
Burst Round Robin as a Proportional-Share Scheduling

Algorithm

Tarek Helmy
*
 Abdelkader Dekdouk

**

*
College of Computer Science & Engineering, King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia.

** Computer Science Department, D'Oran Es-Sénia University, B.P.1524, EL-Mnaour, Algeria.

E-mails: helmy@kfupm.edu.sa & aek_dk@yahoo.com

Abstract — In this paper we introduce Burst Round Robin, a

proportional-share scheduling algorithm as an attempt to

combine the low scheduling overhead of round robin

algorithms and favor shortest jobs. As being documented

that weight readjustment enables existing proportional share

schedulers to significantly reduce, but not eliminate, the

unfairness in their allocations. We present a novel weight

adjustment for processes that are blocked for I/O and lose

some CPU time to assure proportional fairness. Experiments

on the implemented simulator showed that quickly knocking

away shortest processes achieves better turnaround time,

waiting time, and response time. The advantage we gain is

that processes that are close to their completion will get more

chances to complete and leave the ready queue. This will

reduce the number of processes in the ready queue by

knocking out short jobs relatively faster in a hope to increase

the throughput and reduce the average waiting time.

Index Terms - Proportional-share CPU scheduling,
Quality of Services and Performance Management.

I. INTRODUCTION

 Modern operating systems (OS) nowadays have

become more complex than ever before. They have

evolved from a single task, single user architecture to a

multitasking environment in which processes run in a

concurrent manner. Allocating CPU to a process

requires careful attention to assure fairness and avoid

process starvation for CPU. Scheduling decision try to

minimize the following: turnaround time, response time,

and average waiting time for processes and the number

of context switches [1]. Scheduling algorithms are the

mechanism by which a resource is allocated to a client.

In our research we restrict the concept of a resource to

CPU time and clients to processes. A scheduling

decision refers to the concept of selecting the next

process for execution. During each scheduling decision,

a context switch occurs, meaning that the current process

will stop its execution and put back to the ready queue

and another process will be dispatched. We define

scheduling overhead as the incurred overhead when

making a scheduling decision (other than context

switches). Context switches are overheads, because CPU

remains idle during context switches, which reduces

CPU utilization. First-Come First-Serve (FCFS)

algorithms will have a minimal amount of context

switches as a process, once allocated to the CPU, will

not release it until its completion. This means lower

context switches of n–1, where n is the number of

processes, and constant time scheduling overhead of

O(1). But the responsiveness is bad when we have

multiple tasks.

 Shortest Job First (SJF) algorithm is known to be

the algorithm with the least process turnaround time and

process average waiting time. Turnaround time is the

time it takes a process from its arrival time to the time of

its completion, while waiting time is the amount of time

a process waits. SJF, however, is not practical due to its

low responsiveness in time sharing OSs. Moreover the

scheduling overhead of a process in a ready queue is

O(n), where n is the number of processes in the ready

queue. Round Robin (RR) algorithms are widely used as

they give better responsiveness but worse average

turnaround time and waiting time [1, 6]. Considering a

static set of n processes the number of context switches

for only one round is n switches. The expected number

of rounds = B/q, where B is the average CPU burst time

for processes and q is a fixed time quantum. RR will

have a higher average waiting and turnaround time

(which is bad). However, RR algorithms are widely used

in modern OSs like Linux, BSD and Windows. All use

multi-level feedback queues with priorities and a RR

scheduler over each process queue. In addition, RR

algorithms have low scheduling overhead of O(1), which

means scheduling the next process takes a constant time

[2, 3, 10]. A modified version of RR is the Weighted

Round Robin (WRR) in which each process P has a

specified weight that specifies its share of the CPU time.

If a time quantum q is specified to be 10 time units (tu),

and we have three processes A, B, and C having weights

7, 4, and 9, then the time quantum given to each process

is proportional to the process weight. An example of one

round of WRR will assign, for example, process A 70%

of the time quantum. Similarly process B will receive

40% of the time quantum and process C will receive

90%. WRR is the simplest proportional-share scheduling

algorithm. The aim of proportional-share schedulers is to

achieve proportional fairness for all the processes, that

is: if a process P has been promised a share S of CPU, it

should get this share. Assuring fairness is essential

especially in a dynamic environment where processes get

blocked from using CPU. The process that lost CPU

time while it was blocked has to be compensated as it

will try to gain more shares. Recently, research has been

conducted on proportional-share analysis to achieve

good proportional fairness in a dynamic environment

while having a low scheduling overhead [9]. We have

surveyed Lottery Scheduling [5, 11], Group Ratio Round

Robin Scheduling [2, 3, 10], and Virtual Time Round

Robin [8, 7, 4, 12] and learned from their dynamic

considerations. In those scheduling algorithms, the

weight of a process when blocked for I/O gets updated

as it moves back to the ready queue. Those papers use

the term share to refer to the amount of the allocated

resources that are dedicated to the process. The rest of

this paper is structured as follows. Section II presents the

proposed weighting technique for round robin

scheduling algorithm. Section III discusses the dynamic

consideration for implementation of our proposed

scheduling algorithm. Section IV presents the results of

our experimental evaluation. Section V presents the

conclusions and directions for future work.

II. THE PROPOSED WEIGHTING TECHNIQUE

In this paper we implemented a new weighting

technique for round-robin CPU scheduler as an attempt

to combine the low scheduling overhead of round robin

algorithms and favor short jobs. Higher process weights

mean relatively higher time quanta. Shorter jobs will be

given more time, so that they will be removed earlier

from the ready queue. This aims to achieve better

throughput, and waiting time, while trying to keep the

context switches as low as possible.

We start by formulating a hypothesis that a process

weight is inversely proportional to its CPU burst time:

i

i
Burst

Weight
1

∝

The advantage we gain is that processes that are

close to their completion will get more chances to

complete and leave the ready queue. This will reduce the

number of processes in the ready queue by knocking out

short jobs relatively faster in a hope to increase the

throughput and reduce the average waiting time. To

assign specific weights to processes, we will need to

normalize this equation and find a constant for this

relation. The maximum CPU burst time is set to 100tu.

We tried to classify the processes into five weight

categories. Processes that have less CPU burst time will

have higher weights as follows:

CPU Burst time (tu) % of time quantum

1-10 100%

10-25 80%

25-50 60%

50-75 50%

75-100 40%

So a process that has a burst time of 20tu, for

example, will have double the time given to another

process that has a burst time of 80tu. This simple

approach has shown a significant improvement in

average turnaround time, average waiting time and

responsiveness. Details of the experiment are shown in

section IV. We gradually increase the number of classes

until we reach 20, which have shown better result as

compared to other results. We formulate the following

for processes with CPU time greater than 5tu:

100

5

1
×=

i
i Burst

Weight

Because CPU burst time is on a scale of 100, dividing by

5, will generate 20 classes of weights. For processes that

have CPU time less than 5tu, they will be served until

they finish.

III. DYNAMIC CONSIDERATION

Usually when a set of processes are being executed,

some processes go through a series of swapping in and

out, especially if the memory is full. In this paper we

consider processes that are blocked due to I/O requests

only. When a process is blocked, it will be moved to a

waiting queue to be further processed to an I/O device.

After finishing its I/O, it will then move back to the

ready queue. Those blocked processes have lost their

share of CPU when they block for I/O [6, 9]. To achieve

proportional fairness, the weights of those blocked

processes will be updated according to the given

formula:

WaitinigprocessesAvg

Waitingprocess
WeightOldWeightNew i

ii
__

_
__ =

In this formula, we try to avoid skew-ness in average

waiting time by giving I/O bound processes higher

weights on their return to ready queue.

In addition, we purpose a selective preemption

technique in which I/O bound processes can preempt

currently running process if they have more waiting time

than the average waiting time for all the processes. This

is because the process has been waiting for I/O and

should get higher weight than currently running

processes.

IV. EXPERIMENTAL RESULTS

A. CPU Bound Processes

The simulator which is written in java was used to

evaluate various scheduling algorithms. At first we

focused on evaluating WRR with the proposed

weighting technique against fixed time quantum round

robin. We have used a job queue of 50 processes that

arrive at different times and have lengths varying from 1

to 100tu. We call this set of 50 processes DATA1. The

fixed time quantum was set to 10tu. Moreover, we have

modified the simulator and added a waiting queue in

which I/O bound processes are added when they are

blocked. We have defined a scenario and a sequence of

process arrivals and timed their blockage for I/O. For

example process A is a CPU bound process and process

B is I/O bound. Process A arrives at time 4 and has a

CPU burst time of 45tu. Process B arrives at time 10 and

has a CPU burst time of 23tu, but it blocks waiting for

I/O after it executes for 8tu. Let us assume that the

blocked process will be waiting for a certain amount of

time before it comes back to the ready queue.

The BRR has shown a slight improvement over RR,

when we had only five classes of weights. Table 1 shows

results of running RR algorithm with a fixed time

quantum of 10tu on DATA1. We show that assigning a

higher weight to shorter processes has given us better

waiting time, responsiveness and turnaround time. For a

set of CPU bound process (i.e. with no I/O), the

proposed algorithm achieved a reduction of 14.75% in

average waiting time, 34% better response and 13.5%

better turn around time. However the amount of context

switches is 50.8% larger than RR, which is considered

significantly large.

Table 1: RR results on DATA1 (50 CPU bound

processes)

 Waiting Response Turnaround

Min 1 0 6

Mean 511.38 47.3 556.68

Max 1393 180 1492

S.Dev 432.27 45.23 457.13

Context Switched 248

Table 2: BRR results on DATA1 using 5 classes of

weights

 Waiting Response Turnaround

Min 0 0 4

Mean 435.94 31.12 481.24

Max 1363 104 1462

S.Dev 406.37 26.21 431.84

Context Switched 374

We ran the experiment while increasing the amount

of weight classes until we reached the 20-weights

classing, which gave us a very appropriate result when

compared with the fixed-time quantum RR algorithm.

Table 3 shows an improvement of 27% in waiting time

and 25% less average turnaround time. The amount of

context switches is even much shorter than the first

weight assignment used in Table 2.

Table 3: BRR results on DATA1 using 20 classes of

weights

 Waiting Response Turnaround

Min 0 0 3

Mean 372.02 33.92 417.32

Max 1405 119 1504

S.Dev 397.91 28.24 423.62

Context Switched 293

B. Results with dynamic consideration (with I/O bound

processes)

We have created a new data set (DATA2) of 50

processes, which include I/O bound processes. We

intend to compare the traditional RR algorithm,

preemptive RR algorithm, BRR algorithm and

preemptive BRR. The weight and preemption used in the

BRR are newly proposed in this paper.

For the purpose of the experiment, we have set

DATA2 sample to have a scenario of CPU process

arrivals and burst times. We also declared that some

process will be blocked for I/O at a given time of their

execution and for a specified period of time. We expect

higher turnaround, waiting and response times than a set

of processes that do not include any I/O bound

processes.

C. Round Robin versus proposed approach:

After running the fixed RR algorithm on DATA2, we

have achieved the following listed in table 4:

Table 4: RR results on DATA2 with I/O bound

processes

 Waiting Response Turnaround

Min 3 0 8

Mean 553.72 64.32 599.02

Max 1704 211 1799

S.Dev 453.39 53.97 474.04

Context Switches 496

As expected, turnaround, response and waiting

times all suffered from the existence of only 10% I/O

bound processes. We note that turnaround time has

increased from 556.68 to 599.02 with an increase of

about 7%. Response and waiting times has suffered

greatly and almost doubled. Now, when we run our

weighted RR algorithm on the same dataset DATA2, we

obtained interesting results:

Table 5: BRR results on DATA2 with I/O bound

processes

 Waiting Response Turnaround

Min 0 0 9

Mean 422.9 49.62 468.2

Max 1437 146 1520

S.Dev 391.2 40.72 412.9

Context Switch 617

The use of the proposed weighting technique

improved the turnaround time from 599.02 to 468.2 with

an improvement of 28%. Response time, average time

both improved by about 23%.

D. Preemptive RR versus proposed approach with

preemption

We now assume that newly added processes will

preempt the currently running process when it comes

back from I/O. Preemptive RR is compared with our

proposed preemption technique, in which weight of

blocked processes is increased according to the given

formula. We first ran preemptive round robin on

DATA2 and obtained the following results:

Table 6: Preemptive RR results on DATA2 with I/O

bound processes

 Waiting Response Turnaround

Min 3 0 8

Mean 487.3 170.92 532.6

Max 1113 369 1208

S.Dev 351.56 117.67 370.6

Context Switched 585

We note that preemption improves waiting and

turnaround times on the expense of response time. The

reason behind high response time is due to the fact that a

returning process will preempt the currently running

process, and jump over to the coming process that is

appended to the end of the ready queue. Now,

comparing preemptive RR with our proposed preemptive

weighted RR algorithm, we achieve the following

results:

Table 7: Preemptive BRR results on DATA2 with I/O

bound processes

 Waiting Response Turnaround

Min 0 0 9

Mean 414.24 102.3 459.54

Max 1323 244 1406

S.Dev 363.23 77.95 385.34

Context Switched 622

Our results show a significant improvement of 13%

in turnaround time, 15% improvement in waiting time

and 40% improvement in response time, with only little

increase in context switches, Figures 1, 2, and 3.

Figure 1: Waiting time for the tested algorithms

Waiting Time Comparisons

0

200

400

600

800

1000

1200

1400

1600

1800

Min Mean Max StdDev

T
im

e
 U

n
it

s Wait(RR)

Wait(PRR)

Wait(WRR)

Wait(PWRR)

Figure 2: Response time for the tested algorithms

Response Time Comparisons

0

50

100

150

200

250

300

350

400

Min Mean Max StdDev

T
im

e
 U

n
it

s Response(RR)

Response(PRR)

Response(WRR)

Response(PWRR)

Figure 3: Turnaround time for the tested algorithms

Turnaround Time Comparisons

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Min Mean Max StdDev

T
im

e
 U

n
it

s Turnaround(RR)

Turnaround(PRR)

Turnaround(WRR)

Turnaround(PWRR)

V.CONCLUSION AND FUTURE WORK

In this paper, we have proposed a weighting

technique for round-robin scheduling algorithm based on

processes CPU burst time. This technique showed

promising results when ran on the scheduling simulator.

Using this weighting technique on a mix of processes

that include I/O bound processes has shown a good

improvement over the running of a fixed time quantum

RR. We suggest that this should be further analyzed

with actual computation of CPU burst time to investigate

whether the CPU burst time computation does not

overwhelm the algorithm.

ACKNOWLEDGEMENT

We would like to thank King Fahd University of

Petroleum and Minerals for providing the utilized

computing facilities. Special thanks to the anonymous

reviewers for their fruitful comments.

REFERENCES

1. Abraham Silberschatz, Peter Baer Galvin, and Greg

Gagne, “Operating Systems Concepts,” John Wiley

and Sons. 6Ed 2005.

2. Bogdan Caprita, Wong Chun Chan, Jason Nieth,

Clifford Stein, and Haoqiang Zheng, “Group ratio

round-robin: O(1) proportional share scheduling for

uni-processor and multiprocessor systems,” In

USENIX Annual Technical Conference, 2005.

3. B. Caprita, W. C. Chan, and J. Nieh, “Group

Round-Robin: Improving the Fairness and

Complexity of Packet Scheduling”, Technical

Report CUCS-018-03, Columbia University, June

2003.

4. H. M. Chaskar and U. Madhow, “Fair scheduling

with tunable latency: a round-robin approach”,

IEEE/ACM Trans. Net., 11(4):592–601, 2003.

5. Ion Stocia, Hussein Abdel-Wahab, and Kevin

Jeffay, “On the duality between resource reservation

and proportional share resource allocation,” In

Multimedia Computing and Networking, 1997.

6. Jason Nieh and Chris Vaill and Hua Zhong,

“Virtual-Time Round-Robin: An O(1) Proportional

Share Scheduler,” In Proceedings of the 2001

USENIX Annual Technical Conference, June 2001.

7. John Regehr, “Some guidelines for proportional

share CPU scheduling in general-purpose operating

systems”, In The 22nd IEEE Real-Time Systems

Symposium (RTSS 2001), London, UK, December

3-6 2001.

8. John Regehr,”Using Hierarchical Scheduling to

Support Soft Real-Time Applications on General-

Purpose Operating Systems”, PhD thesis,

University of Virginia, May 2001.

9. Kevin Jeffay, F. Donelson Smith, and James

Anderson Arun Moorthy, “Proportional share

scheduling of operating system services for real-

time application,” In Proceedings of the 19th IEEE

Real-Time Systems Symposium, Madrid, Spain,

December 1998.

10. Luca Abeni, Giuseppe Lipari, and Giorgio Buttazzo,

“Constant bandwidth vs. proportional share resource

allocation”, In Proc. of the IEEE International

Conference on Multimedia Computing and Systems,

Florence, Italy, June 1999.

11. M B. Jones and J. Regehr, “CPU Reservations and

Time Constraints: Implementation Experience on

Windows N”, In Proceedings of the Third Windows

NT Symposium, Seattle, WA, July 1999.

12. Y.Wang and A. Merchant, “Proportional service

allocation in distributed storage systems”, Technical

Report HPL- 2006-184, HP Laboratories, Dec.

2006.

13. W. C. Chan and J. Nieh, “Group Ratio Round-

Robin: An O(1) Proportional Share Scheduler”,

Technical Report CUCS-012-03, Columbia

University, Apr. 2003.

