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Figure 1  Block diagram of a conventional LDPC 
performance evaluation simulator. 
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ABSTRACT  
This paper presents a novel approach for the design and 
implementation of a simulation platform for evaluating 
LDPC codes performance. The existing LDPC code 
simulation tools consume very long time in evaluating 
the performance of a specific code design. This is due to 
the intensive number of required computations. This 
problem is overcome by developing a parallel protocol to 
distribute the computations among processing nodes in a 
TCP/IP network. As indicated by experimental results, 
the proposed simulation platform is scalable with the 
number of processing nodes.  Another practical 
advantage of the proposed system is that it does not need 
dedicated processors to run it; rather, it can utilize idle 
times of processing nodes in a network and work 
transparent to a node user. Furthermore, network 
daemons are used to utilize network nodes even if they 
are in the log-off state. 
 

Index Terms— LDPC codes, parallel processing, 
simulation, iterative decoder, SPA. 

 
1. INTRODUCTION  

Forward Error Correcting (FEC) codes are an essential 
component of modern state-of-the-art digital 
communication and storage systems. Indeed, in many of 
the recently developed standards, FEC codes play a 
crucial role for improving the error performance 
capability of digital transmission over noisy interference-
impaired communication channels. 
The leading family of FEC codes are widely considered 
to be Low Density Parity Check codes (LDPCs) [1], as 
they demonstrate performance very close to the 
information-theoretic bounds predicted by Shannon 
theory, while at the same time having the distinct 
advantage of low-complexity, near-optimal iterative 
decoding. Unfortunately, there is as yet no theory for 
evaluating the performance of a given LDPC code. 
Currently, the only way to evaluate LDPC codes 
performance is through simulation. The problem of using 
simulation is the long time needed, especially for large 
codes.   
In this paper, we introduce a parallel simulation platform 
to aid LDPC code designers to evaluate the performance 
of different designs of LDPC codes. The tool can also be 
used during the LDPC code design phase. As an 

example, one may generate 1000 random LDPC codes 
(with some constraint, such as cycling structure) and then 
evaluate the performance of each code to determine the 
code with the best performance.  
The remainder of this paper is organized as follows: In 
Section 2, conventional LDPC code simulator is 
introduced. In Section 3, we give a brief review of the 
sum-product algorithm. In Section 4, the proposed 
simulation platform is presented. Experimental results are 
given in Section 5. Section 6 concludes the paper.     
 
2. LDPC CODE PERFORMANCE SIMULATION  

The block diagram of LDPC simulation over an AWGN 
(additive White Gaussian Noise) channel is shown in 
Figure 1. The path of one simulation iteration is 
illustrated, which involves the following steps: 
generating an information block, encoding it, sending it 
through an AWGN channel, decoding the received block, 
comparing it with the original transmitted information 
and finally updating simulation statistical counters. 
Statistical counters mainly include: total transmitted 
blocks, number of blocks in error and total bits in error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



First, K random information bits are generated and then 
encoded into an LDPC block of length N. Each bit 

{0,1}ic ∈ in the code block is modulated into a BPSK (Binary 
Phase Shift Keying) symbol ix = { -s , +s} based on the 
value of  ic , where s is the BPSK signal strength. The signal 

ix is then passed to an AWGN channel which adds noise 
to it to produce the received signal iy as follows: 

i i iy x n= + , where in is  the AWGN additive value. Note 
that instead of generating a random information block 
and encoding it into a block code, it is enough to generate 
an all zeros block code ( 0ic = , 0 i N≤ ≤ ). In this case, 
the encoding step is not needed and the simulation 
process will be faster.  The last step is comparing the 
decoded received information with the originally 
transmitted information and then updating the simulation 
statistical counters accordingly.  
To conclude this section, we give a review for the 
modeling of BPSK signal transmission over an AWGN 
channel.  Assume {0,1}ic ∈ is the bit to be transmitted, 
then, the transmitted BPSK signal ix  corresponding to ic  
is given by: 
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(1) 

The signal strength s depends on the code rate (R) and 
the signal to noise ratio ( 0/bE N ) and  is given by: 

( )02 /bs R E N= × ×  (2) 

The reason for including the LDPC code rate R (which is 
given by K/N) in equation (2) is to make a fair 
comparison between different codes of different rates. 
This is because at lower LDPC code rates, the receiver 
will be allowed to accumulate the channel output for a 
longer time and thus the amount of noise (relative to 
signal) will decrease as a result of averaging [5]. 
 

3. THE SUM-PRODUCT ALGORITHM  
LDPC codes are a class of linear block codes that use a 
sparse, random-like parity-check matrix [1]. LDPC codes 
can also be represented by bi-partite factor graphs having 
two types of nodes:  variable bit nodes and check nodes, 
interconnected by edges whenever a given information 
bit appears in the parity check equation of the 
corresponding check bit. The iterative sum-product 
algorithm (SPA) can be used for decoding LDPC codes, 
and is shown to achieve optimum performance when the 
underlying code graph is cycle-free In the following, a 
brief description of this algorithm is given based on the 
notation in [4]. The SPA algorithm is also called Belief 
Propagation (BP) algorithm. 
Assume a binary (N,K) LDPC code is described by a 
sparse parity check matrix of size M N× , where M  is 
the number of parity-checks corresponding to the parity-
check nodes in a bipartite graph, and N is the number of 
variable nodes corresponding to the encoded symbols.  
 

 
 
Before discussing the SPA algorithm, we introduce some 
terms that will be used throughout the discussion of the 
SPA algorithm [4]: 
• For the thj row in an H matrix, the set of column 

locations of the 1’s is given by { : 1}j jiR i h= = . The 

set of column locations of the 1’s, excluding location 
i is given by \ { : 1}j i jiR i h ′′= = \ {i}.  

• For the thi  column in an H matrix, the set of row 
locations of the 1’s is given by { : 1}i jic j h= = . The 
set of row locations of the 1’s, excluding the location 
j is given by \ { : 1}i j j ic j h ′′= = \ {j} 

• ( )ijq b : Message (extrinsic information) to be passed 

from variable node iv  to check node jf   regarding 

the probability that ic b= , {0,1}b∈ , as shown in 
Figure 2(a). It equals the probability that ic b= given 
extrinsic information from all check nodes, except 
node jf . 

• ( )jir b : Message to be passed from check node jf  to 

variable node iv , which is the probability that the 
thj check equation is satisfied given bit ic b=  and 

the other bits have separable (independent) 
distribution given by { }ij j jq ′ ′≠ , as shown in Figure 

2(b). 
• ( )iQ b = the probability that ic b= , {0,1}b∈  
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The SPA algorithm involves one initialization step and 
three iterative steps as shown below: 
Initialization step:  Set the initial value of each variable 
node signal as follows: 2( ) ( ) 2 /ij i iL q L c y σ≡ = , where 

2σ is the variance of noise in the AWGN channel. 
Iterative steps: The three iterative steps are as follows: 

jf  

iv  

( )ijq b  

Figure 2  (a) Variable-to-check message, (b) Check-to-
variable message. 
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(I) Update check nodes as follows: 
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(II) Update variable nodes as follows: 
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 (III) Compute estimated variable nodes as follows: 
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Based on ( )iL Q , the estimated value of the received bit 
( îc ) is given by: 
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During LDPC decoding, the iterative steps I to III are 
repeated until the following event occurs: ˆ 0Tc H⋅ =  OR   
maximum iterations is reached.  
 

4. THE PROPOSED PARALLEL SIMULATION   
The proposed parallel simulation platform consists of 

two main components: (1) Simulation controller, and (2) 
Processing nodes, as shown in Figure 3. The task of 
simulation controller is to control the operation of 
processing nodes.  Simulation controller sends simulation 
parameters to processing nodes, instruct them to start 
simulation and collect statistical results from them. In the 
other hand, processing nodes receive simulation requests 
and parameters from simulation controller, perform the 
LDPC simulation (as in figure 1) and send simulation 
results to simulation controller upon receiving a request 
from it.   

Before discussing each of the two components in 
details, we give a quick view for the proposed LDPC 
simulation platform. First, a user sets simulation 
parameters (H-matrix, SNR point, decoding iterations …) 
and then starts the simulation. Upon starting, simulation 
controller communicates with each processing node and 
sends simulation parameters to it. When a processing 
node receives simulation parameters, it starts LDPC code 
simulation independent of other processing nodes.  
Simulation controller periodically sends a results request 
message for each processing node. When a processing 
node receives a results request message, it sends its 
pending results to simulation controller and then 
initializes simulation counters.  
 
4.1. Simulation Controller 
Simulation controller is the central part in the proposed 
parallel simulation platform. It controls the operation of 

processing nodes. Simulation controller builds a look-up 
table, one entry for each reachable processing element. A  
processing node entry is used to keep track of its current 
state, such as: node address, statistical counters, H-matrix 
signature, decoding algorithm version, etc.  
The simulation controller algorithm is divided into three 
stages: 
Stage 1: Locating processing nodes: In this phase, 
simulation controller sends a start simulation request 

message to all connected processing nodes. Each active 
processing node responds by sending an 
acknowledgement to simulation controller indicating its 
address and its decoding algorithm version number. 
When simulation controller receives an 
acknowledgement from a processing node, it performs 
two tasks: (1) Adding a new record to the look-up table 
to keep track of the processing node, (2) Checking the 
version of the processing node decoding algorithm. If it 
is not up to date, simulation controller sends a new 
version to the processing node using File Transfer 
Protocol (FTP). At the end of this stage, simulation 
controller has a look-up table for all active and up to date 
processing nodes. 
Stage 2: Sending simulation parameters: In this phase, 
simulation controller sends LDPC simulation parameters 
to each processing node in its look-up table. The 
simulation parameters include: H-matrix, SNR value, 
maximum LDPC decoding iterations, decoding algorithm 
type (floating point or fixed point), etc. When a 
processing node receives simulation parameters, it 
immediately starts simulation.  
 Stage 3: Partial results collection: In this phase, 
simulation controller periodically sends results request 
messages to processing nodes. A processing element 
responds to this message by sending its results to 
simulation controller and then initializing its statistical 
counters. Upon receiving results message from a 
processing node, simulation controller updates its 
aggregate statistical counters. Simulation controller 
periodically collects partial results from all processing 
nodes (n) in a time period of T seconds. This means that 
each t = T/n seconds, simulation controller sends a results 
request message to a processing node, as shown in Figure 
4.  Simulation controller continues on this phase until the 

Simulation 
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Figure 3.  Components of the proposed parallel LDPC 
simulation platform. 
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desired number of simulated blocks is reached. Then, it 
sends stop simulation messages to all processing nodes.  

4.2. Processing Nodes 
The function of processing nodes is to run LDPC 

performance simulation and send results to simulation 
controller. Initially, a processing node receives 
simulation request from simulation controller, performs 
simulation and then sends results to simulation controller 
upon receiving a results request message from simulation 
controller.  The protocol of a processing node is as  
follows: 
1. Wait until a start simulation request message is 

received from simulation controller. 
2. Receive simulation parameters (H-matrix, value of 

SNR, maximum decoding iterations,…) from 
simulation controller. 

3. Initialize statistical counters.  
4. Perform transmission and decoding simulation for one 

block and update simulation counters accordingly. 
5.  If a results request message is received from 

simulation controller, then go to step 7, otherwise go to 
step-4. 

6.  If a stop simulation message is received from 
simulation controller, then go to step 1.  

7.  Send pending statistical counters to simulation 
controller, then go to step 3. 

 
5. EXPERIMENTAL RESULTS  

Our college network is used to implement the 
proposed parallel simulation platform with a maximum of 
126 processing nodes. The messages between simulation 
controller and processing nodes have been implemented 
using TCP/IP and UDP/IP. Indy 8.0 under Delphi 6 is 
used to run these network protocols.  
The performance of the proposed simulation platform is 
evaluated by running it on an LDPC code of size 
1024bits, ½ rate, at SNR = 2.5dB, 128 decoding 
iterations and 10,000,000 transmitted blocks. Figure 5 
indicates simulation time as a function of the number of 
processing nodes. We vary processing nodes from 2 
nodes up to 126 nodes, each time we almost double 
number of processing nodes. 
       Results indicate that simulation time decreases 
almost linearly as number of processing nodes increases.  
By doubling the number of processing nodes, simulation 
time becomes about half. Simulation time decrease is not 
exactly linear because of the following two reasons: (1) 
different network nodes have different processing 
capabilities, (2) CPU time of network nodes is divided 
between network users (in our case, students working in 
labs) and simulation nodes  (which have lower priority).  

 
 

 

 

 

 

 

 

 

 

 
6. CONCLUSION  

In this work, we have proposed a parallel computing 
simulation platform for efficiently evaluation LDPC code 
performance. It achieves almost linear speed-up as a 
function of the number of processing elements used. 
Simulation time for evaluating the performance of 1024 
bits LDPC code at SNR=2.5 and 10,000,000 blocks is 
reduced from 14.5 hours using a single node to only 6 
minutes using 126 network nodes. The proposed 
simulation platform is cost effective as it does not need a 
dedicated network and is based on using existing 
networks, such as college networks. Simulation processes 
running in network nodes are transparent from network 
users and they are assigned low priorities so they do not 
affect performance of a network user’s jobs. The 
proposed platform can be efficiently used in development 
of LDPC codes with high performance. 
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Figure 4  Simulation results request distribution over time.  
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Figure 5 Simulation time vs. number of processing nodes. 


