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1. Introduction

Groundwater is an important, and often essential, water resource in many countries throughout

the world particularly in and and semi-arid regions. The storage capacity of large aquifers

provides a capability for meeting short-term shortages induced by drought conditions. In addition,
the overlying unsaturated soil provides a natural cleansing process through physical filtration, ion-
exchange, biodegradation, plant uptake etc. which gives groundwater its (generally) good potable

quality. However, pollution incidents can result in a release of contamination which is beyond the
capacity of this natural buffering system. This will, in turn, result in a deterioration in groundwater

quality which can place important resources at risk. In a world where there is increasing concern
about the integrity of existing supplies under the constraints of potential climate change affecting

recharge mechanisms, the increasing demand for water resources, and rising loadings of
contaminants being released into the environment, the sustainability of groundwater is of

increasing concern. Thus there is a need for tools to enable the environmental engineer to assess

the likely risks of industrial, social and economic trends on the viability of groundwater resources.
However, all this has to be undertaken within the context of the highly limited data which is

generally available for groundwater studies. Hence, there is a need to be able to quantify this
uncertainty in order to able to determine the level of confidence in groundwater model

predictions. Such an approach also provides a more suitable framework for risk based
assessments of groundwater contamination. This paper describes the problems associated with
the heterogeneous properties of aquifers. It outlines the geostatistical methods increasingly being

adopted to handle them and their impact on groundwater contaminant transport models. It

highlights the need to incorporate uncertainty into models and illustrates this in connection with

modelling well capture zones which are required to delineate groundwater protection zones.

2. Modelling Groundwater Flow

The equation which represents the flow of groundwater though porous rocks can be expressed

as follows:

S at = V KVh + Q (1)

where the potentiometric head h(x,t) is the dependent variable, 0 is the groundwater flux due to

recharge or pumping, and the storativity term S(x) and hydraulic conductivity tensor K(v) are

coefficients which describe the aquifer's capacity to store and conduct water (Freeze and Cherry,
1979; de Marsily, 1986). Location and time are denoted by x and t respectively. The

potentiometric head represents the effects of gravitational potential energy and pressure forces:

h = L + z (2)
Pg

where p(x,t) is the pore water pressure, p is the fluid density, g is the acceleration due to gravity,
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and z(x) is the vertical elevation relative to a specified datum. Thus, given initial and boundary

conditions for h a unique solution can be obtained from (1).

The groundwater specific flow rate q is given by Darcy's law:

q = - KVh

which allows the mean pore water fluid velocity v to be obtained as follows:

q
11

where n(_v) is the porosity of the porous medium from which the aquifer is comprised.

(3)

(4)

This equation has been widely used to characterise the movement of groundwater through aquifer

systems. However, the flow field solution from this equation also provides the basis for
representing the migration of contaminants dissolved in the groundwater through porous sub-
surface media.

3. The Classical Contaminant Transport Equation

Traditionally the movement of contaminants through a groundwater flow field has been

represented using the advection-dispersion equation (Bear & Bachmat, 1967; Fried &

Combarnous, 1971). This assumes that the bulk of the contamination is transported at the same

rate as the mean pore water velocity (assuming there are no interactions of the contaminant with
the solid matrix of the aquifer). Superimposed on this is an assumed Fickian dispersion process,
essentially similar to that of molecular diffusion only on a larger scale, which disperses the
contamination around the mean position. This can be described as:

c)(nc)

at = V•DVc - V-(qc) + Oc (5)

where D(v) is the dispersion tensor and Oc' is the solute flux due to sources and sinks.

The classical dispersion theory has been developed by Taylor (1953), De Josselin De Jong (1958),

Saffman (1959, 1960), Scheidegger (1960), Bear & Bachmat (1967), Fried and Combarnous

(1971). This has demonstrated that the dispersion coefficient D is a function of the groundwater

velocity and that the degree of dispersion differs in relation to the direction of the groundwater
flow, i.e PL is the dispersion in the direction of groundwater flow and DT is the dispersion
coefficient transverse to the flow direction. If the principal directions of dispersion are aligned

with those for hydraulic conductivity then the dispersion tensor is limited to its three principal
components, hence:

1) L 0 0

D = 0 D;. 0 (6)

0 0 DT

where I),_ - rD` '- crj v and 1 ), = rD" - u, v and cr ,, and ca,- are the longitudinal and transverse
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dispersivities of the porous medium respectively. Theoretically these parameters are fundamental
properties of the medium. However, Gelhar et al. (1992) have shown that applications of the
above model to contaminant transport behaviour has demonstrated a scale-dependent behaviour

in aquifer dispersivity (Figure 1).
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Figure 1. Field longitudinal dispersivity data classified according to reliability (from

Gelhar et al., 1992)

4. Scale dependent aquifer properties

The underlying cause of this variation in dispersivity lies in the processes which govern the

formation and subsequent changes in the structure of the porous medium (e.g the fluvial
geomorphology which effects the structure of alluvial aquifers). These processes operate over a
wide range of scales. Their greatest hydrogeological influence is on the hydraulic conductivity

parameter K. An example of the degree of variability which can occur is shown in figure 2. This

shows detailed hydraulic conductivity analyses of the Borden aquifer in Canada (Sudicky, 1986).
The ranges in hydraulic conductivity measured over a distance of a few metres shows ranges of
about two orders of magnitude. Clearly such variation creates problems. Traditionally this has
been approached through the determination of effective parameters at a particular spatial

measurement scale (e.g. centimetres for permeameter tests , metres for piezometer tests, hundreds

of metres for pumping tests, kilometres if inverse model calibration undertaken). However, whilst
these effective parameters are generally sufficient for head field simulations, they tend to introduce
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bias when contaminant transport simulations are conducted. This is because the detailed variations
in hydraulic conductivity, in turn, result in small-scale variations in groundwater flow and cause

mechanical dispersion of contamination. Hence, in order to capture these effects the detailed

structure of the hydraulic conductivity field is required. This, however, is impossible to do on a
deterministic scale. The amount of disruption to the aquifer would distort its behaviour
notwithstanding the costs involved. An alternate method, therefore, is to use geostatistics to
capture the general spatial characteristics of the hydraulic conductivity field (Gelhar, 1993).
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Figure 2. Distribution of -In (K) along a vertical cross-section (contour interval = 0.5;
vertical scale exaggerated; K < 10-3 cm/s in stippled zone) (Sudicky, 1986)

Realisations of an aquifer's hydraulic conductivity field can instead be generated from a statistical
analysis conditioned on to points where observed information is available. This is achieved
through the construction of a semi-variogram (Figure 3) which describes the spatial correlation

structure of hydraulic conductivity for the aquifer. Figure 4 shows a near-surface alluvial aquifer

which underlies a sloping topographic field. The hydraulic conductivity field has been generated
using a relatively low variance, spatially correlated hydraulic conductivity field with horizontal and
vertical correlation lengths of 2.5 and 0.5 grid elements respectively (Tompkins et al., 1994). The
random field was generated using the Turning Bands Method (Tompson et al., 1989) using 98

radial line projections uniformly spaced in three dimensions. This was used to create a field

comprising 100x100x20 grid elements, (a total of 2x105). In order to visualise its structure an

arbitrary threshold value was used to highlight low hydraulic conductivity regions (Butler et al.,
1997). The spatial structure of the field can be seen by the shapes of these zones. They represent
locations where groundwater flow will be lower than the surrounding space. Therefore
contaminant particles introduced into the simulated groundwater flow field will tend to move

preferentially along zones of high hydraulic conductivities. However, any contaminants which
happen to enter the low conductivity regions will tend to become trapped as a result of the low
flow velocities.
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Figure 3. Estimated semi-variogram of log transmissivity for the Cortaro aquifer

(Gelhar, 1993).

5. Lagragian contaminant transport simulations

Incorporating these spatial variations in hydraulic conductivity into a groundwater flow model

enables spatially correlated variations in the groundwater flow field to be generated. If the
resolution of the flow field can be made fine enough then the movement of contaminants through
the aquifer can be simulated by tracing the pathways of conservative (i.e. non reactive) particles

placed in the simulated groundwater flow field. This represents a Lagragian view of contaminant
transport rather than the more traditional Eulerian approach. Thus the i'h particle's displacement

vector x;(t) at time t is the integration of the mean pore water velocity v:

t r

XP) = f v.dt = f q .dt
J n

(7)

Hence, the migration of a plume of contamination through an aquifer can be reproduced by the
introduction of a cloud of particles and the tracking of their subsequent movement in time. It is

evident, however, that in order to reproduce the types of variation observed in the field the model
simulation needs to employ an extremely detailed grid mesh. Figure 5 shows an example of a

`plume' of particles from a surface contamination site migrating towards a well.

The simulation shows the site to be located somewhere within the capture zone of the well and
thus able to contaminate the water supply. Therefore, if a protection strategy for the well is to be
developed an area denoting similar locations around the well needs to be identified. This can be
readily obtained by introducing particles over the simulated flow field and observing which end

up at the well. The particle capture zone obtained from the model simulation is shown
superimposed on the top of the aquifer in Figure 6. This allows a protection zone for the well to

be marked on the ground. Armed with this information a regulating authority would be able to

provide advice and guidance on whether planning permission should be granted for proposed
developments which might have a groundwater contamination risk and therefore threaten the

integrity of the groundwater source.
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Figure 4. Visualisation of a spatially correlated unconfined aquifer with uniform
recharge and a well abstraction.
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Figure 5. Migration of contaminant plume from source towards supply well
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Figure 6. Definition of Well Capture Zone delineating source protection zone.

6. Stochastic contaminant transport simulations

The approach described in the previous section involved generating a highly detailed hydraulic

conductivity field. However, this is only one realisation of what is actually true. This is because

knowledge of the exact structure of the aquifer is extremely poor due to the limited information
being available from a small number of sampling points (i.e. boreholes). Hence, there is a high

degree of uncertainty in the representation and simulation of the aquifer. However, the
methodology provides a means of practically incorporating this uncertainty into the model
simulations and quantifying it. The above hydraulic conductivity field can be regarded as one

realisation of the true field and hence the resulting protection zone as one realisation of the `true'
capture zone. By undertaking a series of stochastic simulations using the same underlying

statistical properties an ensemble of capture zones can be generated. Therefore the `capture zone'
could instead be represented as a spatial probability distribution. Thus the uncertainty as to

whether a point lies within the true capture zone can be estimated. Such an approach is shown in
Figure 7. Thus planning and protection considerations can be implemented according to the level
of probability that a particular location lies within a capture zone combined with the associated
risk of the site polluting the aquifer. This, therefore, represents a more reasonable solution for

protecting groundwater supplies and ensuring sustainable future resources.
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Figure 7. Contour plot of capture zone probability distribution for an abstraction
well in a spatial correlated hydraulic conductivity field (van Leeuwen,
1997).
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