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The Zariski topology plays an important role in Commutative Algebra and Algebraic

Geometry. The category of commutative rings has a non-natural correspondence with

the category of spectral spaces. We study the natural duality between the category of

bounded distributive lattices and the category of spectral spaces. Due to its importance,

a generalization of the Zariski topology has been carried out to the so called X-top lat-

tices by Abuhlail and Lomp. We study several separation axioms, the regularity and the

normality of X-top lattices. We introduce the so called PSI decompositions of elements

in complete lattices which generalize the strongly irreducible decompositions. We study

further these decompositions in the special case of the lattice of sub(semi)modules of

a left (semi)module over a (semi)ring. Moreover, we investigate their relation with

primary decompositions of modules over commutative rings.

xi





الرسالة ملخص

الفرج عبدالوهاب عبدالمحسن اԽԲسم:

لՏٕՄختزال قابلة غير الشبه العناصر الى والتحلل التامة الشبكات طوبولوجيا في الفصل مسلمات الدراسة: عنوان

الرياضيات التخصص:

٢٠١٩ نيسان العلمية: الدرجة تاريخ

شبكات وفئة اԽٕԲبدالية للحلقات الرئيسة اԽԲطٔياف فئة بين الثنائية سندرس الجبرية. الهندسة و التبادلي الجبر في هاما دورا تلعب زارسكي طوبولوجيا

يسمى ما نقدم التامة. الشبكات اطٕار وهو اؤسع و اعٔم اطٕار الى زاريسكي طوبولوجيا لتعميم الطوبولجية الخصائص بعض سندرس المحدودة. التوزيع

شبه على حلقية لشبه الجزئية الحلقيات اشٔباه شبكة حالة في التحلل هذا سندرس الكاملة. الشبكات في لՏՄختزال قابلة غير شبه عناصر الى بالتحلل

اԽٕԲبدالية. الحلقات على للحلقيات البدائي التحلل مع التحلل هذا عՏՄقة ائضا سندرس حلقة.
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NOTATION

(L,∧,∨) a lattice

(L,∧,∨, 0, 1) a bounded lattice

Sub(M) the lattice of submodules of a module M

N0 {0, 1, 2, 3, ...}

B(n, i) the Alarcon & Anderson’s semiring

B {0, 1}

C category of commutative rings

S category of spectral spaces

D category of distributive lattices

Spec(R) the prime spectrum of a ring R

V (I) the set of all prime ideals containing I

V (a) {x ∈ X | a ≤ x}

V (L) {V (a) | a ∈ L}

D(a) X\V (a)

SI(L) the set of all strongly irreducible elements of L

I(A)
∧

a∈A a
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√
a I(V (a))

CX(L) the set of all radical elements of L with respect to X

ACC the ascending chain condition

DCC the descending chain condition

Ideal(R) the lattice of ideals of a ring R

C2 a chain of length 2

Tn a tree of height 1 with n minimal elements

Vn Tn in the dual poset

(N :R M) {r ∈ R | rM ⊆ N}

PSI pseudo strongly irreducible

PSH pseudo strongly hollow

xv



INTRODUCTION

The prime spectrum of a commutative ring has the so called Zariski topology [6].

This topology is spectral, i.e. it is T0, sober, compact, and has a basis of open compact

sets closed under finite unions. This topology showed to be extremely important in

the Theory of Commutative Rings as well as in Algebraic Geometry.

Hochster [16] showed that the spectra of commutative rings with the Zariski topol-

ogy characterize spectral spaces. However, from the point of view of category theory,

this correspondence is not natural. Esteban [11] proved that there is a natural duality

between the category of bounded distributive lattices and the category of spectral

spaces.

Several authors attempted to generalize the Zariski topology to spectra of special

classes of submodules of a given module over a ring. Several notions of a prime

submodule were introduced (e.g. [20], [23]). However, these did not necessarily yield

a Zariski-like topology, mainly because the closed varieties were not necessarily closed

under finite unions. Different attempts to find conditions under which such varieties

form a topology were made. Among the first were attempts by Smith and McCasland

([19], [20]), where they defined top modules over commutative rings as those whose
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closed varieties are closed under finite unions. Moreover, different authors studied

similar topologies on different types of submodules such as coprime, first, and second

submodules (e.g. [1]).

Abuhlail and Lomp [3] [4], worked on a more general framework that recovered

the Zariski-like topologies on (co)prime submodules as a special case. This led them

to introduce the notion of X-top lattices where X is a proper subset of a complete

lattice L. The generalization to lattices was motivated by the fact that the collection

of sub(semi)modules of a (semi)module over a (semi)ring is a complete lattice.

Abuhlail and Hroub [2] studied further the properties of X-top lattices. They

generalized many results on different Zariski-like topologies on modules to this general

setting. Moreover, they studied the interplay between the algebraic properties of the

lattice and the topological properties of these Zariski-like topology on X. Moreover,

they studied conditions under which this topology would be spectral. In this thesis

we continue the work of Abuhlail and Hroub and study in particular some separation

axioms as well as the regularity and normality of such topologies. Moreover, we

introduce a decomposition which has the flavor of the primary decomposition of a

submodule of a Noetherian module over a commutative ring, which we call a PSI

decomposition.

This thesis consists of 3 chapters. The first chapter is introductory and contains

mainly some basic definitions and preliminaries, as well as results from the literature.

Our main contributions are in chapters 2 and 3.
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In Chapter 1, we explain why the correspondence between commutative rings and

spectral spaces is not natural. Moreover, we provide a detailed proof of the natural

duality between the category of bounded distributive lattices and the category of spec-

tral spaces. The proof was given by Esteban [11] in a very compact form. In addition,

we emphasize the fact that the spectrum of a commutative semiring is spectral, as

shown in [22]. Combining several results from the literature, we obtain Theorem 1.32

which provides a complete characterization of spectral spaces that extends Hochster’s

characterization of such spaces.

In Chapter 2, we study the separation axioms of X-top-lattices. We focus on the

quarter separation axioms, namely T1/4, T1/2, and T3/4. The reason is that when the

Zariski-like topology is T1, the space is forced to be zero-dimensional. Moreover, we

investigate the regularity and the normality of X-top-lattices. We illustrate our results

with several examples and counter examples.

In Chapter 3, we study the so called pseudo-strongly irreducible elements (PSI for

short) of a complete lattice with an action from a poset with a largest and smallest

element. These were introduced in [15] along with the so called pseudo-strongly hollow

elements, which, in some sense, serve as duals to PSI elements. The interest in study-

ing PSIs stems from the fact that they build a new class larger than that of strongly

irreducible elements and different from that of irreducible elements. We investigate

the relation between them and other types of elements such as prime, coprime, and

second elements. Moreover, we introduce and study PSI decompositions of elements,

which generalize strongly irreducible decompositions. Lastly, we study PSI submod-
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ules and their relations with primary submodules. We study also the relation between

PSI decompositions and primary decompositions of modules over commutative rings.
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CHAPTER 1

LATTICE THEORY AND

SPECTRAL SPACES

In this chapter, we introduce some basic definitions and results form Lattice Theory

[14] and the theory of Semirings and Semimodules [13]. Moreover, we demonstrate

the natural duality between the category of bounded distributive lattices and the

category of spectral spaces as shown by Esteban [11]. We recover [22, Theorem 3.1],

which states that the prime spectrum of a commutative semiring is spectral, and

combine it with Esteban’s results to obtain a complete characterization of spectral

spaces in Theorem 1.32. Note that all rings and semirings in this thesis are with a 1.

1.1 Lattice Theory

In this section we recall some of the basic definitions and results from Lattice Theory

that will be needed in this thesis. Any notions or results not stated here can be found

in [14].
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Definition 1.1. A lattice L is a partially ordered set such that the supremum and

infimum of any two elements exist. We define two operations ∧ and ∨ on L, such that

∀ a, b ∈ L:

a ∨ b := sup{a, b} and a ∧ b := inf{a, b}.

There are several types of lattices:

Definitions 1.2. A lattice (L,∧,∨) is called

1. bounded, if L has a least element 0 and a largest element 1.

2. complete, if arbitrary meets and arbitrary joins of elements exist in L (in this

case, 0 =
∧

x∈L x and 1 =
∨

x∈L x ).

3. distributive, if ∀ x, y, z ∈ L:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) equivalently x ∨ (y ∧ z) = (x ∧ y) ∨ (x ∧ z)

4. modular, if ∀ x, y, z ∈ L:

x ≤ z =⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z

Remark 1.3. One can easily see that every complete lattice is bounded, and every

distributive lattice is modular.

We define now ideals and some special types of elements of lattices and their duals:

1.4. Let (L,∧,∨) be a lattice.

1. A subset A ⊆ L is a sublattice, if A is closed under ∧ and ∨.
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2. A subset I ⊆ L is said to be an ideal, if I is a sublattice and for all x ∈ I,

a ∈ L, we have x ∧ a ∈ I, equivalently, for all a, b ∈ I, we have

a ∨ b ∈ I and {a} ↓:= {x ∈ L | x ≤ a} ⊆ I.

Moreover, the ideal generated by any A ⊆ L, denoted by id(A), is the smallest

ideal containing A. Clearly, for all a, b ∈ L we have id(a) = {a} ↓, whence

id(a) ∧ id(b) = id(a ∧ b) and id(a) ∨ id(b) = id(a ∨ b).

3. A proper ideal I  L is said to be a prime ideal, if for all a, b ∈ L with a∧b ∈ I

we have a ∈ I or b ∈ I.

We consider next some special types of elements of a lattice, which will be

used in the sequel.

Definition 1.5. [4] Let (L,∧,∨) be a lattice. We call x ∈ L :

1. irreducible, if for all a, b ∈ L with a ∧ b = x, we have a = x or b = x. These

are referred to as meet-irreducible elements in [14].

2. strongly irreducible, if for all a, b ∈ L with a∧ b ≤ x, we have a ≤ x or b ≤ x.

3. hollow, if for all a, b ∈ L with a ∨ b = x, we have that a = x or b = x. These

are referred to as join-irreducible elements in [14].

4. strongly hollow, if for all a, b ∈ L with a∨ b ≥ x, we have that a ≥ x or b ≥ x.

Examples 1.6. 1. Let X be any non-empty set and 2X be its power set. Then L =

(2X ,∩,∪, ∅, X) is a complete distributive lattice. In this case, the irreducible

elements are X\{a}, where a ∈ X, and the hollow elements are the singletons.
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2. The lattice of two sided ideals of a (semi)ring R, L = (ideal(R),∩,+, 0, R), is a

bounded lattice.

3. Let R be a ring, M a left (right) R-module, and Sub(M) the collection of

R-submodules of M. Then L = (Sub(M),∩,+, 0,M), is a complete modular

lattice. Note that this example covers the lattice of left (right) ideals of R.

4. Let S be a semiring, M a left (right) S-semimodule, and Sub(M) the collection of

S-subsemimodules of M. Then L = (Sub(M),∩,+, 0,M) is a complete lattice

that is not necessarily modular as we will see in this section. Note that this

covers the lattice of left (right) ideals of S.

The following result provides a graphical characterizations of modular and dis-

tributive lattices.

Theorem 1.7. [14, Theorems 101, 102] A lattice L is

1. modular if and only if L does not contain a pentagon (N5) as a sublattice.

2. distributive if and only if L does not contain a pentagon (N5) or a diamond

(M3) as sublattices.

Examples 1.8. 1. The Pentagon N5 in Figure 1.1 is the smallest non-modular

lattice. Observe that {0, c} is a prime ideal and {0, b} is an ideal which is not

prime.

2. The Diamond M3 in Figure 1.1 is the smallest non-distributive lattice. Notice

that M3 is modular.
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M31

x yz

0

N5

1

0

b

a
c

Figure 1.1: The lattices M3 and N5

We end the section with a lemma that will be needed in the third section of this

chapter.

Lemma 1.9. [14, Lemma 5 and Corollary 116] Let (L,∧,∨) be a lattice, H ⊆ L a

subset, and I ⊆ L an ideal.

1. I = id(H) if and only if

I = {x | x ≤ h1 ∨ ... ∨ hn for some n ≥ 1 and h1, ..., hn ∈ H}.

2. If L is distributive and a ∈ L\I, then there exists a prime ideal P such that

I ⊆ P ⊆ L\{a}.
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1.2 Semirings and semimodules

In this section, we include some of the basic definitions and results from the theory

or Semirings and Semimodules. We explain why the lattice of left (right) ideals of a

semiring is not necessarily modular. Any notions or results not mentioned here can

be found in [13].

Definition 1.10. [13] A semiring R is a set equipped with two operations, addition

”+” and multiplication ”·”, and satisfies the following conditions:

1. (R,+) is a commutative monoid with identity element 0;

2. (R, ·) is a monoid with identity element 1;

3. Multiplication distributes over addition from either side;

4. 0 · r = 0 = r · 0 for all r ∈ R;

5. 1 ̸= 0.

Examples 1.11. 1. Every ring is a semiring.

2. Every bounded distributive lattice is a commutative semiring.

3. (N0,+, 0, ·, 1), where N0 := {0, 1, 2, · · · }, is a commutative semiring.

4. The Boolean algebra B = {0, 1}, where 1 + 1 = 1, is a semiring. We call B the

Boolean semiring.
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Example 1.12. [13, Example 1.8] Consider B(n, i) := (B(n, i),⊕, 0,⊙, 1), where

B(n, i) = {0, 1, 2, ..., n− 1} and:

• x⊕ y = x+ y if x+ y < n; otherwise, x⊕ y is the unique element c of B(n, i)

satisfying c ≡ x+ y mod (n− i);

• x ⊙ y = xy if xy < n; otherwise, x ⊙ y is the unique element c of B(n, i)

satisfying c ≡ xy mod (n− i).

Then B(n, i) is a semiring. Observe that B(2, 1) = B and B(n, 0) = Zn.

The lattice of ideals of a semiring is not necessarily modular.

Example 1.13. Consider the semiring N0 and the ideals

I1 = 2N0\{2}, I2 = 2N0, I3 = N0\{1, 2, 3}, I4 = N0\{1, 2} and I5 = N0\{1}.

Observe that I1 ⊆ I2 ⊆ I5, I1 ⊆ I3 ⊆ I4 ⊆ I5, I3 ∩ I2 = I1 = I4 ∩ I2, and

I3 + I2 = I5 = I4 + I2. Hence, {I1, I2, I3, I4, I5} forms a pentagon. By Theorem 1.7

(1), the lattice of ideals of N0 is not modular.

N\{1}

2N\{2}

N\{1, 2, 3}

N\{1, 2}
2N

Figure 1.2: A pentagon in the lattice of ideals of N

We define now semimodules over semirings and provide some examples on them.
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Definition 1.14. [13] Let S be semiring. A left S-semimodule is a commutative

monoid (M,+, 0M) with a map (scalar multiplication)

S ×M → M , (s,m) 7→ sm ,

which satisfies the following conditions for all m,m1,m2 ∈ M and s, s1, s2 ∈ S:

1. (s1s2)m = s1(s2m);

2. (s1 + s2)m = s1m+ s2m;

3. s(m1 +m2) = sm1 + sm2;

4. 1sm = m;

5. s0M = 0M = 0Sm.

If M is a left S-semimodule, and (N,+, 0M) ≤ (M,+, 0M) is a submonoid such

that sn ∈ N for all s ∈ S and n ∈ N , then we say that N is an S-subsemimodule

of M and write N ≤S M .

Example 1.15. The category of commutative monoids is nothing but the category

of N0-semimodules.

Example 1.16. Consider the semiring M2(R+), where M2(R+) is the set of 2 × 2

matrices over R+ := [0,∞). Then

N1 =

{ a 0

b 0

 | a, b ∈ R+

}
and N2 =

{ 0 a

0 b

 | a, b ∈ R+

}

are left M2(R+)-semimodules and R+-semimodules.

12



Example 1.17. If M is a left R-semimodule and A is a non-empty set, then MA is

a left R-semimodule where (f + g)(a) = f(a) + g(a) and (rf)(a) = r(f(a)), for all

f, g ∈ MA, a ∈ A and r ∈ R.
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1.3 Spectral Spaces

Hochster [16] defined the so called spectral topological spaces. He showed that the

prime spectra of commutative rings characterize spectral spaces in the sense that

every spectral space is the prime spectrum of some commutative ring. However, this

correspondence had two problems: it is not natural in the sense of category theory,

and the commutative ring R corresponding to a given spectral space τ is not given

explicitly, in general.

Esteban [11] showed that there is a natural duality between the category D of

bounded distributive lattices and the category S of spectral spaces; moreover, the

bounded distributive lattice L corresponding to a given spectral space τ was given

explicitly.

In this section, we explain why the correspondence between the category C of

commutative rings and S is not natural. Moreover, we demonstrate a detailed

proof of the natural duality between D and S. We end this section by combining

[22, Theorem 3.1] with the main theorems of [16] and [11] to provide a complete

characterization of spectral spaces using spectra of commutative (semi)rings. For any

notions or results from Category Theory not explained here, we refer to [17].

Definition 1.18. [2] Let X be a topological space.

1. A non-empty subset A ⊆ X is said to be irreducible if for any two closed

subsets C, D of X, such that A ⊆ C ∪D, we have A ⊆ C or A ⊆ D.
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2. A closed subset C ⊆ X is said to have a generic point x ∈ X if {x} = C.

3. X is called sober if every closed irreducible subset of X has a unique generic

point.

Definition 1.19. A topological space X is called a spectral space if

1. X is T0.

2. X is compact.

3. X has a compact open sets closed under finite intersections.

4. X is sober.

We now define what we mean by an anti-equivalence of categories.

Definition 1.20. [17] Let C and D be any two categories and F : C −→ D, G :

C −→ D be functors. A natural isomorphism F
α≃ G is a family of morphisms

α = {αX : F (X) −→ G(X)}X∈|C| in D such that:

1. F (X)
αX≃ G(X) for every object X in C.

2. For every morphism f : X −→ Y in C we have

αY ◦ F (f) = G(f) ◦ αX ,

i.e. the following diagram commutes

F (X) F (Y )

G(X) G(Y )

F (f)

αX αY

G(f)

15



Definition 1.21. [17] Two categories C and D are said to be equivalent, if there

exist two covariant functors, F : C −→ D and G : D −→ C along with two natural

isomorphisms α : ID −→ FG and β : IC −→ GF . If F and G yield an equivalence and

are contravariant functors, then we have a dual equivalence or a natural duality

of categories. In this case, we say that the categories C and D are dual (to each

other).

1.22. With C we denote the category whose objects are the commutative rings and

whose arrows are maps which respect addition, multiplication, and the identity. With

D we denote the category whose objects are the bounded distributive lattices and

whose arrows are maps that respect meets and joins. With S we denote the category

whose objects are the spectral spaces and whose arrows are the continuous maps such

that the inverse image of a compact open set is compact (and open).

Remark 1.23. The map Spec : C −→ S, that assigns to any commutative ring R

the prime spectrum Spec(R) equipped with the Zariski topology, is a contravariant

functor. Hochster [16] was able to show that the image of Spec is actually the whole

of S. In other words, given any spectral space X, there exists some commutative ring

R such that Spec(R) = X. However, he showed also that Spec cannot be inverted on

a number of subcategories on S concluding that it cannot be inverted on the whole of

S.

In fact, C and S are not dually equivalent through the functor Spec . Suppose

there exists a contravariant functor F : S −→ C such that for any commutative ring

16



R, (F ◦ Spec)(R) ∼= R. Noting that the spectra of all fields are homeomorphic, we

would have

Z3
∼= (F ◦ Spec)(Z3) ∼= (F ◦ Spec)(Z2) ∼= Z2,

a contradiction.�

Next, we provide a detailed proof of Esteban’s result [11] which shows that the

category S of spectral spaces and the category D of bounded distributive lattices are

dual.

We start by proving four lemmas, and consequently the main duality theorem.

Remark 1.24. Let (L,∧,∨) be a bounded distributive lattice. For any ideal I ≤ L

and any a ∈ L we define:

V (I) = {P ∈ Spec(L) | I ⊆ P} and V (a) = {P ∈ Spec(L) | a ∈ P}.

Clearly, V (0) = Spec(L), V (L) = ∅, and for any collection of ideals {Ij}j∈J :

V (
∨
j∈J

Ij) = V (id(
∪
j∈J

Ij)) =
∩
j∈J

V (Ij)

Also,

V (I) ∪ V (J) = V (I ∩ J) = V (I ∧ J),

since a ∧ b ∈ P ⇐⇒ a ∈ P or b ∈ P , for any P prime ideal of L. It follows that

{V (I)}I∈Ideal(L) forms a basis of closed sets for a topology τ on Spec(L), where {D(I) =

Spec(L)\V (I)}I∈Ideal(L) are the open sets. Moreover, for any a ∈ L, one can easily see

that V (a) = V (id(a)).
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Lemma 1.25. Let L ∈ D be a bounded distributive lattice. Then,

{D(a) = Spec(L)\V (a)}a∈L

are the compact open sets of Spec(L).

Proof. Let {D(Ik)}k∈K , be an open cover for D(a), where a ∈ L.

Then, D(a) ⊆
∪

k∈K D(Ik), whence V (a) ⊇
∩

k∈K V (Ik) = V (
∨

k∈K Ik). By Lemma

1.9 (2), if a /∈
∨

k∈K Ik, then V (a) +
∩

k∈K V (Ik) = V (
∨

k∈K Ik), a contradiction. By

Lemma 1.9 (1), a ∈
∨

c∈C Ic for some finite subset C ⊆ K. Hence, D(a) ⊆
∪

c∈C D(Ic),

i.e. D(a) is compact and open.

Conversely, suppose there exists a non-principal ideal I of L with D(I) compact.

Since I is not principal,
∨

a∈A⊆I id(a) ̸= I for any finite subset A (recall that id(a) ∨

id(b) = id(a∨b)). Now, I =
∨

a∈I id(a), i.e. V (I) = V (
∨

a∈I id(a)). Therefore, D(I) =∪
a∈I D(id(a)) and {D(id(a))}a∈L has no finite subcover for D(I), contradicting that

D(I) is compact.�

Lemma 1.26. Let L ∈ D be a bounded distributive lattice. Then Spec(L) is a spectral

space.

Proof. We showed in Lemma 1.25 that Spec(L) has a basis of compact open sets and

D(1) = V (0) = Spec(L) is compact. It remains to show that Spec(L) is T0 and that

every irreducible closed set has a unique generic point, i.e. the space is sober.

Claim I: Spec(L) is T0.

If P ̸= Q ∈ Spec(L), then {P} ̸= {Q}.
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Observe that:

{P} = {K ∈ Spec(L) | ∀a ∈ L, K ∈ D(a) ⇒ P ∈ D(a)}

= {K ∈ Spec(L) | K ⊇ P} = V (P ).

Since P ̸= Q we have {P} = V (P ) ̸= V (Q) = {Q}. Hence, Spec(L) is T0.

Claim II: Spec(L) is sober.

Let V (I) be any closed irreducible set for some ideal I ≤ L. Let a ∧ b ∈ I. Then

V (I) ⊆ V (a ∧ b) = V (a) ∪ V (b). Thus, V (I) ⊆ V (a) or V (I) ⊆ V (b) as V (I) is

irreducible. So, a ∈ I or b ∈ I, i.e. I is prime. Thus, V (I) = {I}, i.e. Spec(L) is

sober.�

Lemma 1.27. We have a contravariant functor Spec : D −→ S is a contravariant

functor, where for every arrow f : L1 −→ L2 in D, we have

Spec(f) : Spec(L2) −→ Spec(L1), P 7→ f−1(P ).

Proof. Lemma 1.26 shows that Spec(L) ∈ S for every L ∈ D. Let f : L1 −→ L2 be

a morphism of distributive lattices. We prove first that f ∗ := Spec(f) is a morphism

of spectral spaces.

Claim I: f ∗ respect prime ideals.

Suppose that a ∧ b ∈ f−1(P ) for some a, b ∈ L2 and P ∈ Spec(L2). It follows

that f(a ∧ b) = f(a) ∧ f(b) ∈ P. Since P is prime, f(a) ∈ P , whence a ∈ f−1(P ), or

f(b) ∈ P whence b ∈ f−1(P ).

Claim II: f ∗ is continuous.

Let W be a basic open set in Spec(L1). By Lemma 1.25, W = D(a) for some
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a ∈ L. It follows that

f ∗−1(D(a)) = {P ∈ Spec(L2) | f−1(P ) ∈ D(a)}

= {P ∈ Spec(L2) |a /∈ f−1(P )}

= {P ∈ Spec(L2) | f(a) /∈ P}

= D(f(a)).

It follows again by Lemma 1.25 that D(f(a)) is open (and compact).

Claim III: f ∗−1 of a compact open set is compact open (i.e. f ∗ is a spectral map).

By Lemma 1.25, the compact open sets are precisely D(a) for some a ∈ L. From

claim II we can see that f ∗−1 respects compact open sets.

One can check easily now that Spec(idL) = idSpec(L) and Spec(g ◦ f) = Spec(f) ◦

Spec(g) for all L1
f−→ L2

g−→ L3 in D. Consequently, Spec is a contravariant functor.�

Lemma 1.28. We have a contravariant functors F : S −→ D where

X 7→ {C ⊆ X | X\C is open and compact}

and for every morphism of spectral spaces f : X −→ Y, we have

F (f) : F (Y ) −→ F (X), C 7→ f−1(C).

Proof. Let X be a spectral space. It is clear that (F (X),∪,∩, X, ∅) is a bounded

distributive lattice with ∪ as a meet, ∩ as a join, 0 = X and 1 = ∅.

Let f : X −→ Y be a morphism of spectral spaces.

Claim: F (f) : F (X) −→ F (Y ) is a morphism of distributive lattices.

Let C ∈ F (Y ) be such that U := X\C is open compact. Then f−1(C) =

f−1(X\U) = X\f−1(U) ∈ F (X) as f is a spectral map.
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Moreover, for all C,D ⊂ F (Y ), we have

f−1(C ∪D) = f−1(C) ∪ f−1(D), f−1(C ∩D) = f−1(C) ∩ f−1(D),

f−1(∅) = ∅, and f−1(Y ) = X,

(1.1)

i.e. F (f) is morphism in D.

It can be easily checked that F (idX) = idF (X) and F (g ◦ f) = F (f) ◦ F (g) for all

X
f−→ Y

g−→ Z in is S. Consequently, F is a contravariant functor.�

Theorem 1.29. The category D of bounded distributive lattices is dually equivalent

to the category S of spectral spaces.

Proof. By Lemma 1.27 and 1.28, Spec : D −→ S and F : S −→ D are contravariant

functors. It remains to show that

α : ID −→ F ◦ Spec and β : IS −→ Spec ◦ F

are natural isomorphisms.

Step I: Given any L ∈ D, we define

αL : L −→ (F ◦ Spec)(L), a 7→ V (a).

The map is well defined, by Lemma 1.25.

We show that αL is an isomorphism in D. For all a, b ∈ L, we have:

1. αL(0) = V (0) = Spec(L) and αL(1) = V (1) = ∅

2. αL(a ∨ b) = V (a ∨ b) = V (a) ∩ V (b) = αL(a) ∨ αL(b).

3. αL(a ∧ b) = V (a ∧ b) = V (a) ∪ V (b) = αL(a) ∧ αL(b).

4. Suppose that αL(a) = αL(b), i.e. V (a) = V (b). If a ̸= b, then either a /∈ id(b)
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or b /∈ id(a) and, by Lemma 1.9 (2), we reach a contradiction to V (a) = V (b).

So, αL is injective.

5. αL is surjective by Lemma 1.25.

Step II: Let f : L1 −→ L2 be a morphism in D. For all a ∈ L, we have

((F ◦ Spec)(f) ◦ αL1)(a) = (F (f ∗) ◦ αL1)(a) = f ∗−1(V (a))

= V (f(a)) = αL2(f(a)).

It follows that

(F ◦ Spec)(f) ◦ αL1 = αL2 ◦ f.

Step III: For every X ∈ S, define

βX : X −→ (Spec ◦ F )(X), x 7→ {C ∈ F (X) | x ∈ C}.

We show that βX is a homeomorphism of spectral spaces.

Claim 1: βX is well defined.

For all C,D ∈ βX(x) we have x ∈ C∩D and x ∈ C∪D, whence C∨D := C∩D ∈ βX(x)

and C ∧ D := C ∪ D ∈ βX(x), i.e. βX(x) is a sublattice. Now, if C ∈ βX(x) and

D ∈ F (X), then x ∈ C ∪ D = C ∧ D, i.e. C ∧ D ∈ βX(x). Consequently, βX(x) is

an ideal. Lastly, if C,D ∈ F (X) such that C ∪D = C ∧D ∈ βX(x), then x ∈ C ∪D

which implies that x ∈ C or x ∈ D, i.e. C ∈ βX(x) or D ∈ βX(x). Thus, βX(x) is a

prime ideal of (F (X),∪,∩, X, ∅).

Claim 2: βX is injective.

Suppose that x ̸= y in X. Then there exists C ∈ F (X) such that x ∈ C and y /∈ C

since X is T0. Thus, βX(x) ̸= βX(y).
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Claim 3: βX is surjective.

Suppose that P ∈ Spec(F (X)) and {Ci}ni=1 ⊆ P . Then
∩n

i=1 Ci ̸= ∅; if not, 1 =

∅ ∈ P implies that P = F (X) contradicting that P is prime. Thus, P is a family

of closed sets in X with the finite intersection property and X compact implies that∩
C∈P C = C0 ̸= ∅, for some C0 ∈ X (A closed subset of a compact space is compact).

Note that C0 ∈ P since C0 =
∩

C∈P C =
∨

C∈P C ∈ P . Now P is a prime and is a

down set in (F (X),∪,∩, X, ∅) implies that P = {C ∈ F (X) | C0 ⊂ C} and C0 is

irreducible, i.e. C0 has a unique generic point x ∈ X. Hence, P = βX(x).

Claim 4: βX is continuous.

For any ideal I ≤ F (X), we have that

β−1
X (V (I)) = {x | βX(x) ∈ V (I)} =

∩
C∈I

C

which is closed.

Claim 5: βX is closed.

Suppose that C ⊆ X is closed in X, i.e. C =
∩

k∈K Ck where Ck ∈ F (X). Let I be

the ideal of F (X) generated by {Ck}k∈K . Then

βX(C) = {C ′ ∈ F (X) | x ∈ C ′, ∀x ∈ C} = {C ′ ∈ F (X) | C ⊆ C ′} = V (I).

Step IV: We want to show that given a morphism f : X −→ Y , then

(Spec ◦ F )(f) ◦ βX = βY ◦ f . For all x ∈ X, we have that

((Spec ◦ F ) ◦ βX)(x) = ((f−1)∗ ◦ βX)(x) = {C ∈ F (Y ) | f−1(C) ∈ βX(x)}

= {C ∈ F (Y ) | x ∈ f−1(C)} = {C ∈ F (Y ) | f(x) ∈ C} = βY (f(x))

as desired.
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Therefore, D and S are dually equivalent.�

The following is the well known characterization of spectral spaces by Hochster

[16].

Theorem 1.30. A topological space is spectral if and only if its homeomorphic to the

spectrum of a commutative ring.

The following is a theorem proven in [22].

Theorem 1.31. [22, Theorem 3.1] Let R be a commutative semiring. Then Spec(R)

is a spectral space.

As a consequence of Theorem 1.31 and the fact that every ring is a semiring, one

can deduce that a topological space is spectral if and only if it is homeomorphic to the

spectrum of a commutative semiring. Thus, we reach the following characterization

of spectral spaces.

Theorem 1.32. Let X be a topological space. The following statements are equivalent:

1. X is spectral.

2. X is homeomorphic to the spectrum of a bounded distributive lattice.

3. X is homeomorphic to the spectrum of a commutative semiring.

4. X is homeomorphic to the spectrum of a commutative ring.
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CHAPTER 2

SEPARATION AXIOMS IN

X-TOP LATTICES

The prime spectrum of a commutative ring induces the so called Zariski topology [6].

This topology is spectral, i.e. it is T0, sober, compact, and has a basis of open compact

sets closed under finite unions. It has shown to be a very important tool in the study of

commutative rings as it provides an important bridge between Commutative Algebra

and Algebraic Geometry.

Motivated by this, many authors attempted to generalize the Zariski topology

to different spectra of modules over rings. The first step to such an attempt was a

generalization of the notion of primeness from ideals to submodules. This resulted in

different notions of prime submodules (e.g. [20], [23]), all of which coincide with prime

ideals when the base ring is considered as a module over itself. However, a significant

difference was that these spectra do not automatically attain Zariski-like topologies (in

general). The problem was mainly that the closed varieties are not necessarily closed
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under finite unions. Different attempts were carried out by several authors to find

conditions under which one obtains a Zariski-like topology. Among those were Smith

and McCasland (yi[19], [20]) who introduced the notion of top modules (modules whose

prime spectra induce Zariski-like topologies). Other spectra, e.g. coprime submodules

and second submodules were studied, among others, by Abuhlail (e.g. [1]).

Due to similarities in the results on these different spectra, Abuhlail and Lomp [3],

[4] provided a more general framework. They introduced the notion of X-top lattices

(complete lattice L for which a chosen spectrum from 2X of some proper subset X  L

induce a Zariski-like topology). Among the many advantages of this approach is the

freedom to choose X and the possibility to make use of the duality (as every complete

lattice attains a dual complete lattice with the reversed order). Moreover, they gave

a complete characterization of such spaces [3, Theorem 2.2].

Abuhlail and Hroub [2] studied further the properties of X-top lattices. They

succeeded in proving many results in this general framework that recovered results on

special spectra of submodules of a given module over a ring as special cases. Moreover,

they studied the interplay between the algebraic properties of the complete lattice and

topological properties of the corresponding Zariski-like topology. Furthermore, they

studied some of the conditions under which this topology is spectral.

The main goal of this chapter is to provide a focused study on the separation

axioms of X-top lattices. From [2], we know that if X is a T1 space, then X is of

dimension 0. Hence, we focus on the quarter separation axioms, i.e. T1/4, T1/2, T3/4

[22]. We provide some diagrammatic characterizations of these separation axioms as
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well. Moreover, we study the regularity, the complete regularity, the normality, the

complete normality, and the perfect normality of X-top lattices which are not T1.

2.1 Preliminaries

We start by introducing the required notation that will be used throughout this chap-

ter. All lattices in this chapter are assumed to be complete.

2.1. ([3], [2]) Let L = (L,∧,∨, 0, 1) be a complete lattice and X ⊆ L\{1}. For

a ∈ L, we define V (a), the variety of a, by V (a) := {x ∈ X | a ≤ x}, and set

D(a) := X\V (a). Moreover, we set

V (L) := {V (a) | a ∈ L}.

Note that V (0) = X, V (1) = ∅, and V (L) is closed under arbitrary intersections as∩
a∈A(V (a)) = V (

∨
a∈A a) for any A ⊆ L. We say that L is an X-top lattice if and

only if V (L) is closed under finite unions. Moreover, if X ⊆ SI(L) (i.e. X is a subset

of the strongly irreducible elements of L), then L is called a strongly X-top lattice.

2.2. Let L be a complete lattice and X ⊆ L\{1}. For any Y ⊆ X and a ∈ L, we set

I(Y ) :=
∧
y∈Y

y and
√
a := I(V (a)).

We say that a is an X-radical element if and only if
√
a = a, and define the set of

X-radical elements of L to be

CX(L) := {a ∈ L |
√
a = a}.
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We drop X if it is clear from the context. Defining,

∨̃
Y := I(V (

∨
Y )) =

√∨
Y

it turns out that (C(L),∧, ∨̃,
√
0, 1) is a complete lattice [3, p.3].

Now we state the main characterization of X-top lattices by Abuhlail and Lomp

[3].

Theorem 2.3. [3, Theorem 2.2] Let L = (L,∧,∨, 0, 1) be a complete lattice and

X ⊆ L\{1}. The following are equivalent:

1. L is an X-top lattice.

2. V : (C(L),∧, ∨̃) −→ (P(X),∩,∪) is an anti-homomorphism of lattices.

3. every element x ∈ X is strongly irreducible in (C(L),∧)

4. (C(L),∧, ∨̃) is a distributive lattice and every element x ∈ X is irreducible in

(C(L),∧).

We prove now an important consequence of Theorem 2.3, which shows that for

any X-top lattice L, and any non empty Y ⊆ X, L is a Y -top lattice as well. The

importance of this result is that it provides access to a large class of examples.

Corollary 2.4. Let L = (L,∧,∨, 0, 1) be an X-top lattice for some X ⊆ L\{1}. Then

L is a Y -top lattice, for any non-empty Y ⊆ X. In fact, the corresponding topology

on Y is the subspace topology inherited from X.

Proof. We first show that CY (L) ⊆ CX(L). Let a ∈ CY (L). Then a =
∧
VY (a).

Notice that VY (a) ⊆ VX(a) as Y ⊆ X, hence,
∧
VX(a) ≤

∧
VY (a) = a. Since,
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a ≤
∧

VX(a), we conclude that a =
∧

VX(a). By Theorem 2.3 (3), every y ∈ Y

is strongly irreducible in (CX(L),∧). As CY (L) ⊆ CX(L) and both share the same

meet, we conclude that every y ∈ Y is strongly irreducible in (CY (L),∧). Once more,

by Theorem 2.3 (3), L is a Y -top lattice. Notice that VY (a) = VX(a)∩Y for all a ∈ L,

i.e. the resulting topology on Y is nothing but the subspace topology inherited from

X.�

Examples 2.5. 1. Let R be a (semi)ring and I = (Ideal(R),∩,+, 0, R), the lattice

of (two-sided) ideals of R. Clearly, I is Spec(R)-top and the topology on Spec(R)

is nothing but the usual Zariski topology on the prime spectrum of R. Moreover,

for every Y ⊆ Spec(R), it follows by Corollary 2.4 that I is Y -top. Of special

importance is the topology on Y = Max(R), the spectrum of maximal ideals of

R.

2. Let L be a complete lattice and consider SI(L) the set of strongly irreducible

elements of L. For any Y ⊆ SI(L), the lattice L is a Y -top lattice. This is a

direct consequence of Theorem 2.3 (3).

3. Let M be a left (semi)module over a (semi)ring R and consider the spectrum

SI(M) of strongly irreducible sub(semi)modules of M. Then M is a Y -top

(semi)module for every Y ⊆ SI(M).

The following lemma, which combines results from [3] and [2], recalls some prop-

erties of the maps I and V defined in 2.1.
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Lemma 2.6. Let L = (L,∧,∨, 0, 1) be a complete lattice and X ⊆ L\{1}. For all

x, y ∈ L and A,B ⊆ L, we have:

1. A ⊆ B =⇒ I(B) ≤ I(A).

2. V (x) ⊆ V (y) ⇐⇒ √
y ≤

√
x (whence V (x) = V (y) ⇐⇒ √

y =
√
x).

3. V (x) = V (
√
x).

4.
∩

x∈A V (x) = V (
∨

x∈A x).

5. I ◦ V ◦ I = I.

6. V ◦ I ◦ V = V .

7. L is an X-top ⇐⇒ V (x) ∪ V (y) = V (x ∧ y) for any x, y ∈ C(X).

The following is a combination of [2, Lemma 1.11, Proposition 1.15, and Proposi-

tion 1.17].

Lemma 2.7. Let L = (L,∧,∨, 0, 1) be an X-top lattice for some X ⊆ L\{1}.

1. X is a T0 topological space.

2. The closure of any Y ⊆ X is given by Y = V (I(Y )).

3. For all x ∈ X, we have {x} = V (x).

4. V (x) is irreducible for all x ∈ X.

5. For any closed subset Y ⊆ X, we have

Y =
∪
x∈Y

V (x) = V (
∧
x∈Y

x).
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6. Every finite closed irreducible subset of X has a unique generic point (whence

sober, if X is finite).

2.8. Let L = (L,∧,∨, 0, 1) be a complete lattice and X  L a proper sub-

set. The set of maximal (resp. minimal) elements of X is denoted by Max(X)

(resp. Min(X)). Moreover, the set of maximal (resp. minimal) elements of L is

Max(L) := Max(L\{1}) (resp. Min(L) := Min(L\{0})).

1. We say that X is atomic, if for every x ∈ X there exists y ∈ Min(X) such that

y ≤ x.

2. We say that X is coatomic iff for every x ∈ X there exists y ∈ Max(X) such

that x ≤ y.

3. We say that L is an atomic lattice, if for every L\{0} is atomic (i.e. for every

a ∈ L\{0} there exists m ∈ Min(L) such that m ≤ a).

4. We say that L is a coatomic lattice, if L\{1} is coatomic (i.e. for every

a ∈ L\{1} there exists m ∈ Max(L) such that a ≤ m).

5. L is said to have the complete max property, if

∧
x

x∈Max(L)\{y}

� y for every y ∈ Max(L).

Remarks 2.9. Let L be an X-top lattice for some X ⊆ L\{1}.

1. If X satisfies the descending chain condition (DCC), then X is atomic.

2. If X is atomic and Min(X) is finite, then X is irreducible if and only if Min(X)

is a singleton.
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3. If F ⊆ X is closed and 0 ∈ F , then F = X (observe that X = V (0) = {0} ⊆ F ).

4. Suppose that 0 ∈ X. For all a ∈ L, if D(a) is non-empty, then 0 ∈ D(a). This

is clear as the only V (a) that contains 0 is V (0), in which case D(0) is empty.

Moreover, X is irreducible as Min(X) = {0}, a singleton.

Before we proceed, we introduce some graphical definitions of posets that will be

used throughout the rest of the chapter.

2.10. Let (P,≤) be a partially ordered set (a poset). For incomparable x, y ∈ S (i.e.

x 
 y and y 
 x), we write x || y.

1. If (P,≤) is a chain of n elements (abbreviated Cn), then we say that P is a chain

of length n− 1. Figure 2.1 shows what C2 looks like.

2. A tree in P, is a subset T ⊆ P satisfying the following conditions ∀x, y, z ∈ T :

(a) if x || y ∈ T , i.e. x and y are incomparable, then ∃ z ∈ T such that z > x

and z > y;

(b) if x < y and x < z, then y and z are comparable.

If Min(T ) is finite, then we say that T is a tree of finite base. If T is of

height 1 (i.e. the length of longest chain in T is 1) and |Min(T )| = n, then we

explicitly denote it by Tn. Note that in Tn there is a unique maximal element

and n minimal elements. Observe that C2 is just T1. Clearly, if T is a tree of

a finite base, then T should be finite. A forest is a collection of disjoint trees.

Figures 2.1 and 2.2 shows three examples of trees.
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3. If T ⊆ P o is a tree in the dual poset P o = (P,≥o), then we say that T is a V .

If Max(V ) is finite, then we say that V is of a finite cover. If V is of length 1

and |Max(V )| = n, then we explicitly denote it by Vn. Note that in Vn there is

a unique minimal element and n maximal elements. Figure 2.2 shows what V4

looks like.

The graphs in the following figures are not necessarily lattices. The nodes represent

the elements, and the lines represent the order. A line connecting a higher node x to

a lower node y means that y � x. If two incomparable elements are connected to a

smaller or larger element, that does not necessarily mean it is the meet or the join of

the two elements (opposed to the graphs of lattices).

C2 = T1 = V1

y

x

T

Figure 2.1: C2 and a tree T with a finite base (Min(T ) = 4).

T3

V4

Figure 2.2: T3 and V4.
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2.2 Separation Axioms

In this section, we study some separation axioms for the X-top lattice. We start by

stating a couple of results from [2] that provide conditions equivalent to X being T1

or discrete.

For the convenience of the reader, we recall some definitions. Note that all lattices

in this section are complete.

Definitions 2.11. 1. We say that a topological space X is a T1 space, if whenever

x ̸= y in X there exist two open neighborhoods Ux of x and Uy of y, such that

x /∈ Uy and y /∈ Ux.

2. We say that a topological space X is a T2 space (Hausdorff) if whenever

x ̸= y in X there exist two open neighborhoods Ux of x and Uy of y, such that

Ux ∩ Uy = ∅.

Definition 2.12. Let L be an X-top lattice for some X  L. Then X is a poset and

we define the dimension of X, denoted by dim(X), as the supremum of the lengths

of all chains in X. This is nothing but the Krull dimension of the (semi)ring R if R

is a commutative (semi)ring R, L is the lattice of ideals of R and X = Spec(R), the

prime spectrum of R.

Proposition 2.13. [2, Proposition 1.23] Let L be an X-top lattice for some X ⊆

L\{1}. The following are equivalent:

1. X is T1;
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2. Max(X) = X = Min(X);

3. dim(X) = 0.

Proposition 2.14. [2, Theorem 1.24] Let L be an X-top lattice for some X ⊆ L\{1}.

Then Max(X) = Max(C(L)). Moreover, the following are equivalent:

1. X is T1 and C(L) satisfies the complete max property.

2. X is discrete.

Proposition 2.15. Let L be an X-top lattice for some X ⊆ L\{1}. If C(L) satisfies

the complete max property, then the following are equivalent:

1. dim(X) = 0;

2. Max(X) = X = Min(X);

3. X is T1;

4. X is T2;

5. X is discrete.

In the following example, we show that the T1 and T2 separation axioms do not

coincide in arbitrary X-top lattices.

Example 2.16. Let L := Ideal(Z), X = Spec(Z) and Y = Spec(Z)\{0}. By Corol-

lary 2.4, L is Y -top. Since, dim(Y ) = 0, we know Y is a T1 by Proposition 2.13.
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Claim: There exist no two disjoint open sets of Y .

Suppose not. Then there exist positive integers m ̸= n, with D(nZ)∩D(mZ) = ∅.

It follows that

X\V (nmZ) = X\(V (nZ ∩mZ)) = X\(V (nZ) ∪ V (mZ))

= X\V (nZ) ∩X\V (mZ) = ∅.

Hence, V (nmZ) = X, i.e. every prime number divides nm which is absurd. Therefore,

X is not T2, as |X| ≥ 2 and no two points of X can be separated.�

As we have seen, if L is an X-top lattice satisfying T1 (or any higher separation

axiom), then dim(X) = 0 making the study of such spaces less interesting. This

reason led us to study separation axioms lower than T1, rather than the higher ones.

The findings are interesting and have some convenient graphical characterizations.

The lower separation axioms we investigate are T1/4, T1/2, and T3/4. One can easily

show that

T1 =⇒ T3/4 =⇒ T1/2 =⇒ T1/4 =⇒ T0.

The interested reader might find more on these in [22].

Before defining these quarter separation axioms, we prepare the stage by providing

some definitions to be used in the sequel.

Definitions 2.17. ([12], [10], and [24]) Let X be a topological space.

1. An element x ∈ X is called isolated, if {x} is an open set. The set of isolated

points of X is denoted by Isol(X).
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2. An element x ∈ X is called kerneled, if the intersection of all neighborhoods

of x is equal to {x}. The set of kerneled points of X is denoted by Ker(X).

We define now what we mean by a T1/4 topological space.

Definition 2.18. [22] Let X be a topological space. We say that X is T1/4 if each

point of X is closed or kerneled.

To characterize T1/4 X-top lattice, we start by characterizing the kerneled points

of an X-top lattice.

Lemma 2.19. Let L be an X-top lattice for some X ⊆ L\{1}. Then x ∈ X is

kerneled if and only if x is minimal in X (i.e. Ker(X) = Min(X)).

Proof. Observe that

∩
{U | U is an open neighborhood of x} =

∩
{X\V (y) | y > x or y || x}

= {z ∈ X | z ≤ x}.

The last equality follows from the fact that any open set containing x should contain

any z ∈ X such that z ≤ x. Therefore, x is kerneled if and only if {x} = {z ∈ X | z ≤

x} if and only if x is minimal in X.�

Lemma 2.20. Let L be an X-top lattice for some X ⊆ L\{1} and x ∈ X. Then {x}

is closed if and only if x is maximal in X.

Proof. We have by Lemma 2.7,

{x}= V (x) = {z ∈ X | z ≥ x}.
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It follows that {x} is closed if and only if {x} = {z ∈ X | z ≥ x} if and only if x is

maximal in X.�

As a combination of Lemmas 2.19 and 2.20, we obtain the following characteriza-

tion:

Theorem 2.21. Let L be an X-top lattice for some X ⊆ L\{1}. The following are

equivalent:

1. X is T1/4;

2. X = Min(X) ∪Max(X);

3. dim(X) ≤ 1.

We now provide some examples of X-top lattice spaces that are T1/4. Moreover,

we will show that the T1/4 and T0 do not coincide in X-top lattice.

Example 2.22. As dim(Z) = 1, any Y ⊆ Spec(Z) is T1/4. Figure 2.3 shows Spec(Z).

0

2Z 3Z 5Z 7Z ... 29Z ...

Figure 2.3: Spec(Z), the prime spectrum of Z.

Example 2.23. As dim(Spec(N0)\{N0\{1}}) = 1, any Y ⊆ Spec(N0)\{N0\{1}} is

T1/4. Figure 2.4 describes Spec(N0), the prime spectrum of N0.
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Example 2.24. Any X-top lattice with dim(X) > 1 is T0 but not T1/4. In particular,

Spec(N0) is T0, but not T1/4 as dim(N0) = 2.

N0\{1}

0

2N0 3N0 5N0 7N0
... 29N0

...

.

Figure 2.4: The prime spectrum of the semiring N0 [5].

A special class of elements in a lattice play an important role in the sequel.

Definition 2.25. Let L be an X-top lattice for some X ⊆ L\{1}. We call x ∈ X

absolutely irreducible in X, if for any A ⊆ X and
∧

y∈A y ≤ x, we have y ≤ x for

some y ∈ A. The set of absolutely irreducible elements of X is denoted by AI(X).

Proposition 2.26. Let L be an X-top lattice for some X ⊆ L\{1}. Then x ∈ X is

isolated if and only if x is absolutely irreducible and minimal in X, i.e.

Isol(X) = AI(X) ∩Min(X). (2.1)

Proof. (⊆) Let x ∈ X be isolated. Clearly, x is kerneled, whence minimal by Lemma

2.19. Let
∧

y∈A y ≤ x, for some A ⊆ X. Suppose that y � x for all y ∈ A. Since x

is isolated, {x} = X\V (z) for some z ∈ L, whence y ∈ V (z) for all y ∈ A. It follows
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that z ≤
∧

y∈A y ≤ x, whence x ∈ V (z), a contradiction. Therefore, x is absolutely

irreducible in X.

(⊇) Assume that x is absolutely irreducible and minimal in X. Setting

z :=
∧

y∈X\{x} y, we have z � x, i.e. x ∈ D(z). Observe that y /∈ D(z) for all

y ∈ X\{x} as y ∈ V (z) by construction. Hence, {x} = D(z), i.e. x is isolated.�

Corollary 2.27. Let L be an X-top lattice for some X ⊆ L\{1}. Then X is a discrete

space if and only if every x ∈ X is absolutely irreducible and minimal.

Remark 2.28. Let L be an X-top lattice for some finite X ⊆ L\{1}. Then x ∈ X

is absolutely irreducible in X if and only if x is strongly irreducible in C(L). By

Theorem 2.3, every x ∈ X is absolutely irreducible in X.

We define now the T1/2 topological spaces. Thereafter, we characterize the T1/2

separation axiom in X-top lattices.

Definition 2.29. [10] We say that a topological space X is T1/2, if each point of X

is closed or isolated.

Theorem 2.30. Let L be an X-top lattice for some X ⊆ {1}. Then X is T1/2 if and

only if every x ∈ X is either maximal or both absolutely irreducible and minimal (i.e.

X = Max(X) ∪ (AI(X) ∩Min(X))).

Proof. The result follows directly from the definitions, Lemma 2.20 and Proposition

2.26.�
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Proposition 2.31. Let L be an X-top lattice for some X ⊆ L\{1}, and assume that

Min(X) ⊆ AI(X). Then X is T1/2 if and only if X is T1/4. In particular, if X is

finite, then X is T1/2 if and only if X is T1/4.

Proof. The right implication always holds. Let X be T1/4. Then

X is T1/4 ⇐⇒ X = Max(X) ∪Min(X) (Theorem 2.21)

⇐⇒ X = Max(X) ∪ (AI(X) ∩Min(X)) (by the assumption)

⇐⇒ X is T1/2 (Theorem 2.30)

If X is finite, then X = AI(X) by Remark 2.28 and the result follows by an argument

similar to the one above.�

We now provide graphical classes of examples of X-top lattices for which X is T1/2.

Corollary 2.32. Let L be an X-top lattice for some X ⊆ L\{1}. If X is a finite

combination of disjoint Vks and Tns for all n, k ∈ N, then X is T1/2.

Proof. Note that if X is a finite combination of Tns and Vks, then X is finite. As every

Tn and every Vk is of height 1, we have dim(X) = 1. Hence X is T1/2 by Theorem

2.21 and Proposition 2.30.�

We provide now some examples of T1/2 X-top lattices.

Examples 2.33. 1. Any X-top lattice with X ⊆ L\{1} finite and dim(X) ≤ 1

is T1/2. This follows from Proposition 2.31. In particular if X is C2, then X is

T1/2.

2. Let R be a DVR (a discrete valuation domain). Since R is nothing but a principal

ideal domain with a unique non-zero prime ideal [6], we have |Spec(R)| = 2 and
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dim(R) = 1. It follows by Corollary 2.32 that Spec(R) is T1/2. Examples of

DVRs include rings of power series k[[x]] (where k is a field) and the ring of

p-adic integers (where p is any prime).

In what follows we provide examples of X-top lattices which are T1/4 but not T1/2.

Examples 2.34. Denote with P the set of prime (positive) integers.

1. Spec(Z) is T1/4 but not T1/2. Since dim(Z) = 1, Spec(Z) is T1/4 by Theorem

2.21. Although 0 =
∩

p ∈P
pZ is minimal in Spec(Z), it is neither absolutely nor

maximal. Whence, Spec(Z) is not T1/2 by Theorem 2.30.

2. X = Spec(N0)\(N0\{1}) is T1/4 but not T1/2. Since dim(Spec(N0)) = 2, we

have dim(X) = 1 and it follows that X is T1/4 by Theorem 2.21. However,

0 =
∩

p ∈P
pN0 is minimal in X, but neither absolutely irreducible nor maximal.

Whence X is not T1/2 by Theorem 2.30.�

We move now to T3/4 X-top lattices. We start by defining T3/4 topological spaces.

Definition 2.35. An open subset A ⊆ X is called regular open, if int(A) = A, i.e.

A is equal to the interior of its closure.

Definition 2.36. [22] We say that a topological space X is T3/4, if each point x ∈ X

is closed or {x} is regular open.

Definition 2.37. Let L be an X-top lattice for some X ⊆ L\{1}. Then x ∈ X is

called completely isolated if
√∧

D(x) =
√∧

y ̸=x y. The set of completely isolated

elements of X will be denoted by CI(X).
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The following theorem is a characterization of T3/4 X-top lattices.

Theorem 2.38. Let L be an X-top lattice for some X ⊆ L\{1}. Then

X is T3/4 ⇐⇒ X = Max(X) ∪ (Min(x) ∩ AI(X) ∩ CI(X)).

Proof. ( =⇒ ) Assume that x ∈ Min(x) ∩ AI(X) is open regular. Suppose that

a =
√∧

D(x) ̸=
√∧

y ̸=x y = b, i.e. x is not completely isolated. Then, x ∈ Min(x)∩

AI(X) implies that a � x, i.e. x ∈ D(a). Now D(b) = {x} (x is open regular) and

a ̸= b implies that ∃ z > x such that z /∈ V (a) and z ∈ V (b). Thus, {x} ( D(a) ⊆

V (x), a contradiction to the fact that x is open regular.

( ⇐= ) Clearly X is T1/2. Let x ∈ Min(x) ∩ AI(X) ∩ CI(X) and suppose that x

is not open regular. Then, U := int(V (x)) ) {x} for some open set U = D(z) where

z ∈ L. Therefore,

D(x) ⊆ U c = V (z) ⊆ {y |y ̸= x} =⇒
∧

D(x) ≥
∧

V (z) ≥
∧
y ̸=x

x.

Thus, a =
√∧

V (z) =
√∧

y ̸=x y = b as x ∈ CI(X). Hence, D(a) = D(b) = {x} and

a =
√∧

V (z) =
√
z, i.e. {x} = D(a) = D(

√
z) = D(z) = U , a contradiction.

Example 2.39. Let L be an X-top lattice for some X ⊆ L\{1} with |X| = 2, i.e.

X = {x, y} for some x ̸= y. If x and y are comparable, say x < y, then X is C2 and

X is T1/2 but not T3/4 since int(V (x)) = int(X) = X ̸= {x}.

If x || y, then X is clearly T3/4 (In fact, X is discrete).

We provide now some graphical results about T3/4 X-top lattices when X is finite.
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Theorem 2.40. Let L be an X-top lattice for some finite X ⊆ L\{1}.

1. If X is T3/4, then dim(X) ≤ 1 and X does not contain a separate Vn or a

separate C2.

2. If X is forest of a finite number of disjoint Tni
s, where ni ≥ 2 for each i ∈

{1, 2, ...,m}, then X is T3/4.

Proof. Let X be finite.

1. Let X be T3/4. Then X is T1/4, whence dim(X) ≤ 1 by Theorem 2.21.

• Assume that X contains a separate chain C2 : x < y. Set a :=∧
z∈X\{x,y} z � y (and so a � x) as X is finite and y is strongly irre-

ducible in C(L) by Theorem 2.3. It follows that V (x) = {x, y} is open

and

int(V (x)) = D(a) = V (x) ̸= {x},

i.e. x is minimal but {x} is not regular open, contradicting the fact that

X is T3/4.

C2
y

x

Vn

x

m1 m2 m3 m4 ... mn

• Suppose that X contains a separate Vn with minimal element x.

Set a :=
∧

w∈X\Vn
and notice that a � m for all m ∈ Max(Vn) (and

so a � x the minimal element of Vn as each m is strongly irreducible in
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C(L)). Therefore, V (x) = Vn is open and int(V (x)) = V (x) ̸= {x}, i.e.

x is minimal but {x} is not regular open, contradicting the fact that X is

T3/4.

2. Suppose that X =
∪m

i=1 Tni
, where each Tni

has the unique maximal element

xi. For all i ∈ {1, 2, ...,m} and for all y ∈ Tni
\{xi}, notice that y is minimal,

V (y) = {y, xi}, and any open set D(a) for some a ∈ L containing V (y) will

contain every element less than or equal to xi, i.e. Tni
⊆ D(a). Thus, V (y) is

not open as every ni ≥ 2 (V (y) ( Tni
). Moreover, {y} =

∩
z∈X\{y}X\V (z) (X is

finite, and y strongly irreducible in C(L) ⊇ X), which implies that {y} is open.

Thus, y is minimal and {y} is regular open. Moreover, every xi is maximal, i.e.

{xi} is closed. Therefore, X is T3/4.�

We provide now some concrete examples of T3/4 X-top lattices. Moreover, we show

that in X-top lattices the T3/4 axiom does not coincide with either T1/2 or T1.

Example 2.41. Let R be a local (semi)ring with |Spec(R)| = n ≥ 3 and dim(R) ≤ 1,

whence Spec(R) is a Tn−1. By Theorem 2.40 (2), Spec(R) is T3/4. For example,

R = K[[x, y]]/(xy), where K[[x, y]] is the formal power series in x and y. If (xy) ⊆ P

for any prime P , then we have x ∈ P or y ∈ P , i.e. (x) ⊂ P or (y) ⊆ P . Hence, the

only prime ideals of R are (x), (y), and (x, y), i.e. |Spec(R)| = 3 and dim(R) = 1.

Therefore, R is local with (x, y) maximal and Spec(R) is T3/4. Observe that Spec(R)

is not T1 as dim(R) = 1. Figure 2.5 shows the spectrum of R.
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(x, y)

(y)(x)

Figure 2.5: Spec(K[[x, y]]/(xy)).

Example 2.42. Consider the prime spectrum Spec(N0) of the semiring N0. If

Y = {N0\{1}, p1N0, p2N0, ..., pnN0} where {p1, · · · , pn} are prime numbers, then Y

is Tn whence Y is T3/4 by Theorem 2.40 (2) (figure 2.6 describes Y ). If W =

{0, p1N0, p2N0, ..., pnN0}, then W is a Vn whence W is not T3/4 by Theorem 2.40

(1). Notice that W is T1/2 as dim(Z) = 1 and Z is finite (see Proposition 2.31).

0

p1N p2N p3N p4N ... pnN

.

Figure 2.6: The poset W

Example 2.43. Any X-top lattice such that X is a C2 is T1/2 but not T3/4. For

example, any DV R (discrete valuation ring) R is a T1/2 Spec(R)-top ring that is not

T3/4. This is clear by Theorem 2.40 (1).

We recall now a result describing the prime spectrum of the semiring B(n, i) defined

in Example 1.12. We use this result to prove several examples and counter examples.
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Theorem 2.44. [5, Theorem 24] Consider the semiring B(n, i).

1. dim(B(n, i)) = 0 if n = 2 and either i = 0 or i = 1.

2. dim(B(n, i)) = 1 if i = 1 and n > 2. In this case the prime ideals of B(n, i) are

0 and pB(n, i) where p is a prime with p|n− 1.

3. dim(B(n, i)) = 1 if n > 2 and n = i+1. In this case the prime ideals of B(n, i)

are 0 and {0, 2, 3, · · · , n− 1}.

4. dim(B(n, i)) = 2 if n − 1 > i > 2. In this case the prime ideals are 0, M =

{0, 2, 3, ..., n− 1} and pB(n, i) where p is prime and p|n− i.

Example 2.45. Consider the semiring B(n, 1), where n > 2, and let ω = ω(n − 1)

denote the number of distinct prime divisors of n− 1.

1. If n− 1 is prime, then Spec(B(n, i)) is a C2 by Theorem 2.44 (2), whence T1/2

but not T3/4 by Example 2.39.

2. If n − 1 is not prime, then Spec(B(n, i)) is a Vω by Theorem 2.44 (2), whence

Spec(B(n, i)) is T1/2 by Corollary 2.32 but not T3/4 by Theorem 2.40.�

Example 2.46. Consider the semiring B(n, i), where i > 1, n = i + 1. Then

Spec(B(n, i)) is C2, whence T1/2 but not T3/4 (see Example 2.39).

Example 2.47. Consider the semiring B(n, i), where n − 1 > i > 2, and let ω =

ω(n− i) denote the number of distinct prime divisors of n− i. By Theorem 2.44 (4),
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dim(B(n, i)) = 2 whence Spec(B(n, i)) is T0 but not T1/4. Moreover, if n − 1 is not

prime, and Y := Spec(B(n, i))\{0}, then dim(Y ) = 1 and Y is a Tω whence T3/4 by

Theorem 2.40 but not T1 by Proposition 2.13.

2.3 Regularity and Normality

We shift our focus now to studying regularity and normality of X-top lattices. We

show that regularity (whence complete regularity) in X-top lattices imply that X is

zero-dimensional.

We draw the attention of the reader that when studying the different regularity

and normality notions of topological spaces, we consider the versions which drop the

T1 separation axiom (some authors assume that regular and normal spaces are T1, e.g.

Munkres [21]). The reason is that T1 (whence any higher separation axiom) forces our

topological spaces to be zero-dimensional (see Theorem 2.13).

We start with the definitions of these properties.

Definitions 2.48. Let X be a topological space.

1. We say that X is regular, if for any closed set C ⊆ X and a point p /∈ C, we

can separate C and p by disjoint open neighborhoods. A T1 regular space is

called T3.

2. We say that X is completely regular, if for any closed set C ⊆ X and a point

p /∈ C, we can find a continuous map

f : X −→ R such that f(p) = 1 and f(C) = 0.
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A T0 completely regular space is called T3 1
2

(or a Tychonoff space).

3. We say that X is normal, if for any two disjoint closed sets C,D $ X, we can

separate C and D by two disjoint open sets. A T1 normal space is called T4.

4. We say that X is completely normal, if every subspace of X with the subspace

topology is normal. A T1 completely normal space is called T5.

5. We say that X is perfectly normal, if every two disjoint closed sets C and D

can be precisely separated by a a continuous map

f : X −→ R such that f−1(0) = C and f−1(1) = D.

Equivalently, X is perfectly normal if and only if X is normal and every closed

set is a Gδ-set (a countable intersection of open sets). A T1 perfectly normal

space is called T6.

Remark 2.49. [24, p.95, p.99] For any topological space X we have

completely regular =⇒ regular, and

perfectly normal =⇒ completely normal =⇒ normal.

Proposition 2.50. Let L be a an X-top lattice for some X ⊆ L\{1}.

1. X is completely regular if and only if X is T31/2 .

2. X is regular if and only if X is T3.

Proof. 1. This follows from the fact the X is T0 (Lemma 2.7 (1)).
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2. Every T3 space is regular. We prove the converse.

Claim: If X is regular, then dim(X) = 0.

Assume that X is regular. Suppose dim(X) > 0, i.e. there exists x < y, for

some x, y ∈ X. Notice that x /∈ V (y) and that x and V (y) cannot be separated

by disjoint open sets: every open set in X is of form D(a), for some a ∈ L, and

any D(a) that contains V (y) would contain x as well, a contradiction to the

regularity of X.

Since dim(X) = 0, it follows by Proposition 2.13 that X is T1.�

De Marco and Orsatti [9] provided a characterization of commutative rings whose

prime spectrum is normal. We restate this result in the context of X-top lattices,

where X is spectral, using the fact that a topological space is spectral if and only if

it is homeomorphic to the spectrum of a commutative ring. We define first what we

mean by X is pm in the context of X-top lattices.

A ring is said to be a pm-ring, if every prime ideal of R is contained in a unique

maximal ideal [9]. One can generalize this notion easily to pm-semirings.

Definition 2.51. Let L is an X-top lattice for some X ⊆ L\{1}. Then, X is pm if

and only if every element x ∈ X is less than or equal to a unique maximal element of

X, i.e. |V (x) ∩Max(X)| = 1.

We state the interpretation of [9, Theorem 2.1] in the context of X-top lattices.

Theorem 2.52. Let L be an X-top lattice for some X ⊆ L\{1}. If X is spectral,

then the following are equivalent:
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1. X is pm.

2. Max(X) is a retract of X.

3. X is a normal space.

Corollary 2.53. Let R be a commutative semiring (e.g. a bounded distributive lattice).

The following are equivalent:

1. R is pm.

2. Max(R) is a retract of Spec(R).

3. Spec(R) is a normal space.

Proof. By Theorem 1.32 Spec(R) is spectral and so the result is a direct consequence

of Theorem 2.52.�

Examples 2.54. 1. N0 is a pm-semiring (note that N0 is local). By Corollary

2.53, Spec(N0) is a normal space.

2. The ring C(X) of continuous real valued functions on a completely regular

topological space is a pm-ring [8]. By Corollary 2.53, Spec(C(X)) is a normal

space.

We prove next a partial generalization of Theorem 2.52 to X-top lattices, where

X is not necessarily spectral.

Theorem 2.55. Let L be an X-top lattice for some X ⊆ L\{1}.
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1. If X is coatomic and Max(X) is a retract of X, then X is pm.

2. If X is finite, then

Max(X) is a retract of X ⇐⇒ X is pm.

Proof. Assume X is coatomic.

1. Let Max(X) be a retract of X, where r : X −→ Max(X) is the retraction

map. For any x ∈ X, we have r(x) = m for some m ∈ Max(X). Hence,

x ∈ r−1(V (m)), which is closed as r is continuous. It follows that {x} = V (x) ⊆

r−1(V (m)). Then, for any m′ ∈ Max(X) such that x ≤ m′, we have m′ ∈

r−1(V (m)). Thus, r(m′) ∈ V (m) = {m}, i.e. m′ = m. As X is coatomic, every

x is less than or equal to at least one maximal element of X. Hence, every x is

less than or equal to a unique maximal element of X.

2. Assume that X is finite and pm. The map

r : X −→ Max(X), x 7→ m,

where m is the unique maximal element such that m ≥ x, is well defined. For

any m ∈ Max(X), we have

r−1(V (m)) = r−1(m) = {z ∈ X | z ≤ m} = V (
∧
z≤m

z).

The last equality holds since X is finite and any x ∈ X is strongly irreducible

in C(L) (Note that y ∈ V (
∧

z≤m z) if and only if
∧

z≤m z ≤ y if and only if

y ≤ z ≤ m, for some z ≤ m). Since any closed set in Max(X) is a finite union

of V (m)s, r is a continuous map. Clearly, r(m) = m for any m ∈ Max(X), which
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implies that Max(X) is a retract of X. The converse holds by (1) (Observe that

if X is finite then X is coatomic).�

Theorem 2.56. Let L be an X-top lattice for some X ⊆ L\{1}.

1. If X is coatomic and normal, then X is pm.

2. Let X be atomic and assume Min(x) is finite. Then

X is coatomic and normal ⇐⇒ X is pm.

Proof. Assume that X is coatomic.

1. Let X be normal. Let x ∈ X, m ̸= m′ ∈ Max(X), x ≤ m, and x ≤ m′. Then

V (m) and V (m′) are closed, but cannot be separated by open disjoint sets. The

reason is that any open set is of the form D(a), for some a ∈ L, and if it contains

V (m) or V (m′) then it would contain x as well. So, one cannot find disjoint

open sets separating V (m) and V (m′); a contradiction to the normality of X.

Consequently, m = m′ and X is pm.

2. ( ⇐= ) Assume that X is pm, atomic, and |Min(x)| = n for some n ∈ N. By

our assumption, one can see that

|Max(X)| ≤ n = |Min(X)|.

For each ai ∈ Min(X), let mi ∈ Max(X) be such that ai ≤ mi. Consider

two closed disjoint sets V (c) and V (d). We can find two index sets K, J ⊆

{1, 2, ..., n} = I such that K ∩ J = ∅,

{mk|k ∈ K} ⊆ V (c) and {mj|j ∈ J} ⊆ V (d).
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Set U :=
∩

i∈I\K D(ai) and V :=
∩

i∈I\J D(ai). By construction, V (c) ⊆ U ,

V (d) ⊆ V , U ∩ V = ∅ and U , V are open sets. Hence, X is normal.�

The following example shows that the converse of (1) in Theorem 2.56 is not true in

general: if L is an X-top lattice and X is coatomic, then being pm does not necessarily

imply that X is normal. Moreover, it shows that a subspace of a spectral space is not

necessarily spectral.

Example 2.57. Let X = Spec(Z)\{0}. We saw in Example 2.16 that there exist no

two disjoint open sets of X. Hence, we cannot separate the closed sets V (2Z) = {2Z}

and V (3Z) = {3Z}, i.e. X is not normal. However, X is clearly pm as dim(X) = 0

(every element is maximal). By Theorem 2.52, X is not spectral (showing that the

subspace of a spectral space is not necessarily spectral).

The following example shows that the atomic condition in (2) of Theorem 2.56 is

required.

Example 2.58. Consider the ring Z and let P be the set of prime (positive) numbers.

Then, the set of strongly irreducible ideals of Z is

SI(Z) = {pnZ | p ∈ P and n ≥ 1} ∪ {0}.

By Example 2.5, Z is a Y -top lattice for any Y ⊆ SI(Z). In particular, we choose

Y = {2nZ | n ≥ 1} ∪ {3Z}. Then, Y is pm, |Min(Y )| = 1, and Y is not atomic

(since 2Z does not contain any minimal element of Y ). Moreover, Y is not normal

since V (2Z) = {2Z} and V (3Z) = {3Z} cannot be separated by disjoint open sets

(any open set different from Y contains 2mZ, for some positive integer m).
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The following is a characterization of normal X-top lattices in a special case.

Proposition 2.59. Let L be an X-top lattice for some X ⊆ L\{1} and assume that

X is coatomic. If
∧

x∈X x ∈ X, then

X is normal ⇐⇒ |Max(x)| = 1.

Proof. ( =⇒ ) Assume that X is normal and
∧

x∈X x ∈ X. By Theorem 2.56 (1),

X is pm, which implies that
∧

x∈X x ≤ m for some unique m ∈ Max(X). Therefore,

|Max(x)| = 1 since
∧

x∈X x is the smallest element in X.

( ⇐= ) Let Max(X) = {m}. Then m ∈ V (a), for all a ∈ L, since X is coatomic.

Thus, X is normal as no two closed sets of X are disjoint.�

Example 2.60. Let R be an entire commutative semiring (i.e. an integral domain).

Then 0 ∈ Spec(R). By Proposition 2.59, Spec(R) is normal if and only if R is local.

We provide now graphical conditions, one sufficient and another necessary, for X

to be completely normal when L is an X-top lattice.

Theorem 2.61. Let L be an X-top lattice for some X ⊆ L\{1}.

1. If X is forest of a finite number of disjoint trees with a finite base, then X is

completely normal.

2. If X is completely normal, then X does not contain any V with finite cover and

Max(V ) ≥ 2.

Proof. 1. Let X be a forest with the trees Tni
of base ni for i ∈ {1, ..., l} = I and

let mi to be the unique maximal element of Tni
.

55



Step 1: X is normal.

Let V (a) and V (b) be two disjoint closed sets of X. We can find two non-empty

index sets K, J ⊆ I such that K ∩ J = ∅, V (a) ⊆
∪

k∈K Tnk
, and V (b) ⊆∪

j∈J Tnj
. If not, then there exists some i ∈ I such that Tni

intersects both

V (a) and V (b). Then mi ∈ V (a) ∩ V (b), contradicting the fact that V (a) and

V (b) are disjoint. Now, for all i ∈ I, Tni
= V (

∧
Tni

) as every x is strongly

irreducible in X ⊆ C(L) (Theorem 2.3 (3)). Thus, U =
∩

i∈I\K D(
∧
Tni

) and

V =
∩

i∈I\J D(
∧

Tni
) are two disjoint open sets. It follows, by construction, that

V (a) ⊆ U and V (b) ⊆ V . Consequently, X is normal.

Step 2: Every subspace of X is normal.

Removing any non-maximal element of any Tni
, one can easily see that the

conditions of the tree are still preserved, which means that we produced a new

tree of a finite base. On the other hand, removing the maximal element mi from

Tni
, produces two new trees, each of which is of finite base.

Therefore, if we remove any number of elements from X, we will still have a

forest of finite trees each of which has a finite base. By the first step, one can

deduce that any subset of X is normal as desired.

2. Let X be completely normal. Suppose that X contains a V of finite cover and

Max(V ) ≥ 2. Let x be the unique minimal element of V . Then, there exists

y ̸= z in Max(V ) ⊆ X such that x < y and x < z.
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x

zy

Then, Y := {x, y, z} is atomic, not pm and |Min(Y )| = 1. By, Proposition 2.56

(2), Y is not normal, a contradiction to the fact that X is completely normal.�

The following results gives a necessary condition for X to be perfectly normal

when L is an X-top lattice.

Proposition 2.62. Let L be an X-top lattice for some X ⊆ L\{1}. Then X is

perfectly normal if and only if X is T6.

Proof. Claim: X does not contain C2 (whence dim(X) = 0).

Let X be perfectly normal and suppose that there exists C2 ⊆ X, i.e. we can find

x < y in X. Any open set in X is of the form D(a), where a ∈ L, and so contains

x whenever it contains V (y). Now, x /∈ V (y) implies that V (y) cannot be expressed

as an intersection of open sets, i.e. not a Gδ-set, contradicting the fact that X is

perfectly normal.�

The following example shows that, in X-top lattices, not every completely normal

space is perfectly normal or completely regular.

Example 2.63. Let L be the lattice in Figure 2.7.
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1

w
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z

0

Figure 2.7: The Lattice L

Let X = {x, y, w}. Then L is an X-top lattice by Theorem 2.3. In this case, X

is a T2 and dim(X) = 1. By Theorem 2.61, X is completely normal but not perfectly

normal, by Proposition 2.62. Notice that, by Proposition 2.50, X is not regular as

dim(X) = 1.

Xw

yx

The following example shows that, in X-top lattices, not every normal space is

regular or completely normal.

Example 2.64. Let L be the lattice in Figure 2.7 and Y = {0, x, y, w}. Then L is a

Y -top lattice by Theorem 2.3. In this case, 0 ∈ Y , Max(Y ) = {w}, and {0, x, y} ⊆ Y

is a V2.

Y

0

w

yx
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Notice that Y is normal, by Proposition 2.59, but not completely normal, by The-

orem 2.61. As dim(Y ) = 2, Y is not regular and not perfectly normal, by Proposition

2.50 and Proposition 2.62.

Remark 2.65. Let L be the lattice in Figure 2.7 and Z = {z, x, y}. Observe that

L is not a Z-top lattice. The reason is that x ∧ y = z, i.e. z ∈ Z is not strongly

irreducible in C(L). Thus, for any W ⊆ L\{1}, such that Z ⊆ W , L is not a W -top

lattice.

W

z

yx
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CHAPTER 3

PSI DECOMPOSITIONS

In this chapter we study the so called pseudo-strongly irreducible elements (PSI for

short) of a lattice with an action from a bounded lattice. The interest in studying

PSIs stems from the fact that they build a class larger than the class of strongly

irreducible elements and different from that of irreducible elements. This type of

elements was introduced in [15] along with the pseudo-strongly hollow elements

(PSH for short) which are, in some sense, dual to the PSIs. We investigate their

relation with other types of elements such as prime, coprime, and second elements [15].

Our main interest is in decompositions of elements in a lattice with an S-action

analogous to those of decompositions into (strongly) irreducible elements [4]. We pro-

vide Existence and Uniqueness Theorems for a special class of PSI-decompositions,

which we call faithfully PSI-decompositions. These decomposition theorems generalize

[3, Proposition 1.22], which provides a Uniqueness Theorem for strongly irreducible

representations. In fact, our study is carried out in a very general setting that
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allows dualizing to PSH-representations. Moreover, we study applications of these

decompositions and representation to the special lattices of sub(semi)modules of a

given (semi)module over a (semi)ring.

Lastly, we investigate PSI-submodules of a module over a ring. In particular,

we show that if M is a Noetherian module, then every PSI-submodule is primary

(Theorem 3.53). Moreover, we study the relation between PSI-decompositions and

primary decompositions of modules. We prove also a couple of results related to

PSI-submodules of semisimple modules analogous to the corresponding ones for PSH-

submodules in [15].

3.1 Preliminaries

In this section we state the basic definitions and results of a lattice L with an S-action,

where S is a given poset with a smallest and a largest element. This generalizes

the action of Ideal(R), the lattice of ideals of a given (semi)ring R, on the lattice

Sub(M) of R-sub(semi)modules of a given left R-(semi)module M . We recall from

[15] definitions for different types of elements of L which generalize their counterparts

in Sub(M).

Definition 3.1. [15, 3.1] Let L = (L,∧,∨, 0, 1) be a bounded lattice and S := (S,≤

, 0S, 1S) be a bounded poset. We say that (L,⇀) is a lattice with an S-action if it

satisfies the following conditions ∀s, s′ ∈ S and ∀x, y,∈ L:
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1. If s ≤ s′, then s ⇀ x ≤ s′ ⇀ x;

2. If x ≤ y, then s ⇀ x ≤ s ⇀ y;

3. s ⇀ x ≤ x;

4. 0S ⇀ x = 0 and 1S ⇀ 1 = 1.

Example 3.2. Let R be a (semi)ring and M a left R-(semi-)module. The complete

lattice Sub(M) has an Ideal(R)-action defined by I ⇀ N := IN .

Remark 3.3. The two conditions in (4) of Definition 3.1 above were not assumed in

[15]. These two extra conditions shall be needed for some results in our work. As-

suming them is not very restrictive since they are satisfied in our prototype (Example

3.2).

The following is a generalization of the notion of a multiplication module [15].

Definition 3.4. [15] A bounded lattice L with an S-action is a multiplication lat-

tice, if for every element x ∈ L there is some s ∈ S such that x = s ⇀ 1.

We recall now some definitions of special classes of elements of a lattice with an

action.

Definitions 3.5. [15] Let (L,⇀) = (L,∧,∨, 0, 1) be a bounded lattice with an S-

action from a bounded lattice (S,≤ 0S, 1S).

1. x ∈ L\{1} is strongly irreducible, if for all y, z ∈ L:

y ∧ z ≤ x =⇒ y ≤ x or z ≤ x (3.1)
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2. x ∈ L\{1} is pseudo strongly irreducible (PSI for short), if for all y ∈ L

and s ∈ S:

s ⇀ 1 ∧ y ≤ x =⇒ s ⇀ 1 ≤ x or y ≤ x (3.2)

3. x ∈ L\{1} is prime, if for all y ∈ L and s ∈ S:

s ⇀ y ≤ x =⇒ s ⇀ 1 ≤ x or y ≤ x (3.3)

4. x ∈ L\{1} is coprime, if for all s ∈ S:

s ⇀ 1 ≤ x or s ⇀ 1 ∨ x = 1 (3.4)

5. x ∈ L\{0} is strongly hollow, if for all y, z ∈ L:

x ≤ y ∨ z =⇒ x ≤ y or x ≤ z (3.5)

6. x ∈ L\{0} is pseudo strongly hollow (PSH for short), if for all y ∈ L and

s ∈ S:

x ≤ s ⇀ 1 ∨ y =⇒ x ≤ s ⇀ 1 or x ≤ y (3.6)

7. x ∈ L\{0} is second, if for all s ∈ S:

s ⇀ x = x or s ⇀ x = 0 (3.7)

3.2 Pseudo Strongly Irreducible Elements

In this section we focus on studying PSI elements of a bounded lattice (L,⇀) with an

action. We investigate mainly the relation between PSIs and other types of elements
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under certain conditions. Moreover, we provide examples which illustrate the facts

that the class of PSI-elements is larger than the class of strongly irreducible elements,

and different from that of irreducible elements.

The class of distributive lattices [14] is an important class of lattices. However, a

property weaker than that of distributivity is sufficient for some of our results.

Definition 3.6. Let (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action.

We say that L is

1. ∧-pseudo distributive, if ∀s ∈ S and ∀x, y ∈ L:

x ∧ (s ⇀ 1 ∨ y) = (x ∧ s ⇀ 1) ∨ (x ∧ y)

2. ∨-pseudo distributive if ∀s ∈ S and ∀x, y ∈ L:

x ∨ (s ⇀ 1 ∧ y) = (x ∨ s ⇀ 1) ∧ (x ∨ y)

The following result clarifies the relationship between the class of PSI-elements

and other classes of elements.

Proposition 3.7. Let (L,⇀) = (L,∧,∨, 0, 1) be a bounded lattice with an S-action.

1. If 1 is second in L, then x is PSI for all x ∈ L\{1}

2. If x is prime in L, then x is PSI.

3. If L is ∧-pseudo distributive, then every coprime in L is PSI.

4. If L is ∨-pseudo distributive, then every irreducible in L is PSI.

5. Let L be a multiplication. Then x ∈ L is PSI ⇐⇒ x is strongly irreducible.
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Proof. 1. This follows immediately from the definitions.

2. Let x be prime in L. Suppose that s ⇀ 1 ∧ y ≤ x. As as s ⇀ y ≤ s ⇀ 1 and

s ⇀ y ≤ y, we have

s ⇀ y ≤ s ⇀ 1 ∧ y ≤ x

Since x is prime, it follows that s ⇀ 1 ≤ x or y ≤ x, i.e. x is PSI.

3. Assume that L is ∧-pseudo distributive. Let x ∈ L be coprime, and suppose that

s ⇀ 1 ∧ y ≤ x. If s ⇀ 1 ≤ x, then we are done. If not, then s ⇀ 1∨x = 1 (since

x is coprime). Taking the meet of both sides with y, we get by the ∧-pseudo

distributive of L :

(y ∧ s ⇀ 1) ∨ (y ∧ x) = y,

which implies that y ≤ x ∨ (y ∧ x) = x.

4. Assume that L is ∨-pseudo distributive. Let x ∈ L be irreducible, and suppose

that s ⇀ 1 ∧ y ≤ x. Taking the join of both sides with x, we get

(x ∨ s ⇀ 1) ∧ (x ∨ y) = x.

Since x is irreducible, x ∨ s ⇀ 1 = x or x ∨ y = x, i.e. s ⇀ 1 ≤ x or y ≤ x and

we are done.

5. This follows directly from the definitions.�

The following examples illustrate that the condition in (1) is necessary and that
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neither the converse of (2) nor that of (4) in Proposition 3.7 holds in general.

Example 3.8. Consider the ring of integers Z as a module over itself. Then, 4Z is a

PSI submodule that is not prime. Moreover, 6Z = 3Z ∩ 2Z is not PSI, whence Z is

not second.

Example 3.9. Consider M = B[x] as an N0-Semimodule where B = {0, 1} is the

Boolean semiring (with 1 + 1 = 1). For any ideal I ≤ N0, we have IM = 0 (if I = 0)

or IM = M (if I ̸= 0). Therefore, M is second, whence every subsemimodule of M is

PSI.

Consider N := xM and U := (x+ 1)M . Then

N ∩ U = (x2 + x)M

is PSI but not irreducible (and indeed not strongly irreducible). In addition, by (5)

M is not a multiplication.�

We provide now an example of a complete lattice L which is ∧-pseudo distributive

and ∨-pseudo distributive but not distributive; moreover, we give an element in L

which is PSI but not irreducible.

Example 3.10. Consider the Z-module M := Z2[x]. Since M is second, Sub(M) is

∨-pseudo distributive and ∧-pseudo distributive. Setting N := xM , U := (x+ 1)M

and K := Z2, we have

K ∩ (N + U) = K ̸= 0 = (K ∩ U) + (K ∩N),

i.e. Sub(M) is not distributive. Moreover, N ∩ U = (x2 + x)M is PSI but not

irreducible.�
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3.3 PSI Decompositions and PSH Representations

In this section we study elements, in a complete lattice with an S-action, that can be

decomposed as a meet of a finite number of PSI elements.

We introduce a special subclass of PSI elements which we call faithfully PSI ele-

ments (FPSI for short). We prove two Uniqueness Theorems for FPSI decompositions

which generalize the uniqueness theorem of strongly irreducible decompositions [3,

Proposition 1.22]. The proofs will be carried out in a more general setting, in which

we consider the FPSIa elements for any a ∈ L.

We start be defining PSIa elements, where a ∈ L is arbitrary. Note that the

PSI1 elements are just the PSI elements. Although the definition works for arbitrary

bounded lattices with an S-action, we assume the lattice L is complete as we need

arbitrary meets and joins to exist in decomposition theorems. The poset (S,≤, 0, 1)

is still assumed to be with a smallest and a largest element.

Definition 3.11. Let (L,⇀) = (L,∧,∨, 0, 1) be a bounded lattice with an S-action

and a ∈ L. We say that x ∈ L\{1} is PSIa, if for all y ∈ L and s ∈ S:

(s ⇀ a) ∧ y ≤ x =⇒ s ⇀ a ≤ x or y ≤ x. (3.8)

The set of all PSIa elements of L is denoted by PSIa(L).

3.12. Let (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action, a ∈ L and

assume that S is Noetherian (i.e. every ascending chain of elements in S stabilizes).

67



For x ∈ L a PSIa, set

Ax := {s ∈ S | s ⇀ a ≤ x}, Kx := Max(Ax) and O(x) :=
∨

s∈Kx

(s ⇀ a).

(3.9)

Notice that Ax is not empty since 0S ⇀ a = 0, and that Kx exists since S is Noetherian.

We drop x from our notation, if it is clear from the context. We say that x is K-PSIa.

3.13. Let (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action and a ∈ L.

We say that x has a PSIa-decomposition, if x is a finite meet of PSIa elements in

L. We say that

x =
n∧

i=1

xi,

where each xi is Ki-PSIa, is a minimal PSIa-decomposition for x if

1. K1, K2, ..., Kn are distinct.

2.
n∧

i=1,i ̸=j

xi � xj for all j ∈ {1, ..., n}.

Proposition 3.14. Let S be Noetherian, (L,⇀) = (L,∧,∨, 0, 1) a complete lattice

with an S-action, a ∈ L and x, y ∈ PSIa(L) be incomparable. Then x∧ y is K-PSIa

if and only if x and y are K-PSIa.

Proof. ( =⇒ ) We first show that Kx ⊆ Kx∧y . Let s ∈ Kx. Since s ⇀ a ≤ x, it

follows that (s ⇀ a) ∧ y ≤ x ∧ y. As x and y are incomparable and x ∧ y is PSI, we

conclude that s ⇀ a ≤ x ∧ y, i.e. s ∈ Ax∧y. Moreover, s ∈ Kx∧y as x ∧ y < x. On the

other hand, let s ∈ Kx∧y. Then, s ⇀ a ≤ x ∧ y < x and so s ∈ Ax. Suppose ∃t > s
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such that t ⇀ a ≤ x. Then, (t ⇀ a) ∧ y ≤ x ∧ y and so t ⇀ a ≤ x ∧ y, i.e. t ∈ Kx∧y,

contradiction. Therefore s ∈ Kx. Consequently, Kx = Kx∧y. One can show similarly

that Ky = Kx∧y.

(⇐=) We first show that Kx∧y = K knowing that Kx = K = Ky. Let s ∈ K, so

that s ⇀ a ≤ x and s ⇀ a ≤ y. It follow that s ⇀ a ≤ x ∧ y, i.e. s ∈ Ax∧y. As

x∧ y < x and s ∈ Kx∧y. On the other hand, if s ∈ Kx∧y, then s ⇀ a ≤ x∧ y < x and

so s ∈ K (otherwise, we reach the same contradiction above).

We show now that x ∧ y is PSIa. Assume that (s ⇀ a) ∧ z ≤ x ∧ y for some s ∈ S

and z ∈ L. Then, (s ⇀ a) ∧ z ≤ x and (s ⇀ a) ∧ z ≤ y, whence s ⇀ a ≤ x or

z ≤ x, and s ⇀ a ≤ y or z ≤ y as both x and y are PSIa. Without loss of generality,

suppose that s ⇀ a ≤ x. Since S is Noetherian, ∃ t ≥ s in K such that t ⇀ a ≤ x

Therefore, s ⇀ a ≤ t ⇀ a ≤ y, i.e. s ⇀ a ≤ x if and only if s ⇀ a ≤ y. Hence, either

s ⇀ a ≤ x ∧ y or z ≤ x ∧ y.�

We provide now an Existence Theorem of a minimal PSIa decomposition of a

PSIa-decomposable element in a complete lattice with an S-action.

Theorem 3.15. (Existence of a minimal PSIa decomposition) Let S be Noetherian,

(L,⇀) = (L,∧,∨, 0, 1) a complete lattice with an S-action and a ∈ L. Then every

PSIa decomposable x ∈ L has a minimal PSIa decomposition.

Proof. Let a =
∧
i∈I

xi, where I is a finite index and each xi is Ki-PSIa. We start by

removing all xj such that
∧

i∈I,i ̸=j

xi � xj and j ∈ I, which is possible by the finiteness

of I. Next, we gather the indices of all xjs that are K-PSIa, i.e. those which share
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the same K, in an index set J . Now,
∧
j∈J

is K-PSIa by Proposition 3.14. Clearly, this

process yields a minimal PSIa decomposition of x.�

To prove the uniqueness theorems for minimal PSIa decompositions, we will have

to assume an extra condition on the PSI-elements. This new class of elements will be

called faithfully PSI-elements (FPSI for short).

Definition 3.16. Let (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action

and a ∈ L. An element x ∈ L is called faithfully PSIa, if x is a PSIa and

O(x) ≤ y ⇒ x ≤ y. (3.10)

Remark 3.17. If L is a multiplication lattice, then every PSI element is faithfully

PSI (and strongly irreducible) since O(x) = x.

We construct examples of FPSI elements in lattices with an S-action.

Example 3.18. Consider the modular lattices L and S in Figure 3.1 below. We

define an S-action on L as follows:

s ⇀ 1 = a, t ⇀ 1 = b, u ⇀ 1 = c, 1S ⇀ 1 = 1, 0S ⇀ 1 = 0,

v ⇀ z = 0 for all v ∈ S and z ∈ L\{1}.

Notice that x is faithfully {u, t, s}-PSI and

O(x) = (s ⇀ 1) ∨ (t ⇀ 1) ∨ (s ⇀ 1).

Note that x is not strongly irreducible as y ∧ w ≤ x while y � x and w � x.
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Figure 3.1: Lattice L with S-action

Example 3.19. Consider the lattice L = {0, a, b, 1}, where 0 < a < b < 1 in Figure

3.2. Define a {0}-action (i.e. S = {0}) on L as follows: 0 ⇀ x = 0 for all x ∈ L. Then,

0, a, and b are PSI where O(b) = O(a) = O(0) = 0. Hence, 0 and a are faithfully PSI,

but b is not faithfully PSI as O(b) = 0 < a < b.

L

1

b

a

0

Figure 3.2: The Lattice L

We prove now our first uniqueness theorem for FPSI decompositions.

Theorem 3.20. (First Uniqueness Theorem of FPSI Decompositions) Let S be

Noetherian, (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action and a ∈ L.
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If
n∧

i=1

xi = x =
m∧
j=1

yj

are two minimal PSIa decompositions for some x ∈ L such that each xi is Ki-FPSIa

and each yj is K ′
j-FPSIa. Then n = m, {K1, ..., Kn} = {K ′

1, ..., K
′
n}, and Ki = K ′

j

whenever O(xi) = O(yj).

Proof. Notice that Kx = Max(Ax) exists since S is Noetherian.

Step I: We prove that ∀ i ∈ {1, ..., n}, ∃ j ∈ {1, ...,m} such that xi ≥ O(yj).

Suppose ∃ i ∈ {1, ..., n} such that xi � O(yj) ∀j ∈ {1, ...,m}. Then ∀j ∈

{1, ...,m}, ∃ tj ∈ K ′
j such that xi � tj ⇀ a. But xi ≥ x =

m∧
j=1

yj ≥
m∧
j=1

(tj ⇀ a).

Since xi is PSIa, we conclude that tj ⇀ a ≤ xi for some j, a contradiction.

Step II: Fix i ∈ {1, ..., n}. We show that ∃ j ∈ {1, ...,m} such that O(xi) = O(yj).

By Step I, we can find j ∈ {1, ...,m} such that xi ≥ O(yj). It follows that

xi ≥ s ⇀ a for all s ∈ K ′
j, i.e. s ∈ Axi

for all s ∈ K ′
j. Hence,

O(xi) =
∨
u∈Ki

(u ⇀ a) ≥
∨
s∈K′

j

(s ⇀ a) = O(yj).

Claim: O(xi) = O(yj).

By similarity, we can find some i′ ∈ {1, ..., n} such that O(yj) ≥ O(xi′). Since xi′

is FPSI, we have

xi ≥ O(xi) ≥ O(yj) ≥ xi′ .

Thus xi = xi′ , whence, O(xi) = O(yj).

Step III: We show now that O(xi) = O(yi) implies Ki = K ′
j.

Let s ∈ Ki. It follows that s ⇀ a ≤ xi and so s ⇀ a ≤ O(xi) = O(yj) ≤ yj. Thus,
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there exists t ∈ K ′
j such that t ≥ s and

t ⇀ a ≤ O(yj) = O(xi) ≤ xi.

However, s is also maximal with this property, i.e. s = t and s ∈ K ′
j. Similarly, one

can show that K ′
j ⊆ Ki. Hence, K ′

j = Ki.�

The following result recovers [4, Proposition 1.22] without the assumption that L

is modular. This shows that our Uniqueness Theorem of FPSIa decompositions serves

as a generalization to the Uniqueness Theorem of Strongly Irreducible Decompositions

in the above mentioned paper.

Corollary 3.21. Let L be a complete lattice and
n∧

i=1

xi = x =
m∧
j=1

yj be two

irredundant meets of strongly irreducible elements in L. Then, n = m, and

{x1, ..., xn} = {y1, ..., yn}.

Proof. We define an L-action on L such that for all x ∈ L,

x ⇀ 1 = x and x ⇀ y = 0 for all y ∈ L\{1}.

Since every strongly irreducible element x ∈ L is a PSI and O(x) = x ⇀ 1 = x, it

follows that x is FPSI with Kx = {x}, by construction. Therefore, the two irredun-

dant strongly irreducible decompositions are in fact minimal PSI decompositions. We

proceed using the First Uniqueness Theorem 3.20. Notice that the assumption that

L is Noetherian is not needed here as Kx = {x}, for all x ∈ L.�

We state now a Second Uniqueness Theorem for FPSI decompositions of 0 in a

complete lattice with an S action.
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Theorem 3.22. (Second uniqueness theorem of FPSI decompositions) Let S be

Noetherian, (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action and a ∈ L.

Let
n∧

i=1

xi = 0 =
n∧

j=1

yj

be two minimal PSIa decompositions of 0 such that each xi is Ki-FPSIa and each yj

is K ′
j-FPSIa. If Am is minimal in {A1, ..., An} and O(xm) is PSIa, then xm = ym.

Proof. Let Am be minimal in {A1, ..., An} such that O(xm) is PSIa. For any i ̸= m,

∃ si ∈ Ai\Am, i.e. si ⇀ a � xm. But
∧
i ̸=m

(si ⇀ a) ∧ xm ≤ 0 ≤ O(xm). Hence,

xm ≤ O(xm) ≤ xm, i.e. O(xm) = xm, as O(xm) is PSIa. Similarly O(ym) = ym. By

the First Uniqueness Theorem 3.20, we obtain

xm = O(xm) = O(ym) = ym.�

3.3.1 PSH Representations

In this subsection we cover what can be considered as the dual of PSI-decompositions.

We state without proof the main Existence and Uniqueness Theorems for the so called

faithfully pseudo strongly hollow elements (FPSH for short).

3.23. Let S be Artinian (i.e. every descending chain in S stabilizes) and (L,⇀) =

(L,∧,∨, 0, 1) a complete lattice with an S-action. For a PSH element x ∈ L. We set

Bx := {s ∈ S | s ⇀ 1 ≥ x}, Hx = Min(Bx) and In(x) =
∧

s∈Kx

(s ⇀ 1).

(3.11)
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Notice that Bx is not empty since 1S ⇀ 1 = 1, and that Hx exists since S is Artinian.

We drop x when it is clear from the context and refer to x as H-PSH.

3.24. Let (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action and a ∈ L.

We say that x is PSH representable element, if x can be written as a finite join

of PSH elements in L. Moreover, we say that x =
n∨

i=1

xi, where each xi is Hi-PSH,

is a minimal PSH representation for x, if

1. H1, H2, ..., Hn are distinct.

2.
n∨

i=1,i ̸=j

xi � xj for all j ∈ {1, ..., n}.

Definition 3.25. Let S be Artinian and (L,⇀) = (L,∧,∨, 0, 1) a complete lattice

with an S-action. An element x ∈ L is called faithfully PSH (FPSH for short), if it

is PSH and ∀y ∈ L,

y ≤ In(x) =⇒ y ≤ x.

In the following, we demonstrate the duality between the PSI elements and the

PSH elements in a bounded lattice with an S-action. We will be defining a suitable

dual action on the dual lattice.

3.26. Let (S,≤, 0S, 1S) be a Noetherian poset and (L,⇀) = (L,∧,∨, 0, 1) a complete

lattice with an S-action. Notice that (So,≥, 1S, 0S) is Artinian and the dual lattice

(Lo,∨,∧, 1, 0) is complete and has an So-action given by

s ⇀o x = s ⇀ x for all s ∈ S and x ∈ L.
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It follows directly that

1. x is PSH in L if and only if x is PSI0 in Lo. Moreover:

(a) Bx = {s ∈ S | s ⇀ 1 ≥ x} = {s ∈ S | s ⇀o 1 ≤o x} = Ao
x;

(b) Hx = Min(Bx) = Max(Ao
x) = Ko

x;

(c) In(x) = Oo(x).

2. x is faithfully H-PSH in L if and only if x is faithfully H-PSI0 in Lo.

3. x =
n∨

i=1

xi is a minimal PSH (FPSH) representation for x ∈ L if and only if it is

a minimal PSI0 (FPSI0) representation for x ∈ Lo.

4. S is Noetherian if and only if So is Artinian.

Taking into consideration the dualization process explained in 3.26, one can

restate Proposition 3.15 and Theorems 3.20 and 3.22 to obtain corresponding

Uniqueness Theorems for PSH representations.

Theorem 3.27. (Existence of a minimal PSH representation) Let S be Artinian,

(L,⇀) = (L,∧,∨, 0, 1) a complete lattice with an S-action and a ∈ L. Then every

PSH representable x ∈ L has a minimal PSH representation.

Theorem 3.28. (First Uniqueness Theorem of Faithfully PSH Representations) Let

S be Artinian, (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action, and
n∨

i=1

xi = x =
m∨
j=1

yj be two minimal PSH representations for x ∈ L such that each xi is

76



Hi-FPSH and each yj is H ′
j-FPSH. Then n = m, {H1, ..., Hn} = {H ′

1, ..., H
′
n} and

Hi = H ′
j whenever In(xi) = In(yj).

Theorem 3.29. (Second Uniqueness Theorem of Faithfully PSH Representations)

Let S be Artinian, (L,⇀) = (L,∧,∨, 0, 1) be a complete lattice with an S-action, and
n∨

i=1

xi = 1 =
n∨

j=1

yj be two minimal PSH representations for 1 ∈ L such that each xi is

Hi-FPSH and each yj is H ′
j-FPSH. If Bm is minimal in {B1, ..., Bn} and In(xm) is

PSH, then xm = ym.

3.4 PSI Subsemimodules

In this section, we work in the special context of semimodules over semirings.

Throughout, R is an associative semiring, M is a left R-semimodule and the complete

lattice L := Sub(M) of R-subsemimodules of M is considered with the canonical S-

action, where S := Ideal(R) is the bounded lattice of ideals of R and I ⇀ K = IK

for I ∈ S and K ∈ L. Recall that every left (right) module over a ring is is a left

(right) semimodule.

We apply some of the general results in Section 3.3 to this special case and pro-

vide several examples of PSI decompositions of subsemimodules of M. Moreover, we

prove some results on PSI submodules in the context of semisimple modules. Lastly,

we consider primary submodules and primary decompositions and investigate their

relation with PSI decompositions.

We start by recalling the definition of PSI subsemimodules and PSI decompositions.
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Definition 3.30. Let N �R M be a proper R-subsemimodule of M .

1. N is a PSI subsemimodule of M, if for all K ≤R M and I ≤ R:

IM ∩K ⊆ N =⇒ IM ⊆ N or K ⊆ M.

2. N is a faithfully PSI subsemimodule of M, if N is PSI, and for any R-

subsemimodule L ≤R M we have

(N :R M)M ⊆ L =⇒ N ⊆ L.

3.31. Let N ≤R M an R-subsemimodule of M . Adapting the notation of the previous

section to this special context, we have

AN = {I ≤ R | IM ⊆ N}

KN = Max(AN) = (N :R M)

O(N) =
∑

I∈KN

IM = (N :R M)M.

Notice that in this special case, KN exists and O(N) is well defined without assuming

that the semiring R is Noetherian.

Even in the special context of a module (semimodule) M over a commutative ring

(semiring), not every PSI submodule (subsemimodule) of M is faithfully PSI. More-

over, not every prime or strongly irreducible submodule (subsemimodule) is faithfully

PSI.

Example 3.32. Consider M = Z2[x] as a Z-module. For a positive integer n, we
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have

nZM =


0, if n is even

M, if n is odd.

Therefore, every submodule of M is {2Z}-PSI. Consider N := (x)M and K :=

(x2)M . Then 0 = O(N) ( K ( N , i.e. N is not FPSI. Moreover, 0 is an FPSI

submodule which is not strongly irreducible, since (x)M ∩ Z2 = 0.

Example 3.33. Consider M = Z2[x] as a Z-module. Then N = (x) is prime, strongly

irreducible and {2Z}-PSI. However, N is not FPSI as O(N) = 0 ⊆ (x+1) and (x+1)

is not comparable with N = (x).

We discuss now what we mean by a minimal PSI decomposition for a subsemi-

module in the special case of the lattice of subsemimodules of a semimodule.

3.34. Let N �R M be a proper R-subsemimodule of M.

1. We say that N has a PSI decomposition (or PSI decomposable), if N can

be written as a finite intersection of PSI subsemimodules of M .

2. We say that N =
n∩

i=1

Ni, where each Ni is (Ni :R M)-PSI, a minimal PSI

decomposition of N if

(a) (N1 :R M), (N2 :R M), · · · , (Nn :R M) are distinct.

(b)
n∩

i=1,i ̸=j

Ni * Nj for all j ∈ {1, · · · , n}.
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We restate the main Existence and Uniqueness Theorems for PSI decompositions

for semimodules over semirings. We draw the attention of the reader that given an

R-semimodule M , and N , L PSI subsemimodules of M , we have

AN ⊆ AL ⇐⇒ (N :R M) ⊆ (L :R M).

This permits us to state the Second Uniqueness Theorem of PSI decompositions in a

more elegant form.

Theorem 3.35. (Existence of Minimal PSI decompositions) Every PSI decomposable

N ≤R M has a minimal PSI decomposition.

Theorem 3.36. (First Uniqueness Theorem of FPSI Decompositions) Let
n∩

i=1

Ni =

N =
m∩
i=1

Lj be two minimal PSI decompositions of N �R M such that each Ni is (Ni :R

M)-FPSI and each Lj is (Lj :R M)-FPSI. Then n = m and {(N1 :R M), · · · , (Nn :R

M)} = {(L1 :R M), · · · , (Ln :R M)}.

Theorem 3.37. (Second Uniqueness Theorem of FPSI Decompositions) Let
n∩

i=1

Ni =

0 =
n∩

i=1

Lj be two minimal FPSI decompositions of 0 such that each Ni is (Ni :R M)-PSI

and each Lj is (Lj :R M)-PSI. If (Nm :R M) is minimal in {(N1 :R M), · · · , (Nn :R

M)} and (Nm :R M)M is PSI, then Nm = Lm.

We provide now examples of PSI decompositions in the context of semimodules.

Moreover, we show some relationships between PSI-elements and other special ele-

ments as a special application of the general case.
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Examples 3.38. 1. Any subsemimodule of a ∪-pseudo distributive semimodule,

that is a finite intersection of irreducible subsemimodules, is PSI-decomposable.

2. Let M be a second semimodule over a semiring R. Then every subsemimodule

of M is PSI, whence has a trivial PSI-decomposition.

3. Let M be a ∩-pseudo distributive semimodule. Then every coprime subsemi-

module is PSI. Hence, any subsemimodule that is a finite intersection of coprime

subsemimodules is PSI-decomposable. One can easily see that every maximal

subsemimodule is coprime. Therefore, if M is ∩-pseudo distributive, then any

finite intersection of maximal subsemimodules of M is a PSI decomposition.

4. Every prime subsemimodule of a semimodule M is PSI. Hence, every semiprime

subsemimodule N, which is the intersection of finitely many primes has a PSI-

decomposition.

5. If RM is a finitely cogenerated module (i.e. if 0 is an intersection of a family of

submodules, then 0 is an intersection of a finite number of these submodules)

and 0 is the intersection of PSI submodules, then 0 is PSI-decomposable.

Example 3.39. Consider the Z-module M = Zn, where n = pm1
1 pm2

2 · · · pmk
k is the

prime factorization of n, and set

Ni = (pmi
i ) = (pmi

i Z)M = (Ni :Z M)M.

Note that each submodule of Zn is of the form dZn for some divisor d of n. Assume

that IM ∩ K ⊆ Ni for some some ideal I of Z and some Z-submodule of M. If
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IM ∩ K = 0 while both are not 0, then K = (apmi
i ) or IM = (apmi

i ) for some

a ∈ Z, and so K ⊆ Ni or IM ⊆ Ni. If IM ∩ K ̸= 0, then we also have K ⊆ Ni or

IM ⊆ Ni. If not, K = (apl1i ) and IM = (bpl2i ) where a,b ∈ Z, 0 ≤ l1 ≤ mi − 1, and

0 ≤ l2 ≤ mi−1, whence IM∩K ⊆ (p
max(l1,l2)
i ) * Ni, a contradiction (to IM∩K ⊆ Ni).

Therefore, each Ni is (pmi
i )-FPSI. One can easily see that 0 =

k∩
i=1

Ni is a minimal PSI

decomposition of 0 in M . By the First and Second Uniqueness Theorems 3.20 and

3.37 of FPSI decompositions, this decomposition is unique.�

The following example gives a class of PSI subsemimodules (submodules) that are

not necessarily irreducible. At the same time, it provides a class of examples of PSI

decompositions that are neither irreducible decompositions nor strongly irreducible

decompositions.

Example 3.40. Let M be a semimodule (module) over a commutative local semiring

(ring) (R,m). Then, mM is an {m}-FPSI subsemimodule (submodule). Moreover,

every subsemimodule (submodule) N ⊇ mM is {m}-PSI. Notice that, in general,

mM is not necessarily irreducible. Indeed, consider the R-semimodule (R-module)

M = R × R. Then (R × m) ∩ (m × R) = (m × m) = mM , whence, mM is not

irreducible. Moreover mM = m×m is a PSI decomposition of itself, however, it is not

an irreducible decomposition. Observe also that R×m and m×R are both {m}-PSI

and irreducible, thus, mM = (R×m)∩ (m×R) is an irreducible decomposition and

a PSI decomposition. In this case, however, the PSI decomposition is not minimal as

both (R× m) and (m ×R) are {m}-PSI.�
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3.4.1 PSI submodules of a semisimple module

In this subsection we prove a couple of results related to PSI submodules of a semisim-

ple module M . These results are analogous to those in [15, Theorem 3.37].

Lemma 3.41. Let M =
⊕
S∈A

S be semisimple (where S is a simple left R-module for

every S ∈ A) and set PS :=
⊕

S′∈A\{S}
S ′. Then, every PS is a maximal R-submodule of

M and every maximal R-submodule of M is of the form PS for some S ∈ A. Moreover,

for all S ∈ A, PS is prime, PS is Ann(S)-PSI, and
∩
S∈A

PS = 0.

Proof. It is clear that every PS is maximal, as M/PS
∼= S is simple. If K is a maximal

R-submodule of M which is not of the form PS, then K =
⊕

S∈A\C
S where C ⊆ A with

|C| ≥ 2. Pick S ̸= S ′ from C. Then K ( PS as S ′ ⊆ PS and S ′ * K, a contradiction

as K is maximal.

Suppose now that IN ⊆ PS, for some I ≤ R and N ≤R M . If N * PS, then

S ⊆ N and so IS ⊆ IN ⊆ M . Thus, IM ⊆ PS and so PS is prime, whence PSI,

and one can easily see that (PS : M) = Ann(S). Hence, PS is prime and Ann(S)-PSI.

Lastly, as every PS misses one simple submodule S ∈ A, it follows that
∩
S∈A

PS = 0.�

Definition 3.42. We say the left R-module M is a comultiplication, if for every

K ≤R M we have

K = (0 :M (0 :R K)).

Theorem 3.43. Let RM be semisimple and B the set of minimal prime submodules
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of M . If

Ann(M) ̸=
∩

P∈B\{Q}

(P :R M) for all Q ∈ B, (3.12)

then the following are equivalent:

1. M is a multiplication;

2. Every PSI submodule of M is maximal;

3. Every prime submodule of M is maximal;

4. M is a comultiplication.

Proof. Let M =
⊕
S∈A

S where S is simple for all S ∈ A.

(1) =⇒ (2) If M is a multiplication, then any proper submodule of M is PSI if

and only if it is strongly irreducible. Suppose that there exists a strongly irreducible

K ≤R M that is not maximal, i.e. K =
⊕

S∈A\C
S where C ⊆ A with |C| ≥ 2. Let

S ̸= S ′ be in C. Then S∩S ′ = 0 ⊆ K and neither S ⊆ K nor S ′ ⊆ K, a contradiction

to the fact that K is strongly irreducible. Hence, every PSI is maximal.

(2) =⇒ (3) This follows from the fact that every prime submodule of M is PSI.

(3) =⇒ (1) From Lemma 3.41, every maximal is prime and of form PS for some

S ∈ A. By assumption, every submodule of M is prime if and only if it is maximal if

and only if it is of the form PS for some S ∈ A. In addition, the condition Ann(M) ̸=∩
P∈B\{Q}

(P :R M) for all Q ∈ B can be rewritten as Ann(M) ̸=
∩

S∈A\{S′}
Ann(S)

for all S ′ ∈ A. Let K =
⊕

S∈C(A
S be any proper submodule of M , and set

I :=
∩

S∈A\{C}
Ann(S). Then, clearly IM ⊆ K. Suppose now that IM $ K. Then
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IS ′ = 0 for some S ′ ∈ C, and it follows that
∩

S ̸=S′
Ann(S) ⊆

∩
S∈A

Ann(S) = Ann(M),

contradicting our assumption. Therefore, K = IM , i.e. M is a multiplication as K is

an arbitrary submodule of M .

(3) =⇒ (4) : We use the assumptions of the previous argument. Let K =
⊕

S∈C(A
S be

any proper submodule of M , and set I := (0 :R K). Clearly, K ⊆ (0 :M I). Suppose

now that K $ (0 :M I). Then IS ′ = 0 for some S ′ ∈ A\{C}, i.e. I ⊆ Ann(S ′).

Therefore,
∩
S∈C

Ann(S) ⊆ I ⊆ Ann(S ′), that is
∩

S ̸=S′
Ann(S) = Ann(M), contradict-

ing our assumption. Therefore, K = (0 :M I), i.e. M is a comultiplication as K is an

arbitrary submodule of M .

(4) =⇒ (3) Assume that M is a comultiplication and there exists a prime submodule

Q � M that is not maximal. Then, Q =
⊕

S∈A\C
S where C ⊆ A with |C| ≥ 2. Let

S ′ ̸= S ′′ in C. Since RM is comultiplication, we have

S ′ = (0 :M (0 :R S ′)) = (0 :M Ann(S ′))

whence Ann(S ′)S ′′ ̸= 0. Hence, Ann(S ′) * (Q :R M) and Ann(S ′)S ′ = 0 ⊆ Q,

contradicting that Q is prime (as S ′ * Q).�

The following result shows that, under a certain condition, the equivalent state-

ments of Theorem 3.43 of this section and [15, Theorem 3.37] will actually follow.

Proposition 3.44. Let M =
⊕
S∈A

S be a semisimple, where S is simple for all S ∈ A.

If Ann(M) ̸=
∩

S∈A\{S′}
Ann(S) for all S ′ ∈ A, then:

1. M is multiplication.

2. Every PSI submodule is maximal.
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3. Every prime submodule is maximal.

4. Every PS-hollow submodule is simple.

5. Every second submodule is simple.

6. M is a comultiplication.

Proof. We show first that (3) holds. Suppose there exists a prime submodule Q ≤ M

that is not maximal. Then, Q =
⊕

S∈A\C
S where C ⊆ A with |C| ≥ 2. Let S ′ ̸= S ′′ in C.

Then Ann(M) ̸=
∩

S∈A\{S′′}
Ann(S ′), whence Ann(S ′) * Ann(S ′′), i.e. Ann(S ′)S ′′ ̸= 0.

Thus, Ann(S ′) * (Q :R M) and Ann(S ′)S ′ = 0 ⊆ Q, contradicting that Q is prime

(as S ′ * Q).

We note now that to prove (1) =⇒ (2), (2) =⇒ (3), and (4) =⇒ (3)

in Theorem 3.43, we did not use the Ann(M) ̸=
∩

P∈B\{Q}
(P : M) for all Q ∈ B.

Moreover, in [15, Theorem 2.27], the assumption Ann(M) ̸=
∩

S∈B\{S′}
Ann(S), where

S ′ ∈ B (and B is the set of all maximal second submodules of M), was not used in

proving (1) =⇒ (2), (2) =⇒ (3), and (4) =⇒ (3). Therefore, these implications

hold here too.

In addition, assuming (3) in Theorem 3.43, Ann(M) ̸=
∩

P∈B\{Q}
(P : M), for all

Q ∈ B, is equivalent to Ann(M) ̸=
∩

S∈A\{S′}
Ann(S), for all S ′ ∈ A. Thus, (3) =⇒ (1)

and (3) =⇒ (4) in Theorem 3.43 follow here too. Moreover, when assuming condition

(3) in [15, Theorem 2.27], Ann(M) ̸=
∩

S∈B\{S′}
Ann(S) where S ′ ∈ B and B is the set

of all maximal second submodules of M , is equivalent to Ann(M) ̸=
∩

S∈A\{S′}
Ann(S),

86



for all S ′ ∈ A. Thus, (3) =⇒ (1) and (3) =⇒ (4) in [15, Theorem 2.27] follow here

too.�

We provide now some examples illustrating the above mentioned results.

Examples 3.45. Consider the Z module M =
n⊕

i=1

Zpi , where pi is prime for all i and

pi ̸= pj, for all i ̸= j. Then M is semisimple and the condition of Proposition 3.44

holds. Therefore, M is a multiplication, every PSI and every prime submodule of M

is maximal, every PS-hollow and every second submodule of M is simple, and M is

a comultiplication. Moreover,
∩n

i=1 PZpi
= 0 is a unique FPSI decomposition of 0.�

The following is an example of a finitely generated module all submodules of which

are PSI decomposable.

Example 3.46. Let M be a finitely generated (Artinian/Noetherian) semisimple

module. Then, every proper submodule K ≤ M is PSI decomposable. To see this, let

M =
⊕
S∈A

S, where S is simple for all S ∈ A, and K =
⊕

S∈C(A
S. Then K =

∩
S∈A\C

PS

where each PS is maximal and prime by Lemma 3.41.�

The following example shows that Condition 3.12 in Theorem 3.43 cannot be

dropped.

Example 3.47. Consider the semisimple Z-module M =
∞⊕
i=1

Zpi , where pi is prime

and pi ̸= pj, for all i ̸= j. Notice that Condition 3.12 of Theorem 3.43 does not hold.

One can easily see that every PSI Z-submodule of M is maximal. However, M is not

a multiplication as Zp1 ̸= IM , for any I ≤ Z.�

87



3.4.2 Primary Decompositions

In this subsection, we investigate the relation between the PSI decompositions and

the primary decompositions. Throughout, R is a commutative ring and M is an

R-module.

Definition 3.48. [7] Let N �R M be a proper R-submodule of M. For any a ∈ R,

consider the R-linear map

fa : M/N −→ M/N, x̄ 7→ ax̄.

We say that N is a primary submodule of M, if fa is either injective or nilpotent

for all a ∈ R. If N ≤R M is primary, then P =
√

AnnR(M/N) =
√

(N :R M) is a

prime ideal of R and we say that N is P -primary.

Definition 3.49. A primary decomposition N =
n∩

i=1

Ni, where each Ni is Pi-primary,

is said to be a reduced primary decomposition of N if

1. P1, P2, · · · , Pn are distinct.

2.
n∩

i=1,i ̸=j

Ni * Nj for all j ∈ {1, ..., n}.

Theorem 3.50. [7, Theorem 2.1.6] (Existence Theorem of Primary Decompositions)

If RM is Noetherian module, then every proper R-submodule of M has a reduced

primary decomposition.
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Theorem 3.51. [7] (First Uniqueness Theorem of Primary Decompositions) Let
n∩

i=1

Ni = N =
m∩
i=1

Lj be two minimal primary decompositions for N ≤R M such that

each Ni is Pi-primary and each Lj is Qj-primary. Then n = m and {P1, ..., Pn} =

{Q1, ..., Qn}.

Theorem 3.52. [7] (Second Uniqueness Theorem of Primary Decompositions) Let
n∩

i=1

Ni = N =
n∩

i=1

Lj be two minimal primary decompositions for N ≤R M such that

each Ni is Pi-primary and each Lj is Qj-primary. If Pm is minimal in {P1, ..., Pn},

then Nm = Lm.

The follows result suggests a relation between PSI decompositions and primary

decompositions.

Theorem 3.53. If RM is Noetherian module, then every PSI submodule of M is

primary.

Proof. Suppose that N �R M is PSI but not primary. Then there exists a ∈ R such

that fa : M/N −→ M/N is neither injective nor nilpotent. Consider the ascending

chain

ker(fa) ⊆ ker(f 2
a ) ⊆ · · · ⊆ ker(fk

a ) ⊆ ker(fk+1
a ) ⊆ · · ·

Since M is Noetherian, this chain stabilizes, and so there exists some positive integer n

such that ker(fn
a ) ⊆ ker(fn+k

a ) for all k ≥ 1. Setting g = fn
a , we have ker(g) = ker(g2).

Notice that fa is not injective implies that ker(g) ̸= 0̄ and fa not nilpotent implies

that im(g) ̸= 0̄.
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Claim II: ker(g) ∩ im(g) = 0̄.

Let z̄ ∈ ker(g)∩ im(g). Then, z̄ = g(ȳ) for some ȳ ∈ M/N . Hence, g2(ȳ) = g(z̄) = 0̄,

i.e. ȳ ∈ ker(g2) = ker(g), which implies that z̄ = g(ȳ) = 0. Now im(g) ̸= 0 means

that there exists x̄ ∈ M/N such that g(x̄) = anx̄ ̸= 0, i.e. anx /∈ N . Hence, the

submodule (an)M * N .

Assume ker(g) = L1/N and im(g) = L2/N for some N ≤R L1 ≤R M and N ≤R

L2 ≤R M . One can easily see that (an)M ⊆ L2.

Claim II: L1 ∩ L2 ⊆ N .

Suppose not, then there exists x ∈ (L1 ∩L2)\N , i.e. x̄ ̸= 0. But, x̄ ∈ L1/N ∩L2/N =

ker(g)∩ im(g) = 0, a contradiction as x /∈ N . Therefore, L1 ∩ (an)M ⊆ L1 ∩L2 ⊆ N ,

where (an)M * N and L1 * N as ker(g) ̸= 0, contradicting the fact that N is PSI.

Thus, N is primary.�

Corollary 3.54. Let RM be Noetherian and N �R M a proper R-submodule of M .

If
n∩

i=1

Ni is a reduced primary decomposition of N , where each Ni is a PSI, then
n∩

i=1

Ni

is a minimal PSI decomposition of N .

Proof. Let N =
n∩

i=1

Ni be a minimal primary decomposition of N, where each Ni

is Pi-primary. Clearly, all N ′
is are incomparable and the ideals (Ni :R M), for i ∈

{1, 2, · · · , n} are distinct. If not, then there exists some i ̸= j in {1, 2, · · · , n} such

that (Ni :R M) = (Nj :R M), whence

Pi =
√

(Ni :R M) =
√

(Nj :R M) = Pj,

contradicting the minimality of the primary decomposition. Therefore,
n∩

i=1

Ni is a

minimal PSI decomposition of N .�
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The following example shows that the converse of Theorem 3.53 in not true in

general, even if RM is Noetherian.

Example 3.55. Let R := k[x, y], where k is a field, considered as a module over itself

and recall that an ideal is PSI if and only if it is strongly irreducible. Notice that

I = (x2, xy, y2) is (x, y)-primary and not irreducible since I = (x, y2)∩ (x2, y), whence

not PSI. Therefore, I is primary but not PSI in R.

Example 3.56. Let RM be second and Noetherian. Then every proper submodule

of M is PSI, whence primary by Theorem 3.53. In this case, the minimal primary

decomposition of any submodule coincides with the minimal PSI decomposition.

Example 3.57. If RM is Noetherian and multiplication, then any minimal PSI de-

composition of a submodule of M is a reduced primary decomposition.
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