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ABSTRACT

Inthispaper, we employ fuzzified Simulated Evol ution (SimE)

Algorithm for combinational logic design. SimE algorithm
consists of three steps: evaluation, selection and alocation.
Multilevel Logic Based Goodness measure is designed to
guidethe selection and all ocation operations of SImE. Area,
power and delay are considered in the optimization of cir-
cuits. The performance of the proposed algorithm is evalu-
ated using selected ISCAS 85 benchmark circuits. The re-
sults obtained are compared to those obtained using SIS.

1. INTRODUCTION

Design of logic circuits requires knowledge of a large col-
lection of domain-specific rules. The process of implement-
ing a logic circuit in hardware involves transforming the
original specification into aform suitablefor the target tech-
nol ogy, optimizing the representation with respect to anum-
ber of user defined objectives and constraints (i.e., timing,
fan-in/out, power, etc.), and finally carrying out technology
mapping onto the target technology [1].

In designing acomplex system, circuit designersusually
have to tradeoff one design objective for another. For exam-
ple, often a designer tries to find a possibly faster circuit
compared to a previoudly designed one. However, the num-
ber of gates used and power dissipation are strongly related
to delay. Thus, in seeking a faster circuit, the designer may
end up having acomplex system or a system that has higher
power dissipation. Logic synthesis attempts to provide an
answer to this problem. The purpose of a logic synthesis
tool isto aid circuit designers reaching an optimal tradeoff.
Severa logic synthesis algorithms are found in the litera-
ture[2].

Evolutionary algorithms allow designers to define the
search space of circuit designin away that is natural to both
the problem and theimplementation. These algorithmshave
the tendency to search for a solution to the circuit design
problem in a much larger, and often richer, design space
beyond the realms of the conventional design tools. It is

therefore possible to use evolutionary algorithms to obtain
novel designs that are difficult to discover by conventional
heuristics[3].

In this paper, fuzzified Simulated Evolution (SimE) al-
gorithmfor combinational logic design targeting area, power
and delay optimization is proposed. The results from the
fuzzified Simulated Evolution (SimE) algorithm using se-
lected ISCAS 85 benchmark circuits are compared to the
results obtained by a conventiona logic design technique
using SIS synthesistool [4].

2. PROPOSED SIMULATED EVOLUTION

The SImE algorithm is a genera search strategy for solv-
ing a variety of combinatorial optimization problems. It
starts from an initial assignment, and then, following an
evolution-based approach, it seeks to reach better assign-
ments from one generation to the next. A goodness mea-
sureisused to guide the algorithminits search [5].
Assume there are a set L of |L| distinct locations and a
set M of n elements of two inputs logic gates. SimE algo-
rithm proceeds as follows. Initially, a population? is created
at random. Therefore, |Z| locations (cells) will befilled ran-
domly by different logic gates from M. The agorithm has
one main loop consisting of three basic steps, Evaluation,
Selection, and Allocation. The algorithm evaluates every
location (cell) of the set 1. using the new Multilevel Logic
Based Goodness Measure designed. Some cells will be se-
lected for reallocation (mutation) by the Selection step ac-
cording to their goodness values. Next, in Allocation step,
selected cells will be assigned different gate types in order
to improve their goodness. The three steps are executed in
sequence until the population average goodness reaches a
maximum value, or no noticeable improvement to the pop-
ulation goodness is observed after a number of iterations.
Another possible stopping criterion could be to run the al-
gorithm for a prefixed number of iterations. Figure 1 isan

1In SimE terminology, a population refersto asingle solution. Individ-
uals of the population are componentsof the solution; they are the movable
elements.



ALGORITHM Smulated_Evolution(E, ,L, Stopping-Criteria);
INITIALIZATION;
Repeat
EVALUATION:
ForEach m € M DOgm = g—: EndFor Each;

SELECTION:
ForEach m € M Do
If Random < Min(1—gm + B;1)
Then P, = P. U{m};
Else P, = P, U{m};
EndlIf;
EndFor Each;
Sort the elements of Ps;
ALLOCATION:
ForEach m € P. Do F,(m) EndForEach;
Until Sopping-criteria are met;
Return (BestSolution);
End Smulated_Evolution.

Fig. 1. Simulated Evolution algorithm[5].

outline of the SimE algorithm and Figure 2 is a representa-
tion of the problem considered.

3. COST FUNCTION FORMULATION

The cost function or the fitness of a solution consists of two
parts: functiona fitness and objective fitness.

3.1. Functional Fitness

The functional cost measure is the correctness of the ob-
tained logic circuit in matching the truth table of the re-
quired function. In this work, we propose functional cost
measure called Multilevel Logic Based Goodness Measure
and it is based on the multilevel logic synthesis. As an ex-
ample, if we have a4 inputscircuits, it is represented by a4
x 4 matrix. Also, there are 16 outputsthat should be gener-
ated correctly to get a functionally correct circuit. Initialy,
these patterns are distributed among the levels of the circuit
evenly and progressively. Each column inthe 4 x 4 matrix
should cover 4 outputs more than it’s previous column. If a
logic gate located at the second level (second column of the
matrix), it should cover 8 outputs. If the same logic gate is
located at the second level and it covers less than 8 outputs,
then it will be considered to have less goodness. Therefore,
the goodness of a gate is affected by the number of outputs
covered and the level where the gate is located. Figure 3
illustrates this goodness measure.

In general, for an n input circuit (2™ outputs), to have a
goodnessof 1 at acell inlevel 4, there should be [ (27 /n)¢]
correct patterns produced at this cell. Thus, the multilevel
logic goodness measure is formulated as follows:

Assign n’ elements selected from M[J
to L locationsO)

Set of Logic gates (M)C
consist of n elements[]

Fig. 2. Representation of logic design problem.

gi=—L
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where g; is the goodness of cell ¢, j is the level number or
column number, n is the number of inputs of the required
circuit and p is the number of matching patterns at the out-
put of cell ¢ compared to the intended truth table.

3.2. Objective Fitness

Theobjectivefitness(F',) isameasure of the quality of solu-
tion in terms of optimization of area, delay and power con-
sumption. It contains two aspects. constraints satisfaction
and multi-objective optimization.

The cost for area of VLSI circuitsis stated as follows.

COStarea = Z A(gl) (l)

i€GiZWIRES

Where A(g;) isthearea of agate g;.

The propagation delay of signalsinaVLSI circuit con-
sistsof two elements, switching delay of gates and intercon-
nect delay. If a path = consists of n gates {vy, va, ..., vn},
then, the delay 75, dong = is expressed as

n—1
Tr = (CDi+ ((LF; + Ri) x Cy)) )

=1
Where C'D; isthe switching delay of the cell driving gate
v;. LFy isthe load factor of the driving block, R; is the



NOD DEF DI MESIGO! EBaEEL]

40 80 120 160
Minterms[]| Minterms(]| Minterms[| Minterms[]

16 Minterms should be covered for a 4[]
inputs circuitl]

Fig. 3. Multilevel logic goodness assumption.

interconnect resistance of net v;, and C; is the load capac-
itance of cell 7 given by Equation 4. Since the value of R;
at logic synthesis level is not known, it can be neglected or
estimated. The overal circuit delay is determined by the
delay along the longest path (the most critical path)as given
by Equation 3.

Costgeray = Max(Ty;) ©)]

The total capacitance C; of gate i consists of the inter-
connect capacitance at the output node of gate ¢ and the sum
of the capacitances of the input nodes of the gates driven by
gate .

Ci=Ci+ Y cf (4)

JEM;

Where Cf is the capacitance of the input node of a gate j
driven by gate ¢ and C represents the interconnect capaci-
tance at the output node of cell :.

The total power consumption can be approximated by
the following equation [6].

Pox 0 GV Si ©)
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Where P, isthetotal power consumption, Vp p isthe supply
voltage, \S; isthe switching probability at the output node of
cell ¢, i.e., the average number of transitions per clock cycle
at the output of gate ¢, f isthe clock frequency and g isa
technol ogy dependent constant.

The cost of the overall power consumptionin VLSI cir-
cuits can then be estimated as follows.

COStpower = Z S; - Cy (6)

ieEM
In this paper, fuzzy logic is used to represent the cost
function for area, delay and power. In order to build the
membership function, the lower bound and upper bound of
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Fig. 4. Membership function for area as optimization ob-
jective

the cost function must be determined. In order to guide the
search intelligently, the maximum value must be carefully
estimated. For this purpose, SIS tool [4] is used to estimate
the minimum area and minimum delay of thetarget circuits.

The estimated lower bound of maximum area (called
target,r.q) 1S associated with a specific degree of member-
ship called target membership (t:arget). The shape of the
membership function is depicted in Figure 4.

The membership function for delay and power are built
using similar rules. These three membership functionswill
be aggregated into one unit (the objective fithess) using or-
dered weighted average (OWA) operator [7].

4. EXPERIMENTSAND RESULTS

In this section, comparison of the proposed algorithm with
an existing conventional technique is given. For this pur-
pose, SIS isused. However, SIS does not consider capaci-
tance load in its delay calculation and does not have power
optimization. Therefore, the results obtained from SIS are
in the form of netlist file. These netlist files will be used as
input to the cost function calculation procedures of the pro-
posed algorithm to determine the area, delay and power of
the circuits. Both SIS and the proposed algorithm use the
same gate library.

Area Optimization: The resultsfrom SIS are the area opti-
mized circuits obtained by executing rugged.script mapped
for area minimization.

Table 1 showsthe resultsfor delay optimizationfor both
techniques. The table shows that the highest improvements
are obtained in the cost of cm82aand mul3 circuitsby 58.3%
and 51.63 % respectively.

Delay Optimization: For delay optimization, the results
from SIS are obtained by executing delay.script mapped for
delay minimization. The test cases used are the same cir-
cuits used for area optimization.

Table 2 showsthe resultsfor delay optimization for both
techniques. It can be seen that the results obtained from



Circuit SIS Proposed Algorithm % Improvement
Area Delay Power Area | Delay | Power | Area | Delay | Power
mul2 18225 | 6.587026 | 5561531 | 12636 | 3.56 | 4.66 |44.23 | 8498 | 19.35
mul3 112752 | 43.385843 | 37.745321 | 74358 | 13.14 | 21.65 |51.63 |230.23 | 74.38
cmd2a | 40824 | 8.864164 | 13.648234 | 40824 | 8.86 | 13.64 | 0.00 0.00 0.00
cmB82a | 39609 | 19.539984 | 14.879328 | 25029 |11.84 | 924 | 583 | 6498 |61.12
bl 10206 3.225844 | 3.994219 | 11215 | 291 278 -8.93 | 10.85 | 43.68
cl7 9963 3.559452 3.64207 9963 | 355 364 | 0.00 0.00 0.00
conl 31590 8.637996 11.21212 | 30233 | 6.90 1423 | 449 2519 |-21.21
majority | 14823 6.276723 | 5.405396 | 13851 | 4.57 5.06 7.02 37.32 6.93
Table 1. Comparison with SISin area optimization
Circuit SIS Proposed Algorithm % Improvement
Area Delay Power Area | Delay | Power | Area | Delay | Power
mul2 25272 4331142 | 7.157387 | 12636 | 3.56 4.66 100 21.66 | 53.59
mul3 174231 | 31.663494 | 47.161334 | 74358 | 13.14 | 21.65 |51.63 |230.23 | 74.38
cmd2a | 43740 846137 | 12.233066 | 40824 | 8.86 | 13.64 0 0 0
cmB82a | 64638 | 19.011371 | 18.936375 | 28552 | 9.34 91 |3873 |109.21 | 63.51
bl 10206 3.225844 | 3.994219 | 11215 | 291 278 -8.93 | 10.85 | 43.68
cl7 9963 3.559452 3.64207 9963 | 355 3.64 0 0 0
conl 31590 8.637996 11.21212 | 30233 6.9 14.23 | 449 2519 |-21.21
majority | 14823 6.276723 | 5.405396 | 13851 | 4.57 5.06 7.02 37.32 6.93

Table 2. Comparison with SISin delay optimization

SimE agorithmfor areaand delay optimization are the same
except cm82a improved in the delay with larger area. The
table shows that the highest improvements are obtained at
cm82a and mul3 circuits.

5. CONCLUSION

In this paper, the use of Simulated Evolution (SimE) algo-
rithm in logic design is being proposed. A goodness mea-
sure to guide SimE algorithm through the search space of
digital logic design is suggested. Comparison of the pro-
posed approach with SIS is shown. The proposed approach
has shown better resultsin most cases compared to SIS con-
sidering area optimization and delay optimization.
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