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Abstract

VLSI standard cell placement is the process of arranging circuit com-
ponents (modules) on a silicon layout. The cell placement problem is a
proven NP hard combinatorial optimization problem. The complexity of
this problem increases when multiple optimization objectives are considered
simultaneously. In this paper, a novel technique is presented to address
this hard problem, while optimizing multiple objectives. A major difficulty
with such multi-objective combinatorial optimization problems is the ex-
istence of a very large solution search space, one of which is the desired
optimal solution. Simulated Evolution (SE) a general iterative heuristic
is used to traverse the large search space, while fuzzy logic is resorted to
assist in multi-criteria decision making and overcome the imprecise nature
of design information at placement stage. New fuzzy aggregation functions
are proposed. SE is hybridized with force directed algorithm to speed-up the
search. The proposed schemes are compared with previously presented SE
based heuristics. The implementations exhibit considerable improvement
in terms of both solution quality and runtime.

1 Introduction

VLSI (Very Large Scale Integration) is a technology used to implement large
circuits in silicon. These large circuits are normally formed of a million or more
transistors. Due to the complexity of VLSI circuits with respect to the num-
ber of transistors, designing them is a complex task. In order to overcome the
complexity of design process, it is divided into several intermediate levels [1].
One of the levels or stages of the design process is the physical design stage.
This stage is further divided into stages like circuit partitioning, floorplanning,



placement, grid routing, global routing and channel routing. Each of the above
mentioned steps is a proven NP hard combinatorial optimization problem. The
work presented here deals with the placement stage, thus we limit our introduc-
tion to the problem of VLSI standard cell placement.

The VLSI standard cell placement step consists of assigning modules (typically
several thousands) to locations on the silicon surface while respecting the nu-
merous design constraints and achieving the desired objectives. In general the
placement step of the VLSI physical design stage is a multiobjective optimization
problem [1]. The most important objectives are interconnect delay, and total
wiring length. Other objectives include power dissipation, and area (width) of
the chip [2, 3].

Due to the computational complexity of the problem, it is practically not pos-
sible or feasible to find an optimal placement solution in polynomial time using
deterministic algorithms. Problems of these kind can be solved using itera-
tive heuristic algorithm. These algorithms achieve sub–optimal solutions, or
sometimes have shown to achieve even optimal solutions in polynomial time du-
rations. Several general iterative heuristics like tabu search, genetic algorithms
and simulated annealing [4, 5, 6, 7] have been proposed to solve this problem.
A recently invented heuristic algorithm called Simulated Evolution (SE) is one
such general iterative algorithm which is very efficient in solving combinatorial
optimization problems like the placement problem and has been used on sev-
eral previous occasions for solving hard combinatorial optimization problems
[7, 8, 9, 10, 11, 12, 13]. Iterative heuristics have high runtime requirements and
also require fine tuning of parameters which are hard to predict. In this paper
we present a novel method to use SE for multiobjective placement problem with
linear time complexity and without the need for fine tuning any parameter.

In this section, we present a brief introduction to fuzzy logic, which is used
to express heuristic knowledge and/or to combine conflicting objectives. Fuzzy
logic is a branch of mathematics invented by Lotfi Zadeh to represent and ma-
nipulate fuzzy knowledge, and to infer from it crisp outcomes [14, 15, 16]. Fuzzy
logic provides a methodology to map values of different criteria into linguistic
variables. Approximate reasoning can be made based on these linguistic vari-
ables and their values. The decision making in fuzzy logic approach mimics the
decision making approach in humans. A formal explanation of the fuzzy logic
technique, terms and terminology relevant to the problem under consideration
will be presented in later sections.

The paper is organized as follows. Section 2 covers the problem formulation
and cost estimation models. In Section 3, fuzzy logic for VLSI cell placement is
present. Also discussed are two new fuzzy aggregating functions proposed and
employed in place of classical fuzzy operators. In Section 4, the structure of the
general SE algorithms is discussed. An improved version of SE algorithm that
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uses force-directed algorithm is presented. Experimental results are presented
in Section 5 and conclusions in Section 6.

2 Problem Formulation

The placement problem can be stated as follows: Given a set of modules (cells)
M = {m1, m2, · · · , mn}, and a set of signals V = {v1, v2, · · · , vk}, each module
mi ∈ M is associated with a set of signals Vmi , where Vmi ⊆ V . Also each signal
vi ∈ V is associated with a set of modules Mvi , where Mvi = {mj |vi ∈ Vmj}.
Mvi is called a signal net. Placement consists of assigning each module mi ∈ M
to a unique location such that certain objectives are optimized and constraints
are satisfied [1]. The objectives to be optimized are power dissipation, delay,
and wire-length, while area (width) of the layout is considered as constraint.
These objectives and constraint are estimated as follows [1, 13].

Estimation of Wire-length: The wire-length cost can be computed by adding
wire-length estimates for all the nets in the circuit.

Costwire =
∑

i∈M

li (1)

where li is the wire-length associated with net vi and M is the set of all cells in
the circuit. This wire-length is computed using Steiner tree approximation.

Estimation of Power: Approximately 90% Power dissipation in CMOS logic
is due to the dynamic (switching) power. Therefore a cost proportional to power
dissipation can be estimated as

Costpower =
∑

i∈M

Sili (2)

where Si is the switching activity at the output node of cell i.

Estimation of Delay: The cost function due to timing performance can be
expressed as:

Costdelay = Tπc (3)

where Tπc is the delay of most critical path in the current iteration among the
set of candidate paths

{π1, π2, π3, ..., πk}
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Layout Width: In this work layout width is considered as a constraint. The
upper limit on the layout width is defined as:

Widthmax = (1 + a) × Widthmin (4)

where Widthmax is the maximum allowable width of the layout, and Widthmin

is the lower bound on layout width. The parameter a denotes how wide the
layout can be compared to the lower bound.

3 Fuzzy Logic for VLSI Placement

A brief overview of the fuzzy logic concept was presented in Section 1. The
details of fuzzy logic rules are explained in the following sections. A fuzzy logic
rule is an If-Then rule. The If part (antecedent) is a fuzzy predicate defined
in terms of linguistic values and fuzzy operators (Intersection and Union).
The Then part is called the consequent. There are many implementations of
fuzzy union and fuzzy intersection operators. Fuzzy union operators are known
as s-norm operators while fuzzy intersection operators are known as t-norm.
Generally, s-norm is implemented using max and t-norm as min function, i.e.,

µA∪B(x) = max (µA(x), µB(x)) (5)

and
µA∩B(x) = min (µA(x), µB(x)) (6)

This is known as the min−max logic initially introduced by Zadeh [14]. The
graphical representation of these operators is given in Figure 1.

Formulation of multi-criteria decision functions do not desire pure “anding”
of t-norm nor the pure “oring” of s-norm. The reason for this is the complete
lack of compensation of t-norm for any partial fulfillment and complete sub-
mission of s-norm to fulfillment of any criteria. Min and Max operators do not
provide such a compensation/submission as shown in Figure 1. For example
in case of Min operator min(0, 0.5) = 0 and also min(0, 0) = 0, however, it
is clear that the solution having individual memberships (0, 0.5) is better than
the solution having individual memberships(0, 0), whereas min operator is not
able to differentiate among these. Also the indifference to the individual crite-
ria of each of these two forms of operators led to the development of Ordered
Weighted Averaging (OWA) operators [17]. This operator falls in the category
of compensatory fuzzy operators and allows easy adjustment of the degree of
“anding” and “oring” embedded in the aggregation. According to [17], “orlike”
and “andlike” OWA for two fuzzy sets A and B are implemented as given in
Equations 7-8 respectively.

µA
⋃

B(x) = β × max(µA, µB) + (1 − β) × 1
2
(µA + µB) (7)
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Figure 1: (a) Fuzzy Min Operator. (b) Fuzzy Max Operator.

µA
⋂

B(x) = β × min(µA, µB) + (1 − β) × 1
2
(µA + µB) (8)

β is a constant parameter in the range [0,1]. It represents the degree to which
OWA operator resembles the pure “or” or pure “and” respectively. However, it is
difficult to select a suitable value of β without many trial runs of an optimization
algorithm for each problem instance, because a suitable value of β is different
for each problem instance. The graphical representation of OWA operators is
shown in Figure 2.

It is clear from this figure that OWA operators provides compensation/submission,
as min(0, 0.5) > min(0, 0). However, there is a major drawback of using com-
pensatory operators like OWA, because it might happen that these will optimize
only a single objective. This effect can be seen in Figure 2(a) that aggregating
membership of (0, 1) and (0.15, 0.15) are equal (0.15) for β = 0.7, however it is
clear that the solution having individual memberships (0, 1) has been obtained
by optimization of single objective only without any effort in the optimization of
other objective(s) and might not be acceptable compared to the solution having
individual memberships (0.15, 0.15).

In order to solve the problems of choosing the accurate value of β and un-
desired optimization of single objectives, a set of aggregating functions (AND
like and OR like) is presented in this paper. These aggregating functions do not
need any user specified parameter like β in OWA, and also provide the compen-
sation/submission in a controlled manner and avoid accidental optimization of
single objective.
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Figure 2: (a) Fuzzy And-like OWA Operator, (b) Fuzzy OR-like OWA Opera-
tor.

3.1 Proposed Fuzzy Aggregating Functions

Two fuzzy aggregating functions, AND like fuzzy aggregation (AFA) and OR
like fuzzy aggregation (OFA) are presented.

The And Like Fuzzy Aggregation (AFA) function operates on the member-
ship values in the complementary fuzzy sets, instead of fuzzy sets itself. The
details of this function are given below.

Let µ, µ1 and µ2 be the membership values in fuzzy sets S, S1 and S2. The
membership µ̄ in S̄ (the complementary fuzzy set of S) is obtained by using
fuzzy complementary operator.

Now the And Like Fuzzy Aggregation (AFA) is defined as follows,

µ̄ = w̄1 µ̄1 + w̄2 µ̄2 (9)
µ = 1 − µ̄ (10)

where
w̄n =

µ̄n

µ̄1 + µ̄2
(11)

If the membership value µ1 in one fuzzy set S1 is lower than other, then
corresponding membership µ̄1 in complementary fuzzy set S̄1 is higher than the
other, resulting in higher weight w̄1, leading to higher membership µ̄ in resulting
complementary fuzzy set S̄. It results in the lower membership µ in the resulting
fuzzy set S. This behavior is analogous to t-norm where, if one membership
is low, then the resulting membership is also low. If the membership values in
all complementary fuzzy sets are equal then equal weights are assigned and the
resulting membership is high. In short, the AFA has following advantages.
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1. It simulates the behavior of fuzzy AND logic (especially at the boundaries).

2. There is no need to adjust any parameter like β in OWA.

3. All the weights are controlled automatically.

4. It provides the compensation for any partial fulfillment.

5. It avoids the accidental optimization of single objective.

6. It rejects the solutions having diverse membership values in different fuzzy
sets, that can be accepted in the case of “pure anding” and “andlike
OWA”.

Combining Equations 9, 10 and 11 and generalizing the function to n fuzzy
membership values to be ANDed, we can define the AFA function as follows,

µ = 1 −
∑n

i=1 µ̄2
i∑n

i=1 µ̄i
(12)

The Or Like Fuzzy Aggregation (OFA) function is analogous to s-norm in
behavior. Unlike AFO it receives directly the membership values. The function
is defined as follows,

µ = w1 µ1 + w2 µ2 (13)

where
wn =

µn

µ1 + µ2
(14)

If the membership in one fuzzy set is higher than the membership values in
the other fuzzy sets then it will be given higher weight, hence the membership
value µ in resulting fuzzy set S will be higher, that is analogous to s-norm.
Unlike “pure oring” it also provides interaction from other membership functions
having lower values.

Combining Equations 13 and 14 and generalizing the function to n fuzzy
membership values to be ORed, we can define the OFA as follows,

µ =
∑n

i=1 µ2
i∑n

i=1 µi
(15)

Figure 3 shows the behavior of proposed fuzzy aggregating functions. Fig-
ure 3(a) shows the behavior of AFA. It can be seen that the functions operates
as a min operator on the extremes and acts like a compensatory operator in the
middle. Due to this fact, it is not possible to unintentionally optimize only a
single objective (possible in OWA and not desirable), due to the compensation.
It provides compensation in a controlled manner: when the membership values
to be aggregated are near each other, it behaves as a compensatory function;
however if these are diverse, indicating optimization of a single objective, then it
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Figure 3: (a) And Like Fuzzy Aggregation, (b) Or Like Fuzzy Aggregation.

behaves as a pure min and forces the optimization algorithm to optimize other
objectives as well.

Figure 3(b) illustrates the behavior of OFA. It shows that the functions
behaves as pure max in boundaries and also exhibits the effect due to submission
of other membership values. However, it does not waste time in differentiating
the degree of submission of a particular objective, because in OR logic if one
objective is fulfilled then it is sufficient.

3.2 Applications of Fuzzy Aggregating Functions in Place-
ment Problem

To combine three objectives and a constraint using the proposed aggregating
functions, we use the fuzzy rule given below [13]:

Rule R1: IF a solution is within acceptable wire-length AND acceptable power
AND acceptable delay AND within acceptable layout width THEN it is an
acceptable solution.

Using the And like Fuzzy Aggregating Function (AFA), the above fuzzy rule
translates to:

µc
pdw(x) = 1 −

∑
j=p,d,w µ̄c2

j(x)
∑

j=p,d,w µ̄c
j(x)

µc(x) = min(µc
pdw(x), µc

width(x)) (16)

where µc
j(x) for j = p, d, l, width, are the individual membership values in the

fuzzy sets within acceptable wire-length, power, delay, and layout width re-
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Figure 4: Membership functions within acceptable range.

spectively. The superscript c represents “cost”. The solution that results in
maximum value of µc(x) is reported as the best solution by the search heuristic.

The shape of membership functions for fuzzy sets within acceptable power,
delay and wire-length are shown in Figure 4(a), whereas the constraint within
acceptable layout width is given as a crisp set (Figure 4(b)). Ois for i ∈
{w, p, d, width} represent the lower bounds for wire-length, power, delay and lay-
out width respectively. Since layout width is a constraint, its membership value
is either 1 or 0 depending on goalwidth (in our experiments goalwidth = 1.25,
which indicates that the maximum allowable width of the layout is 1.25 ×
Owidth). However, for other objectives, by increasing or decreasing the value of
goali one can vary its preference in the overall membership function.

4 Proposed Algorithm

In this section we describe our Simulated Evolution based hybrid search algo-
rithm. We begin with a brief discussion of the basic SE heuristic.

4.1 Basic Simulated Evolution (SE)

The general SE algorithm is illustrated in Figure 5 and comprises three main
steps: evaluation, selection, and allocation.

In the evaluation step the goodness of each cell in its current location,
in the range [0, 1], is computed using some measure.

In the selection step, the algorithm probabilistically selects unfit elements.
Elements with low goodness values have higher probabilities of getting selected
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for relocation. These selected elements are identified as the selection set and are
removed from the solution. These selected elements are one by one reassigned to
new locations in a constructive allocation step. The objective of this step is to
improve their goodness values, thereby reducing the overall cost of the solution.

Allocation is the SE operator that has most impact on the quality of solution.
Allocation takes as input the two sets, S and its complement, and generates a
new solution S′ which contains all the members of the previous solution, with
the elements of S mutated according to an allocation function.

The choice of a suitable allocation function is problem specific. The de-
cision of the allocation strategy usually requires more ingenuity on the part
of the designer than the Selection scheme. The allocation function may be a
non-deterministic function which involves a choice among a number of possible
mutations (moves) for each element of S. Usually, a number of trial-mutations
are performed and rated with respect to their goodnesses. Based on the result-
ing goodnesses, a final configuration of the population S′ is decided. The goal of
allocation is to favor improvements over the previous generation, without being
too greedy.

The allocation operation is a complex form of genetic mutation which is
one of the genetic operations thought to be responsible for the evolution of the
various species in biological environments. The allocation function mutates the
solution by altering the locations of the elements of the selected set S. However,
since mutation is the only mechanism used by SE for inheritance and evolution,
it must be more sophisticated than the one used in GA.

Different constructive allocation schemes are proposed in literature [18, 7].
One such scheme is sorted individual best fit, where all the selected elements
are sorted in descending order with respect to their connectivity with the par-
tial solution and placed in a queue. The sorted elements are removed one at a
time and trial moves are carried out for all the available empty positions. The
element is finally placed in a position where maximum reduction in cost for the
partial solution is achieved. This process is continued until the selected queue
is empty. The overall complexity of this step is O(n2) where n is the number
of selected elements. Other more elaborate schemes are weighted bipartite
matching allocation and branch-and-bound search allocation [18]. How-
ever, these allocation strategies are more complex than “sorted individual best
fit”, while the quality of solution remains comparable [18]. In summary, se-
lection and allocation steps determine and dictate the search strategy, while
evaluation provides feedback to the search scheme.

One of the contributions in this paper is a new allocation scheme; this will
be discussed in Section 4.2. However, the evaluation and selection schemes
are same as those discussed in references [13], except that OWA-operators are
replaced by the new fuzzy aggregating functions discussed earlier.
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ALGORITHM Simulated Evolution(B, Φinitial, StoppingCondition)
NOTATION
B= Bias Value. Φ= Complete solution.
mi= Module i. gi= Goodness of mi.
ALLOCATE(mi,Φi)=Function to allocate mi in partial solution Φi

Begin
Repeat

EVALUATION:
ForEach mi ∈ Φ evaluate gi;
/* Only elements that were affected by moves of previous */
/* iteration get their goodnesses re-calculated*/

SELECTION:
ForEach mi ∈ Φ DO

begin
IF Random > min(gi, 1)
THEN

begin
S = S ∪ mi ; Remove mi from Φ

end
end

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S DO
begin

ALLOCATE(mi, Φi)
end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Figure 5: Structure of the Simulated Evolution algorithm [7].

4.2 Evaluation and Selection

Fuzzy Goodness Evaluation: A designated location of a cell is considered
good if it results in short wire-length for its nets, reduced delay, and reduced
power. These conflicting requirements can be expressed by the following fuzzy
logic rule R2.

Rule R2: IF cell i is near its optimal wire-length AND near its optimal power
AND (near its optimal net delay OR Tmax(i) is much smaller than Tmax)
THEN it has a high goodness.

where Tmax is the delay of the most critical path in the current iteration and
Tmax(i) is the delay of the longest path traversing cell i in the current iteration.

With the AND and OR logic implemented as AFA & OFA, rule R2 evaluates
to the expression below:

goodnessi = µe
i (x) = 1 −

∑
j=w,p,d µ̄e2

ij(x)
∑

j=w,p,d µ̄e
ij(x)

(17)

where
µe

id(x) =
µe2

inet(x) + µe2
ipath(x)

µe
inet(x) + µe

ipath(x)
(18)
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Figure 6: Membership functions used in fuzzy evaluation.

The base values for fuzzy sets near optimal wire-length, power, net delay, and
for the fuzzy set “Tmax(i) much smaller than Tmax”, for each cell, are represented
by Xiw(x), Xip(x), Xinet(x) and Xipath(x), respectively [10]. Membership func-
tions of these base values are shown in Figure 6.

Selection: In this stage of the algorithm, some cells are selected probabilis-
tically depending on their goodness values. A cell i is selected if Random >
goodnessi where Random is a Gaussian random number with mean = Gm−Gσ

and standard deviation = Gσ. Gm and Gσ are the mean and standard deviation
of goodness values of cells in the initial solution [13].

4.3 Fuzzy Force Directed Allocation

In the allocation stage, the selected cells are to be reassigned to best available
locations. We consider selected cells as movable modules and remaining cells as
fixed modules. In previous works selected cells are sorted in descending order of
their goodnesses with respect to their partial connectivity with unselected cells
[19, 20, 7, 9, 10, 11, 12, 13].

One cell from the sorted list is selected at a time and best available location
for it is found. The cell is placed at that position and removed from the selection
set. The process, commonly known as sorted individual best fit, is repeated
until the selection set is empty. The selected cell is actually moved from its
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current location to the location of another selected cell if the move results in
the maximum gain. This procedure leads to allocation complexity of O(n2),
where n is the number of cells selected in selection stage. All the other steps of
SE algorithms have the complexity at most O(n). Therefore allocation step is
a bottleneck in terms of computational complexity of the algorithm.

To address this problem, a force directed allocation is proposed in this work.
According to this approach optimal x-position and y-position of the cell under
consideration are found. The y-position indicates the row to which the cell
should be relocated. If the y-position is in between two rows then the row
nearest to y-position is selected. In order to satisfy the width constraint, if the
width of selected row after adding the cell is more than the maximum allowable
width then the next nearest row that satisfies the width constraint is chosen.
The x-position indicates the exact location of the cell in the selected row.

The basic idea behind the force directed method is that cells connected by
a net exert forces on each other [1]. Suppose a cell a is connected to another
cell b by a net of weight wab. Let dab represents the distance between a and
b. Then the force of attraction between the cells is proportional to the product
wab×dab. A cell i connected to several cells j at distance dij by wires of weights
wij, experiences a total force Fi given by

Fi =
∑

j

wij · dij (19)

The best location for a cell i is where the x-component and y-component of
Fi are both zero. We can write these conditions as follows,

∑

j

wij · (xj − xi) = 0; &
∑

j

wij · (yj − yi) = 0 (20)

Solving the above equations for xi and yi we have

xi =

∑
j wij · xj∑

j wij
yi =

∑
j wij · yj∑

j wij
(21)

Values xi and yi are the optimal x-position and y-position for a cell i with
respect to current x and y positions of all the cells j connected to it [1]. They
point to the new location that is better in terms of all objectives. For this
purpose, proper weights to each of the nets connecting cell i and cell j are to be
chosen. A good way to choose these weights is to use fuzzy logic. The following
fuzzy rule is used to find these weights:

Rule R3: IF a net is good in wire-length AND good in power AND good in
delay THEN it has a low weight.

According to this rule, a net will have a smaller weight only if it is good in
terms of all the objectives. In fact weight signifies a badness factor (opposite
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of goodness in evaluation). The cell will try to move in the directions of those
nets that have higher weight (higher badness). The shape of the membership
functions for allocation is similar to those of evaluation (see Figure 6) with the
following base values:

Xijw(x) =
l∗ij
lij

Xip(x) =
l∗ij

(1 + Sij) lij

Xinet(x) =
ID∗

ij

IDij
Xa

ipath(x) =
Tmax

Tmax(ij)
(22)

where lij represents wire-length of a net ij and l∗ij is its estimated lower bound.
Sij is its switching probability (required to estimate power in CMOS circuits).
IDij is interconnect delay of net ij and ID∗

ij is its estimated lower bound. Tmax

is the delay of longest path and Tmax(ij) is the delay of longest path traversing
net ij.

Using these base values and corresponding µa
i where superscript a denotes al-

location, we find a goodness factor gij, using AFA and OFA operators proposed,
for the net connecting cells i and j, as follows:

gij = µa
ij = 1 −

∑
k=w,p,d µ̄a2

k,ij∑
j=w,p,d µ̄a

k,ij

(23)

where
µa

d,ij =
µa2

net,ij + µa2
path,ij

µa
net,ij + µe

path,ij

(24)

Now the weight of the net wij is calculated as follows,

wij = 1 − gij (25)

In this proposed allocation schemes it is clear that for each cell we have
to find the best location only once, therefore the complexity of the proposed
allocation scheme is O(n) where n is the number of cells selected in selection
stage of the algorithm. All other issues such as already occupied zero-force
location, a cell already in its zero-force locations, etc., are resolved using the
previous ad-hoc approaches available in the literature [1].

5 Experiments and Results

Two comparison scenarios are considered to test the proposed work. The fuzzy
aggregating functions are compared with OWA operator in the first scenario. In
the second scenario the proposed allocation scheme is compared with the O(n2)
allocation scheme proposed earlier [10, 11, 20, 19].
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Circuit AFSE OFSE
# of Cells L (µm) P (µm) D (ps) T (s) L (µm) P (µm) D (ps) T(s)

S298 136 4853 925 139 82 4548 915 139 46
S386 172 7140 1653 202 153 8357 2036 203 117
S641 433 9445 2092 650 836 12811 3072 687 175
S953 440 28290 4394 236 344 29576 5025 223 351
S1238 540 36333 11329 382 566 41318 12303 362 699
S1494 661 52711 12824 763 575 54523 12986 768 762
S3330 1961 135650 17378 437 6619 183288 24797 460 5351
S5378 2993 207252 29432 341 19159 326840 48360 435 11823
S9234 5844 641670 101362 919 49479 857174 137712 923 42692

Table 1: Comparison between proposed aggregating functions and OWA. L is
wire-length in µm, P is power cost in µm, D is delay in pico seconds, and T is
the execution time in seconds.

5.1 Comparison of Fuzzy Aggregating Functions

The proposed allocation scheme presented in [13] is used in this test. Fuzzy
Simulated Evolution using OWA (OFSE) and Fuzzy Simulated Evolution using
proposed Fuzzy Aggregating Functions (AFSE) are applied on different ISCAS
benchmark circuits [21]. In case of OFSE the OFA and AFA functions are
replaced with OR-like OWA and AND-like OWA respectively.

Table 1 compares the quality of final solution generated using OFSE and
AFSE. The circuits are listed in order of their size (136-5844 modules). It is
clear that the proposed set of aggregating functions (AFSE) have performed
better than OWA operators (OFSE), except for two smaller circuits. In most
cases AFSE proved to be better in terms of all objectives, because of its better
directed search capabilities in the solution space. However, in some cases, slight
increase in the cost of one objective has resulted in larger decrease in cost of
other objectives (for example, see S953). In general, AFSE performs better than
OFSE in terms of quality of final solution.

In order to compare improvement in the quality of solution versus time,
the current membership values of the solution obtained by OFSE and AFSE
(Figure 7(a) and (b)) are ploted. These plots are for test case S3330. It can be
observed that the quality of solution improves rapidly in AFSE based search as
compared to OFSE. This behavior was observed for all test cases.

Figures 7(c), and (d) track the total number of solutions found by OFSE
and AFSE with respect to execution time, for various membership ranges. A
key aspect to be noted is that the AFSE exhibited slightly faster evolutionary
rate than OFSE. For example, after about 200 seconds, almost all new solutions
discovered by AFSE have a membership more than 0.6 in the fuzzy subset of
good solutions with respect to all objectives, and almost none were found with
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Figure 7: Plots (a) and (b) show membership values versus execution time for
OFSE and AFSE respectively. Plots (c) and (d) show cumulative number of
solutions visited in a specific membership range versus execution time for OFSE
and AFSE.
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(a) (b)

Figure 8: Wire-length versus execution time: (a) OFSE and (b) AFSE.

lower membership values. In contrast, for OFSE, it is after 300 seconds that
the first solution with membership greater than 0.6 was found (see Figure 7).
This behavior was observed for all test cases.

Individual costs versus execution time for both schemes have also been plot-
ted in Figures 8-10. It can be seen that for objectives to be minimized, there
is less randomness in the solution movement toward a better solution in case of
AFSE as compared to OFSE and hence avoidance of an accidental escape from
its movement toward optimal solution. Whereas OFSE provides larger random-
ness and may move away from optimal solution, this effect can be observed in
the later stages of optimization especially in plots for wire-length and power.

5.2 Comparison with Fast Fuzzy Allocation Scheme

Fast Fuzzy Force Directed Simulated Evolution (FFSE) and OFSE, were applied
on 12 ISCAS benchmark circuits [21]. Execution is aborted when no improve-
ment is observed in the last 500 iterations (maximum of 5000 iterations) for
OFSE, whereas the algorithm is run for a fixed 5000 iterations for FFSE. The
0.25 micron CMOS digital low power standard cell library for MOSIS is used
[22].

Table 2 compares the quality of final solution generated by OFSE and FFSE.
The circuits are listed in order of their size (136- 10383 modules). From the
results, it is clear that FFSE has outperformed OFSE for all circuits in terms of
execution time. For larger circuits (S3330 & S5378), FFSE is better than OFSE
in terms of quality of final solution. In some cases FFSE has not more than 10%
degradation in terms of quality of solution but with a significant improvement
in run-time.
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(a) (b)

Figure 9: Power-cost versus execution time: (a) OFSE and (b) AFSE.

(a) (b)

Figure 10: Delay versus execution time: (a) OFSE and (b) AFSE.
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(a) (b)

(c) (d)

Figure 11: (a) Overall Membership (b) Wire-length cost (c), Circuit delay, and
(d) Power cost versus execution time in seconds for circuit S15850 using FFSE.
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Circuit OFSE FFSE
# of Cells L (µm) P (µm) D (ps) T (s) L (µm) P (µm) D (ps) T(s)

S298 136 4548 915 139 46 4975 999 135 4.8
S386 172 8357 2036 203 117 9422 2169 213 6.8
S832 310 23140 5251 416 192 26112 5863 400 11
S641 433 12811 3072 687 175 12485 2897 674 24
S953 440 29576 5025 223 351 29988 4683 244 17
S1238 540 41318 12303 363 699 41362 12934 377 20
S1196 561 35810 11276 360 613 38282 12363 350 22
S3330 1961 183288 24797 459 5351 163756 24112 483 87
S5378 2993 326840 48360 435 11823 243721 41560 376 149
S9234 5844 x x x x 655370 114231 908 440
S13207 8651 x x x x 1339837 144189 1604 885
S15850 10383 x x x x 1477662 115049 2006 1202

Table 2: Layout found by OFSE, and FFSE. “L”, “P” and “D” represent the
wire-length, power, and delay costs and “T” is execution time (sec). Last 3
circuits were not tested for OFSE because of large runtime requirements.

It can be observed that the algorithm converges very fast. This behavior can
be observed in Figure 11, where convergence is achieved after approximately 400
seconds (6.6 minutes), and the remaining time is spent in fine tuning the solution
quality.

6 Conclusion

A fast fuzzy force-directed simulated evolution algorithm for multiobjective
VLSI standard cell placement was proposed and presented in this paper. An im-
provement in the execution time from O(n2), in previous SE based approaches,
to O(n) is achieved by using force-directed allocation methodology during the
allocation stage. Fuzzy logic is applied to handle the multi-objective nature of
the problem. Fuzzy logic is also employed at evaluation and allocation stages
and for the selection of best solution from the set of generated solutions as well.
A set of new fuzzy functions are defined and employed to eliminate the prob-
lems of extensive experimentation, tuning and re-runs as was the case when
OWA operators were used. The proposed scheme is compared with OFSE. It
is observed that FFSE perform much better than OFSE in terms of execution
time, with no significant degradation in terms of quality of solution. FFSE can
be used for large circuits whereas OFSE cannot be used for circuits with more
than 2000-3000 cells. From experimentation and results it was also observed
that FFSE totally avoids early random walk, which is a problem in other non-
deterministic heuristics such as Simulated Annealing. Comparatively very low
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amounts of memory is required for SE than other iterative heuristics such as
Genetic algorithm since SE retains only one solution at a single instance of time
in the memory.
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