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Chapter 1

Introduction

1.1 Objective of the Study

Over the past four decades of computing history, dramatic increases in computing speed were
achieved. As we went from relays to vacuum tubes to transistors and from small to medium to
large and then to very large scale integration, we witnessed the geometric growth of computational
speed and hence increasingly greater problem-solving capability. We would be happy if this
progress continues. Unfortunately, this trend has its peak due to fundamental limits. The problem
is not with the computational speed ( switching speed to be more precise ) but the communication
limitations, namely, propagation delays, interconnection constraints associated with the resistance
and capacitance of electronic interconnects, inadequate space-bandwidth product and finally,
undesired interactions between electrons due 1o miniaturization of g.omponcnts bevond the lowest
physical litﬁit. State-of-the-art computing machines, from stand-alone desk-top PC to the largest
supercomputer, are basically similar in their computation models: their hardware is bascd upon
processing units fabricated on VLSI chips, that operate on instructions and data kept in mémory.
They run sequential programs that specify éxactly what to do at each step. Broadly speaking,
these are the Von Neumann machines. The high speed gain in electronic switching does not cope
with the ever-increasing demand for computiitional power because of the drag caused by the low
communication capability. This is the so-called Von Neumann bottle-neck. This limitation of
conventional computers has initiated research efforts in two different directions, one in the field

of Parallel and Distributed Computing ~and the other in the newly emerged field of Optical

Computing.

In Parallel and Distributed computation-models, several uniprocessors, random access machines
(RAM) work independently either with proper synchronization among themselves or without any

synchronization at all. Given a problem to be solved, it is broken into a number of subproblems.



All of these subproblems are now solved simultaneously, each on a different processor. The
results of all the subproblems are then combined to produce the solution to the original problem.
This is a radical departure from Von Neuminn-machine-model, namely, the sequential
uniprocessor machine. The declining cost of VLSI chips has made it possible to assemble
machines with millions of processors. The inter-processor communication is handled through a
sophisticated, well-defined interconnection network. Much work has been done in developing
efficient interconnection networks[SEIG 91]. Though we might get large speed-up in terms of
tume needed to solve a particular problem on a parullel computational model, we are sull faced

with the problem that inter-processor communication lags behind the computational speed of

o>

individual electronic processor.

In their search for universal parallel computer models, researchers explored a new field called
Optical Computing. The field of Optical Computing is quite broad and includes different ideds and
possibilities. Essentially, computation and communication using optics for information processing

is termed as Optical Computing|{FEIT 88|. Optics has a proven superiority to electronics when
compared in terms of communication performance. While it appears feasible to improve switching
specd by several order of magnitude ( to perhaps 70 ps [ANDO 89i ), itdoes not appear possible
to make an electronic interconnect which C'm support such short pulses through a long distance
but the shortest gate-to-gate paths. It is, hbwever, possible to transmit a /0 ps optical pulse
through an optical fiber or free-space with minimal distortion] ANDO 89]. Commercially available
optical fibers have bandwidths in excess of I 000 Gb/s, which remains unused due to the lack of
fast tapping devices. Again, the number of._ interconnects required by an electronic VLSi~chip
scales in proportion to the chip area. The perimeter grows only as the square root of the area. As a
chip gets larger, the space available for each i:i{tcrconnect on the perimeter becomes restricted. This
problem can be overcome by multiplexing signals on a small number of interconnects. This,
however, incurs a time penalty. An alernative solution is to make interconnections within the

whole chip area. This is not as possible in electronics as in optics.



Following is a list of points that make optics superior to electronics :

* Direct Image Processing.

Centain image processing functions can be carried out by specific optical systems directly on the
image, with no need for sampling, quantization and such. These optical systems operate much

faster and with better resolution than their electronic counterparts.
* Massive Inherent Parallelism and Connectivity. .

The problems restricting the ultimate speed-up of the conventional computers do not aris€ from
- the inadequate speed of the basic elements. Rather, interconnection is the limiting factor. Optical
communication allows new ideas unheard of before: millions of data channels may operate in

parallel, each with a bandwidth much greater than that of any electronic link.

* Speed.

The possibilities of special purpose systems-unc‘i massive parallelism give rise to high speed in
data processing. This is imponant in modern applications like oil exploration, satellite image
processing, weather forecasting, biomedical -an,alysis, modelling fusion reactors, cryptanaiysis,
solution of very large systems of diffcrcmiﬁ! equations arising from numerical simulations in
disciplines as diverse as seismology, acrodynamics, atomic, nuclear and plasma physics. No
computer exists today that can deliver the processing speeds required by these applications( in the
order of 10'3 operations per second [AKL 89]). Even the so-called supercomputers peak at a few

billion operations per second.



* Immunity to EMI.

The electrons circulating in a VLSI chip are susceptible to elecromagnetic interference(EMI). In

electrically noisy environments electronic VLSI chips may malfunction. Optics is completely free
from EML

* Free Space Connectivity.

Since light beams do not interact with each other, an optical computer can exploit this feature 1o

have free space interconnections between its components.

The above list is quite impressive and calls for extensive research efforts towards Optical
Computing, where computation and communication coexists. The marriage between the fields of
Parallel Computing and Optical Computing appears 1o provide a desired and suitable altiernative to
the Von Neumann model of sequential computation. In this study, issues related to optical

computation and communication on a parallei computation model to solve some basic comparison

problems are adciressed..



1.2 Thesis Organization

The results of this thesis are distributed into different chapters starting from Chapter 2 to Chapter
7. Chapter 2 reviews the related background work both in Oprical Computing and Parallel
Computation Models 10 solve some of the representative comparison-related problems that

includes general interconnection network to sorting network.

Chapter 3 presents an Optical implementation of Clos nonblocking-broadcast-network. An O(/)
control algorithm on a proposed Optical Parallel architecture is proposed. The optical nonnumeric
processing unit, Optical Vector Processor(OVP) with some primitive optical operations on binary

vectors is also presented.

Chapter 4 proposes an Optical Reconfigurable Processor Matrix architecture to sort # numbers in

_constant ime i.e., in O(/) ume.

In Chapter 5, Arbitrary Binary-tree-computations  are simulated on Optical Reconfigurable

Processor Array architeciure.

Chapter 6 presents parallel algorithms to solve Parallel Selection Problem and Parallel Quicksort

on an Optical Reconfigurable Processor Armay.

Finally, in Chapter 7 conclusion and recommendations for future work are presented.



Chapter 2

Background Work

2.1. Optical Computing

Optical computers are based on phenomena related to optics and light. The ancient history of
Optical computing is linked to a large extent, to that of radar systemsj LEIT 77]. The need 10
process vast amounts of data supplied by radars used in mapping was the motivating force behind
early optical signal processing research efforts. Optical Computing received a great push from the
invention of the LASER in 1960. The characteristics of this light source allowed numerous new
operations to be realized by optical means. These operations were analog in nature, and are best
described by the term “signal processing”. Unlike electronic signal processing systems, which
have one (temporal) degree of freedom, typical optical processors have two (temporal and spatal)
degrees of freedom; the dara is a 2-D image. One of the basic operations that can be performed on

images in laser light is the Fourier Transform. Numerous applications grew out of this ability.

During the time when conventional electronic computers grew tremendously in speed, bower
and, in miniaturization, sporadic efforts werctalso made to realize digital logic by optical means.
These efforts did not succeed mainly for two reasons. One was the success of Von Neumann
computers. They answered the world’s computational needs. They are well-developed both
theoretically and practically. They gave results that were accurate to any desired degree. When this
is compared to the basically analog optical s_{rstcms with their new and immature technology and
potentially problematic operations, it is clear why research in optical computing took a back seat.
The second reason was the absence of substantial research projects to find an alternative 1o
sequential machines. Electronic computers received a great push from the invention of transistors
and then the development of integrated circuits. The need for any alternative and/or radical change
1o the electronic computing has not been oo great until recently. The so-called Von Neumann

bottleneck of sequential computation resumes the interests in Optical Computing in search for true

6



parallel computers.

There are two distinct trends in optical computing : that of special purpose analog systems and that
of general purpose digital optical computers. Special purpose analog optical computers are again
divided into two classes: those that deal with image and signal processing, and those that deal
with numerical processing. In image and signal processing analog systems, we are talking about
optical systems that accept one beam of light as input, manipulate it, and finally produce an
output beamn of light. These systems exploit various physical phenomena from the field of optics,
such as the ability to perform 2-D Fourier Transforms. In contrast, numerical processors do not

manipulate beams of light. rather they deal with arrays of numbers, represented by muluple

points of light.

General purpose digital optical computers have been a major research topic recently. They are
usually based on nonlinear optical effects. The invention of first nonlinear electrical device (where
electron controls electrons) back in 1907, namely vacumm nibe, made it possible to implement
logic circuits. Logic circuits are the backbone of conventional digital electronic computers.
Similarly, the invention of optical nonlinearity (where light control; light) and nonlinear devices |
FEIT 88] promises the opportunity to reali;zé optical logic circuits. This led research tpwards
realizing digital optical computers [JORD 91'1._ These research efforts devote to develop and realize
optical devices that mimic their existing electronic counterparts: logic gates, memory elements(
optical flip-flop), integrated optical circuits iFElT 88]. The goal is to create a general purpose
digital computer (either hybrid i.e., 0ptoel§ctronic or all-optical) that will be comparablc to
electronic ones, but better in some significant way, e.g., it might be faster.

Optical computers use light 1o convey information. Light is an electromagnetic wave that is
characterized by its frequency, wavelength, amplitude, phase, polarizatrion, and degree of
coherence. Light sources used in optical computers are semiconductor LEDs and LASERSs.
Information is imposed on a light beam by modulation of its cross-section; this is done by spatial
light modulators (SLM, a new addition to optical devices that are used in information processing)

[FEIT 88]. Light beams are manipulated by various optical elements, e.g., beam-splitters,
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diffraction gratings, lenses. polarizers. holograms and holographic opiical elements. The intensity
of a light beam is detected by photodiode detector with various threshold levels [FEIT 88}
Feitelson [FEIT 88| has done an excellent task of surveying the various obtical devices, and
phenomena, their capabilities and limitations and in indicating the role they can play in computing
from the point of view of Compuier Science. In optical computing, two types of memory are
discussed. One is more or less equivalent 1o primary memory, and consists of one-bit-store
elements. the other is mass storage, which is implemented by oprical disks or by holographic
storage systems. This type of memory promises very high capacity and storage density on line.
Holographic memory consists of a ser of carrier and position multiplexed phase ransmission
holograms recorded on a silver halide emulsion. It is used to store a number of patterns in the

same small emulsion area. The recordings are made with plane wave object and reference beams.

2.2. Optical Architectures

Broadly speaking, the architecture of conventional electronic computers supports the Von
Neumann model: a CPU manipulates the contents of the memory by executing a sequential
program,; for each instruction data is loaded from the memory to the CPU’s internal registers, and
the computed result is stored back in the memory. The technology used to implement these
computers is based on planar integrated circuits. A possible approach to choosing an architecture
for optical computers is to simply copy the very successful electronic precedence, replacing
electronic logic elements by optical ones, mjd interconnection wires by optical fibers or optical
waveguides {WEST 87], {JORD 91]. The gbal of these research efforts is centered around the
design and construction of an optical \'e($_i0'n of general purpose, stored program, digital
computer. The design of Digital Optical Con‘%puter (DOC) at Boulder [JORD 91], a prototype, is
bit-serial to minimize the number of active devices. This bit-serial design uses bandwidth or time
domain capacity to achieve processing power. Optical fibers form all memory and interconnection.
Fiber delay lines or loops are used as storage. Due to time division multiplexing and due to the
use of fiber delay loops as memory, theserabits per second information capacity of fiber channel
is not utilized fully. This approach is merely a transfer of conventional electronic computer model

to optics without any major change in the underlying model. However, this approach requires



each optical element to be highly superior to the functionally equivalent electronic counterparts in
order to justify the transition to optics. Specifically the optical elements should be faster by at least
two orders of magnitude [RHOD 86}. As it is not clear whether such expectations are practical,

many researchers feel that a radically different architecture should be pursued.

The architecture of a computer should be related to the capabilities of the underlying technology.
In the case of optical computers, the possibility of dense interconnections coupled with
interference free propagation, impliés that paralle] architectures might be fitting. A beam of light
may contain millions of resolvable pixels, each of which may be used as a distinct data channel.
Two primary factors limit the density of optical interconnects. They are the resolvable spot size for
free-space interconnects and the required size of a waveguide. Single mode fibers with core
diameter of J pm are commonly available and it is possible to fabricate optical guides on the order
of ] pm as is routinely done in integrated optics. Free-space propagation is fundamentally li_miled
by the diffraction-limited spot-size of image systems. Even with this restriction, however, it is
possible theoretically 1o pack optical waveguides(fibers) or free-space channels on the order of

10,000 to 50,000 per mm? [HAUG 86]. As the beam traverses an optical system, various

operations are performed on all the points in parallel. Therefore the parallel architecture that seems
most suitable to an optical computer is that of an SIMD( Single Instruction-stream Multple Data-
stream) machine. The basic data element in this architecture is not a byte or word but rather a
vector or matrix of pixels or binary digits. Tﬁis brings parallelism at the component level (within
a single optical processor) as well as processor level (within an interconnected multiprocessors).
Processors are connected through a generalized optical interconnection network (capable of

broadcast facility). Intra-processor and Inter-processors interconnections by optical means

provide the following lucrative advantages: =

* Large Bandwidth and Space-Bandwidth Product

The use of light as a carrier of infornmtion is a step in use of carrier of higher and higher
frequencies. The need for carriers with higher frequencies stems from the need for larger
bandwidth.

9
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If the carrier frequency is of the order of 10’ cps(cycles per second), a bandwidth near / 0'3

cps should be available. This implies possible data rate in access of 1012 bps [FEIT 88]. Such
rates are 3 orders of magnitude faster than the fastest data rute of today. Communication at a data
rate of 10/2 bps means that the modulation of the carrier changes 70’2 times every second.

Electronic switching devices fall at least 2 orders of magnitude short of the objectives. In optics,

large number of independent channels can propagate together in parallel. resulting in large space-

bandwidth product.
* High Speed Propagation

Electrical signals propagate two orders of magnitude slower than light | WILK 83]. The reason is
thar the electronic conductor has a capacitance that has to be charged— it can be described as a
pipe that has to be filled in before anything arrives at the other end. Therefore, the propagation
time increases with the length of the connection and also with the fan-out. With light these
problems do not arise; it always propagates at the speed of light (scaled down by the refractive

index of the medium).
e Non Interference Propagation

Electronic interconnects must be laid some d_ismncc apart, so as to prevent cross-talk. Electrons in
a metallic conductor also interact with electromagnetic radiation: conductor simply serves as an
antenna. Thus electronic interconnects are susceptible to electromagnetic interference. Photons on
the other hand, do not interact with each otﬁcr or with other radiation. This is a major asset in

optical interconnects.
* Density and Parallelism
As light beams do not interact, optical interconnections need not be guided at all within the vicinity

of optical processor or integrated optical chip. Light beams can propagate freely in space, with
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different communication channels crossing each other. Pin lay-out problem encountered in VLSI
technology is reduced. The interconnection density in optics is much higher [HAUG 86].

* Dynamic Reconfigurability

Optical interconnection are often controlled by holograms and mask patterns. If these elements
are implemented by spatial light modulators(SLMs) or dynamic grating pattern, they can be
dynamically reconfigured. Thus the interconnection mapping patterns are modified in real
tme(within ms) [SCHU 87|, [SAWC 86].

'Optical Interconnection Media
¢ Optical Fibers ‘ :

'An optical fiber is a conducior or waveguide for light. The propagation of light in optical fibers is
explained by the phenomenon of Total Internal Reflection [KAPA 60). Fiber optics are already
being used in telecommunication witix great success. It has been suggested that they may be used
at a smaller scale, for connections between boards and chips [GOOD 84]. A Typical optcal fiber

has information capacity in excess of 1000 GHZ.

* Free Space Interconnections

Within the confines of an optical compmer; there is actually no reason to conduct the light in
optical fibers; as the distances are short. As the light beams do not interact with each other, there is
no danger of cross-talk. The advantages of the so-called free-space interconnection scheme stem
from the fact that the third dimension of space is utilized, instead of confining the interconnection
topology to a 2-D surface. This alleviates many topological difficulties. The main issue in free-
space interconnection scheme is how lo-direct many beams of light and focus them on the right

ports. The technique that has been used is through holographic optical elements.
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A hologram is 2 mechanism that can be used to modify and redirect a light beam that is incident
upon it. Because of this capability, a hologram or collection of holograms can be thought of as
photonic switches. A simple hologram, similar to a diffraction grating, can deflect its light in any
desired direction( depending on the orientation of the grating pattern imposed on it) and focus it
on a detector. In general, we have a set of sources, a set of detectors and an arbitrary mapping
pattern on hologram. In order to implement this mapping, the hologram is divided into
subholograms one for each source-detector mapping [SCOT 88|, |FEIT 88}, [KOST 87]. The
interconnection pattern on the hologram can be dynamically reconfigured resulting in dynamic

reconfiguration of the interconnection [SCHU 87].

For the realization of the holographic interconnection scheme it is important to know what spatal
resolution can be achieved directing incoming fight beams to different distinct spots. With the
Reyleigh criteric,~it can be shown [SCHU 87} that the minimum resolvable distance /1 between

two spots, which can be addressed by a hologram of size L x L is given by

h=2S/L

where 4 denotes the wavelength, S is the distance of the surface from the hologram where the

spot is focused. For an optical interconnect using laser source with 4 = /.3 ym and a hologram
aperture L x L = ] x ] mm and a distance of 20 mm of the hologram from the detectors, the

minimum separation # between two adjacent detectors is:
h=13x2011=26pm.
If A = 50 um, an area of I mm? enables one to carry 20 x 20 detectors. This packing density of

detectors is sufficient in most cases {SCHU 87].



2.3. Inter-Processor Interconnection

A SIMD model of multiprocessor computer model best suits the potential and the inherent
capabilities provided by optics. In electronic multiprocessor/multicomputer environment, inter-
processor communication is handled by different interconnection networks. They range from a
common bus on one side of the spectrum 10 a crossbar network on the other extreme. In the
middle lies the set of multi-stage interconnection networks: Clos, Shuffle-Exchange, Omega,
Benes, Hypercube, Banyan and so on. Much work has been done on multistage interconnection
networks [SEIG 91] with different objectives. Optical multiprocessor computer can adapt any one
of these well-defined interconnection networks suited to its underlying capability and
characteristics. Optical implementation of some of these interconnection networks have been
proposed using optical elements: such as, Crossbar network [FRAC 90}, Perfect Shuffle [LOHM
86], [HEIN 88}, IBIAN 91}, and Banyan network [JAHN 90]. .

e Bus

Abusis é common transmission medium, used by the comm(micating entities. At each moment,
at most one user is transmitting a message on the bus, while all others listen. The optical
implementation of a bus is simply an optic:i! ﬁber link, running through all the communi:cating
Processors. Diffefent modules access the invfonnation flowing in the fiber by means of special
couplers. These couplers are curved pieces of fiber that touch the main fiber; their operati_on is

similar to that of directional couplers | MILT 76}.

¢ Crossbar Switch

The Crossbar is a general switching device that can connect any one of N inputs to any one of
N outputs( / 1o / connection). A generalized crossbar allows 7 to many inputs to outputs

mapping( broadcasting). A generalized crossbar is the most desirable type of interconnection to be

used in optical parallel computers because it is rearrangeable (any permutation of input to output
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ports can be realized) and nonblocking (connection between input and output ports can be
established independently without disturbing the other connections). In optics, a matrix of
holographic mask pattern realizes a crossbar function where connections can be controlled

dvnamically in real time | SCHU 87], [FRAC 90}, [McAU 86], [SAWC 86}.
* Clos Multistage Interconnection Network[ Clos 74]

Clos multistage interconnection network is based on a number of interconnected crossbar
switches of smaller sizes as basic building blocks spread over different stages. This network has
great potential for parallel optical multiprocessor architecture. Clos multistage interconnection

network with broadcast capability, has been studied extensively [YANG 90].

2.4 Conclusion

The success of optical computing depends on how efficiently the inherent parallelism and
enormous communication capabilities of optics is explored in new computer architectm"es. A
simple transfer to optics from electronics without a radical change in the underlying computational
model, may fail to justfy the mansition of t¢chnology. Optics demands parallel architectures 10
match with its capabilities. To be more specific, optical computer architecture is expected to be
SIMD ( if not MIMD) machine and the basic optical processing unit must exploit the natural
parallelism provided by optics. The result is two-fold gain in parallelism — paralielism at the

processor level and parallelism at the basic instruction level.



Chapter 3

Optical Realization of CLOS Nonblocking-Broadcast-
Switching Network with constant time Network Control
Algorithm

3.1 Introduction

A generalised and efficient switching network is an absolute necessity for the success of parallel
computing and processing. Switching networks provide a set of interconnection or mapping

between two sets of nodes ; the input and the output ports. For N input ports and M output ports
there are NM  well-defined mappings from inputs to outputs. The term well-defined means that

each output is defined in terms of one and only one input port. A network performing all N¥

such mappings is called Generalised Connection Network (GCN). If we limit the mapping
function only to the class of one-to-one, then N/ such mappir;gs are well defined. This is the set
of all possible permutations over the input set which does not include the broadcast assi gximems.
A network with broadcast capability ﬁ'o:ﬁ any input port to a set of output ports is éalled
Broadcast Network. ’

An obvious and easy way of implerr;enﬁng arbm'ary collections of broadcast requests is with a
complete crossbar network. A crossbar is tht?’most desirable type of interconnection topology to
connect processors with processors and/or w{th memories because it is rearrangeable ( any one of
N! permutations of input ports to output_ports can be realized) and nonblocking ( con.nectidns
between input and output ports can be established independently without disturbing the existing

connections). Unfortunately, as the number of input ports, N grows, the number of crosspoints

also grows as N2, making it uneconomical to realize large systems.
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Muluastage networks provide a cheaper alternative to the complete crossbar switch. They are based
on a number of interconnected crossbar switches of smaller sizes as basic building blocks, spread
over different stages. A 3-stage Clos network is a good example. The trade-off here is between
cost and complexity of control. Much work has been done along the line of multistage
interconnection networks with different objectives [SEIG 91]. Recently, Yang and Masson
[YANGS0] proposed a design framework for nonblocking broadcast switching networks. Their
work was based on Clos network topology. They analysed Clos network’s characteristics
mathematically and found outa nonblocking condition on the number of middle stage switches to

realize arbitrary broadcast requests.

We adapt and extend the work of Yang and Masson to the domain of optics. Since optics provide
natural parallelism, higher space-bandwidth product and immunity from mutual interference, we
exploit these attributes of free space optics to implement the multistage nonblocking broadcast
network . Further we propose a constant time algorithm for the network control, in contrast to the

linear time algorithm proposed in [YANG 90] .
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3.2 Multistage Interconnection Network with Broadcast Capability

Mulustage switching networks, which consist of multiple cascaded stages of switching elements,
are networks with a dynamic topology. They differ in the interconnection pattern between stages,
the type and operation of individual switching elements, and the control scheme for setting up the
switching elements. Some of them realize all the possible permutations of input sets whereas
some do not [LAXM 90]. Example of such networks are : Clos network, Benes network,
Baseline network, Omega network, Shuffle Exchange network, Banyan network [SEIG91] etc.

Clos 3-stage network is based on crossbar switches of smaller sizes. Our interest lies in the Clos

network topology with additional broadcast capability.

nxm TXT mxn
1 — 1
- : — 2
2 1 1 1
n — L n
G-Dn+l — L G-Dn+l
G-Dnt2 —] ) . ) ) — (i-1)n+2
i . i i )
G-Dn+n ] [~ (-Dn+n
D+l — = (r-n+l
©Dn+2 — — (r-1)n+2
r m r
(--)n+n __] — (r-I)n+n
Input satge Middle stage Output stage

Fiqure 1: Nx N Nonblocking Clos Network
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In an NxM Mudtistage Interconnection Network with Broadcast capability (MINB), N input ports
are mapped onto M output ports in a one-to-many broadcast fashion. The switching elements are
grouped into smaller modules called SWITCH MODULES (SM). Each SM is of the size nxm ;
n<N,m<M and provides broadcast connections for n input ports to m output ports, that is, any
input can request connections to any subset of available outputs. Switch modules are the basic
building blocks. SMs are grouped into different stages. Each SM in stage i has dedicated links to
all SMs of stage (i+1). An N;xN, 3-stage MINB hasr; SMs of size n;xm in the input stage,
m SMs of size ryxr, in the middle stage and r, SMs of size mxn, in the output stage where
N; =rjxn;, N, = ryxn,. Without loss of generality and for notational convenience we assume

N =N, i.e., number of input and output ports to be equal. It turns out that if we choose n; = n,

_ thenr;=r,.

In a Nonblocking broadcast network any broadcast request from an input port to a set of free

output ports can be realized without any disturbance to other existing connections.

18



-

3.3 Previous Results

Much work has been done on multistage interconnection networks [SEIG 91]. To realize a
connection path between inputs and outputs in a multistage interconnection network a network
controller is needed. A network controller executes a control algorithm that sets the required
switches in various stages to set up the requested path. Until recently, the best contro! algorithm
that could be achieved was of O(NlogN). Yang and Masson[YANG90] gave a linear time O( N)
algorithm. They have found a lower bound on the number of middle stage switches to ensure
nonblocking broadcast connection from any arbitrary input to a set of output ports. According to
Clos, the nonblocking condition for permutation assignment requires that m >2n - 1. Although it
works fine for point-to-point connections, it does not necessarily satisfy all broadcast assignment.
Masson [MASS71,72] first proposed a design for strictly nonblocking and rearrangeable
multistage switching network for broadcast assignment. For broadcast assignment in a 3:'stage

network it was shown that if m > n(r+1) - I, the network is strictly nonblocking, and if m 2 nr,

the network is rearrangeable.

The inherent characteristics of Multistage Nonblocking Broadcast Networks have been studied
[YANG 90]. For a 3-stage Clos broadcast network to be nonblocking it has been shown that,
m > Min { (n-I)(x+rix)} for ISx <min{n-1,r} (3.1)
x - ;
where m = number of middle switch modui_cs (SM)
r =number of output switch modules (SM)
=maximum fanout for each input %équest.
x =number of available middle stage switches for an input connection request to be
satisfied for certrainity. (x 21)
Given this nonblocking condition on m, a linear time O(N) algorithm has been proposed t(;
satisfy any input broadcast request. We _\Yill be using this nonblocking condition onm (3.7) to

implement a reconfigurable Nonblocking Optical Broadcast Network. Our control algorithm given

in section 5.2 takes O(1) time.
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3.4 Proposed Optical Multistage Nonblecking Broadcast network

In this section, we explain the design of the proposed optical nonblocking broadcast network
from the basic switch modules to the dedicated inter stage links.

3.4.1 Switch Module (SM)

Each SM of size nxm is the basic building block. It is realized as an optical crossbar switch.
Essenually it performs a vector-matrix multiplicationas: Y = AX

, ——tidit ||
. " - ‘
2 ‘ . 1
1 p 6" E : > -
<10 o 1
7]
X A d
Las: Diode axp : Y@
Input Vector Holographic Mask Matrix

_ Photodector output vector
Fiqure 2 : Switch Module Design

where X = Bit- vector of size Ixp representing the input lines,
Y = Bit- vector of size Ixq representing the output lines,
and A = Interconnection binary mask matrix of size gxp. Its entries are either 0’ sor I’ s. An

entry of / in row i and columnj of A meansinputj is connected to output .
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Schulze [SCHU87] has proposed an optical crossbar switch where the connection can be
controlled dynamically. The input vector X is a laser diode array and the output vector Y is an
array of photodetectors. The interconnection mask matrix A is a matrix of phase holograms. Its
interference pattern can be changed dynamically using optical control. He has shown that to
accomplish such holographic switching technique, dynamically changeable holographic phase
gratings are imposed onto very high resolution spatial light modulators (SLMs). ﬁe’ interference
patterns necessary to build the holograms can be obtained by an optical interference procesé. For
notational convenience we assume that each entry of 1 in matrix A represents a closed switch and
that of a zero an open switch. In addition, each entry of / in vector X represent a laser diode

source or optical fibre port.

To realize broadcast connection, each column of A can have more than one I ( closed switct.x).

The matrix A is phase grated such that

If A(ij)=] for 1<i<n;1<j<m

then X(j) isconnectedtoY(’i) for all i,I1<i<m. (n<m)

We denote each SM in different stage as 0 p.q)

where i = stage number and
J = switch position within the stage
pxq = sizeof the switch module

The proposed network has 3 stages; input, middle and output stage ( Figure 1).

Input Stage :

There are r SM’s of size nxm. Each one isdenoted as: @ (mom) ; [<k<Sr

We can write connection between its input and output ports as:
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X]k(lm)A]k(mxn) = Ylk(lxm)
equivalently, XAy =Y, 7 1<5k<r.

Middle Stage :

This stage consists of m SM’s of size rxr. They aredenotedas: Oy (rxr) ; I1<k<m _

We can write connection between its input and output ports as:

equiva.lcnﬂy, XZk AZk = YZk N 1<k<m.

Output Stage :

This stage has again r SM’s of size mxn. They are denoted as: Q3 (nxm) ; 1<k<r

We can write connection between its input and output ports as: -

X3k(IXM)A3k(IlXM):_-V-AY3k(1xn)
equivalently, X3 Az =Y3, 1<k<sr.

All X andY vectors are holographic memory. They store the logical contents of the laser diode

input vectors and photodetector output vectors.

3.4.2 Optical Fibre Inter-stage Links

Switch Modules (SMs) in stage 1 and 2 and those of stages 2 and 3 are statically connected by

optical fibre links according to the Clos network.

Links between Stage 1 to stage 2 are denoted as :
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Y (j)-——- >X, (i)

1<k <r I<I<m

Links between Stage 2 to stage 3 are denoted as :

Yy(i)——>X3:(j)
1<l <m 1<k<r

I1<i<r I1<j<m
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3.5 Network Controller

To exploit the inherent parallelism of free space optics we propose a parallel architecture /
algorithm for the control circuitry. The network controller is analogous to a SIMD machine model.
It has r identical Optical Vector Processors (OVP) sharing a common memory. It has a control
circuitry to execute the stored network control program to activate different OQVPs. Each OVP
performs some primitive nonnumeric vector operations using all optical elements. Pmccséing is
done by OVPs concurrently. Now we define these primitive hardware operations. All vectors are
holographic memory elements. Each element has two phase gratings reflecting incoming light
beams in two different directions. We call them gratingl and grating0 respectively. Gratingl
represents binary / and grating0 represents binary 0. We first realize a number of primitive vector

operations using all optical elements and use them in the network control algorithm.
3.5.1 Optical Vector Processor Primitive'Operations
Each OVP is capable: of performing some nonnumeric processing on binary vectors using all

optical elements. The following operations are defined. Even though each operation is illustrated

by asimple example, its generality is well understood.

Vector Copj : COPY(M )

Ao\ -\ A\

Collimating Lens  Source vector Detector vector
placed at gratingl position

Figure 3: Copy of vector M
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The COPY instruction makes a copy of a binary vector. The hardware realization is done by a
laser light source, a collimating lens, the source vector, a detector vector and the destination
vector. In one clock cycle the source is copied to the destination vector.The detector vector is
aligned such that it collects all reflected lights from grating1 of source vector. This is illustrated in
figure 3.As an example consider a vector M = < 1,0,0,1,0,] >. Since the values in positions
2,3,5 are zero they would be reflected away from those with logical value of 1. The result vector,
M., =COPY(M ) =<1,00,1,0,1>.

Vector Compliment : INV( M )

M@)

RN

Collimating Lens  Source vector -~ Detector vector -
. placed at gratingQ position

Figure 4 : Compliment gif vector M

The INV instuction takes the compliment of .a binary vector. Its hardware realization is the. same
as the COPY except that the detector vectorzi~s aligned the other way so that it collects thé:light
beams coming from elements of source vectc;.r' with grating0. Thus bitwise compliment of a vector
can be achieved in one clock cycle of the n;twork controller. Let us take same vector M = <
1,0,0,1,0,1 > . Here light reflected from position 2,3 and 5 are collected at the comresponding
positions of the detector array and are set to logical I’s and the rest of the positions are set to

logical 0’s. As a result we have, M new =INV(M ) =<0,11,0,1,0 > . The optical setup for this

operation is depicted in Figure 4.
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Intra Vector Bitwise UNION : BITUNION( M )

Detector
( retumns [ if detects light)

Collimating Lens  Holographic Mask Focusing Lens
placed at grating1 position

Figure 5: Bitwise Union Of M

BITUNION instruction takes a vector as input and finds the bitwise union of that vector in one
clock cycle. Its hardware realization includes a laser source, two collimating lens and a
photodetector. All the light beams coming from grating] elements of source vectors are focused at
the detector point. If any one of the entries ot: the source vector is logical / i.e. gratingl then the
detector will detect a logical 1. For the vedtpr M=<10010,1 > BITUNION(M } =1

because M has at least one element with logiéal value of /. It is shown in Figure 5.

Intra Vector Bitwise AND : BITAND( M )

BITAND instruction takes a vector as input z;nd returns the bitwise ANDing of that vector in one
clock cycle. This unary operator can be realized using a laser source, two collimating lens and a
detector. Unlike BITUNION this time the detector is placed such that it can detect the beams
coming from grating0 of the source vector. If any one entry of the source vector is 0 i.e. grating0
then the detector detects it and takes its compliment as the output of the operation.This is shown in
Figure 6. Consider the vector M = < 1,0,0,1,0,] >. Light reflected from positions 2,3,5 are
focused at the detector and the result is set to logical value 0, that is, BITAND(M ) = 0 . If all the
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elements of M are logical I’s then all of them will be reflected away from the detector and the
resultissettological I, ie.,, M =< 1,1,1,1,1,1 > thenBITAND(M )=1.

Detector
(retumns 0 if detects light)

Focusing Lens
Collimating Lens  Holographic Mask

Figure 6: Bitwise ANDing of M

Vector Union : UNION( X,Y )

Diode Collimating Lens  Two vectors Focusing Lens Detector vector
- placed at gratingl position

Figure 7: Union Of vectors X, Y

UNION instruction takes two/more vectars of equal length and returns their union. Its realization
is the same as BITUNION except that a detector vector is used instead of a single detector and a

cylindrical focusing lens or lenslet array is used instead of a single focusing lens. Figure 7 shows
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the optical setup. Let us consider two vectors: A = < 1,0,0,1,0,0> and B =<0,1,0,1,1,0 >.
NowC =UNION(A,B )=<1,1,0,1,10 >

Vector Intersection : INTERSECTION( A, B )

A() Cn)

INV

V77779

Inverter

Diode Collimating Lens  Two vectors Focusing Lens
placed at grating] position

Figure 8: Intersection of vectors A, B

INTERSECTION instruction performs the bmary AND operation of the corresponding bits of
two vectors of equal length. Also its realizaﬁon is the same as that of BITAND except lﬁat the
detector is replaced by a detector vector and the focusing lens is replaced by a cylindrical lens or a
lenslet array. The detector vector is then mverted by INV circuitry. So the INTERSECTION
operation takes twice the time of INV. For e)gample,A =<1,00,10,0>and B = <0,1,0,1,1,0
>. The detector array detects logical value < I ,1,1,0,1,1 >. This vector then gets inverted. C =
INTERSECTION(A,B ) =< 0,00,100 >' ;I’hc optical set up is given in Figure 8.

Masking Out All But The Leftmost I : KEEPLEFTMOST( M )

To mask out all but the left most I of a vector, we use the operation KEEPLEFTMOST. lis optical
implementation involves the holographic beam steering element with reflective type of real time

holograms. The operand vector is written on a holographic mask element with 0 as transparent
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and ! as reflective grating. Now a beam of light is passed through the mask plane tangentially.
The beam will be deflected to its comresponding detector position of a detector vector, when it first
encounters a / , that is, a deflecting grating. The rest of the detector vector positions are set to 0 ,
since there will be no light transmitted to those positions. This operation takes time proportional to
the length of the operand vector. Since we assume the length of the vector is constant and the
clock speed is less than the speed of light, this operation takes constant time. Figure 9 shows the
optical design of the operation. As for example, KEEPLEFTMOST( < 0,0,1,0,10 > ) = <

0,0,1,00,0 >. |

Reflector Reflector

— ol O NI ONI} 010 Holographic Element with beam
steering grating corresponding to
logical I's of a vector

Source

0| 11]0]0]0J0.| Detector Vector

Figure 9: Masking out trailing 1°s from a vector
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3.5.2 Control Algorithxﬁ

Given the nonblocking condition on the number of middle stage switches ( m ), our algorithm
always satisfies a valid input broadcast request. If a network input port requests broadcast
connection to more than one output port on the same output Switch Module (SM) then it only
needs a link to that output SM. Connections to other ports within that particular SM could be
broadcasted locally. So input broadcast request is expressed as a vector of output SMs.

Preliminaries for the algorithm :

— Input broadcast request is denoted as

I;, iin<]1,2,3,...,r>=Input Switch Modules Set and

I;=<0liin(10.m >
= Output Switch Modules Set )

We assume I; is expressed in terms output SMs. We also assume the requested ports are grouped
into r ordered vectors of size n each. For ex;rnplc, an input broadcast request from portj in the
i th. input-stage SM to output ports / ,3,5,8- "is expressed as<!,0,1,0,1,0,0,1,0 > and the
individual request vectors for each output SMs are: 0, = < 1,0, I >, 0, = <0,1,0 > and 03 =
<0,1,0 >. I; = < 1,1,1 >. We express the input request in terms of output SMs by7; and in
terms of output ports by vectors Os. - - '

— Associated with each input stage SMisa vector of available middle switches 1o which a free

link is available.

AVAIL ; =<dj/15j5m> where dj=1if Yii(j) =0 or
dj=0if"Y“(j) =1

clearly, -
AVAIL ; =INV(Y ;)

I<i<r
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-— Associated with each output switch module is a candidate middle switch vector to which free
links are available from that output SM.

CANDIDATE ;, = <aj;cicp, > where g, =0if X3, (j)=1or
ISk<r gG=1f X3(j)=0
clearly,
' CANDIDATE , =INV(X3;)

Ik <r

— A bit vector of size ( r ) is required for the algorithm to check the feasibility of realizing any
input broadcast request. This vector is called CHECK and initialized to all one’s. If any of its
entries, is found to be zero at the end of computation then that particular request could not be
satisfied. The following three conditions sould be checked before any input broadcast request
could be realized. )

(1) Alltherequested output ports must be free.

(2) There sould be at least one middle stage SM available for the input request. .

(3) Toestablish a path fromi mput stage SM to each and every required output stage

SM there should be at least one middle stage SM available. .

Now we give our algorithm. Any arbitrary input port issues a broadcast request I;. Some qf the
steps in our algorithm are executed in parall_él by different OVPs. To indicate the processor index
on which certain step is executed we use its i_gdcx in paranthesis after the step. Processors h%wing

the same index and satisfying the conditioh on index associated with the step are allowed to
execute the step in parallel. .

.

For example : i
for (k in{1,2,...,r } ) do in parallel
Ak :=COPY(Bk),'(k)

means that OVP,,OVP,,...., OVP_ each duplicates its local vector B to local vector A.
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Step 1.

Step 3.

Step 4.

Step 5.

RITHM

1.1
1.2

1.3

1.4

AVAIL; =INV(Y,; ); (i)
{ Check if there is at least one middle stage SM available }
if BITUNION( AVAIL ; )=0 then return (unsuccessful); (i)
{ Checkif all the requested output ports are free }
for(jin {12, ..,r } andIfjj=I)do in paraliel
CHECK][j] := BITAND(UNION( INV(O; ), INV(Y3;)});(j)
if BITAND (CHECK) =0 then return (unsuccessful ); (i)

for(jin{l,2,..,r }andI[j]=1)do in parallel

CANDIDATEJ- =INV(X3):(])

{ Compute the sufficient nur;iber of middle stage SMs }

S; := INTERSECTION(AVAIL, CANDIDATE;): (j)

{ Check if there is at least one middle stage SM available for each and every.
required output SM }

42

if BITUNION( S; ) =0: then CHECK([j] :=0;(j)

if BITAND (CHECK) = 0 then return (unsuccessful ); (i)

{ Compute the necessary number of middle stage SMs }

for(jin{12,..,r }andI[j]=I) do in parallel

T; :=KEEPLEFTMOST (S;);(j)
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Step 6.

R :=Union(T; ;jin{l12,..,r }andI[j]=1);(i)

{ The vector R of size m contains the set of sufficient and necessary ( one and only one middle
stage SM for each required output SM) number of middle stage switches through which the input

broadéast request can be satisfied. So R contains at most r Is since there are r output stage SMs.

R(k)=1, 1<k<mthen SM 0, istobeconnected toinputswitchi. }

{ Setting the connections for input broadcast request and updating the network state }

Step 7.

7.1
7.2

73

Step 8.

Step 9.
9.1

9.2

for(kin{1,2,......m} and R [k]=1) do in parallel

CSET, := INTERSECTION(INV(Y,;),I,); (k)

{ Copy the vector CSET tothecolumni of mask matrixA,;, )

{ This will realize the connection through the kth middle stage SM }
Ayl *i] := COPY(CSET, ); (k)
Y, :=UNION(Y,, CSET, ); (k)

for(jin{12,. ., }andIfj]=1) do in parallel
X3 :=UNION(X3;.T;);(j)

Y; =UNION(Y ;R );(i) .

{ Copy vector R to the pth. co_iurim of mask matrix A ;; of input SM, &,; }
{ where p is the position of th;e reqﬁesting input port within that SM }
{ This will realize the conn_cction through i th input stage SM, ¢¢;; } ‘
Ajl*p]:=UNION(A [ *p],R );(i)
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Explanation of the algorithm

Let us consider two cases of input broadcast requests for the current state of the network at any
given time as shown in figure 10.

Case 1: Input port 4 issues a broadcast request to output ports 2,5,9. In terms of SMs in the
output stage this request is expressed as I, = < 1,1, > and in terms of output ports it is
expressed as Oy = < 0,1,0 >, 0, = < 0,1,0 >, 0; = < 0,0,] > . We have the following vectors
for the present state of the netwcfk. ‘

Y =<LL10>Y,=<0100>Y,;=<0,001>
Y;,=<010>, Y, =<0l11>Y,3=<101>Y,,=<001>
Y;=<101>, Y3,=<101> Y;33;=<110>
X3;=<0010>X3,=<1100>X3;=<010,1>

And the middle stage SM Mask Matrices are ( columnwise ) :

Ay = {<010>,<000>,<0,00>}

Ay = {<01,0>,<001>,<000>)

Ay = {<1,00>,<000>,<00,I >}

[{<0,00>,<000> <00I>)

3
N
i

Now we walk through the algorithm. Afterz‘Stcp 1, AVAIL, = < 1,0,1,1 >, since the}'e are
available middle switches and also avail-able output ports, we continue. Step 2 is done
concurrently and we have the followin.g. vectors : CANDIDATE,; = < 1,1 ,0,'{ >,
CANDIDATE, = < 00,1,1 > and CAN_DIDATE_—,. = < 1,0,1,0 >. Step 3 is also done in
parallel and it produces possible middle switc_t't.\ sets (set S’s ) for the request / 2 , resulting in §;

=<1001>,5,=<001,1>,S;=<1,0,1,0 >. Union of these sets produces sufficient
number of middle switches required. We need to find the necessary condition also. If any one of
them were empty then clearly, the request could not be satisfied. Step 4 takes care of this case.
Some of the output SMs could be reached by more than one middle stage SMs ( as indicated by
more than one entries of / in §s). We choose one and only one middle stage SM for each output

SM. Essentially, we do this by taking out all the I’ s but the left most one from each one of S’s.
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This is done concurrently by Step 5 and it results in :

T,=<1000>,T,=<00,10>,T; =< 1,000 >.

Step 6 computes the union of all 7’s, resulting in R = < 1,0,1,0 >, which contains the necessary
and sufficient number of middle stage SM’s. In Step 7, OVP( 1 ) and OVP(3) do the following
inparallel: CSET; =< 1,0,] >and CSET;=<0,1,0 >.

Step 7 and Step 8 do the job of setting the connection and updating the network status. The new
network status is shown in Figure 11 . So after the update, the new vectors are :

Y =<LL10>Y,;,=<1110>Y,;,;=<0001>
Yy=<111>, Y, =<0l11>Y,3=<111>Y,,=<001>
Yy=<LL1>Y3=<L11>Y;3=<111>
X3;=<1010>X3,=<1110>X3;=<110,1>

Mask Martrices of the middle stage SMs are ( columnwise ) :

Ay = {<010>,<101>,<000>}

Ay = {<010>,<001><000>} i
Ay = {<1,00><010><001>]

Ay =

{<000><000><001>} .

Case 2 : Consider the network state of ﬁgi_n'e 10. Now input port 3 issues a broadcast request
for output ports S5 and 9. So I} = < 0,1, >. AVAIL 1 =<0,0,0,1 >. Since there is at least one
available middle stage SM and also availablé output ports ( CHECK contains no 0 ‘s) we can

proceed. Now OVP( 2 ) and OVP( 3 ) do the following in parallel :
CANDIDATE,=<0,0,1,1>

CANDIDATE; =<1,0,1,0>
$,=<0001>
$3=<0000>
CHECK=<1,1,0>.
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Now in Step 3 OVP( 1 ) takes the bitwise union of the vector CHECK, which is 0. So the
contoller aborts the control algorithm with unsuccessful message to the requesting input port.

The connection to SM 3 of output stage can not be satisfied as it is clear from the figure 10.
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1 i —2
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4 4
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3x3
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1
— 2
— 3

W N -

2 !
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7 — 7 l— 7
8] 3 — g § — 8
g 9 — 9
4 /
Input satge Middle stage Output stage ) Input saige Middle stage Output stage

Fqure 10
9x 9 Optical Broadcast Network state befor the

current input request from port 4 Le. 12=<I.I,I>

- Fiqure 11 )
- New state of the Network after the input request is satisfied ~

Complexity Anaiysis of the Algorithm

Each of the primitives used in the algorithm have O(1) time complexity as illustrated in section

3.1. Each and every step in the algorithm has O(!I) time complexity. So the overall complexity of
the network control algorithm is O(1). ) . .
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3.6 Conclusion

We have extended the design of Nonblocking Broadcast Network proposed by Yang and Masson
using free space optics. This led us to exploit the inherent parallelism provided by optics to come
up with a constant time network control algorithm on a network controller, using nonnumeric

computation.
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Chapter 4
Optical Realization of Constant Time Sorting
Algorithm on a Processor Matrix with a

Reconfigurable Inter-Processor Bus System

4.1 Introduction

Sorting problem is one of the most studied problems in computer Science. Given N numbers, the
problem asks the numbers to be arranged in nondecreasing or nonincreasing order. A good
number of literature on different methodologies and using différcnt algorithms on conventional
Von Neumann machine is available]AHO 74, KNUTH 73|. The time complexity of the best
algorithm on such sequential computing is O(NlogN ). To seek for beuer solutions, parallel

algonthms have been proposed on variou§ paratlel computation models|LAKS 84], {AKL 85},
[AKL 89). A

Theoretically, a constant time sorting can be .a_chieved on an exmremely powerful CRCW PRAM
model (Concurrent-read-concurrent-write parallel random access machine). In this r_r_lodel
concurrent access ( read or write ) to the same memory location is allowed and the write conflict is
resolved by allowing all the processors to write the sum-of-all-writes only. Obviously this
machine is too idealistic to be implemented \-v'ith_ the state-of-the-art VLSI technology in terms of

hardware complexity, cost and communication overhead required between processors.

Processor arrays interconnected by locally controllable global buses have attracted the attention of
many researchersf KUMA 87, BOKH 84, AGGA 86]. Each processor within the grid structure
can change the bus connection by reconfiguring the local buses dynamically. A bus connected

system whose configuration can be changed by distributed control algorithm is called a

Reconfigurable Bus System ( RBS).
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Using the reconfigurable bus based grid structure of RAM machines or conventional processors,
there have been two designs to sort N numbers in constant time, proposed in the literature. The
first one [WANG&9] proposes a constant time sorting algorithm with hardware complexity of O(
N3 ), that is, using RAM processors of the order of N3- The sorting is done by enumeration. In the
second paper [NAKA90] a new technique is proposed to reduce the enormous hardware
complexity to O( N2log>N ) . The hardware complexity is still a concern when it comes 1o the

question of implementation. Further more the reconfigurable bus system is more of a theoretical

interest rather than a practical system as far as electronic implementation is concerned.

The capability of optics to do processing and communicating between points in parallel has a great
potential for implementing a constant time sorter. In this Chapter, we propose a constant time
sorting algorithm using all optical processing elements. We exploit the natural parallelism - and

the interference-free connectivity provided by free-space optics. Our proposed sorter has a

hardware complexity of Of N?) in terms of number of optical processors to be defined later.

[V
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4.2 Proposed Optical Vector Processor Matrix Architecture

A Reconfigurable Processor Marrix(RPM) consists of processors arranged in a two dimensional
grid with wrap around connections( Figure 1). Each processor is an Opiical Vecior Processor
(OVP) ( Appendix 1) with the extension that each has 4 parallel ports. These ports provide

connections either to vertical or horizontal global bus. In an NxN RPM, OVP(i, j} stands for
- OVPin # row, ! column, 0 <i, j SN-I1. These ports are denoted N,S, W, E and each port is

capable of communicating ¥ >N (IV is the word length of the processor) bits of information in
parallel. The ports of the adjacent processors facing each other are connected by fixed buses, that
is, S(OVP(i, j)) and N(OVP(:, (j+1) modulo N)} are connected by fixed optical fibres. Similarly,
E(OVP(i, j)) and W(OVP((i+1) modulo N. j)} are also connected statically.

4.2.1 Optical Vector Processor (OVP)

An OVP perform some primitive operations on t;'mary vectors as discussed in Chapter 1. We
extend the design of OVP, adding 4 W -bit parallel ports; where W is the precision of the
proposed processor. The 4 ports are : N, S ,W and E. To indicate the ports on certain  OVP(i, j),
we use the index of that particular proccsso-r:as argument with the port name. For example% port
N on OVP(2,3) is 10 be denoted as N¢2.3). Each processor can connect its ports W with E and
ports N with S by writing the required grating patterns on a holographic mask matrix M:_The
mask matrix is of size WxW, where {V is the vector-width or word-length of the OVP. To connect
any two opposite ports (such as, N with S7and W with E), the OVP records a fixed grating
pattern on all the elements of the forward diuéonul of the connection mask matrix, M, to create the

required connection,
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Erasing an existing grating pattern and then writing a new one takes constant time, since thére are
W elements to be written and the patierns are fixed. So each OVP can change the local bus
connection in constant time resulting in dynj;imic reconfuguration of the global bus. To establish
the required local connection demanded by the global algorithm each OVP executes CONNECT
instruction. This instruction is discussed later in this section.

Associated with each OVP, there is a laser source vector C and a detector vector D.  Vector C of
source is used to send information to the global bus whereas vector D of photodetectors is used to
read the value( binary vector ) on the global bus. Sending to and receiving information from the

bus are carried out by simple beam steering elements like Beam Splitters.
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4.2.1.1 Comparing Two Numbers on QVPs

Since each OVP performs nonnumerical processing on vectors as discussed in Chapter 3, we
define some higher level relational operators on top of primitive vector operations of OVPs.
These primitive vector operations are : COPY, INV, BITUNION, BITAND, UNION,
INTERSECTION, KEEPLEFTMOST. These operations are the basis for the higher level
relational operators . We assume that A and B are binary vectors and the following operators

compare their values expressed in binary and return the result.

1.2.1.1.1 NumGT ( vectorl, vector? )

To find whether the numerical value of a vector ( binary value) is greater than that of the other, we

use the following procedure.
Procedure NumGT( A. B)
begin . )

Stepl X := UNION( INTERSECTION(A,-.._.IN\"(B)). INTERSECTION( INV(A ), B)); '
Step2 X :=KEEPLEFTMOST(X ); :
Step3 if BITUNION(X)=0 the return(0);

Step4 if BITUNION( INTERSECTION( X, A)) =0 then return( 0 ) else return(/});
end { NumGT } : ‘

As for example, consider A =< 0.1.0,] .I:(.) > and B = <0,0,1,1,1.1>. Letus follo_w the
above procedure. After Step 1, X = < 0./.1,0,0,]> and after Step 2 X =< 0,1,0,0,0,0>.
Since the BITUNION( X ) is not equal to zero we move to Step 4. Taking INTERSECTION
between X and A results in < 0,7.0,0.0,0>. As BITUNION(<0,1,0,0,0,0> ) is not equal to

zero the procedure returns / , meaning A > B.
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4.2.1.1.2 NumLT ( vectorl, vector2 )

To find whether the numerical value of a vector ( binary value) is less than that of the other, we

use the following procedure.

Procedure NumLT(A, B)

begin '
C := UNION( INTERSECTION(A. INV(B)), INTERSECTION( INV(A ), B));
C :=KEEPLEFTMOST(C ):
if BITUNION(C) =0 then return(0);

if BITUNION( INTERSECTION( C, A)) =0 then return(_/) else return(0);
end{ NumLT }

4.2.1.1.3 NumEQ ( vectori, vectorl)
This procedure finds whether 1wo vectors are equal or not.

Procedure NumEQ( A, B)

begin __
C := UNION( INTERSECTION(A, }_N\»’(B )), INTERSECTION( INV(A ), B));
C := KEEPLEFTMOST(C );

if BITUNION(C) =0 then rclurﬁ{l ) else return(0);
end { NumEQ } '
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4.2.1.1.4 NumGE ( vectorl, vector2 )

To find whether the numerical value of a vector is greater than or equal to that of the other, we

define the following procedure.

Procedure NumGE( A. B)

begin
C := UNION( INTERSECTION(A, INV(B)), INTERSECTION( INV(A ), B));
C :=KEEPLEFTMOST(C );
if BITUNION(C) =0 then return(]);

if BITUNION( INTERSECTION( C. A )) =0 then return( 0 ) clse return(/);
end { NumGE }

14.2.1.1.5 NumLE ( vectorl, _vector2 )

The following procedure checks whether numerical value of the first vector is less than or equal 10

that of the second vector.

Procedure NumLE( A. B) L.

begin ' ,
C := UNION( INTERSECTION(A . ZI_VV(B)), INTERSECTION( INV(A )}, B));
C :=KEEPLEFTMOST(C );
if BITUNION(C)=0 then return(l);

if BITUNION( INTERSECTION( C. A)) =0 then return( / ) else return(();
end { NumLE }

—
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4.2.1.].6' NumNE ( vectorl, vector2 )

To find the non equality between two vectors we define the following procedure.

Procedure NumNE( A. B)
begin
- € := UNION( INTERSECTION(A, INV(B)), INTERSECTION( INV(A ), B));
C := KEEPLEFTMOST(C ); '
if BITUNION(C}=0 then return(Q) else return(/);
end { NumNE }

As we have shown earlier that all the primitive vector operations take constant time, the above
mentioned relational operators also take constant time. We will use these relational operators in

our sorting algorithm, which will be given later.
4.2.1.2 Connecting Local Buses

As we have mentioned earlier, each Opticul_' Vector Processor(OVP) has four ports: N,S,W and
E. Each OVP can form a local bus by connédting either NS or EW. This is done by writing two
directional gratings, NorthSouth (NS) or EastWest (EW), on the forward diagonal of the
interconnection mask martrix. M ( Figure 2 ). The bus connection can be straight or shifted one
position to the right (to shift each beam oneéposi(rion to the right). If the NS or EW gratings are
copied on the forward diagonal of the mask r_nhrrix then the straight bus connection is established(
Figure 3.a, 3.b). Again if the gratings are \Qriltcn‘ on the cells thai lies on a line parallel to the
diagonal but below ( as shown in Figure 3.c, 3.d), then the Shift Right (SR) connection is
established. We parametrised the type of connection between ports by 0 meaning straight
connection and by / meaning right shifted connection. To provide the desired local bus connection
capability each OVP executes the following instructions. The first parameter indicates the direction
of the grating(EW/NS) and the second parameter indicates the type of gratings(0//, meaning

straight or shifted).
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CONNECT(EW, 0) : Writes EW gratings on the forward diagonal of the mask matrix, M.
This establishes the straight local bus connection between ports E and W.  This is illustrated in
Figure 3(a).

CONNECT(NS, 0) : Writes NS gratings on the forward diagonal of the mask matrix, M.

This establishes the straight local bus connection between ports N and S. This is shown in
Figure 3(b).

CONNECT(EW, I) : Writes EW gratings of type SR on the mask matrix, M to establish the

shifted local bus connection between ports E and W. This is illustrated in Figure 3(c).

CONNECT(NS,J) = Writes NS gratings of type SR on the mask matrix, M. This esiablishes
the shifted local bus connection between ports N and S. This is shown in Figure 3(d). Writing a
fixed mask pattern( either EW grarings or NS gratings) takes constant time. So each OVP

executes the CONNECT instruction in constant time.

Figure 2
3-D view of the Siraight local bus connection, EV
within cach OVP by writing on the forward diago
the Mask matrix EW (NS ) gratings.
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4.2.1.3 Data Broadcast

Each OVP, connected with a global bus, broadcasts a data item expressed in binary, 1o all the
other OVPs connected to the global bus thfough individual local bus connection. The OVP which
wants to broadcast a data. loads its source vector, C  with the binary representation of the data. It
then lights the source vector. In one clock cycle the binary data is received/detected by all the
OVPs ( including itself) connected to the global bus. We assume that the clock period is greater
than the travel-time of the broadcast beam, which ravels at the speed of light. Since clock speed
can not be achieved as high as the speed of light, our assumption is not unreasonable to make. So
an OVP can broadcast a data item 1o all the other OVPs connected on the bus, in one clock cycle.

Each OVP performs this broadcast executing the BROADCAST (<binary sequence>)

instruction. This is shown in Figure 4.

4.3 Computing the Sum of a Binary Sequence on a Reconfigurable

Processor Array in Constant Time )

Consider a binary sequence of length N and an interconnected Processor Array consisting of N

OVPs. Each one of the binary digits is assigned to each OVP in the same order. Each processor
now establishes its local bus connection in either of two ways depending on its binary digit. If the
binary digit is 0, the OVP establishes a straight local bus connection . If the binary digitis /, the
OVP erases the current local bus connéc.;ti()n and writes the SR mask pattern on the
interconnection mask matrix ( as shown in E"fgure 4) to establish a shifted local bus connection.
Any beam of light passing through this OVP is shifted one position to the right. Now_ the first
OVP in the array broadcasts <7.0,0.0.....0> on the established global bus. The last processon; in
the array checks its received value and finds the position( j, 0 <j < N-I1 ) of I in the vector. l.t
then stores either k or k+1, depending on its binary digit equal to 0 or /. Each OVP takes
constant time to write the SR pattern on-i-ts interconnection mask matrix.The following algorithm

finds the sum of & binary sequence of length N on a processor array of N processors.
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ALGORITHM 1 : SumBinarySequence(i ) : return rank; :

{ A binary sequence <dp, d; . d,, ...d;,...dy; > is assigned to OVP(, j). 0 <j<N-1 ,ie.}
{ toall the OVPs on column 4 and this algorithm returns the sum of the binary sequence that }

{ are assigned to the OVPs of column /. }

{ Each dj (071} inOVP(i, j) Iisexpressed as a vector, R of length N. The index i}

{indicates the column number of the processor, which will be used later in algorithm 2}

Step 1 { Establish the global bus by forming straight local bus connection }
for all (jin{0.1.2..._N-1} )doin parallel

CONNECT (NS.0): (i.j)

Step 2 { Establish the shift connection in local buses if the binary digitis / }

if BITUNION(R ) = 'j/ then CONNECT(NS,7 ); (i,j)

for all (jin{0,/.2,...N-1 } )do in parallel

Step 3 { OVP(i.1) broadcasts a vector < 1.0.0....,0 > 1o all the other OVPs using the}
{ global bus established in StebZ ' }

BROADCAST(</,0,0.....0>); (i . 1)

.
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Step 4 {OVP( i. N-1) detects the position of / in vector D it received in Step3}
{ and returns the position, k ( 0 <k <N-I1) suchthat Df k[ =1, asthe sum }
{ of the binary sequence if its own binary valueis 0 otherwisereturnsk + 1 }

{ asthe sum of the binary sequence }

if BITUNION(R) = 0 then return( k., suchthatDf k[=1);
else return(k + 7 );
endif; (i, N-1)

end { SumBinarvSequence)

It is clear that the algorithm 10 compute the sum of binary sequence of length N, takes constant

time on a processor array of N processors. An example is illustrated in Figure 4.

Lemma 1. N Oprical Vector Processors (OVPs) connected in a Reconfigurable Bus, compute

the sum of a binary sequence of length N in constant time.

Proof. From the definitions of all the primitive instructions used in the algorithm, it is obvious

that each step in the algorithm takes constant time. Hence the total time complexity of Algorithm 1
is O(1).
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4.4 Sorting N numbers on a Reconfigurable Processor Matrix(RPM)

of NxN Optical Vector Processors( QOVPs) in constant time

Consider a RPM( as illustrated in Figure 1) of size NxN. N numbers denoted as v; ,0 Si<N-
1, are to be sorted in nondecreasing order. These N numbers are assigned to the respective

OVPs at the top row of the RPM, that is. OVP( i , 0) gets vi 3 O<isSN-I1.

The sorting algorithm is based on enumeration. First the numbers are broadcast vertically to all the
OVPs columnwise. So each number is thus spread in the respective column. Then each OVP on
the diagonal broadcasts its number horizontally. As a result, each OVP(i.j) has two ﬁumbem:
v; and v - Each OVP(i. ) compares its two. numbers and stores the result, which is either 0

or I. So after the commiparison step. the sum of the binary values on each column i is the rank of
data item v; .This sum is done easily by using Algorithm 1, discussed in the last section. Once
the ranking is done, the data iiems are arranged according to their computed ranks. Now we give

the sorting algorithm.
ALGORITHM 2. Sort (N)

Step 1

{ Form N vertical buses of N OVPsin each column by making straight local bus)}

{ connectionson eachOVP(i,j): 0<i, j<N-1 )

1.1 forall (i,jin{0.0.2.. N1} )do in parallel
CONNECT( NS.0): (i.j )

{ Broadcastv i toall the OVPs columnwise so that every processor OVP(i,j) |}
{ has v; after this step is exccuted |}
1.2 forall (iin{0,1.2,...N-1 })do in parallel

BROADCAST(v; ). (i,0)

52



Step 2
{ Form N horizontal buses of N OVPsin each row by making straight local bus)}

{ connectionsoneachOVP(i.j); 0<i,j<N-I}

2.1 forall(i,jin{0.1.2...,N-1} ) do in parallel
CONNECT(EW,0); (i,j)

{ The diagonal OVPs broadcast vj to all the OVPs row-wise so that every processor'}

{OVP(i,j} gets vi after this step is executed |}

22 forall (jin{0.].2..... N-1 })do in parallel

BROADCAST(vj ) (j.J)
Step 3 ,
{ Ineach OVP(i, ), R is a vector initialized 10 0 i.e. R = <0,0,0,...,0> }
{ R stores the result of comparison between v; andv;, whichiseither0 or/ |}
for all (i,jin | 0.1.2,....N:I } ) do in parallel
if NumGT(v; . vj );:I' then R :=</7,0,0,...,0 > ;
else if NumEQ(v;. i'j) =landi>j thenR :=<1,0,0,..0 > ;
else R =< 0.0,0,....0> ; endif
Step 4

{ Ranking Phase. Now we call the algorithm to compute the binary sequence on }

{ each column to get the rank Vi O <i<N-1. AN ranks are stored in OVPs that |}

{ are located in the last row, i.e..,OVP( i, N-1 ). 0 i <N-I. )
for alt ({in{0,1.2,...N-! }_du in parallel

call SumBinarySequence (i );
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Step 5 { Rearrangement Phase.}
{ Form N vertical buses of N OVPs in each column by making straight local}

{bus connectionsoneach OVP(i.j); O0<i.j<N-I.}

51 forall(i.jin{0,1.2,..., N-1}) do in parallel
CONNECT(NS.0):.(i.j)

{ The last-row OVPs broadcast rank; to all the OVPs vertically so thatevery }

{ processor OVP(i.j) getsrunk; after this step is executed. }

5.2 for all(iin { 0.1.2....N-] } do in parallel
BROADCAST(mnk,-) (i.N-1)
Step 6 '
{ Form N horizontal buses of N OVPsin each row by making straight local bus }

{ connections on each OVP(4,j): 0 <i.j<N-I. . }

6.1 forall (i,jin{0.1.2...N })do in parallel
CONNECT(EW.0): (i, j )

{ OVP(i,rank;) broadcastv; toall the OVPs horizontally. )
{ OVP(i,j) reccivesthe value in alocal vector remp. }
{ After Step 6.2 N numbers are sorted row-wise in nondecreasing order }

6.2 for all (iin{ 0,1,2,..N-1})do in parallel
BROADCAST(v j)o(ij=rank;)

54



Step 7 { Collecting the sorted numbers in the first-row processors. }

{ "orm N vertical busesof N OVPs in each column by muking straight local bus}

{ conrections on each OVP(i.j); 0<i.j<N-].}

7.1 for all(i.jin {0.7.2.... N-I1 } ) do in paraliel
CONNECT( NS,0): (1,5 )

{ Each diagonal processor, OVP(i, i) broadcast temp, the number it received in }

{ Setp 6.2 vertically. OVP( i . 0) stores the received valuein v i’ -}

7.2 for all(iin{0,7.2....N-1 } do in paraliel
BROADCAST(temp ) (i .1 )

After Step 7, the top row processors contain the sorted sequence. To say that the array is loaded in
the top row by the unsorted sequence initially, and after Step 7, the sorted sequence would be

available in the same row. The algorithm is explained with an example in Figure 5.

Lemma 2. N numbers can be sorted on a Reconfigurable Processor Matrix ( RPM ) consisting

of NxN Optical Vector Processors ( OVPs ) i.-n constant ime.

Proof. Step 4 of Sort algorithm is a pum-l.lél call to procedure SumBinarySequence. “This
procedure is simultancously invoked by N column-processors to compute the ranks of N input
data items. As we already proved that SumBinarySequence procedure has a time complexity
of O( 1 ), the whole step 4 in the Sort algorithm takes constant time. Furthermore, all the other
steps used in the above algorithm also takes constant time, as is evident from the definitions of the’

primitive and higher-level instructions of QVPs. This leads to the proof of the lemma.
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4.5 Conclusion

We have extended the design of a Reconfigurable Processor Matrix to sort N numbers in constant
time. We use the technique of sorting by enumeration as done by | WANG89] and [NAKA90] .
Our approach significantly differs from that of th.e other’s in that we exploit the dynamic
reconfigurable characteristics of optics. The vector processing capability of optics in natural
parallelism takes advantage in our design to reduce the hardware complexity down to Of N).cN ).
Future work involves further reduction of hardware, perhaps by increasing the time-complexity,

marginally.
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Chapter 5
Binary-Tree-Computation on

Optical Reconfigurable Vector-Processor Array

5.1 Introduction

Binary tree is a basic structure in parallel computations. In efficient parallel computations, binary
tree structure appears either in the form of data structure for computation or in the form of
structure of processors operating in parallel. The Balanced-Binary-Tree method is a powerful
paradigm in parallel algorithms{ GIBB 89]. Each internal node of a tree corresponds to the
computation of 2 subproblem with the root corresponding to the over-all problem. Any .;given
problem is solved by bottom-up approach and the result of computation is then broadcast to each
leaf node in the top-down approach. Subproblems solved by the internal nodes in a given level
correspond to the parallel execution by equal. number of processors. The size of the problem (n )
is assumed to be a power of two to ensure the balanced binary tree structure. If this is not the

case, then a minimum number of dummy elements can always be added to ensure that
requirement. The depth of the balanced binar'y. tree is thus bounded by [log n1. Since each level

of the tree is processed in parallel by emplo')"ing as many processors as there are nodes in that
level, complexity of the whole computation is_logarithmic i.e. O(log n) . The maximum number
of processors needed will be n/2 at théfleép-level and each successive level requires

geometrically decreasing number of processofs.

Processor array interconnected by locally controllable global bus has the potential of crr;beddfng
the Binary-Tree interconnection network topology. Any computation solvable on binary tree
interconnection network of processors can also be solvable on a reconfigurable processor array
with broadcast capability. Each process&i within the array can change its local bus connection

dynamically. Thus the global bus is split into several disjoint subbuses. A bus connected
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processors system with reconfiguration capability is called Reconfigurable Bus System (RBS). In
this Chapter we propose an optical RBS consisting of Optical Vector Processors( OVPs) and then
give an algorithm to embed the Binary-Tree computations on this RBS. Essentially, we simulate a
Binary-Tree interconnection on RBS.

5.2 Optical Reconfigurable Bus System (ORBS)

An ORBS consists of Optical Vector Processors (OVPs) interconnected by optical links to form a
one-dimensional mesh. Each processor in an ORBS of size N has a unique index expressed in
binary between 0 and N-1. Each OVP(i ), 0 <i <N-1, has two parallel ports; called E(East) and
W( West). The ports of the adjacent processors facing each other are connected by fixed fibre
optic links, forming a global bus through the processors. Each OVP can connect or disconnect
this global bus running through itself. E(i ), that is, port E on processor OVP(i) is connected with
W(i+I ); 0 <i <N-2. Figure 1 illustrate an ORBS of size 4.

[ ovpiooo) oveoon | |oveoio) OVP(O11)
W E w E W E w E
quure 1
Optical Reconfigurable Processor Array

(ORBS)

5.2.1 Optical Vector Processor

An OVP is the basic processing unit. It perform a set of primitive operations on binary vectors as
discussed in Chapter 3. These opcratic—)-ns are COPY, INV, BITUNION, BITAND, UNION,
INTERSECTION, KEEPLEFTMOST. Based on these primitive operations each OVP also
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performs some higher level relational operations such as, NumGT, NumLT, NumEQ, NumGE,
NumLE and NumNE( Chapter 4). Each OVP has a fixed number of registers where it can do its
local processing. It can send and receive a binary vector to and from its ports. To provide the

global connectivity, it either connects or disconnects its ports.

5.2.1.1 Connecting Local Bus

As we have mentioned earlier, each OVP has 2 ports: E and W, it can form a local bus by
cdnnecting E to W within itself through a mask matrix M. This is done by writing transparent
masks on the forward diagonal of the mask matrix, M( Figure 2). This mask pattern is called
Straight(ST) mask. This will establish a straight local bus connection. Sometimes it is needed by
the global algorithm to have Right Shifted or LeftShifted ( by I position) local bus connection so
that each incoming beam of light is shifted I position to the right or left while passing thr-ough
each OVP. This is done by two mask patterns called Shift Right(SR) and ShiftLeft(SL). Writing
and erasing a fixed mask pattern on the mask matrix takes constant ime. We parametrised the type
of local connection between ports by ST meaning straight bus and by SR meaning right shifted
bus and by SL meaning left shifted bus connection. To provide the desired dynamic

reconfigurability of the global bus, each OVP either connects or disconnects its local bus

connection by the following two instructions."

CONNECT(ST ) / DISCONNECT(S T): ': Writes or copies the transparent / opaque ST mask

pattern on the mask matrix, M. This establi%hes/disconnects the straight local bus between its
ports. '

CONNECT(SR ) / DISCONNECT(SR) : Writes the transparent / opaque SR mask patiern
on the interconnection mask matrix, M. This establishes/disconnects a right shifted local bus
between its ports.

CONNECT(SL) / DISCONNECT(SR) : Writes or copies the transparent / opaque SL mask

pattern on the mask matrix, M. This establishes/disconnects the left shifted local bus between its
ports.
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patiem
(2a) 4x4 Mask Mamrix M (b)

Figure 2. Establishing local bus between ports
(a) Straight (b) ShiftRight (cg)ghiftLeft

5.2.1.3 Data Broadcast

Each OVP connected either on a global bus or on a split bus, can broadcast a data item expressed
in binary, to all the OVPs connected on the same bus.The processor which wants to broadcast a
data item, loads its source vector, C with the binary representation of the data. It then initiates the
source vector to send the data on the bus. In q:f_le'clock cycle, the transmitted vector is received by
all the OVPs(including itself) connected to:the bus. Here we assume that the clock period is
greater than the travel-time of the broadcast vector-beam, which travels at the speed of light. Since
clock speed can not be achieved as high as the speed of light, our assumption is not unreasonable
to make. So each OVP can broadcast a data item to the other OVPs connected to the same bus, in

one clock cycle. Each OVP does broadcasting by executing the BROADCAST(<binary
sequence>) instruction.
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5.3 Binary Tree Computations on ORBS

An ORBS can effectively and efficiently simulate the binary tree interconnection based parallel
computations. The Of log n) time complexity of computations on balanced-binary-tree structure
of processors is also maintained without increasing ( rather with a reduction in the number of
processors) the hardware complexity in ORBS. In addition, the O(!) broadcast capability
provided by ORBS increases the efficiency. In balanced-binary-tree architecture to broadc,ast_ a
data to all the other processors, it takes Oflog n) time. Again, the number of processors in the
balanced-binary-tree interconnection network to solve a problem of size n, is 2n-I and the
number of links required is 2n - 2, whereas the same problem can be solved on an ORBS of n

OVPs with only an (n-1) -linked-segment broadcast bus linkiﬁg the processors. Now we give two
generic algorithms that simulates the balanced-binary-tree computations one in bottom-up fashion

and the other in top-down manner on an ORBS.

Preliminaries for the Algorithms

* Asequence of N numbersv;,0 <i < N,-I . There is a presumption in such a computation that

N is some power of 2. If this is not the case, then addition of a minimum number of dummy
elements to the problem can always make the problem-size equal to some power of 2 , without
affecting the original problem at all. So without any loss of generality we can say that N is some

power of 2. We also assume an ORBS of N .-_'proccssors.

* Each OVP on the ORBS has a unique in'dex in the range [0, . . . , N-I] and the index {

expressed in binary asi=i .y . .. i2if -

* The algorithm is distributed. Associated with each instruction in the algorithm there is an

instruction mask. This instruction mask is a Boolean function used by each processor to check

whether it is eligible to execute that instruction or not. This mask is written within parenthesis
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right after the instruction itself. For exaxﬁple, in the instruction
forall(iin{ 1,2, ..., N-1} Ydo in parallel
BROADCAST(<1,0,0,0,0,0>); (ip=1)
(i =1)is a mask that allows only those OVPs to execute the BROADCAST instruction whose
index has bit0 equalto !/ i.e. all the odd processors.

* Associated with each OVP, there is a Boolean valueawake. Each processor checks this ﬂ'ag to

determine whether it can perform certain operation in a certain parallel step.

* All the even numbered processors, including OVP(@0 ), i.e. OVP(0 ), OVP(2), OVP{¢) ...

eic., act as internal nodes of subsequent binary trees. A binary subtree rooted in certain even
numbered processor has a right child, which is to the right of the root by a distance equal to the
half of the current bus-length. In the upward direction of binary-tree-computation, buses of length
2,4, ...N is formed with each iteration of the total of log n iterations. Again, in the downward
direction of computation the global bus of size N is split into 2 parts with each iteration. To keep
track of the previous computed results received from its right child; each internal-node-processor
has an array called prev. Tts size depends on the depth of the subtree. For example, OVP(O ) acts

as the root for subtrees of sizes 2, 4, 8, . . .N. So its array prev has a size of log N, which is the

maximum.

* The algorithms assume the availability of 3 generic functions, namely f,.50¢ » finterna [~ and

fleaf to be executed by the root processor; internal-node processors and leaf processors

respectively. These functions are used as template parameter for our two generic algorithms. -
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Algorithm 1.  Procedure UpwardPass( fnternal > fleaf )

Step 1.

Step 2.

{ N numbersv; ,0 <i <N-I areassignedto N OVPs each }
for all (i in {0, 1, ..., N-1 }) do in parallel

begin
5; = eraf( v;)s
awake = 1;
end

{ log N times iteration }

for k:=0 to logN-1 do

begin

2.1 forall(iin{0, I ..., N-1 } and awake =1 ) do in parallel
2.L1 CONNECT(ST ); (i, =1) /connect straight local bus /
212 BROADCAST(s; ); (i, =1 )

2.1.3 awake=0; (iy=1)

2.2 { Each processor on the corresponding subbus receives the value which}
{ is broadcast in the previous stepin s, ;4 } ’
for all (i in {0, 1, ..., I\{‘-Ii} and awake =1) do in parallel
2.2.1 prev; [ k] := ,,_.W (i, =0);

2.2.2  finternal( Si> Sychita) s (i =0)

end
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Algorithm 2.  Procedure DownwardPass( f,,, » finternal » fleaf)

Step L. frooi(Si):(i=0)
awake; :=1;(i=0)

Step 2. for all(i in{0, I, ..., N-I }) do in parallel
{ Form the global busof size N }
CONNECT(ST );

Step 3. { log N timesiteration }
for k:= logN -1 to O step -1 do
begin
3.1 forali(iin{0, 1, ... N-l} and awake = 1) do in parallel
Sinternat ( Si- Previl k1, Spepia )5

3.2 forall(iin{0, 1, ..., N-I1} and awake=1) do in parallel
3.2.1 BROADCAST(s,CW) (i =0)
{ Processors connected on the corresponding subbuses receive thc}
{ value broadcast in this stepin s; } '
3.2.2 ({ disconnectthe b:ﬁs into2 parts }
DISCONNECT(ST); (i, =1)
awake=1; (i, =1 )

end :

Step 4. for all (i in {0, I, ..., N-1 }) do in parallel
fleqf( 5i)s
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Analysis

Algorithm 1
Step 1 is done in a single clock cycle. Step 2 is executed log N times and both steps 2.1 and 2.2
are done in parallel in constant time. So the overall time complexity is O(log N).

Algorithm 2

Step 1, 2 and Step 4 are done in constant time. Step 3 is executed log N times and both substeps

3.1 and 3.2 are done in parallel in constant time. So the overall time complexity is again O(log
N).

Lemma. An ORBS can simulate Binary-Tree Computations.

Proof. For all computations involving realizable binary associative operations on Optical Vector
Processors( OVPs), algorithm Binary_Tree_Computation is generic. Hence we can instantiate
this algorithm to solve a problem which is _501vablc on binary-tree interconnection network of

Processors.
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Examples of Binary-Tree Computation.

* Finding Maxima
Lets instantiate the algorithms to find the maximum ( minimum ) of N numbers. We assume N is
some power of 2. If this not the case, we can insert some -oo { +oo ) to make N equal to some

power of 2.
Algorithm. Find_Maxima
Step 1. Call UpwardPass( NumGE, COPY-)

Step 2. { Formaglobal bus }.
for all (i in {0, 1, ..., N-1 } ) do in parallel
CONNECT(ST);
Step 3. BROADCAST(s;)(i=0)

* Prefix Sum Computation
Given N numbersv;; 0 <i<N-1, and an.z'lssociative 0, it s required to compute vy O vy . .

.8 v;, 0 <i <N-1. This associative operatof will be used to replace the f;nsernal functi.on in

the template of algorithm UpwardPass. Let us assume 0 is an addition operation, i.e. +. Again,

let us define an operation to replace the f;, t;;'n a1 function in the template of DownwardPass.

This function takes current value in 5; and split it into two parts: new s; and .4 for its two
children. For the case of 8 to be addition (+), s,.4;;4 gets the original value of 5; and the new s;

willbe s; - prev(k] (the value received from its right child). The following procedure does that.
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Procedure distribute ( s;, prev, k, s;-pi14)
begin s, pijg=s;. s; =s; - prev[k]; end

Now we can instantiate the algorithms UpwardPass and DownwardPass to compute the Prefix

Sum computation.

Algorithm Prefix Sum(8 : associative binary operator )

begin Call UpwardPass(6 , COPY );

Call DownwardPass( COPY, distribute, COPY );

end

Examples of associative operators are: addition, multiplication, maximum, mimimum etc. For
each one these operators the diszribute function has to be written seperately as required. Eacﬁ one
of them can replaéc the operator 6 in the above algorithm giving solution to a Prefix Sum problem
encountered in vé:rious parallel algorithms as basic building block. ~

Thus by defining different realizable functi’oi'gs to replace the template functions in algdx:ithms
UpwardPass and DownwardPass we can réally compute the class of binary-tree-computation

problems efficiently in our proposed Optical licconfigurable Bus System of Optical processors.

5.4 Conclusion

s

An reconfigurable bus connected optical vector processor array, ORBS, can embed in itself the
Binary-Tree Interconnection topology in a dynamic way and thus can simulate Binary-Tree
Computations efficiently with reduced number of processors. This architecture has a limitation

that is inability to achieve pipelining of cemputation.
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Figure 5.3 Finding thé maximum on an ORBS of size 4
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Chapter 6

Parallel Selection and Parallel Quicksort Algorithms

on ORBS

6.1 Introduction.

In this Chapter we propose recursive parallel algorithms to be run on an Optical Reconfigurable
Bus System (ORBS) to solve the Selection Problem and then using this, we propose a Parallel
Quicksort algorithm. A sequence of integers S = {5y, 5;.. . . , §,; } with its elements are
drawn from a linearly ordered set and an integer &k, where <k <n, are given. The Selection
Problem is to determine the element with rank equals to k. Without loss of generality we can

assume that § is a sequence of integers. S‘eIection Problem calls for finding the kP smallest

elementin S. This problem can be solved using a single processor with time complexity of O(n)
[AHO 74], [AKL89]. Based on this sequemiil algorithm a Parallel Select algorithm is prpposed
on an EREW SM SIMD computer{AKL89]. We adapt the same recursive technique and propose
a different version of Parallel Select algoritﬁm using all optical processing elements. Using the
Parallel Select algorithm we later proposé-' a Parallel Quicksort algorithm. In the pre;/ious
Chapters we have proposed the architecmre- bf an Optiéal Reconfigurable Bus System (ORBS)
where Optical Vector Processors (OVP) form a.reconfigurable global bus by the self-adjustment
of local buses dynamically. In this Chapter we show that ORBS is a suitable parallel architecture

to solve the Selection Problem as well as the Parallel Quicksort.
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6.2 Preliminaries

We consider an ORBS of n OVPs connected in an array. Each OVP has a unique indexi, 0 <i <
n-1. As we recall from previous chapter, an OVP is capable of performing some vector processing
operation on binary vectors. We also recall that an OVP can broadcast a binary number using the
BROADCAST instruction. Each OVP can also connect itself to the global bus by either straight
local bus connection or by right/left shifted local bus connection. It can also disconnect it§ local
bus connection. In this Chapter we introduce two new operations for shifting a binary sequence in
either direction by a fixed number of position. These two operations will be used in Selection and
Quicksort algorithms.

6.2.1 Shifting A Binary Sequence

An OVP can shift a binary sequence either to right or to left by a fixed number of positions. It is
done by an optical circuit consisting of a source vector, a destination vector and a mask matrix,
Mm, containing a fixed shift pattern. To shift in either directiom, there are two typc§ of shift
patterns, namely ShifiRight(SR) and ShiftLeft(SL). An integer pos specifies the amoun-t of shift
required. Then for shifting to right, say by 2 , transparent masks are writien on the fd_rward
diagonal which starts at cell 2 in the first (_idlumn of Mm. Similarly, to have a leftshiff of 2,
transparent masks are written on the forward diagonal that starts at the second cell of first row. If
no shift is required, then transparent masks are written on the forward diagonal of Mm. The
optical setup for shifting in either directions fs_c shown in Figure 1. So shifting in either direction is
done by either of the following two ihsiructions: SHIFTLEFT(X, pos) and
SHIFTRIGHT(X, pos). The first paran?eter xs the vector to be shifted and the second one

specifies the amount of shift needed. Each one of the two instructions takes constant time.
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Figure 1. Shifting Binary Sequence <1,0,1,1> by 2
(a) ShiftRight(<!,0,1,I>,2)
(b) ShiftLeft (<l,0,1,1 >,2)

6.3 Some Useful Procedures.

In this section we give some necessary procedures that will be used in our later algorithms as
modules/subroutines.

6.3.1 Computing Unary Prefix Sum of A Binary Sequence on ORBS

In the design of many parallel algorithms m general and Parallel Select and Parallel Quiéicsort
algorithms in particular, we need to find thé prefix sums of a binary sequence. On a shared
memory SIMD EREW computer this takes 6(Iogn) time . Assuming constant propagation -.!ime
through the bus, in our proposed ORBS architecture Unary Prefix Sum can be done in constant
time i.e., O(I). Let us consider a binary seqience B = < by, by,...,b;. ...b,> and an ORBS
with n OVPs. Each b; is assigned to OVP(i). Depending on its binary digit b; equalto 0 or’/,
OVP( i) connects its local bus straight or one-position shifted to the right. The first processor,
OVP(1) then sends the binary sequence < 1, 0, . . ., 0 > on the global bus connecting n

processors. During the broadcast cycle every processor OVP(i), 0 <i < n-1, receives the value on
the bus and detects the position of I and takes this integer value( position of /) as its prefix sum

i.e., sum of binary sequence up to b, . The last processor OVP(n-1) then sends its prefix sum to
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all other processors to its left on the bus as the total sum of the binary sequence B. Figure 2
illustrates the Unary PrefixSum operation on an ORBS. The following algorithm performs the
UnaryPrefixSum operation.

Fibre -Optic

OovP@©) OovP(1) OVP(2) OVPQ3)

Broadcast <I, 0,0,0> .
ShRig SN Lomlbe Lot
connection connection connection connection
s=1 s=1 s=2 s=3
Figure 2 £=3

PrefixSum(<1, 0,1, 1>, s,t )

Algorithm UnaryPrefixSum(R, S, T )

{ Every processor OVP( i ) has its binary digit b; inits local register vector R. )

{ After the procedure vector S contains its prefix sum and vector T contains the total sum.' 2}

Step 1 for all (i in {lower...upper } ) do in parallel
if BITUNION(R;) =0 then CONNECT( ST )
"“else CONNECT(SR );

Step 2 BROADCAST(< 1,0,0,..0.>, RIGHT ); (i = lower; )

Step 3 for all (i in {lower ... upper } ) do in parallel
CONNECT(ST ) ;

Step 4 BROADCAST(S;, LEFT) ; (i = upper;)
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6.3.2 Unary Subtraction on ORBS

We use the bit-by-bit shifting mechanism by processors on ORBS to find the unary subtraction of
two integers. Let us assume two numbers expressed in binary sequence k;, k, where k; > k,. We
can find k; - k, onan ORBS of size > k;. Here is how it can be done. OVP(i),0<i<k,- ]

connects its local bus with Shiftleft bus connection and OVP( j ), k, <j <k;-I connects its
local bus straight, without any shift. Now OVP(0) broadcast a vector with its k ;*# bit equal to /

and the rest of the bit positions as 0’s. During the broadcast cycle, every processor with left
shifted local bus connection shifts the position of I by one position to the left. The last processor
detects the position / in its detector vector D and broadcast this position, k,,,, to all the other

processors as the unary subtraction of k; and k,. Figure 3 is an example of this operation. Here

we give a procedure.

Fibre -Optic

OVP@3)
Broadcast (<0,0,0, I>) ) . Result = 2
. ShiftLeft Straight Straight
Shlflbte)its Local bus - Local bus Local bus
CLOO nnc alecﬁ on connection - _connection connection

Figuré 3
Unary Subtraction UnarySub{, 2)
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Algorithm UnarySub(R, S) : return k,,,,

{ The valuein S has to be subtracted from that in R using shift mechanism.}

Step 1 for all (i in {lower...S }) do in parallel

CONNECT(SL )
Step 2 for all (i in [S...upper}) do in parallel

CONNECT(ST ) ;
Step 3 BROADCASK(< 0,0,...Ig, .., 0> RIGHT ); (i= lower)

{ Each processor receives this value in kpew }

Step 4 for all (i in {lower... upper}) do in parallel

CONNECT(ST ) ;
Step 5 { Last processor broadcast its value in k,,,,,, to all the other processors }

BROADCAST(k,,,, , LEFT); ( i'= upper)

{ Each processor receives this value in kpew }
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6.4 Parallel Select Algorithm

We are ready to present the Parallel Select algorithm. This algorithm is the adaption of the
sequential select algorithm. In Sequential Select [AHO74] algorithm, n numbers are split into 3

parts L, E and G with respect to the median (m) of medians m; of n/Q subgroups. Elementsin L
are less than m, that in E are equal to m and elements in G are greater than m. Then depending
on the value of k, Sequential select is called recursively eitheron Loron Goranm is retumed
as the target selection. In our parallel version of this problem we extend the same technique
exploiting the advantages of ORBS architecture. Before going into the details of the algorithm, let

us outline some of the assumptions that our algorithm will make use of.

(a)  An Optical Reconfigurable Bus System (ORBS) with n Optical Vector Processors(OVPs)
is the hardware needed for the algorithm. .

(b) Each OVP has a fixed number of registers and local memory. In each OVP, a variable
lower contains the index of the processor.with lowest index in a group of OVPs currently
connected on a bus. Similarly, upper holds the highest processor’s index in the same bus. The
variable range holds number of active processors on the current bus. In each processor,
awake is a flag to indicate whether that proce:.ss'br is active or in sleep. Each processor keep§ track

of the lengths of subsequences L, E, G in 3 variables posLT, posLE and posGT.

(c)  The algorithm is a recursive one and with each recursive invocation the ORBS is split into
3 smaller parts. Associated with each invocation, a global array called SYN[lower . . .
upper] is used for synchronization purposes. Its size is equal to the number of processor

involved in that invocation. -
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Algorithm

Procedure Parallel Select (lower . . . upper, k )

{ First parameter is the range of processor indices, 0 < lower, upper < n-1. }
{ Eachintegers;, 0 <i<n-I is given to OVP( i ) at the first invocation. }
{ All the processor are awake at the first invocation i.e. awake; = I. ]
Step 1.

1.1 for all (i in {lower...upper} ) do in paraliel
Store s; in SYNf;
1.2 Call UnaryPrefixSum( awake, r , range)

{ All processor knows the number of processor on the bus }

1.3 { First processor checks if range; < Q = 8. If itis wrue then it sorts the sequence}
{in SYN by using any sequeptial sort and broadcast the k th smallest element }
{to all the processors and rctum- from the procedur. _ }

if NumLE(range;,8)=1 then -
begin Sequential Sor SYN); BROADCAST(SYN[ k ]); return end

Step 2. _' -

for all (i in {lower. .. . uppér }and (i/8=0) do in parallel
begin Load8 consecutive numbers starting from SYN[ShiftLeft(i, 8 )]
toits local memory in X [0...81;
m; := median ( X); _ " [ by any sequential algorithm /
end >
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Step 3. { Now processors with indices from lower to lower + (upper - lower)/8 have}
{medians m; s of groups of Q =8 elements. The Parallel Select is called }
{recursively on these processors to get the median (2 ) of medians. - }

{ After this step every processor knows m. }

Parallel Select{ lower . . . lower + Wpper -lower  (upper -lower }[ 7 ).
8 8

Step 4. { Splitting array SYN into 3 parts : Less than, Equal to and Greater than m.}

4.1 for all (i in {lower...upper} ) do in parallel
Storem intoSYN[i };

4.2 { Compute the prefix sum of binary sequence corresponding to )

{ elementsin L. -}

a. for all (i in {lower...upper} ) do in parallel

if NumLT(s;, m)=I_then R;:=I else R; := 0 endif;
b. Call UnaryPrefixSum (R, prefixpos, posLT ) )
{ Every processor with elc?riént less than m now knows where to write }
{itss; tothe global array SYN i.e. to location SYN[prefixpos]. ¥
¢. for all (i in {Iower..:.'upper} and R; =1) do in parallel

begin Store s; in SYN[prefixpos]; R, :=0; end
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4.3 { Compute the prefix sum of binary sequence corresponding to }

{ elementsin G.

a. for all (i in {lower...upper} ) do in parallel
if NumGT(s;, m)=I then R;:=I else R, := 0 endif;

b. Call UnaryPrefixSum (R, prefixpos, posGT )

c.

{ Every processor with element greaterthanm  knows where to write)
{itss; to the global array SYN from right i.e., to location }
{ SYN[upper - prefioxpos} 3

for all (i in {lower...upper} and R;=1) do in parallel
begin Stores; in SYN[upper - prefixpos |; R; :=0; end
/ This writing is done by writing from the right side of SYN/

4.4 ({ Compute the prefix sun_i ;)f binary sequence corresponding to both

{ elementsin L as well asin E.

a. for all (i in {lower upper} ) do in parallel
if NumLE(s;, m ) =I-then R, :=I else R;:= 0 endif;
b. Call UnaryPrefixSum (R, prefixpos, posLE ;

s
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Step 5.

Step 6.

Analysis

{ Each processor now reads its new element from the rearranged array SYN
for all (i in {lower...upper}) do in parallel
Loads; from SYN[i];

for all (i in {lower .. .upper}) do in paraliel
if (NumGE(posLT, k) = 1) then
begin
if (NumLE({, posLT ) =1) then upper; := posLT
else awake; := 0 endif;
Call Parallel Select{lower . . . upper, k);
end
else if (NumGE(posLE, k) = 1) then return m ;
else begin kk := UnarySub( k, posLE); lower; := posLE ;
Call Parallel Select ( lower . . . upper , kk );
end '
endif

}

Let us estimate the time complexity of the Péz_ibllel Select algorithm. We denote by #(n) the time

required by the Parallel Select for an input of size n. A recurrence relation describing ¢(n) is now

developed by analyzing each step of the procédurc.

Step 1. As we have shown in before in this Chapter that procedure UnaryPrefixSum is done in

constant time and also sequential sort on a fixed number of elements takes constant time, the

whole step takes O(1) time. -
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Step 2. Finding the median of fixed number of elements(Q = 8) using any sequential technique
takes constant time. Actually a sequential select algorithm finds the median in O(logQ ) time and

since Q is constant, time complexity is constantie., O(1).

Step 3. Since Parallel Select is called with an input of size n/Q, this step takes (n/Q).

Step 4. Rearrangement of the original sequence into 3 parts: L, E and G is done in this step. Since
by definition, UnaryPrefixSum procedure takes constant time, each one of substeps 4.1 to
4.5 takes constant time. So the whole step 4 takes time O(1).

Step 5. This step also takes constant time.

Step 6. In this step, Parallel Select is called recursively on a sequence of reduced length than the

original call. Since m is the median of n/Q elements representing the medians of @ elements in
each group, /n/Q 1/ 21 xLOR2 Ji.e., ni4 elements are guaranteed to be less than or greater than

m. Soif L=n/4 thenG23n/4 orvice versa. Step 6 takes time #(3n/4).
The preceding analysis results in the following fécm-rence relation for #(n) :

tn)=c+4n/Q)+ t(3n/4)
Solution to this recurrence relation yields 1(r) = O( logn).
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6.5 Parallel Quicksort Algorithm

We now present the Parallel an algorithm on an ORBS. In Quicksort algorithm the
sequence of integers to be sorted is splitinto 3 parts: L, E and G, with respect to the median of
medians of smaller subgroups of constant size(Q). The median m of medians m; s is found by
calling the Parallel Select algorithm. Then parallel Quicksort is called recursively on both the
subsequences E and G. Thus the sequence to be sorted becomes smaller and smaller in geometric
progression with each invocation of the algorithm. When the sequence becomes so small that any
sequential sorting can be applied in constant time, the algorithm terminates with the whole
sequence as sorted. Now we give the Parallel Quicksort algorithm. |
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Algorithm

Procedure Parallel Quicksort (lower ...upper)

{ First parameter is the range of processors indices, 0 < lower, upper <n-1. }
{ Eachintegers;, 0 <i <n-I isgivento OVP( i) atthe firstinvocation. }
{ All the processor are awakeinitially ie.,awake; = I. }

Step 1.
1.1 for all (i in {lower...upper}) do in parallel
Store s; in SYNIi];
1.2 Call UnaryPrefixSum( awake, r , range)

{ All processor know the number of processors on the bus }

1.3 { First processor checks if range; < 0 = 8. Ifitis true then it sorts the sequence)
{in SYN by using any sequential sort and return the procedure. }
if NumLE(range;, 8 )= 1 then Sequential Sort( SYN); return

.-

Step 2.  Call parallel Select( lower ... ux_t'Jpér, ShiftRight( upper - lower, 2 ) )

Step 3.  { Splitting SYNinto 3 parts : Less than, Equal to and Greater than m. )

3.1 for all (i in {Iower...up‘per} ) do in parallel
Storem intoSYN[i ];

3.2 { Compute the prefix sum of bit sequence corresponding to elements in L.}
a. for all (i in {lower...upper } ) do-in parallel

if NumLT(s;, m)=I then R;:=I else R;:= 0 endif;
b. Call UnaryPrefixSum (R, prefixpos, posLT )
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{ Every processor with element less than m now knows where to write}
{itss; to the global array SYN i.e., to location SYNIprefixpos; ] }

for all (i in {lower...upper} and R; =1) do in paraliel
begin Store s; in SYN[prefixpos; ; R; :=0; end

3.3 { Compute the prefix sum of bit sequence corresponding to elements in G}

a. for all (i in {lower...upper } ) do in parallel
if NumGT(s;, m) =I then R;:=I else R;:= 0 endif;
b. Call UnaryPrefixSum (R, prefixpos, posGT)

c. { Every processor with element greater than m knows where to write'}
{itss; to the global array SYN from right i.e., to location | )
{ SYN{upper - prefixpos; ] }
for all (i in {lowerj'..:upper} and R=/) do in parallel
begin Store s; “in SYN{upper; - prefixpos; 1; R; :=0; end |
/ This writing is done by writing from the right side of SYN/.

- 3.4 { Compute the prefix surri_ of binary sequence corresponding to B

{ elementsin L as well asin E. }

<

a. for all (i in {lower ... upper} ) do in paraliel
if NumLE(s;, m) =I then R;:=I else R;:= 0 endif;
b. Call UnaryPrefixSum (R, prefixpos, posLE);
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Step 4. {Each processor now reads its new element from the rearranged array SYN}
for all (i in {lower...upper} ) do in paraliel
Loads; from SYN[i];

Step 5. for all (i in {lower...upper}) do in parallel
if (NumLTG; m)=1)then upper; :=posLT; ;
if (NumGT(s; m) = 1) then lower; := posLE; ;
if (NumEQ(s; m )= 1) then begin awake; = 0; DISCONNECT(ST) end

Step 6 for all (i = posLT or i= posLE }) do in parallel
Call Parallel Quicksort(lower...upper ); (i )

Analysis

To estimate 7(n), time required for this algoﬁﬁxm we can develop a similar recurrence relation as

we have done for the Parallel Select algorithm in the last section.

Step 1. This step takes constant time.

Step 2. Parallel Select is called to find the medlan of medians, m. So the time reguired for this
step is O(logn ). - '

Step 3. Splitting the numbers into 3 groups takes O(1) time.

Step 4 and Step S. Both take constant time.
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Step 6. The Parallel Quicksort is called recursively on both sequences L and G concurrently. As
mentioned earlier that maximum length of each one of them is 3n/4. So this step takes time at most
H3nl4).

The above analysis leads to the following recurrence relation for #(n) :

in)=c; + cylogn + t(3nl4)

Solution to this recurrence relation gives #(n) = log2n.

6. Conclusion

In this chapter we propose a recursive parallel algorithm to solve the Selection Problem and also
propose a parallel version of the Quicksort algorithm on Optical Reconfigurable Bus
System(ORBS). The time complexity of the Parallel Select algorithm is O(logn) and that of the

Parallel Quicksort is Oflog?n).
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Chapter 7

Conclusion and Future Work

Optical computing provides new hope for parallel computation.We have developed optical parallel
architectures and parallel algorithms to solve some comparison-based problems with better time
and hardware complexities. We have exploited the full advantages of optics as the underlying
technology to come up with true parallel computer architectures.

Results of the work

® An Opitical Vector Processor (OVP) has been developed using all optical elements and primitive

operations have also been developed.

* Optical Clos Nonblocldng-Multicast-Switc.:hing Network has been realized and an O(1) control

algorithm for the network controller has been ~developed. This allows on-the-fly dynamlc

reconfiguration of the network multicast connecnons

¢ A constant time sorting algorithtﬁ has beéen developed to sort n numbers on an Optical

Reconfigurable Bus System (ORBS) consis}ing of OVPs connected on a grid structure. Each
OVP can dynamically reconfigure its local bus connection. As a result the whole global bus

running through the OVPs get reconfigured dynamically.
® Binary-Tree-Computations have been simulated on an ORBS of Optical Vector Processors.
Two generic algorithms have been develGped to simulate the ascent and descent phases of Binary-

Tree-Computations.
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® Parallel Select and Parallel Quicksort algorithms have been developed on ORBS architecture.

We have touched the tip of an ice burg. Optical computing has enormous potential. Using the
capabilities of our architectures solution to a number of hard problems encountered in electronic
computing can be reinvestigated. A radical change in the design of parallel algorithms is needed
to solve problems on parallel optical computers. Optics is very cryptic in numeric computation
but its power lies in its capability of symbolic computation. Much work is needed both in
hardware and software before true parallel optical computers are available side by side with their

electronic counterparts.
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