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Abstract 
 A fast waveform sampling facility has been recently 
developed and integrated into the VAX-based data 
acquisition system at the Energy Research Laboratory 
(ERL). This study uses the above facility in developing 
algorithms for digitally determining the basic pulse 
parameters and tackling the problem of pulse pile-up in 
Gamma-ray spectroscopy. A number of parameter 
estimation and digital online peak localisation 
algorithms are being developed, including a pulse 
classification technique which uses a simple peak 
search routine based on the smoothed first derivative 
method, which gave a percentage error of peak 
amplitude of less than 0.1. A finite input deconvolution 
filter of 3 coefficients and 4 coefficients have been 
tested successfully to resolve pile-up to an average 
percentage of 93% and 92% pile-up free respectively. 
The classification technique has the unique feature of 
cutting down the computation largely by only allowing 
the event of interest to be executed by a particular 
algorithm. The pulse classification technique was 
tested successfully on a TMS320C6000 high 
performance floating-point processor to give an 
execution time down to 2 msec. 
 
1. Pulse pile-up in Gamma-ray 
spectroscopy 
 A common problem in nuclear spectroscopy is pulse 
pile-up caused by the non-zero response time of the 
detection system. For germanium detectors, the time 
required to collect all the ionisation current associated 
with an event ranges from 0.5 to 6.0 µs [4]. The fact 
that pulses from a radiation detector are randomly 
spaced in time can lead to interfering effects between 
pulses when counting rates are not low. These effects 
are generally called pile-up and can be minimised by 
making the total width of the pulses as small as 

possible.[6]. Pile-up phenomena are of two types. The 
first type is known as tail pile-up and involves the 
superposition of pulses on the long duration tail from a 
preceding pulse (see Fig 1).  

 
Figure 1. pile-up effect on a pulse peak from the tail of 
a preceding pulse 
 
Tails can persist for relatively long periods of time so 
that tail pile-up can be significant even at relatively 
low counting rates. A second type of pile-up is the 
peak pile-up, which occurs when the mutual pulse 
spacing between the two overlapping pulses is less than 
approximately τR/2 where τR is the mean total width of 
all pulses. Researchers often simply reject pile-up, 
when it is recognised [3]. In our case, we do not wish 
to lose the information associated with such events, but 
we propose to reject peak pile-up since it occurs less 
frequently than tail pile-up in nuclear spectrometry, so 
we use a window-based pulse classification technique, 
knowing the typical pulse width (Full Width Half 
Maximum) of Gamma-rays to classify single pulses 
from piled-up and separate pulses. The classification 
technique uses a simple peak search routine which uses 
the first derivative method to detect a peak, and rejects 
peak pile-up, since its probability of occurring in our 
events is only 7%. Pile-up probability of occurring is 
around 51%, remaining records are single and two 



separate pulses. The classification technique cuts down 
the computation largely by processing only tail pile-up. 
 
2. Peak detection using deconvolution 
A linear time-invariant system takes an input signal 
x(n) and produces an output signal y(n), which is the 
convolution of x(n) with the unit sample response h(n) 
of the system.  
In many practical applications we are given an input 
signal x(n)= xd(n)+ xi(n), where xd(n) represents a 
desired signal sequence and xi(n) represents some 
undesired interference or noise component, and we are 
asked to design a system that will suppress the 
undesired interference component. In such a case, the 
objective is to filter out the additive interference and 
noise while preserving the characteristics of the desired 
input signal xd(n). 
There is another class of problems which exist in 
nuclear spectrometry applications and that is we are 
given an output signal measured from a shaping 
amplifier system whose characteristics are well known 
and modelled, and we are asked to determine the input 
signal. We know that the shaping system has some 
effect on the input pulse expressed in terms of the 
impulse response of the system. So the problem is to 
design a corrective system which, when cascaded with 
the original system, produces an output which is in 
some sense a replica of the input. In linear system 
theory this corrective system is called an inverse 
system, because the corrective system has a frequency 
response which is the reciprocal of the frequency 
response of the shaping system. Furthermore, since the 
shaping system gives an output y(n) that is the 
convolution of the input x(n) with the impulse response 
h(n), the inverse system operation that takes y(n) and 
produces x(n) is called deconvolution [6]. 
Many researchers have used deconvolution algorithm 
to reconstruct the initial detector impulse signal from 
the shaped CR-RC amplifier pulse. The simple CR-RC 
impulse response, (t/ô).e-t/τ, was chosen because of its 
good signal-to-noise ratio while it lends itself to 
making the deconvolution equation very simple. The 
ideal pulse shape, from a noise point of view, is a cusp-
like pulse [7]. Gaussian and triangular pulses are 
almost as good, but are very difficult to build. The 
amplifier output after being digitised through an ADC, 
can be processed to yield amplitude and timing of the 
charge pulse from the detector. The deconvolution 
achieves this by forming a weighted sum of three or 
more samples of the amplifier output [8,9,10]. It is well 
known that v(t) the output of the shaping system, h(t) 
the impulse response of the amplifier/shaper, and s(t) 
the input signal, are related in the time domain by a 
convolution integral. This can be written 
 

 v(t)= ∫h(t-t’).s(t’).dt’ 
 

If we sample output v(t) at regular intervals, then we 
can write the equation in a matrix form as 
 

 Vi= ∑ HijSj     or     V=H.S 
 
The original signal impulse can be recovered by 
performing the inverse operation 
 
 S=W.V= H-1.H.S 
 
and the elements of the weight matrix W can be found 
by numerical matrix inversion of H. The transfer 
function for the CR-RC shaping system is: 
 

 τ1/(Ci.(1+sτ1)(1+sτ2)) 
 
which shows that the system is an all pole system. The 
impulse response of the system has the form:  
  

 (τ1)(exp(-t/τ1)-exp(-t/τ2))/(Ci(τ1-τ2)) for t>0. 
 

τ1 is chosen to be equal to τ2 which gives the best 
combination of flat pulse top and quick return to zero 
and corresponds to maximum signal to noise ratio. For 

τ1=τ2 the above expression be resolved by l’Hopital’s 
rule which yields an impulse response of 
 

 (1/Ciτ1). t.exp(-t/τ1) for t>0. 
 

The actual value of τ1 in a practical system would be 
set by the requirements of ballistic deficit, pile-up and 
noise considerations. For scintillation counters ( as in 

our system), the value of τ1 is not usually critical and a 

value of 1 µs is chosen [5]. Hence the system response 
is described by 
  

 v(t)=(t/τ).exp(-t/τ) 
 
where the theoretical peak is expected at t=τ, and the 
peak value = v(τ)=exp(-1). 
By matrix inversion of the impulse response matrix, it 
is shown that only three non-zero weights are 
necessary for the CR-RC and 
 
Sk=w1.vk+w2.vk-1+w3.vk-2,  (1) 
 
with values w1= (1/x).exp(x-1)  w2= (-2.1/x)exp(-1)  
 
and   w3= (1/x).exp(-x-1) 
 

where x=∆t/τ and ∆t is the sample interval. This 
implies that a filter performing this operation can be 
constructed by forming the weighted sum of three 
consecutive voltage samples in time [1,2,11,12,13 ].  
  



It is easily shown that for è=0, the CR-RC impulse 
response reaches its maximum peak = (1/ ô).exp(-1) at t 
= ô, and for ô = 0.5 ìsec, this value would be 0.147 , 
and this is the expected peak value without noise. 
Hence, the expected peak location without noise is at 
t= ô, or è+ ô if è is not zero. 
Researchers showed that the 3-point deconvolution 
produces zero whenever all three samples are on the 
pulse. The only time when it is possible for the 
deconvolution to produce non-zero data is when either 
one or two samples are on a pulse, and the third is on 
the pedestal. This shows that It is the sample amplitude 
of the amplifier output which is first multiplied with 
w1 which determines the true value of the 
deconvoluted output. This single sample time unit 
resolution is very difficult to attain, so researchers were 
satisfied with double pulse resolution [17].  
 
It has been shown by Hall that the weighting function 
of the 3-point deconvolution is a triangular shape 
response with a sharp edge corresponding to complete 
input reconstruction. A robust algorithm which 
maximises signal at the expense of some loss in time 
resolution is to make a sum of two deconvoluted 
samples. 
 
Sk=Sk+Sk+1 , where 
 
Sk=w1.vk+w2.vk-1+w3.vk-2 and 

 

 Sk+1=w1.vk+1+w2.vk +w3.vk-1 

 
This is equivalent to using an algorithm with 4 weights 
which are easily calculated from the three original 
weights [16].  
The resulting weighting function is the sum of the two 
individual weighting functions [12]. The weighting 
function for a 3-point deconvolution was shown to be 
of triangular shape in Hall, and its importance that it 
quantifies effect of timing errors on deconvolution 
[14].  
Hence, deconvolution provides a way to remove pulse 
broadening which was deliberately introduced by the 
preamplifier. Researchers at CERN used this algorithm 
to give them a deconvoluted pulse which was confined 
to only two successive non-zero samples, attaining the 
required timing resolution [15].  
 
3. Peak detection in the presence of pile-up 
 For the purpose of removing tail pile-up only, we have 
evaluated the three coefficient and four coefficient 
deconvolution in this context. In order to be able to cut 
down the computational complexity of the pile-up 
processing techniques, we have to look at the case of 
peak pile-up in a more qualitative manner. If we 
assume the pulse width to be approximately equal to τR 

which is approximated from our real Gamma-ray pulse 
records as 3 τ, where τ is the time constant of the pulse, 

then we will reject all overlapping pulses whose mutual 
separation is less than τR /2 as mentioned in section 1 . 
See figure 2 for the effect of varying degrees of overlap 
on the pulse pile-up. 
 

  
 Figure 2. Shows effect of varying degrees of overlap 
on the Gamma-ray pile-up 
  
 An extensive study was made on simulating a pile-up 
of two superimposing events of same height and 
separated by varying displacement in time from d=τ/10 
(complete overlap) to d=7τ (Complete pulse 
separation). It is well known that in tail pile-up the 
amplitude of the first pulse is not distorted while the 
amplitude of the second pulse is distorted. However, 
when the pulse separation is less than the peaking time 
τ , a complete overlap occurs in which the two pulses 
appear as one distorted pulse of double the original 
amplitude. This phenomenon has been verified by 
simulating the pile-up of two pulses separated by less 
than τ. See figure 2.  
By observing the simulation carefully, we found that 
starting from a pulse separation of τR/2 which is equal 
to 3τ/2, the first pulse amplitude is preserved while the 
second pulse amplitude is distorted, and this occurs at a 
sampling index of 52ts, where ts is the sampling 
interval. Figure 3 shows the case where pulse 
separation is equal to 7τ corresponding to full pulse 
separation, and the pulse height spectrum for varying 
degrees of pile-up ranging between full pulse overlap 
to full pulse separation. The 7τ value can be considered 
as the pulse separation threshold below which pile-up 
occurs. The histogram shows clearly the effect of pile-
up in broadening the spectrum.  
By comparing the simulated results and the real 
scenario results, we conclude that both the simulation 
and the real results agree in the capability of 3-point 
deconvolution and the 4-point to resolve tail pile-up 
except in some few cases where the time separation of 
the two events is less than τR /2 which is categorised as 
a peak pile-up and best rejected. Researchers have 
already proposed a number of pile-up rejecter circuits 
which can easily be incorporated into the whole pulse 
analysis system [18]. 
It is very clear from the results that the amount of noise 
present in the real gamma events is very minimal 
except for the baseline region which falls outside the 
useful range of pulse waveform analysis. This is due to 
the analogue filtering stage present in the ERL set-up 



before the digitiser which is responsible for filtering 
out all the noise contributing from the detector and 
amplifier. Taking into account the 45% statistics of 
existing tail pile-up, the 3-point deconvolution 
technique applied to tail pile-up events digitised at the 
ERL facility, succeeded in resolving pile-up by 
attaining a performance of 93% , which means that 
93% of the events after deconvolution are pile-up free. 
Compared to the 4-point deconvolution, the 4-point 
deconvolution attained a performance of 92% .  
 

 Figure 3. Peak pile-up of two simulated pulses for the 
case of pulse separation less than τ and equal to τ. 
 
The 3-point deconvolution algorithm took 0.5 sec when 
run on a Pentium II machine of 350 MHz speed and 
limited to the effective window of 10%-10% of the 
pulse width pointed in the pulse classification 
technique explained earlier, a reduction of 86.8% over 
the time it took to process the whole pulse wave. The 
pulse classification technique has been tested on a 
TMS320C67 DSP processor running on a 150MHz 
speed using the C code composer for real time analysis. 
Using a number of optimisation stages the 
classification technique plus the moving average and 
time series analysis for estimating the pulse parameters 
took approximately 2 ms, giving a throughput of 486 
events per second without losing information.  

 
Figure 4. Pulse-height spectrum of varying degree of 
pulse pile-up. 
  
4. Conclusions 
A number of parameter estimation and digital online 
peak localisation algorithms are being developed for 
the purpose of Gamma-ray pulse identification in 
absence of noise and pile-up. A 3-point and 4-point 
deconvolution techniques have been successfully tested 
and compared and found to resolve pile-up up to 93% 
and 92% respectively. The slight difference in 
performance is attributed to the fact that the 3-point 
deconvolution has a better time resolution than the 4-
point deconvolution which was clearly shown in both 
simulated and real data. A window-based pulse 
classification technique including a peak search routine 
has been devised to classify single and double pulses 
and reject peak pile-up giving a large reduction in 
computation time. The pulse classification technique 
was tested on a TMS320C67 high performance 
floating-point DSP processor with execution time 
down to approximately 2 ms. Work is under progress 
to utilise the full performance capabilities of the 
TMS320C6000 processor to meet all the real-time 
requirements of Gamma-ray Spectroscopic systems.  
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