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Abstract

This paper proposes functional networks as an
unconstrained classifier scheme for multivariate
data to diagnose the breast cancer tumor. The
performance of this new technique is measured
using two well known databases under the mini-
mum description length criterion, the results are
compared with the most common existing classi-
fiers in both computer science and statistics lit-
eratures. This new classifier shown reliable and
efficient results with better correct classification
rate, and much less computational time.
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Breast cancer detection; Minimum Description Length.

1. Introduction
Breast cancer has become a major cause of death among
women in developed countries [2]. The most effective way
to reduce breast cancer deaths is detect it earlier. However,
earlier treatment requires the ability to detect breast cancer
in early stages. Early diagnosis requires an accurate and
reliable diagnosis procedure that allows physicians to dis-
tinguish benign breast tumors from malignant ones. Thus,
finding an accurate and effective diagnosis method is very
important. Biopsy is the best way to accurately determine
whether the tumor is benign or malignant. However, it is
invasive and expensive, and positive findings at biopsy for
cancer are low, between 10% and 31% [1, 10, 16].
Recently, several researchers have used statistical and artifi-
cial intelligence techniques to successfully ”predict” breast
cancer [14, 15]. Basically, the objective of these predic-
tion techniques is to assign patients to either a ”benign”
∗Corresponding author: dodi05@ccse.kfupm.edu.sa

group that does not have breast cancer or a ”malignant”
group that has strong evidence of having breast cancer.
Thus, breast cancer diagnostic problems are basically in
the scope of the widely discussed classification problems
[13]. The Breast Cancer Diagnosis (BCD) problem has at-
tracted many researchers in computational intelligence, data
mining, and statistics fields [6]. Artificial neural networks
(ANNs) [9] and support vector machines [5, 11] have been
recently proposed as a very effective method for pattern
recognition, machine learning and data mining. Generally,
liner/nonlinear discriminant analysis(LDA) and multino-
mial logistic regression (MLR) are the most commonly used
data mining techniques to construct classification models.
ANN and radial basis function (RBF), probabilistic neural
network (PNN), and SVM became efficient alternatives in
modeling classification problems due to their capability to
capture complex nonlinear relationships among variables.

Recently, functional networks [3, 4] and [7, 8] have been in-
troduced as a very effective scheme for the statistical pattern
recognition problems and nonlinear complex prediction. In
this paper, we evaluated breast cancer masses in patholog-
ically proven tumors using functional networks based on
analysis of speckles for classifying breast tumors.

The rest of the paper is organized as follows: Section 2
introduces the meaning of breast cancer and its existence
world wide. Functional networks are introduced in Sec-
tion 3 with general methodology, including their selection
of initial architecture and learning methods. The maximum
likelihood functional networks classifier methodology is ex-
plained in Section 4. Implementation and a comparative
study are investigated using the two Wisconsin breast can-
cer databases are presented in Section 5. Section 6 contains
both conclusion and future work.
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2 Breast Cancer: An Overview
Breast cancer is the most common cancer disease among
women, excluding nonmelanoma skin cancers. The infor-
mation about the tumor from certain examinations and di-
agnostic tests are gathered using staging to determine how
widespread the cancer is. The stage of a cancer is one of
the most important factors in selecting treatment options,
and it uses the Tumour, Nodes and Metastasis (TNM) sys-
tem, which in turn determines treatment recommendations
RWWD03. Breast cancer is a malignant tumor that has de-
veloped from cells of the breast. Breast cancer is cancer
of breast tissue. Worldwide, it is the most common form
of cancer in females, affecting approximately 10% of all
women at some stage of their life in the Western world. Al-
though significant efforts are made to achieve early detec-
tion and effective treatment, about 20% of all women with
breast cancer will die from the disease. Although scien-
tists know some of the risk factors (i.e. ageing, genetic risk
factors, family history, menstrual periods, not having chil-
dren, obesity) that increase a woman’s chance of developing
breast cancer, they do not yet know what causes most breast
cancers or exactly how some of these risk factors cause cells
to become cancerous. Research is under way to learn more
and scientists are making great progress in understanding
how certain changes in Deoxyribonucleic acid (DNA) can
cause normal breast cells to become cancerous.
The information about the tumor from certain examinations
and diagnostic tests are gathered using staging to determine
how widespread the cancer is. The stage of a cancer is one
of the most important factors in selecting treatment options,
and it uses the Tumour, Nodes and Metastasis (TNM) sys-
tem, which in turn determines treatment recommendations
RWWD03. The TNM system is specific for each type of
cancer, it is a standardized way in which the cancer care
team describes the extent to which the cancer spread, where
the letter T followed by a number from 0 to 4 describes
the tumor’s size and spread to the skin or chest wall un-
der the breast, the letter N followed by a number from 0 to
3 indicates whether the cancer has spread to lymph nodes
near the breast, and the letter M followed by a 0 or 1 indi-
cates whether or not the cancer has spread to distant organs.
Once a patient’s T , N , and M categories have been de-
termined, this information is combined in a process called
stage grouping to determine a woman’s disease stage. This
is expressed in Roman numerals from Stage 0 (the least ad-
vanced stage) to Stage IV (the most advanced stage).

3. Functional Networks
Functional networks are a generalization of neural networks
that combine both knowledge about the structure of the
problem, to determine the architecture of the network, and
data, to estimate the unknown functional neurons [3, 4] and
[7, 8]. We call the node Xj ∈ X, for all j as a multiple

node, if it is an output of more than one neural functions.
Otherwise, it is called a simple node.

Figure 1. (a) A Neural Network, (b) A func-
tional network.

As it is shown in Figure 1, a functional network consists
of: a) several layers of storing units, one layer for contain-
ing the input data (xi; i = 1, . . . , 4), another for contain-
ing the output data (x7) and none, one or several layers to
store intermediate information (x5 and x6); b) one or sev-
eral layers of processing units that evaluate a set of input
values and delivers a set of output values (fi) and c) a set
of directed links. Functional networks extend neural net-
works by allowing neural functions fi to be not only true
multiargument and multivariate functions, but to be differ-
ent and learnable, instead of fixed functions. In functional
networks, the activation functions are unknown functions
from a given family, i.e. polynomial, to be estimated dur-
ing the learning process. In addition, functional networks
allow connecting neuron outputs, forcing them to be coin-
cident. Some differences between a neural network and a
functional network are shown in Figure 1. Functional net-
works methodology can be more easily understood by orga-
nizing it into seven steps as it is shown in [7, 8].

4. Constrained-Functional Networks Classifier
We applied functional networks with maximum likelihood
technique, [8] to investigate the breast cancer tumor. Gen-
erally, we assume that the initial functional network model
is written as

πik = hk(xi,Θk) = p (gk(xi,Θk)) , (1)
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for all i = 1, . . . , n, where xi ≡ (xi1, . . . , xip) is the ith

observation. The vector Θk = [θ1k, . . . , θpk]T is the vector
of the functional network parameters needed to be learned.
The functions hk(xi,Θk) is to be estimated based on the
available breast cancer data, bearing in mind the probabil-
ity restrictions on hk(xi,Θk). The functions gk(xi,Θk)
are unknown, but unrestricted functions to be learned from
the data, and the function p(.) must satisfy the probabil-
ity conditions. Since functional networks do not make any
assumptions about the function gk(xi,Θk), then it can be
known or unknown in form and/or in the parameters. It
could be linear or non-linear. However, since we approx-
imate gk(xi,Θk) by a linearly independent family, which
depends on parameters asi, [8]. Figure 2 shows the archi-
tecture of the corresponding functional network model (1).
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Figure 2. Unconstrained-functional networks
classifier topology with p Predictors.

Follow both learning techniques and classification criterions
in [8] and select the best network model according to the
following criterions:

1. Correct Classification Rate (CCR) and Average
Squared Classification Error (ASCE):

CCR =

c−1∑
k=0

CCk

n ; ASCE =

c−1∑
k=0

[nk−CCk]2

n ,
(2)

where nk is the number of observations in class k, and
Ckk is the number of correctly classified observations
in the class k. The best functional network is the one
with both highest CCR and smallest ASCE. We con-
struct the confusion matrix, which is a c × c matrix,
its diagonal contains the number of correctly classi-
fied observations, CCk, and the off-diagonal elements
are the number of misclassified observations, mck, for
k = 0, . . . , c− 1.

2. Computational cost (Time of execution): It is the time
needed to execute the classifier till obtaining the best

model in both calibration and validation. The less
computation cost is the better classifier.

3. The Minimum Description Length (MDL) criterion:
As explained in [8], and then the best model is the
one with the smallest MDL value. The form of the
description length for the classification problem using
the functional network is defined as

L(Θk) =
mlog(nk)

2
+

nk

2
log

(
1

n k

n∑

i=1

εi
2(Θk)

)
,

for all k = 0, . . . , c − 1, where m and k are the num-
ber of elements in the family and the category levels,
respectively. We note that the principle L(Θk) is the
code length of the estimated parameters Θk, ∀k =
0, 1, 2, . . . , c − 1. We note that the description length
has two terms:

(a) The first term m log(n k)
2 is a penalty for including

too many parameters in the functional network
model.

(b) The second term n k
2 log

(
1

nk

n∑

i=1

εi
2(Θk)

)

measures the quality of the functional network
model fitted to the training set.

Therefore, the best model is the model with the small-
est value of its description length. MDL is the best
model performance.

5. Implementation and Comparative Study
We apply the constrained-functional networks explained in
section 4 to Wisconsin Diagnostics Breast Cancer (WDBC)
databases and compare its performances to the most com-
mon classification methods in both computer science and
statistics literatures discussed in Section 1. The databases
can be downloaded from the machine learning repository
database at university of California, Irvine 1. All the com-
putations are implemented using MATLAB V6 under Pen-
tium IV personal computer with a clock speed of 2.4 GHz.
As in commonly done, we normalize the input variables to
make sure that they are independent of measurement units.
Thus, the predictors are normalized to interval of (0, 1) us-
ing the formula:

xnew
i =

xold
i − x1: n

xn: n − x1: n

where xi: n is the ith order statistics of x1, x2, . . . , xn. We
use the stratified Sampling technique to make sure that we
get the same proportion from each group as in the original
data, as recommended by [12]. We randomly hold a total

1URL: ftp://ftp.ics.uci.edu/pub/machine-learning-databases.”
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of (k = round
[

n
5

]
) or (k = round

[
n
10

]
) observations, with

kl = round
[
k ∗ nl

n

]
observations from the class l, where

nl is the number of observations of the given data set in
group l, for l = 0, 1, . . . , c − 1. Therefore, to evaluate the
performance of each classifier on a real-application, we use
either 5-fold or 10-fold cross validation. Thus, we fold the
given data into 5 or 10 parts, and we use 0.8 or 0.7 of the
data for learning the classification model (building) and 0.2
or 0.3 for external validation (testing). Both description and
relevant work on each data set under study are represented
below:

1. Wisconsin Diagnostics Breast Cancer (WDBC):
This database is created by William H. Wolberg at Uni-
versity of Wisconsin [18]. This database contains 569
observations among which 357 are benign cases and
212 are malignant cases. We note that in this database
that for each observation, there are 30 featured vari-
ables. These features are computed from digital im-
ages of fine needle aspirates (FNA) of breast masses.
These features describe the characteristics of the cell
nuclei in the image. The author of this database con-
sidered 10 real-valued features for each cell nucleus:
(i) radius (mean of distances from center to points
on perimeter); (ii) texture (standard deviation of gray-
scale values); (iii) perimeter; (iv) area; (v) smoothness
(local variation in radius lengths); (vi) compactness

(perimeter2

area−1 ); (vii) concavity (severity of concave por-
tions of the contour); (viii) concave points (number of
concave portions of the contour); (ix) symmetry; and
(x) fractal dimension ( coastline approximation − 1).
They computed the mean, standard error, and worst
mean (the mean of the three largest values) of each
feature. This process resulted in 30 feature variables
for each image. For instance, field 1 is the Mean Ra-
dius, field 11 is the Standard Error of Radius, and field
21 is the Worst Radius.

2. Wisconsin Breast Cancer (WBC): The source of
this database is the University of Wisconsin Hospital,
Madison. There are 683 data points in this database of
which 444 are benign and 239 are malignant. WBC
is a nine-dimensional data set with the following fea-
tures: (i) Clump thickness; (ii) Uniformity of cell size;
(iii) Uniformity of cell shape; (iv) Marginal adhesion;
(v) Single epithelial cell size; (vi) Bare nucli; (vii)
Bland chromatin; (viii) Normal nucleoli; and (ix) Mi-
toses.

Several researchers studied WDBC database and proved
that the best three attributes are mean texture, worst mean
area, and worst mean smoothness [7]. Based on these
three features they create separating hyperplane that uses
multi-surface method-tree (MSM-T) to construct a decision

tree. They reported that the best correct classification rate is
97.5%. This estimate was obtained using a repeated 10-fold
cross-validation method, their CCR values are 93.5% and
95.9%, respectively.
We are utilizing both internal and external Validation Tech-
niques as it is shown in [8]. We repeat the estimation and
validation processes for N = 1000 times, then compute
all the quality measures explained in Section 4 for all clas-
sifiers. Next, we summarize the results by computing the
average, the standard deviation, and the coefficient of vari-
ation of each quality measure over these 1000 runs. In ad-
dition, we draw two graphs: One for the mean of CCR
versus its standard deviation over the 1000 runs, and the
other for the mean of the ASCE versus mean of MDL. These
graphs help us to decide which classifier is better in its per-
formance. In both plots, each classifier is represented by a
symbol. In the graph of the average of CCR versus its stan-
dard deviation, a good classifier should appear in the upper
left corner of the graph. In the graph of average of MDL
versus average of ASCE, a good classifier should appear in
the bottom left of the plot. In addition, corresponding to
these graphs, we summarize the results in Tables. In these
Tables, the highest CCR’s are given in boldface [7].
For the sake of simplicity and space, we did the imple-
mentations for two predictors (feature variables and three
predictor. We did the implementations and analysis with
ten predictor variables (high-dimensional data) to check the
performance of the functional network classifiers against
other proposed classifiers.

1. WDBC database with two predictor variables: As
we can see from the scatter plot of the data in Fig-
ure 3, there is some overlap between the two groups.
The correlation coefficient between the two variables
is 0.3295.
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Figure 3. WDBC Data: The scatter plot of
Mean Texture and Mean Radius

The quality measures and the corresponding scatter
plots are shown in Table 1 and Figure 4, respectively.
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Table 1. WDBC Data: The External Validation Results with 2 Predictors
Classification Method No. Parameter MDL Time of Exec. CCR ASCE

mean StDev mean StDev mean StDev mean StDev mean StDev
Logistic Regression 3.000 0.000 -674.541 35.332 0.275 0.069 0.889 0.017 1.044 0.317
Linear Disc Anal. 3.000 0.000 -759.904 41.170 0.002 0.009 0.884 0.017 0.981 0.335
KNN 3.000 0.000 -728.713 39.696 0.122 0.018 0.870 0.019 1.247 0.334
SVM 3.000 0.000 -561.948 39.586 0.375 0.038 0.759 0.033 5.148 1.316
PNN 2.000 0.000 -752.677 42.508 4.461 0.145 0.880 0.019 1.661 0.537
RBFN 2.000 0.000 -764.531 35.888 5.705 0.294 0.885 0.015 1.163 0.395
FFN 2.000 0.000 -640.306 177.133 34.893 11.790 0.773 0.171 10.147 15.113
FNBF-MLE 4.000 1.095 -826.403 34.387 2.728 0.614 0.892 0.013 0.981 0.238

Table 2. WDBC Data: The Internal Validation Results with 2 Predictors
Classifier COR-OBS1 COR-OBS1 MISS-OBS1 MISS-OBS1 CCR
LogReg 196.000 344.000 16.000 13.000 0.949
LinearDiscAnal 212.000 300.000 0.000 57.000 0.900
KNN 192.000 344.000 20.000 13.000 0.942
SVM 210.000 354.000 2.000 3.000 0.991
PNN 162.000 352.000 50.000 5.000 0.903
RBFN 201.000 350.000 11.000 7.000 0.968
FFN 209.000 354.000 3.000 3.000 0.990
FNBF-MLE 202.000 351.000 10.000 6.000 0.986

0.05 0.1 0.15 0.2 0.25

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Standard deviation of CCR

M
e
a
n
 o

f 
C

C
R

1 2 3 4 5 6 7 8 9 10

−800

−750

−700

−650

−600

M
e
a
n
 o

f 
M

D
L

Mean of SSCE

LR

LinDisc

KNN

SVM

PNN

RBF

FFN

FN−BF

Figure 4. (a) Average of CCR versus σCCR, (b)
Average of MDL versus Average of ASCE

For the internal validation purpose, we summarize the
output in Table 2.

2. WDBC database with both three and ten predic-
tor variables: Figure 5 is a three-dimensional scatter
plot of the data. As we can see, there is some over-
lap between the two groups. The pairwise correlation
coefficients are: r1,2 = 0.3435, r1,3 = 0.0775, and
r2,3 = 0.2091.

The reason for choosing the high-dimensional data is
to check the performance of the functional network
classifiers against other proposed classifiers, and check
the measure of quality. The quality measures and the
corresponding scatter plots are shown in Tables 1 and
Figure 6, respectively.

From the above two tables 1, 3, and 2 with the correspond-
ing figures of average of CCR versus its standard deviation,
we observe, for example the following:

1. The two classifiers: support vector machines, and
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Table 3. WDBC Data: The External Validation Results with 3 Predictors
Classification Method No. Parameter MDL Time of Exec. CCR ASCE

mean StDev mean StDev mean StDev mean StDev mean StDev
Logistic Regression 4.000 0.000 -960.529 96.657 0.569 0.091 0.961 0.025 0.170 0.354
Linear Disc Anal. 4.000 0.000 -940.701 65.758 0.008 0.011 0.941 0.014 0.433 0.200
KNN 4.000 0.000 -781.178 41.149 0.085 0.014 0.894 0.016 0.817 0.245
SVM 4.000 0.000 -417.572 4.910 0.269 0.064 0.596 0.007 21.289 0.611
PNN 2.000 0.000 -766.211 40.919 1.612 0.679 0.886 0.017 1.679 0.562
RBFN 2.000 0.000 -983.910 99.239 2.367 0.048 0.946 0.020 0.296 0.229
FFN 2.000 0.000 -903.091 282.320 25.771 20.129 0.868 0.170 5.924 11.541
FNBF-MLE 6.000 1.403 -1250.802 542.581 16.223 3.032 0.968 0.010 0.104 0.075

Feedforward neural networks are the worst perfor-
mance. Moreover, the performance of SVM becomes
even worse with the high-dimensional predictors. The
linear discriminant analysis classifier, and radial basis
functions networks are the second worst average CCR.

2. Both SVM and neural networks classifiers work well
for internal validation with small number of predic-
tors. In the case of high-dimensional data, their perfor-
mance is affected, and the CCR values becomes less.
The Feedforward neural network has by far the highest
execution time. Yet, it the has the second worst perfor-
mance among all ten classifiers.

3. With the low-dimensional data, both Feedforward neu-
ral networks (FFNs) and support vector machines
(SVMs) classifiers are the highest value of CCR.
The functional networks classifier (MLE) is the sec-
ond highest values of the average CCR in the low-
dimensional data, but they are the highest in the high-
dimensional data. Their performance is stable in both
dimensions. The logistic regression, radial basis func-
tions network and K-nearest neighbor classifiers per-
form more or less the same.

4. The functional networks classifier (MLE) is giving the
highest values of the average CCR in the high dimen-
sional data with less time of computations.

5. The functional networks classifier(MLE), logistic re-
gression are giving the highest values of the average
CCR. In addition, for the case of high-dimensional
data, functional networks classifier (MLE) surpasses
logistic regression.

6. All other classifiers perform more or less the same,
with and logistic regression, linear discriminant anal-
ysis, K-nearest neighbor classifier probabilistic neural
network, radial basis function, and functional networks
classifiers (MLE).

7. The functional networks classifier(MLE) gives both
smallest MDL and smallest ASCE. In addition, its exe-
cution time is much lower than its corresponding with
both feedforward neural networks and support vector
machines.

We draw our conclusion in section 6 by utilizing the useful
information shown in both tables 1 and 3.

6. Conclusion and Future Work
We conclude that in the case of internal validation, the sup-
port vector machine and feeedforward neural networks are
the worst performance. Both feeedforward neural networks
and the constrained functional networks (FN-MLE) are the
highest values of the average CCR. On the other hand, for
the external validation, the results show that the linear dis-
criminant analysis and probabilistic neural network classi-
fiers give the lowest CCR value among all classifiers. The
new functional networks classifier with q = 2 has the high-
est CCR values, both smallest MDL and smallest ASCE
with execution time much lower than its corresponding with
both feedforward neural networks and support vector ma-
chines.
We showed empirically that the proposed approach has bet-
ter performance, high quality and generalization than com-
mon existing approaches, with much lower computational
cost. However, more work is needed in evaluating the per-
formance of the proposed method on other medical and
other science or business databases.
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