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ABSTRACT
In this paper we present an evaluation of selected paral-
lel strategies for Simulated Annealing and Simulated Evo-
lution, identifying the impact of various issues on the ef-
fectiveness of parallelization. Issues under consideration are
the characteristics of these algorithms, the problem instance,
and the implementation environment. Observations are pre-
sented regarding the impact of parallel strategies on runtime
and achievable solution quality. Effective parallel algorithm
design choices are identified, along with pitfalls to avoid.
We further attempt to generalize our assessments to other
heuristics.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Metaheuristics, Parallel Processing, Parallel Algorithms, Com-
binatorial Optimization, Simulated Annealing, Simulated
Evolution

1. INTRODUCTION
Parallelization of iterative heuristics aims to solve large

problems and traverse larger search spaces in a reasonable
amount of time [2]. The goals of parallelization can be to
achieve either lower runtimes for same quality solutions or
higher quality solutions in limited time. Achieving these
goals requires proper partitioning of the problem for uniform
distribution of computationally intensive tasks, while re-
specting the underlying implementation environment. The
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tractability of this is largely dependent on both the paral-
lelizability of the cost computation and perturbation func-
tions. But most importantly, achieving good quality solu-
tions requires a thorough and intelligent traversal of a com-
plex search space. Thus, for a parallelization strategy to be
truly effective, its interaction with the ’intelligence’ of the
heuristic must be considered, as it directly affects the final
solution quality obtainable, and also indirectly the runtime
because of the time required for convergence. This is one
of the key observations that we discuss in this paper. The
goal is to present a qualitative analysis of the results of par-
allelization strategies for two heuristics, namely Simulated
Annealing (SA) and Simulated Evolution (SimE), for the
multi-objective standard cell placement problem [4]. To this
end, we apply the preferred parallelization schemes identi-
fied in literature for a distributed memory (DM) environ-
ment. Based on our results, we present an evaluation of
each strategy with a special focus on its interaction with the
algorithmic intelligence. Finally, we mention how our assess-
ments are applicable to evaluating parallelization strategies
for other stochastic heuristics.

2. PARALLELIZATION STRATEGIES
Parallel SA (PSA): For SA [5] we use a parallel search ap-
proach using asynchronous multiple Markov chains (AMMC)
strategy mainly because it involves minimal communica-
tions [1]. We experiment with two versions of AMMC, vary-
ing the work done by each processing element (PE). Strat-
egy 1 (S1) aims to enhance quality, while strategy 2 (S2)
attempts to achieve linear speedup, while retaining quality.

Distributed SimE (DSE): SimE [5] parallelization is car-
ried out by partitioning workload among available PEs [3].
Several rows of the placement are assigned to individual PEs
in an alternating fashion. Besides the original row allocation
pattern (FRA), we have also experimented with random row
allocation (RRA).

3. EXPERIMENTS AND ANALYSIS
In our experiments with PSA (Table 1), solution qualities

from S1 always exceed those of the serial algorithm, though
speedups are sub-linear. The results of S2 show a roughly
10% quality drop compared with S1 but the speedups are
almost linear. Thus, of the two goals of parallelization, we
are only successful in attaining the first i.e. quality improve-
ment for fixed runtime. The DSE failed to fulfill both goals.
As PEs are increased, degradation in achievable quality is
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Table 1: Results of parallel SA for strategies 1 & 2 and distributed SimE for RRA & FRA. Due to space limitation

only results for up to 5 processors (6 for PSA including master processor) are shown. Due to quality degradation in

DSE with increase in processors, the target serial quality chosen for DSE was that achieved by p=5 for RRA. Quality

fixed column indicates the % of target quality achieved by FRA for p=5.

Circuit # of Solution Runtimes for Runtimes for Parallel SA Strategy 1 (sec) Solution Runtimes for Parallel SA Strategy 2 (sec)
Name Cells Quality Serial SA p=3 p=4 p=5 p=6 Quality (S2) p=3 p=4 p=5 p=6
s1238 540 0.69947 212 183.91 130.32 127.55 117.12 0.630573 58.03 39.21 26.31 22.31
s1488 667 0.65038 275 151.46 118.44 112.59 98.94 0.582884 42.67 25.59 18.77 16.61
s1494 661 0.64792 214 131.4 116.27 101.89 98.13 0.591114 51.11 30.79 22.32 15.82
s3330 1961 0.79344 2137 1875.52 1658.6 1572.94 1419.51 0.720665 528.38 403.31 351.27 307.42
Circuit # of Runtimes for Runtimes for Random Row Distribution (sec) % Sol. Quality Runtimes for Fixed Row Distribution (sec)
Name Cells Serial SimE p=2 p=3 p=4 p=5 Fixed p=2 p=3 p=4 p=5
s1238 540 16.5 9.24 9.29 6.12 3.14 95.80% 17.83 8.47 11.3 5.71
s1494 667 67 17.4 6.15 4.88 5.89 82.30% 2.77 1.85 1.76 4.34
s1488 661 60.23 24.6 7.78 3.72 3.02 96.60% 22 4.89 5.1 16
s3330 1961 UH 678.02 115 108.5 49.14 33.80% 316 215 4.6 3.4

observed. The solution qualities achieved using RRA are
always superior to FRA, but fall well short of the quality
achieved by the serial SimE. We now present an evaluation
of these parallelization strategies highlighting the effect of
various important factors.

Cost-Computation Function Complexity: The multi-
objective cell placement problem was selected because it is
computation intensive and difficult to distribute. Since the
cost computation cannot be subdivided among processes,
the amount of work done in cost computation per PE per
iteration in DSE is not reduced with increase in PEs, re-
sulting in poor run time scalability. Parallel search for SA,
however, is immune to this problem as each thread under-
takes an independent search.

Parallelization Environment: The use of barrier syn-
chronization in DSE, coupled with linear increase in com-
munication with increasing PEs causes a bottleneck. This
effect is particularly important for a DM environment. In
contrast, the asynchronous communication model in PSA
minimizes the impact of communication.

Solution Perturbation and Selection: The solution per-
turbation and next-solution selection operations are where
the intelligence of virtually all stochastic heuristics lies. Par-
allel search [2] is a well known technique for enhancing the
robustness of heuristics, giving improved qualities with some
runtime reduction. This is evident from the results of S1.
However, to achieve linear speed-ups, some reduction in
work with each PE proportional to number of PEs is re-
quired. The intelligence of SA lies in its cooling schedule.
This explains why our attempts at achieving speed-ups just
by dividing the iterations in Metropolis by number of PEs
achieves good speed-ups but a drop in final quality achieved
as this results in a less thorough parallel search of the neigh-
boring solution space. In SimE, both evaluation and selec-
tion of each cell may be carried out independently of the
other cells. However, the allocation step requires that cells
be allocated in a certain order, thereby introducing a sequen-
tial dependence. Since parallelization of SimE is achieved
by dividing the solution between PEs, movement of indi-
vidual cells across the solution during the allocation step is
restricted due to the lack of global placement view for each
PE. This results in a division of the heuristic intelligence
and consequently has an adverse effect on achievable solu-
tion quality. The effects of restrictive cell movement can be
alleviated by using a better row allocation pattern that al-
lows the cell to move to their intended best locations and as

quickly as possible. Use of a pattern that facilitates a vari-
ety of combination among the rows sounds intuitively bet-
ter. However, even our attempt to improve cell movement
by using RRA falls short of improving solution qualities suf-
ficiently.

4. CONCLUSION AND FUTURE WORK
The choices of effective parallelization strategies (flexibil-

ity) are governed by the amount of inherent/true parallelism
available in the problem instance and its cost functions.
Achieving near-linear speedups while maintaining solution
qualities appear to be conflicting objectives, particularly for
algorithms with such a strong sequential dependence such as
SA and SimE. Our experiments have shown that this effect
is primarily due to the division of intelligence that occurs
when speedup is emphasized. In order to achieve solution
qualities similar to or better than serial algorithms while
providing near linear speedup, a parallelization strategy for
any heuristic must be qualified in terms of any limitations
it imposes on the algorithm’s intelligence and effort must be
made to counter these limitations. We are currently working
on a comprehensive analysis/survey along these lines of var-
ious parallelization schemes for other heuristic algorithms
and a variety of problem instances.
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