
The 6th Saudi Engineering Conference, KFUPM, Dhahran, December 2002 Vol. 4. 155

AN EFFICIENT TEST RELAXATION TECHNIQUE FOR
COMBINATIONAL LOGIC CIRCUITS

Aiman El-Maleh 1, Ali Al-Suwaiyan 2

1: Assistant Professor, Department of Computer Engineering, KFUPM, Dhahran, Saudi Arabia
2: Graduate Assistant, Department of Computer Engineering, KFUPM, Dhahran, Saudi Arabia

E-mail: aimane@ccse.kfupm.edu.sa

ABSTRACT

Reducing test data size is one of the major challenges in testing systems-on-a-chip. This can be
achieved by test compaction and/or compression techniques. Having a partially specified or relaxed
test set increases the effectiveness of compaction and compression techniques. In this paper, we
propose a novel and efficient test relaxation technique for combinational circuits. It is based on
critical path tracing and hence it may result in a reduction in the fault coverage. However, based on
experimental results on ISCAS benchmark circuits, the drop in the fault coverage (if any) after
relaxation is small for most of the circuits. The technique is faster than the brute-force test relaxation
method by several orders of magnitude.

Keywords test compression, test compaction, system-on-a-chip, partially specified test set, fault
simulators, critical path tracing.

 صخلمال

. عتبر من التحديات الأساسية في مجال اختبار الدوائر عالية التكاملة ير حجم بيانات الاختبارات للدوائر المتكاملغيصت

د من فعالية ضغط و تقليص يزيوجود بيانات اختبار محددة جزئياً أو مرخاة . يمكن عمل ذلك بالضغط أو التقليص

رزمية خواهذه الطريقة مؤسسة على . فعالة لإرخاء بيانات الاختبارنقدم في هذا البحث طريقة جديدة و . بيانات الاختبار

لكن النقص على أية حال صغير لأغلب الدوائر التي . المسار الحرج وبالتالي فقد ينتج عنها نقص في تغطية الأعطال

 .و بفارق كبيرالطريقة المقترحة تعطي نتائج مقاربة للطريقة التقليدية ولكنها أسرع منها . أجريت عليها التجارب

1. INTRODUCTION

With today’s VLSI technology, it is possible to build very large systems containing millions
of transistors on a single chip. One of the challenges in testing a System-on-a-Chip (SOC) is
dealing with the large volume of test data that must be stored in the tester memory, and
transferred between the tester and the chip [Zorian et al.: 1998].

Vol. 4. 156 Aiman El-Maleh and Ali Al-Suwaiyan

To reduce test storage requirements, test compaction and test compression can be used. The
goal of test compaction is to reduce (or compact) the number of test vectors into a smaller
number that achieves the same fault coverage. Examples of compaction algorithms can be
found in [Hamzaoglu and Patel: 1998] [Chang and Lin: 1995] [Schulz et al.: 1988]. The
objective of test set compression is to reduce the number of bits needed to represent the test
set. For test data compression, it is essential that the compression is lossless. Several test
compression techniques have been proposed [Chandra and Chakrabarty: 2000] [Chandra and
Chakrabarty: 2001] [El-Maleh et al.: 2001] [Jas and Touba: 1998].

Compaction and compression techniques can achieve better results if the test set is composed
of test cubes, i.e., if the test set is partially specified or relaxed. In fact, most compression
techniques in the literature assume a relaxed test set. Furthermore, without the dynamic
compaction option, ATPGs generally generate fully specified test sets. The problem of test set
relaxation, i.e. extracting a partially specified test set from a fully specified one, has not been
solved effectively in the literature. One obvious way to solve this problem is to use a brute-
force technique, where we test for every bit of the test set whether changing it to an x reduces
the fault coverage or not. This technique has a complexity of O(nm) fault simulation runs,
where n is the width of one test vector, and m is the number of test vectors. Although only the
newly detected faults by a vector are fault simulated, this technique is impractical for large
circuits.

In this paper, we propose a novel and efficient test relaxation technique for combinational
circuits. This technique is based on the critical path tracing (CRIPT) algorithm [Abramovici
et al.: 1990]. A very important characteristic of this algorithm is that when a fault is detected
by a given test vector, there exists (at least) one continuous critical path to a primary output.
This property simplifies identifying the required values needed for propagating a fault effect
to a primary output, and it is the main reason why we adopted CRIPT in our technique.
As with CRIPT, the proposed technique is not exact in the sense that the fault coverage might
be reduced after relaxation. However, as will be shown from experimental results, the drop in
the fault coverage is small for most of the circuits. Compared to the brute-force method, our
technique is faster by several orders of magnitude.

This paper is organized as follows. The next section illustrates our idea by an example.
Section 3 formally describes our test relaxation algorithm. Experimental results are given in
section 4. Finally, the paper ends by a conclusion.

2. AN ILLUSTRATIVE EXAMPLE

In this section, we demonstrate our proposed test relaxation technique by an example.
Section 3 formally describes our algorithm. The following conventions are assumed.

An Efficient Test Relaxation Technique for Combinational Logic Circuits Vol. 4. 157

To indicate that a line l is stuck at value v, we use the notation l/v. When we say that line l is
required, we mean that the value on line l is required.

Definition 1 A line l has a critical value v under the test vector t iff t detects the fault l
stuck-at- v . A line with a critical value in t is said to be critical in t [Abramovici et al.: 1990].

Example 1: Consider the circuit shown in Figure 1. Suppose that we apply the test vector
ABCDE=00000. Under this test, lines G6, G5, G1, G4, G2, B2 and B are critical. So, the
faults G6/0, G5/0, G1/1, G4/0, B2/1, and B/1 are detected under this test. Assume that the
newly detected fault is only B/1. For this fault to be detected, it has to be activated (excited)
and propagated to the primary output G6. The assignment B=0 excites the fault. The
assignments G3=0 and G1=0 are required for fault propagation. The assignment B=0 is
already satisfied because B is a primary input. The assignment G3=0 can be satisfied by either
one of the two assignments C=0, or DE=00. If we choose to satisfy G3=0 by the assignment
C=0, then DE=00 is no longer necessary, and this implies that we can relax CDE to 0xx.
Similarly, if we choose to satisfy G3=0 by the assignments DE=00, then CDE=x00. So, there
might exist more than one relaxed version of a given fully specified test vector, and some
versions might have more unspecified bits than others.

Figure 1: Circuit of Example 1.

The other requirement for fault propagation, which is G1=0, appears to be already satisfied
because we already have marked the assignment B=0 as required, and this assignment
produces G1=0. This results in relaxing the input A since it is no longer necessary. But this is
incorrect. To show that this relaxation is not correct, assume that stem B is faulty, i.e., B = 0/1
(i.e., the fault-free value is 0 and the faulty value is 1). In this case, if line A is relaxed, the
fault on the stem will not propagate to the output. It will be masked by the x value on line A,
producing the value 1/x on the output G6. The problem occurs because we justified the
requirement on line G1 from line B1, which is reachable from the critical stem B. Justifying a
required value from a reachable line, guarantees that the required value is satisfied in the
fault-free machine but not in the faulty machine. This problem can be avoided by justifying
the required value from an unreachable line. This guarantees that the value will be satisfied

0

0

1

0 1

1

A
B B1

B2

G1
G6

G5

0

G2
G3C

D
E

0

0

0

0

G4

Vol. 4. 158 Aiman El-Maleh and Ali Al-Suwaiyan

for both the fault-free and the faulty machine. For this example, the required value on line G1
has to be satisfied by marking line A as required, resulting in the test vector ABCDE = 100xx,
or ABCDE=10x00. This example shows that we need to identify reachable lines before
justifying the requirement list.

After this introductory example, we now formally describe our technique in the following
section.

3. PROPOSED TECHNIQUE

Algorithm 1 shows a general outline of the proposed test relaxation technique. Initially, all the
lines are marked as non-critical, unreachable, non-required. For every primary output o under
the test vector t, the algorithm performs critical path tracing while storing the newly detected
faults in the NDF list, the critical stems whose faults are newly detected in the CS list, and the
critical stems whose faults are previously detected (through a previous output or vector) in the
CandidateStems list. We have chosen the name CandidateStems because any stem in the
CandidateStems list is a candidate to be added to the list CS if it satisfies one condition: there
is at least one newly detected fault passing through it. The procedure AddCandidateStems
shown in Algorithm 2, checks for every stem s in the list, whether s satisfies the condition or

Algorithm 1 Main Algorithm

1: for every test vector t do
2: for every output o do
3: Extend(o)
4: while StemsToCheck is not empty do
5: s = highest level stem in StemsToCheck
6: Remove s from StemsToCheck
7: if Critical(s) then
8: if fault on s is newly detected then
9: add it to NDF
10: add s to CS
11: else
12: add s to CandidateStems
13: end if
14: Extend(s)
15: end if
16: end while
17: AddCandidateStems()
18: MarkReachableLines()
19: MarkRequiredLines()
20: Mark all the lines as non-critical & unreachable
21: end for
22: Output relaxed vector
23: Mark all Lines as non-required
24: end for

An Efficient Test Relaxation Technique for Combinational Logic Circuits Vol. 4. 159

not. If s satisfies the condition, it is inserted in the CS list. Otherwise, it is ignored. One can
observe that the CS list consists of two kinds of critical stems: the first kind is a critical stem
which has a newly detected fault on it, and the other kind is a critical stem whose fault was
previously detected but there is a newly detected fault (coming from another line) that passes
through it. Both kinds are needed in the reachability analysis.

The Extend procedure is the same as the one given in [Abramovici et al.: 1990], but it does
one extra job, namely adding newly detected faults to the NDF list. The Critical function
checks whether a stem is critical or not. This is done by fault simulation. After fault
simulation is performed for stem s, all the primary outputs in which the fault on s propagates
to, are saved in order to avoid repeating fault simulation under the same test vector. In other
words, fault simulation is done only once for a given stem under a given test vector.

Once the CS and NDF lists are constructed, the algorithm marks reachable lines by the
procedure MarkReachableLines. This is discussed in section 3.1. Then, the algorithm justifies
the requirements by the procedure MarkRequiredLines, which is the topic of section 3.2. The
last statement in the inner loop is a re-initialization of the criticality status and reachability
status of the lines. After the inner loop is finished, the relaxed vector is ready and is printed
out. For the next vector, we re-initialize the requirement status of all the lines.

3.1. Reachability Analysis

This phase takes the list CS as an input. The purpose of this phase is to mark the lines that are
reachable from at least one element of the list CS as reachable. Let us have the following
definitions.

Definition 2 A line l is said to be reachable from a stem s if the fault effect in stem s reaches
the line l.

Algorithm 2 AddCandidateStems()

1: while CandidateStems is not empty do
2: let s be an element of CandidateStems
3: delete s from CandidateStems
4: if a newly detected fault passes through s then
5: add s to CS
6: end if
7: end while

Vol. 4. 160 Aiman El-Maleh and Ali Al-Suwaiyan

Definition 3 A gate input is said to be sensitive in a test vector t if complementing its value
changes the value of the gate output from v to v where { }1,0∈v [Abramovici et al.: 1990].

Algorithm 3 is an event driven algorithm for marking reachable lines. The function
Reachable(l,s) in the algorithm returns true only if the fault effect in stem s reaches the line l.
The following two lemmas provide the rules used by the function Reachable(l,s).

Lemma 1 Let l be the output of an AND, NAND, OR, or NOR gate. Then l is reachable from
stem s iff one of the following conditions is satisfied:

1. Only sensitive inputs of l are reachable from stem s.

2. Only the non-sensitive inputs of l having controlling value are reachable from stem
s, and none of the other gate inputs has an x value.

Lemma 2 Le l be the output of a 2-input XOR/XNOR gate. Then l is reachable from stem s iff
only one input is reachable from stem s, and the other input does not have an x value.

3.2. Requirement Analysis

Algorithm 4 is a general outline of the requirement analysis phase. Initially, all the lines in the
circuit are marked as non-required. After that, we perform a forward tracing step for every
element in the list NDF. The purpose of this step is to identify paths through which the faults
belonging to NDF propagate to an output. This is done by tracing the critical path from the
line that has the newly detected fault until we reach a primary output, adding the side inputs of
every sensitive input in that path to the requirement list, and marking the lines along that path
and its side inputs as required. This step is outlined in Algorithm 5. After this step is over, we
will have a requirement list L to be justified.

Algorithm 3 MarkReachableLines()

1: initialize the event list E
2: for every element s in CS do
3: mark fanouts of s as reachable from s
4: add fanouts of s to E
5: while E is not empty do
6: l = element in E with minimal level
7: remove l from E
8: if Reachable(l,s) then
9: mark fanouts of l as reachable from s
10: add fanouts of l to E
11: end if
12: end while
13: end for

An Efficient Test Relaxation Technique for Combinational Logic Circuits Vol. 4. 161

Algorithm 6 is the value justification algorithm used. Assume that line l is to be justified. If l
is a PI, the algorithm marks it as required and returns. If l is a single-input, XOR or XNOR
gate, all the values on l’s inputs have to be justified. Similarly, all the values on the inputs of l
have to be justified if l has a non-controlling value (assuming 0-inversion). However, if l has
a controlling value, then we need to check if it has an unreachable input with a controlling
value. If it has, then it is sufficient to justify the value using that unreachable input. Otherwise,
we check whether l is reachable or not. If it is not reachable, then we justify only the
reachable lines. Otherwise, all the values on the inputs will be justified. The last two situations
appear when l can only be justified from a reachable line. Note that in justifying a required
controlling value, there could be several unreachable inputs with controlling value. In this
case, priority is given to an input that is already marked as required. Otherwise, cost functions
are used to guide the selection.

Algorithm 5 ForwardTrace(l)

1: if l is not an output of the circuit then
2: if l is a stem then
3: for every critical fanout branch b of l do
4: Add side inputs of b to L
5: Let j be the output of b
6: ForwardTrace(j)
7: end for
8: else
9: Add side inputs of l to L
10: Let j be the output of l
11: ForwardTrace(j)
12: end if
13: end if

Algorithm 4 MarkRequiredLines()

1: Initialize the requirement list L
2: for every fault f in NDF do
3: Let f be the fault on line l
4: ForwardTrace(l)
5: end for
6: for every line l in L do
7: justify(l)
8: end for

Vol. 4. 162 Aiman El-Maleh and Ali Al-Suwaiyan

3.3. Selection Criteria

As has been illustrated in the previous sections, there could be several choices for justifying a
required value. Our objective is to justify the required values by the smallest number of
assignments on the primary inputs. This will result in increasing the number of x’s extracted
from relaxing a test vector.

To achieve this objective, we use cost functions that provide a relative measure on the
selection that reduces the number of required assignments on the PIs.

The well-known recursive controllability cost functions [Abramovici et al.: 1990] can be used
for this purpose as they give a relative measure of the number of PI assignments required to
justify a required value. These cost functions are accurate for fanout-free circuits; however,
due to the existence of fanout, they do not take advantage of the fact that a stem can justify
several required values. To take advantage of that, we propose new cost functions called
fanout-based cost functions. Note that these cost functions are different from the fanout-based
cost functions given in [Abramovici et al.: 1990]. These functions are computed for an AND
gate as follows. Let l be the output of an AND gate with i inputs. Let F(l) denote the fanout
(i.e., the number of fanout branches) of line l. Then, the fanout-based cost functions are
computed as:)

Algorithm 6 justify(l)

1: if l is a PI then
2: mark l as required
3: else if l is an output of a single-input, XOR, or XNOR gate then
4: for every input j of l do
5: justify(j)
6: end for
7: else if l has a non-controlling value then
8: for every input j of l do
9: justify(j)
10: end for
11: else if there is an unreachable input line j of l with controlling value then
12: justify(j)
13: else if l is unreachable then
14: for every reachable input j do
15: justify(j)
16: end for
17: else
18: for every input j of l do
19: justify(j)
20: end for
21: end if

An Efficient Test Relaxation Technique for Combinational Logic Circuits Vol. 4. 163

)(

)(
)(

)(
)(min)(

1

1

0
0

lF

iC
lC

lF
iClC

i

i

∑
=

=

These cost functions can be computed similarly for other gates.

Table 1: Benchmark circuits characteristics.

Circuit
Name

No.
Inputs

No.
Outputs

No.
Gates

No.
Levels

No.
Faults

No.
Tests

c5315 178 123 2307 49 5350 37

c7552 207 108 3512 43 7550 73

c2670 233 140 1193 32 2747 44

s5378f 214 228 2779 25 4603 97

s9234f 247 250 5597 58 6927 105

s15850f 611 684 9772 82 11725 94

s13207f 700 790 7951 59 9815 233

s38584f 1464 1730 19253 56 36303 110

s38417f 1664 1742 22179 47 31180 68

s35932f 1763 2048 16065 29 39094 12

4. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of our proposed test relaxation technique, we have
performed experiments on a number of the largest ISCAS85 and full-scanned versions of
ISCAS89 benchmark circuits shown in Table 1. In this table, the first column gives the names
of the benchmark circuits. Columns 2 to 7 indicate the number of inputs, outputs, gates,
levels, collapsed faults, and test vectors applied, respectively. The used test sets are highly
compacted and achieve 100% fault coverage of the detectable faults in each circuit. They are
generated using the MinTest tool presented in [Hamzaoglu and Patel: 1998]. The experiments
were run on a SUN Ultra60 (UltraSparc II-450 MHZ) with a RAM of 512 MB.

In Table 2, we compare the proposed test set relaxation technique with the brute-force
relaxation method. The first column in the table indicates the circuit name. We compare the
two techniques in terms of the fault coverage, the percentage of x’s extracted, and the CPU
time taken for relaxation. We have used the fault simulator HOPE [Lee and Ha: 1996] to

Vol. 4. 164 Aiman El-Maleh and Ali Al-Suwaiyan

determine the fault coverage of the used test sets. It is important to point out here that the fault
coverage of the relaxed test set based on the brute-force method is the same as the fault
coverage of the original test set, i.e. exact test set relaxation and no drop in the fault coverage.
However, the fault coverage of the relaxed test set based on our technique may be reduced.
This is due to the approximate nature of the CRIPT algorithm on which our technique is
based. The fault coverage of the relaxed test set based on our technique is equivalent to the
fault coverage of the original test set as measured by CRIPT. As can be seen from the table,
the drop in the fault coverage is small for most of the circuits.

In order to compensate for the drop in the fault coverage, the test vectors needed for detecting
the undetected faults can be relaxed based on the brute-force method and then merged with
the relaxed test set based on our technique.

It is very interesting to observe that the CPU time taken by our proposed technique is several
orders of magnitude less than the brute-force method for most of the circuits. The brute-force
method requires astronomical CPU times for large circuits and hence is impractical.

The percentage of x’s obtained by our technique is also close to the percentage of x’s obtained
by the brute-force method for most of the circuits. The difference in the percentage of x’s
obtained ranges between 1% and 9%. For seven of the eight circuits, it is less than 4%. The
advantage of using our proposed fanout-based cost functions is clearly illustrated in Table 2.
For all the circuits, using the selection criteria increases the percentage of x’s from 0.5% to
4%.

Table 2:Test relaxation comparison between the proposed technique and the brute-force method.

Proposed
Test Relaxation

Brute Force
Test Relaxation

Selection Criteria No Selection Criteria

Circuit
FC

Exact/CRIPT
%x

CPU

(sec)

FC

Exact/CRIPT
%x

CPU

(sec)

FC

Exact/CRIPT
%x

CPU

(sec)

c5315 98.90/98.90 54.37 1192 98.90/98.90 51.99 3 98.90/98.90 48.89 2

c7552 98.26/98.12 55.45 6645 98.21/98.12 52.17 6 98.21/98.12 48.23 6

c2670 95.74/95.70 69.63 2757 95.74/95.70 68.36 1 95.74/95.70 66.03 1

s5378 99.13/99.02 74.14 7451 99.04/99.02 70.21 3 99.04/99.02 67.64 4

s9234.1 93.47/89.53 70.29 19837 90.00/89.53 68.57 5 90.07/89.53 66.69 5

s15850.1 96.68/96.46 80.96 87120 96.49/96.46 78.87 20 96.49/96.46 77.68 21

s13207.1 98.46/97.52 93.36 629100 97.66/97.52 93.51 32 97.66/97.52 93.11 31

s35932 89.81/89.81 36.68 20358 89.81/89.81 27.44 19 89.81/89.81 23.06 19

An Efficient Test Relaxation Technique for Combinational Logic Circuits Vol. 4. 165

5. CONCLUSION

In this paper, we have presented a novel and efficient test relaxation technique for
combinational circuits. The technique is faster than the brute-force relaxation technique by
several orders of magnitude. It is based on the critical path tracing (CRIPT) algorithm, and
hence may result in a small drop in the fault coverage (if any) after relaxation. This is due to
the approximate nature of CRIPT. Based on experimental results, a small drop in the fault
coverage is observed for most of the circuits. Furthermore, the percentage of x’s extracted is
close to the one obtained by the brute-force test relaxation technique. Having a test relaxation
technique is crucial for effective test compaction and compression. The applications of our
test relaxation technique in improving the quality of test compaction and compression will be
investigated in future work.

ACKNOWLEDGMENT

The authors would like to thank King Fahd University of Petroleum & Minerals for support.

REFERENCES

1. M. Abramovici, M. Breuer and A. Friedman, 1990, Digital System Testing and Testable Design,
IEEE Press.

2. A. Chandra and K. Chakrabarty, 2000, “Test Data Compression for System-On-a-Chip using
Golomb Codes”, in Proc. of IEEE VLSI Test Symposium, pp. 113-120.

3. A. Chandra and K. Chakrabarty, 2001, “Frequency-directed run-length (FDR) codes with
application to system-on-a-chip test data compression ”, in Proc. IEEE VLSI Test Symposium,
pp. 42–47. J. Chang and C. Lin, 1995, “Test Set Compaction for Combinational Circuits”, IEEE
Trans. on Computer Aided Design, pp. 1370–1378.

4. A. El-Maleh, S. Zahir, and E. Khan, 2001, “A Geometric-Primitive-Based Compression Scheme
for Testing Systems-on-a-Chip”, in Proc. IEEE VLSI Test Symposium, pp. 54-59.

5. I. Hamzaoglu and J. Patel, 1998, “Test Set Compaction Algorithms for Combinational Circuits”,
in Proc. International Conference on Computer-Aided Design, pp. 283-289.

6. A. Jas and N. Touba, 1998, “Test Vector Decompression via Cyclical Scan Chains and Its
Application to Testing Core-Based Designs”, in Proc. International Test Conference,
pp. 458–464.

7. H. K. Lee and D. S. Ha, 1996, “HOPE: An Efficient Parallel Fault Simulator for Synchronous
Sequential Circuits”, IEEE Trans. on Computer Aided Design, vol. 15, no. 9, pp. 1048–1058.

8. M. Schulz, E. Trischhler, and T. Sarfert, 1998, “SOCRATES: A Highly Efficient Automatic Test
Pattern Generation System”, IEEE Trans. on Computer-Aided Design, pp. 126–137.

9. Y. Zorian, E. J. Marinissen and S. Dey, 1998, “Testing Embedded-Core Based System Chips”, in
Proc. International Test Conference, pp. 130–143.

	Table Of Contents:
	Search:
	Author Index:
	Top:

