Back-End Design of a Formal
High Level Synthesis System

by

Masud-Ul-Hasan

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER ENGINEERING

June, 1993

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microfiims International
A Bell & Howell Informaton Company

300 North Zeeb Road. Ann Arbor, Mi 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1354058

Back-end design of a formal high level synthesis system

Hasan, Masud-ul, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1993

U-M-I

300 N. Zeeb Rd.
Ann Arbor, MI 48106

il el ool el el el el el e el el e S S S Sl S el e e

|
i

S eiskels7

BACK-END DESIGN OF A FORMAL
HIGH LEVEL SYNTHESIS SYSTEM

e ol ool el e

BY

|

MASUD-UL-HASAN

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PEIROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

[

in Partial Fulfiiment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER ENGINEERING

JUNE 1993

oS e e e el S el e bl el el e

R I A AT P e .

RECEIVED 2 1 1111 1004

LE N> 4

Dedicated to

My Parents,
Brothers
and

Sisters

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA

This thesis, written by
Masud-ul-Hasan
under the direction of his Thesis Advisor, and approved by his Thesis committee, has

been presented to and accepted by the Dean, College of Graduate Studies, in partial

Julfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee:

Sw\iq/ N M a7 }3113]‘(3

Chairman (Dr. Sadig M. Sait)

[W s

Co-Chai id M. El blthy)
<ﬂ J&d(q,ej’ﬂif' "M. ﬁbﬂ({ blb Yo sef) L
IDepartmcnt Chairman
Dr. Ala H. Rabeh

Dean, College of Graduate Studies

Date: Q~7~ _(q 3

123

v

Acknowledgment

In the name of Allah, Most Gracious, Most Merciful. Read in the name of
thy Lord and Cherisher, Who created. Created man from a {leech-like}
clot. Read and thy Lord is Most Bountiful. He Who taught {the use
of} the pen. Taught man that which he knew not. Nay, but man doth
transgress all bounds. In that he looketh upon himself as self-sufficient.

Verily, to thy Lord is the return {of all}.

(The Holy Quran, Surah 96)

First and foremost, all praise to the Almighty Allah Who gave me the courage
and patience to carry out this work. I am happy to have had a chance to glorify His -
name in the sincerest way through this small accomplishment and ask Him to accept

my efforts. May He guide us and the whole humanity to the right path (Aameen).

Acknowledgement is due to King Fahd University of Petroleum and Minerals for

providing support to this work.

My deep appreciation goes to my major thesis advisor Dr. Sadiq M. Sait for his

constant help, guidance and the countless hours of attention he devoted throughout

1£9

v

the course of this work . His priceless suggestions made this work interesting and
learning for me. He was always kind, understanding and sympathetié to me. Work-
ing with him was indeed a wonderful and learning experience which I thoroughly

enjoyed.

Tharks are also due to my thesis co-advisor Dr. Khalid M. Elleithy and thesis
committee member Dr. Habib Youssef for their interest, cooperation, advice and

constructive criticism.

I am also indebted to the Department Chairman, Dr. Samir Abdul Jauwad and

other faculty members for their support.

Lastly, but not the least, thanks to my family members for their understanding,
relatives, fellow graduate students, and all my friends in the campus from whom I

learned a lot and who made the long work hours pleasant.

L =84

Contents

List of Figures
List of Tables
Abstract (English)

Abstract (Arabic)

1 Introduction

1.1 Synthesis

..................................

1.1.1 Silicon Compilation

........................

1.1.2 High Level Synthesis from Formal Specification

2 Literature Review

2.1 Synthesis

..................................

2.2 Formal Synthesis

.............................

3 Implementation of RSL

vi

12

16

1&w

vii

3.1 Imtroduction 16
3.2 Formal Logic Cell Library Design 17
321 Clockingstrategy 20

3.3 Implementation of Primitive Functions 22
331 ZeroFunction 22
332 ProjectionFunction. 22
333 SuccessorFunction 23

34 FormalCells. 29
341 TheAddUnmit 29
342 TheProUnit _ 30
343 Thelmmer-Product Unit 37
Cell Layout Design 41
41 Imtroductiom 41
42 DesignMethodology 41
4.3 Physical Design Sub-System 42
43.1 Standard cellapproach 44
432 Placement 45
433 Routing 46
4.3.4 éimulation and Verification 47

44 Layouts, 47

L~

4.5 A Complete Example

...........................

4.5.1 Simultaneous Recursion

.....................

..........

4.5.2 Recursion with Respect to Several Variables

4.5.3 Fixed NestingRecursion
Conclusions

ASL Syntax and Semantics

RSL Syntax and Semantics

Tools used

Bibliography

Vita

72

75

78

82

85

94

List of Figures

1.1 ASL based formal high level synthesissystem. 7
3.1 Flowchart for the implementationof RSL. 18
3.2 Design methodologyof thecell library. 21
3.3 Hardware model of 2-to-1 line projection function. 23
3.4 Logic level model of 8-bit 2-to-1 line projection function. 24
35 Successorfunction. 25
3.6 Hardware model of 1-bit Successor function. 26
3.7 Logic level model of Successorfunction. 27
3.8 Simulation result of a 4-bit Successor function. 28
3.9 The RSL architecture of the unit add 30
3.10 Hardware model of n-bit adder (add). 31
3.11 Logic level model of an 8-bit add function. 32
3.12 Simulation result of an 8-bit add function. 33

3.13 The RSL architecture of the unit pro

ix

3.14 Hardware model of n-bit product (pro).

.................

3.15 Logic level model of 8-bit pro function.

.................

...............

3.17 The RSL architecture of the inner-product cell

.............

3.18 Hardware model of n-bit inner-product.

.................

3.19 Logic level model of an 8-bit inner-product

3.20 The simulation result of an inner-product cell

4.1 Approach for cell based VLSI layout synthesis system

4.2 VLSI layout of 4-bit successor unit

4.3 VLSI layout of an 8-bit adder (add) unit

.................

44 Simulation result of an 8-bit adder (add) layout

...............

4.5 VLSI layout of an 8-bit multiplier (pro) unit

4.6 Simulation result of an 8-bit multiplier (pro) layout

4.7 VLSI layout of an 8-bit inner-product unit

................

4.8 Simulation result of an 8-bit inner-product layout

............

4.9 Implementation of a matriz-matriz multiplier using simultaneous re-

cursion.

..................................

4.10 Hardware model of a matriz-matriz multiplier using simultaneous re-

cursion.

..................................

4.11 Logic level model of a matriz-matriz multiplier using simultaneous
4.12 Simulation result of a matriz-matriz multiplier using simultaneous

recursion.

.................................

4.13 VLSI layout of an 8-bit matriz-matriz multiplier using simultaneous

recursion.

4.14 Hardware model of matriz-matriz multiplier using recursion with re-

spect to several variables.

4.15 Logic level model of matriz-matriz multiplier using recursion with
respect to several variables.

4.16 Simulation result of a matriz-matriz multiplier using recursion with

respect to several variables.

4.17 VLSI layout of an 8-bit matriz-matriz multiplier using recursion with
respect toseveral variables.

4.18 Hardware model of matriz-matriz multiplier using fixed nesting re-

cursion.

..................................

4.19 Logic level model of matriz-matriz multiplier using fixed nesting re-

cursion.

..................................

4.20 Simulation result of a matriz-matriz multiplier using fixed nesting

recursion.

.................................

123

4.91 VLSI layout of an 8-bit matriz-matriz multiplier using fixed nesting

List of Tables

5.1 Number of devices and layout area of 8-bit units.

5.2 Number of clock cycles required by the 8-bit units to get their final

FESUILS. & o o o e

xiit

123

Thesis Abstract

Name: Masud-ul-Hasan
Title: Back-End Design of a Formal High Level Synthesis System

Major Field: Computer Engineering

Date of Degree: June 1993

A complete design end implementation of a cell library has been accomplished in
this work. This cell library supports a formal high level synthesis framework. The
library contains the logic level models of all the primitive functions of a Realization
Specification Language (RSL). Modular design methodology is employed to support
the ezpandibility of basic cells. Ezamples of a formal adder, multiplier, inner-product

and matriz-matriz multiplier are presented.

Master of Science Degree
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

June, 1993

123

A AadA

a.unl\.\‘gz&n: fwﬂ‘
Mgﬁjﬂuuem"im\aamm: Al SN o e
§ Siaall

144y guign: sl A s

M)&\Myww.&@,.tudmg@@k@s,w@ﬂ
Lal Ay il M A ke o A bl oy a5 Y 038 aug s fnall (Mol S
A LAY dnd ool By S e JB) s Sy (RSL) Ghadl ol sa
3 iy e alal L yumll Baa g iy il cpalall Jia AR (o Ao sena e 5 18805

Sl ghuaall

aglall & jiualall 4y
Odaall 5 Jg sl 3¢h dlal daals
T gl Ay all ASlaall — (gl

a V44Y g

LE 2> 4

Chapter 1

Introduction

Since the production of complex, very large scale integration (VLSI) chips is very
expensive and time consuming, it is essential to detect as many design errors as
possible, prior to production. Presently, conventional simulation is the principal
technique used to detect functional design errors at an early stage of the design
process. However, simulation may leave many errors undetected, since exhaustive

simulation of complex circuits and systems is not feasible [Yoe90].

Testing is another popular method. It is used to prove the correctness of systems
for specific sets of inputs and outputs. But for the current developments in VLSI,
no testing procedure is capable of exhaustively testing the complex circuits due to
its limitations [E190]. To overcome these difficulties, a number of formal high level

synthesis techniques are being developed, and they are likely to become practical

e

tools for detection of design errors.

High level synthesis is a conversion or translation of high-level program like specifica-
tion of the behavior of a circuit into a structural representation. High level synthesis
systems accept a behavioral specification in a hardware description language, or a
programming language, or as a data flow graph. A behavior may represent a general
purpose system, an application specific system (ASIC), or a combination of them.

The structural output of high level synthesis is in the form of netlist of components.

Formal high level synthesis is high level synthesis performed within the framework of
a suitable formal system, such as first-order logic, higher-order logic, temporal logic
or ASL (Algorithmic Specification Language), etc. In formal high level synthesis
system the design specifications (also called formal specifications) can be verified
for correctness by applying mathematical rules. In simple words, formal high level

synthesis system is a system which transforms the formal specifications to imple-

mentable hardware.

Any high level synthesis system has two tightly coupled sub-systems, a front-end
and a back-end. The front-end accepts a high level input description and produces
an intermediate form. The back-end takes this intermediate form and produces cor-

responding VLSI layout. The objective of this work is to make the building elements

3
required by the back-end to generate the VLSI layouts, mainly the cell library. The

cell library is usually the central part of the back-end of any cell based high level

synthesis system.

The high level language used is ASL (Algorithmic Specification Language) and
the intermediate language is RSL (Realization Specification Language) in the sys-

tem under consideration [EI190].

The next section briefly overviews the synthesis and various approaches to it. In
Chapter 2, we review the related literature. Chapter 3 discusses the implementation
of RSL. Chapter 4 discusses the layout design technique used for the library cells

and also a complete example of matrix-matrix multiplier. Finally, the conclusions

are presented in Chapter 5.

1.1 Synthesis

The syathesis is an automated procedure by which an implementation is automat-
ically derived from a given specification. It is a transformation between different
specifications. Beside being much faster than manual design approaches, the de-
signs produced with the high level synthesis approaches are generally correct by

construction. Synthesis reduces the design cycle considerably, allowing the designer

4

to experiment with various design options to obtain the desirable correct design.
The synthesis process takes into consideration many engineering aspects such as
chip area, power, timing constraints, reliability, and testability [Eve87]. Today, syn-
thesis is a growing industry, and commercial implementations of synthesis systems

are widely used for production-level design of digital circuits [WC91].

There are different levels of representations of the digital system, which are, physical,
structural or behavioral [MC80, WE85]. The behavioral level is the most abstract
level while the physical level is the least abstract level. Depending on these different

levels, synthesis can be divided into the following main categories [Muk86]:

¢ High Level Synthesis: High Level Synthesis is a conversion or translation
of high-level program like specification of the behavior of a circuit into a struc-
tural representation. Structural level consists of a set of Register-Transfer level

components, such as ALUs, registers, multiplexers, and their interconnection

[MPC88, MPC90, Cam90}.

High Level Synthesis raises the level of abstraction to the algorithmic level,
allowing a more behavioral-style specification [WC91]. High Level Synthesis

techniques can be classified into two main categories:

1. Techniques to map a given algorithm to a specific architecture [FIK80].

5
2. Techniques to map a given algorithm to a general architecture [EN90].

High level behavioral specifications are in general shorter than lower level
structural specifications, easier to write and to understand, therefore, less
error-prone, and faster to simulate. Thus, these specifications considerably

facilitate the design of complex systems [WCai].

¢ Logic Synthesis: Logic Synthesis is a conversion or translation of structural
design into optimized combinational logic and maps that logic onto the library
of available cells [WHJ86, LBK88]. Logic synthesis is the highest synthesis
level currently in wide-spread practicé.l use. The input to a logic synthesis
system is a Register-Transfer Level (RTL) déscription and description of an

interconnected set of components such as ALUs, adders, registers and multi-

plexers.

* Layout Synthesis: Layout Synthesis converts an interconnected set of cells,
which describe the structure of a design, into the exact physical geometry, i.e.,
layout, of the design. It involves both the placement of the cells as well as

their connections [GK83, WT85].

An integrated synthesis system that covers all the three synthesis levels is often

referred to as a silicon compiler [WC1].

1.1.1 Silicon Compilation

Silicon compilers are used to obtain a VLSI cizcuit from different levels of repre-
sentations of the digital system to be synthesized. High level synthesis can be used
as a front-end component in silicon compilers [EIl190}. Silicon compilers derive their
name by analogy to software compilation, since the input languages to these may

be thought of as being analogous to high level programming languages [Dav90].

1.1.2 High Level Synthesis from Formal Specification

The synthesis system under consideration proposed in [Ell90], uses p-recursive al-
gorithms to model the behavior to be synthesized. These algorithms can be math-
ematically verified for correctness before being subjected to the task of translation
to architecture and then to corresponding VLSI layouts. Therefore this synthesis

system is called as Formal Synthesis System.

The high level language used in this system is ASL (Algorithmic Specification Lan-
guage) and the intermediate language is RSL (Realization Specification Language).
The elements of the cell library will be the main constructs of ASL. The Figure 1.1

" illustrates the different steps involved in this formal high level synthesis system.

ASL
Specification

Frontend

ASL 1o RSL

Translation

RSL

Specification Backend

VLSI Layout

Figure 1.1: ASL based formal high level synthesis system.

This system accepts ASL(Algorithmic Specification Language) as an input and
produces VLSI layouts. It has a front-end and a back-end. The front-end accepts
ASL input specification. The ASL can be transformed into RSL which then acts
as the specification for the back-end. This back-end would produce VLSI layouts
from the RSL specification. The specification method has three initial functions and

three operations that can be applied on certain sequences to obtain any computable

function.

In order to build such a system, it is required that the intermediate representa-
tion RSL be transformed into layouts. An algorithm to transform ASL to RSL is
also given in {ENI90]. This transformation algorithm is based on using a one-to-one
mapping procedure. The algorithm takes an ASL representation and transform each

ASL’s construct to an equivalent RSL specification and an equivalent architecture

implementation.

Chapter 2

Literature Review

The synthesization of hardware from abstract, program-like descriptions have been
an active area of research for more than two decades. In this chapter, a review of

the different approaches to hardware synthesis is done.

2.1 Synthesis

A number of powerful synthesis tools have been developed for several purposes,
mainly direct compilation [DPST81], expert systems [KT83], mixed-integer linear
programmiug [HP82]. Important contributions have also been made in the area of
microprocessor synthesis by the CMU-DA project [HP82], the Design Automation

Assistant (DAA) [KT83] and the MIMOLA system [Zim79].

10
The CMU-DA system [HP82] aims to produce a register transfer level design from

a behavioral description. Its goals are to convert the behavioral description into an
abstract data flow graph, perform optimization on the data flow graph, and select

a design style for implementation.

The Design Automation Assistant (DAA) [KT83] uses a knowledge based system
approach to aid in the system partitioning, structural selection, and allocation to
functional components. The input to the system is a data flow graph derived from
a behavioral description, and the output is an architectural description of necessary

components and their interconnection.

The MIMOLA {Zim79] system transforms a behavioral description into a set of
required hardware resources and schedules them. The target hardware can be re-
stricted and MIMOLA allocates the operations among the defined hardware and
generates a micro-program for the hardware. The reviews can be found in [Cam83,
Tho86]. Three approaches to correct hardware design i.e., formal verification, syn-
thesis and correctness-preserving transformations are discussed, compared and their
relative merits and mutual relationships are investigated in [Eve87]. [CR89] dis-
cussed in detail the synthesis of structures from behavioral domain descriptions, in-

cluding overall synthesis approach, techniques and methods used to solve the main

problems.

11

The behavioral description can be also described in an ordinary programming lan-
guage. In [GK88] Ada is used to specify the behavior of the hardware. In Flamel
[Tri87), Pascal is used to define the required behavior of the hardware. The pro-
totype Flamel imposes s;ome restrictions on the input programs, for example, the
input must be a single program without parameters and non-recursive. Only integer,
boolean, and one-dimensionless array data types are allowed. Multiplication and di-
vision are not allowed. In HARP [TKK89], the behavior of the required hardware
is described using FORTRAN. All the synthesis steps can run automatically, except
the determination of the facility’s wordlength and choosing the function unit alloca-
tion strategy. Only certain data types and their operations are allowed. Loops with
indefinite iterations are forbidden. Due to these limitations, the original structure

cannot be handed down to the synthesis process.

A hierarchically structured framework for analog circuit synthesis called OASYS
is presented in [HRC89]. Implementation mechanisms for managing the hierarchy,
style selection and translation are also described. The algorithms that translate the
behavioral description into structure within a bit-serial compiler are discussed in
[HJ88]. The behavioral description includes a full range of logical and arithematic
operators and supports previous signal values. A bit-serial (algorithmic) language

(BSL) has been used for the input to the compiler.

12
2.2 Formal Synthesis

The rapid increase in the complexity of the VLSI has generated interest in new meth-
ods for synthesizing. One of them is the formal synthesis, using techniques based on
a mathematical framework to formally prove that a circuit correctly implements its
behavioral specification. The classical text on formal theory and first order logic can
be found in [Men64]. A brief introduction to higher-order logic can also be found in
[Gor86]. Higher-order logic was originally developed as a foundation for mathemat-
ics. [Gor86] shows how it can be used both as a hardware description language and
as a deductive system for proving that designs meet their specifications. Examples
are also used to illustrate various specifications and verifications techniques. [CP88]
has discussed in detail abéut the different formal systems for hardware representa-

tion and also formal logic including first-order logic, higher-order logic and temporal

logic.

A more recent introduction to formal logic, which also deals with higher order logics
and type theory is also presented in [Hat82]. The use of higher order logic for hard-
ware specification and verification was pioneered by [HD85]. Many of the techniques
presented, have been adopted from Ben Moszkowski’s work on applying temporal
logic to hardware description {HMM83]. Another version of higher order logic can

be found in {Gor85]. [Mel88a) contains a brief summary of [Gor85] as well as verifi-

13

cation examples, using higher-order logic.

Generally, higher-order logic is distinguished from first-order logic by admitting
higher-order predicates, higher order functions and function quantifiers. First-order
logic suffices for the expression of many known mathematical theories and has been
widely applied for this purpose. But the expressive power of higher-order logic is
higher than that of first-order logic. A formal comparison can be found in [Hat82].
The high expressive power of higher-order logic also has its advantages that it easily
introduces inconsistencies, and formal reasoning is more difficult than in first-order
logic. This difficulty is intended to overcome with the introduction of ¢ypesin higher-

order logic. An in-depth exposition of the role of types (type theory) in mathematical

logic can be seen in [Hat82].

An authentic introduction to temporal logic and its application to the verifica-
tion is given in [MP81]. Methods of verifying communication protocols, tempo-
ral logic, can be found in [Hai82). For a recent overview of the temporal logic
and its applications to verification and artificial intelligence(AI) is given in[Gal87].
The application of temporal logic to hardware verification are also illustrated in
[BCDM86, DC86, CLM89, MF85, FTMo85]. The formal specification of the device’s
behavior must be clear and concise, in order to be seen to reflect the designer’s in-

tent. The idea of abstraction is therefore fundamental to formalization of hardware

14
design correctness. [Mel88b] discussed four basic abstraction mechanisms and their

formalization in higher order logic, each with an example.

Formal methods produce the maximal benefit in hardware development when the
correct technique is identified and embedded in a traditional framework such as
simulation or analysis. A first step toward such integration is the use of formal
specifications both as simulation tests and as input to appropriate theorem provers.
[SBE8S] identifies a2 way in which to obtain maximal length from the use of formal
methods in the specification and verification of hardware systems. It attempts to

evaluate a set of systems through a case study with two main issues under consid-

eration:

1. Which formalism is most appropriate and,
2. How to make use of the formalism or tool.

It also lists the desirable attributes of formalism intended for use in hardware de-
velopment. A complete overview on higher order logic is presented in [CS90]. The

latest overview on formal theory and temporal logic can be found in [KM91].

A new approach for formal synthesis is presented in [EB90]. It introduces a for-
mal behaviorl framework for synthesis. The given algorithm is represented using a

newly developed language, termed Algorithm Specification Language (ASL). ASL

-

15

is capable of representing any algorithm using a limited number of constructs. Re-
alization Specification Language (RSL) is used to represent the components and
connectivity of the synthesized architecture. An algorithm is also given to trans-

form a specification in ASL to RSL.

§

Chapter 3

Implementation of RSL

3.1 Imtroduction

~ The system under consideration accepts ASL as an input and produces an interme-

diate form RSL. The RSL acts as the specification for the back-end. This back-end
would produce VLSI layout from the RSL specification. The specification would
have three initial functions and three operations that can be applied on certain
sequence to obtain any computable function. In order to build such a system, it
is required that the intermediate representation RSL be transformed into layouts.
Each basic function is made as a cell and stored in this library. This cell library

support the back-end of the cell based formal high level synthesis system.

This chapter deals with the implementation of RSL and with the development of

16

17
logic level formal cell library as a constituent of the back-end design of the ASL-RSL

based formal synthesis system. The hardware models of basic units and their logic
level models and simulation outputs of larger functions such as adder, multiplier,
inner-product (axb+-c}, etc. are presented. The approach used for the implemen-
tation of RSL is illustrated in Figure 3.1. It shows that the RSL specifications of
a given circuit is translated manually into a logic level model. The cells already
stored in the formal cell library are used. This formal cell library contains the basic
functions of RSL. In order to make different cells care is taken to achieve modularity
and the design can be extended to any desired word length. This logic level model
of the given circuit is then simulated using a gate level simulator. The functionally
correct model is then given to the input of the physical design system which gener-
ates the final layout. This physical design system uses a cell library of pre-designed
s.tandard cells. The figures for the RSL architectures are taken from [E1190}.

This chapter deals with the development of logic level formal cell library as a

constituent of the back-end design of the ASL-RSL based formal synthesis system.

3.2 Formal Logic Cell Library Design

As mentioned earlier, any synchronous digital system can be expressed using the
basic comstructs of ASL, viz, zero, projection, successor, composition, recursion and

p-recursion. Corresponding to each construct in ASL is a construct in realization

RSL specification
of the circuit

Translate
to logic

Formal Logic
Cell Library

simulation —{

Physical
Design sub-
system

Standard
Cell Library

simulation —{ Layout Design }

| e

Figure 3.1: Flowchart for the implementation of RSL.

18

19
specific language (RSL) that must be mmapped to hardware equivalent modules. For

each RSL primitive, the library contains a logical description (at the gate/transistor
level). Similar to the construction of larger functions at ASL level, with the help
of initial elements in the library, it is possible to construct larger logic modules.
The synthesized logic cm:mts are stored in the library for later use. Therefore, for
ease of expandibility, they are made modular so that they can be easily connected
to build cells of larger functions. Also the design must accommodate varying word
lengths. For example, an n-bit successor function is easily made by cascading n
1-bit successor units. Hence, the cell library constructed may be utilized by other
systems once the modeling primitives (I/O primitives) are fixed. Thus the cell li-
brary designed consists of modular building blocks of logic level macros with the
above characteristics. Each primitive logic module (for Zero, Projection, Succes-
sor) is carefully synthesized manually. The zero function is a direct connection to
ground. The projection function can be easily implemented using multiplexers. The
successor function is basically an incrementer that takes an input n and produces
an increment n+1. The successor function can be used to build an adder, and adder
can be used to build multiplier. The adder and multiplier can be used to synthesize

the inner-product. The approach used for making the formal cell library is shown

in Figure 3.2.

The basic functions, which are Zero, Projection, Successor, are modelled as a logic

20

netlist [VLS87]. The logic level netlist is then translated into a transistor-level cir-
cuit using a tool called netlist and this transistor-level circuit is then translated
into a binary file using a translation tool called presim [VLS87]. This binary file is
required for the simulation done by rnl, a switch level simulator [VLS87]. This simu-
lation will verify the correctness of translation. These functionally correct logic level
models are then stored in the cell library. Layouts of these functions are then made
using a layout design environment such as OASIS [0OAS92]. A number of design
tools are integrated into the OASIS system. One of them is MAGIC [MAS*90],
which is a layout editor. Circuit from layouts are extracted and simulated to verify
the functional correctness of layouts. These stored initial functions are used in the
definition of larger functions. This approach is useful for building a cell library to

support the synthesis of an automated system.

These design tools are briefly discussed in the appendix C.

3.2.1 Clocking strategy

Two-phase non-overlapping clocking scheme is used in the design of all the cells.
Input is loaded during ¢; and the output is obtained during ¢5. The large modules
are made by using the primitive functions or using the small modules which are
made by using the primitive functions. Every cell has an input Control and an

output Ready. The input signal control is used to determine the starting of the

Basic Functions

e Lovel)
Logic Level
Model
* Gate Level
(N\
Gate to Transistor
L Level TranslatorJ
¢ Transistor Level
4)
Switch Level
| Simu:ator) Error
4
([)
P Layout Design [€——
. J
v
Circuit Extraction
_ J
v
Switch Level

Simulator) Error

Layout
Cell Library

Logic
Cell Library

Figure 3.2: Design methodology of the cell library.

22
operation and the output line ready is used to indicate that the circuit has finished

its operation. Asynchronous handshaking strategy is used to build the large modules.
The cells are connected in this manner that the Ready of the cell is connected to
the Control of the next cell. The cell starts its function when its Control gets some

signal from the Ready of the previous cell.

3.3 Implementation of Primitive Functions

We now describe the primitive functions which are used by the larger functions.

3.3.1 Zero Function

The zero function returns the value and has no arguments. A register is used to

realize the function which is initialized with the value zero.

3.3.2 Projection Function

The projection function is used to choose an argument i from n arguments. A
multiplexer is used to perform the projection function. The n+1 registers are used
to store the arguments. An input line Control is used to determine the start of the
multiplexer operation, and an output line Ready is used to indicate that the circuit

has finished its operation.

Figure 3.3 shows the hardware of projection function. It is a simple 2-to-1 line

23
Argl Arg2

e | s T

Figure 3.3: Hardware model of 2-to-1 line projection function.

multiplexer made by using three transmission gates. There is an input selection line
con to select one of the two inputs i.e., in0 and inl. The output out is obtained by
the enable line control

As mentioned earlier, every cell is made modular so that it can be extend to any

desired word length. Figure 3.4 shows how this one bit 2-to-1 projection function is

extended to 8 bits.

3.3.3 Successor Function

The successorfunction is basically an incrementer that takes an input n and produces
the output n+1. An adder and two registers are used to model the successor function
in RSL. One of the registers is for the argument n and the other for the value one.

The operation is done in one clock cycle. The block diagram of a 1-bit successor cell

24

;The Projection Function
;het file for 2-to-1 line projection
;with enable input " control “

(include "oasis_lib.def")
(include "formal_lib.def")

;one cell of multiplexer
(macro mux2(result Argi Arg2 con control ready)
(local conb a b)
(i1 con conb)
(i1 control controld)
(tgate Argl comb con a)
(tgate Arg2 con conb a)
(tgate a control controlb result)

)

;net file for 2-to-1 line projection (Bank of n muxs)
;it can multiplex two inputs each of n-bits.
(macro muxn(result Argl Arg2 con control ready)
(repeat i 1 n
(mux2 result.i Argl.i Arg2.i con control ready)
)
)

Figure 3.4: Logic level model of 8-bit 2-to-1 line projection function.

25
is shown in Figure 3.5 and the corresponding logic module is shown in Figure 3.6.

loadlcounti *in

andout andin
4— Successor |€—

ot ¥

Figure 3.5: Successor function.

This unit is designed as an incrementer and can also be used as an up-counter
by feeding back the output of the successor function to ome of its two inputs.
Load/Count control inputs are évailable to accomplish the necessary function. 2-
phase clocking scheme is used in the design of all the cells, input is loaded during ¢
and the output is obtained during the ¢». The cascading of successor units can be

done by connecting the andout output of a unit to the andin input of the adjacent

unit as shown in the Figure.

All logic primitives, macro cells, etc., are simulated to verify the correctness of
design. The Figure 3.8 shows the simulation results of a 4-bit successor function.
As a stimulus, the input is loaded with 7 (0111), on lines in.1-in.4 at the clock ¢;.

The simulator gives the incremented output i.e., 8 (1000) on lines out.1-out.4 at the

clock ¢,.

in out
[Jpt o e
inp
ini
pin

oout

otuo
Phiz—-l I:>—Phi2b

out

Figure 3.6: Hardware model of 1-bit Successor function.

26

; The Successor Function
(include “oasis_lib.def")
(include "formal lib.def")
(macro successor(out andout andin in phil phi2 load count)
(local a ini oout loadb pin outo otuo countb imp)
(tgate in load loadb inp)
(tgate out count countb inp)
(i1 inp ini) '
(i1 ipi pin)
(tgate pin phil phiib iin)
(a2 iin andin andout)
(exor andin iin outo)
(i1 outo oout)
(i1 oout otuo)
(tgate otuo phi2 phi2b out)
)
(node iin andout andin in phil phi2 load count)
(successor iin andout andin in phil phi2 load count)

(macro successorn(out andout andin in phil phi2 load count)
(repeat i 1 n

(out.i andout.i andin.i in.i phil phi2 load count)
)
)
(repeat i 2 n
(connect andout.(i-1) andin.i)

)

Figure 3.7: Logic level model of Successor function.

27

SimScope (Release 4.0). UW/NW VLSI Consortivm

P R | 1 ! %0
! phi i l l y7]
ny il ! [1 6 |
m2 l I ! 56 |
bpy | I 48
1 40]
) 327
) 24
' 16 |
ooty J !
9.600000¢+02 1.920000e+03 2.880000e+03 3.840000e+03
B = 0.000000e+00 T= 9.600000c+02 (per division) E= 4.800000c+03
Y= 1.000000e+00 Fixed-time-scale mode
File Nodes Begin End T-Scale Y-Scale Display Copy
Save Retrieve Posiscript Analog-toggle Quit

Figure 3.8: Simulation result of a 4-bit Successor function.

29
3.4 Formal Cells

Larger functions are made by using the basic functions. For example, the successor
function can be used to build an adder, and adder can be used to build multiplier.
The adder and multiplier can be used to synthesize the inner-product. The inner-

product is used to implement a matrix-matrix multiplier.

3.4.1 The Add Unit

The unit add is used to add two arguments. The direct block diagram representation
of add function in RSL is shown in Figure 3.9. The actual hardware model of add
is shown in Figure 3.10. It is implemented using two Successor functions and a
comparator. Addition is done in a recursive fashion. The Successor function which
is connected to one of the input of comparator is initialized with an input of zero,
at the same time other Successor function is loaded with one of the two arguments
to be added, say n. The other argument, say m of adder, is given to the second
input of the comparator. The output Ready of the comparator becomes high only
when both of its inputs become equal. Both of the successors start incrementing
simultaneously and increment m times. When the output value of the successor
connected with the comparator reaches the value equal to m, ready goes high and
both the successors stop incrementing as the Ready is connected to the control of

both the successors. Evidently the successor function loaded with the initial value

30
of n gives the final result as m + n. The Figure 3.11 illustrates the logic level model

of the add function.

Suc ‘ —bD—« ———P eq? —
—_> 2

pnl G Mux, _l

Suc

(=
r*

P Result

Figure 3.9: The RSL architecture of the unit add

The Figure 3.12 shows the simulation result of an 8-bit adder. In this simulation
two inputs 15 and 7 are given as the input to the adder and it gives the output 22.

It also shows that when the result is obtained Ready goes high.

3.4.2 The Pro Unit

The unit pro is used to multiply two arguments. The direct block diagram represen-
tation of pro function in RSL is shown in Figure 3.13. The actual hardware model

of pro is shown in Figure 3.14. It is implemented by using one successor function,

31

Bo

control y
count

Result
pnl D+—> Suc 4 >

Figure 3.10: Hardware model of n-bit adder (add).
one comparator, one add unit and some logic gates as control circuitry. The multi-
plication is done again in a recursive manner. Suppose m is to be multiplied with
n. The successor function which is connected to one of the input of comparator is
initialized with an input of zero. The argument m is given to the second input of
the comparator. The unit add is loaded with two arguments zero and n. The unit
add adds n to n, m times, giving the final result m x n. The Figure 3.15 illustrates

the designed logic level model of the pro function.

The Figure 3.16 shows the simulation result of an 8-bit multiplier pro. It also
shows that when the result is obtained Ready goes high. In this simulation two
inputs 3 and 4 are given as the input to the multiplier and it gives the output 12.

It also shows that when the result is obtained Ready goes high.

N

;The unit “add”

(include “oasis_lib.def")
(include “formal_lib.def")

(macro addn{outl in phil phi2 load b ready inl loadl)
(local out count counti)

;generate “adl*
(adl out in phil phi2 load count b ready)

;generate counter

(successorn outl inl phil phi2 loadl countl)
(connect readyb count)

) (connect readyb countl)

)

(node outl in phil phi2 load b ready inl loadl)

(add outl in phil phi2 load b ready ini loadl)

Figure 3.11: Logic level model of an 8-bit add function.

32

100009
dt= 341168
Ruas: additeh

1S

ESFS ESES IS ESESES SRS PSS SRS RS PSRS RS RS RS 2SR5 A5 A5 RS 25 @5

w

FEFPEREYTIPPEPPPPRPEERT

bs pshshs ks

ISFSPSPSPSPSFFESPFPFESP 1S I!S s IIS lS}lS'IS!ISIISIIS‘ISPS[IS!IS‘IS 5

i
L:vs oLox::zs:;;[:snssxsv7sa99lzo[:nEbhzzz
rrlm 0 llurzr:inrs‘uiu SilS 15'15 n‘nrxlxs'w‘wlzozo i1k b2

535

by

s BN . s s 2 NEW . ¢« 8 259089 .

Figure 3.12: Simulation result of an 8-bit add function.

v 36347
341094

33

p ! (} [Mux, —-I

Add

I Mux, | Cj B3

Figure 3.13: The RSL architecture of the unit pro

pll

—

o2 O_,_. Readyl
0 Suc - > eq?

control !
A
1 count |

load
loadx
N
! load2
¥ Ready2 Ready
add

3 (>
(O

3
5

yy y Result

icount2| count3

Figure 3.14: Hardware model of n-bit product (pro).

34

;The unit “pro”

(include “oasis_lib.def")
{include “formal_lib.def")

(macro pron(out3 int phil phi2 load b b2 ready)
(local loadi load2 load3 comntl count2 count3 out2)

;generate "adl®
(adl outl inl phii phi2 loadi countl b readyl)

;generate “dff"
(dff readyld phi2 readyl)

;generate "“add"

(addn out3 out2 in3 phil phi2 b2 ready2 ready2b in2)
(connect load loadi)
(connect load load3) _
(a3 readyib ready2 phi2b counti)
(02 load counti load2)
(02 readyib ready2b count3)
(connect count2 count3)
(a2 readyld ready2 readyt)

)

(node out3 ini phil phi2 load b b2 ready)

(pron out3 ini phil phi2 load b b2 ready)

Figure 3.15: Logic level model of 8-bit pro function.

35

iaputl

outpat

1.00e-09
dai= 261000
Runsc probel

o
o

w

o
-

e 65233 .+ « s+ s IXS00 4+ .+ .+ 195750 .

Figure 3.16: Simulation result of an 8-bit pro function.

. mtw
2610.00

36

37
3.4.3 The Inner-Product Unit

The unit inner-product is used to multiply two arguments and add the third ar-
gument to the result of multiplication. The direct block diagram representation of
inner-product function in RSL is shown in Figure 3.17. The actual hardware model
of inner-product is shown in Figure 3.18. It is implemented by using one add circuit
and one pro circuit. Also some logic gates as control circuitry. The pro multiplies
two arguments in a recursive manner and the add adds the third argument to its

result. Figure 3.19 shows the logic level model of the designed inner-product cell.

c,'o
®
\AAZ
k4
&
]

It

Add +—» Result
Mux,
Pro '

} p4

Mlﬂz

-]

Figure 3.17: The RSL architecture of the inner-product cell

Figure 3.20 shows the simulation result of an 8-bit inner-product cell. In this

example, ¢ is taken as 3, b as 2 and c as 4. The result output is equal to (a x b +

c) =10.

pi

(0)

2

() (C)»w
Readyl

>

pro

inl

Tloadx

0
pc
, countll lcount2

(o)

a*b

A

38

>

>

add

Ready?2 j> E’j
Z
7

TS
w loadll IloadZ: <E‘[>‘*

L

Figure 3.18: Hardware model of n-bit inner-product.

Result

;The unit “imner-product"
;with 3 imputs a, b, and c.
;result = (a * b + ¢)

(include ®oasis_lib.def")
(include "formal_lib.def")

(macro inner(out3 ini in5 phil phi2 load b4 b3 b2 ready)
(local rb q loadl load2 countl count2 counti)
;generate "adl"
(adl out in5 phiil phi2 loadl countl b2 ready0)
;generate counter
(successorn out3 in4 phil phi2 load2 count2)
;generate "pro”
(pron out2 ini phil phi2 load b3 b4 readyl)

(a2 ready0 readyl ready)

(i1 readyl rib)

(0i2 ready rib counti)

(0i3 rib ready counti rb)

(0i2 rb c0 rb1)

(i1 rb1 b2)

(a2 readyl rb2 loadl)

(connect loadl load2)

(04 b2.1 b2.2 b2.3 b2.4 c01)

(04 2.5 b2.6 b2.7 b2.8 c02)

(02 c01 c02 cOb)

(a2 cOb q countl)

(connect countl count2)

(repeat i 1 n
(connect out2.i in4.i)
)

)
;generate globle node names
(node out3 out2 in1 in5 phiil phi2 load b4 b3 b2 ready)
(innert out3 out2 ini inS phil phi2 load b4 b3 b2 ready)

Figure 3.19: Logic level model of an 8-bit inner-product.

39

40

0
L]

00
.00

[l
[l
[l

.

i

111

b

P PRI PR

P

b ¥

S

.&L

2

o

¥

{

[

:
;

(1

I
p

I

)

P

[
i

—

3

]

|

)

)

FEETE
bFBIBFb

PPEbE

—

4 >

aflpsﬁxﬁ;ptﬂxpzptrk'khvx

RIRARIRIRR RN

bb{blblb

)

2
241

« 1807500

o 602500 .

phil

ﬂ v

dt= 2410000
Ruas: innibeh

Figure 3.20: The simulation result of an inner-product cell

Chapter 4

Cell Layout Design

4.1 Introduction

The previous chapter discussed about the development of the logic level formal cell
library. This chapter deals with the layout design methodology of the cells stored
in the formal cell library as well as the layouts of the formal cells which used this

basic cells in thelr definition.

4.2 Design Methodology

In a cell based VLSI layout synthesis system, the heart of the physical design unit
is the cell library. The approach for such a synthesis system is illustrated in Figure

4.1. The logic level model, using formal logic cell library, of the given circuit is fed

41

42

to the physical design system. has Two sub-systems of the physical design system
are used. The first sub-system is used for placement and routing using standard
cell ibrary. It places the cells and performs the global and detailed routing in a
plane so as to minimize the layout area. The output of the first sub-system is given
to the other sub-system. It assembles the final physical layout. The circuit is then
extracted and simulated to verify that the hardware description of the chip under

design performs the intended function.

4.3 Physical Design Sub-System

Layouts are made using a layout design environment such as OASIS [OAS92].
A number of design tools are integrated into the OASIS system. QASIS is an
abbreviation of Open Architecture Silicon Implementation Software. It is a cell-
based system for IC design. The tools integrated into the OASIS system have been
developed to automatically translate high-level descriptions of integrated circuits
into testable physical layouts, using predesigned standard cells.

One of the premises of the OASIS System is the modularity of the software.
New, improved algorithms can be easily substituted in place of the old one’s . The
entire system is controlled with a single data flow supervisor program to assure data
consistency is maintained at all stages of the design. The data flow supervisor is

template-driven, the templates used in OASIS can be easily expanded to support

Logic Level Formal

Netlist Cell Library

VLSI Layout | extraction

simulation

Figure 4.1: Approach for cell based VLSI layout synthesis system

43

44
additional software tool, thus providing the desired openness of the system.

4.3.1 Standard cell approach

The layouts produced with the OQASIS system utilize standard cells of uniform
height. The cells are placed in an array of horizontal rows and all interconnec-
tion of signal nets are made by channel routing in the space between the adjacent

rows. All connections of the power nets, VDD and GND, are made by abutting the

cell horizontally.

Signal nets connecting cells belonging to non-adjacent rows cross the intervening
rows of the cells by utilizing feed through pins (vertical strips of metal running from
the top to bottom of a cell) built into some cells, or by inserting feed through cells

(cells consisting solely of a single feed-through) whenever appropriate.

A set of scalable CMOS cells compatible with the 2u SCMOS technology are used.
Cell signal input and output ports are made in the second layer of metal, while the

power net (VDD and GND) ports are made in the first layer of metal.

The VDD and GND power nets from each row of cells are connected together using

power rails running vertically through the entire height of the layout.

45
4.3.2 Placement
The placement and routing in QOASIS is done by a layout subsystem of OASIS called
VPNR (Vanilla Place aNd Route). The tools comprising VPNR create physical
layouts automatically from netlist descriptions of logic circuits, using a library of
pre-designed standard cells of uniform height. The goal of VPNR is to place cells
and perform global and detailed routing of interconnections in a plane so as to min-

imize the layout area.

VPNR is usually invoked at the end of the entire design process after the design has
been simulated and verified to implement the desired functionality. Occasionally,

the layout may be generated in the early stages of the design to obtain an estimate

cf the area taken up by the circuit.

VPNR employs placement and global routing algorithms based upon the quadri-
section paradigm [SK87]. The combined placement and global routing program
receives a netlist of standard cells, partitions it into four quadrants (top-left, top-
right, bottom-left and bottom-right), and processes each quadrant in the same man-
ner until each quadrant contains one cell row in the vertical direction. Partitioning

is accompanied and directed by approximate global routing.

46
4.3.3 Routing
After the positions of the cells in rows are determined, the interconnections compris-
ing the scan chain can be chosen. The algorithm applied here is a simple snake-like
path threading through the cells consisting solely of a single feed-through wherever

appropriate.

The next stage is the detailed global routing. The algorithm constructs a mini-
mum spanning tree for each net, finds the exact crossing locations for nets that need
to cross the cell rows, insert feed-through cells if necessary, and assigns sub-nets in
channels. The nets are processed sequentially, and the routing of each net takes
into account all nets routed previously. After all nets are routed, the global router

prepares the data for detailed channel routing.

The global routing derived at the preceding stage does not include the global nets
disregarded at the placement stage. These nets are assumed to follow a fixed routing
scheme. They cross the channels vertically in the vicinity of the vertical power rails
and extend into the channels horizontally to the left and right of the vertical rails.
Usually the horizontal extensions of a given net occur in every second channel.The
routing of the global net involves inserting the vertical power signals together with

the adjacent feed-through cells for the global nets, and adjusting the data for chan-

47
nel routing to accommodate the vertical inserts.

Each channel definition contains a list of groups of pins that will be connected. The
channel router determines where to put the wires so the resulting layout occupies
the least amount of area. VPNR provides a choice of two channel routers: a greedy

router [Ros85] and a left edge based router with channel compaction [LNR88].

4.3.4 Simulation and Verification

The entire purpose of this phase is to verify that the hardware description of the
.chip under design performs the intended function. The layouts made by the magic

can be extracted and simulated using a simulation tool called irsim [MAS*+90}.

4.4 Layouts

Layouts of the different units discussed in the previous chapters are synthesized
using layout design environment OASIS [0OAS92]. The VLSI layouts of cells are
implemented using SCMOS technology. The VLSI layout of successor, adder, mul-

tiplier, inner-product and the matrix multiplier are shown in the following figures.

Figure 4.2: VLSI layout of 4-bit successor unit.

48

Figure 4.3: VLSI layout of an 8-bit adder (add) unit.

49

-]
"2| «
-y (] o (-] o«
ot o o B -] os
2
.- fad e e [%008 e e e . —

Figure 4.4: Simulation result of an 8-bit adder (add) layout.

T

Figure 4.5: VLSI layout of an 8-bit multiplier (pro) unit.

51

TN

LT

Figure 4.6: Simulation result of an 8-bit multiplier (pro) layout.

52

Figure 4.7: VLSI layout of an 8-bit inner-product unit.

53

Al
O N B

Figure 4.8: Simulation result of an 8-bit inner-product layout.

54

a9

55
4.5 A Complete Example

An example of formal matrix-matrix multiplier is presented as an application
of the cell library. Three different types of architecturesi.e., simultaneous recursion,
recursion with respect to several variables and fixed number of nestings are used
[EN90]. Each architecture accepts two matrices as input, and a third matrix as an

output.

4.5.1 Simultaneous Recursion

Figure 4.9 shows the RSL architecture obtained for matrix multiplication using
simultaneous rescursion. It is implemented by applying recursion construct on inner-
product units. The architecture consists of n? inner-product cells. The Figure 4.10
shows the hardware model of this type of matriz-matriz multiplier and the Figure
4.11 shows the logic level model of the matriz-matriz multiplier. It is made using

different cells of the logic cell library i.e., inner-product cell, pro cell, add cell and

successor cell.

56

= e (] @
coatrol b, Ready
Aln,...,A12,All L
L Ready[~ g L CI2 -omeeene L Cln
Inner Inner Inner
Bnl,..B21,811| Product Bn2,.., .B12} Product Bnn,.., ,Bin| Product
Cell »l Cell]) Cell
r B |—> B B
A20,_AR2Al
L C21 L C22 -eceeeey- L’ C2n
Inner Inner Inner
Product Product Product
—¥ Cell » Cell —» Cell
>
i B 5 | R
: ;
Am,..An2Anl [5 |
L Cnl L Cn2 -eee--- L Cnn
Inner —p Inner Inner
Product Product Product
¥ Cell —» Cell —P Cell .
I 5| 5| R

Figure 4.9: Implementation of a matriz-matriz multiplier using simultaneous recur-

sion.

-

57

|
2
(O
0 Soc - > eq? —
——— Ready
Tm R&dyll
<;—_‘| Radyln
Readynn
Readyl1 loadx Readyln
loadxl Inner | ’ - Inner — >
ain....all Prodsct] cC11 Product
Cell ¥ Cell
D
5 0
loadx Readynl loadx Readynn
| ‘ Inner > Inner
ann.....an ™ Product! Cal Product

bal....bll

cursion.

Cell

bon,...,bln Cell
B

Figure 4.10: Hardware model of a matriz-matriz multiplier using simultaneous re-

1o d

58

; The matrix-matrix meltiplier circuit using
; simultaneous recursion

(include “oasis_lib.def")
(include “formal_lib.def")

(macro muli{oll o012 021 022 iii i12 i21 i22 all al2
a21 a22 bii bi2 b21 b22 phii phi2 load b ready)

(local out count com al a2 a3 a4 bi b2 b3 b4 readyl
rib rii rbii ri2 rbi2 r21 rb21 r22 rb22)
;generate "dff"

(dff con phi2 out.1)
;generate "adl8"

(adl out ini phii phi2 load count b readyl)
;generate “"inner-product cells"
(inpro o1l il1 ini in5 phil phi2 load con mi m2 rii rbii)
(inpro o012 i12 inl in5 phit phi2 load com mi m3 ri2 rbi2)
(inpro 021 i21 ini inS phil phi2 load con m4 m2 r21 rb21)
(inpro 022 i22 ini inS phil phi2 load con m4 m3 r22 rb22)

(o4 rbii rbi2 rb2i rb22 counta)
(0i2 readyl counta count)
(04 rbil rb12 rb21 rb22 readya)
(0i2 readylb readya ready)

)

;generate globle node names

(node o1l 012 021 022 i1l i12 i21 122 all ai2
a21 a22 bil b12 b21 b22 phil phi2 load b ready)
(mul o1l o012 021 022 i1l i12 i21 i22 aii al2
a21 a22 bii b12 b21 b22 phil phi2 load b ready)

Figure 4.11: Logic level model of a matriz-matriz multiplier using simultaneous
recursion.

59

The Figure 4.12 shows the simulation result of a matrix-matrix multiplier. It can
also be observed that when the result is obtained Ready goes high. In this simulation
following two matrices A and B are given as input to the multiplier and it gives a
matrix out as an output. The Figure 4.13 shows the VLSI layout of a matrix-matrix

multiplier using simultaneous recursion.

A x B =out

X
Il

60

TS lh e PP S NV XU .\ WPUOR TR B0 - BVSRR Y .\

.....r.x_ —......l.. el OdfAn il CohiSitie QB R smtThe MinEAe sl DnMdn 0 hAu Qe bR
—”ix:... o] T Shohn Thm e SR SRkHA TR S T e AW Reails Tinle Lo
..........._ —..... o tootos Cheeaihor Tlaaetias CAuAM1s ChuiEe “Thesetiihes CBhuaeBihes “TealFias i TRheaiBin {ChudOs Theunee

—:ll!t. -f(ollu e Ot "Thoarmiae ChakDhn Ol “Theriihes ST WA TSV - W~ VL, - WP WL - IR, ~ B W)
.t..t..._ —lv.xx et Shuae Tharma Shimmin Shusmn Thusme Slhufha Thoemmes Ko Tt Tt Thugtu
ﬁ\.......: L W WY TR TR S Rt OB A i SR MR S Ml
I......._ _ LT W W~ P W Chnkhe TAulTie ShieBihne “TaiTies Shifrton Qo Qoo Ml
ssas e Cheeolihee Witz ChLShs CREAw il DhiafiAu "ol [T — TR, TO-~~ T = W — B - 9}

....x.:._ —x...!l T TR BT ATl AR i iAo Sl Ohafibe St Mufide
—”i.‘t! sasmeseared TR0 MR SAnBG "B ShoMM SAukHn T Gl WMo e i TdERn Tk
x._ _..... e Chonhee T Gk Chitie Toitihe Sk Tt TersfRee issefss FResser FRsehee
_..H.........HU o Chenihes "ot hukils Chutthes TheotfThe SluBihe TheaFies S RheesRu FRessfDhe el
.tt:...— —...l.l ot OB “Thanman Shuma Shnbae Tmtmoe Sihu@de Tueme R Thne T TRk
H!ttl. wesssonsad " Shinha “Thaemn Shuai Shatrhae Tanme St “Tionmmn StoufR Fuue ik Tk
_.‘IL _........ e Shecehe oo Chiikls Chudthe “Sethee ChunBhe Tl FuasRhes RanskRies el TRoelne
e !:..tl.u ol Ohnbhe Whaimoe OhuSSho OhaEAs SRalithe OWufibe Madmne Shftho Fndime abibde T
—.x.lts._ —.l.. et b e Sl CrhnfiAa il iR el ChifiAe sl Shufihe mnime
..lx...:w _.c..... 1M ShonBhn M S SAuEMi "R Slhufho T Rualhn Rty Tinfhn Tkt
ned Loy Mo e *Thetrmiae ST is Chu M “Thaseitthas Bheudre “Tetiths ChoubTher Fenifhs D ReeiRee
—Ht.xk.. ...l!.u shourmin Sl Thorms Shambn Shutan Thams Shurdn Thurmn Rt PR Tl kD
—..l.s.:._ —....xt..x— e Chenan Taame Shnmmba Shutae Thomns DM Thamme Aetin T L= T W e
L Ohoulhes W OhaATiin BHhoekihes MhuaitThe loubihoe Mansie Chinchimbes Theosttiioe ChniShe Toloitiies

Qi_ _:... ..!”_ A ETee Oassfihes Wl Bitee ORUET 10 Co LA “TRalTBee hanBihe Biiee SArmler g N e

.t— —..:..:t. T @AY W O SR A NuRAn W ko i Bl Gl
—H.t‘t.. e errsThes CohenftAe e ORI OAwRAW Sl Mlhne oM Shuhibn ufn DhinRidn Snfih
oty sessmsrvsnd S MiBe ChinEWee TrhaThe CheelMus Ghuee "Battha Al ThouMhie SAeufhes ChonsRs (=W T — W —
:....:... _........... e Chonida Thaami Tl Chudile “Duirmin Dlublin Thume e S CuntfRe RulSee
osrman:H T CHaEi A S O O huEiAu T fiAn e @hnfrin Rl @infrdn Fhalifo

.r..:_ — e OAmRtAn ot A&l QaniiAn smuthe SwRAe malfe AR T Shnfie T
ﬂl. anes .Hu.a....’.. S heaelhes Tar s ANl Shumfis “Basaffhes Sl THalMis SAEDR e R s fhs R

......:.:_ —.......... o trrtos ChonBidse MileenMes i Chuitihe oot Dhullhe TRektMa St ShudBe RS SRl
—..l:....._ ...:..:.u St A Ml Oa@ e OhndAe "Ml AMfAn Mo Sufibe Shufme nfide [
™ —........! e b nfihy mnime oSl CAnkids it ARAn Tl i Suufme itk Shnfriin
A Oanfhe WelTo O AN O A “WatTee ohensfihes VMoo Shinbhne “Meafee Gl Yoo
...x_ oo fe ke FrtonZThn ORif e Crheeiihee Mo lTTae haneEhee ThrelThor SRR “Theelies hnfihas “THanoTTTisa
oM SR ThaBMu Shnle SAada "D Dafdae T e Rt T SRk
e @i T Shibta Shntnan e afha Tammn Thinkhne ot L - W -

sossansose

I
e

[Yttt €24 E¥s Tetn okl Chonies “Dhts Dlailbes Thenes Funes Seniin Ronee FraBhe
" Chonman e Shiic Sha@An Thonmo Do Tarme ke ot Tk TRnEAn
L -, ol et i [-] oW, L) [(=) [— Ny [

%EEBEEF

outll
outl2
oul
ou2
rady

bll
bi2
b2l
b2

C!

phil
phi2
all
al2
1]

4110000

(?k!)- ¢ 0 o 1000 . ¢ 0 . 000 . . e o 3082500 . oo 400000

Figure 4.12: Simulation result of a matriz-matriz multiplier using simultaneous re-

10009

d= 4110000

Runs: mulbeh
cursion.

61

Figure 4.13: VLSI layout of an 8-bit matriz-

matriz multiplier using simultaneous
recursion.

62
4.5.2 Recursion with Respect to Several Variables
It is implemented by applying recursion construct on multiplication and adder units.
The architecture consists of n multiplication units and 1 adder unit. The Figure
4.14 shows the hardware model of matriz-matriz multiplier using recursion with
respect {o several variables and the Figure 4.15 shows the logic level model of this
type of matriz-matriz multiplier. The Figure 4.16 shows the simulation result of a
matrix-matrix multiplier recursion with respect to several variables. This type of
architecture gives output in a serial manner. The output read goes high whenever
the output is a valid result and the output ready goes high after the multiplier give

all the results. The Figure 4.13 shows its VLSI layout.

63

Pnl

P OD: Sue < » cq? >

ioadx Ready
T———Q:"Q—“’“"‘
loadx
foadp
ani.all Readylp
—

bin_bln) _Q——-

8
1
2
l—

a
g
5
N
4

s : _ : add |Ready? _tLj ijya
.al ;| Re
m_“," pro Rmdynpj loale—IMQ:%_Do. -

o ‘] —

Figure 4.14: Hardware model of matriz-matriz multiplier using recursion with re-
spect to several variables.

; The matrix-matrix multiplier circuit using
; recursion with respect to several variables

(include "oasis_lib.def")
(include “formal_lib.def")

(macro mul2(iin3 iin2 iin22 iin0 in0 inl inS phil
phi2 alil 212 a2l a22 bili bi2 b21 b22 load ready)
{iocal rb rbi rb2 rb3 c0 c01 c02 cOb loadl load2
couat rlb in4 readyab readylpb ready2pb readyp)
;generate “dff"

(dff q philb counti)
;generate "adl"

(ad18 out0 ini phil phi2 load count0 rdy)

(ad18 out inil phil phi2 loadl countl readya)
;genexrate counter

(count8 iin3 in4 phil phi2 load2 count2)
;generate "pro"

(pro iin2 ini phil phi2 load readylp readyipb)
(pro iin22 inl phil phi2 load ready2p ready2pb)
(a2 readylp ready2p readyp)

(ai2 readya readyp readyb)
(0i2 ready rib counti)
(0i3 rib ready countl rb)
(02 rb c0 1b2)
(ai2 readyp rb2 rb3)
(i1 rb3 load2)
(02 load2 lo loadl)
(a2 cOb q countl)
(connect countl count2)
(a2 readya readyp lo)
(02 lode loadx loadp)
(a3 phiib rdyb lo countO)
(repeat i 1 8
(connect iin2.i in4.i)
(connect iin22.i b2.i)
)
)
(node iin3 iin2 iin22 iin0 in0 inl inS phil
phi2 all al2 a21 a22 bil bi2 b21 b22 load ready)
(mul2 iin3 iin2 iin22 iin0 in0 ini inS phil
phi2 all al2 a21 a22 bll b12 b21 b22 load ready)

64

Fignre 115 Logic level model of matriz-matriz multiplicr using recursion with

respect to several variables.

65

[MIIPCOR .. By |

00

s J:.:..m.: L

o]

pe

et CiloodCobis T
[e]
I L e e gl

Josse T
i T
inonTor

g??:ﬂo E:-;=:=::

2

e

5
N T T
e s Ohukl O

o ThassalTlees S
b Mhaesnles hiniilns AT
on ST

YR |

Eenflln

L

Aidis 0T

Y o
Feon ST 4::..?.:“

v AN500 . v 601

3

1

. o IS0500

10009

}

Figure 4.16: Simulation result of a matriz-matriz multiplier using recursion with

respect to several variables.

601

di= 6010000

Runs zibeh

66

=

B be il

Figure 4.17: VLSI layout of an 8-bit matriz-matriz multiplier using recursion with
respect to several variables.

B2
—
"oD’ M osx b M eq? —
x> Ready

lE

anl...a2tall Inaer
bla,_bi12b1} |} Product

% O

|

Ready

— |
2]

Figure 4.18: Hardware model of matriz-matriz multiplier using fixed nesting recur-
sion.

4.5.3 Fixed Nesting Recursion

The architecture consists of n inner-product units. The Figure 4.18 shows the hard-
ware model of matriz-matriz multiplier using recursion with respect to several vari-

ables and the Figure 4.19 shows the logic level model of this type of matriz-matriz

multiplier.

The Figure 4.16 shows the simulation result of a matrix-matrix multiplier with

fixed nesting recursion. The Figure 4.13 shows the VLSI layout of a matrix-matrix

multiplier using fixed nesting recursion.

68

; It is the Matrix-Matrix Multiplier using
; fixed number of nesting

(include "oasis_lib.def")
(include "formal_lib.def")

(macre mul2(iin32 ini phii phi2 load b41i b3i
biZ1 all ai2 a21 a22 bil bi2 b21 b22 readyi)
(local loadal loada2 readyld ready2d loadi
loadiu readypl readyi iin0 countO)

;generate "adl"
(ad18 iin0 inl phil phi2 load count0 rdy)

;generate inner-product

(in2 iin32 iin22 inl inl phil phi2 loadi
readyp2 loada2 ready2 ready2b)

(in iin31 iin21 inl in1 phil phi2 loadi
readypl loadal readyl readyib)

(connect readypl loadal)
(a2 ready! readyp2 loada2)
(a2 readyld ready2d readyi)
(02 readyi loadx loadiu)
(a3 philb rdyb ready2 count0)
(repeat i 1 8
(buftri iin31.i loada2 bi22.i)
)
)

{node 1in32 inl phil phi2 load b4l b31
bi21 all a12 a2l a22 bill bi2 b21 b22 readyl)
(mul2 iin32 inl phil phi2 load b4l b31
bi21 all al2 a21 a22 bii bl2 b21 b22 readyl)

Figure 4.19: Logic level model of matriz-matriz multiplier using fixed nesting recur-
ston,

69

[OSPPUONNT - WHIP CII < WPUPR TR WY . I W) Py TP ORI~ SRR . S

.

"

N

k! At Shlie DM "7 Gl "I Thundfiun
........ .— e Slan®er T ShaM Sl TouMn Qnafae oM Bhoadfm
ﬁl..-..l.- Tl SlaeekDae it Shaiddlie DhssfMins Thossshtilon [~ R SR Y WL, - RO - - B
.u Tt Dloehss “TlundMn Shendoss DhrnlMics Thossel e SlosssfMuse ThisertMuss Cloons e

Tunerton ook 1 Ghnamine Bl o T o T Wl

........ ._ Tl Ohueales Moo Ohnihee OhonCihee ToeeSToee Olunnfihes ThuisTihiee Thssediden

—“.::...E. ittt GobeoeolBlar reoitile Ghoslilur OlionSile Taroos Oliseafile TaesTre Cueseee
......... u ot Oheoaflee Mt Sl Olunfihue TR unihee MunTie \Qendfe

e *tuneSiren @ik T QR

LTI TR I
Wi un®ohe MonsTi Mendfhe

— L IO VO R, - W WY 1} WYY, VUYWL R, Y) PR VP [T, 9 29
o pramnnd T Sofhan T Sy T s eI
_ n..:....... ittt SlowekBlue et Showfie Qhulios Thaosskiilue Slissikihs Tl Hsondhive
—......::xu et Sl Thnda ShofMin Shai “TeaMe Shinfle Tt Mun B
i L Y VPR L WY S Y T L Y, e uurehfue

.........:_ ettt Sheonkiles Tt ShakMae Sl "Hosnse Clunkloe Tt Dbl

_ _H..x. it Sl Tt S huefline Baeedtiteee Slosssfilue Thoissifiles CDsss e
...!._ T al At S ShuMhin Sl " Glonin Tinnamtine TunAfn
iy Tttt il oot Aol Sl Fawiifen Shunkioe Tt e il
.!....u oot Clesiloes Thotstiss Cheiilis Qhisssdhiss Tlondfties Sihireidhse ThindMin Lo Sl
_ _H.E...: Mttt Shoskbles T Sheaddlee Glonkitin Tlasdtior Ghinlios Thitittes Dbl
.E_ oy Lt Tl Chudndis Dol Thasamie Sl Tt Glunafie

el Loosermeren. Wlon s EbasecBlos MoseiThs ChensCiles

",

P Mheseiless Einfls MossnTTilie e hlilon

...........u Wt Cohorokloe "Misssiffllise Clossklie Olisssilis MuraliTuse Oohisisfiiss MasanTiliss CeockThons

— —”tk....t: T unkilne stn®mn. @dafh bl mandfio ST R P YT
H Ao Shfne B ShofMin ShnfMio ToaMe Sl T Mua R

i Qlhorkions Thiieetin Sherflime OlosekMuss Toocettiloos Chossslos ThisselfMeve \usssdlhoss

— —!l!v)-l.

| Clhseotliors Wureertion Al OhinrdfDlss Weseeise Clirseiiloes ToorestWors ResesdBow

I n Qi T Qhuntie Dot T lundins T Fnrtd

—....
— o
TN

. .:::.._ _.tx......:._ s el e Sl ™

hoo WeoratTheor @ni&Slas Mitius il

Xier CoheoerkShis Mo Cheee Rl € Be TrheedTlue Olunhie STl \Quudile

ernd Tttt ShaesdBbos WM Shesekles

o] et oSl Hor oo oo Sihe ToseThe s TasTs T
h..”.. ttosedTtiee Cobosookilos MM Chessfihts Ohesefihir TlasssTure Eliensllihss TihisanTTiluss “WiassosTTBione
— U M@ Dhouebeer Wi Shu b Ol TtundiMon QMo T Sheonfalion

Thunmmn S o 1 St Dandnbn W0 Sl Tinnamn RuukShe

e SleeakBloes ThotMin SharkMis DhoskMie e sl Slisnilse T Titie SRoom e

oy fusmsind
............. —H..:......._ Aot less Chessoiers ThrrfMins Shenndhisr Bhrsfhie “Tlessotfriin Slieeibs TohoreedtMitise SRrosebene
oy unfii W Shuantin Al T Skl Thinamtnr SRunRm
M it Lol Y ¥] Sl i Thanamne Sl Thommn SRR
I oo Thes Cilokiben Tt Sheaflas Dhousokdlios Thosellios Dlankils Thssiie Tosnkn

3
-..... o
...... e

_ _:.......... ottt @hocekMore Blontis Sl Ol Bandittoe Slundilae Tt St
L] ol — i o), e o p— [~

.._ [v "TheonMee ShisllMuss ThonilMase “CloscsBs 1oe
- L] ot Shuatiin Thuhne Tlanemo Shaming Tunmtn ' Qundue

............

1 4T
4

phi?
all

a2

a1

an
bil
bi2
b2
vz}
out

ready

gg . [[v N . . + 55000 [}] v 3933500] [}

Runs: 22k

d= 4110000

10009

Figure 4.20: Simulation result of a matriz-matriz multiplier using fixed nesting

recursion.

irymieREnge: 2

Figure 4.21: VLSI layout of an 8-bit matriz-matriz multiplier using fixed nesting
recursion.

71

The architecture of the meatriz-matriz multiplier using simultaneous recursion has
the largest architecture i.e., n? inner-product units and obviously the largest layout
area. But it is the fastest one, gives result parallely. While the other two types have

smaller layout area but these are slower, gives result serially. Next chapter shows

the comparison between the three types of matriz-matriz multipliers.

- =

Chapter 5

Conclusions

A complete design of a logic level cell library for the support of back-end design of a
formal high level synthesis system has been presented. The cell library contains the
logic level models of basic primitives of RSL, viz., zero, projection, successor, com-
position, recursion and p-recursion, that can be applied recursively to obtain any
computable function. All the cells are exhaustively simulated and made modular so
that the design is capable of extending to any desired word length. These modules
are also used to made the larger functions. A formal matrix-matrix multiplier has

been designed using the support of the cell library.

Table 5.1 shows the number of devices and layout area of these units for an 8-
bit data bus. Table 5.2 shows the number of clock cycles required by these units

for an 8-bit data bus. The time required by the main multiplier is important which

72

73

is, as mentioned in the table, maz(Cy;,- - -, Cpa), Where Cy; is the time required by

the inner-product C;; and so on.

It can be observed that the area and time is high as compared to the that made by

non-formal methods. It is the price paid for the functionally correct hardware made

by formal techniques.

74

[Onit | No. of Devices | Area ()?) | Other Units Used ||
| counter 336 288320 | successor

| add 974 739480 | incrementer

{| pro 1674 1284376 | add, incrementer

{| inner-product 2720 2244528 | add,pro,incrementer

#f multiplierl 12060 | 12325000 | inner-product

{| multiplier2 5864 4218240 | add, pro

{| multiplier3 7244 5279400 | inner-product

Table 5.1: Number of devices and layout area of 8-bit units.

fi Unit | No. of Arguments | Arguments | Time (clock cycle)
counter 1 n n
add 2 m, n max(m,n)
pro 2 m, n mx n
inner-product 3 a,b,c (axb) + max(axb, c)
multiplierl 2(n X n)matrices | A®**, B*** | maz(Cyy,---,Cnn) Where
Cu = (an X by + a2 X bay)+
maz(an X by, 612 X bay)
multiplier2 2(n x n)matrices | A®*®, B"*® | (C}; +--- + Cy,) where
Cn = 2mez(ay; X by, a12 X byy)
multiplier3 2(n x n)matrices | A®*" B™" | (Cy; + -+ + Cy,) where
Cu = (an x b)) + (@12 X b)+
maz(ay; X by, a1z X byy)

Table 5.2: Number of clock cycles required by the 8-bit units to get their final

results.

Appendix A

ASL Syntax and Semantics

ASL Syntax

This appendix is taken from [E190]. The syntax of ASL is described using the Bakus-Naur
Form (BNF). The following meta symbols are used:

T= means ’is defined as’.

| means ‘or’ .
<> non terminal names.
{1 optional items.

{1} repetition.

Using the previous meta-symbols, the syntax of ASL is defined as follows:

< ASL specification > ::= < extended mu-recursive specification >

< extended mu-recursive specification > ::= < recursive function name >

| < unbounded minimization > | < basic function name >

< recursive function name > = < recursive function > (< argument > {, < argument
>1)

< recursive function > ::= < initial function > | < operation > (< recursive function
> {, < operation > (< recursive function >) })

< operation > ::= < composition > | < primitive recursion >

< composition > = < variable name > = < variable name > (< argument . {, <
argument > })

< primitive recursion > ;== < casem = > < case m+1 >

< case m = 0 > = < variable name > (< argument >,0) = < variable name > (<
arguments >)

< arguments > ::= < blank > | <argument name > {, < argument name >}

< case m+1 > i= < variable name > (< arguments > ,m-+1) =

< variable name > (< arguments > ,m, < variable name > (<arguments >))

76

< initial function > ::= < zero function > | < successor function > | < projection function
>

< zero function > ==§ ()

< successor function > = A (< argument >)

< projection function = 1,2;';‘;:;;';,>(< argument > {, < argument > })

< unbounded minimization > ::= unbound < mu-recursive specification >

< argument > ::= < mu recursive specification > | < variable name > | < number > | <
boolean >

< basic function name > =

< variable name > = < upper letter > { < letter > | < digit > }

< argument name > ::= < lower letter > { < letter > | < digit > }

< Number > = < integer > | < real >]

< real > = < integer > .[< unsigned integer >]

< integer > ::= [< sign >] < unsigned integer >

< unsigned integer > == < digit > {< digit >}

< boolean > ::= true| false

< sign > = —|+

< letter > ::= < upper letter > | < lower letter >

< upper letter > == A|B|C|D|E|F|G|H|I|J|K|LIM|N|O|PIQ| R|SITIUVIW|X|Y|Z
< lower letter > == ajbic|dle] flglhlililk{lim|nlolplglr|s|tiulviw]|z]y|=

< digit > == 0|1}2]3]4}5]6]7]8}9

< blank > ==

ASI Semantics

Let us define a meaning function M that maps sentences of ASL to values and data. For

example if X is an integer with a value 4, this is represented using the meaning function
as follows:

M<X >=ges 4

1. Zero function:
M<§>=g40

2. Successor function:
M < An) >= defM<M<n>+1>
3. Projection function:
M< r]f-"(argl,argg,. ey argr) D=def M < arg; >

4. Composition:
M< y(zls T2y« xm) >Zdef

M<yM<X1>M<z>,.... M <z, >)

5. Recursion:
M< z(argln ++-31aT¢gn, 0) >Edef

M<z(M<arg >,...,M < arg, >) >
M < z(argy,...,argn,m+1) D=y
M<y(M<args >,....,M <arg, >, M <m>,
M<z(M<argy >,.... M <arg, >, M <m>)>)>

6. Unbounded Minimization:
M < unbound(arg;,args,...,argn) >=4e5
M<nminmsiM<z(M<arg; > M <args >,....M <arg, >,m)=0>>

7. Basic Functions:

M<>EdefM<f>

Appendix B

RSL Syntax and Semantics

RSL Syntax

< RSL specification > ::= { < zero specification > | < projection specification > | <
successor function > | < composition specification > | < recursion specification > | < mu
recursion specification >}

< zero specification > ::= Result = zero
< control statement >

< successor specification > ::= Result = suc (< argument >)
< control statement >

< projection specification > ::= Result = mux (< arguments > # < integer >)
< control statement >

< composition specification > ::= Result = Comp (< .arguments > # < function name >)
< complex control statement >

< recursion specification > ::= Result = eq ? (< variable name >, < variable name >)
< parallel initialize >< control statement > I = p'f'“ suc(I)
Ready = eq 7(I,m)
Result = comp (< arguments > , I
Result # <function name >)

n+2
p<argumenls>

< mu recursion specification > ::= < parallel initialize >
Result = pg suc (Result)

Ready = eq ?(0, < function name > (< arguments >,
Result })

78

79

< Parallel initialize > ::= Initp (< register>, < argument >
{; < register >, < argument >})

< control statement > ::= zerofesdy = ZeroControl
jmuz ¥ = muzcontrol
[suchee® = succontrat
< complex control statement > ::= Comp®**#¥ = And({< function name > Feady})

< arguments > = < blank > | < argument name > {, < argument name >}

< function name > ::= < variable name > | < basic function name >

< basic function name > ::=

< variable name > ::= < upper letter > {< letter > | < digit >}

< argument name > ;= < lower letter > {< letter > | < digit >}
< argument > ::= < number > | < boolean > | < function name >
< register > ::= < integer > | < variable name >

< Number > ::= < integer > | < real >

< real > ::= < integer > .[< unsigned integer >]

< integer > = [< sign >] < unsigned integer >

< unsigned integer > = < digit > {< digit >}

< boolean > ::= true|false

< sign > = —|+

< letter > ::= < upper letter > | < lower letter >

< upper letter > ::= A|B|C|D|E|F|G|H|I|J|K|LIM|N|O|P|Q|RISIT|\U|VIW|X|Y|Z
< lower letter > ::= abicld|e] f|glhliljlk|lim|n|o|plglr]s|t|u|v|w|zly|z

< digit > ::= 0[1]2[3|4{5]6]7]8|9
< blank > =

80
RSL Semantics

Let us use a function called Connect to represent the fact that two units are connected. If
the output of unit A is connected to unit B, we represent this as:

A Connect B
1. Zero function:
M < Result =0>=4,; M < M < Result >=0>

M < zerofieady = ZeTO0Control >=def M < M < zero®ot o > M < connect >
M < zerogeqdy >>

2. Successor function:
M < Result = suc(ergument) >=4.; M < M < argument > +1 >

M < sucfe = succonirol >Sgef M< ML suctortol > M < connect >
M < sucpeady >>

3. Projection function:
M < Result = muz(argy,...,erg,# < integer >) >=q4.y M < Result =< arginteger >

M < muzR = muzc ool Seef M<M< muzCortrol 5 M < connect >
M < muzpeady >>

4. Composition:
M < Result = Comp(argy,...,arg.# function) >=qy
M < function(M < arqy >,...,< arg, >)
5. Recursion:
M < Result = eq?(V1,V2) >=gey M < eq?(M <V} >, M <V2>) >

M < Initp(R1,V1; R2,V2;. .. Ry, Vp) >=gef M <M < R1 =V1>,
<R2=V2>,...,< R, =V, >>

M<I=p'l‘+lsuc(I) >Zdef M<K M < Rpy) >=1> M < Connect >
< M<M<<I>+I>>

M < Result = complargq,,...,argn, I, p" 24 function) >Sdef

M < function(M < argy >,..., M < arga >, M <I > M < p"+? >>

81

6. Unbounded Minimization:

M < Initp(RLVL; R2,V%...; Ra,V;) >=4ef M <M <RL=V1>,
<R2=V2>,...,<Rpa=V,>>

M < Result = pgsuc{Result) >=4.¢
M<M<K<R=0>M<Connect > M < M < Result > +1 >>
M < Ready = eq?(0, function(args,...,arg,, Result)) >=g4.¢
M < eq?(function(M < arg; >,...,M < arg, >, M < Result >),0) >

7. Basic Functions:
M<>-zdefM <f>

Appendix C

Tools used

Netlist

Netlist is a simple description language for VLSI circuits. It is a logic-level macro-based
language for describing networks of sized transistors. Names in netlist refer to nodes, which
presumably get interconnected by the user through transistors. In addition to transistor
macros netlist provides macros that allow the user to set node capacitance, specific node

delays (in tenths of nanoseconds), and transistor threshold voltages. It also accepts user
defined macros.

A node name reference has two forms: One form is
n

Where n is the name of the network node. When transistor sizes are required they are
taken from the appropriate defaults.
The second form is

(n width length)

Where n is the name of the network node and, width and length specify a transistor size.
This is used in netlist constructs where mention of a name causes creation of a transistor.
The netlist creates an output file with the extension ”.sim”.

Presim

Presim is a translation tool. It converts the ”.sim” file (produced by netlist) into a binary
file suitable for RNL (switch level simulator). Results of presim depend on a number of
parameter values. The "lambda” parameter is also specified in this file. Resister values
not explicitly provided in the configuration file are estimated by linear interpolation. The
resister values are sorted first by width, then by length (not by ratio).

Each line of a config file has the format

parameter values comments

Lines beginning with ;" are treated as all comment.

82

- 83
RNL

RNL is a timing logic simulator for digital MOS circuits. It is an event driven simulator
that uses a simple RC (Resistance Capacitance) model of the circuit to estimate the ef-
fects of charge shearing. The user interface is 2 simple LISP interface. This allows both
interactive simulation and the programming of complex simulations.

To use RNL, the *.sim” file for the circuit to be simulated is needed. This ”.sim” file
is then converted to a binary file using presim. The RNL uses that binary file for simula-
tion. It is designed to handle the ratioed logic, bidirectionality, and charge sharing/storage.
They can be used to determine the functionality and approximate timing behavior of cir-

cuits commonly found in digital designs. Basic to the operation of the simulators is the
notion of an event. An event specifies

1. a node in the network,
2. a new logic state, and
3. a time at which the node's value is changed to the new logic state.

RNL maintains a list of events, sorted by time, that tells what processing remains to be
done. Whenever the input is changed, an event is added to the list; when the list is empty
the network has "settled” and RNL waits for further input.

When started with an initial list. RNL sequentially processes the next event on the list,
stopping

1. when the list is empty,
2. when a node is need to be traced, or
3. when the specified amount of simulated time has elapsed.

Since nodes are only added to the event list when their values change, portions of the
circuit unaffected by the current set of changes to the inputs are not re-evaluated. The
algorithm is event-driven, sometimes called selective trace.

OASIS

OASIS is an abbreviation of Open Architecture Silicon Implementation Software.It is
a cell-based system for IC design. The tools integrated into the OASIS system have
been developed to automatically translate high-level descriptions of integrated circuits
into testable physical layouts, using predesigned standard cells.

OASIS is a cell-based design system with five major subcomponent subsystems:
¢ compilation and logic synthesis,

e simulation and verification,

84
¢ automatic test pattern generation,
o automatic layout generation,
e cell binary maintenance.

One of the premises of the QOASIS System is the modularity of the software. New, im-
proved algorithms can be easily substituted in place of the old one’s. The enfire system
is controlled with a single data flow supervisor program to assure data consistency is
maintained at all stages of the design. The data flow supervisor is template-driven, the
templates used in OASIS can be easily expanded to support additional software tool, thus
providing the desired openness of the system.

Mextra

Mextra is a Manhattan circuit extractor for VLSI simulation. It reads the file basename.cif
(generated by magic) and creates the circuit description. From this circuit description
various electrical checks of the circuit can be done. Mextra creates five new files, base-
name.log, basename.cl, basename. sim, basename.tbs and basename.nodes. The .log file
contains general information about the extraction such as number of transistors and the
number of nodes and also the messages about the errors, if any. The .el file is a list of
aliases. The .tbs file is a list of transistors in the .sim file that contains the substrate/well
node name for each transistor. The .nodes file is a list of node names. The .sim file is the
circuit description for use with simulation programs and electrical rule checkers.

Magic

Magic is an interactive system for creating and modifying VLSI circuit layouts [MAS+90].
Magic is different from other layout editors in many aspects. The most important differ-
ence is that Magic is more than just a color painting tool, it understands quit a bit about
the nature of circuits and uses this information to provide additional operations. For ex-
ample, Magic has built-in knowledge of layout rules. It also knows about connectivity and
transistors, and contains a built-in hierarchical circuit extractor.

Magic is based on the Mead-Conway style of design. This means that it uses simpli-

fied design rules and circuit structures. It permits only Manhattan designs i.e., those
whose edges are vertical or horizontal.

Bibliography

[BCDM86] M. Browne, E. M. Clarke, D. Dill, and B. Mishra. Automatic verifica-

[(_7:11’!135]

[Cam90]

[CLMS89)

[CP8s)

tion of sequential circuits using temporal logic. IEEE Transactions on

Computer, pages 1035-1044, December 1986.

R. Camposano. Synthesis techniques for digital systems design. Twenty-

second Design Automation Conference, pages 475-481, June 1985.

R. Camposano. From behavior to structure: High-level synthesis. JEEE

Design and Test of Computers, 7(5):8-19, October 1990.

E. M. Clarke, D. E. Long, and K. L. McMillan. A Language for Com-
positional Specification and Verification of Finite State Hardware Con-
trollers, pages 281-295. North-Holland, Amsterdam, The Netherlands,

1989.

Paolo Camurati and Paolo Prinetto. Formal verification of hardware

correctness. [EEE Computer, 16(12):8-19, February 1988.

85

[CR8q]

[cS90]

[Dav90]

[DCsg]

[DPSTS1]

[EB90]

86

Raul Camposano and Wolfgang Rosentiel. Synthesizing circuits from
behavioral descriptions. IEEE Transactions on Computer Aided Design,

8(2):171-180, February 1989.

Shiu-Kai Chin and Edward P. Stabler. Synthesis arithmetic hardware
using hardware metafunctions. IEEE Transactions on Computer Aided

Design, 9(8):793-803, August 1990.

Bruce S. Davie. Formal Specification and Verification in VLSI Design.

Prentice-Hall, 1990.

D. L. Dill and E. M. Clarke. Automatic verification of asynchronous cir-

cuits using temporal logic. IEE Proceedings, 133(5):276-282, September

1986.

S. W. Director, A. C. Parker, D. P. Siewiorek, and D. E. Thomas. A

design methodology and computer aids for digital VLSI systems. IEEE

Transactions of Circuits System, CAS-28:634-645, July 1981.

Khalid M. Elleithy and Magdy A. Bayoumi. Synthesizing DSP architec-
tures from behavioral specifications: A formal approach. Proceedings-
IEEE International Symposium on Circuits and Systems, 2:1131-1134,

May 1990.

[El190]

[Eve87]

[FK80]

[FTMo85]

[Gal87]

[GK83)

[GK88]

87
Khalid M. Elleithy. A Formal Framework For High Level Synthesis of

Digital Designs. PhD thesis, The Center for Advanced Studies, Univer-

sity of South-Western Lousiana, 1990.

Hans Eveking. From HDL Descriptions to Guaranteed Correct Circuit
Designs, chapter Verification, Synthesis, and Correctness-Preserving
Transformations-Comparative Approaches to correct Hardware Design,

pages 229-239. Elsevier Science Publishers B.V., 1987.

M. J. Foster and H. T. Kung. The design of special purpose VLSI chips.

Computer, 13(1):26—40, January 1980.

M. Fujita, H. Tanaka, and T. Moto-oka. Logic Design Assistance
with Temporal Lagic, pages 129-138. North-Holland, Amsterdam, The .

Netherlands, 1985.

A. Galton. Temporal Logic and Their Applications. Academic Press,

London, England, 1987.

D. Gajski and R. Kuhn. Guest editor’s introduction: New VLSI tools.

Computer, 16(12):11-14, December 1983.

E. F. Girczyc and J. P. Knight. An ada to standard cell hardware
compiler based on graph grammars and scheduling. Proceedings of the

1984 ICCD, New York, pages 726-731, October 1988.

o

[Gor85]

[Gor86]

[Hai8?]

[Hat82)

[HD85)

[HI8S]

88
M. Gordon. Hol: A machine oriented formulation of higher order logic,

tech rep. no. 68. Technical report, Computer Laboratory, University of

Cambridge, Cambridge, England, 1985.

Mike Gordon. Why Higher-Order Logic is a Good Formalism for Spec-
ifying and Verifying Herdware, chapter Hardware Verification Using

Higher-Order Logic, pages 153-177. Elsevier Science Publishers B.V_,

1986.

B. T. Hailpern. Verifying Concurrent Processes Using Temporal Logic,
chapter Springer-Verlag, Berlin, West Germany. Lecture Notes in Com-

puter Science, Vol. 129, 1982.

W. S. Hatcher. The Logical Foundations of Mathematics. Pergamon

Press, Oxford, England, 1982.

F. K. Hanna and N. Daeche. Specification and verification using higher-
order logic. Proceedings of the Seventh International Conference on

Computer Hardware Design Languages, Tokyo, Japan, 1983.

Richard I. Hartley and Jeffrey R. Jasica. Behavioral to structural trans-
lation in a bit-serial silicon compiler. IEEE Transactions on Computer

Aided Design, 7(8):877-886, August 1988.

89

[HMMS83] J. Halpern, Z. Manna, and Moszkowski. A hardware semantics based on

[HP82]

[HRC89)

[KMo1]

[KT83]

[LBKSS]

temporal intervals. Proceedings of the Tenth International Colloguium

on Automata, Languages and Programming, Barcelona, Spain, 1983.

L. J. Hafer and A. C. Parker. Automated synthesis of digital hardware.

IEEE Transactions on Computer, C-31:93-109, Feb. 1982.

Ramesh Harjani, Rob A. Rutenbar, and L. Richard Carley. Oasys: A
framework for analog circuit synthesis. I[EEE Transactions on Computer

Aided Design, 8(12):1247-1266, December 1989.

R. P. Kurshan and K. L. McMillan. Analysis of digital circuits through
symbolic reduction. IEEE Transactions on Computer Aided Design,

10(11):1356-1371, November 1991.

T. J. Kowalski and D. E. Thomas. The VLSI design automation assis-

tant: Prototype system. Twenty Design Automation Conference, pages

479-483, 1983.

R. Lisanke, F. Brglez, and G. Kedem. Mcmap: A fast technology proce-

dure for multi-level logic synthesis. Proceedings of the 1988 ICCD, pages

252-256, 1988.

[LNR8S8]

[MAS*90)

[MCs0]

[Mel88a]

[Mel88b]

[Men64]

[MF85]

90
M. J. Lorenzetti, M. S. Nifog, and J. E. Rose. Channel routing for

compaction. Proceedings of the International Workshop on Placement

And Routing, May 1988.

Robert N. Mayo, Michael H. Arnold, Walter S. Scott, Don Stark, and
Gordon T. Hamachi. Decwrl/livermore magic release. Technical report,

DECWRL, Digital Western Research Laboratory, September 1990.

Carver Mead and Lynn Conway. Iniroduction to VLSI Systems.

Addison-Weslay, 1980.

T. Melham. Formal Verification and Implementation of a Microproces-
sor, chapter The Mechanical Verification of a Microprocessor Design,

pages 129-157. Kluwer Academic Publishers, 1988.

T. F. Melham. Abstraction Mechanisms for Hardware Verification, chap-
ter Mathematical Logic, pages 129-157. Kluwer Academic Publishers,

1988.

E. Mendelson. Introduction to Methematical Logic. D. Van Nostrand

Company, Inc., Princeton, N.J., 1964.

F. Maruyama and M. Fujita. Hardware verfication. Computer,

16(12):22-32, February 1985.

[MP81]

[MPC38]

[MPC90]

[Muks6]

[0AS92]

[Ros85]

[SBESS)

91
Z. Manna and A. Pnueli. Verification of Concurrent Programs: The

Temporal Framework, pages 215-273. Academic Press, New York, 1981.

M. C. McFarland, A. C. Parker, and R. Camposano. Tutorial on high-
level synthesis. Proceedings of the 25th Design Automation Conference,

pages 330-336, June 1988.

M. C. McFarland, A. C. Parker, and R. Camposano. The high-level

synthesis of digital systems. Proceedings of the IEEE, 78(2):301-318,

February 1990.

Amar Mukherjee. Introduction to nMOS and CMOS VLSI Systems De-

sign. Prentice-Hall, 1986.

MCNC’s Center for Microelectronics. Open Architecture Silicon Imple-

mentation Software, release 2.0 edition, December 1992.

J. E. Rose. Greedy algorithms for wiring in VLSI. Master’s thesis, De-

partment of Computer Sceince, North Carolina State University, 1985.

V. Stavridou, H. Barringer, and D. A. Edwards. Formal specification
and verification of hardware: A comparative case study. The Proceedings

of the Twenty-fifth ACM/ IEEE Design Automation Conference, pages

197-204, June 1988.

[SK87]

[Tho86]

[TKK89]

[Trig7]

[VLS87)

[wcoi]

[WESS]

[WHJ86)

92
P. R. Suaris and G. Kedem. A new approach to standard cell layout.

International Conference on Computer Aided Design, pages 474-477,

November 1987.

D. E. Thomas. Automatic data path synthesis in design methodologies.

Advances in CAD for VLSI, 6, 1986.

T. Tanaka, T. Kobayashi, and O. Karatsn. Harp: Fortran to sili-

con. JEEE Transactions on Computer Aided Design, 8(6):649-660, June

1989.

H. Trickey. Flamel: A high-level hardware compiler. IEEE Transactions

on Computer Aided Design, CAD-6(2):259-269, March 1987.

VLSI Design Tools Reference Manual. NW Laboratory for Integrated

Systems, release 3.1 edition, February 1987.

Robert A. Walker and Raul Camposano. A Survey of High-Level Syn-

thests Systems. Kluwer Academic Publishers, 1991.

Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI Design.

Addison-Vesley, 1985.

et. al. W. H. Joyner. Technology adaptation in logic synthesis. Twenty-

third Design Automation Conference, pages 94-100, 1986.

[WT83]

[Yoe90]

[Zin79)

93

R. A. Walker and D. E. Thomas. A model of design representation and
synthesis. Twenty-second Design Automation Conference, pages 453-

459, June 1985.

Michael Yoeli. Formal Verification of Hardware Design. IEEE Computer

Society Press, 1990.

G. Zimmermann. The mimola design system: A computer aided digital
processor design method. The Prbceedings of the Sizteenth IEEE Design

Automation Conference, pages 53-58, 1979.

Vita

o Masud-ul-Hasan
e Born in Multan, Pakistan

e Received Bachelor’s degree in Electronics Engineering from the N. E. D. Uni-

versity of Engineering and Technology, Karachi, Pakistan in 1988.

e Worked as Electronic Engineer in the Electronic Development Cell of M/s

Pakistan Steel Mills Corporation, Karachi, from Feb. 1989 till Dec. 1989.

o Completed Master’s degree requirements at King Fahd University of Petroleum

and Minerals, Dhahran, Saudi Arabia in June, 1993.

94

