuristic is expected to give
a better cost than optimizing for average cost. Hence, the value of
δNorm is expected to be negative, indicating a loss in solution quality
in the Normal state. A smallerδNorm value, or a value close to zero
would indicate that the heuristic is performing well in the Normal
state.

In the case of the Failure state the cost difference would be
indicated as:

δFail = Φ([n + 1]− 1)OH - Φ(n)Avg

The purpose of optimizing the weights for link failure is to achieve
a better cost in case of a Failure state than would have been achieved



with the original heuristic. Hence,δFail must be a positive value
indicating an improvement in the solution quality. A largerδFail

value would indicate that the new heuristic is performing well in the
case of a Failure state. Hence, a combination of smallerδNorm value
and largerδFail value would be an ideal case indicating minimal loss
in the case of the Normal state and significant improvement in the
case of the Failure state.

C. LinkFailure-SS
In the previous strategy we have tried to optimize weights for

the average cost ofTNorm and TFail. In this section, we propose
another strategy which optimizes weights forTFail and finds the
best solution forTNorm by keeping the weights obtained fromTFail

unchanged and trying all possible weights for the one additional link.
The test cases and benchmark topologies used were the same as for
the previous strategy. We start with a random initial solution forTFail

and find the shortest paths and corresponding cost for this solution.
Tabu Search is started onTFail by making random moves and after
each move, the shortest paths and corresponding cost are computed.
The cost of the new solution forTFail is denoted asΦ(n)OH which
indicates that the cost is for the topology withn links optimized
using the original heuristic. Once the termination criterion is met, we
obtain the best solution forTFail and compute its best cost. The final
n weights are transferred toTNorm. The weight on the additional
(n+1)th link is assigned values from 1 to 20. For each weightWi,
the cost of theith solution is computed. The twenty costs obtained
are compared to find the best solution forTNorm. This is denoted by
Φ([n]OH + 1)20 which indicates that the cost is for topology with
n + 1 links wheren links are optimized using the original heuristic
and one additional link is optimized by finding the best solution from
the twenty possible combinations.

D. Performance Evaluation of LinkFailure-SS
Similar to the FT approach, the performance of this strategy

can be evaluated by comparing the cost obtained forTNorm and
TFail using the SS heuristic with that of the original heuristic (OH).
The difference between costs of the original and the new heuristic
would indicate a gain or loss in the solution quality. ForTNorm this
difference would be:

δNorm= Φ(n + 1)OH - Φ([n]OH + 1)20

In the case of the Failure state, the original heuristic will end up with
a costΦ([n+1]−1)OH and the SS heuristic with a cost ofΦ(n)OH .
Hence, the cost difference would be indicated as:

δFail = Φ([n + 1]− 1)OH - Φ(n)OH

In the SS approach, the weights are optimized forTFail and are
expected to achieve a better cost in the case of a link failure than
would have been achieved with the original heuristic. Hence,δFail

must be a positive value indicating an improvement in the solution
quality.

E. FT Versus SS
In the case of LinkFailure-FT, we simultaneously optimize two

states of a networkviz. TNorm and TFail, whereas in LinkFailure-
SS we only optimizeTFail and then try the best possible weight for
the one additional link to optimizeTNorm. Hence, the SS approach
has a faster convergence when compared to FT; which is a major
factor when dealing with larger networks and higher demands. As
discussed earlier, SS is optimized for the Failure state and hence
should not only give better solution when compared to OH but also
should perform better than FT in the Failure state. In the FT approach,
the weights are selected to optimize the average cost and not the best
cost for individual states. Any heuristic, to be acceptable, must not
degrade the performance of the network in the Normal state. In other
words it should result in a solution quality as close to the Original
Heuristic (OH) as possible.

Algorithm: LinkFailure-SS

S0: initial solution.
S: solution.
Sb: best solution.
a: failed arc.
Wi: Weight of arc i.
TNorm: Normal state.
TFail: Failure state.

Begin:
TFail:

1. GenerateS0;
2. ComputeΦ0(n)OH ;

do
3. Move(i, Wi);
4. ComputeΦ(n)OH ;

While (Termination criteria is not met)

5. Sb = S for min(Φ(n)OH );
6. TransferSb to TNorm;

TNorm:
7. ComputeΦ(n + 1)a; for a={1, 2, 20}
8. Φ([n]OH + 1)20 = min(Φ(n + 1)a);
9. Sb = S for Φ([n]OH + 1)20;

End:

Fig. 2. Structure of the LinkFailure-SS algorithm.

IV. RESULTS

In this section we present the experimental results for the two
heuristics mentioned in the previous section. The benchmarks used
for the evaluation of the original heuristic for no failure case [8],
[1] were also used for the link failure case. Due to the change in
topology (different number of links) in the two states, the original
test case would represent only one of the states and a modified test
case would represent the other state. Representing the failed state
with a modified test case would require deletion of the corresponding
link entries from the files representing the graph and capacity of
links. This could also result in a disconnection of the graph. To avoid
this, we represented the Failure state with the original test cases. To
represent the Normal state, we add an additional link between two
nodesn1 andn2. The nodes selected were the ones with the highest
demand between them in the demand matrix. Failing this particular
link which is directly connected between the two nodes having the
highest demand between them would cause the worst effect on the
network. Hence, if our heuristic is able to optimize weights for the
worst case scenario then it is expected to be robust.

The notations used to denote Cost in the Normal and Failure state
are shown below.

FTN SSN OHN

Φ(N + 1)avg Φ([N ] + 1)20 Φ(N + 1)oh

A. FT Versus OH
Experimental results for the two strategies implemented for the

single link failure scenario are presented in this chapter. The individ-



FTF SSF OHF

Φ(N)avg Φ(N)oh Φ([N + 1]− 1)oh

ual performance of each strategy can be evaluated by comparing its
results in Normal and Failure States to the Original Heuristic. Table I
shows the Cost values obtained using FT Strategy and OH for five
different demands using the test case h100N360a. From the table, it
can be seen that in the Normal state the Cost of FT is marginally
higher than OH, which can be seen in theδNorm column which
shows the Cost difference for the two strategies in the Normal State.
Negative values indicate a loss. As expected, there is some loss in the
Normal State. In the Failure State, for all demands except Demand-9,
the FT Cost is less than the OH Cost as indicated by a positive value
in the columnδFail. Hence, there is some gain in the Failure State.
The overall gain or loss is indicated in the columnδ. The value of
δNorm is more than the value ofδFail for higher demands D11, D12
which implies that the margin of loss in Normal state is more than
the gain in the Failure State for this case at higher demands. Results
also show an overall gain for the two demands D8 and D10.

TABLE I

COST COMPARISON FT VERSUSOH IN NORMAL AND FAILURE STATE

FOR H100N360A NETWORK.

D FTN OHN δN FTF OHF δF δ
D8 1.313 1.320 0.006 1.336 2.743 1.406 1.413
D9 1.482 1.448 -0.033 1.538 1.494 -0.044 -0.077
D10 2.096 1.985 -0.111 2.315 5.711 3.396 3.285
D11 4.498 4.369 -0.129 6.017 6.057 0.040 -0.089
D12 17.973 14.076 -3.897 24.398 25.487 1.089 -2.809

B. SS Versus OH
Table II shows similar comparison for the SS Strategy. Even in this

case, the values ofδNorm for SS are marginally higher than those of
OH, and the values ofδFail for SS are well below those of OH for
all five demands shown in the table. This shows that there is a slight
loss in the Normal State and a significant improvement in the Failure
State. There is an overall gain as indicated by a positive values in
the last columnδ. Hence, there is an improvement in performance
due to the use of SS strategy compared to OH.

TABLE II

COST COMPARISON SS VERSUSOH IN NORMAL AND FAILURE STATE

FOR H100N360A NETWORK.

D SSN OHN δN SSF OHF δF δ
D8 1.329 1.320 -0.009 1.343 2.743 1.399 1.390
D9 1.480 1.448 -0.032 1.487 1.494 0.007 -0.025
D10 1.986 1.985 -0.001 2.010 5.711 3.701 3.700
D11 4.389 4.369 -0.019 5.330 6.057 0.727 0.708
D12 14.316 14.076 -0.240 18.158 25.487 7.329 7.089

C. FT Versus SS
We have seen that both strategies are performing better than the

Original Heuristic in the Failure state while OH has slightly better
results for the Normal state. We now compare the SS and FT results
to show which of the two heuristics performs better. The comparison
is shown in Table III.

in the Normal state, for the demands D8 - D10 both strategies
have almost the same cost values with marginal differences in favour
of SS. For the highest demand D12, SS clearly performs better than

TABLE III

COST COMPARISONFT VERSUSSS IN NORMAL AND FAILURE STATE FOR

H100N360A NETWORK.

Demand FTN SSN FTF SSF

D8 1.31326 1.32905 1.33621 1.34312
D9 1.48152 1.48005 1.53819 1.48682
D10 2.09604 1.98619 2.31527 2.01001
D11 4.49806 4.38878 6.01734 5.33037
D12 17.9732 14.3157 24.3984 18.1582

FT. Overall, for the Normal State, it can be said that SS performs
better than FT for this test case. For the Failure State, SS clearly
outperforms FT for all demands. This is expected as the strategy
is specifically designed to optimize weights for the Failure State or
in other words to minimize the Failure State Cost. Hence, SS is
always expected to produce better results for a Failure State. The
overall comparison shows superiority of SS over FT for this test
case. Comparison of all three strategies for this test case is presented
below.

D. OH Versus FT Versus SS
Finally, we show in Figure 3 the graph with the Cost comparison

of all the three heuristics in the Normal state and in Figure 4 for the
Failure State.
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Fig. 3. Cost Comparison FT, SS and OH in the Normal state for h100N360a
Network.
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Fig. 4. Cost Comparison FT, SS and OH in the Failure state for h100N360a
Network.



In Figure 3, it can be seen that OH has the best Cost in the Normal
state which is very closely matched by SS. FT comparatively has the
worst Cost in the Normal state. In the Failure state SS outperforms
both FT and OH as seen from Figure 4. Hence, SS has proved to be
having a marginal loss (negligible in the case of lower demands) in
the Normal state and a significant gain in the case of Failure, which
is the ideal requirement for these type of problems.

Experiments were conducted other five test cases. In all the test
cases, SS achieves the best results for the Failure state (δFail) and
also for the overall improvement (δ). SS is followed by FT in the
Failure state, which performs better than OH. In the Normal state,
SS performs slightly better than FT for the two test cases h50N148a
and h100N360a and has comparable results for the two cases
r100N503a and r50N228a. For the two Waxman graphs, w100N391a
and w100N476a, all strategies perform equally well in Normal and
Failure state for all demands. This indicates that a link failure does not
have significant effect on network performance for these two cases.
Finally, it can also be observed that for lower demands (Demand-
8, Demand-9), the results are almost the same for all the six test
cases. This indicates that, if the load on the network is low, there is
minimum effect of the link failure on the network performance and
the original heuristic itself is efficient enough to handle single link
failures.

V. CONCLUSION

The single link failure issue was addressed to achieve robust
optimization of OSPF routing by selection of link weights. Two
new heuristics were proposed in this paper, namely LinkFailure-SS
and LinkFailure-FT. Both heuristics produced better results when
compared to the original heuristic in the Failure state. In addition,
the SS approach is found to give better results than the FT approach
in both states. Therefore it can be concluded that the SS approach
is an efficient way to tackle single link failure issues. It was also
shown through experimental results that at lower demands and
traffic loads the effect of link failure on network performance is less
and the original heuristic also can handle single link failures if the
traffic load on the network is low.
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