Tabu Search Based Circuit Optimization
Sadiq M. Sait and Munir M. Zahra

Tabu Search Based Circuit Optimization

Sadiq M. Sait and Munir M. Zahra

Department of Computer Engineering
King Fahd University of Petroleum & Minerals
KFUPM Box 673, Dhahran-31261, Saudi Arabia
Tel: 966(3)-860-2110/2217 e-mail: sadiq@ccse.kfupm.edu.sa

Abstract

In this paper we address the problem of optimizing mized CMOS/BiCMOS circuits. The problem, formulated as
a constrained combinatorial optimization problem is addressed using a tabu search algorithm. Initially a random
approach is adopted for selecting among available solutions. Further, as an alternative competing solution the
concepts of simulated evolution are applied to classical tabu search. This allows for a stochastic criterion for
selecting among available solutions as compared to the random approach of classical tabu search. Only gates
on the critical sensitizable paths are considered for optimization. Such a strategy leads to sizeable circuit speed
tmprovement with minimum increase in the overall circuit capacitance. Compared to earlier approaches, the
presented techniques produce circuits with remarkable increase in speed (greater than 20%) for very small increase
in overall circuit capacitance (less than 3%).

Keywords: Tabu Search, Simulated Evolution, Circuit Optimization, Search Algorithms, CMOS/BiCMOS,
Mixed Technologies, Critical Path, False Path.

1 Introduction

Popularity of CMOS technology is due to its low DC power dissipation and high package density. The demand
for superior performance motivated research and development that lead to the emergence of BICMOS technology.
BiCMOS is a combination of CMOS and Bipolar technologies, with advantages of both, high speed and high
driving capabilities of Bipolar, as well as the low area and low power consumption of CMOS.

VLSI designs are evaluated with respect to three main performance criteria: speed, area, and power con-
sumption. As these criteria are conflicting designers usually seek to optimize one criteria, namely speed, while
satisfying specific constraints/requirements on area and power consumption.

One of the optimization techniques applied at the circuit level is the selection of logic blocks of the VLSI circuit,
in terms of speed and area. For example, for standard cell designs, the optimization can be performed through a
careful selection of different implementations of a block in the same technology. These alternative implementations
vary in area, driving capabilities, intrinsic delay, and capacitive loading [15]. Another optimization strategy is to
follow a mixed technology design approach. One possible choice is to mix CMOS/BiCMOS technologies. In terms
of manufacturing process, this is feasible since the CMOS process is part of BICMOS process. The CMOS-based
BiCMOS process is a CMOS baseline process to which bipolar transistors are added. So, for a mixed design
circuit, initially all cells are exposed to CMOS process. Then bipolar transistors are added to only those cells
that are selected to be BICMOS.

In this paper we discuss the problem of optimizing mixed CMOS/BiCMOS circuits in terms of delay, power
and area. Although the scope of the work is directed to CMOS and BiCMOS technologies, other technologies can
be included taking into consideration the feasibility and practicality of mixing these technologies.

The basic idea is as follows. Given a circuit consisting of only CMOS cells, some of those cells are selected and
replaced by their equivalent BICMOS cells in such a way that the entire delay of the circuit is decreased with a
minimum increase in power and area.

In [3], the above approach for optimizing standard cells circuits is used. The technique aims at improving
circuit performance by making for each gate, a choice between CMOS or BiCMOS cells depending only on their
load capacitance. The authors reported noticeable speed improvement on all the test circuits used. However, in
their implementation, no constraints on power dissipation were placed, and the number of BICMOS gates was
high. The reported approach suffers from several problems, namely:

Administrator
Text Box
Tabu Search Based Circuit Optimization
Sadiq M. Sait and Munir M. Zahra

1. All the nodes are considered for optimization.
2. Output nodes are replaced whether they are on time critical paths or not.

3. The approach is local; that is, it performs the optimization on a single node. It does not have a global
view of the circuit; hence it is expected to get trapped at a local optimum solution.

The actual delay of a circuit is determined by the delay of its longest sensitizable path. A sensitizable path
is a path which can be activated by at least one input vector. Those paths which cannot be activated by any
input vector are called false paths. A path is critical if its total delay is greater than a threshold value. Thus,
the problem of finding and estimating the delay of critical paths is called the critical path problem [7]. For static
timing analysis techniques, the circuit is modeled as a directed acyclic graph in which three popular algorithms
are used to trace the paths: Depth First Search (DFS) with/without pruning, Breadth First Search (BFS), and
PERT-like trace.

In this work we enumerate all sensitizable critical paths according to the a-critical concept. First, all paths
with average delay (including estimation of interconnect delays) exceeding an estimated threshold value are
enumerated. From amongst these paths, only sensitizable paths are reported.

In the following section we discuss the a-critical approach. Discussion on false path problem is given in Section
3. The Circuit Optimization Problem (COP) is formulated as a combinatorial optimization problem in Section 4.
Details of application using tabu search are given in Section 5. tabu search for the COP are presented in Section
6. Experimental results are provided in Section 7.

2 The a-Critical Approach

The delay of the circuit is determined by its longest sensitizable paths. Therefore, to verify and optimize the
circuit timing, the focus should be on predicting the timing critical paths only. A path 7 is classified as critical if
its total delay, 75, is very close to its latest required arrival time LRAT, . If T; exceeds LRAT, path m becomes
a long path. The path delay consists of two components: the logic delay which is known prior to layout, and the
interconnect delay which is unknown. In VLSI designs, the interconnect delay is a major part of the overall path
delay. Therefore 1t is very important for pre-layout timing analysis to predict the interconnect delay requirements.
The interconnect capacitance is a key element in the total interconnect delay [1] The a — eritical algorithm aims
at predicting the interconnect delay requirements of a given circuit by estimating the delay of the longest paths
in the circuit. Before we describe this algorithm, we recall from [1] some definitions and equations proposed to
compute the path delay

Let m = {vl, va,- -+, Uy} be a path in the circuit graph, where v1 and v, are the source and sink cells. The total
delay on 7 18 given by,

p—1
T =Y (CDy, +1D,,) (1)

i=1

where, C'D,, is the switching delay of cell v; and ID,, is the interconnect delay of the net driven by cell v;.
The switching delay may be expressed as follows,

CDy, = BDy, + LF,, x AcL, (2)

where, BD,, is the base (intrinsic) delay of cell v; in nanoseconds, LF,, is the load factor of the output pin of the
driving cell v;, expressed in units of time per unit capacitance, and AeL,, is the summation of input capacitance
of fan-out gates of cell v;.

The interconnection delay may be expressed as follows,

ID,, = LF,, x C\, (3)

where, (Y, is the total interconnect capacitance (area + fringe) of the net driven by cell v;.

The interconnect capacitance), is estimated using data from past designs as follows. The average and
standard deviation of net length for different types of nets (2-pin, 3-pin, ...,m-pin) are collected from past
designs of similar complexity!. These are transformed into interconnect capacitances. Let C,, and s,, be the
estimated expected interconnect capacitance and standard deviation of the net driven by cell v;. Then, the
expected interconnect delay ID,, of net v; and its corresponding variance 55, are estimated as follows:

ID,, = LF,, x Cy, ; S;. =LF} xs2. (4)

Vi

Lthis classification helps reduce the sample variance around the mean

Under the assumption of statistical independence between the nets, the expected delay and variance on any
path m can be expressed as follows,

p—1 p—1
T, =Y (CD,, +1D,,) ; S2=>_5 (5)
=1 i=1

Let Tiyax be the expected delay of the longest path in the circuit, that is,
Trnax = rgleal_)[((Tﬂ) (6)

where II is the set of all paths in the circuit graph G.

2.1 Description of a-Critical Algorithm
The a-critical approach is based on the following definition:
Definition: A given path 7, with overall delay 71y, is a-critical iff:

o+ a x 512[Z Trnae (7)

For a user specified «, the a-critical approach enumerates all paths which satisfy Equation 7. The parameter

o is interpreted as a confidence level. Tiy + o x \/S% means that we are o x \/S§ ns confident that path IT is
critical. The higher « is, the larger the number of reported paths will be, and the higher i1s the probability of
capturing all the critical paths [1].

3 False Path Problem

The presence of false paths has many undesirable effects which include loss of accuracy and waste of optimiza-
tion effort. False paths exist in a circuit because of several reasons, namely:

1. Incompatible transitions: A false path results from the combination of incompatible transitions.

2. Incorrect signal flow: Timing verifiers that operate at switch level encounter this problem. Due to the
bidirectional nature of MOS transistors, the intended signal flow in structure such as barrel shifter is not
always obvious [4].

3. Logic dependency: The most explicit source of false paths comes from some logic that depends on the
output of other logic [17].

In recent years many techniques have been proposed to detect false paths. The reported techniques rely on various
path sensitization criteria which fall into three types: Static, Dynamic and Viable.

Static Sensitization: These techniques are based on the D-Algorithm which is widely used in testing. One
important assumption of the D-Algorithm is that, except for the signal to be propagated, all other signals in the
circuit are assumed to have static values throughout the propagation process. This assumption, however, is not
always true which may lead to incorrect results. First it may report some paths as false paths while in reality
they are not. Second, it can underestimate the sensitizable path length [5, 4, 20].

Dynamic Sensitization: This approach is also based on D-algorithm, but it takes into consideration the
stability requirement of the signals. The false paths reported in [8, 17, 12, 6] follow this approach.

Viability: The flaw in the dynamic sensitization condition is the absence of perfect knowledge on gate de-
lays. In such case, both the exact value of any node at any time before the node has settled to a final value,
and the time at which a node settles to a final value is problematic. That is, the above mentioned methods use
criteria which are non-robust.

McGeer and Brayton [16] developed a technique that computes the longest viable path in combinational cir-
cuits. Their techniques are based on two conditions: correctness and robustness. These two requirements are
derived from the 1dea of Boolean difference. The sensitization criterion associates the path with a Boolean ex-
pression, which represents the set of input vectors that activate the path. If the associated Boolean expression of
the path is found equal to logic 0, the path is claimed to be a false path.

4 Optimization of BICMOS/CMOS VLSI Designs

The problem of optimizing a mixed technology design can be formulated as an optimization problem and solved
using a variety of algorithms. For a mixed CMOS/BiCMOS design, there exist 2™ solutions for a circuit with m
gates. Hence, full/brute force design space exploration is infeasible even for designs of moderate sizes.

4.1 Problem Definition

Given a netlist of CMOS gates, the objective is to find an optimal or near-optimal solution to the problem of
replacing some of the CMOS gates with BICMOS gates such that the overall delay is minimized with minimum
increase in the power and area of the circuit. Since the delay of a circuit depends only on the longest sensitizable
paths, only gates belonging to those paths are considered in the search space. The reader should note that changing
the implementation of a gate instance from CMOS to BICMOS does not always result in delay improvement. The
BiCMOS gate has less delay than the corresponding CMOS gate if its fanout load C'L is greater than a certain
threshold C'X [3]. Therefore only those nodes with C'L > C'X should be considered in the search. Given a circuit
with m nodes and K sensitizable paths, we should first extract all nodes that are included in the sensitizable
paths and satisfy the inequality C'L > C'X. Let A be the set of such nodes and let n be the size of this set.

The input for the COP is:

o Set A= (91,92, - -.9n)

e Vector D =(AD1,ADs,...,AD,)
AD; = D;, — D},

where:

AD; is the circuit delay gain due to changing gate ¢ implementation from CMOS to BICMOS. Obviously,
for all ¢; € A, AD; > 0. The value “0” is because ¢g; may be swapped without any improvement in the
delay when 1t is not a part of longest path.

Dy, and Dg, is the circuit delay when gate g; is implemented in CMOS and BiCMOS respectively.

e Vector C = (AC, AC,,...,ACY)
AC;=C) -8,

where:

AC] is the total capacitance increase of the circuit due to changing gate 7 implementation from CMOS to

BiCMOS.
Cg, and C’;’l is total capacitance of the circuit when g; is CMOS and BiCMOS respectively.

Due to non-availability of power dissipation model for BICMOS, we expressed the changes in power in terms
of changes in capacitance. The power of CMOS and BiCMOS gates is proportional to their capacitive load [9].

The problem is to find a subset S of A such that when the nodes in S are implemented by BiICMOS lead to
maximum reduction in 7,4, while satisfying a threshold constraint on capacitance, that is,

maximize ZiES AD; g
subject to ZiES AC; < Cp (8)

The term) ;.o AD; reflects the total circuit delay gain due to changing a set S of gates from CMOS to
BiCMOS. Cr 1s a user specified threshold which represents the maximum allowable total capacitance increase.
The output is:

e S where S C A.
. AD:ZieSADi

o AC =34 AC

If T},40 18 the initial delay of the circuit, then the final delay:
Dp = Tee — AD (9)
Let Ct be the initial total capacitance. Then the final capacitance is,

Cr=Cr—AC (10)
Next, we shall show that the decision version of COP is N P-Complete.

4.2 1Is COP in NP?

In order to prove that COP is in NP, we need to find a nondeterministic algorithm that could be used to
solve the problem in polynomial time [11]. Before doing this, let us present some definitions and concepts.
Choice(A) is a function that arbitrarily chooses one of the elements of a set A. Success and Failure are two signals
to indicate a successful and unsuccessful completion of the algorithm respectively. The assignment statement
X « Choice(1 : n) could result in X being assigned any value of the integers in the range [1,n]. There is no rule
to specify how this choice 1s to be made. Whenever there is a set of choices leading to a successful completion then
one such set of choices is always made and the algorithm terminates successfully. A nondeterministic algorithm
terminates unsuccessfully if and only if there exists no set of choices leading to a success signal [11].

For COP, let “0” and “1” represent the choice between CMOS and BiCMOS, and A’ represents a set of
these choices. Let M be a maximum objective reduction in the delay. Then we can formulate a nondetermin-
istic algorithm for COP as shown in Figure 1. As can be seen from the figure, there is no rule for guessing a
solution that might lead to successful termination of the algorithm. The time complexity of this algorithm is O(n).

algorithm COP(n, M,Cr, X,D,C)
for i +— 1 ton do
X; « choice(0,1)
repeat
H Y cien(AD; X X)) < M or >y £, ,(AC; X X;) > Cp then failure
else success T
endif
end COP

Figure 1: Nondeterministic COP algorithm.

4.3 Is COP NP-Complete?

The COP is an N P-Complete problem if 1t is N P-Hard and belongs to the N P class of problems. In the
previous section, we proved that COP is N P. Now let us try to prove that it is N P-Hard. To do so, the following
steps need to be carried out: [2]

1. Select an N P-Complete problem II.

2. Show that IT is reducible to COP by finding a polynomial function T'(x) that transforms (reduces) II to
CoP

Let TT denotes the Knapsack problem which is known to be N P-Complete problem [11]. The definition of
Knapsack problem is as follows: A set of n items is available to be packed into a knapsack with capacity C' units.
Item ¢ has a profit p; and uses up s; units of capacity. The problem is to determine the subset I of items which
should be packed in order to maximize:

> b (11)

i€l

ZSZSC

i€l

such that

Here the solution is represented by the subset I C {1,... n}. Now let us show that IT is reducible to COP. As
we can see there is a correspondence between the input/output of COP and the input/output of TI. That is:

e Both of the problems have an input of n items.

e Ttem ¢ in COP has AD; gain in the delay (profit) which corresponds to the profit p; of item ¢ in II.
e [tem ¢ in COP uses AC; units of capacity which corresponds to the capacity s; of item ¢ in II.

e The objective of both problems is to find out a subset of items that maximize the total gain (profit).

e Both problems COP and II are subjected to some constraints of a given capacity threshold, Cr and C
respectively.

Let T(x) be a polynomial reducible function from IT to COP. Then from the previous correspondence we can
deduce the following:

T(C) = Crp (12)
T(Sl,sz,...,sn):A01,A02,...,Acn (13)
T(pl,pz....pn) = ADl, ADQ, ADn (14)

It is clear that T'(z) is one-to-one function of O(n) time complexity. This means that II is reducible to COP.
Hence COP is N P-Hard problem. Since COP is N P-Hard and at the same time it belongs to NP class of
problems, then it is N P-Complete.

The above result justifies searching for a heuristic solution to this problem. The heuristic solution adopted is
described next.

4.4 Proposed Solution
To identify the gates of set S, we proceed in three steps:

1. Generation of the a-critical paths of the input circuit.
2. Eliminate the false paths.
3. Apply TS algorithm to select the gates of subset S among those covered by the sensitizable critical paths.

Phase I: This phase enumerates all critical paths according to the a-criticality described in Section 2. Path
enumeration is achieved via a PERT-like trace of the circuit graph [23].

Phase II: After generating all critical paths for a given circuit, these paths are checked via false path checking
procedure to extract the false paths. This step is necessary to speed up the optimization process by minimizing
the input population as well as it gives accurate timing. As mentioned earlier, many techniques have been pro-
posed for this purpose. We use the algorithm of [8, 22] with few modifications. The first modification is the use
of a more accurate delay model [23]. Other modifications are related to the way of handling the generation of
new events in the events propagation phase.

Phase III: This is the optimization phase. The input of this step is a set of the longest sensitizable paths
of the given circuit. The process aims to replace some of the CMOS gates by BICMOS gates in order to optimize
the circuit for delay without exceeding a capacitance threshold constraint. The output is a mixed CMOS/BiCMOS
circuit with optimum cost. This optimization step is achieved using Tabu Search heuristic.

Tabu Search i1s a metaheuristic which can be used as an independent search technique or as a higher level
heuristic procedure for solving combinatorial optimization problems. It is designed to guide other methods to
escape the trap of local optimality. TS operates by incorporating flexible memory functions to forbid transitions
(moves) between solutions that reinstate certain attributes of past solutions. Attributes that are not permitted to
be reinstated are called tabu, and are maintained in short-term memory called tabu list. After a specified duration
they are removed from the list and are free to be inserted again.

For a variety of problems, TS has found solutions superior to the best solution previously obtained by alter-
native methods. In other cases, it has demonstrated advantages such as ease of implementation, or the ability to
handle additional considerations such as constraints not encompassed by an original problem formulation. [10]

5 Tabu Search (TS) Algorithm

Tabu search is an iterative procedure that works by making moves from one trial solution to another. An
algorithmic description of a simple implementation of the TS is given in Figure 2.

The TS procedure starts from an initial feasible solution s (current solution) in the search space . A neigh-
borhood ®(s) is defined for each s. A sample of neighbor solutions V* C R(s) is generated called ¢rial solutions
(n = |V"| < |N(s)]), and comprises what is known as the candidate list. From this generated set of trial solutions,
the best solution, say s* € V* is chosen for consideration as the next solution. The move to s* is considered even
if s* is worse than s, that is, even if cost(s*) > cost(s).

In order to prevent returning to previously visited solutions a memory or list T, known as tabu list, is main-
tained. Whenever a move is accepted, its attributes are introduced into the tabu list. The purpose is to prevent
the reversal of moves for the next k = |T| iterations because they might lead back to a previously visited solution.

In certain situations, it 1s necessary to overrule the tabu status. This is done with the help of the notion of
aspiration criterion. Aspiration criterion overrides the tabu status of moves whenever appropriate. One aspira-
tion criterion, also known as best solution aspiration criterion (AS7) overrides the tabu restriction if the move
produces a new best solution. In this work we used this and another aspiration criterion, called aspiration by
search direction (AS2) [18]. In aspiration by search direction, if an improving move e is made, then the reverse
move € is accepted if 1t also 1s an improving move.

Initial solution: The initial solution can be any feasible solution. It is found that TS may take longer if
given a poor initial solution. In our case, the initial solution is a set A of nodes of type CMOS only, which are
covered by the sensitizable a-critical paths. As search proceeds, neighbor solutions are generated by swapping a
CMOS gate with a BICMOS gate or vice versa. The selection of the gate for swap can be done randomly. This
approach is referred to as Classical Tabu Search. Another strategy is to select the gate based on its characteristics
and attributes. Here we employed the Simulated Evolution(SE) heuristic to evaluate the goodness(fitness) of each
gate in the candidate list. This approach is called Evolutionary Tabu Search. 1t is detailed in the next section.

Tabu list: Formulation of the tabu list is one of the main steps in TS. Since we have only one type of move we
used one tabu list. Each entry in the tabu list contains the following information:

gate number in the path,

gate type, CMOS or BiCMOS,

cost associated with this move,

frequency of the move, and,

a gain bit (0 or 1): this field is used if aspiration by search direction is used as discussed later.

Evaluation function: In order to select the best solution among several candidate solutions generated in each
iteration we have to evaluate each solution. The evaluation function is formulated to incorporate all the parameters
to be optimized. As mentioned earlier, our objective is to maximize ZiES g;, that minimizes Ti,ax, subject to
capacitance constraints. The evaluation function takes the following form,

Bls) =Y gi - X (15)

1€S

Where X is a penalty that is included if capacitance constraints are violated. The above evaluation function is
suitable for short-term tabu search. TS based on long-term memory requires historical information. In the next
section we will show how a record of history of the moves is used to diversify search to improve results [21].

5.1 Diversification and Long Term Memory

In many combinatorial optimization problems, application of short-term memory alone may not produce a
good solution. In [10], it is shown that the long-term memory functions can be very important for obtaining best
results. In our work, we apply frequency-based diversification. In this strategy, we keep track of the number of
times a certain move has been made. At the point when diversification is to be made, we penalize those moves
that have been most frequent, thereby taking the search to areas unvisited thus far [10, 13, 14]. Therefore, the
following modifications to short-term TS are done.

1. When the short-term TS algorithm hits a local optima, the following actions are taken:

(a) All BICMOS nodes are swapped to CMOS. Denote the number of those nodes as NUM_OF_BiCMOS

(b) Search for least frequency nodes and replace them by BiCMOS. The search replacement process
continues till the objective load threshold is reached or till the number of replaced nodes is equal to
NUM_of BiCMOS. Some of the BICMOS nodes that were changed to CMOS may be changed again
back to BICMOS. Using the above, the search process is transferred to another region where the
process might lead to a better solution.

2. Re-start the short-term memory component again and continue until another local optimum is reached;
then repeat Step 1.

6 Evolutionary Tabu Search

As mentioned in the previous section moves can be generated by selecting gates based on their attributes. This
approach is based on the evolutionary aspects of the Simulated Fvolution heuristic. Before explaining how this
can be done, an overview of SE is presented.

6.1 Simulated Evolution Overview

Simulated Evolution (SE) is one of the iterative heuristic techniques for solving combinatorial optimization
problems. Tt was proposed by Kling and Banerjee in 1987 [19]. The main idea of SE is that selection of
components to change to improve the solution is done according to a stochastic rule. The components not located
in a proper manner need to change their locations to improve the solution while those components already well
located have a high probability to stay in their locations [21].

The algorithm starts with the initialization phase where various parameters are set to desired values. Then
the algorithm enters the iterative phase which consists of three steps: Fvaluation, Selection and Allocation. The
three steps are executed repeatedly until the stopping criteria are met. Each step is explained briefly below [21].

Evaluation: In this step the goodness of each element ¢; in the population P is evaluated. Goodness is defined

as:
9i = c;

where O; is the estimate of the optimal cost of the element e;, and C; 1s the actual cost of e; in its current

location. Accordingly, O; does not change from generation to generation and is therefore it is computed only

once while C; has to be recomputed at each call to the evaluation step. The goodness measure must be strongly

related to the targer objective of the given problem.

Selection: After evaluating goodness of all individuals in the population, some of them are selected to be allo-
cated in new locations. The selection is based on a selection function F which has two parameters: goodness g;
and Selection Bias B. Values of B are recommended to be in the range of [-1:0.1]. In many cases a value of B =10
would also be a reasonable choice. The higher the goodness of the element, the more likely that it will not be
selected and hence higher is the probability of the element to remain in its current location.

Allocation: In the Allocation step, locations of selected elements in S are altered according to a problem-specific
allocation function Fy. The allocation function may be a non-deterministic function which involves a choice
among a number of alternative moves for each element.The order and type of of alteration of elements is problem
specific. This is why, in many cases, Sorting step is important to achieve better solutions. Since the goodness
of the elements are so tightly coupled with the target objective, superior alterations are supposed to gradually
improve the individual goodnesses. Hence, Allocation allows the search to progressively converge towards an
optimal configuration where each element is optimally located.[21].

6.2 Evolutionary Tabu Search
In our approach to applying TS to COP, we used the two functions Fvaluation and Selection of SE as an
alternative stochastic method for generating moves. Each function is formulated for COP as follows:

Evaluation: Let A= (g1,92,...,9n) Where each g; satisfies the fanout load constraint C'L > C'X. For each g; in
A, we compute AD; which is gain delay due to changing gate ¢ implementation from CMOS to BiCMOS, that is

_ c b
AD; = Dy, — Dy,
This computation is done only once. In this case

0; = AD; (16)

Let T' be the current delay of the circuit and 7! be the delay of the circuits after swapping gate ¢. Then the
actual circuit delay gain (cost) is

Ci=T/—T (17)

Let G; be the goodness of gate ¢. Since COP is a maximization problem, then the goodness function should be
derived in such a way as to relate that if the gate goodness is high, its fitness should also be high so that the gate
will most likely not get swapped. Therefore G; is defined as follows:

C
Gi=1-05(14+—=) (18)
O;
For example, if swapping gate ¢ frm CMOS to BICMOS produces maximum gain in the circuit delay, then C; = O;
resulting in G; to be 0. In this case, gate 7 is not in its optimal state and 1t needs to be swapped.
Using the above equations and definitions, the evaluation step of SE can be applied as follows:

FOR EACH g, € A DO
Ci=T/ =T
Gi=1-05(1+§)

END FOR EACH

Selection: After computing the goodness of all gains in A, we select from A a subset R of size N for the purpose
of generating N moves. The selection of those gates is made as follows:

REPEAT
select gate g; randomly;
generate a Random number between “0” and “17;
IF Random < Min(1,1 —G; + B) THEN R = RU g;;
ENDIF;
UNTIL |R| = N;

The bias B is used only when g; is already BICMOS and needs to be swapped to CMOS. This is because when
a low goodness CMOS gate is swapped to BICMOS, its goodness becomes high. Therefore, in order for a gate g;
to be re-selcted as a mechanism to escape from the trap of local optima, the bias B is used to maximize the gate’s
re-selection probability. Since the value of B is problem dependent, we experimented with different values. The
expected advantage of generating moves based on SE approach is that the search will be biased to drift towards
better solutions faster than generating moves randomly. However, the evaluation and selection steps are done
during every iteration which means that each iteration in this approach takes much more time than the iteration
in the classical approach. Therefore, SE based approach usually takes longer time than the classical approach.
Comparision of these two techniques is carried out in the next section.

7 Results & Discussion

The approach described in this paper has been tested on several ISCAS-85 benchmark circuits. For the nine
ISCAS-85 circuits used, the percentage of false paths reported ranged from 0-24%. Note that these are false paths
from among the critical paths. In all but one case the maximum delay of the circuit did not change due to removal
of false paths, but the number of gates on the sensitizable paths was reduced. For Classical TS, experiments with
short term and long term components were conducted to observe the behavior of TS in both cases. In addition,
two aspiration criteria (AS; and AS2) were experimented with. For SE based Evolutionary TS, experiments with
long term components were conducted and the results compared with Classical TS.

For all experiments, we used capacitance threshold to be 10% of total capacitance, the required reduction in
the delay to be 30%. The tabu list size is an important parameter in TS. If the size is too small, the search will
start cycling, and if it is too large, the search will be too restrictive. We experimented with several list sizes,
ranging from 4 to 12. List sizes between 5 and 7 achieved best results in nearly all the benchmarks used. Another
parameter affecting the search process is the candidate list size. We experimented with several list sizes, ranging
from 10 to 20 and found that the list sizes between 16 to 20 achieved best results.

All tools are developed in C and run on SUN SPARC workstations.

Table 1 memory component with customary aspiration criterion, AS;. The number of BICMOS gates required
to speed up circuits using the presented approach is a very small percentage of the total number of gates. For
medium to large sized circuits (greater than 200 gates) this number is less than 5%. For most circuits tested, a
percentage delay reduction between 15% and 29.4% has been achieved with capacitance increase of less than 7%.

Table 2 shows the best results obtained by applying long term memory TS with ASs. If we compare the results
of TS using AS; with those of TS using ASs, we find that TS with AS5 performs better than TS with AS; for
the circuits c6288, highway, and fract, while it generates almost the same results as TS with AS] for the other

Circuit Max Delay | % of Delay Total Cap. [% of Cap.
Name | Delay(ns) | Red. Red. Cap.(pF) | Incr. Incr.
c432 171.911 43.342 25.2 109.260 1.478 1.0
c499 65.344 13.357 20 101.717 1.384 1.0
c880 125.506 25.212 20.1 215.111 2.122 0.99
c1355 109.860 26.677 243 399.564 7.266 1.8
c3540 185.201 48.645 26.3 683.401 1.796 0.26
c6288 657.646 98.103 14.9 1983.395 | 7.856 0.4
struct 121.894 26.106 21.4 750.081 2.534 0.34

highway 32.438 8.815 27.2 15.15 0.762 5.0
fract 76.575 22.497 29.38 43.405 2.691 6.2

Table 1: Best results of long term memory of TS with A45;.

Circuit Max Delay | % of Delay Total Cap. | % of Cap.
Name | Delay(ns) | Red. Red. Cap.(pF) | Incr. Incr.
c432 171.911 43.342 25.2 109.260 1.516 1.4
c499 65.344 12.276 18.8 101.717 1.434 1.4
c880 125.506 25.257 20.1 215.111 2.144 1.0
c1355 109.860 26.712 24.3 399.564 7.164 1.8
c3540 185.201 48.645 26.3 683.401 1.796 0.26
c6288 657.646 99.712 15.2 1983.395 | 7.906 0.4
struct 121.894 26.130 21.4 750.081 2.534 0.34

highway 32.438 8.542 26.3 15.15 0.762 5.0
fract 76.575 22.975 30.0 43.405 2.667 6.1

Table 2: Best results of long term memory of TS with AS,.

circuits. In the case of “fract”, the delay reduction objective has been achieved which means that the run time
(2000 iterations) is enough to reach the stated objectives. Let us look at the AS to explain why TS with AS,
produces better results. Using AS2, a move e is accepted if it is tabu and both e and its reverse move € are
improving or both are non-improving. This means that the solution tries to follow a certain direction to seek a
better solution than the current one. By following a certain direction during the search, TS tries to climb the
hill to escape from local optima. Of course for some cases, TS with AS> does not produce better results than TS
with AS7 because the TS algorithm is nondeterministic, hence several runs have to be conducted to get the best
result.

Circuit Max Delay | % of Delay Total Cap. [% of Cap.
Name | Delay(ns) | Red. Red. Cap.(pF) | Incr. Incr.
c432 171.911 43.308 25.2 109.260 1.516 1.4
c499 65.344 12.463 19 101.717 1.43 1.4
c880 125.506 25.273 20.1 215.111 2.16 1.0
c1355 109.860 27.016 24.6 399.564 7.228 1.8
c3540 185.201 48.645 26.3 6835.401 1.796 0.26
c6288 657.646 71.13 10.8 1983.395 7.902 0.4
struct 121.894 26.54 21.8 750.081 2.534 0.34

highway 32.438 8.720 26.9 15.15 0.777 5.1
fract 76.575 22.976 30.0 43.405 2.675 6.16

Table 3: Best results of long term memory of Evolutionary TS.

Table 3 summarizes the best results obtained by applying long term ETS. Comparing these results with that
of CTS (Table 1), it is seen that ETS performs better than CTS in four cases; namely in c880,c1355, struct and
fract. On the other hand, CTS produced better results than ETS in case of 432, c449, c6288 and highway while
both strategies produced the same results in case of c3540. This reflects the fact that ETS could generate better
results as it selects and replaces only those gates which have a low fitness; 1.e., those that are good to replace.
However it may get trapped in a local optimum sometimes as is clear from some results that are worse than those
of random generation strategy. Let us explain the reason for this kind of behaviour.

In the selection step of Simulated Evolution, a node ¢ is selected if the following inequality is satisfied:

Random < Min(1,1 - G; + B) (19)

If the goodness G is low, the probability of selecting the node ¢ will be high. According to our goodness
function, 1if a CMOS gate with low goodness is swapped, its goodness would increase. Then the probability of
re- selectmg this gate again (as a mechanism of TS to escape from local optima) will be very low. Therefore once
the gates are swapped to BICMOS, they are unlikely to be selected again resulting in a local optimal solution. In
order to avoid that, we use the bias B only in case a gate is BICUMOS so as to increase its selection probability
even if its goodness is high. We experimented with different values of B from 0.1 to 0.7 with interval of 0.1.
Although some good results are achieved with the values 0.5 - 0.7 as shown in the table, the use of bias B only
is s 111 not eno{ﬁ void tg}ﬂs? It&*ag qﬁloca%l gflm%ﬁlgrf'fr%geforeé\]ﬁe ave to gnof]éf%gr%ﬂsgmggsﬁsc%lfwufabﬁn
3"Shos %ﬁe avgrglglg cielay redicti egg K c1rcu¥ts Sreach c%rfgg B6th CTS and ETS have been
executed for 2000 iterations for different values of Tabu list size and candidate list size. Then the average value
has been computed for each. It is obvious that ETS produces better solutions (i.e., more delay reduction) than
CTS on the average. Hence, to achieve a certain objective solution, it is better to apply ETS for a few trials.
However, ETS take more time to finish executing 2000 iterations or to achieve objectives than what C'TS takes.
There are two reasons behind this. First, the step of computing the goodness of all nodes for each iteration in
ETS 1s an expensive step. Second, each iteration in ETS takes much more time than the time spent in each
iteration in C'TS. Let us compare the move generation step in both approaches to clarify the point.

In CTS, in each iteration N moves are generated by selecting only N nodes randomly and then the necessary
processing and evaluation is done. In ETS, in order to generate N moves, we randomly select a node and check
if its goodness satisfies the inequality [refrand] or not. If the inequality is satisfied, then the node is accepted as
one of the candidates; otherwise another node has to be selected randomly again and the process is repeated.
Therefore, generating N moves in this case requires selection of M nodes where M > N. Obviously this step is
more expensive than its equivalent step in CTS.

Tabu Search Behavior

Classical TS Evolutionary TS
Circuit | Average Delay Run Average Delay Run
Name Reduction (ns) | Time (s) | Reduction (ns) | Time (s)
c432 42.39 313 42.42 544
c499 7.47 133 7.49 471
c880 23.87 167 24.11 566
c¢1355 23.82 379 24.47 1578
highway 7.72 52 7.83 39
fract 21.44 99 22.72 135

Table 4: Comparison between Classical TS and Evolutionary TS in terms of quality nd performance.

To show the behavior of short term memory and long term memory Classical TS in terms of current solution
cost and the best solution cost, we chose as an example the results obtained for the circuit c499 at tabu list size
= 5 and candidate list size = 14. The plot of these results is shown in Figure 3.

Some of the values of solution cost are negative even though their associated moves are not penalized. This is
because of the fact that at some instances, the current solution may consist of BICMOS gates which are not on
the longest paths and their driving CMOS gates are on the longest paths making the CMOS delay of those gates
greater than their original delay, hence the overall delay is increased.

From Figure 3, it is obvious that after small number of iterations (short term), the algorithm reaches a local
optimal solution, as expected, and gets trapped at that level for the rest of running time. Actually we can also
see that when an illegal move is made, the solution cost is penalized which hardly improves again. The solution
of this trap is to diverse the search. As it i1s clear from the figure that when the solution hits a local optimum
(no change of best solution for the last 200 iterations), the proposed diversification strategy drives the search to
another region where the cost of the new solution gets improved. It is clear that after 409 iterations where the
current solution cost was approximately 4, the diversification produced better solution with cost around 6. As
diversification is a procedure of long term memory, the longer TS runs, the better would be the result. This fact
is clear in the figure where after 1700 iterations, the solution also got improved.

To compare the behavior of C'TS versus ETS, both algorithms were applied on the same benchmark circuit
c499 for identical tabu list size = 5 and candidate list size = 14. The data of current cost and best cost for 2000
iterations have been collected and plotted in figure 4 and figure 5 respectively. As seen in figure 4, ETS finds
good solutions (here, good delay reduction is around 7 ns.) quickly in a few iterations (around 200) because it
examines small sets of gates having low goodness. This means that some gates with low goodness are swapped
to BICMOS to get better solution. Then ETS tries to look for any gate with low goodness to swap. But since
most of the gates now have high goodness, ETS will swap some of these gates producing worse solutions than
before. Therefore it will get trapped at local optimum solution. On the other hand C'TS requires more number
of iterations to find good solutions because it examines all gates in the critical paths. However, after finding a
good solution (delay reduction around 6ns in this case), it continues in generating good solutions and even better
solutions than those found so far. This is clear from the figure where ET'S produced good solutions with the
following reduction in the delay: around bns after 500 iterations, around 6ns after 700 iterations, around 5 ns
after 1200 iterations and around 7.5 ns after 1800 iterations. This reflects the fact that CT5 is capable of escaping
from the local optimum trap. Figure 5 gives more clearer idea about the quality of both CTS ETS. Obviously,
ETS jumps quickly to a good solution and gets stuck there while CTS gradually produces better solutions as 1t
runs for more time.

Generally the proposed Evolutionary Tabu Search produces local optimal solutions. However it produces better
average results as compared to Classical Tabu Search. Also, ETS takes much longer than C'TS and hence to obtain
a certain objective within a few executions regardless of the time, 1t may be applied.

In this work, the candidate list of neighboring solutions is built using both random generation strategy and the
concept of Simulated Evolution. Future work may include power and area into the optimization process. This
would require a power model for BICMOS technology and accurate computation of CMOS and BiCMOS. Also
the possibility of merging ECL with CMOS or ECL with BICMOS may be considered.

Acknowledgment
The authors acknowledge the King Fahd University of Petroleum & Minerals, Dhahran, for support. Also, the
assistance rendered by Mohammad Faheemuddin is appreciated.

References

(1]
[2]
[3]

Khalid Al-Farrah. Timing driven floorplanning. MS Thests, KFUPM, June 1995.
Sara Baase. Computer Algorithms: Introduction to Design and Analysis. Addison Wesley, 1991.

A. R. Baba-Ali and A. Bellaouar. An optimization tool for mixed CMOS/BiCMOS standard cells circuits.
Arabian Journal of Science and Engineering, 19:4B:883-888, October 1994.

J. Benkoski, E. Meersch, L. Claesen, and H. De Man. Timing verification using statically sensitizable paths.
IEEE Transaction on Computer-Aided Design, 9(10):1073-1083, October 1990.

D. Brand and V. Iyengar. Timing analysis using functional relationships. Proceedings of ICCAD-86, pages
126-129, 1986.

H. Chen and D. Du. Path sensitization in critical path problem. IEEE Trans. on Computer-Aided Design
of Integrated Cir. and Sys., 12(2):196-207, February 1993.

H. Chen, D. Du, and L. Liu. Critical path selection for performance optimization. IEEE Transactions on

Computer-Aided Design, 12(2):185-195, February 1993.

D. Du, H. Yen, and S. Ghanta. On the general false path problem in timing analysis. Proceedings of 26th
Design Automation Conference, pages b55-560, 1989.

S. Embabi, A. Bellacuar, and M. Elmasry. Digital BiCMOS Integrated Circuit Design. Kluwer Academic
Publishers, 1993.

Fred Glover. Tabu search: A tutorial. Technical Report, University of Colorado, November 1990.
Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms. Computer Science Press; 1990.

S. Huang, T. Parng, and J. Shyu. A polynomial-time heuristic approach to approximate a solution to the
false path problem. 30th ACM/IEEFE Design Automation Conference, pages 118—122, 1993.

Roland Hubscher and Fred Glover. Applying tabu search with influential diversification to multiprocessor

scheduling. Computers Ops Res, 21(8):877-884, 1994.

Manuel Laguna and Fred Glover. Bandwidth packing: A tabu search approach. Management Science,
39(4):492-400, April 1993.

S. Lin, M. Marek-Sadowska, and E. Kuh. Delay and area optimization in standard-cell design. Proc. 27th
Design Automation Conference, pages 349-352, 1990.

P. McGeer and R. Brayton. Efficient algorithm for computing the longest viable path in a combinational
network. 26th ACM/IEEE Design Automation Conference, pages 561-573, 1989.

S. Perremans, L. Claesen, and H. De ManV. Static timing analysis of dynamically sensitizable paths. 26th
ACM/IEEE Design Automation Conference, pages 568-573, 1989.

C. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems. Mc-Graw Hill Book Co.,
Europe, 1995.

R.Kling and P.Banerjee. Esp:a new standard cell placement package using simulated evolution. Proceedings
of the wnternational Design Automation Conference, pages 60 — 66, 1987.

J. P. Roth. Diagnosis of automata failures: A calculus and a new method. IBM J. Res. Develo., pages
278-281, October 1966.

Sadiq M. Sait and H. Youssef. Tterative Computer Algorithms and Their Applications in Engineering. IEEE
CS Press, to appear, 1998.

S. Yen et al. Efficient algorithms for extracting the K-most critical paths in timing analysis. Proceedings of
26th Design Automation Conference, pages 649-654, 1989.

H. Youssef, Sadiq M. Sait, and Khalid Al-Farrah. Timing influenced force-directed floorplanning. Furopean
Design Automation Conference with Euro- VHDL Euro-DAC’95, Brighton, pages 156-161, September 1995.

Algorithm: Short-Term Tabu Search

Q : Set of feasible solutions.
s Current solution.
s* Best admissible solution.

c : Objective function.

R(s) : Neighborhood of s € Q.

V* : Sample of neighborhood solutions.
T : Tabu list.

AL : Aspiration Level.

Begin .
1. Start with an initial feasible solution s € €.
2. Initialize tabu lists and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V* C X(s).
5. Find best s* € V*.
6. If move s to s is not in T Then
7. Accept move and update best solution.
8. Update tabu list and aspiration level.
9. Increment iteration number.
10. Else
11. If ¢(s*) < AL Then
12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.
15. EndIf
16. EndIf
17. EndFor

End.

Figure 2: Algorithmic description of short-term TS.

Figure 3: Comparison between the behavior of short and long term memory TS.

Figure 4: Comparison between the behavior of Classical and Evolutionary TS in terms of current solution cost.

Figure 5: Comparison between the behavior of Classical and Evolutionary TS in terms of best solution cost.

