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ABSTRACT

Temperature is one of the most important factors affecting the design and performance of
both flexible and rigid pavements . Temperature variations within pavement structure
contribute in many different ways to distress and possible failure of that structure.
Knowledge of temperature effects is essential for the determination of the design and
maintenance requirements especially in the desert climates like most of Saudi
environment.

This paper presents the results of different research studies that were carried out locally

to explore the trends of temperature variation in both rigid and flexible pavement slabs in
the arid Saudi environment and their implications on the design and material selection.

Results indicated that temperature effects on both flexible and rigid pavements can not be

ignored in design and analysis since high ranges were observed such as a maximum

temperature differential of 15° C in rigid pavements whereas, flexible pavements are

subjected to temperatures ranging between 3°C to 72°C. Maximum pavement temperature
was recorded at a depth of 2 cm.

KEYWORDS: pavement, flexible, rigid, apron, curling stress , SHRP, ILLI-SLAB,
temperature.

INTRODUCTION

The functional as well as the structural performance of flexible and rigid pavements is

highly dependent on the temperature regime to which these pavements are exposed.

Temperature variations within pavement structure contribute to distress and possible

failure of that structure. Daily and seasonal variations of maximum, minimum, average

and gradient across pavement depth must be considered in determining thermal stresses
and calculating design parameters of rigid and flexible pavements.
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Thermal condition, if not addressed, can lead to significant problems, including the

following [Andersen, et al., 1992]:

1. Cracking caused by large temperature differentials between the interior of

concrete and the external environment.

2. Strength loss caused by the freezing of concrete before it has reached sufficient

strength, and

3. Strength loss caused by high internal temperatures within the concrete mass.

Temperature and moisture are fundamental variables in all problems of airport pavement

construction, design, behavior, and performance [Dempsey, 1976]. They have a major

influence on airport pavement surface deterioration, which has a great effect on the

aircraft damage and runway closures for maintenance.

Stresses in rigid pavements result from a variety of causes [Yoder and Witczak, 1975],

including wheel loads, cyclic changes in temperature (warping and shrinkage or
expansion), changes in moisture, and volumetric changes in the subgrade or base course.

TEMPERATURE STUDIES

Extensive research on temperature distribution in asphalt pavements has been carried out
in many different climatic areas of the world, such as the US, Australia, South Africa,

Kuwait and Saudi Arabia (Kailas, 1966; Williamson, 1972; Bissada, 1972; Potocki

(1973); Fatani et al., 1994; Al-Abdul Wahhab and Balghunaim, 1994). Several
researchers have developed mathematical models to simulate pavement temperature with

reasonable accuracy (Dempsy and Thompson, 1970; Venkataraman and
Venkatasubramanian, 1977; Dickinson, 1978; Fatani et al., 1994; Ramadhan and Al-

Abdul Wahhab, 1997).

In the Gulf region, Fatani et al. (1994), Al-Abdul Wahhab and Balghunaim (1994),
Bissada (1972) and Potocki (1973) have carried out different research projects to quantify

temperature regions in local pavements.

Fatani et al. (1994) in a national project entitled "Evaluation of Permanent Deformation of
Asphalt Concrete Pavement in the Kingdom of Saudi Arabia (KSA)," have instrumented

different pavement sections for temperature measurement in eastern, central, and western

Saudi Arabia. Temperature was measured round-the-clock at the surface and at depths of

2 cm, 4 cm, 8 cm, 16 cm, and at the bottom of asphalt layers. They studied the effect on

pavement temperature of factors such as cloud cover, air temperature, and solar radiation.

The single most important factor that affects pavement temperature was found to be air
temperature, which is directly affected by cloud cover and solar radiation. A database

containing two years worth of pavement temperatures was developed. It was observed

that the maximum recorded pavement temperature occurs at a depth of 2 cm from

pavement surface, while the minimum pavement temperature is always recorded on the
surface. A model has been developed and calibrated based on their study to predict

maximum pavement temperature at a depth of 2 cm and minimum pavement temperature.
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The model takes into account air temperature and solar radiation with a high degree of
accuracy

Al-Abdul Wahhab and Balghunaim (1994) indicated that extreme pavement temperatures
in the arid Saudi environment range between 3°C and 72°C for coastal areas and 4°C and
65°C for inland areas.

Bissada ( 1972) presented the results of a study on asphalt pavement temperatures relating
to the Kuwait climate . He concluded that the asphalt surface course experienced
substantial extremes in temperature . Within 9 hours on a summer day, the surface
pavement temperatures fluctuate between 32 and 74°C. During the year, asphalt surface

temperatures fluctuate between an average minimum of 5°C and an average maximum of
74°C.

Potocki (1973) carried out a more comprehensive study of pavement temperatures for
different pavement cross - sections in Abu Dhabi and Al-Ain in the United Arab Emirates.

The asphalt binder specification AASHTO NT I graded asphalt binder based on the
prevailing upper and lower pavement temperatures . Asphalt binder is graded as:

PG X-Y

where

(1)

PG = stands for performance graded

X = designates the high pavement design temperature, and

Y = designates the low pavement design temperature.

The SIP design temperatures and corresponding grades are given in Table 1.
Therefore, asphalt binder PG 70-16 grade is suitable to be used in an environment to offer
a protection for an average seven (consecutive) day maximum pavement temperature of
<70°C (but greater than 64°C) and a minimum pavement design temperature of > -16°C
(but less than -10°C) with 95% confidence.

Table 1. SHRP design temperatures and corresponding grades

i6-Temperature, °C

(X)

PG Grade
Designation

Low-Temperature, °C
Y)

PG Grade
Designation

<52 52 >-10 -10
< 58 58 > -16 -16
< 64 64 > -22 -22
<70 70 >-28 -28
< 76 76 > -34 -34
<82 82 >-40 -40

> -46 -46
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Ramadhan and Al-Abdul Wahhab (1997) reported their two field experiments carried out

for the monitoring of temperature variations of asphalt concrete and Portland cement
concrete pavements at King Fahd University of Petroleum and Minerals (KFUPM) in

Dhahran, Eastern Province of Saudi Arabia. A temperature data base was developed and
used to generate regression models for predicting temperatures in flexible pavement, and

temperature differentials in rigid pavements, from measured air temperatures. For this
study, recorded temperatures at depth of 2 cm in the flexible pavement (PAV) with the

corresponding air temperature (AIR) has the following relationship:

PAV = 1.692 * (AIR) + 12.670 (2)

Similarly, the relationship between average temperature differentials (DIFF) versus

corresponding air temperatures (AIR) is obtained and has the following form:

DIFF = 0.248 * (AIR) + 1.577 (3)

Arora et al. (1993) proposed a mechanistic approach for PCC apron pavement design for

the Saudi-specific conditions using ILLI-SLAB finite element model. This approach was

used to check the structural adequacy of PCC apron pavement system of the newly built

King Fahd International Airport (KFIA) near Dammam, Saudi Arabia. In this approach,
the combined effect of load and temperature, in terms of tensile stresses in the rigid
pavements, was studied. Temperature data were obtained from the instrumented apron

slabs in that airport as reported by Arora et al. (1994).

TEMPERATURE EFFECTS ON FLEXIBLE PAVEMENT

Temperature affects the pay. ement design in two ways; first it determines the temperature

at which asphalt concrete n.i': should be designed and/or evaluated and second it indicates

the asphalt grade that best work for a temperature zone and traffic load (Al-Abdul

Wahhab et al. 1996)

In all of the above ment .,;:ed studies, it was observed that the minimum pavement

temperature is always recce _:d on the surface of the pavement, which matches the lowest

air temperature. The
consecutive days is meast_.
FHWA LTPP study (19'

recorded temperature at a

UAE, as reported by the

Wahhab et al. (1996) t.

temperature from the c;:

regression formula deve!
used for Saudi Arabia an,-

Al-Abdul Wahhab et al.
SHRP performance baseL.

extensive study of the te-

Twenty eight weather sta.
Gulf countries were cont..

age maximum pavement design temperature over seven
at a depth of 20 mm in pavement as recommended by the
Fig. I shows the relation between air temperature and

th of 20 mm in pavement for Saudi Arabia, Kuwait, and the

^, ve studies. This relation has been utilized by Al-Abdul
edict the average seven day maximum pavement design

.. ated average seven day maximum air temperature. The

1 for Kuwait was used for Kuwait; the KSA formula was

aar; and the UAE formula was used for UAE and Oman.

>6) have carried a research project for the adaptation of

'er specifications in the Gulf countries. In their research, an

...lure regimes within the Gulf countries has been executed.
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-co collect available meteorological data. A huge amount of
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Fig. 1. Relation between air temperature and pavement temperature at a
depth of 20 mm (Fatani et al., 1992 ; Bissada , 1972; Potocki, 1973)

weather data (covering 26 years) was received and analyzed to calculate the average
seven day maximum air temperature and minimum air temperature.

The temperature zoning for the asphalt binder specification for the Gulf region is shown in

Fig. 2. Four asphalt binder performance grades that satisfy the high and low temperature

requirements are identified: PG 76-10, PG 70-10, PG 64-10, and PG 58-10. They have

indicated that all neat asphalt cement, produced in the Gulf, had the same PG grade of PG

64-22 or PG 64-28. Polymer modification changed the grades of the samples into grades

with higher upper limits. This limit reached as high as 82°C for some samples. Since

pavement temperatures in most of the Gulf countries reach values higher than the 64°C,
the suitability of neat asphalt is limited. This implies that polymer modification should be
used in a large region of the Gulf countries. For the lower limit grades, polymer

modification improved (lowered) the limit for some samples but had an adverse effect on

other samples. Therefore, the suitability of any polymer for asphalt modification should be

verified prior to use according to the temperature limits of the region.
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Marshall mix design procedure (The Asphalt Institute 1984) is the only procedure used
for local asphalt concrete mix design. This is an empirical design procedure which has no

measure of shear strength. Asphalt mix is designed and evaluated at temperature of 50°C.
These major deficiencies can be overcome by the use of SUPERPAVE mix design
procedure (FHWA 1994).

TEMPERATURE EFFECTS ON RIGID PAVEMENT

The stresses generated by load are calculated using the Westergand closed-form known

equations for edge, interior, and corner locations. Several design methods of rigid

pavements were based on these equations such as Federal Aviation Administration (FAA)

and Portland Cement Association (PCA). In these methods, the basic criteria is the
limiting tensile stress in PCC slabs due to edge and interior loading. However, several

limitations were observed by the users of these methods. For example, the closed-form
solution assumed that the slab panel has infinite dimension, the amount of load transfer

across joints has not been incorporated in the design, and the curling stresses due to

temperature differential across the slab were not considered. These working stresses may

add considerably to load stresses.

To overcome these limitations, the ILLI-SLAB design model was used for rigid pavement

design and analysis, and to quantify the effect of temperature on this design and

performance of PCC apron slab, using the conditions prevailing in the Kingdom. The

ILLI-SLAB finite element model was developed at the University of Illinois, USA. This
model was found to be an effective tool for analyzing the impact of number of design

variables, such as joint spacing, temperature differentials, dowel bar diameter, and load

transfer across joints on PCC pavement structural response. This -model was thoroughly
validated by other researchers, worldwide.

Daytime differentials (negative), which cause the slab to curl downward, induce tensile
stresses (negative ) at the bottom of the slab . Since these stresses are additive to the
critical edge load stresses , the edge region also becomes the critical location for slab
thickness design considering the combined effect of load and curling stresses. In the
fLLI-SLAB model, the slab is initially assumed weightless , and the element deforms in a
cylindrical shape as a result of non -uniform temperature strains through the slab. The
weight of the slab is then superimposed on the deformed slab and the curling stresses are
calculated . An iterative procedure is used to account for the effect of temperature curling
and to accommodate regaining of subgrade support under load (Ioannides and Salsilli-
Murua, 1959).

Table 2 shows the required data for a complete run of the ILLI-SLAB model. These data

are the typical generated information for the King Fahd International Airport (KFIA),

Dammam, as one of the Kingdom's international airports as reported by (Arora et al.
1993 and 1994).

The finite element mesh used for the analysis is shown in Fig. 3, where the design aircraft
(L-1011-500) was placed so that the maximum (critical) edge loading stress can be

determined. The ILL[-SLAB model calculates the stress, strain, and deformation for each

node in the above mesh as well as the load transferred by the dowel bars between the
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slabs. For thermal effect, one slab configuration was used with the temperature differential
obtained for different time periods. Fig. 4 shows the day-time temperature curling stress
contour for a typical summer day.

Table 2. Input data for complete ILLI-SLAB run

Property Value and description

Number of slabs 6 slabs, divided into finite element mesh of suitable
dimensions giving node numbers and coordinates

Number of structural layers 2, PCC and Asphalt concrete (AC)

Composite action No bond between PCC and AC layers

Poisson's ratio of PCC layer 0.15

Thickness of PCC layer 16 in. (40 cm)

Modulus of elasticity of PCC layer 4.0 x 106 psi

Poisson's ratio of AC layer 0.35

Thickness of AC layer 6.3 in. (16 cm)

Modulus of elasticity of AC layer 5.0 x 105 psi

Modulus of subgrade reaction 250 pci

Inside and outside diameter of
dowel bars

0.0 and 1.18 in.

Modulus of elasticity of dowel
bars

29.0 x 106 psi

Spacing of dowel bars 14.96 in.

Poisson's ratio of dowel bars 0.29

Modulus of doweUconcrete
interaction

1.86 x 106 pci

Joint width 0.118 in.

Design aircraft L-101 1-500

Main gear tire pressure 184 psi

Main gear wheel configuration 14.7 x 21.9 in.

Table 3 shows the results calculated using ILLI-SLAB model with the available

information listed in Table 2. The temperature differentials were generated from

temperature monitoring program (Arora et al. 1994). Two points for day-time curling (-

14°C and --10°C) and another two points for night-time curling (+5.6°C and +7.5°C)

were considered. At the no-curling conditions (zero temperature differential) the curling

stress is equal to zero. Curling system, 6,; was generated from one-slab configuration

with temperature differential effect only. The load stress 6,, was the critical edge stress
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Fig. 4. Day-time curling stress contour for a temperature differential of 15°C

due to the aircraft load placed at the longitudinal edge of the PCC slabs as shown in Fig.

3. The combined stress , acomb (curling + load) at the bottom of the slabs was the one

generated when considering the effects of both load and temperature differential

simultaneously in Fig. 3 .

Table 3. Load and curling stresses for rigid pavement

Curling period Day-time

1

Day-time
2

Night-time

1

Night-time
2

Temperature Differential, C

(bottom-top)

-14 -10 +5.6 +7.5

Curling stress, a, psi -112 -94 +65 C +69

Load stress, a,, psi (Fig. 3) -394 -394 -394 -394

Combined stress , acomb, psi (Fig3) -625 -586 -433 -425
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For design and evaluation purposes, the calculated load and combined stresses, 6comb, are

compared to the design flexural strength. However the curling stresses are not uniform

over the months of the year, therefore, measuring the temperature differentials between

top and bottom of the PCC slabs or predicting these differentials from the air temperature
using the developed model (Eqn. 3) can be used to determine the curling stresses for each

month. The combined stresses can also be determined, and then compared with the

flexural strength. Fatigue models can also be utilized to calculate the cumulative damage
over the design life of the rigid pavement. This process can be used in both the design

phase of the pavement to determine the required thickness or the performance evaluation

phase to check the remaining life of the pavement to determine the needed overlay
thickness if required.

Other parameters of the rigid pavement can also be determined in the design phase or in
the performance evaluations phase using the ILLI-SLAB finite element model. Knowing

the input data to be used in certain rigid pavement, the required dowel-bar diameter, the

adequate joint width, and the optimum slab dimension can be designed using similar
procedure of superimposing the load and thermal effect on stress parameters. Arora et al.

in their study about KFIA, have developed interactive programs to assist in carrying out
the needed iterations to arrive to a suitable slab thickness and dowel diameter using the

prevailing traffic and temperature conditions in Saudi Arabia. Using these programs, the

change of slab size was investigated. It was concluded that increasing the slab size to 7.5

n1 as used by some airports in the Kingdom, increases the day-time curling stresses by an

amount of 118% and the combined stresses by an amount of 18%. This shows that the

cumulative fatigue damage exceeded the limiting value of 1.0 in the very first year during

the hot summer, thus the fatigue cracking will develop in the 7.5 x 7.5 m slab dimension
soon after opening to traffic.

CONCLUSIONS

Based on the extensive field and laboratory works conducted locally, the following can be
stated:

1. Extreme asphalt pavement temperatures in the and Saudi environment range

between -10°C and 73°C.

2. Asphalt binder should be selected based on the prevailing temperature extremes.

3. For the rigid pavements, load stresses only - without considering the temperature

curling effect - can not predict the actual behavior of PCC slabs. Results showed

that the combined stresses are higher than those obtained from simple addition.

4. Increasing slab size from 5.0x5.0 m to 7.5x7.5 m will result in early fatigue failure
due to the interaction between curling and load stresses.
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