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Abstract— In this paper, we propose a robust Kalman
filter and smoother for the errors-in-variables (EIV) state
space model subject to observation noise with outliers.
We introduce the EIV problem with outliers and then
we present the Least-Trimmed-Squares (LTS) estimator
which is highly robust estimator to detect outliers. As
a result, a new statistical test to check the existence of
outliers which is based on the Kalman filter and smoother
has been formulated. Since the LTS is combinatorial opti-
mization problem the randomized algorithm has been pro-
posed in order to achieve the optimal estimate. However,
the uniform sampling method has a high computational
cost and may lead to biased estimate, therefore we apply
the subsampling method.

Keywords: Errors-in-variables model, Least-Trimmed-
Squares, Kalman filter and smoother, outliers, random
search algorithm, subsampling method.

I. I NTRODUCTION

A basic numerical routine for the classical EIV
Kalman filter [1], [7] and smoother computes the con-
ditional expectation which is a least squares (LS) esti-
mate. Since the LS method is rather sensitive to outliers
(non Gaussian disturbances), so is the Kalman filter and
smoother. Moreover, it is well known in real applica-
tions that most practical data contain outliers with a
low probability, so that a standard Gaussian assumption
for observation noises might fail. Following Rousseew
[6], we define the outliers to be the observations which
deviate from the pattern set of the majority of the data.
There are many reasons for the occurrence of outliers,
e.g. misplaces decimal points, recording or transmission
errors, expectational phenomena such as earthquakes or
strikes, or members of different population slipping in
the sample etc.

Several algorithms have been proposed to deal with
outliers in the output data [2], [3], however, usually the
input data are observed quantities subject to random
variability. Thus, there is no reason why gross errors
would only occur in the response data. In a certain
sense it is more likely to have outlier in one of observed
input data, because usually its dimension greater than
one, and hence there are more opportunities for some
thing to go wrong. As a technique for coping with this
problem, Rousseeum [6] suggested the LTS estimator

and [5] presented the fast LTS algorithm to compute the
multivariate linear regression model. For the EIV state
space model where the outliers acts in the observed
input data to the best of our knowledge, there is no
paper has been published in this area.

In this paper, we consider a filtering and smoothing
problem in the presence of observation outliers with the
aid of the LTS procedure. It is well known that the LTS
is a highly robust estimator and its objective is to findh
observations out ofN whose square errors is minimum.
However, the high computational complexity makes the
LTS estimator impractical and useless. Therefore [2]
proposed the random search algorithm to solve the
LTS problem for the SISO linear regression model.
However, applying the randomized algorithm [2] for
the EIV state space model may lead to bias estimate
since the structure of the data will be lost. Hence, we
propose the subsampling method [8] which keeps the
structural of the original data, decrease the computation
time and less sensitive to outliers. Another feature of the
proposed algorithm is that the algorithm can be applied
to clean and dirty data as well. A minor contribution of
the paper is that we derive the Kalman smoother for the
EIV state space model which is required for the new
statistics.

This note is organized as follows. Section 2, gives the
errors-in-variables problem in the presence of outliers,
and introduces the LTS estimator for the EIV state
space model. In section 3, we proposed the randomized
algorithm as a method to solve the LTS problem and
discuss the disadvantages of the algorithm. Section 4,
is dedicated to the Kalman filter and smoother with
outliers and propose the subsampling method. Appen-
dix A is devoted to Kalman filter and smoother without
outliers and proof of the proposition.

II. ERRORS-IN-VARIABLES MODEL

As depicted in Fig. 1, consider the errors-in-variables
state space model described by�
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wherex(t) ∈ Rn, û(t) ∈ Rm and ŷ(t) ∈ Rp are un-
known state, true input and output vectors respectively.
Furthermore,w(t) is the white Gaussian noise acting
on the state whose mean is zero and has a covariance
Σw. The measured input-output signalsu(t) and y(t)
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Fig. 1. Errors-in-variables model

are modelled as

u(t) = û(t) + ũ(t), (2)

y(t) = ŷ(t) + ỹ(t), (3)

where ũ(t) ∈ Rn and ỹ(t) ∈ Rp are non-Gaussian
white noises with zero mean and finite positive definite
covariance matricesΣũ andΣỹ, respectively;

E
��
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We will assume in the sequel, thatũ(t) and ỹ(t) are
uncorrelated withw(t). Furthermore, the input and
output noises̃u(t) and ỹ(t) contain outliers with a low
probability, therefore we write

ũ(t) = (Im − φ(t))ũn(t) + φ(t)ũo(t),

ỹ(t) = (Ip − γ(t))ỹn(t) + γ(t)ỹo(t),

where Is is the s × s identity matrix for s =
{m, p}, ψ(t) = diag{ψt,i} = diag{ψt,1, · · · , ψt,s}
and ψt,i = {0, 1} for all i and whereψ = {γ, φ}.
Moreover, Prob{ψt,i = 1} is small, i.e. the ma-
jority of the observed data is clean. The noises
{ũn(t), ũo(t), ỹn(t), ỹo(t)} are Gaussian white noises
with

ũn(t) ∈ N(0, Σn
ũ), ũo(t) ∈ N(0, Σo

ũ), (5)

ỹn(t) ∈ N(0, Σn
ũ), ỹo(t) ∈ N(0, Σo

ỹ), (6)

where {Σn
ũ,Σo

ũ, Σn
ỹ , Σo

ũ} are positive definite covari-
ance matrices. Furthermore,Σo

ũ(i, i) and Σo
ỹ(i, i) are

much larger thanΣn
ũ(i, i) and Σn

ỹ (i, i) respectively.
Then, the problem of interest is to find an optimal
Kalman filter and smoother estimatêu∗(t), ŷ∗(t) and
x̂(t) for the input-output datâu(t), ŷ(t) and the state
vector x(t) given the observed input-output data. The
fact that we account for the possibility that the input
signal is not exactly known and it may contain outliers,
makes the problem difficult, and is often referred to as
an outlier-errors-in-variables (OEIV) problem.

A. Least-trimmed-squares
The LTS technique has been introduced by [6] to

detect the outliers for the EIV linear regression model.
Substituting (2) and (3) into (1) yields�
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wherenx(t) = −Bũ(t)+w(t) andny(t) = −Dũ(t)+
ỹ(t). Let Θ =

�
A B
C D

�
, then the least trimmed squares

estimator is defined as

Θ̂LTS = argminΘ

hX
i=1

(rT · r)[i](Θ), (8)

where(rT · r)[i](Θ) represents thei-th order statistics
amongrT

1 (Θ) · r1(Θ), · · · , rT
N (Θ) · rN (Θ) and where
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trimming constanth have to satisfyN
2 < h ≤ N . This

constant determines the breakdown point of the LTS
estimator since the definition (8) implies thatN − h
observations with the largest residuals will not affect the
estimator (except of the fact that the squared residuals
of excluded points have to be larger than theh-th order
statistics among the squared residuals).

To redefine the LTS estimator for EIV state space
model, considerS = {S ⊆ {1, · · · , N} : #S = h} 1

be the collection of all subsets with cardinalityh from
the set{1, · · · , N} 2. For anyS ∈ S, let Θ̂(S)LTS be
the least square estimate based on the observed data in
S

Θ̂(S)LTS = argminΘ

X
i∈S

rT
i (Θ) · ri(Θ). (9)

i.e. the LTS searches for a subsetS ∈ S of sizeh that
fits the observed data.

In most cases, it is not feasible to generate all
possible subsets provided thatN is large due to com-
putational cost. In the next section, we will generate
finite number of subsets which will lead to a feasible
solution that will converge with probability one to the
true solution by using the randomized algorithm.

III. T HE RANDOM SEARCH ALGORITHM

It is obvious that the objective function,̂Θ(S)LTS
in (9) can be found by searching for the best subset
S ∈ S that minimizes the squares of the errors. In
fact there areSi subsets inS for i = 1, · · · ,

(
N
M

)
, so

that finding the best subset that minimizes the value of
the objective function is a very difficult combinatorial
problem. However, we can easily calculate the value of
the objective function (9), for each subsetS ∈ S and
then sort them in increasing order, i.e.

Θ̂(S)[1] = argminΘ

X
i∈S

rT
i (Θ) · ri(Θ) ≤ · · ·

≤ argminΘ

X
i∈S

rT
i (Θ) · ri(Θ) = max

S∈S
det cov(S).

Now we think ofSi ∈ S as a random variable that is
uniformly distributed, and hencêΘ(Si) is also a random
variable depending onSi. Let F (Θ̂(Si)) denote the
unknown probability distribution function of̂Θ(Si) for

1# := cardinality of the subsetS.
2[·] is the greatest integer number.



i = 1, · · · , L be L, independently generated samples
of Si ∈ S. Furthermore, let̄S ∈ {S}L

r=1 be such that
Θ̂(S̄) = min1≤r≤L Θ̂(Sr). We can derive the following
theorem by using the result of Bai [2]. The theorem
finds the sample sizeL so thatΘ̂(S̄) converges to the
true solution with probability close to one.

Theorem 1:For the EIV model (1), we can show
that the following(i) ∼ (ii) hold:

(i) For all 0 < F
(
minS∈S Θ̂(S)

)
< ε < 1 and for

all 0 < δ < 1, if L ≥ ln(1/δ)
ln(1/(1−ε)) , then

Prob

{
F

(
min

1≤r≤L
Θ̂(Sr)

)
≤ ε

}
≥ 1− δ.

(ii) Let Sr for r = 1, · · · , k be k-th disjoint
subsets such that∪k

r=1Sr = {1, · · · , N} and run
the randomized algorithm in each subset. Then the
overall probability that the confidence statement are
simultaneously true is1−∑k

i=1 αi.
Proof: (i) Let Θ̂(S)[k] denote the maximum̂Θ(S) that
satisfiesF (Θ̂(S)) ≤ ε, i.e

F
�
Θ̂(S)

[(N
M)]

�
≥ · · · ≥ F

�
Θ̂(S)[k+1]

�
> ε.

It is easy to see thatF
(
min1≤i≤L Θ̂(S)

)
≤ ε if and

only if min1≤i≤L Θ̂(Si) ≤ Θ̂[k], implying that

Prob

�
F

�
min

1≤i≤L
Θ̂(Si)

�
≤ ε

�
= Prob

�
min

1≤i≤L
Θ̂(Si) ≤ Θ̂(S)[k]

�
= 1− Prob

�
min

1≤i≤L
Θ̂(Si) > Θ̂[k]

�
= 1− Prob

n
Θ̂(S1) ≥ Θ̂(S)[k+1]

o
× · · · × Prob

n
Θ̂(SL)) ≥ Θ̂(S)[k+1]

o
≥ 1− (1− ε)L.

Now L ≥ ln( 1
δ
)

ln 1
(1−ε)

⇒ (1− ε)L ≤ δ. Consequently,
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(ii) Let Ei, (i = 1, · · · , k) be the ith statement
corresponds to the subsetSi, and assume that theith
statementEi, (i = 1, · · · , k) is correct, i.e.

Prob[Ei] = 1− αi,

and letĒi be the complementary event ofEi, then

Prob[∩Ei] =1− Prob[∩iEi] = 1− Prob[∪iĒi]

≥ 1−
X

Prob[Ēi] = 1−
X

αi,

if αi = α for i = 1. · · · , k. Then

Prob[∩Ei] ≥ 1− kα.

Theorem 1 means that, whenever we generateL inde-
pendent random subsetsSL = {Si}L

i=1 and compute

the value of the objective function (9) for each subset
Si ∈ SL, a subsetS̄ ∈ SL with minimum value of
the objective function (9) will improve our estimate.
However, it may be noted that in the worst case this
improvement is not considerable comparing to the LS
estimate by using all observed data. In fact, if the
number of the observed data is very large, then the
probability of finding a subsetS ∈ S with cardinality
equal toh that does not contain any outlier approaches
zero, i.e.
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whereI stands for the number of clean data. According
to (10) the random search algorithm can be improved
by taking S with small cardinality and by finding the
smallesth relative Mahalanobis distancesdi. This will
increase the probability of finding a subsetSi from S
that does not contain any outliers.

At this stage, we will derive the optimal estimate for
the true input-output and the associated error covari-
ances for the OEIV model using the Kalman filter and
smoother.

IV. K ALMAN FILTER FOR THE

ERRORS-IN-VARIABLES MODEL WITH OUTLIERS

Let z(t) = y(t)−Du(t), then (7) can be written as�
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In addition, let Z(t) = {z(0), · · · , z(t)}, Φ(t) =
{φ(0), · · · , φ(t)} and Γ(t) = {γ(0), · · · , γ(t)} and
define3

x(t | t) ≡ E[x(t) | Z(t), Φ(t), Γ(t)], (12)

x(t + 1 | t) ≡ E[x(t + 1) | Z(t), Φ(t), Γ(t)], (13)

y(t + 1 | t) ≡ E[y(t + 1) | Z(t), Φ(t), Γ(t)], (14)

P (t | t) ≡ E[(x(t)− x̂(t))(x(t)− x̂(t))T | Z(t), Φ(t), Γ(t)],
(15)

P (t + 1 | t) ≡ E[(x(t + 1)− x̂(t + 1))(x(t + 1)− x̂(t + 1))T

| Z(t), Φ(t), Γ(t)], (16)

then the Kalman filter is given by

z(t + 1 | t) = Cx(t + 1 | t), (17)

x(t + 1 | t) = Ax(t | t) + Bu(t), (18)

and we could compute the covariance of the errors as

E{(z(t + 1)− z(t + 1 | t))(x(t + 1)− x(t + 1 | t))T}
= CP (t + 1 | t),

E{(z(t + 1)− z(t + 1 | t))(z(t + 1)− z(t + 1 | t))T}
= CP (t + 1 | t)CT + γ(t)Σn

ỹ + (Ip − γ(t))Σo
ỹ

+ D[φ(t)Σn
ũ + (Im − φ(t))Σo

ũ]DT, (19)

where
P (t + 1 | t) = E[(x(t + 1) − x(t + 1 | t))(x(t + 1) − x(t + 1 | t))T]

= APt|tA
T + Σw + Bφ(t)Σn

ũB
T + B(Im − φ(t))Σo

ũB
T

.

(20)

3The Kalman filter and smoother without outliers is given in
Appendix .



The optimal Kalman filter estimate for the statex(t) is

x(t + 1 | t + 1) = x(t + 1 | t) + P (t + 1 | t)CTΣε(t)
−1ε(t),

(21)

while ε(t) andΣε(t) denote the innovation ofz(t) and
its covariance matrix given by

ε(t) = z(t)− Cx(t | t)
= Cx(t) + ny(t)− Cx(t | t) (22)

Σε(t) = E[ε(t)ε(t)T]

= CP (t | t)CT + γ(t)Σn
ỹ + (Ip − γ(t))Σo

ỹ

+ D[φ(t)Σ]nũ + (Im − φ(t))Σo
ũ]DT. (23)

The optimal smooth estimateŝu(t | N), ŷ(t | N)
of û(t), ŷ(t) that can be obtained from
{u(0), y(0), · · · , u(N), y(N)}, under constraints
(1)-(3) are given by

û(t | N) = u(t)− ũ(t | N) = u(t)− E{ũ(t) | z(0), · · · , z(N)},
(24)

ŷ(t | N) = y(t)− ỹ(t | N) = y(t)− E{ỹ(t) | z(0), · · · , z(N)},
(25)

where ũ(t | N) = E{ũ(t) | z(0), · · · , z(N)} and
ỹ(t | N) = E{ỹ(t) | z(0), · · · , z(N)} are the optimal
estimate forũ(t) and ỹ(t) respectively. To compute
ũ(t | N) andỹ(t | N) we replacez(t) by its innovation

ũ(t | N) = E[ũ(t) | z(0), · · · , z(t), ε(t + 1), · · · , ε(N)]

= E[ũ(t) | z(0), · · · , z(t)] + E[ũ(t) | ε(t + 1), · · · , ε(N)]

= ũ(t | t) +
NX

s=t+1

cov{ũ(t), ε(s)}Σε(s)
−1ε(s) (26)

ỹ(t | N) = E[ỹ(t) | z(0), · · · , z(t), ε(t + 1), · · · , ε(N)]

= E[ỹ(t) | z(0), · · · , z(t)] + E[ỹ(t) | ε(t + 1), · · · , ε(N)]

= ỹ(t | t) +
NX

s=t+1

cov{ỹ(t), ε(s)}Σε(s)
−1ε(s), (27)

whereũ(t | t) andỹ(t | t) are given in Appendix . Now
the covariances can be found as follows

cov{ũ(t), ε(s)} = cov{ũ(t)− ũ(t | t) + ũ(t | t), ε(s)}
= cov{ũ(t | t), ε(s)} = [Σfuy − ΣũDT]Σε(t)

−1Σε(t, s)

= [Σfuy − ΣũDT]Σε(t)
−1CP (t | t− 1)L(s− 1, t)TCT,

(28)

cov{ỹ(t), ε(s)} = cov{ỹ(t)− ỹ(t | t) + ỹ(t | t), ε(s)}
= cov{ỹ(t | t), ε(s)} = [Σỹ − ΣTfuyDT]Σε(t)

−1Σε(t, s)

= [Σỹ − ΣTfuyDT]Σε(t)
−1CP (t | t− 1)L(s− 1, t)TCT,

(29)

where Σũ = (Im − φ(t))Σn
ũ + φ(t)Σo

ũ and Σỹ =
(Ip−γ(t))Σn

ỹ +γ(t)Σo
ỹ andΣfuy = (Im−φ(t))Σnfuy(Ip−

γ(t)) + φ(t)Σofuyγ(t). The L(s − 1, t) and Σε(t, s)
are defined and calculated in Proposition 2(given in
Appendix ).

Proposition 1: Let πt be a random integer number
from 1 to N , and formulate the setS = {πt : t =
1, · · · , h} ∈ S. Furthermore, letu(πt | S) and y(πt |
S) be the Kalman smoother as in (24) and (25). Then
the LTS cost function can be written as

Θ̂(S)LTS = argminΘ

P
i∈S

��
u(i)
y(i)

�
−
�

u(i | S)
y(i | S)

��T

×
��

u(i)
y(i)

�
−
�

u(i | S)
y(i | S)

��
. (30)

It should be noted that ifi is included in the subset
S, then φ(i) and γ(i) will be the identity matrices,
otherwise they are the zero matrices. In Proposition 1,
if we apply the uniform sampling method then we will
lose the structure of the original data and consequently
the estimate will be biased. Therefore, we apply another
sampling method which is called subsampling method
[8].

A. Subsampling method

Instead of generating a random subsets from
the observed input-output data we generate blocks
of contiguous observations of fixed dimensionb.
That is, we divide the last(N − n) observations
into k subsets, where each subset contains the
first initial data (ω(1), · · · , ω(n)) and a set of
[(N − n)/k] contiguous observations. In other
words, the subsets can be described asS

(b+n)
r =

{ω(1), · · · , ω(n), ω(n + 1 + (r − 1)b), · · · , ω(n + br)},
where r = 1, · · · , k. Then we perform an exhaustive
search of all possible blocks and choose the one which
gives the minimum value for the objective function. It
should be noted that, if(N − n)/k is an integer then
we have exactlyk subsets. In general there arek + 1
subsets, where the firstk of sizen + [(N − n)/k], and
the last of sizeN − [(N − n)/k]k. For the seek of
simplicity and without loss of generality we assume
that b is an integer whereb = (N − n)/k.

Furthermore, if the number of the subsetsk is large,
then the probability of having at least a clean subset of
data which does not contain any outlier will increase.
However, ifk is large, then the cardinality of each sub-
set will be small, and consequently the estimate of the
parameters can be unstable. P. Heagerty and T. Lumley
[8] suggest thatb ≈ √

N to ensure a balance between
the statistical properties of the estimated parameters and
the robustness of the method.

Theorem 2:Let | S(b+n)
1 |= h and put

J1 :=
X

i∈S
(b+n)
1

 �
u(i)
y(i)

�
−
"

u(i | S(b+n)
1 )

y(i | S(b+n)
1 )

#!T

×
 �

u(i)
y(i)

�
−
"

u(i | S(b+n)
1 )

y(i | S(b+n)
1 )

#!
.

Now let r1(i) ∈ S
(b+n)
1 and takeS

(b+n)
2 such that

{| r1(i) |; i ∈ S
(b+n)
2 } = {(r1)[1], · · · , (r1)[h]}, where

(r1)[1] ≤ · · · ≤ (r1)[h]. This yieldsr2(i) for all i =
1, · · · , N andJ2 :=

∑
i∈S

(b+n)
2

rT
i (Θ) · ri(Θ). Then

J2 ≤ J1

The proof of Theorem 2 is a direct application of
Theorem1 from [4]. It should noted that constructing
a new subsetS(b+n)

2 from S
(b+n)
1 is called C-step

where following Rousseeuw and etc [4], C stands for



“concentration” because the new subsetS
(b+n)
2 gives a

lower value for the objective thanS(b+n)
1 does.

Random search algorithm:
Let ∪k

i=1S
(b+n)
i = {1, 2, · · · , N},

• Step 1: Generate all subsamples ofS(b+n)
i ,

and for each sub-sampleS(b+n)
i , calculate

Θ̂(S(b+n)
i )LTS and consequently find̂Θ(S̄)LTS =

min
S

(b+n)
i ∈S Θ̂LTS(S(b+n)

i ).
• Step 2: Using Chi-square distribution detect the

outliers and putS1 = {πi : i = 1, · · · , h}.
• Step 3: Repeat step 1 to step 2, until convergent.

V. CONCLUSION

In this paper, we have studied the Kalman filter
and smoother for the Error-In-Variables state space
models with outliers. The outliers have been detected
using highly robust estimator called minimum covari-
ance determinant which requires the Kalman filter and
smoother to be computed. In order to achieve the
optimal solution of the LTS problem, the random search
algorithm has been proposed. However, applying the
uniform sampling method to the randomized algorithm
leads to complex calculation and biased estimate. Thus,
we applied the subsampling method in order to keep
the same dependence structure as the original data.
The subsampling method leads to unbiased estimate
and decrease the complexity issue of calculations. The
proposed algorithm is highly robust to the effect of
outliers.
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Robust multivariate regression;Technometrics, Vol. 46, No. 3,
pp. 293–305 (2004)

[5] P. J. Rousseeum and K. Van Driessen: Computing LTS regres-
sion for large data sets;Data Mining and Knowledge Discovery,
Vol. 12, pp. 29–45 (2006)

[6] P. Rousseeum: Least median of squares regression;J. American
Statistical Assoc., Vol. 79, pp. 871-880 (1984)

[7] Ivan Markovsky and Bart De Moor: Linear dynamic filtering
with noisy input and output;Automatica, Vol. 41, No. 1, pp.
167-171 (2005)

[8] P. Heagerty and T. Lumley: Window subsampling of estimating
functions with application to regression models;J. American
Statistical Assoc., Vol. 95, pp. 197-211 (2000)

APPENDIX

The Kalman filter is given by

z(t + 1 | t) = Cx(t + 1 | t) (31)

x(t + 1 | t) = Ax(t | t− 1) + Bu(t) + K(t)ε(t) (32)

K(t) = [AP (t | t− 1)CT + S(t)]Σε(t)
−1 (33)

P (t + 1 | t) = AP (t | t− 1)AT + Q(t)− [AP (t | t− 1)CT + S(t)]

× Σε(t)
−1[AP (t | t− 1)CT + S(t)]T (34)

and the Kalman smoother fort = N, N − 1, · · · , 1 is
given by

x(t− 1 | N) = x(t− 1 | t− 1) + J(t− 1)[x(t | N)− x(t | t− 1)]

(35)

P (t− 1 | N) = P (t− 1 | t− 1) + J(t− 1)[P (t | N)

− P (t | t− 1)]J(t− 1)T (36)

J(t− 1) = P (t− 1 | t− 1)AP (t | t− 1)−1

ũ(t | t) = [Σfuy(t)− ΣũDT]Σε(t)
−1ε(t) (37)

ỹ(t | t) = [Σỹ − ΣTfuyDT]Σε(t)
−1ε(t) (38)

By using (37) and (38), the minimal variance estimates
of ŷ(t) and û(t) can be written in the form

û(t | t) = u(t)− [Σfuy − ΣũDT]Σε(t)
−1ε(t) (39)

ŷ(t | t) = y(t)− [Σỹ − ΣTfuyDT]Σε(t)
−1ε(t) (40)

Proposition 2: For 1 ≤ t ≤ s, the followings hold
(i)

P (t, s) = E{(x(t)− x(t | t− 1))(x(s)− x(s | s− 1))T}
= P (t | t− 1)L(s− 1, t)T. (41)

whereL(s, t) = L(s) · · ·L(t) andL(s) = A−K(s)C.
(ii)

Σε(t, s) = E{ε(t)ε(s)T} = CP (t | t− 1)L(s− 1, t)TCT (42)
Proof: (i)

x(s + 1)− x(s + 1 | s)
= A (x(s)− x(s | s− 1)) + nx(s)−K(s)ε(s)

= (A−K(s)C) (x(s)− x(s | s− 1)) + nx(s)−K(s)ny(s)

= G(s) (x(s)− x(s | s− 1)) + nx(s)−K(s)ny(s),

whereG(s) = (A−K(s)C), hence

P (t, s) = E{(x(t)− x(t | t− 1))(x(s + 1)− x(s + 1 | s))T}
= E{(x(t)− x(t | t− 1))(T (s) (x(s)− x(s | s− 1))

+ nx(s)−K(s)ny(s))T}
= E{(x(t)− x(t | t− 1))(x(s)− x(s | s− 1))}T (s)T

= P (t | t− 1)L(s− 1, t)T. (43)

(ii)

E{ε(t)ε(s)T} = E{C(x(t)− x(t | t− 1))(x(s)− x(s | s− 1))TCT}
= CP (t | t− 1)L(s− 1, t)TCT (44)


