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ABSTRACT

This paper describes the theoretical basis for the ingress of chlorides into concrete. It is
recognised that there are differences in the overall ingress rates in fully saturated and partially

saturated concrete. Furthermore, precise universal models for concrete exposed to a chloride
environment are not possible. Thus, it is argued that it is necessary to determine the relative
resistance of each concrete type to chloride ingress to be able to estimate the durable lifespan

of a particular structure. Two simple methods are described to enable this. The first uses

Fick's 1` Law to provide an estimate of exposure period required induce corrosion providing
that a reliable coefficient of diffusion is available and is applicable to new construction. The

second method uses an existing chloride concentration profile to estimate residual durability

and is, therefore, applicable to existing structures. A comparison is made of the improvement
to chloride resistance that can be achieved by incorporating different pozzolanic binders and
also effect these have on corrosion activity. Both conventional binary blends as well as
relatively novel multi-component binders are considered and it is shown that the latter group

can provide greatly enhanced chloride resistance.
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INTRODUCTION

Chloride ingress into concrete structures continues to be a problem in many countries from

temperate northern Europe to the Middle East. Although the sources of chlorides may be

different, the end result is the same, ie destructive corrosion of reinforcement. In the Arabian

Gulf region these problems can be especially acute as the high average ambient temperature

results in higher rates of chloride flux than occur in winter highway conditions in northern

climes. However, the pozzolanic activity of binders, such as pulverized-fuel ash (PFA),
ground granulated blastfurnace slag (GGBS), silica fume (SF) and metakaolin (MK) is also

stimulated by higher ambient temperatures and can provide an effective way of retarding

chloride ingress
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Modelling the process of chloride ingress into concrete would appear to be relatively

straightforward, since the basic physics of ionic transportation through a semi-permeable
material are well established. However, the physical and chemical heterogeneity of binders and

concrete, together with the fact that the hydrates are not inert and can chemically immobilise
chlorides, means that simple models have been difficult to establish.

This paper draws on extensive studies into chloride ingress and reinforcement corrosion that
have been carried out at the Concrete Technology Unit at Dundee University and compares the

relative advantages of using pozzolanic binders in binary and multi-component combinations

with PC. The theoretical basis for modelling chloride ingress is then used to provide methods
for estimating chloride build-up in concrete. The effect of different binders on chloride-
induced corrosion has also been considered.

THEORETICAL BASIS FOR CHLORIDE INGRESS INTO CONCRETE

Chloride transportation into concrete involves both ionic diffusion and capillary absorption,

and is likely that a mixed mode will occur depending upon the prevailing exposure conditions,
and the pore saturation and microstructure of the concrete (Concrete Society, 1996). The

process is further complicated by the inhomogeneity of concrete, changes in concrete properties
with increasing maturity and any chemical interaction of chloride ions and the binder.

Most methods of modelling and measuring chloride ingress simply rely on pure diffusion with
concrete assumed to be sufficiently water-saturated. The parameter normally adopted to reflect
resistance to chloride ingress in concrete is the diffusion coefficient (D), which may be
modified to account for chloride binding and absorption in unsaturated concrete. The
coefficient of chloride diffusion can also be used for specifying durable life and several

diffusion-based design methods have been proposed (eg. Tuutti, 1981, Browne, 1982, Dhir et
al, 1991).

Diffusion in Saturated Concrete

Fickian models of diffusion are used by many researchers to describe chloride ion

transportation in saturated concrete. In these diffusion models, the driving force is the chloride

concentration difference in the pore water. There are a number of different methods of

determining D, based either on Fick's First or Second Laws of Diffusion as shown below;

Fick's First Law J = -D dC
dx

Fick's Second Law
D52C

&2

Where: J = Flux ( mole/m'-/s)
D = Coefficient of diffusion (mz/s)

dc/dx = Concentration gradient
t = Time (s)

C = Concentration (g/m3)

x = Distance (m)
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Modified Reaction/Diffusion

The application of Fick's laws of diffusion assumes that the substrate is a homogeneous,
isotropic and inert medium. The assumptions, therefore, imply that the diffusion properties at

any point in concrete would be the same in all directions and do not change with time. In

reality, these conditions do not exist in concrete which is composed of relatively "unstable"

hydrates which interact both physically and chemically with the diffusing species. Different

binders have different capabilities in relation to taking up and binding chlorides. Cements
containing a high C3A level and cements containing MK, PFA and GGBS, which are high in

reactive alumina, can slow down the rate of chloride ingress in concrete considerably.

Models based on non-Fickian behaviour have been developed which account for linear and

non-linear chloride binding (Sergi et al, 1992, Nilsson et al, 1994, Andrade et al, 1996 and

Papadakis et al, 1996). However, several mathematical models are proposed and there appears
to be a lot of ambiguity on the appropriate diffusion coefficient that should be used.

Absorption/Diffusion in Unsaturated Concrete

The above methods of determining D assume that concrete is water saturated. However, in
most chloride-bearing exposure conditions, periodic wetting and drying of the structure takes

place. In these situations, chlorides are likely to enter the concrete under both absorption
(capillary suction) when the concrete is dry, and by diffusion once the pores become filled.

Cycles of chloride solution absorption and water evaporation produce a cumulation of chloride
at the concrete surface. Chloride diffusion rates in these exposures have been shown to be
greater than those under saturated conditions (Petersson, 1993; Henderson, 1997).

Several numerical models to determine diffusion coefficients, taking into account sorption
effects and changing surface concentration, have been reported (Bentz et al, 1996, Tang &

Nilsson, 1992). These models use a direct finite difference implementation of Fick's second

law and corrections for the effect of initial sorption, changing surface concentration with time

and chloride reaction with the hydrates. However, these methods are complex and further work
is needed in this area to verify their validity.

EXPERIMENTAL DETAILS

)Materials

The binder materials used, as a direct replacement to PC, were metakaolin (MK), silica fume

(SF), pulverized-fuel ash (PFA) and granulated blastfurnace slag (GGBS). A series of
combinations for binary and multi-component binders, which are permitted within the current

draft standard for common European cements: DD ENV 197-1(1995), were considered as
shown in Table 1. Potentially these mixes should allow engineers, through careful selection

and combination, to exploit the benefits associated with the use of blended cements in concrete.

Table 2 summarises the main characteristics of the binder combination used in this study.

The aggregates were crushed, siliceous gravel, in two single-size fractions of 20 -1 Omni and

10 - 5mm. The fine aggregate was a natural sand of Zone M to BS 882 (1992). All aggregates
were dried in laboratory air prior to their use in concrete production.
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Mix Proportions and Test Methods

The mix proportions used for reference PC concretes are given in Table 3. For binary and

multi-component binder concretes, the free water and binder contents were fixed, as for the

corresponding PC concrete, but the fine aggregate contents were adjusted to maintain the yield.

For all tests, concrete specimens were cured in water at 20°C, prior to strength testing or

exposure to the accelerated chloride test environment. Compressive strength tests were

performed on 100mm cube specimens in accordance with BS 1881: Part 116 (1983). Chloride
diffusion (D) was measured using a standard two compartment test cell developed at the

University of Dundee (Dhir et al, 1990).

Table 1. Various combinations for (a) binary and (b) multi-component binders (% mass)

MIX PC PFA GGBS SF MK

(a) Binary Mix Group

90-75 -

95-80 - 5-20

5-25

(b) Multi-Component Mix Group

A 100 -

B 66.5 33.5
C 66.5 30.0 3.5

D 66.5 30.0 3.5

E 50.0 - 50.0 - -
F 50.0 - 50.0 5.0 -
G 50.0 - 45.0 - 5.0

Table 2. Key binder characteristics.

BINDER CHARACTERISTIC PC SF MK PFA GGBS

Specific Surface Area, m'/kg 380 15,750 3475 450 510

Main Oxides, % wt SiO, 21.4 95.3 55.1 51.1 34.2

A12O3 4.7 0.65 40.4 24.9 13.9

Fc,03 2.7 0.28 0.6 9.0 0.6

CaO 65.2 0.27 0.03 1.50 41.6

MgO 1.0 0.40 0.40 1.40 -

SO3 2.9 0.25 - 0.70 -

LOI 0.9 - 1.2 5.7 0.9

K,O 0.64 0.77 - 3.6 -

Na,O 0.13 0.26 0.01 1.60 0.50

Bogue Composition, % wt C3S 57

C,S 18

CIA 7.8

C4AF 8.2
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Table 3. Mix proportions for PC control concrete.

DESIGN CONSTITUENT MATERIALS, kg/m'

STRENGTH, Free
PC

Aggregate W/C
ratioN/mm` water Sand 10 mm 20 mm

25 185 235 700 400 800 0.79

35 185 285 730 400 800 0.65
40 185 310 710 400 800 0.60
50 185 355 670 400 800 0.52
60 185 410 625 400 800 0.45

EFFECT OF BINDER TYPE ON CHLORIDE INGRESS

Binary Binders

The results show that with PC/MK and PC/SF binders, based on direct replacement by mass,

coefficients of chloride diffusion (D) were considerably lower than corresponding PC concrete.
The effect of different replacement levels on D of 355 kg/m3 binder content concrete, together
with the corresponding 28 day strength is shown in Figure 1. These are typical plots of the data

obtained with all binder contents considered in the study. It is clear that the use of MK and SF
lead to a reduction in D and this increased with material replacement level.

Across the range of binder contents, reductions of approximately 2 to 3 times, compared to the
PC concrete were observed for PC/MK10, with larger reductions as the MK level increased to

25% replacement for PC. Similar reductions were obtained for SF concretes. The results also
indicate that at a given replacement level, the SF concrete had a slightly higher D value than

corresponding MK concretes. This may reflect the higher alumina content of MK. which
contributes to greater chloride binding and may reduce the rates of chloride ion diffusion.

100
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60

40

20

0

Binder content = 355 kg/m3 Binder'rype

28-day strength is given in O MK CJSF

F

5

(57.0 N

42.0 N)

10 15

REPLACEMENT, %

(61.5N)

11 6( 6.ON)

20

Fig. 1. Effect of MK and SF binders on chloride diffusion into concrete.
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Multi -Component Binders

Despite the improvements achieved with the use of MK and SF in concrete, the demands

placed upon modern concrete construction are becoming greater and so there is a need for

higher performance concrete. For example, much improved chloride resistance for concrete
exposed to aggressive chloride environments. It is important to appreciate that, in general,

chloride durability of concrete is largely a function of the cement paste and its interfaces.

Given this, a series of multi-component binders (Table lb) were tested with constant total

binder and water contents. Results obtained from chloride diffusion and compressive strength

tests on these concretes are given in Figure 2. This illustrates how some binder combinations

may provide improved chloride resistance and poorer strength performance in some cases. It

is clear from these results that chloride resistance of concrete cannot not be solely judged by

strength since the chemical binding capacity of the binders also has an important role.

The results show that the use of multi-component binders greatly improves the chloride

resistance properties of concrete when compared with PC concrete. For example, concrete
mixes F and G give the best performance of the GGBS concretes, with relatively similar

strength and low chloride diffusion. On the other hand, the chloride diffusion rates for PFA
mixes (C and D) were improved, but the strength of these mixes were slightly reduced. From
these results, it should be possible, depending on the exposure conditions, to select the most

suitable binder combination for optimum performance. Bearing in mind that the method of
specification is normally centred around a required design strength, it is likely that on this
basis, the majority of multi-component binder concretes will provide further enhanced

durability performance compared to those of PC concrete.

These results show that there is a need to change that method of specification of concrete where

chloride durability is an overriding requirement since strength can neither account for chloride
binding capacity nor any effects that pozzolanic binder produce in refining the pore structure

and paste interfacial zones.

100
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60

-40

Binder content = 355 kg/m'

A B C D E

CONCRETE MIX ISee Tablet (b)l

F G

Fig. 2. Influence of combining PFA and GGBS with other binder materials on strength and

chloride diffusion properties of concrete.
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EFFECT OF WATER/BINDER RATIO ON CHLORIDE INGRESS

Binary Binders

In order to examine the effect of water/binder (w/b) ratio on chloride diffusion rates, coefficient

of chloride diffusion against w/b ratio curves were generated, using the data obtained above.
A typical example of this relationship for concrete made with 10% MK and SF binders is

shown in Figure 3 (a). The results indicate that D values for PC/MK and PC/SF concrete mixes
were considerably lower than the corresponding PC concretes, at all w/b ratios, with PC/MK

binders being slightly more effective. At 0.52 w/b ratio, D for concrete containing 10% MK

was 5.0 x 10-11 m2/sec compared to 6.2 x 10-11 m2/sec for concrete made with 10% SF.

Similar effects were observed for the other replacement levels at all w/b ratios. This was

expected as MK has a high alumina content, which contributes to greater chloride binding and
may cause a reduction in chloride diffusion rates.

Multi-Component Binders

The chloride diffusion test results from multi-blend concrete mixes containing SF and MK with

PCIPFA and PC/GGBS binders are plotted against w/b ratio to examine their effect. The
results demonstrate the benefits of using multi-component binder mixes in reducing chloride
diffusion rates and subsequently extending concrete performance. Figure 3(b) shows, as a
typical example, that considerable improvements can be achieved with the use multi-
component binders in concrete production, at a given w/b ratio.

Clearly, such relationships can be useful to establish, fora given chloride-bearing environment,
the adjustment to w/b ratio necessary to take advantage of the beneficial effects of the binary
or multi-component binders and integrated with mix proportioning methods to achieve a
required durability performance.

EFFECT OF CONCRETE ON RATES OF CHLORIDE-INDUCED CORROSION

In addition to its influences on the rate of chloride ingress into concrete, the binder type also
appears to have an influence on corrosion activity. This is illustrated in Figure 4, which gives
the results from a study considering corrosion activity in both PC and PC/PFA concrete. This

indicates that some binders after a given period of exposure have better resistance to the onset

of corrosion than others. Clearly this is related to the fact that for PFA concrete, chloride build-
up is slower, such that after a given exposure period the contamination level is lower.

Work has shown that once corrosion has initiated, for a given level of contamination, the rate

may differ considerably between different concrete and concrete types. The literature suggests
that there are a number of different factors which may contribute to these effects. Some of the
more important parameters are:

• Binder/hydrate/reaction product composition.

• Chloride and oxygen availability and case of movement to the corrosion site.
• Concrete microstructure.
• Concrete resistivity.

• Pore fluid chemistry.
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Some of these are closely related and interdependent and the magnitude of influence of each

on the process would be very difficult to establish. However, the position becomes clearer if

consideration is given to the relationship between chloride concentration (water-soluble) and

corrosion current (rate). This is shown in Figure 5 and illustrates that, as may be expected,
with increasing level of chloride contamination, the rate of corrosion increases and on initial
inspection, there appears to be no direct relations between the two parameters. However, by

considering the coefficient of chloride diffusion for the concretes tested, it is possible to
rationalise the data and group it into bands.

The addition of D to the relationship is not arbitrary (although the ranges included are), since

it is a measure of the overall rate of transportation of chloride through concrete and is
influenced by the concrete microstructure and chemistry. In cases where D is low, the rate of
corrosion tends to be low and where this is high, the rate tends to be higher.

This result is of practical significance, since the measurement of D will provide an indication
of what the likely risk and rate of corrosion may be. A tentative classification has been devised

and is shown in Table 4. This, based on the relationship observed in Figure 5, links the
coefficient of chloride diffusion and chloride concentration to the corrosion intensity.

10

0
I0

to I

10

0 2 4 6 8

WATER-SOLUBLE CHLORIDE CONTENT, % wt binder

Fig. 5. Relationship between corrosion intensity and D.

Table 4. Estimation of corrosion risk using chloride content and D.

D: cm-/s x 10-9
CORROSION INTENSITY

Low* Medium* High*

Water-Soluble Chloride Content, wt% binder

<20 1.0 N/A N/A
20-50 0.3 0.5 2.0

>50 0.2 0.4 0.6

*Low = 0.1NA/cm2 *Medium = l.NA/cm` *High = 10.0µA/cm2
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ESTIMATING CHLORIDE DURABILITY OF CONCRETE

Estimations Based on Coefficient of Chloride Diffusion

In order to provide practical information on the effectiveness of the various binders considered,

it is possible through the use of estimation models such as that of Dhir et al (1991) to establish
the period of service that may be expected, prior to the initiation of corrosion. This is based

around Fick's diffusion laws and coefficient of chloride diffusion and has been developed for

use by engineers to allow service life to be built into the design process .

This method can be illustrated by considering a typical structural concrete, with a range of

different binders, used in a chloride exposure with w/c ratio of 0.5, well cured, a water-soluble

chloride threshold level of 0.2% weight of binder, a cover depth of 50 mm and an external

concentration of 0.5M in the environment. Based on the laboratory measured D values,
Table 5 has been generated and provides an indication of the period required to initiate

corrosion. The results indicate that for MK and SF that progressive increases in service life

were achievable with increasing level and approximately 100 years can be obtained when a
15% replacement is used. It is apparent for the multi-blend concretes that the service life

depends on the combination considered. For PC/GGBS, the best combinations appear to be
with MK and SF, which will give 100 years service. In the case of PC/PFA as the main binder

components, combination with MK and SF enhanced durability.

Table 5. Estimation of time to corrosion for various hinder concretes

CONCRETE TIME TO CONCRETE TIME TO

TYPE CORROSION, TYPE CORROSION,

Years Years

Binary Blends

PC 30 PFA33 40

MK5 45 SF5 40

MK I O 70 SF 10 65

MK15 >100 SF15 80

M K20 >100 SF 20 >100

MK25 >100 GGBS50 55

Multi Blends

PC/PFA30/SF3.5 50 PC/GGBS45/SF5 95

PC/PFA30/MK3.5 50 PC/GGBS45/MK5 >100

Estimations Based on Historical Data

A new approach to modelling chloride ingress which can potentially overcome the problem of

unknown local microclimate. construction effects etc. has been recently put forward by Dhir

et al (1998). The mathematical models developed are primarily based on the assumption that
the total chloride content profile within a semi-infinite medium can be expressed as an

exponential decay function of the Boltzmann variable. The mathematical basis of the method
has been given in detail by Dhir et al (1998) and should be consulted for further information.
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In summary, the steps to determine the likely future development of a chloride ingress profile
are as follows:

Step I Plot the historical total chloride content against 3t and obtain S„ which is the
slope. It is satisfactory in laboratory accelerated tests to use data for as short an

exposure period as I month to obtain reliable estimates of S,,. However, it is
recommended that at least 3 month chloride penetration profiles are obtained.
That is particularly so for highly chloride resistant concrete.

2Step 2 Using the following equation: k = S
cn

Calculate k, which is the decay rate of the chloride profile.

Step 3 Using the following equation: C = e -"I

Calculate Cn, which is the total chloride content at any given time and where cp is
the Boltzmann variable (mm//month).

Step 4 Plot the C. against (p to determine the future development of the chloride profile,
substituting any required cover depth and time increments to determine cp.

Example Application of the Historical Data Method

Chloride penetration data for two grade 40 mixes, Mix A: a normal Portland cement concrete

and Mix B: a 50 % PFA concrete water-cured at 20°C for 28 days before exposure to a 5.OM
chloride environment at 20°C was obtained (Dhir et al, 1993). Figure 6 shows the S,n/root

time curve for this data, from which k can be calculated. Using the calculated values for k,

Figure 7 has been plotted and is compared with the actual chloride penetration data obtained.

The corresponding fit between the data is good and supports the validity of the method.

Portland Cement Concrete (Scn = 7.30)
50 % PFA Concrete (Scn = 2.27)

rr -

I

0

Fig. 6.

1 4 9 16 25

PERIOD OF EXPOSURE TO CHLORIDE SOLUTION, t months (square root scale)

Normalised total chloride content for two grade 40 concrete immersed in a 5M NaCl
solution at 20°C.
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Fig. 7. Normalised chloride content profiles for two grade 40 concrete immersed in a 5M

NaCl solution at 20°C.

The main drawback to this method is that it will only be accurate if future exposure conditions

do not change greatly from those from which the historical data was gathered. It is, therefore,

suggested that on a practical basis data should be gathered after several years to ensure that the
full range of seasonal effects are experienced. In areas where there is considerable variation

in the climate conditions it may be necessary to base future estimations of durability on 10 year

historical data for it to be valid.

CONCLUSIONS

The mechanisms of chloride transport in concrete are complicated since they can involve both

ionic diffusion and capillary absorption. However, methods of modelling and measuring

chloride ingress are usually based on Fickian models of pure diffusion which do not reflect the
conditions experienced in practice. These models can however, be modified, in a limited way

to take account of such conditions by correcting for the effects of chloride binding and

absorption.

The chloride ingress test results showed that significantly lower diffusion rates can be obtained

using binary and multi-component binders in concrete than in that containing PC. It is
suggested that considerable improvements can be obtained through combination of two or more

other materials with Portland cement. It is believed that this route is of importance towards

developments in and achievement of high chloride durability concrete.

It was found that the rate of chloride-induced reinforcement corrosion was related to the rate
at which chlorides can be recharged to the corrosion site. In turn, this is related to the

coefficient of chloride diffusion, thus concrete with a low D value will tend to also have a

16
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relatively slower rate of corrosion. A classification for corrosion rate based on chloride
concentration and D value has been proposed. However, it should be noted that in terms of

overall serviceability the corrosion propagation period even in low D concrete will be much
shorter than the corrosion initiation period. Consequently, it is recommended that in design

for durability, key importance is given to achieving the minimum practical chloride
transportation rate to the reinforcing steel.

Two different ways of estimating chloride ingress were described. The first method is shown
to be applicable to new construction where diffusion is the dominant chloride transportation

process but requires the D value to be determined in the laboratory. The effect of different
binders on the time to initiate corrosion have been compared. It was found that the estimated

time to corrosion for a typical structural grade PC concrete could be increase from around
25 years to 100 years by using a multi-component mix of PC, MK and SF binders. The second

method is applicable to existing structures and provides a more accurate estimation of residual
durability by using the chloride profile that has built-up from the particular exposure
environment. The particular advantage of this is that will take account of the wide number of

variables that affect chloride ingress.
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