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Abstract

In this paper, bounds on approximating time-delay sys-
tems are proposed. Bounds on the infinity norm of the
weighted error are obtained when the approximating
function is a general rational function, all-pass function,
Pade’ and Laguerre approximations. An example is pre-
sented in illustration.

1. Introduction

A transfer function of the form

G(s) = P(s)e™ {1.1)
may be used to represent many dynamical systems. In
(1.1), P(s) represents the dynamics of the system, and
e~%¢ represents the input delay.

In many situations it is desirable to approximate
the infinite-dimensional time-delay systems by finite-
dimensional rational transfer functions. Several tech-
niques are available for approximating time-delay sys-
tems. Padé approximation has been widely used to ap-
proximate e~*%( See, for example, [1]). Formulas for
Padé approximation of any desirable order is available
together with error bounds in the Ly and L., sense
[1]. Hankel approximation of P(s)e™*? with stable and
strictly proper P(s) was obtained in (3]. In this case,
better approximation was obtained but with a much
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larger computation burden. Methods based on trun-
cation of Fourier-Laguerre series were developed in [4]
and [7]. The methods are extended to a larger class
of time-delay systems and are computationally efficient.
However, the resulted finite-dimensional approximation
may be of considerably high order and further model re-
duction is needed. Yoon and Lee [9], obtained rational
approximation of e~*¢ and P(s)e™*¢ based on truncated
Blascke product together with L and Lo-norm bounds.

The error bounds are valuable in assessing the quality
of the approximation. They can be used as a guide in
the selection of the order of the approximating function.
Several bounds are available (1], [9], [10]. However, most
of the bounds are conservative.

In this paper, bounds on the infinity-norm of the
weighted approximation error are derived for different
types of approximating functions: the general rational
functions, the all-pass functions, the Padé and Laguerre
approximations.

In the following section, the statement of the problem
is presented. Some preliminary results are provided in
Section 3. The main results are reported in section 4.
An illustrative example is presented in Section 5 and our
conclusion is given in Section 6.

2. Problem Statement

Qur objective is to obtain bounds on the error intro-
duced in approximating time-delay systems. The sys-
tem under study is assumed to be a single-input single
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output system described by (1.1) where P(s) is assumed
to be rational, stable and strictly proper. The approx-
imate of G(s) is given by P{s)G-(s) where G, (s} is an
r ** order rational approximation of e~*% obtained such

that
€ = [|(Gr(sd) — e * ) W(s)|| . (2.1)

is reasonably small. The weighting function W(s)} is
assumed to have the following form

Wis) =M (1 4—175)"

where k > 1. The parameters k, M and 7 are selected
such that

22)

|P(jw)] < Yo

|1 +jm'7'!’c

Re-naming the variables and re-arranging, one can easily
show that the error, €, given by { 2.1) is equivalent to

o= oo,

The approximating function G, is assumed to be in one
of the following sets:

(2.3)

1. General r*" order transfer functions of the form

r .
Zbist
=0

r .
143 a;8

i=1

Gr(s) = (2.4)

2. All-pass r*® order transfer functions of the form
1437 ai(—s)
i=1

1+ E ﬂ,‘S"’

=1

Gris) = (2.5)

3. An r® order Padé Approximations with a transfer
funetion([1]

1+ I;Zr:] a;(~s)t

+
1+ this"

i=1

G,(s) = (2.6)

where a; are given by

(2r — D)ir!

4. An r** order Laguerre approximation (r = 2n) {7]

Grls) = [1_—5“]"

T+ (1)

Bounds on the error when the approximating function
belongs to one of the above classes will be derived.

3. Preliminary Results

In this section several preliminary results are presented.
The results presented here will prove useful in deriving
the main results of the following section.

Lemma 1. Let G,(s) be a transfer function whose fre-
quency response is Gr(jw) = |G, (jw)| 7%} then

[e-—jw - Gr(Jw)l =

V1+16-(0) - 216+ (ju)} cos(@(w) +w) (3.1)

= (G(jw)] — cos(@(w) +w))? + sin? (D(w) + w)
(3.2)

and if G,.(s) is an all-pass transfer function then

le‘j“’ - Gr(jw)l =

V(1 ~ cos((w) + w))? + sin?(@(w) +w)
(3.3)
(3-4)

= /2 —2cos{P(w) + w)

Proof:

Using Euler identity for e~ and G,(jw) and manipu-
Iating the expression will result in (3.1). Equation (3.2)
is obtained by adding and subtracting cos(®{w) + w)
and simplifying the resulted expression. The expression
of the error for the all-pass case are obtained by direct
substitution of |G,(jw)| =1 in (3.1) and (3.2).
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The following results can be easily derived from
Lemma 1.

Corollary 1. If a transfer function G,.(s) with a phase
angle ®(w), and if ®(wq) + wy > % then there exists
wo < w) such that |e~3*0 — Gr(ngﬁ >1

Proof: If &(wo) +wo = 3, then |e~7wo

27
VIG-Giwo)* +12> 1.

-G (JWO)I =

Corollary 2. If G,(s) is an all-pass transfer function
with a phase angle ®(w), and if ®(wy) +wy > w, then

there exists wg < wy such that |e_jw° — G,.(jwo)| =2
Proof: When @{wg) + wg = « then
le—jwn — Gr(jw{))l =+/2—2cos{x) = 2.

The following is an important result from linear con-
trol theory.

Fact 1: The phase angle ®(w) of an r*® order transfer
function satisfies the following bound for all w

if G, is non-minimum phase

B(w) > - of the forms given in (2.4)-(2.7)
] _= if G is minimum phase of
2 the form given in (2.4)

4. Main Results

In this section, bounds on the weighted approximation
error will be derived. We start by presenting the lower
bounds.

4.1. Error Bounds.

Theorem 4.1. Let e~*? be approximated by an r** or-
der transfer functior G,.(s) then

(e“*d ~Gr) M
(14 7s)"

say [e g (e 2]

where

l. =2, f=1,v=1 for non-minimum phase
approximation
2. a=1,8=1,y=2 for all-pass approximation
3. a=1, #=4,y=1 for minimum phase
approximation

Proof: For part 1, Fact 1 implies that ${w) > —rx, and
therefore ®(w1) +wy > 5 forallwy; > ro + 5- Using
Corollary 1, there exists an wo < r7 + % such that

je=seo

- Gr(jw{)), =1

Using the fact that UTM_T_E is monotonically decreas-
Jwg

ing with respect to w, we have

(e~ — G ( on )M
(1 +ond

M
Ve @]

To prove Part 2, Corollary 2 is used to show that there
exist wy < r@ -+ T such that

|e‘-'.’i'--’o

- GT(J“U)' = 2)

and the rest follows the proof of Part 1. For the third
part, Fact 1 and Corollary 1 are used to show that there
exist wg < 2 + 5 such that

Ie——jwn - G,-(jwo)l =1
The remaining part of the proof follows that of Part 1.

An upper bound may be obtained by replacing the
original weight in (3) by

M

T8

Note that

1 k k

| <m]
1+ jwr

](JJT

We now present the following corollary.
Corollary 3. For all pass systems,

M
A+rs .,

< max V2 - 2coziu;+¢(w))M (T)

(- et

1839



Proof:

(e = Gr(jw))

(1+3w)"
L
= /2 —2cos(w + $(w))M TH%
R
< \/2—2cos(w+t1>(w))M!. =
Jwg

Now, taking the maximum of the right hand side gives
the above result.

4.2. Error Bounds for Padé and Laguerre Ap-
proximations

The structure of the Padé and Laguerre approximations
are well known and therefore we expect that tighter
bounds may be obtained. Consider an r** order all-pass
transfer function G,(s) with a phase angle ®(w). The
following inequality is valid for all 8,

(e—sd - Gr(Sd)) M u > MJ

2 — 2cos(f)

(1+ o2 @)
)

(1+7s)*

where w} is the smallest frequency that satisfies
wr +®(wy) =48

Note that w} depends on the family of the approximat-
ing function and on the selected order. Determining the
largest lower bound may not be easy. However in the
following subsection we give an approximate behavior of

the right hand side of (4.1).

Lemma 2. If G,(s) is an r ** order Laguerre approxi-
mation of e~%, then

. w?
(e_jwd _ G'r(gu)) M mm(2, w)
(1 +jwr)k - {1+ w272)k/2

Proof: The phase angle of G,(s) is

B{w) =—2r arctan(-g-);)

The Taylor series expansion of ${w) + w is given by

R (=1)* w241
¢(w)+w—2r§m—m(g)

Note than if 3= < 1 then the alternating series converges
and

w3

<

[B(w) + ] < 1o
Using the standard inequality
[1-¢?| <le|

gives us the following bound

3,
—j . [ .
Ie ""-—G,-(Jw)| < 02 if w<2r

4.3. Approximation of the weighted Error

Since the formulas of the Padé and Laguerre approxi-
mations are known, one can easily obtain tighter upper
and lower bounds using curve fitting algorithms. In this
section, curve fitting will be used to find approximate be-
havior of (4.1), and approximations of the infinity-norm
of the weighted approximation error for both Padé and
Laguerre.

From experimenting with many examples, it is ob-
served that the largest bound in (4.1) is obtained when
8 ~ 7. Fixing # = w, the corresponding w; can be cal-
culated. These values are given in Table 1.

Table 1: The smallest frequencies at which the
un-weighted erroris 2, M = k =1

*

-

wr
5.595
7.917
10.175
12.393
14.585
16.757
18.193
21.057
23.191
25.317

WO Gof ~J| Gk | | G| 2| =

—
o
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The frequency «} can be accurately represented by a
second order polynomial

wp = —0.0047r% + 2.2297r + 3.4928

A lower bound on the approximation error is given by

(e-sd _ Gr)

2

_M
(1+ ’r.s')"=

oo

(4.2)

. k
\/ (1 + (—0.0047r2 + 2.2207r + 3.4928)? (5)2)

Similarly, a lower bound on Laguerre approximation can
be obtained by finding o7}.

Table 2: The smallest frequencies at which the
un-weighted error is 2.

*
a

5.597

7.455

9.056

10.499
11.834
13.086
14.272
15.405
16.493
0] 17.542

-

== | (O QO ~3| O] | | W] 2O

A good approximation of w} is given by
w? = (6.6717r + 7.0805)%/2
which give rise to the following bound

_M_
(1+ 1'3)’c
2

k
\/ (1+(6.6717r + 7.0805)""° (3)*)

(e—sd ~-G,)

oo

The oo— norm of the weighted error for W(s) =
61‘117)5 and G,(sd) can be generated for a range of val-

ues of 7,d and r. However a plot of the exact error for

the range v € [1,20] and § € [0, 5] suggests that the
behavior can be described as follows. For the rt* order
approximation, the weighted infinity-norm error may be
fitted as

” (G.(sd) - e=9)

1+ 75)2
1
(agr? + ay7 + a0)T + (bar? + byr + b))
(4.3)
where
az = 0.0062,a; = —0.1010, ap = 0.4848,
b = —0.0197,5; = 1.8359,89 = 1.0637

for the r** order Pade approximation and

0.0041, a; = —0.0729, ap = 0.4764,
b, = -0.0351,5 = 1.2894,bp =1.6376

az =

for the r** order Laguerre approximation. The deviation
from the true infinity-norm of the above formulas is less
than 0.01 over the range Z <5 and r < 20.

5. An Illustrative Example

It is required to use Padé approximation to obtain ra-

tional approximations of -(-1%; The ¢** order Padé ap-

proximation G,(s) is obtained so that the error

1
“s _ (s

(E Gr( )) (_1'-‘;'5_)7 -
is reascnably small. Lower bounds for Padé’ approxi-
mation of order 1 to 10 are obtained and are given in
Table 3. The actual error is given in column 2. The
lower bounds given by Theorem 1 are listed in column
3. Column 4 shows the bounds given by (4.2). The
Last column represents the approximate values of the
weighted infinity-norm error provided by (4.3).
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Table 3: Actual exror and different crror bounds

Order | Actual | Lower Lower | predicted

r Error | Bound 1 | Bound 2 Error
1 0.0989 | 0.0862 0.0594 0.0935
2 0.0403 | 0.0319 0.0313 0.0406
3 0.0225 | 0.0164 0.0193 0.0227
4 0.0146 | 0.0100 0.0131 0.0146
5 0.0103 ] 0.0067 0.0094 0.0102
6 0.0076 ; 0.0048 0.0071 0.0076
7 0.0059 | 0.0036 0.0056 0.0059
8 0.0047 | 0.0028 0.0045 0.0047
9 0.0039 | 0.0022 0.0037 0.0039
10 0.0032 | 0.0018 0.0031 0.0033

6. Conclusions

In this paper, bounds on approximation of time-delay
systems are obtained. Lower bounds on the error when
the approximating function is an r** order minimal
phase, non-minimal phase, all pass, Padé and Laguerre
transfer functions are given. Fitting formulas for the
weighted infinity-norm error of Padé and Laguerre ap-
proximations are also obtained.
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