
 1

Computational methods in Bioinformatics: 

Introduction, Review, and Challenges 

CCSE Technical Report 

Moustafa Elshafei 
Department of Systems Engineering 

May, 2004 
 

Contents: 

           Abstract 

1- Introduction  

2- Introduction to Molecular Biology. 

3- Gene Banks 

4- Gene Identification 

5- Sequence Alignment 

6- Multiple Sequence alignment and classification 

7- Summary and future directions 

8- Conclusion 

References 

 

 

 

 

 

 



 2

 

Abstract 

   Biotechnology is emerging as a new driving force for the global economy in the 21st century.  

An important engine for biotechnology is Bioinformatics. Bioinformatics has revolutionized 

biology research and drug discovery. Bioinformatics is an amalgamation of biological sciences, 

computer science, applied math, and systems science. The report provides a brief introduction to 

molecular biology for non-biologists, with focus on understanding the basic biological problems 

which triggered the exponentially growing research activities in the bioinformatics fields. The 

report provides as well a comprehensive literature review of the main challenging problems, and 

the current tools and algorithms. In particular, the problems of gene modeling, and gene 

prediction, similarity search, multiple alignments of proteins, and the protein folding problems 

are highlighted. The report discusses as well how such tools as dynamic programming, hidden 

Markov models, statistical analysis, clustering, decision trees, fuzzy theory, and neural networks 

have been applied in solving these problems.  

 

1- Introduction 

 

Biotechnology is expected to be the new engine of the global economy during the 21st century. 

Biotechnology is creating new products and markets in many areas from agriculture to chemicals 

and manufacturing processes, from drug discovery to bio-computing and nanotechnology. The 

growing biotechnology industry and its sectors, like agriculture, marine sciences, human 

therapeutics, and the environment are considered the new directions for long-term economic 

growth.  
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An important engine in Biotechnology development is Bioinformatics.  Bioinformatics 

technology has the potential to revolutionize biology research and drug target discovery.  By 

reducing drug discovery and development costs, bioinformatics facilitates the creation and 

commercialization of agricultural, pharmaceutical, environmental, and industrial products that 

might otherwise be cost prohibitive.  

 The forecast value for the worldwide informatics market in the life science sector  was estimated 

in 2002 to be approximately $12 billion, and is expected to grow at rate of over 24% per year to 

almost $38 billion by 2006 [1]. Advances in genomics in general, including the mapping of 

genomes from bacteria, viruses, and humans, have provided an enormous amount of data to be 

mined. The information encrypted within these data promises advances in areas that can 

dramatically improve quality of life, including personalized medicine, the use of genes to treat 

diseases, the development of new energy sources, obtaining better matches for organ transplants, 

and protection from biological and chemical warfare [2].  For example, in the pharmaceutical 

industry, traditional drug discovery technologies are reaching the limits of their ability to yield 

innovative new drugs. Consequently, pharmaceutical firms and researchers are increasingly 

relying on bioinformatics technologies to use genetic information to identify and develop 

rational, targeted drugs. The expansion of bioinformatics research is expected to accelerate drug 

development for a wide range of illnesses, from cancer to Alzheimer's disease. The application of 

bioinformatics has the potential to drive growth in the worldwide pharmaceuticals drug market 

from the $240 billion today to $3 trillion by 20201.  

     The potential for significant advances in biological and medical science is enormous but is 

currently hindered by a shortage of trained Bioinformatics professionals. There is an increasing 
                                                 
1 http://www.bizintelagents.com/reports/kt12412_Bioinformatics.html 
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demand from industry and from academia for individuals with training in both biology and 

computer science. To fill this need, many universities around the world have started new 

programs in Bioinformatics and related fields that trains students in both the biological and 

computer sciences [3, 4]. According to the International Society of computational Biology 

(ISCB) [5], by 2004 over 18 universities in Europe and over 70 universities in North America 

started undergraduate and/or graduate programs in Bioinformatics.  

    Bioinformatics is a merge of molecular biology science and “informatics techniques” 

(derived from disciplines such as applied mathematics, systems science, computer science, 

statistics, Artificial Intelligence and Pattern recognition) to understand and organize the 

information associated with these molecules, on a large scale. In short, bioinformatics is 

concerned with: 

1- Organizing data in a way that allows researchers to access existing information and to submit 

new entries as they are produced, e.g. gene banks, and protein banks 

2- Development of data mining and analysis tools, e.g., to identify, qualify, and quantify genes 

and gene products and proteins. 

3- Modeling, interpreting and predicting biological activities, and how genes and proteins  

interact in complex biological systems and regulatory networks. 

The international human genome project, which starts in 1989 and finished  in 2003, created a  

research fever for sequencing and annotating DNA sequences [ 6,7]. By 2003, more than 180 

genomes from different organisms were completed, and another 900 projects are still undergoing 

[8]. By 2004, the gene banks databases contain more than 35 billion nucleotides of sequences 

from a wide spectrum of organisms and species. The exponential growth of gene banks entries is 

clearly illustrated in Fig.1 [9]. According to [10], the number of submitted papers to 
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Bioinformatics, a well-known journal in the field, has been increasing at rate of almost 40% 

annually, which reflects the exponential increase in the research activities in this growing field.  

Despite the increase in data available each year, less than one percent of microbes are known, 

many genes remain to be found, most of the functions of the “discovered genes” are still 

unknown, and functions of noncoding DNA remain unidentified [7]. 

 

Fig. 1 Exponential growth of gene banks entries [9]. 

The rapid growth of biological data and the value mined from these date have attracted 

researchers from many disciplines, e.g. engineering, signal processing, mathematics, physics, 

operations research, mathematics, and computer science, which has in turn revolutionized the 

field of bioinformatics.  

    Statistical methods and mathematical analyses have contributed to the development of new 

algorithms for DNA and protein sequence analysis and modeling [11-21]. Efficient algorithms 

based on dynamic programming and Hidden Markov Model (HMM) have been used to discover 

and assess similarity between sequences, and  in gene modeling and prediction [ 22-31].  More 
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recent work contributed algorithms using modern Artificial Intelligence tools such as clustering, 

fuzzy theory, and decision trees [ 32-43], and neural networks and self-organized maps [44-55]. 

There is also a great need and interest in developing better methods and tools for large scale data 

mining, visualization, and information integration and management [ 56-64 ]. Robotics and 

image processing have recently contributed to the discovery of the Microarrays technology. 

Microarrays allow scientists to analyze expression of many genes in a single experiment quickly 

and efficiently. They represent a major methodological advance and illustrate how the advent of 

new technologies provides powerful tools for researchers [65,66 ] 

The impact of bioinformatics technology not only has lead to discovery of  new concepts in 

fighting disease [67,68 ], but also lead to a reciprocal  impact on such fields as nano-technology 

and biocomputing [70, 76  ].  

 

 

2.   Molecular Biology (gentle introduction) 

This section provides a brief introduction to the science of molecular biology. The objective is to 

introduce only the basic principles and background that would be needed by non-biologists to 

understand the molecular biology problems and challenges to be possibly investigated by the 

researchers and scientists from other fields as computer science, systems science, mathematics, 

and physics.  

2.1 Chromosomes 

     The classical chromosome theory of inheritance holds that chromosomes are the cellular 

components that physically contain genes.  [77]. Genes are the functional units of inheritance, 

and control cell structure and function. Chromosomes consist of a long sequence of molecules 
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called DNA.  A structured gene is a segment of the DNA that code for specific proteins. Non 

coding genes provide regulatory functions for other genes, or act as templates for molecular 

acids which control protein synthesis.   

     The chromosomes in all the cells of the human body are the same (except in sperm, egg and 

some cells of the immune system). This is because all the cells are derived from the same 

fertilized egg by cell division.  However, the information that does not pertain to the cell's 

identity is inactive.  The number of chromosomes varies from organism to another. In the human 

genome, there are 46 chromosomes, 2 of which are sex chromosomes, Fig. 2. The number of 

chromosome of  an organism  bears no relationship to the organism's complexity. For example, 

the number of chromosomes in chicken  is 78, mouse 40, wheat 42, corn 20, fruit fly 8, and 

scorpion is 4.  

     Two types of chromosome pairs occur. Autosomes resemble each other in size and structure ( 

one from each parent). For example pairs of chromosome 21 are the same size, while pairs of 

chromosome 9 are of a different size from pair 21. Sex chromosomes may differ in their size, 

depending on the species they are from. Cells with two of each type of chromosome are said to 

be diploid whereas cells with only one of each type of chromosome, like sperm cells or egg cells, 

are said to be haploid. But some other organisms such as fungi can be haploid for much of their 

life cycle.  

    In humans , males have a smaller sex chromosome, termed the Y, and a larger one, termed the 

X. Males are thus XY, and are termed heterogametic. Females are XX, and are termed 

homogametic. 
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Fig. 2  The 46 chromosomes of the human2. 

     Cells of organisms are broadly classified into two main types; Eukaryotes and Prokaryotes. 

Eukaryote is a type of cell found in many organisms including single-celled protists (microbes, 

molds, and primitive algae), multi-cellular fungi, plants, and animals,  characterized by a 

membrane-bounded nucleus and other membraneous organelles. The first eukaryotes are 

encountered in rocks approximately 1.2-1.5 billion years old.  Prokaryote  is a more primitive 

type of cell, which lacks a membrane-bound nucleus,  has no membrane organelles, and have a 

single circular chromosome. Prokaryotes were the first forms of life on earth, evolving over 3.5 

billion years ago. 

Phenotypes are the observed properties or outward appearance of a trait ( height, shape, color, 

etc). A phenotype is contributed by one or more gene. A gene can have alternate forms called  

alleles.  Many genes have more than two alleles (even though any one diploid individual can 

only have at most two alleles for any gene), such as the ABO blood groups in humans. Human 

ABO blood types are determined by alleles A, B, and O.  A and B are co-dominants, which are 

                                                 
2 http://www.emc.maricopa.edu/faculty/farabee/BIOBK/Human_46,XY.gif 



 9

both dominant over O. Many traits such as height, shape, weight, color, and metabolic rate are 

governed by the cumulative effects of many genes. Polygenic traits are not expressed as absolute 

or discrete characters. Instead, polygenic traits are recognizable by their expression as a 

gradation of small differences (a continuous variation), which usually follow a normal 

distribution.  Phenotypes are always affected by their environment. Expression of phenotype is a 

result of interaction between genes and environment.  

 

 

2.1 Deoxyribonucleic acid (DNA) Structure 

All information necessary to maintain cell life cycle is embedded in the DNA, a sequence order 

of four nucleotides: A (Adenine), C(Cytosine), G(Guanine), T(Thymine) in the long DNA 

molecule. DNA is a double helix, with bases to the center (like rungs on a ladder) and sugar-

phosphate units along the sides of the helix (like the sides of a twisted ladder). A pairs with T, 

and C pairs with G. The pairs held together by hydrogen bonds, as depicted in Fig 3. 
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Fig. 3. DNA Double Helix3 

 

Receiving amino acids from outside and using double DNA helix as a template, a cell produces 

all materials necessary for its life. Physically DNA is a long molecule intricately packed in space 

and its structure is determined by the forces of two kinds; covalent bonds and hydrogen bonds. 

   Covalent bonds provide binding force for the polynucleotides chain. Molecule of each 

nucleotide A, C, G, T is built out of the sugar-phosphate group and the base attached to it. Fig. 4 

shows the molecular structure of the Adenine (A) base attached to its Sugar-Phosphate group. 

Sugar-phosphate groups are naturally polarized. They can bound with each other, forming 

molecules with hundreds of  thousands nucleotides.  

   On the other hand, Hydrogen bonds are weaker in the order of magnitude, and they provide 

DNA complementarities. In other words, the two DNA ( equal length) strands are bound by 

hydrogen bonds. In one of the two strands every A letter is substituted by T in another, C 

replaced by G, and vice versa. GC-bond is a strong bond provided by three hydrogen bonds,  

while the AT-bond  is weaker,  provided with two hydrogen bonds. 

   The 5’ refers to the 5th bond of the sugar molecule, see Fig. 3., which in the DNA series is 

attached to the phosphate group, the 3’ refers to the 3rd arm of the sugar molecule which is 

attached to  HO the hydroxyle group.  Since DNA contains Phosphorous (P) but no Sulphur (S), 

they tagged the DNA with radioactive Phosphorous-32. Conversely, protein lacks P but does 

have S, thus it could be tagged with radioactive Sulfur-35.  

                                                 
3 http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookDNAMOLGEN.html 
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Fig. 4 Chemical structure of the double helix and example of Adenine (A) base4. 

 

DNA helix ( 2 nm wide) are rounded on histone fiber of diameter 11 nm, then compacted in 30 

nm cromation fiber, then coiled in 700 nm diameter then formed as chromosoms 1400 nm 

diameter. If the DNA strand of the human genome  has  1 mm diameter, it would have stretched 

to 25km. It would be winded and twisted, and coiled until it becomes a chromosome of 2 ft 

diameter and 16 ft length 

 

                                                 
4 http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookDNAMOLGEN.html 



 12

o  

Fig. 5 Molecular Structure of the double strands DNA. 

The year 2003 marks two major milestones in genomics: the completion of the sequencing of the 

human genome [7], and the 50th anniversary of the discovery of the DNA double helix. The 

human genome  project  reveals the sequence of the entire human genome of 3 billion nucleotide 

pairs, constituting the human 46 chromosomes. Table 1 compares the length of the human 

genome with other organisms.   Genes are segments of DNA which code for specific protein. 

The number of predicted genes in the human genome is estimated between  30,000 to 40,000 

genes, compared to 13,600 for the fruit fly, and over 14,000 in mosquitoes [8] 

 

Organism Genome length in thousands of  nucleotide pairs  

Virus 5 

E.Coli    4700 

Corn 4,500,000 
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Salamander 72,500,000 

Human being 3,000,000 

Table 1. Comparison of Genome length in some organisms. 

  A gene consists of coding and non coding segments, called exons, and introns respectively.  

Exon is a section of  a gene which codes biological information. Exons can be classified in four 

classes: ”starting” exon, ”inner” exon, ”terminal” exon and ”single” exon (in case when the gene 

has no introns). Replacment of one nucleotide in an exon for another one may change properties 

of coded protein radically. S, so exon compositions are practically identical for genes of 

organisms of the same species. Moreover, genomes of higher species contain many genes which 

are almost the same base sets as their distant primitive ancestors. A more detailed structure of 

genes will be discussed in Section 4. 

     Sections of DNA, that do not code information, may be junk or introns. Junk DNA fills areas 

between genes. Junk DNA formes the skeleton of DNA, that is its secondary space structure. It 

seems that small changes in junk composition don’t lead to considerable modifications in DNA 

properties. The major part of Eukaryotes DNA  is believed to be a junk DNA or of unknown 

functions.  Eukaryotes have only 10% of their DNA coding for proteins. Humans may have as 

little as 1% coding for proteins. Viruses and prokaryotes use a great deal more of their DNA. 

Almost half the DNA in eukaryotic cells is repeated nucleotide sequences. Introns are areas 

dividing exons in a gene. In translation process introns are cut out and the information coded in 

them, if any,  is not present in the resulting protein. 
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2.2  Proteins 

Every function in a cell is controlled by some kind of proteins.  Every protein has a specific cell 

function. Proteins are formed by concatenation (strands) from 20 amino acids. Typical length is 

several hundreds amino acids, while DNA length is millions to hundred of millions of base pairs. 

Protein is a single dimension chain, but tends to fold into complex structures.  A chain of amino 

acid is called Polypeptide. Protein are generated based on a code in genes.  Protein synthesis is 

also governed by a genetic code. A segment of the DNA that codes for a specific polypeptide is 

known as a structural gene. 

    Every  3 base pairs in DNA can be mapped into 64 possible combinations. The three are called 

codons.  The 64 possible codons are mapped into, Start, Stop, and one of the 20 amino acids. For 

example ATG:  START ( the start of a protein synthesis region).  

TAA:     STOP ( end of a protein synthesis region) 

AAA: Lysine amino acid, etc.  

A stop codon  marks the end of a coding region.  A section in DNA extending from one stop to a 

next stop (TAA) could likely contain a gene, and is called Open Reading Frame (ORF). 

Complex protein structures like Haemoglobin are made up of one or more polypeptide 

molecules. During protein synthesis, the DNA coding sequence acts as the blue prints from 

which a template, called RNA, is constructed and used in the actual protein synthesis.  

      The following table gives the mapping of codons to the 20 amino acids, start, and the stop 

codons.  The mapping is not one-to-one. While the mapping from a coding DNA sequence to the 

amino acid sequence is straight forward, the inverse mapping, to identify a section of DNA 

which code for a specific protein is a more tricky problem. 
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Second Letter 

  T C A G  

TTT TCT TAT TGT T 

TTC 

Phenylananine 

(Phe) TCC TAC 

Tyrosine 

(Tyr) TGC 

Cysteine 

C 

TTA TCA TAA Stop TGA Stop A 

T 

TTG 

Leucine 

TCG 

Serine 

(Ser) 

TAG Stop TGG Tryptophan G 

CTT CCT CAT CGT T 

CTC CCC CAC 

Histidine 

(His) CGC C 

CTA CCA CAA CGA A 

C 

CTG 

Leucine 

(leu) 

 

CCG 

Proline 

(pro) 

CAG 

Glutamine 

(Gln) CGG 

Arginine 

G 

ATT ACT AAT AGT T 

ATC ACC AAC 

Asparagine 

(Asn) AGC 

Serine 

C 

ATA 

Isoleucine (Ile) 

ACA AAA AGA A 

A 

ATG Metionnine 

(Met) 

Start codon 

ACG 

Threonine 

(Thr) 

AAG 

Lysine 

(Lys) AGG 

Arginine 

G 

GTT GCT GAT GGT T 

GTC GCC GAC 

Aspartic 

Acid (Asp) GGC C 

GTA GCA GAA GGA A 

First 

Letter 

G 

GTG 

Valine 

(Val) 

GCG 

Alanine 

(Ala) 

GAG 

Glutamic 

Acid (Glu) GGG 

Glycine 

G 

Table 2  Mapping of DNA codons to amino acids. 

 

Protein-coding sequences are interrupted by non-coding regions. Non-coding interruptions are 

known as intervening sequences or introns. Coding sequences that are expressed are exons. 

The Genes length  vary between 30k-250k pb, exon regions can be between  69 to 3106 bp, with 

mean value of about 150 bp. Introns can be as large as 32k bp.[78].  
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2.3  Ribonucleic acid (RNA) 

 

    RNA is a single stranded nucleic acid  consisting of 4 types of nucleotides similar to the DNA. 

However, there are two chemical differences distinguish RNA from DNA. The first difference is 

in the sugar component. RNA contains ribose, while DNA contains deoxiribose. The second 

difference is that the thymine (T) in DNA is replaced by uracil (U) in RNA. In other words the 

RNA sequence consists of the 4 bases ( A,U,C,G).   

     RNA play central role  in protein synthesis It was observed  that although DNA was located 

in the eukaryotic nucleus, proteins were being synthesized in the cell in the presence of abundant 

RNA [77]. Most of this cellular RNA could be found in  the site of protein synthesis and called 

ribosomes.  There are three types of RNA that participate in the synthesis of protein: messenger 

RNA (mRNA), which carries the genetic information from the DNA and used as a template for 

protein synthesis. Ribosomal RNA (rRNA), which is a major constituent of the cellular particles 

called ribosomes on which protein synthesis actually takes place. A set of transfer RNA (tRNA), 

each of which incorporates a particular amino acid subunit into the growing protein when it 

recognizes a specific group of three adjacent basis in the mRNA. In simpler language, mRNA is 

the template of the protein product, tRNA is a general purpose protein generation machine, while 

rRNA is the factory floor.  

     The sequence of amino acids in a polypeptide is dictated by the codons in the messenger 

RNA (mRNA) molecules from which the polypeptide is translated. The sequence of codons in 

the mRNA is, in turn, dictated by the sequence of codons in the DNA from which the mRNA is 
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transcribed.  The mRNA is constructed from the protein coding genes in the DNA after removing 

the noncoding introns from the DNA sequence as shown in Fig. 6.  

 

Exon Exon Exon EX

rRNA tRNA

Ribosome

Intron Intron Intron

mRNA

Protein

DNA
Structured Gene

 

Fig. 6 Construction of protein from DNA. 

 

 An RNA gene is any gene that encodes RNA that functions without being translated into a 

protein. Commonly-used synonyms of "RNA gene" are noncoding RNA or non-coding RNA 

(ncRNA), and functional RNA (fRNA). Non-coding RNA (ncRNA) genes produce functional 

RNA molecules rather than encoding proteins 

 

tRNA and rRNA are also coded in the DNA in RNA genes. However, since the late 1990s, many 

new RNA genes have been found, and thus RNA genes may play a much more significant role 

than previously thought. Even so, they are probably not as significant or numerous as the 

protein-coding genes. Several abundant, small non-mRNAs, other than rRNA and tRNA, were 

detected and isolated biochemically, New RNAs continue to appear [79]. However, almost all 
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means of gene identification assume that genes encode proteins, so even in the era of complete 

genome sequences, ncRNA genes have been effectively invisible [80]. Recently, several 

different systematic screens have identified a surprisingly large number of new ncRNA genes. 

Non-coding RNAs seem to be particularly abundant in roles that require highly specific nucleic 

acid recognition without complex catalysis, such as in directing post-transcriptional regulation of 

gene expression or in guiding RNA modifications.   

3- Gene Banks & Web Resources 

 

There is an enormous amount of resources available free on the internet, including gene and 

protein sequence  banks, software, and literatures. A summary of the key  resources and banks is 

given below and in table III.  

 

Primary Web Resources 

•  European Molecular Biology Laboratory, Germany 

       http:// www.embl-heidelberg.de 

•  ExPASy Molecular Biology Server, Swiss Institute of    Bioinformatics, Switzerland 

      http://ca.expasy.org/ 

•  National Center for Biotechnology Information, USA 

      http:// www.ncbi.nlm.nih.gov 

•  San Diego Supercomputer Center, USA 

      http:// www.sdsc.edu 

•  Entrez 

      http://www3.ncbi.nlm.nih.gov/Entrez/ 
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•  Human genome project: 

     http://www3.ncbi.nlm.nih.gov/genome/guide/http://www.ornl.gov/TechResours/ 

•  Whole genome analysis: 

       http://www.ncbi.nlm.nih.gov/COG/ 

•  Protein Data Bank (PDB) 

      http://www.rcsb.org/pdb/ 

•  Structural Classification of Proteins (SCOP) 

      http://scop.mrc-lmb.cam.ac.uk/scop/index.html 

•  CATH: Protein Structure Classification 

            http://www.biochem.ucl.ac.uk/bsm/cath_new/index.html 

 

      New Frontiers  

•  Target identification in drug design, agriculture, biocatalysis: 

      http://www.labmed.umn.edu/umbbd/index.html 

•  Differential digital display (Cancer genome anatomy project): 

      http://www.ncbi.nlm.nih.gov/ncicgap/ 

•  Array technologies: 

      http://cmgm.stanford.edu/pbrown/ 

•  Metabolic pathways: 

      http://www.ecocyc.org/;    http://www.genome.ad.jp/kegg/ 
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Entrez5  is a quick entry point for people who want to investigate known proteins or structures. 

The Entrez interface lets you search for a protein sequence or a 3D molecular structure using 

instead of a specific sequence, a name ( organism, protein, or gene), identification number, 

author name, etc.  Entrez integrates the scientific literature, DNA and protein sequence 

databases, 3D protein structure and protein domain data, population study datasets, expression 

data, and assemblies of complete genomes into a tightly interlinked system. Help using the 

literature component of Entrez, known as PubMed, is also available. The Entrez help contains a 

description of the database and its features, basic search techniques and advanced search 

techniques, and explains the various display formats, how to save results. 

For example, to get a nucleotide sequence from the genome of say E.Coli bacteria,  

1- go to the Entrez web page 

2- select search for “nucleotide”  

3- in the query field type: E.Coli  AND 100:500[SLEN]  this will search for nucleotide 

sequences of Sequence Length [SLEN] between 100 and 500 bp. 

4- Check one or more of the query results, select the format output from format list box, and 

choose send to   text.  

5- The next  web page contains the desired sequence. You can then copy and past in your 

document. You may also select to save directly the results to a file of your choice. 

 

You can identify proteins of interest by searching a nucleotide string against GenBank using 

BLASTX or TBLASTX. This will return protein sequences that are identical or similar to the 

                                                 
5 http://www.ncbi.nlm.nih.gov/Entrez/ 
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translation product of your gene of interest. These sequences can then be copied and used as 

queries for further studies. 

A number of free standing programs and web based programs are available in order to help 

researchers find potential coding regions and deduce gene structures for long DNA stretches.  

For example, GeneMachine is freely-available for down load at 

http://genome.nhgr.nih.gov/genemachine. A public web interface to the GeneMachine server for 

researchers may be found at http://genome.nhgr.nih.gov/genemachine/supplement. 

The program allows the user to query multiple exon and gene prediction programs in an 

automated fashion [ 81]. 
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4- Gene Identification  

The problem of automated genes identification may be formulated as following: a sequence of 

letters A, C, G, T, corresponding to the order of DNA nucleotides in genome, is given at the 

input of computer program [82,83]. At the output we need to have a list of identified genes with 

indicated start, end and gene structure, and its division into exons and introns segments.  The 

accuracy of a given method for identification or classification can be evaluated in terms of the 

following parameters: 

TP (true positive) : the frequency of correct patterns being correctly accepted (known and 

predicted). 

TN ( True Negative):   the frequency of  wrong patterns being correctly rejected. 

FP : the frequency of a wrong pattern being  falsely accepted (predicted). 

FN :  the frequency of a correct pattern (known) being rejected. 

Based on counts of TP, TN, FP, FN we can define various measures  [15, 84], for example:  

Sensitivity  (SN), also called coverage, is defined as  

                           SN= TP/(TP + FN)                                                                    (1) 

and Specificity (SP) is defined as  

     SP=  TN/(TN + FP)                                                                  (2) 

A pattern has maximum sensitivity, if it occurs in all patterns in the family and maximum 

specificity, if it does not occur in any sequence outside the family. If we want to combine these 

two measures to one score, we may use Correlation Coefficient (CC) 

 

))()()((
..

FPTNFNTNFNTPFPTP
FNFPTNTPCC

++++
−=                                            (3) 
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This expression has a value 1 when there are no false positive or false negatives, and decreases 

towards zero as the number of false positives and false negatives grows. 

Three different approaches can be distinguished in gene identification methods. They could be 

called similarity search, content search and signal search.  

Similarity search is one of the first group of methods that were applied to identify genes in new 

genomes. It is based on the fact that  the function of a gene defines to some extent its nucleotide 

composition, and if two genes code similar products or functions then the corresponding sites of 

DNA will be similar.  One of the early attempts to evaluate the possibilities of similarity search 

in a new genome using already known analogs in a database was made by [85]. Rather big 

collection of genetic sequences in Genbank was arbitrarily divided into two halves. Then genes 

from one part of the collection were searched with use of the other part as a database. The result 

was almost 75% correctly identified genes. But when applied to the real new experimentally 

annotated genomes the method gave only 20-25% of identified genes. Due to the large variability 

between species, similarity search can at  most identify up to  50% of all genes in new genomes.  

Content search is based on the fact that statistical characteristics, calculated in DNA analysis, 

differ considerably in coding and non-coding regions. Many features based on observation of 

structure of nucleotide compositions in genes and junk DNA have been proposed. The earliest 

features were the  frequencies of codon (triplets) usage. Some types of Fourier-transform were 

investigated and their ability for gene identification was systematically tested [86].  

    Content search methods based on discriminant functions in multidimensional space of the 

features were proposed [ 87]. This approach yielded quite good results and some methods 

proposed were included in computer programs (for example, HEXON, GRAIL) that became real 
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instruments for primary investigation of new decoded sequences. These programs usually use 

discriminating rule that is trained on the known analogous samples. 

The methods of content search and similarity search share a common concept which can be 

called ”comparison with sample”. In case of similarity search such comparison is made at the 

level of alphabet, while in case of content search the comparison is based on statistical 

characteristics.  

   Signal search is the third principle of genes identification. Signal search  is based on the 

hypotheses about physical and chemical processes initiating transcription. The molecule that 

initiates the start of transcription ”recognizes” it by the presence of active sites - signals, that are 

short sequences with a definite structure. There is no clear concept of what are the factors that 

cause some sites of DNA to serve as signals. Signals as promoters, initiators and terminators of 

transcription  are known, but all these sequences may occur in DNA without initiating any 

process. 

   At the early stages of using signal search there were hopes that it would be possible to 

construct one or more consensus signal sequences and to measure the distance from DNA site to 

the consensus (using alignment).  In these early approaches,  the first letter of consensus 

sequence is the most frequent first letter in all already known signals, the second is the most 

frequent second letter and so on [88]. Though this approach turned out to be too primitive, at 

present one of its generalization is successfully applied (when all four letters are used rather than 

one with calculated probabilities, and resulting consensus is a probability matrix [89].  

 

At present tens of programs and algorithms realize automated gene identification. A recent 

excellent overview of  the performance of some  of them is given in [90]. The most effective 
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programs in fact use several approaches simultaneously. Unfortunately different algorithms show 

different results on different databases of annotated genomes. Second, so far there is no single 

opinion how to compare one program with an other (especially it concerns comparing predicted 

gene structures).  

Gene model 

The gene model used in Genescan [78] is depicted in Fig.3, the model consists of 13 forward 

states and 13 reverse states. The  Start state generates one of the two initiation codons used by 

prokaryotes (ATG or GTG); the Terminate state generates one of the three stop codons (TAA, 

TAG or TGA); 

 

Fig. 7.  Gene state model [78]. 
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Starting from an intergenic region and moving in the forward direction, the program expects to 

find first a “promotor site”.  This upstream promoter site is (T,A) rich called TATA box (25-30 

base-pairs(bps) . Following the promotor site (if any), the program allocates the starting region of 

the gene, known as the  5’ UTR (untranslated region), that is the program  F+ state.  The F+ state 

extends from the start of transcription to just before the translation initiation signal. The Einit  

state is the initial exon. If this exon is not the only exon (Esingle), the program tries to identify an 

intron region. With a few exception, virtually all introns begin with (GT), called donor splice 

signal, and end with (AG), called acceptor signal.  Since exons must be multiple of three 

nucleotides, while introns do not follow this rule, there could be phase shift from exon region to 

another exon region. This 3 possible phase shifts are accounted for by including three internal 

exon phases { E0, E1, E2 }, and three internal intron phases { I0, I1, I2 }. Eterm is the terminal exon.  

The 3’ UTR region is characterized by a signal of the form (AATAA + A-rich-sequence 20-30 

bps away). In the model described here, the reading frame is kept track of by dividing introns 

and internal exons according to their “phase". Thus, an intron which falls between codons is 

considered phase 0; after the first base of a codon, phase1; and after the second base of a codon, 

phase 2. Internal exons are similarly divided according to the phase of the previous intron, which 

determines the codon position of the first base pair of the exon, hence the reading frame. For 

example, if the number of complete codons generated for an initial exon is c and the phase of the 

subsequent intron is k, then the total length of the exon is d=3c+k; The components of an Ek+ 

(forward-strand internal exon) state will be encountered in the order: acceptor site, coding 

region, donor site, while the components of an Ek
_ (reverse-strand internal exon) state will be 

encountered in the order: inverted complement of donor site, inverted complement of coding 

region, inverted complement of acceptor site. 
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The GeneScan  algorithm is based on a generalized Hidden Markov Model GHMM. The  

GHMM model consists of four main components: a vector of initial probabilities Π , a matrix of 

state transition probabilities T={tij},   a set of length distributions  {fi,}, and a set of sequence 

generating models Pi;  i=0-26; 

The program takes a DNA sequence S of length L, and generates a   “parse”   φ  consisting of set 

of a state sequence states Q={q1, q2,….qn}, with associated lengths D={d1.d2,…dn], and  

sequence segmentation }.,...,,{ 21 nsssS =  

The joint probability of a parse  φ  and a sequence S  is given by 
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Where, 1π  is the probability of the first state. The objective then is to find the optimal parse φ  

which maximizes the conditional probability of φ  given the DNA sequence S. 
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    With a few assumptions, the above problem can be solved efficiently using the Viterbi 

algorithm [91]. Other programs exist for gene finding, for example  GRAIL (Gene Recognition 

and Analysis Link)  based on neural network  [ 92],   HMMGene based on a different HMM 

model, some sensors or mile stones, e.g, start and stop codons, frequency of codons, frequency 

of repeats [31];  MORGAN is based on decision trees [93],  FGENEH/FGENES Predicts exons 

by known splice site features [94], and   MZEF uses quadratic  discrimination function analysis 

[95]. 
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5- Sequence alignments 

 

Sequence alignment is a  tool  to compare 2 sequences. Needleman-Wunsch [96] is one of the 

earliest global alignment algorithms to find the optimum alignment (including gaps) of two 

sequences when considering their entire length. The method uses dynamic programming to 

search for the optimal global alignment. A tool was developed based on this algorithm known as 

“Needle”.  Needle finds an alignment with the maximum possible score where the score of an 

alignment is equal to the sum of the matches taken from the scoring matrix.  

     On the other hand, local alignment algorithms search for regions of local similarity between 

two sequences and need not include the entire length of the sequences. Local alignment methods 

are very useful for scanning databases when it is desired to find matches between small regions 

of sequences, for example between protein domains. A popular algorithm known as “Water”,  

based on  Smith-Waterman algorithm [97]. Water is a member of the class of algorithms that can 

calculate the best score and local alignment in the order of (m x n) steps, (where 'n' and 'm' are 

the lengths of the two sequences).  

FASTA and BLAST are also popular tools for similarity search. Both methods rely on 

identification of brief sub-sequences (k-tuples), which serve as the core of an alignment. 

Multiple k-tuples can be combined and extended as seeded for more extended alignment, 

allowing also deletion, insertion, or changes between two sequences.  BLAST (Basic Local 

Alignment Search Tool) [98] is the most popular sequence comparison algorithm optimized for 

speed to search sequence databases for optimal local alignments to a query. The BLAST 

algorithm, developed by the National Center for Biotechnology Information (NCBI) at the 
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National Library of Medicine6, is a heuristic for finding locally optimal sequence alignments. 

There are several versions of BLAST. The BLAST family of programs can be used to compare 

an amino acid, query sequence against a protein sequence database, or a nucleotide query 

sequence against a nucleotide sequence database, as well as other combinations of protein and 

nucleic acid. The initial search is done for a word of length "W" that scores at least "T" when 

compared to the query using a substitution matrix. Word hits are then extended in either direction 

in an attempt to generate an alignment with a score exceeding the threshold of "S". The "T" 

parameter dictates the speed and sensitivity of the search.  

FASTA [99], a sort for “Fast All” or “FastA”,  is the first widely used algorithm for database 

similarity searching. Similar to BLAST, the program looks for optimal local alignments by 

scanning the sequence for small matches called "words". Initially, the scores of segments in 

which there are multiple word hits are calculated. Later the scores of several segments may be 

summed to generate a combined score. The sensitivity and speed of the search are inversely 

related and controlled by the "k-tuples" variable which specifies the size of a "word".  

 

6- Classification and Multiple Sequence Alignment  

DNA and protein sequence classification is an important problem in computational biology [89]. 

Discovering closely related homologues, i.e. members of the same family of proteins or the 

corresponding genes in different related species has been a major task in computational biology. 

When organisms are remote relatives, the homology signal begins to submerge in noise, and the 

problem becomes increasingly challenging. 

                                                 
6 www.ncbi.nlm.nih.gov 
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There are  two different, but related classification problems. The first is how to find a classifier 

function for a family of bio-sequences. This is a function which takes a sequence as argument, 

returning TRUE for members of the family and FALSE for non members. Both positive 

examples (members of the family) and negative examples (sequences not in the family) are given 

as a training set. In the second problem only positive examples (family members) are given, and 

the goal is to extract a description of features conserved in (characterizing) the family. In many 

cases it is desired to discover what is called a conservation function, and the evolutionary 

relations.  This class of problems is known as the Multiple Sequence Alignment (MSA) 

problem. 

  The techniques for solving the first  problem can be categorized  into the following three 

classes:  

A) Sequence Alignment This approach aligns the unlabelled sequence S with members of a set C 

using an existing tool, such as FASTA and BLAST, and assigns S to C if  the best alignment 

score for S is sufficiently high. 

B) Consensus search: this approach takes a collection of sequences of the class C and generates 

composite subsequences by taking the majority base at each position in multiple alignment of 

sequences in C. The consensus sequence is then used  to identify sequences in uncharacterized  

biosequence [100, 89]. 

C) Inductive learning/ Neural networks: This approach takes a set of sequences of the class C 

and a set of sequences not in C and then, based on these sequences and using learning 

techniques, AN artificial Neural Network (ANN)  determines whether or not the unlabelled 

sequence S belongs to C  [50,51,89,101] 
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   Multiple Sequence Alignment MSAs are essential bioinformatics tools.  MSA will continue 

to be a central to the sequence-based biological analysis for many years to come. 

MSAs are required for phylogenetic analysis, to scan databases for remote members of a protein 

family and structure prediction.  No perfect method exists for assembling a multiple sequence 

alignment and all the available methods are heuristic approximations.  

    The most commonly used methods for doing multiple sequence alignments use a progressive 

alignment algorithm, called ClustalW, [101].  Progressive alignments algorithms [102, 103] 

depend on a progressive assembly of the multiple alignments, where sequences or alignments are 

added one by one so that never more than two sequences (or multiple alignments) are 

simultaneously aligned using dynamic programming. This approach has the great advantage of 

speed and simplicity combined with reasonable sensitivity, even if it is by nature a heuristic that 

does not guarantee any level of optimization. 

   Recent techniques have focused on the design of iterative methods [104], for example iterative 

dynamic programming [105], and Genetic Algorithm, SAGA [106]. In consistency based 

methods, DiAlign [107], T-Cofee [08], the optimal MSA is the one which optimize all pair-wise 

alignment.  For example, DiAlign [107] assembles the alignment in a sequence-independent 

manner by combining segment pairs in an order dictated by their score, until every residue of 

every sequence has been incorporated in the multiple alignment. Iterative alignment methods 

depend on algorithms able to produce an alignment and to refine it through a series of cycles 

(iterations) until no more improvements can be made. Iterative methods can be deterministic or 

stochastic, depending on the strategy used to improve the alignment. 

Benchmarking on a collection of reference alignments [109] indicates that ClustalW performs 

reasonably well on a wide range of situations, while DiAlign is more appropriate for sequences 
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with long insertions/deletions.  Future methods should be able to integrate structural information 

within the multiple alignments and to allow some estimation of their local reliability.  

 

6. Protein Structure Analysis 

    While sequence analysis focuses on the one dimensional characteristics of the nucleic acids 

and proteins, it is fact that their three dimensional structure that underlines their structural and 

functional properties. Much computational biology research is devoted to the prediction of the 

precise three-dimensional structure of proteins given their amino acid sequence, and to further 

discover their resulting function [110]. 

Structural biologists classify protein structure at four levels. A protein’s primary structure is the 

sequence of amino acids in a polypeptide chain. Local runs of amino acids often assume one of 

two sequence structures: a closely packed helical spiral (“alpha” helix), or a relatively flat 

structure where successive runs of peptides fold on one another (“beta” sheet). Secondary 

structure is also called a “coiled” region. The complete, detailed conformation of the molecule, 

describing how these helices, sheets, coils, and intervening sequences are precisely positioned in 

three dimensions, is referred to as the protein’s tertiary structure (3D structure).  There are two 

approaches to this problem [111]. In the first approach is based on homology with sequences 

whose tertiary structure is known. In the second approach is derived from first principles based 

on fundamental atomic interactions. The protein folding problem can be considered as a search 

for a folding function F, where V=F(S), and S is the amino acid chain },...,,{ 21 nsssS = , where si  

is a member of the set of 20 amino acids. The vector V of dimension 3n represents the relative or 

the absolute positions of each amino acid in a 3D structure. Conceptually, the protein structure 

would be the one which minimizes the protein chain free energy. The problem can be posed a 
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search problem for a vector V which minimizes an Energy function E(V,S).  The energy function 

employs a set of information theoretic potential of mean force [115,116].  The first step in this 

approach is to determine a potential function E, then selection of a suitable search algorithm. For 

a protein chain of length N, the search space would be of order 10N states. [112] argued that each 

protein can basically have only 7 states, and accordingly the complexity of the search algorithm 

would be 7N. 

   In fact, the general problems of protein folding, and protein structure are all known to be NP-

hard problem [113].  Other investigators observed that there are recurrence patterns in protein 

folds, and proposed to limit the search to say, 1000 possible protein folds [114]. In this case the 

problem becomes a “Fold Recognition”, by selecting the most appropriate one. The candidate set 

is constructed by first searching for closely related proteins in known families of proteins. Then 

we construct the set of the candidate folding structures from those closely related to the given 

protein and of known folding structures. The third step is to identify the structure which 

minimizes an energy function.  Another approach is based on limiting the folding recognition to 

the core part of the protein [113]. It is argued that long chains fold first on a stable core, which 

has a relatively limited number of 3D patterns. However, determining the core part of a given 

protein chain is by itself can be a complex and challenging problem.  

 

 

7- Summary and Future Directions 

1- Sequence Alignment algorithms locate a region of interest. Raw sequencing is performed 

on pieces of random lengths between 500 t0 5000 pbs.  With possible large overlapping  

parts at both ends.  Algorithms align the fragments, and find the pair wise alignments in 
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the pieces, discover similar sequences in the databases. There a need for much faster and 

more effective third generation algorithms. This new generation should be built on the 

knowledge  gained about the known genomes and how they are structured. 

2- Gene finding algorithms try to identify a potential gene region in DNA. However, only 1-

3% of human genome is translated into proteins. It is not clear until now what  is the 

purpose (if any) of the large quantities of  “junk DNA'' , that does not appear to code for 

any proteins.  Characterization of the features of the regulatory RNA genes still to be 

determined, and development of effective methods for discover and predicting these 

noncoding genes still an open question. The DNA in the vicinity of genes has several 

structure features, e.g., promoter region and other binding sites. The stochastic and 

deterministic properties of these region, and how they can be used to identify genes need  

further studies. More work still to be conducted to understand the mutation mechanism in 

genes, and the cell techniques for fault tolerance and error recovery.  

3- Protein structure prediction:  given  the linear primary structure of a protein sequence, 

how it would fold itself into a specific 3D complex shape. The problem involves a vary 

large search space for the optimal shape based on thermodynamics principles, and 

possibly covalent interaction and modifications. Once the 3-dimensional structure of a 

protein is known, it becomes possible to design drugs that inhibit or enhance a protein's 

activity by fitting into niches in the surface of the protein. It may also be possible to 

design new proteins with useful properties. Perhaps the more difficult is  to determine 

sequences that give rise to desired structures.  

4- Homology search: we discovered a new gene, and its function is still to be determined. 

We then search for members of the same family of proteins or the corresponding genes in 
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different related species.  Local alignment and similarity search algorithms can be used to 

find the closest matches. However, statistical grouping, clustering, statistical similarity 

measures are first needed for course classification.  

5- Multiple Alignment and phylogency construction: the comparison of DNA and protein 

sequences in different species is an increasingly important tool for understanding the 

evolutionary relationships among species. These are typically depicted by phylogenetic 

trees that indicate how species branched off from ancestral species. There is a great need 

for developing better probabilistic models for the evolutionary process and metrics for 

comparing trees or quantifying the robustness of the information deducible from them.   

6- Modeling Cell Activities: The rate at which proteins are produced and activated is 

different in different cells and at different times, depending on factors such as the 

ambient environment of the cell and chemical signals from other cells. Protein 

expressions, regulation, and interaction can be bettwr understood if new mathematical 

models are developed. The models can help us to understand the cell activities and 

reaction to outside stimulus. The results may lead to production of better drugs or to 

improving the immune system.  

7- Many processes that go on in living cells can be viewed in computational terms. DNA 

strands can in a sense be viewed as the tapes of multi-headed Turing machines, from 

which the designs for proteins (the genes) are read and the proteins themselves then 

produced. The rate at which proteins are produced and activated is different in different 

cells and at different times, depending on factors such as the ambient environment of the 

cell and chemical signals from other cells 
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8- The proliferation of biological data and the need for its systematic and flexible storage, 

retrieval, and manipulation is creating opportunities in the database field. Current 

genomic databases are heterogeneous, distributed, and semistructured or with schemas 

that are in flux, thus offering novel challenges in database design, including its more 

fundamental aspects.  

9- DNAmicroarrays: In DNA microarrays, also known as DNA Chips, an unknown 

fragment of DNA is tested against a large number of DNA fragments arranged in a grid.  

The DNA chips produce patterns of light which varies in light and intensity depending on 

the degree of similarity between the unknown DNA specimen and the members of the 

grid. How can we provide quantitative,  consistent, and standardized interpretations from 

the test results ? and how should arrays be designed so as to maximize the accuracy of 

readings obtained from it?  

8- Conclusion: 

Bioinformatics is an emerging field which is expected to be an important contributor to the 

global economy.  Research in this field has already made a major impact on the pharmaceutical 

industry and drug discovery, agriculture, health care, environment, and protection from 

biological warfare. The report acts as a single starting point for new comers in this field. It 

provides an overview of the research activities, and how knowledge from applied math, 

operations research, artificial intelligence, computer science, and other fields merge to create this 

field.  
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