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Abstract — In this paper we introduce Burst Round Robin, a 

proportional-share scheduling algorithm as an attempt to 

combine the low scheduling overhead of round robin 

algorithms and favor shortest jobs. As being documented 

that weight readjustment enables existing proportional share 

schedulers to significantly reduce, but not eliminate, the 

unfairness in their allocations. We present a novel weight 

adjustment for processes that are blocked for I/O and lose 

some CPU time to assure proportional fairness. Experiments 

on the implemented simulator showed that quickly knocking 

away shortest processes achieves better turnaround time, 

waiting time, and response time. The advantage we gain is 

that processes that are close to their completion will get more 

chances to complete and leave the ready queue. This will 

reduce the number of processes in the ready queue by 

knocking out short jobs relatively faster in a hope to increase 

the throughput and reduce the average waiting time. 

 

Index Terms - Proportional-share CPU scheduling, 
Quality of Services and Performance Management. 

I. INTRODUCTION 

 Modern operating systems (OS) nowadays have 

become more complex than ever before. They have 

evolved from a single task, single user architecture to a 

multitasking environment in which processes run in a 

concurrent manner. Allocating CPU to a process 

requires careful attention to assure fairness and avoid 

process starvation for CPU. Scheduling decision try to 

minimize the following: turnaround time, response time, 

and average waiting time for processes and the number 

of context switches [1]. Scheduling algorithms are the 

mechanism by which a resource is allocated to a client. 

In our research we restrict the concept of a resource to 

CPU time and clients to processes. A scheduling 

decision refers to the concept of selecting the next 

process for execution. During each scheduling decision, 

a context switch occurs, meaning that the current process 

will stop its execution and put back to the ready queue 

and another process will be dispatched. We define 

scheduling overhead as the incurred overhead when 

making a scheduling decision (other than context 

switches). Context switches are overheads, because CPU 

remains idle during context switches, which reduces 

CPU utilization. First-Come First-Serve (FCFS) 

algorithms will have a minimal amount of context 

switches as a process, once allocated to the CPU, will 

not release it until its completion. This means lower 

context switches of n–1, where n is the number of 

processes, and constant time scheduling overhead of 

O(1). But the responsiveness is bad when we have 

multiple tasks.  

  

 Shortest Job First (SJF) algorithm is known to be 

the algorithm with the least process turnaround time and 

process average waiting time. Turnaround time is the 

time it takes a process from its arrival time to the time of 

its completion, while waiting time is the amount of time 

a process waits. SJF, however, is not practical due to its 

low responsiveness in time sharing OSs. Moreover the 

scheduling overhead of a process in a ready queue is 

O(n), where n is the number of processes in the ready 

queue. Round Robin (RR) algorithms are widely used as 

they give better responsiveness but worse average 

turnaround time and waiting time [1, 6]. Considering a 

static set of n processes the number of context switches 

for only one round is n switches. The expected number 

of rounds = B/q, where B is the average CPU burst time 

for processes and q is a fixed time quantum. RR will 

have a higher average waiting and turnaround time 

(which is bad). However, RR algorithms are widely used 

in modern OSs like Linux, BSD and Windows. All use 

multi-level feedback queues with priorities and a RR 

scheduler over each process queue. In addition, RR 

algorithms have low scheduling overhead of O(1), which 

means scheduling the next process takes a constant time 

[2, 3, 10]. A modified version of RR is the Weighted 

Round Robin (WRR) in which each process P has a 

specified weight that specifies its share of the CPU time. 

If a time quantum q is specified to be 10 time units (tu), 

and we have three processes A, B, and C having weights 

7, 4, and 9, then the time quantum given to each process 

is proportional to the process weight. An example of one 

round of WRR will assign, for example, process A 70% 

of the time quantum. Similarly process B will receive 



40% of the time quantum and process C will receive 

90%. WRR is the simplest proportional-share scheduling 

algorithm. The aim of proportional-share schedulers is to 

achieve proportional fairness for all the processes, that 

is: if a process P has been promised a share S of CPU, it 

should get this share. Assuring fairness is essential 

especially in a dynamic environment where processes get 

blocked from using CPU. The process that lost CPU 

time while it was blocked has to be compensated as it 

will try to gain more shares. Recently, research has been 

conducted on proportional-share analysis to achieve 

good proportional fairness in a dynamic environment 

while having a low scheduling overhead [9]. We have 

surveyed Lottery Scheduling [5, 11], Group Ratio Round 

Robin Scheduling [2, 3, 10], and Virtual Time Round 

Robin [8, 7, 4, 12] and learned from their dynamic 

considerations. In those scheduling algorithms, the 

weight of a process when blocked for I/O gets updated 

as it moves back to the ready queue. Those papers use 

the term share to refer to the amount of the allocated 

resources that are dedicated to the process. The rest of 

this paper is structured as follows. Section II presents the 

proposed weighting technique for round robin 

scheduling algorithm. Section III discusses the dynamic 

consideration for implementation of our proposed 

scheduling algorithm. Section IV presents the results of 

our experimental evaluation. Section V presents the 

conclusions and directions for future work. 

II. THE PROPOSED WEIGHTING TECHNIQUE 

In this paper we implemented a new weighting 

technique for round-robin CPU scheduler as an attempt 

to combine the low scheduling overhead of round robin 

algorithms and favor short jobs. Higher process weights 

mean relatively higher time quanta. Shorter jobs will be 

given more time, so that they will be removed earlier 

from the ready queue. This aims to achieve better 

throughput, and waiting time, while trying to keep the 

context switches as low as possible. 

 

We start by formulating a hypothesis that a process 

weight is inversely proportional to its CPU burst time: 
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The advantage we gain is that processes that are 

close to their completion will get more chances to 

complete and leave the ready queue. This will reduce the 

number of processes in the ready queue by knocking out 

short jobs relatively faster in a hope to increase the 

throughput and reduce the average waiting time. To 

assign specific weights to processes, we will need to 

normalize this equation and find a constant for this 

relation. The maximum CPU burst time is set to 100tu. 

We tried to classify the processes into five weight 

categories. Processes that have less CPU burst time will 

have higher weights as follows: 

 

CPU Burst time (tu) % of time quantum 

1-10 100% 

10-25 80% 

25-50 60% 

50-75 50% 

75-100 40% 

So a process that has a burst time of 20tu, for 

example, will have double the time given to another 

process that has a burst time of 80tu. This simple 

approach has shown a significant improvement in 

average turnaround time, average waiting time and 

responsiveness. Details of the experiment are shown in 

section IV. We gradually increase the number of classes 

until we reach 20, which have shown better result as 

compared to other results. We formulate the following 

for processes with CPU time greater than 5tu: 
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Because CPU burst time is on a scale of 100, dividing by 

5, will generate 20 classes of weights. For processes that 

have CPU time less than 5tu, they will be served until 

they finish. 

III. DYNAMIC CONSIDERATION  

Usually when a set of processes are being executed, 

some processes go through a series of swapping in and 

out, especially if the memory is full. In this paper we 

consider processes that are blocked due to I/O requests 

only. When a process is blocked, it will be moved to a 

waiting queue to be further processed to an I/O device. 

After finishing its I/O, it will then move back to the 

ready queue. Those blocked processes have lost their 

share of CPU when they block for I/O [6, 9]. To achieve 

proportional fairness, the weights of those blocked 

processes will be updated according to the given 

formula: 
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In this formula, we try to avoid skew-ness in average 

waiting time by giving I/O bound processes higher 

weights on their return to ready queue.  

 

In addition, we purpose a selective preemption 

technique in which I/O bound processes can preempt 

currently running process if they have more waiting time 

than the average waiting time for all the processes. This 

is because the process has been waiting for I/O and 

should get higher weight than currently running 

processes. 



IV. EXPERIMENTAL RESULTS  

A. CPU Bound Processes 

The simulator which is written in java was used to 

evaluate various scheduling algorithms. At first we 

focused on evaluating WRR with the proposed 

weighting technique against fixed time quantum round 

robin. We have used a job queue of 50 processes that 

arrive at different times and have lengths varying from 1 

to 100tu. We call this set of 50 processes DATA1. The 

fixed time quantum was set to 10tu. Moreover, we have 

modified the simulator and added a waiting queue in 

which I/O bound processes are added when they are 

blocked. We have defined a scenario and a sequence of 

process arrivals and timed their blockage for I/O. For 

example process A is a CPU bound process and process 

B is I/O bound. Process A arrives at time 4 and has a 

CPU burst time of 45tu. Process B arrives at time 10 and 

has a CPU burst time of 23tu, but it blocks waiting for 

I/O after it executes for 8tu. Let us assume that the 

blocked process will be waiting for a certain amount of 

time before it comes back to the ready queue. 

The BRR has shown a slight improvement over RR, 

when we had only five classes of weights. Table 1 shows 

results of running RR algorithm with a fixed time 

quantum of 10tu on DATA1. We show that assigning a 

higher weight to shorter processes has given us better 

waiting time, responsiveness and turnaround time. For a 

set of CPU bound process (i.e. with no I/O), the 

proposed algorithm achieved a reduction of 14.75% in 

average waiting time, 34% better response and 13.5% 

better turn around time. However the amount of context 

switches is 50.8% larger than RR, which is considered 

significantly large. 

 

Table 1: RR results on DATA1 (50 CPU bound 

processes) 

 Waiting Response Turnaround 

Min 1 0 6 

Mean 511.38 47.3 556.68 

Max 1393 180 1492 

S.Dev 432.27 45.23 457.13 

Context Switched 248   

 

Table 2: BRR results on DATA1 using 5 classes of 

weights 

 Waiting Response Turnaround 

Min 0 0 4 

Mean 435.94 31.12 481.24 

Max 1363 104 1462 

S.Dev 406.37 26.21 431.84 

Context Switched 374   

 

We ran the experiment while increasing the amount 

of weight classes until we reached the 20-weights 

classing, which gave us a very appropriate result when 

compared with the fixed-time quantum RR algorithm. 

Table 3 shows an improvement of 27% in waiting time 

and 25% less average turnaround time. The amount of 

context switches is even much shorter than the first 

weight assignment used in Table 2. 

 

Table 3: BRR results on DATA1 using 20 classes of 

weights 

 Waiting Response Turnaround 

Min 0 0 3 

Mean 372.02 33.92 417.32 

Max 1405 119 1504 

S.Dev 397.91 28.24 423.62 

Context Switched 293 

B. Results with dynamic consideration (with I/O bound 

processes) 

We have created a new data set (DATA2) of 50 

processes, which include I/O bound processes. We 

intend to compare the traditional RR algorithm, 

preemptive RR algorithm, BRR algorithm and 

preemptive BRR. The weight and preemption used in the 

BRR are newly proposed in this paper. 

For the purpose of the experiment, we have set 

DATA2 sample to have a scenario of CPU process 

arrivals and burst times. We also declared that some 

process will be blocked for I/O at a given time of their 

execution and for a specified period of time. We expect 

higher turnaround, waiting and response times than a set 

of processes that do not include any I/O bound 

processes.  

C. Round Robin versus proposed approach: 

After running the fixed RR algorithm on DATA2, we 

have achieved the following listed in table 4: 

 

Table 4: RR results on DATA2 with I/O bound 

processes 

 

 Waiting Response Turnaround 

Min 3 0 8 

Mean 553.72 64.32 599.02 

Max 1704 211 1799 

S.Dev 453.39 53.97 474.04 

Context Switches 496 

 

As expected, turnaround, response and waiting 

times all suffered from the existence of only 10% I/O 

bound processes. We note that turnaround time has 

increased from 556.68 to 599.02 with an increase of 

about 7%. Response and waiting times has suffered 

greatly and almost doubled. Now, when we run our 

weighted RR algorithm on the same dataset DATA2, we 

obtained interesting results: 



Table 5: BRR results on DATA2 with I/O bound 

processes 

 

 Waiting Response Turnaround 

Min 0 0 9 

Mean 422.9 49.62 468.2 

Max 1437 146 1520 

S.Dev 391.2 40.72 412.9 

Context Switch 617 

 

The use of the proposed weighting technique 

improved the turnaround time from 599.02 to 468.2 with 

an improvement of 28%. Response time, average time 

both improved by about 23%. 

D. Preemptive RR versus proposed approach with 

preemption 

We now assume that newly added processes will 

preempt the currently running process when it comes 

back from I/O. Preemptive RR is compared with our 

proposed preemption technique, in which weight of 

blocked processes is increased according to the given 

formula. We first ran preemptive round robin on 

DATA2 and obtained the following results: 

 

Table 6: Preemptive RR results on DATA2 with I/O 

bound processes 

 Waiting  Response Turnaround 

Min 3 0 8 

Mean 487.3 170.92 532.6 

Max 1113 369 1208 

S.Dev 351.56 117.67 370.6 

Context Switched 585 

 

We note that preemption improves waiting and 

turnaround times on the expense of response time.  The 

reason behind high response time is due to the fact that a 

returning process will preempt the currently running 

process, and jump over to the coming process that is 

appended to the end of the ready queue. Now, 

comparing preemptive RR with our proposed preemptive 

weighted RR algorithm, we achieve the following 

results: 

Table 7: Preemptive BRR results on DATA2 with I/O 

bound processes 

 

 Waiting Response Turnaround 

Min 0 0 9 

Mean 414.24 102.3 459.54 

Max 1323 244 1406 

S.Dev 363.23 77.95 385.34 

Context Switched 622 

 

Our results show a significant improvement of 13% 

in turnaround time, 15% improvement in waiting time 

and 40% improvement in response time, with only little 

increase in context switches, Figures 1, 2, and 3. 

Figure 1: Waiting time for the tested algorithms 
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Figure 2: Response time for the tested algorithms 
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Figure 3: Turnaround time for the tested algorithms 
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V.CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a weighting 

technique for round-robin scheduling algorithm based on 

processes CPU burst time. This technique showed 

promising results when ran on the scheduling simulator. 

Using this weighting technique on a mix of processes 



that include I/O bound processes has shown a good 

improvement over the running of a fixed time quantum 

RR.  We suggest that this should be further analyzed 

with actual computation of CPU burst time to investigate 

whether the CPU burst time computation does not 

overwhelm the algorithm. 
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