
i

ii

iii

© Ahmed Salman Al Naser

2019

iv

TO MY FAMILY

v

ACKNOWLEDGMENTS

To begin with, I am most grateful to Allah for the good health and wellbeing that were allowed me

to complete this thesis. I would also like to express my sincere appreciations to my advisor

Professor Tarek Rahil Sheltami for his continuous support and guidance during my master degree

studies and supporting me with my research. Also, I would like to acknowledge him for his

insightful comments, patience, and motivation. Furthermore, I would like to extend my thanks to

the rest of my thesis committee: Dr. Farag Azzedin and Dr. Anas Al-Roubaiey for their comments,

suggestions, and encouragement, but also for the different questions which incentivized me to

widen my research from different perspectives.

vi

Table of Contents

ACKNOWLEDGMENTS... V

TABLE OF CONTENTS ... VI

LIST OF FIGURES .. IX

LIST OF ABBREVIATIONS... X

ABSTRACT ... XI

 XII ...ملخص الرسالة

CHAPTER 1 INTRODUCTION .. 1

1.1 PROBLEM STATEMENT ... 2
1.2 OBJECTIVES ... 3
1.3 METHODOLOGY .. 4
1.4 THESIS STRUCTURE .. 5

CHAPTER 2 SOFTWARE DEFINED NETWORKING (SDN) ... 7

2.1 INTRODUCTION ... 7
2.2 SDN HISTORY .. 7
2.3 TRADITIONAL NETWORKING PARADIGM .. 8

2.3.1 Traditional Network Layers ... 8
2.3.2 Network Devices .. 14

2.4 THE NEED FOR SDN .. 15
2.5 SDN ARCHITECTURE.. 16

2.5.1 Infrastructure Layer (Data Layer) .. 16
2.5.2 Control Layer ... 16
2.5.3 Application Layer ... 17

2.6 SDN CAPABILITIES .. 18
2.7 SDN CONTROLLERS ... 18

CHAPTER 3 OPENFLOW PROTOCOL ... 20

3.1 OPENFLOW OVERVIEW .. 20
3.2 OPENFLOW HISTORY ... 20
3.3 THE NEED FOR OPENFLOW ... 20
3.4 OPENFLOW ARCHITECTURE .. 21

3.4.1 Dedicated OpenFlow Switches ... 22
3.4.2 OpenFlow-enabled Switches .. 23

3.5 OPENFLOW CONTROLLERS ... 24
3.6 OPENFLOW CHANNEL .. 25

CHAPTER 4 MOVING TARGET DEFENCE (MTD) .. 26

4.1 TRADITIONAL SECURITY AND ATTACKS METHODOLOGY .. 26
4.2 MOVING TARGET DEFENCE DEFINITION .. 28
4.3 MOVING TARGET DEFENCE OVERVIEW ... 29
4.4 MOVING TARGET DEFENCE AND DDOS ... 30

CHAPTER 5 RELATED WORK .. 32

vii

CHAPTER 6 PROPOSED SOLUTION .. 37

6.1 SYSTEM MODEL ... 37
6.1.1 Threat Model ... 37

6.2 PROPOSED SOLUTION OVERVIEW ... 38
6.2.1 Distributed Controller Network ... 38
6.2.2 Moving Target Defence Algorithm – Groups ... 39
6.2.3 Moving Target Defence Algorithm – Random ... 41

CHAPTER 7 RESULTS DISCUSSION ... 43

7.1 SUPPORTING SOFTWARE .. 43
7.1.1 Virtualization Software .. 43
7.1.2 Mininet .. 43
7.1.3 ONOS ... 44
7.1.4 Atomix ... 44
7.1.5 Architecture ... 45

7.2 SIMULATION SETUP ... 46
7.3 EXPERIMENT 1: PACKET LOSS .. 46

7.3.1 Network Topology ... 46
7.3.2 Controllers Setup ... 46

7.4 EXPERIMENT 2: CPU UTILIZATION (MECHANISM OVERHEAD) ... 49
7.5 NETWORK BANDWIDTH CONSUMPTION .. 50
7.6 PROPOSED SOLUTION VALIDATION ... 51
7.7 PROPOSED SOLUTION BLIND DDOS ATTACK .. 53
7.8 PROPOSED SOLUTION LIMITATIONS .. 54

CHAPTER 8 CONCLUSION AND FUTURE WORK.. 56

8.1 CONCLUSION ... 56
8.2 FUTURE WORK ... 57

REFERENCES ... 58

VITAE ... 63

viii

List of Tables

Table 1 SDN Controllers Classification [13] .. 19

Table 2 OpenFlow Switches Types ... 23

Table 3 ONOS Groups ... 47

Table 4 Packet Loss Percentage Comparison 1 – Algorithm 1 .. 48

Table 5 Packet Loss Percentage Comparison 1 – Algorithm 2 .. 49

ix

List of Figures

Figure 1 Network Before MTD Cycle .. 4

Figure 2 Network After MTD Cycle .. 5

Figure 3 Traditional Network Paradigm ... 8

Figure 4 OSI Model ... 9

Figure 5 TCP connection establishment ... 12

Figure 6 Application Layer Protocol Example - HTTP ... 14

Figure 7 SDN Architecture showing the three layers: infrastructure, control, and application. .. 17

Figure 8 OpenFlow switch architecture. .. 22

Figure 9 OpenFlow Network Example [26] .. 24

Figure 10 Traditional Network Defence Using Access Control .. 26

Figure 11 Attack Surface with and without MTD [28] ... 29

Figure 12 MTD with IP Addresses .. 30

Figure 13 DDoS Attack on SDN Network .. 31

Figure 14 Threat Model .. 37

Figure 15 Distributed Controller Topology ... 38

Figure 16 Algorithm 1 Flow Chart .. 40

Figure 17 Algorithm 2 Flow Chart .. 42

Figure 18 ONOS Web UI .. 45

Figure 19 Overall System Architecture ... 45

Figure 20 Network Topology ... 46

Figure 21 Controllers’ Topology ... 47

Figure 22 Average Packet Loss Percentage – 12 Switches – Algorithm 1 48

Figure 23 Average Packet Loss Percentage – 8 Switches – Algorithm 2 49

Figure 24 CPU Utilization ... 50

Figure 25 Network Bandwidth Overhead .. 51

x

LIST OF ABBREVIATIONS

AG Attack Graphs

API Application Programming Interface

APT Advanced Persistent Threats

CLI Command Line Interface

CPU Central Processing Unit

DHCP Dynamic Host Control Protocol

DNS Domain Name System

DDoS Distributed Denial of Service

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IP Internet Protocol VII

LAN Local Area Network

MAC Medium Access Control

MTD Moving Target Defence

NAT Network Address Translation

OFP OpenFlow Protocol

ONF Open Networking Foundation

ONOS Open Network Operating System

OSI Open Systems Interconnection

PC Personal Computer

QoS Quality of Service

SDK Software Development Kit

SDN Software Defined Networking

SMT Satisfiability Modulo Theory

TCP Transmission Control Protocol

TLS Transport Layer Security

TTL Time To Live

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VM Virtual Machine

WAN Wide Area Network

xi

Abstract

Full Name : [Ahmed Salman Hasan Al Naser]

Thesis Title : [SOFTWARE DEFINED NETWORKING BASED MOVING TARGET DEFENCE

MECHANISM]

Major Field : [Computer Networks]

Date of Degree : [May 2019]

Computer networks management and configuration is challenging due to their complexity and

dynamic nature. Configurations are often done in a decentralized fashion because the network

devices are separated, and each controlling device has its own resources and logic. Software

Defined Networking (SDN) is one of the new paradigms proposed to solve the management

complexity issues with large networks. It offers a centralized point of control through separating

the network planes. At the heart of SDN lies the controller which is an entity responsible for

managing and configuring the various parts of the network from switches, routers and access

policies.

There have been many solutions to protect an SDN based network and boost its security.

However, few works have addressed protecting the SDN controller itself. In this work, we use

Moving Target Defence (MTD) which is a technique where the environment is constantly changing

to deceive potential attackers and protect the SDN controller from Distributed Denial of Service

(DDoS) attacks. We survey the literature for techniques that employ SDN-based MTD as security

measure. Then, propose an approach that makes use of a distributed SDN controller environment

and apply MTD on it. Finally, the mechanism is implemented and tested.

xii

 ملخص الرسالة

 سلمان حسن آل ناصر : أحمدالكاملالاسم

 الشبكات المعرفة بالبرمجة باستخدام الدفاع المتحرك حماية الرسالة:عنوان

 التخصص: شبكات الحاسب الآلي

 9201 مايو،: تاريخ الدرجة العلمية

المتغيرة والمعقدة. الاعدادات تدخل على الشبك الشبكات واعدادها تشكل تحديا نظرا لطبيعتها إدارة

بشكل غير مركزي لكون الأجهزة منفصلة عن بعضها البعض، كل جهاز يتحكم بموارده ومنطقه.

الشبكات الكبيرة. إدارةحدى الطرق الجديدة التي طرحت لتحل مشاكل هي ا ةرمجبالشبكات المعرفة بال

ريقة مركزية بواسطة فصل منطق التحكم من الشبكة. في توفر هذه الطريقة وسيلة للتحكم بالشبكة بط

وإعداد أنحاء الشبكة المتعددة من مبدلات إدارةقلب الشبكات المعرفة بالبرمجة يقع المتحكم ووظيفته

 التمكن. وسياسيات موجهاتها الشبكة و

يوجد العديد من الحلول لحماية الشبكات المعرفة بالبرمجة. لكن القليل من هذه الحلول يركز على

حماية المتحكم. في هذا العمل، نقوم باستخدام أحد التقنيات الجديدة المسمية بالدفاع المتحرك. هذه

لخداع المهاجمين وحماية الشبكة من هجمات المنع التقنية تهدف إلى تغير بيئة الشبكة بشكل متواصل

من الخدمة. نقوم بالبحث عن الحلول الموجودة لحماية الشبكات المعرفة بالبرمجة التي تستخدم هذه

التقنية الجديدة. بعد ذلك، نطرح طريقة لحماية المتحكم باستخدام أسلوب غير مركزي للتحكم بالشبكة.

المقترح واختباره بعدة طرق لإيجاد مدى فعاليته. في النهاية، نقوم بتصميم الحل

1

Chapter 1

Introduction

Computer networks management and configuration is challenging due to their complexity and

dynamic nature. A typical network consists of a large number of nodes such as switches, routers,

and many types of middleboxes [1]. Events are continuously occurring in such networks in a

simultaneous manner. Networks are maintained by network operators that are responsible for

configuring the network as well as enforcing high level policies while responding to events that

could occur. In order to enforce these policies, low-level configuration in network devices must be

carried by the operator.

Configurations are often done in a decentralized fashion because the network devices are separated,

and each controlling device has its own resources and logic. These devices must be accessed

individually and most of the time that is done through a command line interface (CLI). Moreover,

the configuration is done on a network snapshot most of the time. This means that network changes

that happen continuously must be accommodated manually by the network operator [1].

Network operators need some tools and methods that can support their work when managing and

configuring network. This has proven to be difficult since most networks are composed of many

propriety-based devices that are interconnected together. This led to the development of solutions

to focus on temporary solutions such as tools that analyse and fix low-level configurations. At the

same time, more functionality is required by operators as well as an increase in the complexity

levels of these network policies [1].

Software-defined networking (SDN) is an approach that is used in computer networking to

programmatically manage, control, and configure networks efficiently in order to improve network

2

performance and monitoring [2]. The main proposal of SDN is the decoupling of the control plane

(routing packets), the data plane (packets forwarding), and the application plane. This architecture

allows for a centralized approach to management which is easier to maintain and troubleshoot.

SDN offers many advantages over traditional networks. Software is easier to change compared to

traditional firmware and can be done through commands in the network devices. Another advantage

is the centralization of the management process. Network operators can configure the network

through a single point, which is the controller. This is much more convenient and easier than

changing distributed devices individually in a traditional network.

Despite its many advantages, SDN also faces several challenges. One being the separation between

the control plane and data plane while still offering acceptable levels of service. The architecture

must be able to support reliability, scalability, Quality of Service (QoS), and service management

[3]. Another challenge that needs to be considered is providing security for SDN. With the

separation of planes, the control plane access needs to be authenticated and authorized. Finally, to

allow SDN to be adopted by the industry, it must be able to integrate with current networks.

1.1 Problem Statement

Network applications are widely spread and used in both the industry and research. These systems

are usually exposed to a wide range of cyber-attacks. With the addition of SDN, the network layers

are separated allowing for more ways to exploit the network. One such method is to flood the SDN

controller with requests to bring it down. Since the controller is at heart of the SDN platform, if it

is brought down the network will cease to function. No new flows will be installed on the switches

making new connections impossible. This act cripples the network and therefore stops any

applications from contacting each other through the network.

There has been major research in securing the network infrastructure which consists of switches,

routers and end devices. Since this area has been covered the security of an SDN-based network

3

has been boosted considerably. However, there is a gap when it comes to securing this platform.

The SDN controller needs to be protected against Distributed Denial of Service (DDoS) attacks so

that the network can function. The motivation for this work was to fill in the gap of securing the

SDN controller from being flooded and brought down. In this paper, MTD is used to secure the

SDN controller by introducing a distributed controller environment. The target of this paper is to

defend the SDN controller from being brought down by a malicious attacker.

1.2 Objectives

The main target of this research is to propose an approach that addresses the problem of securing

the SDN controller from DDoS attacks. For the approach to be beneficial, it must achieve the

following objectives:

• Saving Network Bandwidth

The network should not suffer an overhead that impacts the applications

performance by a big margin.

• Self-Configuration

The proposed solution should adapt the network automatically without manual

intervention from the network operator.

• Security

The network must be secure against DDoS attacks.

• Scalability

The network should be scalable without violating previous objectives or impacting

network performance greatly.

4

1.3 Methodology

To secure the SDN network, a distributed controller solution is employed. Using a distribute

controller provides a robust backend for the network. On top of it, the MTD mechanism is used

to swap the controlling entity of each network device periodically. The details of the mechanism

required deep knowledge of several topics. In the following chapters, the background required to

understand the solution are discussed in length. Below is a simple figure showing the basic idea

of the implemented mechanism. As shown, the mechanism swaps the active controllers over

time.

Figure 1 Network Before MTD Cycle

During the first cycle, Controller 1 and 2 are active and will handle the management of all the

network devices. Meanwhile, Controller 3 will stay in an idle state, waiting for either the next

cycle or when a failure in one of the other controllers happens. In the second figure shown, the

second controller goes idle and the third one becomes active. Once the controller becomes active,

it will take over the resources that lost their original controller. This process happens in handover

5

fashion. Meaning that before the second controller goes fully idle, it first hands over ownership

of the assets it is managing.

Figure 2 Network After MTD Cycle

1.4 Thesis Structure

This thesis will be structured as follows:

Chapter 1: Introduction

Introduction of the thesis topic and outlining the objectives of the research. Furthermore, an

overview of the methodology is shown.

Chapter 2: Software Defined Networking (SDN)

The concept of SDN is discussed in detail including its history, a comparison with traditional

networking paradigms, and its architecture.

Chapter 3: OpenFlow Protocol

6

The OpenFlow protocol is discoursed in this chapter. The need for it is outlined and then its

architecture is also shown.

Chapter 4: Moving Target Defence (MTD)

The MTD concept is explained here. The method difference from classical security measures is

discussed as well.

Chapter 5: Related Work

The work that is related to this thesis is outlined here. The strengths and weakness are shown for

each one. After that, the gap in research is discussed and the need for a new solution is explained.

Chapter 6: Proposed Solution

In this section, the proposed solution is explained in details. The threat model is disclosed and the

countermeasures are shown.

Chapter 7: Results Discussion

Here, the results of the implementation are shown and then discussed. Figures are shown to

support the research results.

Chapter 8: Conclusion and Future Work

Finally, the conclusion of this work is shown here. Furthermore, possible future work is discussed

here.

7

Chapter 2

Software Defined Networking (SDN)

2.1 Introduction

SDN is defined as the separation of the control logic and data forwarding in a network. The control

logic is outsourced from the network devices to a singular entity named the Controller. The

Controller manages the network and can be programmed through the usage of Application

Programming Interfaces (APIs). In this section, the architecture of SDN is described in detail and

its benefits to the network are outlined.

2.2 SDN History

One of the earliest efforts to decouple the control logic and forwarding functions was conducted

by the Internet Engineering Task Force (IETF). The team proposed and published a standard

interface named the Forwarding and Control Element Separation (ForCES) [4]. Furthermore, IETF

pursed the same idea in the form of the Linux Netlink as an IP Service Protocol.

There were two main reasons that these efforts were not adopted by the community. The first

reason is that the Internet community at the time feared that the separation of the planes might

introduce a risk. The second reason was that the vendors thought that introducing a new standard

interface will light up a competition due to the addition of the APIs between the data and control

planes.

Later on, an open source implementation led to the creation of one of the major contributors to

SDN today, which is OpenFlow. After the introduction of OpenFlow, SDN gained traction in the

research field spawning many projects and supporting a wide variety of research topics. In

addition to academic uses, OpenFlow was adopted by multiple deployments [5].

8

2.3 Traditional Networking Paradigm

In traditional networks the control and data planes are coupled together. A switch forwards data

based on flow tables within the switch itself. To setup these devices that the network is composed

of, each one of them needs to be accessed and configured on its own. This makes it difficult to

establish the network and creates a burden on the network operators.

Figure 3 Traditional Network Paradigm

2.3.1 Traditional Network Layers

Traditional networks are based on the Open Systems Interconnection (OSI) Reference Model. This

model was published in 1984 by ISO and the International Telecommunication Union. The goal of

the model was the standardization of the communications protocols without the need to consider

the network technologies or internal structure. The model defines seven abstraction layers that

partition the system [6]. In this paradigm, each layer will provide services to the layer below it

while receiving services from the layer above it.

9

Figure 4 OSI Model

2.3.1.1 Layer 1: Physical Layer

The lowest layer at which raw unstructured data is transmitted by using a transmission medium.

The main purpose of this layer is to convert digital bits into signals. In this layer, physical data

rates, voltage changes, and physical connections are defined. A network topology can describe

the components that constitute this layer.

2.3.1.2 Layer 2: Data Link Layer

This layer provides a node-to-node connection. The link here is direct between two nodes. The

main tasks of this layer include detecting and correcting errors that occurred during the Physical

Layer operation. Furthermore, it provides flow control between the two connected devices. This

layer is divided by IEEE 802 into two sublayers.

10

• Medium Access Control (MAC) Layer: which handles permissions to send data and how

a medium is accessed by the devices in the network.

• Logical Link Control (LLC) Layer: which handles error detection and link synchronization

in addition to identifying the network layer protocols.

For IEEE 802 networks such as 802.3 Ethernet, 802.11 Wi-Fi, and 802.15.4 ZigBee, the MAC and

LLC layers operate at the data link layer.

2.3.1.3 Layer 3: Network Layer

Nodes communicate across networks by employing the services of the Network Layer. This layer

allows the transferring of variable length data sequences (packets) across different networks

through functional and procedural means available for nodes. By definition, many nodes connect

to a network, each connected node is permitted to transfer messages to other nodes.

Furthermore, each node will have an address. Messages are sent through the network by

providing the data and the address of the target node. This means that the network will handle

the delivery of the message even if it has to pass through some intermediate nodes. The network

will also be responsible of handling large messages by splitting them to fragments as necessary.

These fragments are then sent independent of each other and are reassembled at another node.

The network has an option to report any delivery errors, but it is not a requirement of this layer.

Reliability of messages delivery is not guaranteed in this layer, it is left to the protocol to decide

whether to provide reliable message delivery or not. Some examples of the protocols

implemented at this layer include Enhanced Interior Gateway Routing Protocol (EIGRP), Internet

Control Message Protocol (ICMP), and Internet Group Management Protocol (IGMP) [7].

11

2.3.1.4 Layer 4: Transport Layer

End to end transfer between hosts is the responsibility of the transport layer. It provides the

means to transfer variable-length data sequences in terms of functional and procedural methods,

while assuring a level of quality of service. The transport layer functions include flow control of a

given link, segmentation, and error control [7]. There can be different types of protocols in this

layer, some protocols provide the following services:

• Maintain a state: meaning it keeps information about the session.

• Connection-oriented: meaning it establishes a connection between the hosts before

transmitting any data.

This allows the transport layer to can keep track of the segments and provides the means to avail

segments retransmission in case of failures in the delivery. Contrast to that, when no errors occur,

the transport layer can acknowledge the successful data transmission and continue sending the

next available data. The transport layer also handles messages segmentations on the data

received from the application layer. The process of dividing messages that are long and therefore

will not normally be transferable into smaller messages is called Segmentation. Examples of

protocols that are commonly referred to be operate at this layer but were not developed as part

of the OSI model are:

12

Figure 5 TCP connection establishment

• Transmission Control Protocol (TCP): a connection-oriented protocol that provides

reliable ordered delivery and error checking.

• User Datagram Protocol (UDP): a connectionless protocol that does not provide reliability

nor error checking and sends messages in no particular order.

2.3.1.5 Layer 5: Session Layer

Connections between computers are controlled in this layer. At the application level, connections

are established then managed between the local and remote hosts. It also terminates the

connection. Procedures that allow controlling the session by checkpointing, suspending,

restarting, and terminating it are provided with the option of full-duplex, half-duplex, or simplex

operation. This layer is present in the OSI model but absent in the Internet Protocol Suite. Its

functions, which include gracefully closing a session, are handled in the Transmission Control

Protocol in the implementation of the Internet Protocol Suite. Applications that make use of

remote procedure calls often implement this layer [7].

13

2.3.1.6 Layer 6: Presentation Layer

Application layer entities make use of the presentation layer to establish a context between each

other, in which a mapping between them might be provided that allows using different syntax

and semantics [7]. Presentation protocol data units could be encapsulated inside the session

protocol data units If a mapping is available and then they can be passed down the protocol stack.

By providing a translation between application and network formats, this layer can provide

independence from data representation. The application takes the transformed data from the

presentation layer in a form it accepts. Data formatting is handled by this layer when sending

across the network and it is sometimes referred to as the syntax layer. Compression can be availed

in this layer.

2.3.1.7 Layer 7: Application Layer

The end user interacts with the application layer making it the OSI layer closest to him/her, this

creates a common point of contact between the user and the OSI model as both of them access

the application layer. A communication component is needed to be implemented in the software

when interacting with this layer. As far as the OSI model scope goes, such application programs

don’t belong in it. The main functions of this layer include identifying communication partners,

determining resources availability, and synchronizing the communication between the partners.

14

Figure 6 Application Layer Protocol Example - HTTP

To identify a communication partner, the application layer determines the identity and availability

of the communication partner for an application with data to transmit. Applications may employ

more than one application entity in this layer. Take for example website used to order products.

Such site might make use of two application-entities: one using HTTP when communicating with

users, while the second records orders and sends them to a remote database protocol. Both these

protocols are not particularly concerned with orders. The application implements the for the

orders itself. The availability of the resources cannot be determined by the application. Some

examples of the protocols that fall under this layer are HTTP, FTP, SMTP, and DNS.

2.3.2 Network Devices

2.3.2.1 Router

In computer networks, forwarding data packets is carried by a device called the router. Over the

Internet, routers have the duty of directing the traffic to reach the destination. Data packets could

contain things like a web page or an email and is sent through the Internet. Routers forward

15

packets on their interfaces from one to another throughout the network until the packets arrive

at the destination network device.

2.3.2.2 Switch

Computer networks employ a device call a network switch (which is also often referred to as

switching hub, bridging hub, officially MAC bridge) to connect devices on a computer network in

order to carry a multitude of functions including using packet switching to receive, process, and

forward data to the destination device. Operating at the data link layer (layer 2) of the OSI model,

a network switch is a multiport network bridge that processes and forwards data which is enabled

by employing hardware addresses. There exist also some switches that can operate at the

network layer (layer 3) which allows them to incorporate routing functionality in addition to their

basic functions.

2.4 The Need for SDN

The number of devices that are connected to the internet in the recent years has skyrocketed.

Many types of devices are now connected such as mobile devices, smart home devices, and

normal desktop devices. The traditional networking architecture is not able to support the

increasing needs of the users. Some of the trends that lead the need to introduce a new paradigm

capable of supporting a dynamic network include [8]:

• Traffic Patterns that change: classically, devices were communicating as client-server to

retrieve the data to the user. However, in the recent trends, devices access multiple

databases and servers while users are pushing for data from multiple types of devices

which might operate in a moving environment.

• Information Technology Customization: users are accessing the network from many

devices such as smart phones, tablets and notebooks. IT needs to accommodate the

16

needs of these users while still maintaining a high standard of protecting corporates data

and upholding compliance.

• Cloud Services: another technology that is becoming more popular is the employment of

cloud computing. Enterprises need to access its applications on demand while still

maintaining security requirements. The environment must also be easily adaptable to the

ever-changing demands of business.

2.5 SDN Architecture

The primary concept of SDN is the decoupling of the intelligence from the forwarding devices and

moving it to a centralized controller [9]. As illustrated by Figure 1, the structure of SDN can be

divided into application layer, control layer, and infrastructure layer.

2.5.1 Infrastructure Layer (Data Layer)

 Consists of the network devices such as routers, switches, and access points. This layer is

responsible for forwarding packets according to the rules/policies assigned. This layer forms the

infrastructure of the network to work on by connecting the various devices together. Since the

control layer is extracted from this model, the devices in the infrastructure are accessed through an

abstraction.

2.5.2 Control Layer

The mediator between the infrastructure and application layers. It contains the controller which

controls the SDN functions. The controller installs forwarding rules on the switches and routers

through programming [9]. Communications between the controller and the infrastructure are

enabled by the southbound interface such as OpenFlow. Using the southbound interface, this layer

can access the abstractions of the infrastructure layer in order to control the network devices. On

the other hand, the northbound interface will be serving as an access point for the applications. This

17

can be done by using APIs to access the devices. As an example, an application could gather

statistics about the network devices by using the functionalities of this interface.

2.5.3 Application Layer

The highest layer in the architecture and is responsible for business and security applications. Many

applications are contained in this layer such as mobility management, intrusion detection systems,

network virtualization. This layer communicates with the controller through the northbound

interface.

Figure 7 SDN Architecture showing the three layers: infrastructure, control, and application.

18

2.6 SDN Capabilities

SDN is enabled mainly through the usage of a central controller that manages the network elements

such as routers, switches, and firewalls through a program. Through this feature, SDN can adapt to

dynamic network changes by adjusting the flows to enhance network performance. Furthermore,

the abstraction through layers, where different layers can be interfaced by APIs, alleviates the

burden on programmers [10]. As consequence of the abstraction, the application layer does not

interact with the infrastructure components directly. There are many tools that support this

abstraction like Frentic [10] and pyretic [11]. Physical infrastructures can be shared by multiple

users through virtualization [12]. Network virtualization software is made available by many

companies such as VMWare, Microsoft, Hyper-V, Citrix, Xen server, and RHEL [12].

2.7 SDN Controllers

There are many SDN controllers in the field and several ways to categorize them. One possible

categorization is whether a controller is centralized or distributed [13]. In a centralized controller,

all forwarding devices are managed by a single entity. This creates a single point of failure and

harms scalability. In addition, one controller could fail to handle the management of a large

network. Some examples of centralized controllers are NOX-MT [14], Beacon [15], and Floodlight

[16].

Alternatively, distributed controllers can adapt to any environment requirements through scaling

up [13]. Distributed controllers can be made of either a centralized cluster of nodes or a distributed

set of network components. Some examples of distributed controllers are Onix [17], HyperFlow

[18], and ONOS [19]. Distributed controllers mostly operate on a weak consistency semantics, this

implies that data updates are eventually carried on all controller nodes. Opposite to that, having

strong consistency guarantees that the most updated property will be read by all controllers after a

write operation. Very few controllers provide strong consistency with Onix and ONOS as

examples.

19

Name Architecture Northbound
API

Consistency License Prog.
Language

Beacon [15] Centralized
multi-threaded

Ad-hoc API No GPLv2 Java

Floodlight [16] Centralized
multi-threaded

RESTful API No Apache Java

Kandoo [20] Hierarchically
Distributed

_ No _ C, C++,
Python

HyperFlow [18] Distributed _ Weak _ C++

Onix [17] Distributed NVP NBABI Weak, Strong Commercial Python, C

NOX-MT [14] Centralized
multi-threaded

Ad-hoc API No GPLv3 C++

OpenDayLight
[21]

Distributed REST,
RESTCONF

Weak EPL v1.0 Java

ONOS [19] Distributed RESTful API Weak, Strong _ Java

POX [22] Centralized Ad-hoc API No GPLv3 Python

Ryu NOS [23] Centralized
multi-threaded

Ad-hoc API No Apache 2.0 Python

SNAC [24] Centralized Ad-hoc API No GPL C++

Trema [25] Centralized
multi-threaded

Ad-hoc API No GPLv2 C, Ruby

Table 1 SDN Controllers Classification [13]

20

Chapter 3

OpenFlow Protocol

3.1 OpenFlow Overview

One of the main protocols enabling SDN is OpenFlow [26]. Through OpenFlow, switches and

routers flow tables can be programmed as necessary. Traffic can be partitioned by network

administrators to allow research and production to coexist in a network. This allows researchers to

conduct experiments and try new security mechanisms on the same network without affecting

production.

3.2 OpenFlow History

The OpenFlow standard is under the management of the Open Networking Foundation (ONF)

[27]. ONF is the main promoter of the SDN paradigm and it is led by users. OpenFlow has been

defined by ONF as the first communication interface that has been standardized to orchestrate

the connection between the SDN architecture layers [26]. Network devices can be manipulated

by OpenFlow through direct access. Such devices include switches and routers which can be either

physical or virtual. OpenFlow serves as way to take back network control from proprietary

network switches into an open source one that can be contributed to by the community.

3.3 The Need for OpenFlow

OpenFlow was introduced due to the lack of a solution that could process a huge number of

packets needed for a college research project. Commercial products were too expensive and the

open source implementations at the time needed for a programmable network were inefficient.

A more flexible approach was required that needed to satisfy several assumptions including [26]:

• Provides high performance while minimizing the cost.

21

• Capable of enabling a wide variety of projects and research subjects.

• Could isolate production traffic from development traffic.

• Compliant with the needs of a closed platform.

3.4 OpenFlow Architecture

In traditional networks, control of the packets flow is handled by the network devices (e.g. switches,

routers, etc). These devices are built by commercial companies using their propriety code. Each

vendor has its own firmware that needs to be interfaced with in a different way than the other. This

makes it difficult for researchers to design and implement their projects using the current available

resources. An open source alternative is needed so that the researchers can have a transparent

platform to work with.

The idea of OpenFlow is quite simple, flow tables that are already in use by Ethernet switches and

routers are reused by the standard to build firewalls, implement NAT, provide QoS, and gather

various statistics about the network.

OpenFlow allows to separate the development flows from the productions ones by providing an

open protocol to program routers and switches flow tables. Researchers have control on how to

handle their flows, starting from how to process them and including the path they traverse. This

allows the researchers to experiment with new protocols, security mechanisms, and even

implementing IP replacements [26].

OpenFlow switches data path are built with a flow table and for each flow entry, an action is

associated. It is possible to extend the list of actions performed by an OpenFlow switch. To provide

a high level of performance while incurring a low cost, the data path needs to offer some

flexibility. This dictates that a range of actions that are somewhat limited but still prove to be

valuable.

22

Figure 8 OpenFlow switch architecture.

OpenFlow switches are made of three different essential components. First, (1) flow tables that has

an association between flow entries and actions. They also require a (2) secure channel that

connects the SDN controller to the switch allowing commands and packets to be exchanged.

Finally, the (3) OpenFlow protocol, which is open standard that describes communications between

the controller and the switches. Figure 2 shows the described OpenFlow switch architecture.

Switches can be classified into two categories 1) dedicated OpenFlow switches that do not

implement any of the layer 2 and layer 3 functionalities and 2) OpenFlow-enabled switches that

have been preloaded with the OpenFlow protocol and contain several interfaces.

3.4.1 Dedicated OpenFlow Switches

A dedicated OpenFlow switch acts a dumb forwarding only device that is used a s data path by

the controller. From this switch’s point of view, flows are constrained by the implementation of

the Flow Table. As an example, flows could be just a TCP connection between two hosts. The flow

could also be all the VLAN tag sharing packets. For each flow entry, an action is assigned to it [26].

23

As mentioned before, the actions list can be expanded, however the basic ones that each

OpenFlow switch comes with are [26]:

1. Forward the packet to a target port. This is the most basic function of a switch. Without it,

routing the packets through the network would be impossible.

2. Encapsulate the flow and send it to a controller. In this action, the packet is encapsulated and

sent through the secure channel to the controller. This occurs most of the time when a new

flow arrives to the switch and it does not correspond to any flow rules it has. In such cases

the controller’s aid is needed to determine if a new flow entry needs to be installed to

accommodate this packet.

3. Drop the packet flow. This is mostly used to secure the network against attacks. The most

basic attack that could harm the network if this action was omitted is the DDoS attack. It

would flood the switch with a huge amount of new flows and bring it down.

3.4.2 OpenFlow-enabled Switches

These switches will have the enhanced features of the OpenFlow protocol installed on them. They

will also have a secure channel that the dedicated switches can use to communicate with the

controller as well as Flow Tables [26]. Most of the time, TCAM will be reused by the switches for

Flow Tables to use.

Switch Type Dedicated OpenFlow Switch OpenFlow-enabled Swtich

Forwarding Yes Yes

Use Secure Channel Yes Yes

Install Flows No Yes

Table 2 OpenFlow Switches Types

24

3.5 OpenFlow Controllers

In the OpenFlow environment, a controller is responsible for adding and removing flows to the

switches. A controller can be as simple as an application that runs inside a normal PC. In this case

it might be used to interconnect multiple other PCs together for the sake of the experiment. In

general, OpenFlow can be thought of as a generalized version of the VLANs concept [26].

At a higher level, a controller can also be much more sophisticated. It could dynamically add and

remove flows from the switches. This can occur in real time as the experiment is taking place.

Furthermore, a controller can separate multiple experiments flows allowing researchers to reuse

it multiple times.

Figure 9 OpenFlow Network Example [26]

25

3.6 OpenFlow Channel

A communication channel is used between the controller and the network switches specifically

for OpenFlow messages exchange. The OpenFlow protocol initiates this channel between the

controller and each switch. It is possible to establish more than one connection originating from

one switch to a single controller or even to multiple controller. The connections can be classified

to either a master connection or a slave connection. Some of the connections can be established

as equal as well [26].

26

Chapter 4

Moving Target Defence (MTD)

4.1 Traditional Security and Attacks Methodology

In classical security mechanisms, the assumption is a static network setup with minimal changes

in topology. To attack such networks, the malicious entity first surveys it in order to find out

potential vulnerabilities in the network. After identifying such vulnerabilities, the attacker

attempts to exploit them and either bring down the network, or attempt to acquire unauthorized

access on the assets of the network. Furthermore, an attacker could control some of the assets

and make them act as zombies for future activities.

Figure 10 Traditional Network Defence Using Access Control

From a defender point of view, protecting the system can be done by controlling access on the

network assets [28]. This could be either a physical isolation or through network access policies.

For example, an access policy could be placed on a certain asset to protect it from unauthorized

access. This guards the data and blocks attackers from gaining it. This does not come at no cost

27

however, the more rules are added to the network, the harder it becomes for regular users to

access the assets. More importantly, this introduces an overhead on the network that delays

requests.

Another possible method of guarding the network is by remodelling its structure [28]. This

includes patching out system vulnerabilities or upgrading the system resources. Since at the core

of an attacker strategy, the existence of a vulnerability is a requirement for an attack to succeed.

This approach invalidates attacks that rely on vulnerabilities to succeed. However, it is inefficient

to patch out all vulnerabilities in the system, especially if it was a large one consisting of many

subcomponents that are developed independently. Some of these might even be acquired from

third parties making it harder to identify the vulnerabilities.

It can be concluded from the above that such traditional techniques might be ineffective against

a continuous surveying attack alongside with a long-term analysis of the network. Furthermore,

finding and amending all the vulnerabilities in a system is difficult task to accomplish cognitively.

To summarize, the main challenges [28] are:

• The predefined network structure gives the attackers an easier prey due to it being

susceptible to long-term analysis. Malicious entities can collect information about the

network for as long as needed before attempting to attack it. From that point on, the

attacker would have the advantage which might include zero-day vulnerabilities. While

on the other hand, the defender has a hard time exploring all possible attack vectors and

patching out all vulnerabilities.

• The static aspect of the network allows the attackers to slip in unnoticed malicious plug-

ins by carefully placing them after an analysis is conducted. Given enough time, an

attacker could open a backdoor for future attacks as well. Meanwhile, the defender might

28

have trouble detecting intrusions in real time. Not to mention that there is a time frame

when a vulnerability is discovered until it is patched that could be exploited by the

attacker.

• The connected nature of the network provides a perfect target for attackers. Once an

attacker gains access through one point of the network, attacking the other assets

becomes relatively easier. In contrast to that, a defender needs to maintain a security

level on all the access points and all components of the network. Providing a

comprehensive defence on the network is necessary although tough to achieve.

4.2 Moving Target Defence Definition

The concept of MTD has been introduced in 2009 at a security summit. The definition kept being

clarified over the years. Recently, MTD is defined as a technique that formulates, creates,

analyses, and deploy a system in a continuously changing manner while maintaining complexity

to deceive attackers and increase the time required to study the system in order to increase the

system resiliency [28].

Under traditional networks defence mechanisms, the attack surface that an attacker observes

expands time goes on. This is due to the static nature of the network. Moreover, the certainty of

the configuration keeps increasing since it does not change over time. To counter this, MTD’s

constant changing of the network layout creates a bigger attack surface that keeps mutating over

time. This reduces the effectiveness of the analysis on the network and increases the cost of the

attack.

29

Figure 11 Attack Surface with and without MTD [28]

4.3 Moving Target Defence Overview

At the core of MTD is the adaptation process [29]. Initially, a system is deployed in a normal state

that it can operate on. After it starts running, an MTD begins adapting the system’s configurations.

The adaptation can be triggered through an intrusion detection system (IDS) alert or by evaluating

the environment data. The process of adapting the system occurrence can be fixed to certain timings

or can be randomized. Furthermore, it can also be triggered through an external source. Any new

changes in the configurations must be valid, meaning that these changes must satisfy the system’s

constraints. If the adaptation process is found to be valid, it is implemented on the target system.

The main goal of an MTD system is to remove the attackers’ advantage of time [29]. The traditional

approach to securing a system is by reducing the attack surface [30]. This means that the system is

protected by removing unnecessary software, closing unused ports, or updating the software to its

most recent iteration. However, this leads to several problems including insufficient authentication

mechanisms, complex firewall rules, and places a substantial overhead on maintaining access

control and credentials. These issues usually lead to an extended period of the configurations

remaining static.

With MTD, the attack surface is hardened through adaptive approaches. These approaches attempt

to make changes to the attack surface at runtime, this alleviates the burden on the administrator by

automating the responses to the system. However, approaches that fall under this category require

30

considerable effort to develop and deploy, not to mention the large number of intrusions/malwares

signatures that are maintained by the MTD system. Moreover, such systems can be weak to zero-

day exploits.

Figure 12 MTD with IP Addresses

A concept introduced by [29] is the exploration surface. It refers to the exploration or

reconnaissance part of cyber-attacks that occurs before launching an attack on the system. The

purpose of this phase is to understand the system better by scanning the open ports, finding the

online machines, or understanding the network topology. The authors of [29] explain how to

differentiate between the attack surface and exploration surface through the example of a C class

IPv4 address. In this example, the exploration surface consists of the subnet of IPv4 addresses that

follow the C class subnet, such as {192.168.0.1, 192.168.0.2, . . . 192.168.0.254}. Where the attack

surface can be simply the online computers in this same range. If there is only one, then the size of

the attack surface is 1.

4.4 Moving Target Defence and DDoS

MTD proves to be a good technique to mitigate DDoS attacks. In traditional setups, the attacker

could flood a controller by sending too many requests to install new flows. This would overflow

the controller with requests and will prevent it from serving the actual packets coming into the

31

network. Since the controller would be busy processing the new flow requests, any new flows

would suffer a long delay before they get processed, if they do at all.

Figure 13 DDoS Attack on SDN Network

32

Chapter 5

Related Work

There have been many works proposing solutions to secure networks by employing SDN or MTD.

Few works attempt to combine the two concepts together to create an adaptive secure system on

top of the flexible SDN architecture. In this section, the recent efforts to secure systems using either

SDN, MTD, or a combination of the two are outlined and discussed.

MASON, a framework that can be used for cloud vulnerabilities and intrusion events assessment

is developed by the authors of [31]. The framework employs port hopping as a countermeasure

after it identifies high-security risk in a network service. However, in this approach, QoS is not

considered when taking MTD decisions.

A defence by pretence mechanism is proposed by the authors of [32] that focuses on defending

against flood attacks. The solution provided by the paper targets cloud environments. The attack

the authors were interested in countering is DDoS in the context of SDN. This approach however

does not address targeted attacks like Advanced Persistent Threats (APT).

An information flow control security architecture is presented in [33]. The introduced solution

combines the placement of the SDN controller and host-based information flow tracking. The

authors implement a prototype through a host agent. However, if the host is compromised, the host

agent can be disabled which opens the controller to a DDoS attack which will exhaust its resources.

A moving target defence architecture is proposed by [34]. It makes use of random address hopping

and random finger printing. The authors also purpose a model that allows network configurations

to be mutated validly. Furthermore, the authors of [35] propose a three-layer model for comparing

MTD approaches and evaluating their performance. A case study is used as a means to show how

the model works and highlight the viability of the model.

33

IP addresses mutation is used by the authors of [36] as an MTD mechanism within OpenFlow. The

approach mutates IP addresses with high unpredictability but still minimizes the overhead on

normal operations. This method however focuses only on countering the exploration phase of

cyber-attacks. The approach is not studied in its effectiveness to defend against DDoS and

application layer attacks.

The authors of [37] study SDN-based MTD techniques and discuss the advantages and

disadvantages of such systems. They explain how to evaluate systems of this nature and discuss the

challenges and the methods used to overcome these challenges. They conduct several experiments

and conclude that SDN-based MTD increases the overhead for the attacker in terms of time and

traffic load. However, the focus of the paper is on introducing the concept and the experiments are

carried out mainly to study the overhead introduced on the exploration surface. A more advanced

system needs to be implemented that can handle more attack cases.

In [38], the authors propose a system to defend against blind DDoS attacks by employing an SDN-

based MTD approach. Blind DDoS is one of the threats targeting SDN and is introduced by the

authors. It is analysed and an attack defence approach is proposed. The proposed solution works

over a multi-controller environment making it scalable. However, the approach makes use of

random packet transmission delay which affects normal traffic. Furthermore, synchronizing multi

controllers route tables is not considered in the approach, each controller regenerates its own

routing tables.

A scalable SDN-based MTD solution to protect cloud networks is proposed by [39]. The approach

makes use of Attack Graphs (AG) to assess attack scenarios then select the required

countermeasures to reconfigure the network. Furthermore, the paper proposes a conflict detection

framework that ensures that a consistent policy state is maintained in a distributed SDN-based cloud

environment. This approach focuses on securing cloud environment and might not be suitable for

34

other settings. It also uses a predefined database of signatures making it susceptible to zero-day

attacks.

CHAOS, an SDN-based MTD system is proposed by the authors of [40]. In this approach, the

hierarchy of all hosts in a network are obfuscated through many mechanisms including IP

obfuscation, port obfuscation, and fingerprint obfuscation. They conduct experiments and the

results show that information disclosure is reduced while still allowing normal flow of traffic. The

paper however focuses mainly on minimizing information disclosure without attempting to counter

DDoS attacks.

A technique that is a scalable form of MTD using SDN is proposed in [41]. The approach enables

defenders to differentiate between trustworthy and untrustworthy clients by employing pre-shared

keys, applying cryptographic MACs, or embedding passwords to provide access control.

In the context of Internet Service Providers, the authors of [42] investigate the effectiveness of

MTD techniques using SDN. The authors make use of ONOS [19] and focus on it. The research

indicated that the chance of a DDoS attack succeeding decreases as more network traffic is

processes by a high number of collaborative partners. The results of the paper also show that wide

scale attack on the network can be mitigated through MTD.

In [43], the authors propose a method to secure against unauthorized access by employing an IP

address hopping MTD within an SDN environment. The proposed technique is implemented at the

hop level as well as at the data plane level which reduces the overhead cause by it. The authors also

built an IP address synchronization algorithm that avoids causing overhead on the network by using

a one-way hash and piggybacking on the regular communications of the network.

A scheme that randomizes the namespace U-TRI is introduced in [44]. The purpose of this scheme

is to hide packets identifiers. The proposed scheme allows for attack surface movement by using a

35

hierarchical virtual namespace. Furthermore, by randomizing the namespace, it boosts the

capability to withstand attacks.

A heterogenous redundant security scheduling mechanism is shown in [45]. The authors use a

multi-controller setup and the non-dominated sorting algorithm, MDSA, to secure the network

while attempting to maintain load balancing. This strategy also relies on the dynamic nature of

MTD to adapt the network. In this study, 5 different operating systems are chosen for the sake of

simplicity. The authors take into consideration a single controller structure, a static redundancy

structure, random scheduling reliability priority scheduling, and MDSA when comparing.

In [46], the authors make use of the SDN network to protect it from DDoS attacks. A formal

solution is shown based on Satisfiability Modulo Theory (SMT). The purpose of the solution

presented in the paper is to reduce the sharing of critical links across the SDN planes, data and

control. However, since the mechanism is making use of the network assets themselves, it generates

an overhead on the network.

An MTD based solution to monitor cloud networks and software vulnerabilities targeting attacks

and identify them is presented by the authors of [47]. The authors make use of Markov Game to

find out the attacker’s optimal policy then puts in place countermeasures to defend the network.

However, to make the solution work, a linear program must be solved which can become

computationally inefficient. To balance this out, the authors assume that only action pairs are used

by the defender who has observability of the attacker’s action.

Most of the works discussed above attempt at securing the network infrastructure. Meaning they

focus on securing the network switches, routers and links. The works discussed make use of MTD

in an SDN environment which is a great way to employ it. However, the works do not attempt to

secure the SDN controller which is a vital component in an SDN environment. If a DDoS attack

were to be launched on the controller, the whole network will be incapacitated.

36

In this work, the focus will be to secure the SDN controller from DDoS attacks. The concept of

MTD will be applied on an SDN controller to protect it from being taken down. Since the network

infrastructure security has been discussed by many works as shown above, in this work it will not

be tackled. It will be assumed that the adversary’s main target is to bring the network down by

attacking the controller.

37

Chapter 6

Proposed Solution

6.1 System Model

6.1.1 Threat Model

In the attack model used in this work, it is assumed that the attacker can be located inside or outside

the network. The main target of the attacker is to bring down the SDN controller of the network

rendering the network useless. The attacker may use zombie machines in order to perform a DDoS

attack on the controller. In this solution, the network devices such as switches, routers and end

devices are not part of the defence mechanism. The mechanism does not handle encrypted traffic,

nor does it use IDS to detect attacks. The proposed solution can work in conjunction with other

security measures that attempt to scramble the network devices IP address periodically.

Figure 14 Threat Model

38

6.2 Proposed Solution Overview

The approach will attempt to secure the controller from DDoS attacks and exploration attacks while

still providing acceptable performance to normal traffic. The main challenges include supporting

scalability, hiding information from attackers, and protecting the infrastructure availability. To this

end, a distributed controller system will be used as the building stone for the MTD mechanism.

Since by design, distributed controllers will have the capability to withstand DDoS attacks to an

extent, adding the MTD mechanism on top of them will boost the availability of the system greatly.

The next sections describe the structure of distributed controllers’ systems and explain the proposed

method to secure them in detail.

6.2.1 Distributed Controller Network

A distributed controller model is shown in the figure below. The controllers communicate with

each other for updates and maintain a virtually centralized state of the network. The OpenFlow

switches are connected through a secure channel to their respective controller. In addition to that,

the switches have their normal communication links with other switches regardless of the controller

they belong to.

Figure 15 Distributed Controller Topology

The model shown above is often described as flat SDN control. This is since the network is divided

into horizontal areas with each area being managed by a controller. This model provides reduced

control latency and improved resiliency.

39

6.2.2 Moving Target Defence Algorithm – Groups

In order to secure the network against attacks, an MTD mechanism is designed and implemented.

The algorithm for this mechanism is shown below. It assumes that X controllers and N devices

(switches and hosts) exist in the topology. The controllers will be distributed into two groups. Every

S second, the algorithm will re-assign the devices into the other group controllers equally. While a

group is active, the other group will go into idle mode where the members will wait until the

algorithm wakes them up, or if a failure occurs in the network.

The mechanism assigns to each device in the network a unique identifier. This identifier is used

when changing the device master. Each device will have a corresponding identifier and the

identifiers are updated at the beginning of each cycle. When new devices are discovered by the

controller, they will be assigned new identifiers.

Algorithm 1: MTD Groups Pseudocode

Assuming Two Controller Groups

INPUT: S (float), ControllersList (List), CurrentActiveGroup (int)

1. WHILE (TRUE)

2. SLEEP (S SEC)

3. ControllersList = OnlineControllersList();

4. FOREACH Device IN ControllersList DO:

5. IF CurrentActiveGroup == 1:

6. AssignDeviceToMaster(Device, Group_2)

7. ELSE

8. AssignDeviceToMaster(Device, Group_1)

40

Figure 16 Algorithm 1 Flow Chart

By using this algorithm, an attacker will not be able to identify a target to bring down. An important

design decision is the length of the switch interval. This interval dictates when the mechanism will

switch between the controller groups. If this interval is set to a small value, the switch will happen

too frequently which will disrupt the network and impact performance heavily. However, if it is set

to a long period, it will give enough time to the attacker to explore and analyse the network

structure. In order to determine a suitable value, several experiments are conducted, and the results

41

are used to find a middle ground value that does not impact the system behaviour extensively while

moving around the resources often enough to deceive potential attackers.

The MTD mechanism is implemented in Python. It issues commands to the ONOS cluster and

receives information from it such as current topology and active devices. The mechanism is tested

on a virtual machine, the details are discussed in the next section.

6.2.3 Moving Target Defence Algorithm – Random

The algorithm above is modified to produce a new one that does not rely on groups but rather

considers the whole cluster when making choices. The difference between the algorithms is that

the second one will attempt to alternate between half of the available controllers randomly. This

makes it even harder to analyse the structure of the system. The algorithm takes care to not choose

the same master in subsequent choices. This is to have more controllers involved and to not over

burden a single node.

Algorithm 2: MTD Randoms Pseudocode

INPUT S (float), ControllersList (List)

1. WHILE (TRUE)

2. SLEEP (S SEC)

3. FOREACH Device IN ControllersList DO:

4. AssignDeviceToMaster(Device, RANDOM_Controller)

42

Figure 17 Algorithm 2 Flow Chart

43

Chapter 7

Results Discussion

The experiments are built on top of several platforms and systems. This includes a virtualization

software, distributed SDN controllers, SDN network emulation system and other tools. Below is a

highlight of the most important software that enabled this work.

7.1 Supporting Software

7.1.1 Virtualization Software

The experiment is built using a virtualization software. There are several virtualization software’s

that can be used to emulate operating systems. VirtualBox was used in this work; however, the

same procedure can be done using VirtualBox or any other virtualization software.

In virtualization, there are two main entities, the host and guest machines. The host machine is the

one running directly on the hardware while the guest machine is the one running inside the

virtualization software. A guest machine can be configured with custom specifications as needed.

For example, RAM can be set as 2 GB. This is of course subject to the hardware that is being used.

A virtual machine cannot use more than the available resources. In this work, VirtualBox is used

to run the required virtual machines.

7.1.2 Mininet

Mininet [48] is a network emulator which can be used to create a network of virtual hosts, switches,

controllers, and links. Mininet hosts run a standard version of Linux network software, and its

switches support OpenFlow for highly flexible custom routing and Software-Defined Networking.

Mininet networks can run real code including standard Unix/Linux network applications as well as

the real Linux kernel and network stack.

44

Mininet can be invoked through Python programs which is a powerful way to utilize it. It has a rich

API available that allows the network topology to be designed and deployed easily for simulations.

In this work, a topology is built using Mininet and then it is connected to the remote controller.

This provides isolation of the components making it easier to debug and identify problems.

7.1.3 ONOS

In this work, the distributed controller network is built using the Open Network Operating System

(ONOS) [19]. It supports OpenFlow but can be easily extended for other southbound protocols.

ONOS is a high throughput, fault-tolerant and, more importantly, can automatically optimize itself

after a fault. For this work, the controller will be used to implement a moving target defence

mechanism. The controller is running on a virtual machine and connected to the Mininet

environment for testing.

ONOS has a rich API that can be used to interact with it. It also allows developers to create

applications and program them with Java then load them into the system. It has both a command

line (CLI) and graphical user interface (GUI) that can be used to control it [19]. ONOS allocates

the network devices into controllers that will act as masters for these devices. Each controller will

have a subset of the network to manage. When a controller fails, its devices will be assigned to

another controller. This boosts the network availability significantly.

7.1.4 Atomix

Atomix [19] is a framework that allows the construction of fault-tolerant and scalable distributed

systems. It can manage clusters and detect failures and has rich JAVA and REST APIs. Atomix is

used in conjunction with ONOS for data storage and coordination of clusters.

45

Figure 18 ONOS Web UI

7.1.5 Architecture

The next figure shows the overall architecture of the system. ONOS clusters access Atomix clusters

for data and coordination. They also control the network by installing flow rules into the OpenFlow

switches active in Mininet. The MTD mechanism reads information from the ONOS clusters and

makes decisions to alter the topology as needed. It does this by issuing commands to the ONOS

clusters which in turn will adapt accordingly.

Figure 19 Overall System Architecture

46

7.2 Simulation Setup

In order to test the solution a computer is used that will contain several virtualized systems. These

systems will interact with each other within the virtualized space. The computer uses an Intel i7-

6700 CPU clocked at 4.00 GHz. It is loaded with a 16 GB RAM and the virtualized space is

allocated 100 GB of drive space.

7.3 Experiment 1: Packet Loss

7.3.1 Network Topology

In this experiment, a network of linearly connected switches is built. Each switch connects two

hosts yielding a topology like the figure below. The network is made of N switches and M end

devices.

Figure 20 Network Topology

7.3.2 Controllers Setup

For this experiment, four distributed instances of ONOS will be used. In addition, three instances

of Atomix are used for data storage and coordination of the controllers. The controllers’ topology

would look like the figure below. Each instance of ONOS is connected to all three Atomix

instances. It is possible to use more Atomix instances and/or ONOS nodes, but for the sake of

simplicity and to make it easier to analyse the system the below is used.

47

Figure 21 Controllers’ Topology

Furthermore, for the MTD mechanism to operate, the ONOS nodes are divided into two groups as

shown in the table. The mechanism alternates these groups between two states, active and inactive.

During the active states, members of that group will be responsible of the network control while

the other group goes into idle mode. The idle group will wait until the MTD mechanism wakes

them and then will take over ownership of the nodes while the other group goes idle.

ONOS NODE GROUP

ONOS-1 Group 1

ONOS-2 Group 2

ONOS-3 Group 1

ONOS-4 Group 2

Table 3 ONOS Groups

In this experiment, each host will send an ICMP packet to each other host in the network. The

objective is to find out the average packet loss while the MTD security mechanism is active and

compare it to normal system behaviour. The below results were gathered for different lengths of

switching intervals. The experiment was repeated 15 times over 4 hours with each cycle taking

approximately 16 minutes and the results were averaged to what is shown in the table Below. With

12 switches, we have a total of 24 hosts connected. The mechanism is tested over several switching

48

intervals. The average packet loss without the mechanism is constant as it is the normal system

behaviour. It can be observed from the results that the mechanism will perform poorly when the

switch occurs frequently. However, as the time is increased, it stabilizes to an acceptable amount.

Number of

Switches

Switch

Interval

(sec)

Average Packet Loss %

(With MTD)

Average Packet Loss %

(Without MTD)

12 5 0.229 0.012

12 6 0.024 0.012

12 7 0.036 0.012

12 8 0.036 0.012

12 9 0.024 0.012

12 10 0.024 0.012

12 15 0.012 0.012

Table 4 Packet Loss Percentage Comparison 1 – Algorithm 1

Figure 22 Average Packet Loss Percentage – 12 Switches – Algorithm 1

The curve shown in the figures depicting the average packet loss start with a high percentage due

to the high number of changes in the network devices master controller. After the time is increased

the number of dropped packets plummets substantially since the controllers will have more time to

learn the network topology before changing the master controllers again.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 P
ac

ke
t

Lo
ss

 (
%

)

Switch Interval (sec)

Average Packet Loss % vs. Switch Interval - 12
Switches - Algorithm 1

Average Packet Loss % (With MTD) Average Packet Loss % (Without MTD)

49

The same experiment is performed using algorithm 2. The results in terms of packet loss does not

vary that much from the first algorithm. However, the randomness introduced will make it harder

to explore the current network and find a controller to target.

Number of

Switches

Switch

Interval (sec)

Average Packet Loss %

(With MTD)

Average Packet Loss %

(Without MTD)

12 7 0.174 0.042

12 9 0.100 0.042

12 11 0.085 0.042

12 13 0.074 0.042

12 15 0.074 0.042

12 17 0.060 0.042

12 19 0.065 0.042

Table 5 Packet Loss Percentage Comparison 1 – Algorithm 2

Figure 23 Average Packet Loss Percentage – 8 Switches – Algorithm 2

7.4 Experiment 2: CPU Utilization (Mechanism Overhead)

In this experiment the purpose is to find out the CPU usage of the mechanism before it is tested

with an actual attack to measure its overhead. A topology similar to what was shown in the previous

experiment is ran and the random algorithm is used to control the master nodes. The CPU utilization

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0 5 10 15 20 25

Average Packet Loss % vs. Switch Interval - 12
Switches - Algorithm 2

Average Packet Loss % (With MTD) Average Packet Loss % (Without MTD)

50

is captured for normal system behaviour (without the MTD tool running) and then its captured

again while the tool is running.

The below result was captured for CPU utilization. It is important to note that this utilization is for

the user processes and does not include the utilization of the operating system kernel that the

experiment is running inside. This reduces the noise from other processes running on the kernel

level and gives better perspective of tool CPU usage.

It can be observed that when the tool invokes the change on the nodes master, there is a spike in

CPU utilization. Since this experiment was running with a 10 second sleep interval, a spike can be

seen every 10 seconds in the graph.

Figure 24 CPU Utilization

7.5 Network Bandwidth Consumption

With respect to the network overhead introduced by the mechanism, it is quite minimal. Consider

the example of the 12 switches setup used in the previous experiments. In order to make the

change between the master controllers, one packet is sent to each device from the newly

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

CPU Utilization

CPU Utilization (With MTD) CPU Utilization (Without MTD)

51

appointed controller. This packet will direct the device to be governed by the now active

controller while the previous master goes idle.

The figure below shows the relation between the number of packets sent in order to enable the

mechanism to work. It can be observed that it is a meagre amount and will not impact the network

bandwidth at all.

Figure 25 Network Bandwidth Overhead

7.6 Proposed Solution Validation

To validate the solution in this thesis, we reproduce the work shown by the authors of [38] and

compare our results with it. The solution shown in the paper attempts to protect the network by

introducing multiple controllers to the network. A flooding attack is launched on the network and

the CPUs readings of the controllers are collected to show that the attack is being mitigated. The

attack is made of three parts: the reconnaissance stage, the attack stage, the persistence stage.

The reconnaissance stage is an important step of the attack as it determines whether the attack

can be launched or not. This is because the blind DDoS attack used is only effective against SDN-

-5

0

5

10

15

20

25

-5 0 5 10 15 20 25

o

f
Sw

it
ch

es

of Packets

of Packets Sent vs # of Switches

52

based networks. This stage also helps with determining the range of IP addresses to attempt when

launching the attack so that it helps with optimizing the attack.

The attack stage is where the actual attack is launches to bring down the network. In this stage a

huge number of packets is sent to the controller in order to bring it down. The paper simulates

various types of packets attacks such as TCP, UDP, and ICMP. Here we replicate TCP based attacks

for the sake of simplicity.

The last stage is the persistence stage. In this stage the attacker would attempt to persist

something on the controller to facilitate future attacks. This could be a backdoor for example. In

this thesis we do not focus on these types of attacks and the proposed solution does not attempt

to protect against them thus the assumption is that no such attack will be made.

In the reproduced paper experiment, a randomly selected IP is attacked with packets of the size

of 64 bytes. Four switches are attacked and It is assumed in the simulation that the attack flows

sent respectively are A1, A2, A3 and A4, and attack flow rate is 200 Mbps×4 (e.g.A1 = A2 = A3 =

A4 =200 Mbps).

The figures below show the reproduced results of the paper. It can be seen that with a single

controller, the attack destroys the controller and brings its CPU capacity so high. However, when

employing multiple controllers, the attack is unable to fully bring down the network.

53

Figure 26 Blind DDoS Attack Tests (Reproduced Paper Results)

Figure 27 MTD Against Blind DDoS Attack (Reproduced Paper Results)

7.7 Proposed Solution Blind DDoS Attack

Next a blind DDoS attack is launched against the proposed solution setup. The same attack used

in the reproduced paper is launched again. A randomly selected IP is attacked with packets of the

size of 64 bytes. With similar parameters as the previously shown attack flows. In the proposed

solution attack test however, the test is done on four controllers’ setup. This is because the

solution depends on having multiple controllers to operate.

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40

A
tt

ac
k

Fl
o

w
 p

er
 C

o
n

tr
o

lle
r

(M
b

)

Attack Times

Blind DDoS Attack Tests

1 Controller 2 Controllers 4 Controllers

-20

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Chart Title

1 Controller 2 Controllers 4 Controllers

54

After a first look at the results of the proposed solution the main difference can be observed. The

proposed solution will have an individual CPU usage percentage higher than the solution in the

reproduced paper. This is due to having fewer controllers working concurrently as the proposed

solution makes use of idle controllers instead of having them all operate at the same time.

However, the solution is still capable of operating the network on acceptable levels under the

attack.

On average, the proposed solution CPU usage percentage is similar to the reproduced paper. The

results below show that during idle time, the controllers will have low CPU consumption while the

other active ones will take on the burden. As they keep alternating, the controllers will also

alternate the burden of the attack instead of accumulating it over time.

Figure 28 MTD Against Blind DDoS Attack

7.8 Proposed Solution Limitations

The solution provides protection against DDoS attacks by employing a distributed controller

scheme. This dictates that the network resources should be able to handle the attack capacity.

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

C
P

U
 (

%
)

Attack Times

Attack Times

Average CPU 1 CPU 2 CPU 3 CPU 4

55

The proposed solution will not be able to handle a vicious attack that is capable of bringing down

all the controllers in the system. If an attacker is capable of sending a huge number of packets

such that all the controllers in the system are overloaded or are brought down, then the network

will be breached.

The solution proposed is unable to protect against persisted attacks. An example of a persisted

attack is sending a malware that installs a backdoor in the network. In that case, the solution will

not be able to protect against such an attack as it does not analyse the network traffic but simply

relies on the number of packets sent in the network.

Furthermore, the solution aim is to protect the SDN controller rather than the network resources

themselves. It is meant to be used in conjunction with other solutions that can protect the

network resources such as routers and switches. Therefore, attacks that target the router or

switches of the network will not be mitigated by the solution.

In addition, the solution is not capable of smartly balancing the load on the controllers. It simply

chooses the devices assignment to controllers based on their numbers. If it is possible to assess

the load incurred by the network devices, for example using the average number of new packets

sent to a controller, it would enhance the solution considerably.

56

Chapter 8

Conclusion and Future Work

8.1 Conclusion

The SDN paradigm is one of the developing platforms in the field. It offers a new way to control

and configure the network without relying on the traditional de-centralized methods. By offering

the separation of the data and control planes, it becomes easier to control the network. The SDN

controller that lies at the heart of this paradigm serves a crucial role to enable this platform. This

renders it a target for potential malicious entities.

The current works that were explored in this research focused on protecting the network assets

excluding the controller. This gap gives an opening in the system which can be exploited to bring

it down though a DDoS attack. In order to secure the system against this possible breach, the

controller needs to be secured. It was shown that protecting the controller could incur an overhead

on the system that needs to be minimized.

In this work, an SDN distributed controller system is secured through the employment of MTD.

The distributed controller approach provides the network with the robustness it needs to survive

DDoS attacks.

With respect to the objectives proposed at the beginning we managed to achieve the following:

• Saving Network Bandwidth: the implemented solution uses a minimal number of

messages to achieve its purpose. This is shown in section 7.4 of the thesis.

• Self-Configuration: the implemented solution automatically adapts the network by re-

assigning the devices to a controller after each cycle of sleep.

57

• Security: the implemented solution will be able to withstand DDoS attacks as long as not

all of the controllers are brought down. The network will be able to operate as long as some

of the distributed controllers are online.

• Scalability: the implemented solution is built using a distributed controller platform. By

definition this makes it scalable. When the number of devices in the network increases,

more controllers can be added to accommodate this change.

Several experiments were conducted to test the performance of the implemented approach. The

main factors to test were how long does it take to discover the network topology through a

connectivity test. Secondly, CPU impact induced by the mechanism is evaluated. It was shown that

an acceptable system performance can be achieved while still securing the system against potential

attackers. Experiments were conducted to verify the integrity of the mechanism introduced.

8.2 Future Work

For future work using a testbed rather than simulating the mechanism over virtual machines would

show more accurate results. By nature, virtualization machines are limited by the capabilities of the

host machine. Thus, to test this solution over a large network, a machine with great resources is

needed. Having an actual testbed that can be configured as needed to simulate the network would

allow for more accurate results.

Furthermore, this mechanism protects against attacks targeting the SDN controllers, if the data

storage nodes (i.e. Atomix nodes) were brought down, the system will also collapse. Since ONOS

relies on the Atomix nodes for storage and coordination, it makes the nodes a vital part of the

system. Securing the Atomix nodes will provide a more robust system.

Another improvement that is possible on the proposed solution is to provide a load balancing

mechanism. Instead of alternating the controllers based on the number of devices they control,

58

assessing the controllers load expected to happen from the devices connected then making an

informed decision on which devices to assign to which controller will enhance the solution.

References

[1] H. Kim and N. Feamster, “Improving network management with software defined

networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114 - 119, 2013.

[2] K. Benzekki, A. E. Fergougui and A. E. Elalaoui, “Software‐defined networking (SDN): a

survey,” Security and Communication Networks, p. 5803–5833, 2016.

[3] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, M.

Miller and N. Rao, “Are we ready for SDN? Implementation challenges for software-

defined networks,” IEEE Communications Magazine, vol. 51, no. 7, pp. 36 - 43, 2013.

[4] L. Yang, R. Dantu, T. Anderson and R. Gopal, “Forwarding and Control Element Separation

(ForCES) Framework,” 2004.

[5] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B.

Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U.

Hölzle, S. Stuart and A. Vahdat, “Jupiter Rising: A Decade of Clos Topologies and

Centralized Control in Google's Datacenter Network,” 2015.

[6] I. S. M. Portal, “Open Systems Interconnection - Basic Reference Model: Naming and

addressing,” [Online]. Available:

http://standards.iso.org/ittf/PubliclyAvailableStandards/s014258_ISO_IEC_7498-

4_1989(E).zip. [Accessed 20 March 2019].

[7] I. O. f. Standardization, “ISO Standards Maintenance Portal,” [Online]. Available:

http://standards.iso.org/ittf/PubliclyAvailableStandards/s014258_ISO_IEC_7498-

4_1989(E).zip. [Accessed 21 March 2019].

[8] A. Montazerolghaem, M. H. Yaghmaee and A. Leon-Garcia, “OpenSIP: Toward Software-

Defined SIP Networking,” IEEE Transactions on Network and Service Management, p. 184–

199, 2017.

[9] D. B. Rawat and S. R. Reddy, “Software Defined Networking Architecture, Security and

Energy Efficiency: A Survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp.

325 - 346, 2016 .

59

[10] S. Gutz, A. Story, C. Schlesinger and N. Foster, “Splendid isolation: A slice abstraction for

software-defined networks,” in Proceedings of the first workshop on Hot topics in software

defined networks, Helsinki, Finland, 2012.

[11] C. Monsanto, J. Reich, N. Foster, J. Rexford and D. Walker, “Composing software-defined

networks,” in Proceedings of the 10th USENIX conference on Networked Systems Design

and Implementation, Berkeley, CA, USA, 2013.

[12] F. Hu, Q. Hao and K. Bao, “A Survey on Software-Defined Network and OpenFlow: From

Concept to Implementation,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp.

2181 - 2206, 2014.

[13] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig,

“Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE, vol.

103, no. 1, pp. 14 - 76, 2015.

[14] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado and R. Sherwood, “On Controller

Performance in Software-Defined Networks,” in Proceedings of the 2nd USENIX conference

on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services,

San Jose, 2012.

[15] D. Erickson, “The beacon openflow controller,” in Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking, Hong Kong, China,

2013.

[16] “Floodlight,” [Online]. Available: http://www.projectfloodlight.org/floodlight/.

[17] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhuy, R. Ramanathany, Y.

Iwataz, H. Inouez, T. Hamaz and S. Shenker, “Onix: A Distributed Control Platform for

Large-scale Production Networks,” in Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation, Berkeley, CA, USA, 2010.

[18] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane for OpenFlow,” in

Proceedings of the internet network management conference on Research on enterprise

networking, San Jose, 2010.

[19] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O'Connor, P.

Radoslavov, W. Snow and G. Parulkar, “ONOS: towards an open, distributed SDN OS,” in

Proceedings of the third workshop on Hot topics in software defined networking, Chicago,

Illinois, USA, 2014.

[20] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and scalable offloading of

control applications,” in 1st Workshop Hot Topics Softw. Defined Netw., 2012.

[21] “OpenDaylight, A Linux Foundation Collaborative Project,” 2013. [Online]. Available:

http://www.opendaylight.org.

60

[22] M. McCauley, “POX,” [Online]. Available: http://www.noxrepo.org/..

[23] N. T. a. T. Corporation, “RYU network operating system,” 2012. [Online]. Available:

http://osrg.github.com/ryu/.

[24] G. Appenzeller, “SNAC,” 2011. [Online]. Available: http://www.

openflowhub.org/display/Snac.

[25] Y. Takamiya and N. Karanatsios, “Trema OpenFlow controller framework,” 2012. [Online].

Available: https://github.com/trema/trema..

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker

and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” ACM SIGCOMM

Computer Communication Review, vol. 39, no. 2, pp. 69-74, 2008.

[27] “Open Networking Foundation,” [Online]. Available:

https://www.opennetworking.org/sdn-resources/sdn-defined.

[28] C. Lei, T. Jinglei, J.-L. Tan, Y.-C. Zhang and X.-H. Liu, “Moving Target Defense Techniques: A

Survey,” Security and Communication Networks, vol. 2, pp. 1-25, 2018.

[29] R. Zhuang, S. A. DeLoach and X. Ou, “Towards a Theory of Moving Target Defense,” in

Proceedings of the First ACM Workshop on Moving Target Defense, Scottsdale, Arizona,

USA, 2014 .

[30] P. Manadhata and J. M. Wing, “An Attack Surface Metric,” IEEE Transactions on Software

Engineering, vol. 37, no. 3, pp. 371 - 386, 2010.

[31] A. Chowdhary, A. Alshamrani, D. Huang and H. Liang, “MTD Analysis and evaluation

framework in Software Defined Network (MASON),” in Proceedings of the 2018 ACM

International Workshop on Security in Software Defined Networks & Network Function

Virtualization, Tempe, AZ, USA, 2018 .

[32] R. L. Neupane, T. Neely, N. Chettri, M. Vassell, Y. Zhang, P. Calyam and R. Durairajan,

“Dolus: Cyber Defense using Pretense against DDoS Attacks in Cloud Platforms,” in

Proceedings of the 19th International Conference on Distributed Computing and

Networking, Varanasi, India, 2018.

[33] T. OConnor, W. Enck, W. M. Petullo and A. Verma, “PivotWall: SDN-Based Information

Flow Control,” in Proceedings of the Symposium on SDN Research, Los Angeles, CA, USA,

2018 .

[34] E. Al-Shaer, “Toward Network Configuration Randomization for Moving Target Defense,”

in Moving Target Defense, New York, NY, Springer, 2011, pp. 153-159.

61

[35] J. Xu, P. Guo, M. Zhao, R. F. Erbacher, M. Zhu and P. Liu, “Comparing Different Moving

Target Defense Techniques,” in Proceedings of the First ACM Workshop on Moving Target

Defense, New York, NY, USA, 2014.

[36] J. H. Jafarian, E. Al-Shaer and Q. Duan, “Openflow random host mutation: transparent

moving target defense using software defined networking,” in Proceedings of the first

workshop on Hot topics in software defined networks, Helsinki, Finland, 2012.

[37] P. Kampanakis, H. Perros and T. Beyene, “SDN-based solutions for Moving Target Defense

network protection,” in World of Wireless, Mobile and Multimedia Networks (WoWMoM),

Sydney, NSW, Australia, 2014.

[38] D. Ma, Z. Xu and D. Lin, “Defending Blind DDoS Attack on SDN Based on Moving Target

Defense,” in International Conference on Security and Privacy in Communication Systems,

2015.

[39] A. Chowdhary, S. Pisharody and D. Huang, “SDN based Scalable MTD solution in Cloud

Network,” in Proceedings of the 2016 ACM Workshop on Moving Target Defense, Vienna,

Austria, 2016.

[40] J. Wang, F. Xiao, J. Huang, D. Zha, H. Hu and H. Zhan, “CHAOS: an SDN-based Moving

Target Defense System,” Security and Communication Networks, vol. 2017, 2017.

[41] D. C. MacFarland and C. A. Shue, “The SDN Shuffle: Creating a Moving-Target Defense

using Host-based Software-Defined Networking,” in Proceedings of the Second ACM

Workshop on Moving Target Defense, Denver, Colorado, USA, 2015.

[42] J. Steinberger, B. Kuhnert, C. Dietzzy, L. Ball, A. Sperottoy, H. Baier, A. Prasy and G. Dreo,

“DDoS Defense using MTD and SDN,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations

and Management Symposium, Taipei, Taiwan, 2018.

[43] S.-Y. Chang, Y. Park and B. B. A. Babu, “Fast IP Hopping Randomization to Secure Hop-by-

Hop Access in SDN,” IEEE Transactions on Network and Service Management, pp. 1-1,

2018.

[44] Y. Wang, J. Yi, J. Guo, Y. Qiao, M. Qi and Q. Chen, “A Semistructured Random Identifier

Protocol for Anonymous Communication in SDN Network,” Security and Communication

Networks, 2018.

[45] G. Zeyu, Z. Xingming and M. Qing, “MDSA: Security Scheduling Mechanism for a Reliable

SDN Control Layer Based on Mimic Defense,” in Recent Developments in Intelligent

Computing, Communication and Devices, Singapore, 2018.

[46] F. Gillani, E. Al-Shaer and Q. Duan, “In-design Resilient SDN Control Plane and Elastic

Forwarding Against Aggressive DDoS Attacks,” in 5th ACM Workshop on Moving Target

Defense, Toronto, 2018.

62

[47] A. Chowdhary, S. Sengupta, A. Alshamrani, D. Huang and A. Sabur, “Adaptive MTD Security

using Markov Game Modeling,” in International Conference on Computing, Networking

and Communications (ICNC), Honolulu, 2018.

[48] B. Lantz and B. O’Connor, “Mininet,” 2018. [Online]. Available: http://mininet.org/.

[49] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control plane for OpenFlow,” in

Internet Netw.Manage. Conf. Res. Enterprise Netw., 2010.

63

Vitae

Name: Ahmed Salman Hasan Al Naser

Nationality: Saudi

Date of Birth: 6/23/1992

 Email: ahmed.alnaser2007@gmail.com

Address: Al-Awjam, Eastern Province, Saudi Arabia, P.O 18007

Academic Background: Ahmad Al-Nasser is currently a KFUPM master student enrolled in the

Computer Networks program. He earned his BSc in Information & Computer Science from the

Computer Science Department, at KFUPM. His research interests include Fog Computing and

Software-Defined Networking. Published a paper titled “Implementation of a hybrid wind-solar

desalination plant from an Internet of Things (IoT) perspective on a network simulation tool” in

the Applied Computing and Informatics journal.l

