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Visible light communication (VLC) has emerged as a great potential solution, either

in replacement of, or complement to, existing radio-frequency (RF) networks, to sup-

port the projected traffic demands. Despite the prolific advantages of VLC networks,

VLC faces many challenges such as channel estimation and shadowing effects, small

coverage area, and the noise or interference that may be generated by nearby lighting

systems. Some common solutions to partially overcome these challenges are to op-

timize the parameters of VLC networks, supplement the VLC by RF networks, and

coordinated transmission. In this dissertation, we first propose a new joint load bal-

ancing (LB) and power allocation scheme for a hybrid VLC/RF system consisting of

one RF access point (AP) and multiple VLC APs. Second, we propose a joint AP
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association and power allocation algorithms for energy efficiency (EE) maximization

in standalone VLC networks. Based on the user-centric (UC) design, we propose a

new algorithm for users’ clustering and APs’ association. We then propose two algo-

rithms that jointly allocate the power, under quality-of-service (QoS) constraints, and

decide which APs must be prevented from participating in communication. Third, we

introduce a new transmission scheme based on the cooperative non-orthogonal mul-

tiple access (NOMA) scheme to improve the sum-rate and fairness in VLC systems.

For a system model consisting of one VLC AP and multiple users, we formulate an

optimization problem that jointly pairs the users, selects the optimal link for each weak

user, and allocates the messages’ power to maximize the weighted sum-rate function.

Solutions for such mixed-integer non-covex optimization problem are presented and

compared to the traditional optimal NOMA scheme. Finally, we consider the sce-

nario where multiple cooperative APs serve both energy-harvesting users (EHUs) and

information-users (IUs). We solve the problem of maximizing a network-wide utility,

which consists of a weighted-sum of the IUs’ sum-rate and the EHUs’ harvested-energy,

so as to jointly determine the direct-current (DC)-bias value at each AP, and the users’

powers.
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الرسالة ملخص

عبيد مهند الاسم:

المرئية الضوء اتصالات في الاتصالات خلايا تصميم و الحمل وموازنة الطاقة لتوزيع جديد تقنيات الدراسة: عنوان

كهربائية هندسة التخصص:

1440 رمضان العلمية: الدرجة تاريخ

في البيانات سرعة من المتوقعة الاحتياجات لتلبية وذلك مقامها لتقوم اؤ اللاسلكية الراديو اتصالات لمساعدة المرئية الضوء اتصالات انشاء تم

يزال لا انه الا اللاسلكية الراديو باتصالات مقارنة عالية بميزات تتمتع المرئية الضوء اتصالات ان من الرغم على القادمة. والاجيال الخامس الجيل

في منها التقليل اؤ التخلص الضروري من العيوب وهذه القريبة الضوء مصادر من النابع التشويش و التظليل و المحدودة التغطية مثل عيوب هناك

في المرسلات وتنسيق بتعاون او اللاسلكية الراديو اتصالات مع الضوء اتصالات بتكامل جزئيا او كليا اما العيوب هذه من التخلص يمكن المستقبل.

وتوزيع المرسلات) على المستخدمين (توزيع الحمل لموازنة جديدة تقنية اقٔترحنا اؤلا: الرسالة هذه في البعض. بعضها مع المرئية الضوء اتصالات

لتجميع جديدة تقنية اقترحنا ثانيا: اللاسلكية. الراديو واتصالات المرئية الضوء اتصالات من المكونة المختلطة الشبكات في المستخدمين على الطاقة

من اكثر تشويش تبعث (التي المضرة المرسلات تعطيل مع للمستخدمين الطاقة توزيع وايضا مجموعة لكل المناسبة المرسلات واختيار المستخدمين

الذين المستخدمين ومراعاة البيانات سرعة لتحسين وذلك متعامد الغير المتعدد الوصول تقنية على بناءا للارسال جديدة تقنية اقترحنا ثالثا: بيانات).

من الطاقة لمحتاجي الطاقة لنقل وايضا البيانات لمستخدمي البيانات لنقل المرئية الضوء اتصالات في نظام اسٔسنا اخٔيرا: رديئة. خدمة يستقبلون

المستقبلة. الطاقة ومقدار المستقبلة البيانات مقدار بتعظيم قمنا و المستخدمين

xxii



CHAPTER 1

INTODUCTION

1.1 Motivation

With the dramatic increase in total data traffic (approximately 7.24 exabyte-per-

month in 2016, predicted to be 48.95 exabyte-per-month in 2021 [2]), there is an

urgent need to develop a fifth-generation (5G) of networks with a higher system-level

spectral efficiency that will offer higher data rates, massive device connectivity, higher

energy efficiency (EE), lower traffic fees, a more robust security, and ultra-low latency

[3], [4], [5]. With the advent of the internet-of-things (IoT) era, the amount of the

connected devices to the internet is increasing dramatically [6], [7], resulting in a

significant increase in data traffic which makes the traditional radio-frequency (RF)

or wireless-fidelity (WiFi) networks crowded [8]. Small cells or network densification

have been proposed as a solution for 5G technologies [9], [10] in order to increase

the system capacity and coverage, reduce the power consumption of mobile devices,

and enhance the networks’ EE. The continuity of dramatic growing in data traffic

demand has motivated researchers to explore new spectrum, new techniques, and new
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network architectures to meet these demands. Visible light communication (VLC)

has been introduced as a promising solution for 5G and beyond. The motivation

behind emerging the VLC technology is the great invention of the energy-efficient

light emitting diode (LED) [11]. White LEDs outperform the other light sources

with their high electrical-to-optical conversion efficiency, long life span, small size and

light weight, low cost, and operational speed [12], [13], [14]. LED lamps consume

approximately 20% of the power consumed by fluorescent bulbs and approximately

0.5% of the power consumed by traditional light sources [15].

VLC uses a portion of the electromagnetic spectrum that is entirely untapped,

free, safe, and provides a high potential bandwidth for wireless data transmission with

rejecting the present RF interference [16]. Hence, VLC is a communication technology

that uses LEDs as transmitters to emit both the light and information signals to

the users. We should note that the power of the information signal must meet the

illumination requirements, as well as being within the range of the LED’s physical

limits [17]. However, the non-linearity of LEDs in electrical-to-optical transfer can be

efficiently avoided using pre-distortion mechanisms [18]. The VLC receiver contains

a photo-detector (PD) component that has the ability to convert the received light

intensity to a current signal. Data are transmitted using an intensity modulation (IM)

technique at the transmitter, and received using a direct detection (DD) technique at

the receiver (IM/DD) [19]. This means that the modulating signal must be real non-

negative, and the existing modulation techniques in the RF networks adjusted to fit

this property. Compared to RF networks, VLC networks provide higher data rates,

larger EEs, lower battery consumption, and smaller latency. In addition, VLC can be
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safely used in sensitive environments such as chemical plants, aircraft, and hospitals

[20]. Because of the small coverage of the transmitters in VLC systems, an exhaustive

reuse of frequency can be implemented. VLC is also power-saving since the consumed

power for communication is already used for illumination and may also be used for

energy harvesting. Because the light can be blocked by opaque objects, VLC functions

properly only in line-of-sight (LoS) communications, which own a robust security since

the unauthorized users who are out of sight cannot receive an information signal of

good quality.

Despite all the aforementioned VLC advantages, VLC faces many technical chal-

lenges that must be resolved in the near future to achieve its full standardization and

integration with future wireless systems. Some of these challenges in VLC networks

are: channel estimation and shadowing effects, backhauling VLC traffic into large-

scale networks, the rapid decrease in light intensity with distance, and the noise or

interference that may be generated by nearby lighting systems. One common solution

to partially overcome these challenges is to optimize the parameters of VLC networks.

Another common solution is to supplement the VLC networks by RF networks. Hence,

this thesis optimizes different types of VLC networks to improve the performance in

terms of sum-rate, fairness, energy efficiency, and harvested energy. Different opti-

mization techniques are proposed to allocate the transmit power, allocate the DC-bias,

form the cells, distribute the users to APs, and select the links.

This chapter introduces the VLC fundamentals, defines VLC objectives and con-

straints, discusses the theoretical backgrounds needed to understand the subsequent

chapters, and provides a summary for the contributions conduced in this thesis.
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1.2 Background

1.2.1 Fundamentals of VLC systems

Because of its unique properties, a VLC channel is different from a RF or any other

communication technology; its optical signal is modulated via the intensity of the

signal, without carrying any information in phase or in frequency; the transmitted

signal is positive and real, the optical power is proportional to input current signal

(not to the mean square of the signal amplitude); the transmitted peak power is

constrained by the LED’s dynamic range and the illumination requirements.

VLC Transmitter

The LED lamp is the most appropriate transmitter used for both illumination and

communication purposes. Each lamp usually consists of one or multiple LEDs driven

by a circuit that controls the intensity of the brightness, using the the ’flowing-in’

current. The function of the driver circuit is to transmit the data by modifying the

flowing-in current, which, in turn, modifies the light intensity. The flowing-in current

must be within the LED’s dynamic range in order for the output (light intensity) to

be linearly proportional to the input current. Because it shows the objects as they are

without changing their real colors, the white color is commonly used for illumination

and communication. Two common schemes are generally used in design white LEDs.

One uses a blue LED with a yellow Phosphor layer [21], the other uses a combination

of three LEDs (red, green, and blue) [22].

Because of its low cost and simplicity of implementation, the first type of LEDs
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(the blue LED with a yellow phosphor layer) is more popular than the RGB type

for designing white LEDs. However, it has a limited bandwidth, compared to RGB,

because of the slow absorption and emission of the coating phosphor layer. Khalid et

al. [21] showed that a 1 Gbps data rate could be achieved, using this type of LEDs.

The RGB technique is better for communication as it uses the color shift keying

modulation or color intensity modulation techniques that modulates the signal, using

the three different LEDs. By doing so, data rates of 3.4 Gbps data can be achieved

[22].

One important issue that should be considered, when designing the VLC, is the

illumination requirements, which is the main purpose of the LED. In other words, the

illumination range that is required should not be violated by the VLC system. This

means that the performance of the VLC system is related to the illumination design

requirements (more details are given in Section 1.2.1).

VLC Receiver

There are three types of devices that can be used as VLC receivers of the optical signal

coming from the LED transmitter: 1) photo-detector (e.g. positive-intrinsic-negative

and avalanche PD), 2) an imaging or camera sensor, 3) and a solar panel.

The PD is a diode device sensitive to the light intensity that can convert the

received light to a current modulated by the intensity of the light received. The PDs

that are commercially available can easily take samples of the received visible light at

a rate of tens of MHz [23].

One of the advantages of a camera sensor is its availability on most mobile devices
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such as smart-phones used to capture videos and images. The main advantage of

a solar panel is that it can directly convert the received light to an electrical signal

without the need for an external power supply [24].

Channel Model

The receiver receives the LoS optical signal and many copies of non-LoS, coming from

reflections. According to [25], the optical power received from signals reflected more

than once is negligible. Fig 1.1 shows a channel model of VLC links, containing the

LoS and first reflected links. The LoS VLC link between the AP i and the user j can

be expressed as follows [14], [26]:

hj,i =
Ap(m+ 1)

2πd2j,i
cosm(ϕ)gof cos(θ)f(θ), (1.1)

where Ap is the physical area of the receiver PD, m is the Lambertian index given by

m = −1
log2(cos(θ1/2)

, with θ1/2 the half-intensity radiation angle, dj,i the distance between

AP i and user j, gof the gain of the optical filter, ϕ the angle of irradiance at the AP,

θ the angle of incidence at the PD, and f(θ) the optical concentrator gain is given by

f(θ) =


n2

sin2(Θ)
, 0 ≤ θ ≤ Θ;

0, θ > Θ,

(1.2)

where n is the refractive index and Θ is the semi-angle of the field-of-view (FoV) of

PD. Komine and Nakagawa [25] showed that the DC attenuation of the channel, from

the first reflected link is given by
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Figure 1.1: Channel model, including the LoS link and the first reflected link

dh1 =
(m+ 1)Ap
2πd2k,id

2
j,k

ρdAs cosm(ϕr)cos(α1)cos(α2)gof × f(θr) cos(θr), (1.3)

where αr and θr are the angels of the irradiance and incidence of the first reflection

link, respectively, d2k,i and d2j,k are the distance from the AP i to the reflecting point k

and the distance from the reflecting point k to the user j, respectively, ρ and dAs are

the reflection factor and the reflective area, respectively, α1 and α2 are the irradiance

angles with respect to the reflected point and with respect to the receiver, respectively.

The above model is the general description of the VLC channel model. However,

for an accurate representation for the VLC channel model, practical channel charac-

teristics should be considered. For more information about channel models, we refer

the interested reader to [27] and [28].
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VLC Modulation Schemes

As mentioned previously, data cannot be transmitted by encoding the phase or fre-

quency, and the modulation in VLC is implemented by varying the light intensity of

the LED. On the other hand, the demodulation can be implemented by direct de-

tection at the PD. Various IM/DD-based modulation techniques have been proposed

and published in the literature. On-off keying was proposed for VLC, as a simple

modulation scheme, where data are represented by two levels of light intensity [29],

[30]. In order to obtain higher data rates, in comparison with what On-off keying

offers, pulse width modulation and pulse position modulation schemes, in which data

are represented by the pulse width and the pulse position, respectively, have been pro-

posed. The data rate in pulse width modulation can be increased by combining it with

the discrete multitone technique [31], while the data rate can be increased in pulse

position modulation by using overlapping pulse position modulation [32], multi-pulse

position modulation [33], or the overlapping multi-pulse position modulation [34].

Due to the non-linear VLC channel response, the aforementioned modulation

schemes suffer from inter-symbol interference. To combat this impairment, the or-

thogonal frequency division multiplexing (OFDM) scheme, widely used in RF systems,

should be modified to be compatible with the IM/DD technique. Because the light

signal is a real non-negative signal, the complex bipolar signals generated by OFDM

must be represented by real positive signals in VLC. The solution can be implemented

by relaxing the Hermitian symmetry constraint and convert the bipolar signal to a

unipolar signal. Two types of optical-OFDMs are widely used as VLC modulation
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schemes: a DC-biased optical OFDM (DCO-OFDM) and an asymmetrically-clipped

optical OFDM (ACO-OFDM). In DCO-OFDM [35], [36], a positive direct current is

added to make sure that the signal is non-negative, and all the subcarriers are mod-

ulated to maximize the spectral efficiency. On the other hand, in ACO-OFDM, only

odd subcarriers are used to modulate the data [37], resulting in a symmetric time

domain signal.

Objectives and Constraints in VLC Networks

In this section, we present the established objectives for the design or optimization

of the VLC networks and discuss the associated constraints that must be achieved.

Certainly, some of the unique characteristics of VLC technology have generated new

challenges, different from those in RF networks. As a result, the techniques used in

traditional RF networks cannot directly be applied to VLC networks.

System Capacity: Several issues (that do not exist in the RF systems) must

be considered, when deriving the VLC channel capacity. These are: 1) dimming re-

quirements, 2) peak optical intensity constraint, 3) illumination requirements and the

LED dynamic range, 4) and necessity for the input signal to be non-negative and

real-valued. In addition, the channel gain for VLC is modeled almost as the Lam-

bertian model [25], in which the channel gain for VLC is time-invariant but affected

by geometrical parameters such as the locations of the transmitter and receiver. Be-

cause of the differences between RF and VLC systems, the capacity-achieving input

distribution does not have to be Gaussian [38]. This means that the commonly de-

rived Shannon channel capacity formula used for RF systems cannot be applied to
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VLC ones. Consequently, many researchers have been investigating the VLC channel

capacity under these constraints. In particular, the capacity of the scalar Gaussian

channel constrained by amplitude power was proved to be achievable by a unique

discrete random variable with a finite number of values [39].

Despite of all the studies which show that the optimal capacity-input distribution

is discrete, a closed-form channel capacity is yet unknown. However, continuous input

distributions provide a potential to have achievable rates that can be expressed in

simple formulas, in contrast to discrete input distributions [40].

For the VLC channel capacity, Ahn and Kwon [41] proposed a numerical approach

to determine the channel capacity for inverse source coding in VLC, without providing

a closed-form expression for the VLC channel capacity, whereas Wang et al. derived

closed-form expressions for the upper and lower bounds of the dimmable VLC channel

capacity [42]. The lower bound was expressed as follows:

C ≥ 1

2
log2

(
1 +

e

2π
(
ζP

σ
)2
)
, (1.4)

where ζ is the dimming target ranging from 0 to 1, P is the nominal optical intensity

of LEDs, σ2 is the Gaussian noise variance, and e is the Euler parameter. The channel

gain (losses and opto-electronic transformation factors) is assumed to be equal to 1,

in Equation 2.19. Expression (2.19) is the common expression used in the literature

to estimate the system capacity.

Energy Efficiency: VLC networks are more energy-efficient than RF networks

because LEDs, used as transmitters, are power-saving devices, and the same power is
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used for both communication and illumination. Nevertheless, the transmitted power

can be controlled within the given illumination limits to enhance the EE. The EE is

required to be improved for 5G wireless technologies to reduce the consumed power

that is expected tremendous number of devices that will be connected. The EE can

be improved by efficient resources optimization, power allocation, energy transfer and

harvesting, and hardware solutions [43].

The common approach to guarantee energy-efficient systems is to optimally allo-

cate the resources to maximize the EE function subject to QoS and maximum transmit

power constraints. The EE function can be defined as the system’s benefit over the

total consumed power. In other words, if the system’s benefit is the sum rate, then

the EE is

EE =
RT

PT
, (1.5)

where RT is the sum rate and PT is the total consumed power at the transmitters.

Another way for improving the EE is to formulate the optimization problem as

minimizing the total amount of transmitted power, under a given set of QoS con-

straints. This type of optimization problems is easier to tackle than the problem of

maximization of the EE function. This is because the EE function is not concave,

in terms of allocating the transmit power. The common approach to tackle the EE

maximization problem is to convert the non-convex problem into a sequence of convex

optimization problems using the Dinkelbach’s method. Another way to improve the

EE in VLC networks is to harvest the energy by converting the received light inten-

sity into a current that can be used for transmissions. This can be implemented by
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equipping the receivers with solar panels.

Fairness: Fairness is an important issue in VLC networks for many reasons:

1) the dramatic decrease in the VLC channel value with the distance between the

transmitter and receiver makes many users unable to switch from crowded cells to un-

crowded ones; 2) the small coverage stimulates designers to fully re-use the frequency

in the cells, resulting in severe interference with the signal received by some users.

Fairness is commonly measured using Jain’s formula [44] for a single cell or for the

whole cellular system. The fairness among users in the ith cell is given by

Fi =
(
∑Ni

j=1Rj,i)
2

Ni

∑Ni

j=1R
2
j,i

, (1.6)

while the fairness among users in Nap cells is given by

Fs =
(
∑Nap

i=1

∑Ni

j=1Rj,i)
2

NT

∑Nap

i=1

∑Ni

j=1R
2
j,i

, (1.7)

where Ni, Nap, and NT are the number of users associated with the cell i, the number

of cells, and the total number of users in the system, respectively, and Rj,i is the jth

user data rate associated with the cell i.

Fairness can be achieved either by formulating the optimization problem to maxi-

mize the utility with a guarantee to achieve a proportional fairness [45], α-proportional

fairness [46], or by adding the QoS constraints to the formulated optimization prob-

lem. The concept of the proportional fairness is to modify the objective function to

imply both the system utility (e.g. sum-rate) and the fairness such as maximizing the
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weighted sum-rate instead of the sum-rate itself, where the weights should be selected

to achieve a proportional fairness as we do in Chapter 4.

Required Illumination Constraints: The two functions of LED, illumination

and communication, are related to each other and must be studied and optimized

jointly. In other words, the illumination requirements should be considered in design-

ing the input current to the transmitter LED. This requirement implies that different

constraints must be considered when optimizing the communication in VLC networks.

The constraints are the peak optical power, dimming requirements, and flicker reduc-

tion.

For the peak power constraint, we should note that the input signal to the LED

contains two components: the alternative signal (that contains the information), and

the DC signal used to guarantee non-negative signal. The total energy emitted by

the LED determines the transmitted optical power and the subsequent received signal

strength, whereas the brightness is determined by the luminous intensity [25]. We

denote Φmax, Φmin, and Φavg, as the predefined minimum illumination, maximum

illumination, and the average illumination over the entire area, respectively. For the

office work, an illuminance between 300 to 2500 lux is required [25].

The relation between the radiated optical power at LED and the luminous flux at

the point i, which is distant from LED by di m with incidence and radiance angles θ

and ψ, respectively, can be given by [47], [48]

hiPopt = δΦi, (1.8)
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where δ is the optical to luminous flux conversion factor [48] which its value depends

on the LED type; Popt is the optical power, Φi is the luminous flux at point i, and hi

is given by:

hi =
m+ 1

2πd2i
cosm(θ)cos(ψ), (1.9)

where m is the Lambertian index given in Section 1.2.1.

One additional constraint for communication is that the input DC-biased current

(DC and AC currents) to the LED must be within the dynamic range of the LED to

have the radiated optical power linearly proportional to the input current [49]. For

instance, the practical dynamic range of the LED Vishy TSHG8200 is within [5 mW,

50 mW].

To meet the illumination requirements at all points in the floor area, the upper

and lower bounds of the optical power should be set accordingly. Considering both

the bounds of the LED dynamic range and the illumination limits, the optical power

at the transmitting LED must be confined by

max(Pmin,ill, Pmin,D) ≤ Popt ≤ min(Pmax,ill, Pmax,D), (1.10)

where Pmin,ill and Pmax,ill are the minimum and maximum optical power required

for achieving the corresponding illumination requirements, respectively; Pmin,D and

Pmax,D are the maximum and minimum power limits for the LED dynamic range,

respectively.

The dimming control is a desirable process for the illumination purpose [50]. For
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power saving, LEDs can be dimmed to desired levels, using appropriate modulation

schemes [29], such as multi-pulse position modulation [51]; or variable on-off-keying

[52].

Another purpose for the used modulation scheme is to mitigate the light intensity

fluctuation to be unnoticeable by the human eyes. To guarantee the flickering is above

the human eyes’ fusion frequency, flickering frequency must be at least greater than

200 Hz [53]; this can be avoided by using the Run Length Limited codes that are used

to reduce the long runs of 0s and 1s.

Coverage Probability

Since the LEDs in VLC can cover only a small area, and the coverage probability

decreases dramatically as the distance increases, the coverage is an important issue

in VLC networks and should be considered when designing the networks’ parameters.

The coverage probability can be defined as the probability that the received data

rate for typical user is greater than or equal to a certain data rate threshold. All

the geometrical parameters of the VLC channel affect the coverage probability, but

we focus our discussion on those having major impacts such as the distance, optical

power intensity, and the user’s FoV. If we consider a system model consisting of

multiple VLC APs and the considered user j is served only by one AP i, increasing

the optical power would surely enhance the channel link from the AP i to the user j,

but would increase the interference from all other APs significantly. The user’s FoV

plays a significant role in affecting the coverage probability, since decreasing the user’s

FoV leads to enhancing the VLC channel and decreasing the number of interfering

APs, but we should also note that an extensive decrease in the user’s FoV leads to
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Figure 1.2: Number of APs that can cover the area based on the user’s FoV.
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Table 1.1: Simulation Parameters

Name of the Parameter Value of the Parameter
Maximum bandwidth of VLC AP, B 20 MHz
The physical area of a PD for information
users, Ap

0.1 cm2

The physical area of a PD for EH users, Ap 0.04 m2

Half-intensity radiation angle, θ1/2 60o

FoV semi-angle of PD, Θ 30o − 60o

Gain of optical filter, gof 1
Refractive index, n 1.5
Efficiency of converting optical to electric,
ρ

0.53 [A/W]

Maximum input bias current, IH 12 mA
Minimum input bias current, IL 0 A
Fill factor, f 0.75
LEDs’ power, Popt 10 W/A
Thermal voltage, Vt 25 mV
Dark saturation current of the PD, I0 10−10 A
Noise power spectral density of VLC, N0 10−21 A2/Hz
Room size, 8× 8
Room height, 2.5 m
User height 0.85
Number of VLC APs, 4× 4
Number of users, 5-35
Monte-Carlo for user distribution, 100 different user distri-

butions
RF
Number of RF APs 1
Location of RF AP (0,0) in the ceiling
Transmit power 10 Watt
The distance of breakpoint 5 m
Central carrier frequency 2.4 GHz
Bandwidth 20 MHz
Angle of arrival/departure of LoS 45o
Standard deviation of shadow fading (be-
fore the breakpoint)

3 dB

Standard deviation of shadow fading (after
the breakpoint)

5 dB

Noise power spectral density -174 dBm/Hz

decrease of the coverage probability. On the other hand, for a given FoV, increasing

the height of the APs leads to an increase in the number of APs in the user’s field of
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view, meaning that the number of interfering APs would increase, and the path loss

from the AP i to the user would also increase.

Fig. 1.2 represents the effect of a user’s FoV on the coverage probability by showing

the number of APs that can cover the area with different user’s FoV. Consider an

8× 8× 3 m3 room equipped with 4× 4 VLC APs that are at ceiling level and serving

users with height 0.85 m. In Fig. 1.2, we use the simulation parameters provided in

Table 5.1 (for the information users) to find the LoS channel (1.1) form all APs to

each point in the room with assuming that each point is a receiver with the given

FoV. We adopt only the LoS link because it is dominating in VLC and the channel is

degraded more than 90 percent if the LoS link is absent [54].

Fig. 1.2 shows that the coverage probability increases as the user’s FoV increases.

It shows the number of APs that can cover each spot in the room with the given FoV.

On the other hand, Fig. 1.3 shows that the channel quality decreases as the user’s

FoV increases. In Fig. 1.3, we assume that we only have one AP fixed at the ceiling

center and one receiver located directly under the AP with the given distance and

given FoV. We also use Table 5.1 to find the LoS channel (1.1). Figs. 1.2 and 1.3

show that the user’s FoV has a great impact on the channel quality and the coverage

probability, meaning that optimizing the FoV would have a significant impact on the

VLC systems.

The Harvested Energy: An additional function to LEDs, besides the illumi-

nation and communication, is the transfer of power, using the light intensity. When

the VLC network consists of users that need to harvest the energy, the parameters

should be designed to find a compromise between the three functions. The receiver

18



30 35 40 45 50 55 60 65 70

FoV
o

10
-6

10
-5

10
-4

10
-3

L
o
S

 c
h
a
n
n
e
l

d=1

d=2

d=3

d=4

Figure 1.3: The effect of user’s FoV on the channel quality with different transmitter-
receiver distance, when the angels of radiance and incidence are zero.

can harvest the energy by equipping it with a solar panel that can convert the received

modulated light signal into an electrical signal without an external power supply. Be-

cause the received current signal at the receiver contains both DC and AC currents,

the DC current can be blocked and forwarded to the energy harvesting circuit. Li et

al., in [55], derived the energy that can be harvested by a user from one LED as:

E = fIDCVoc, (1.11)

where f is a fill factor of approximately 0.75, IDC the received DC current, and

Voc = Vt ln(1 +
IDC
I0

), (1.12)

where Vt is the thermal voltage, and I0 the dark saturation current of the PD. If we

denote the transmitted DC current by b, the received DC current can be expressed as

by IDC = ρhPopt. Hence, if we have multiple LEDs, the harvested energy at the user
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j is given by:

Ej = fρPoptVthTj b ln(1 +
ρhTj Poptb

I0
), (1.13)

where hj is the channel vector between the LEDs and the user j, and b is the DC

Bias current vector at LEDs.

1.2.2 Convex Optimization

In general, every optimization problem can be expressed as minimizing an objective

function under cerain group of constraints. The regular form of an optimization

problem is given by [56]

min
x

f0(x) (1.14a)

s.t fi(x) ≤ 0, i = 1, 2, �., n (1.14b)

hj(x) = 0, j = 1, 2, ��.,m (1.14c)

where x is the vector of optimization variables, which can be also a scalar or a matrix,

f0 is the objective function, fi, i = 1, .., n, are the inequality constraint, and hj, j =

1, �.,m, are the equality constraints. The optimization problem is defined as a feasible,

if there is at least one vector x that achieves all the constraints; if not, it is defined as

an in-feasible optimization problem. The vector x that minimizes the cost function

among all vectors that satisfy the constraints is called the optimal solution of Problem

(1.14), and it is denoted by x∗. Problem (1.14) is defined as a linear programming

if the cost function and all the constraint functions are affine, where any function is
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affine or linear if it satisfies the following condition

f(αx1 + βx2) = αf(x1) + βf(x2) (1.15)

for all x1, x2 ∈ Rn and α, β ∈ R. To define the convexity of any optimization problem,

the cost function and all constraint functions must be convex. The function f is called

convex if it achieves the following condition

f(ϕx1 + (1− ϕ)x2) ≤ ϕf(x1) + (1− ϕ)f(x2), (1.16)

where 0 ≤ ϕ ≤ 1. In the same way, the function f is called concave if it achieves the

following condition

f(ϕx1 + (1− ϕ)x2) ≥ ϕf(x1) + (1− ϕ)f(x2), (1.17)

where ϕ ∈ [0, 1]. From (1.15) and (1.16), it is easy to show that any linear function

is a convex while a convex function is not necessarily a linear. Hence, convexity is

more general then linearity [56]. Another way to know whether the function is convex

or not is by checking the first and second order conditions with having the condition

that the function f is differentiable achieved, the function f is called convex if and

only if its domain is convex and f(w) ≥ f(v)+∇f(v)T (w− v), ∀v, w ∈ dom(f). The

second order condition for f to be convex if and only if its domain is convex and the

Hessian matrix ∇2f is positive semidefinit ∀ x ∈ dom(f). To handle any optimization

problem, it should be first proved to be convex or not. Once it is demonstrated as a
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convex optimization problem, many standard algorithms can be used for such kind of

convex optimization problems or it can be solved by one of the available solvers such

as [57].

1.2.3 Non-Orthogonal Multiple Access (NOMA) Scheme

In this section, we introduce NOMA, a new technology nominated for the fifth gener-

ation (5G) wireless networks aimed at increase the throughput, decrease the latency,

and improve the fairness and connectivity. The rational behind NOMA is the use

of a single resource component by multiple users, whether this component is a sub-

carrier, a time slot, or a spreading code. With this basic concept, different types of

NOMAs, such as the power domain NOMA (PD-NOMA), pattern division multiple

access (PDMA), sparse code multiple access (SCMA), were presented as good candi-

dates for the 5G multiple access technique. More details on NOMA in traditional RF

networks are provided in [58], [59].

In VLC networks, researchers are interested only in power domain NOMA (PD-

NOMA). The goal of PD-NOMA is to set different power levels for different users.

For instance, for two users served by the same base station (BS), and using the same

OFDM subcarriers, the BS assigns a high power to the user with poor channel and a

low power for the user with a better channel. In other words, assuming that h1 > h2,

where hi is the channel of the ith user, the BS transmits the signal of User 2 with

higher power. User 2 decodes the received signal and treats User 1’s signal as noise,

whereas User 1 first decodes the signal of User 2, and then removes it from the received

signal, after that it decodes its own signal. To generalize this idea, we assume that we
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Figure 1.4: The impact of increasing the distance of the weak user with achieving the
fairness constraint that both users receive equal data rate, when FoV = 40, incidence
angle = 0, and irradiance angle = 0.

have N users served by the same BS, and first categorize them based on their channel

gains as h1 ≤ h2 ≤ .... ≤ hN . When using the NOMA technique, the BS transmits

the signal of all users using same carrier, and the received signal, at the kth user, can

be expressed as follows:

yk = hk

N∑
j=1

αj
√
Psj + nk, (1.18)

where αj is the power coefficient of the user j, sj is the information signal of the user

j, and nk is the additive white Gaussian noise. According to NOMA, users with a

lower channel gain will have a higher power, meaning that α1 ≥ α2 ≥ .... ≥ αN . Then,

the successive interference cancellation is implemented to decode the signals received

by the users. In other words, User N must decode all the signals of all users to have

its own signal, and User N − i has to decode N − i signals to obtain its intended

signal. It is clear that, as the number of users increases, the complexity of decoding
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Figure 1.5: Shifting the weak user in the X coordinate where the incidence and irra-
diance angles changes accordingly, the strong user located at (0,0) coordinate, FoV =
40.

the signal is increased. In addition, the residual interference coming from inaccurate

channel estimation increases with the number of users.

Implementing the NOMA in VLC networks requires considering the unique proper-

ties of VLC networks such as the limited bandwidth of LEDs, the maximum transmit

power that is restricted by the illumination requirements, the blockages that make

the channel between the transmitter and receiver close to zero, and the dramatic de-

terioration in the channel, as the distance increases. In addition, the channel value

can be controlled by changing the FoV of the receivers or the semi-angles of the

transmitters (if they are tunable), and these two factors can be selected to improve

the performance of NOMA-VLC networks. Because the PD-NOMA scheme is based

on successive interference cancellation (SIC), NOMA-VLC networks require all users’

CSIs to be available, which is the case in VLC. It was also shown that the NOMA

scheme performance is enhanced as the SNR increases [60], which is the case of VLC

link. These features offered by NOMA-VLC networks led many researchers to investi-
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gate these networks and find out how the NOMA outperforms OMA schemes in VLC

systems.

In Figs. 1.4 and 1.5, we consider a system model consisting of one VLC AP fixed

in the ceiling and two users in the floor. We assume that one user is located directly

under the VLC AP with 2 m distance which is considered the strong user. Figs. 1.4

and 1.5 present simulation of how the NOMA outperforms OMA in VLC networks,

when only the distance of the weak user increases (Fig. 1.4) and when the distance,

incidence, and irradiance angles change (Fig. 1.5). ‘Strong’ and ‘weak’ users mean

the user with the best channel and the user with the worst channel, respectively.

1.3 Dissertation Contributions and Outline

In this section, we summarize the contributions achieved in this thesis for the different

considered system models. Specifically,

• Chapter 2 optimizes a hybrid VLC/RF network for maximizing the system ca-

pacity and balance the load. In particular, we propose a new joint load balancing

(LB) and power allocation scheme for a system consisting of one RF AP and

multiple VLC APs. An iterative algorithm is proposed to distribute the users

on the APs and distribute the powers of the APs on their users. In PA sub-

problem, an optimization problem is formulated to allocate the power of each

AP to the connected users for the total achievable data rate maximization. A

new efficient algorithm that finds the optimal dual variables after formulating

them in terms of each other is proposed. This new algorithm provides faster
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convergence and better performance than the traditional subgradient method.

After the power is allocated, the users of the minimum data rate start seeking

for other AP that offers a higher data rate. Users with lower data rates continue

re-connecting from AP to other to balance the load only if this travel increases

the summation of the achievable data rates and enhances the system fairness.

Two approaches are proposed to have the joint PA and LB performed: a main

approach that considers the exact interference information for all users, and a

suboptimal approach that aims to decrease the complexity of the first approach

by considering only the approximate interference information of users. The nu-

merical results demonstrate that the proposed algorithms improve the system

capacity and system fairness with fast convergence.

• Chapter 3 studies a standalone VLC network where the number of APs is much

more than the number of users. The goal is to form the cells and allocate the

power to maximize the system EE. Based on the UC design, we first show that

the cell formation and power allocation are interlinked problems and should be

treated jointly. We start by proposing a new algorithm for users’ clustering

and then associating all the APs to the clustered users based on a proposed

metric. We then propose two algorithms that jointly allocate the power, under

QoS constraints, and decide which APs must be prevented from participating

in communication. The first algorithm is designed to maximize the EE, while

the other algorithm is designed to reduce the complexity of the first algorithm

with acceptable degradation in the EE. In addition, different from the related
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literature that allocated the power with the worst case interference informa-

tion, we propose an iterative algorithm that allocates the power based on exact

interference information, which significantly improves the EE. The numerical

results demonstrate that the proposed algorithms significantly improve the EE

compared to the existing work.

• In Chapter 4, a new users cooperation scheme is introduced based on the cooper-

ative NOMA principle to balance the VLC networks. This transmission scheme

provides two options for the weak users, either to be served by the direct VLC

link or by the relayed hybrid VLC/RF link that is relayed through a strong user.

Such scheme extends the system coverage, mitigates the blockages effect, and

improves the system sum-rate and fairness. For a system model consisting of

one VLC AP and multiple users, Chapter 4 formulates an optimization problem

that jointly pairs the users, selects the optimal link for each weak user, and

allocates the messages’ power to maximize the weighted sum-rate function. We

provide an optimal and suboptimal solutions for such mixed-integer non-covex

optimization problem and compare the solutions to a proposed baseline simple

approach and the optimal NOMA scheme. Simulation results show that the

proposed scheme significantly improves the VLC network performance in terms

of sum-rate and fairness compared to NOMA.

• Chapter 5 considers a VLC network, where multiple APs serve both EHUs,

i.e., users which harvest energy from light intensity, and IUs, i.e., users which

gather data information. In order to jointly balance the achievable sum-rate
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at the IUs and the energy harvested by the EHUs, we consider maximizing a

network-wide utility, which consists of a weighted-sum of the IUs sum-rate and

the EHUs harvested-energy, subject to individual IU rate constraint, individual

EHU harvested-energy constraint, and AP power constraints, so as to jointly

determine the DC-bias value at each AP, and the users’ powers. The chapter

solves such a difficult non-convex optimization problem using an iterative ap-

proach which relies on inner convex approximations, and compensates for the

used approximations using proper outer-loop updates. The chapter further con-

siders solving the special cases of the problem, i.e., maximizing the sum-rate,

and maximizing the total harvested-energy, both subject to the same constraints.

Numerical results highlight the significant performance improvement of the pro-

posed algorithms, and illustrate the impacts of the network parameters on the

performance trade-off between the sum-rate and harvested-energy.

• Chapter 6 concludes the thesis and presents several open research problems that

are appropriate as a future work. We also discuss what are the important issues

that should be considered to extend the proposed techniques to be applicable in

outdoor VLC networks.
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CHAPTER 2

JOINT OPTIMIZATION OF

POWER ALLOCATION AND

LOAD BALANCING IN HYBRID

VLC/RF NETWORKS

2.1 Introduction

Despite all the advantages of VLC systems mentioned in the first chapter, they suffer

from several limitations that contribute to the degradation of the system’s performance

such as a small coverage area, non-LoS failure transmission, frequent handover, and

inter-cell interference. This leads to unbalanced systems, with some users receiving a

poor service, while others may receive a high QoS. In particular, the objects existed in

rooms might block the LoS link of some intended receivers, leading to a degradation
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of the channel by up to 90 percent of the LoS channel [54], and, as a consequence,

a significant deterioration of the data rates for the intended users. However, these

opaque objects can block the inter-cell interference coming from the adjacent VLC

APs for other users. This means that the fluctuation of the received QoS at users is

high and that the blockages significantly affect the system fairness and the balance

of the systems. Another cause for unbalanced VLC systems is the handover. For the

reason that the coverage area of LEDs is small, the mobile users would suffer from

wasting resources by sending and transmitting the overhead of the required handover.

The small coverage area of the LEDs in VLC networks leads to a decrease in the

throughput of both the system and the mobile users due to the overhead generated by

such handovers [61], [62], [63]. However, by dividing the time into sufficiently short

periods, we can have quasi-static periods known as ’states’. The handover consumes

time, on average from 30 ms to 300 ms [64]. Another issue due to the small coverage

area is the fact that the crowded static users cannot be distributed to the deployed

cells, resulting all or most of them will be connected to one cell. This causes some APs

to be overloaded, and consequently leads to a poor service for the connected users,

while the other APs are unloaded or have a lower number of users. The bright side

of the VLC’s small coverage area is the fact that the whole bandwidth can be fully

re-used in all cells, which improves the spectral efficiency of the overall system [65].

However, re-using the full frequency in cells generates inter-cell interference, to some

extent. Inter-cell interference can be accepted for the sake of improving the system’s

spectral efficiency. On the other hand, the services received by the users located at

the edges of the cells would be affected by this inter-cell interference. To summarize,
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because of these issues, the users located at the edges of cells, blocked by objects, in

motion, or connected to overloaded APs can not receive a good QoS like the other

users. This significantly deteriorates both the performance and fairness of the VLC

systems. One of the most common solutions to the aforementioned VLC issues is

to supplement the standalone VLC networks with RF networks. Compared to VLC

networks, RF networks are known for their ubiquitous presence (high coverage area)

and proper operation in non-LoS environments. In addition, the devices connected

to RF networks do not suffer from VLC interference and vice-versa [66]. Therefore,

adding one or more RF APs to VLC networks mitigates the SNR fluctuation, balance

the load of cells, mitigates the LoS blockages, and reduces inter-cell interference. This

chapter examines the benefits of adding one RF AP to multi-cell VLC system in terms

of system capacity and fairness.

2.2 Literature Review

Several techniques have been proposed to balance the load and tackle these issues by

an efficient user distribution among VLC/RF APs [67], [68], [63], [69], [61], [70], [71],

[72], [73], [74], [75], [76], [77], [78], [62], [79], [80]. LB consists of two missions: the APs’

assignment (APA) and allocating the resources, whether this resource is a time slot in

TDMA schemes or a sub-carrier in OFDMA schemes. Specifically, Stefan and Haas

[67] started to study the APA by distributing the users between one RF AP and one

VLC AP. Some of the users were associated to the VLC AP to alleviate the load of the

RF AP, and the infeasible VLC connections were transferred to the RF AP. In [68], by
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having multiple VLC and RF APs, the advantages of combining RF and VLC networks

were investigated, and it has been proposed that users can be distributed dynamically,

on both the VLC and RF networks, based on the users’ channel condition. Users can

then migrate to the AP offering higher data rates. The APA was implemented in

[68] under the assumption that the resources are allocated fairly among users. It was

concluded that the hybrid VLC/RF networks improved the performance significantly,

compared to the VLC or RF standalone networks. Authors of [63] proposed to first

associate the users to the VLC network, and then, to re-allocate the users receiving a

lower data rate than a predefined threshold to RF APs. In [69], authors formulated

a centralized and distributed optimization problem for user association to the APs

(whether this AP is VLC or RF AP) with allocating the resources jointly among users.

The centralized optimization problem, with considering the proportional fairness [81],

was formulated as a mixed-integer non-linear programming (MINLP), which is highly

complex. Hence, a distributed algorithm was also proposed with lower complexity

compared to the centralized algorithm.

Wu and Haas [72] considered the LoS VLC channel blockages in the formulated

optimization problem. They modified the formulated optimization problem to accom-

modate the LoS VLC channel blockages. The main idea is that, the users that suffer

from a high occurrence rate of channel blockages should travel to the RF networks,

whereas the users that do not suffer from blockages, or the ones that suffer from a

low rate of blockages (to avoid the effect of handover overhead), should stay in the

light-fidelity (LiFi) networks.

To avoid the complexity of solving these optimization problems, fuzzy logic-based
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approaches were proposed for balancing the load in VLC networks [73], [74], and [75].

Authors of [73] and [74] proposed two-stage assignment process for the users in one RF

AP and multiple VLC APs. They first decided which users should be connected to the

RF AP, then they distributed the remaining users to the VLC APs, regardless of the

presence of the RF AP and its connected users. In the fuzzy logic approach, the user j

scores the APs, based on its offered throughput, SNR, inter-cell interference from the

adjacent APs, and activity of the adjacent VLC APs, then decides whether to connect

to the RF AP or to the VLC network, based on the resulting score. Similarly, authors

of [75] used this approach to handle the handover in a dynamic hybrid VLC/RF system

model. In their scheme, they considered several parameters as an input to the fuzzy

logic approach: the instantaneous and average channel state information (CSI), user

speed, and the minimum required data rate at users.

In [76], authors used another approach called the ’evolutionary game theory, to

solve the joint LB and resource allocation problem. Some practical issues were con-

sidered in their study, including the receiver’s orientation angle, LoS blockage in RF

and VLC APs, and the diversity in the users’ data requirements. In addition, the

channel of LiFi was characterized with considering these practical factors. Authors

in [77] studied and compared the common approaches used for balancing the load in

the hybrid VLC/RF networks which are: 1) optimization based algorithms, 2) evo-

lutional game theory, 3) fuzzy logic based algorithms. They showed that, for the

dynamic systems when the handover is considered besides the AP assignment and

the resource allocation, the fuzzy-logic-based algorithms outperformed the other ap-

proaches, whereas for the static systems, the optimization-based algorithms are the
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best, with a slight improvement over the simpler EGT approach.

Some of the above work focused only on assigning the APs (which AP should serve

which user) and the others focused on solving the problem of joint APs assignment

and time or resource allocation without considering the power allocation problem. In

other words, the joint LB and power allocation for a hybrid VLC/RF network has not

been studied before.

2.3 Contributions

In this chapter, different from the above literature mentioned, we study the two prob-

lems of power allocation and LB in a hybrid VLC/RF network for the sake of data

rate maximization and system fairness improvement. The network consists of multiple

VLC APs and one RF AP. First, each user is connected to its closest AP. Then, each

AP performs its optimization problem (allocates the power for the associated users)

in order to maximize the summation of the achievable data rates per AP. After that,

the users with the lower data rates start reconnecting from AP to other to balance

the load only in case this transfer increases the summation of the achievable data

rates. This transfer of users continues until no improvement in the summation of

data rates is achieved. We prove the convergence of the proposed algorithm analyti-

cally and numerically. The inter-cell interference makes the joint power allocation and

LB problem very difficult. Therefore, two approaches are proposed to have the joint

power allocation and LB implemented: 1) the approach that considers the instan-

taneous (exact) interference information for all users, 2) and a suboptimal approach
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that aims to decrease the complexity of the first approach by considering only the

approximate interference information of users. We propose a suboptimal approach to

decrease the complexity of the procedures significantly with a negligible loss in the

performance. The procedures are simplified in such a way when a user connection is

transferred, only two APs perform the power allocation problem and not all the APs.

In the power allocation optimization subproblem, in the VLC and RF APs, we for-

mulate the problem for maximizing the summation of the achievable users data rates

under certain QoS constraints. These QoS constraints are formulated to control the

tradeoff between the system capacity and system fairness. For a given interference

information, the power allocation problem is proved to be concave but not easy to

tackle. Similar power allocation problems were studied before such as [82], [83], [84].

In finding the dual variables, the authors of these references used the subgradient

method, which is very sensitive to step size selection and needs a large number of

iterations for convergence. Here, we derive a new efficient algorithm that finds the

optimal dual variables after formulating them in terms of each other without requiring

to optimize the step size or selecting the initial values carefully. This new algorithm

provides faster convergence and better performance than the traditional subgradient

method.

The rest of this chapter is organized as follows. The system and channel models

are introduced in Section 2.4. In Section 2.5, we present the problem formulation and

proposed algorithms. Some simulation results are presented and discussed in Section

2.6. Finally, the chapter is concluded in Section 2.7.
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2.4 System and channel Models

The system under consideration consists of Nap VLC APs, one RF AP, and Nu users

as shown in Fig. 2.1. The users are distributed uniformly in the room and the APs are

fixed in the ceiling of the room. Each VLC AP is equipped with multiple LEDs that

use IM to transmit the light signal to the users, which receive the light by a PD. The

RF AP is assumed to cover all the room area. Also, the location of users are assumed

to be unchanged during a short period of interest T . Thus, the VLC and RF CSI

of both the VLC and RF links is considered to be constant during this period. We

assume that the maximum available bandwidth at the AP i is divided fairly among

all the users connected to that AP.

Figure 2.1: System model.

The VLC channel between the ith LED and the jth user is denoted by h(v)i,j and can

be modeled as given in (1.1)

In a VLC network, the LED has to operate in the linear region so that the optical

power at its output is a linear function of the input voltage. In VLC networks, the

signal is deteriorated significantly in the non-LoS VLC transmissions that might lead
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to unsuccessful data transmission [82], [85], [69], so, in this chapter, we work only

on LoS paths. This assumption does not affect the proposed algorithm since it does

not depend on a specific channel model. In other words, whatever the channel model

is, the proposed algorithm for the power allocation will give us the optimal solution

as will be shown. Therefore, when the LoS path is available, h(v)j,i is given by (1.1);

otherwise, h(v)j,i = 0. The probability of the availability of the LoS from an AP to a

user is denoted by α and it is assumed to be uniformly distributed. It was shown in

[82] that the average electrical power of the received signal at user j from the VLC

AP i is calculated as follows

Pelec,j,i = (ρ

√
P

(v)
j,i h

(v)
j,i )

2, (2.1)

where ρ is the optical-to-electric conversion efficiency, P (v)
j,i is the allocated power for

user j from the AP i, where P (v)
i,max is the maximum transmitted optical power of the

AP i. The received SNR at user j from the VLC AP i can be expressed as

Γ
(v)
j,i =

(ρ
√
P

(v)
j,i h

(v)
j,i )

2

(B
(v)
i,max/Ni)N

(v)
0 + ρ2

∑Np

l=1,l ̸=i P
(v)
Bj,l
h
(v)2
j,l

, (2.2)

where B(v)
i,max is the maximum available bandwidth at the AP i, Ni is the number of

users connected to the AP i, N (v)
0 is the noise power spectral density, and P (v)

Bj ,l
is the

interference power at user j caused by the AP l. It is worth to note that P (v)
Bj,l

must be

calculated carefully since it represents the power allocated from the AP l to the same

frequency spectrum that is allocated for user j. For instance, if the AP l is associated
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with 4 users, and user j along with another user are connected to AP i, P
(v)
Bj ,l

should

be calculated as the summation of the powers of 2 users out of the 4 users that are

connected to the AP l and use the same spectrum frequency used by user j.

According to [82], [69], the maximum data rate that can be achieved at user j from

the VLC AP i can be approximated by

R
(v)
j.i = (B

(v)
i,max/Ni) log2

(
1 + Γ

(v)
j,i

)
. (2.3)

For RF transmission, as mentioned before, the RF cell is assumed to cover all the

room area and the channel is considered to be flat fading and can be partitioned into

non-overlapping channels of unequal bandwidths. We adopted the RF channel that

is modeled in [63] and the RF channel between user j and the RF AP is denoted by

h
(r)
j . The data rate achieved by the RF link between user j and the RF AP can be

expressed as

Γ
(r)
j =

P
(r)
j |h(r)j |2

(B
(r)
max/Nr)N

(r)
0

, (2.4)

where B(r)
max is the maximum available bandwidth at the RF AP and Nr is the number

of users connected to the RF AP. The achievable data rate that can be achieved by

user j from the RF AP is given by

R
(r)
j = (B(r)

max/Nr) log2

(
1 + Γ

(r)
j

)
. (2.5)
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2.5 Problem Formulation

The problem here is how to assign all the users to the APs and how to allocate the APs

powers for the assigned users aiming to maximize the system capacity with keeping

the fairness between the users at an acceptable level. Therefore, we start by assigning

the users based on their distance from the APs, where each user selects the closest

AP to it. Then, each AP performs its own power allocation problem for its associated

users.

The achievable data rate of user j is expressed as

Rj,i =


R

(v)
j,i , i ∈ Cv;

R
(r)
j,i , i ∈ Cr,

(2.6)

where Cv denotes the set of the VLC APs and Cr denotes the RF AP.

2.5.1 Power Allocation in VLC and RF Access Points

In this section, we aim to allocate the power for the Ni users that are connected to

the AP i. The objective function here is to maximize the summation of the users

data rates under certain QoS constraints. These constraints are formulated to guar-

antee some fairness for users per APs. We formulate the optimization problem as

a general form for the VLC APs or the RF AP. Hence, [Pj,i Bj,i hj,i N0] =

[P
(v)
j,i (B

(v)
i,max/Ni) ρh

(v)
j,i N

(v)
0 ], if the AP i is a VLC AP, and if the AP i is a

RF AP, so [Pj,i Bj,i hj,i N0] = [P
(r)
j (B

(r)
max/Nr) h

(r)
j N

(r)
0 ]. Therefore, the
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optimization problem of the AP i can be expressed as

max
P1,i,..,PNi,i

Ni∑
j=1

Rj,i (2.7a)

s.t. Rj,i ≥ γj,i, j = 1, .., Ni (2.7b)
Ni∑
j=1

Pj,i ≤ Pi,max, (2.7c)

Pj,i ≥ 0 ∀j, (2.7d)

where Ni is the number of users associated with the AP i, and γj,i is the minimum

data rate that can be achieved at user j from the AP i, which is given by

γj,i = β
Bi,max

Ni

log
(
1 +

(Pi,max/Ni)|hj,i|2

(Bi,max/Ni)N0 +Xj,i

)
, (2.8)

where Xj,i is the interference term of user j and is equal to ρ2
∑Np

l=1,l ̸=i P
(v)
Bj,l
h
(v)2
j,l if the

AP i is VLC, and in the case of RF AP, Xj,i = 0, and β is a value in the interval

[0, 1]. If we select β = 1, this means that the AP will distribute its resources fairly

(regardless of users channels), where each user gains the same power Pi,max/Ni and

same bandwidth Bi,max/Ni. On the other hand, if β is close to zero, this means that

the objective function is released from the first constraint, which leads to increase the

AP capacity.

Jain’s fairness index is used to measure the AP fairness and the whole system

fairness. Therefore, the fairness of the AP i is given by

Fi =
(
∑Ni

j=1Rj,i)
2

Ni

∑Ni

j=1R
2
j,i

, (2.9)
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and the fairness of the system is given by

Fs =
(
∑Nap

i=1

∑Ni

j=1Rj,i)
2

Nap

∑Nap

i=1

∑Ni

j=1R
2
j,i

. (2.10)

The Problem in (2.7) is not easy to tackle since in the case where the AP i is a

VLC AP, the interference term in the objective function makes the problem difficult.

On the other hand, if the interference terms are given, the Problem in (2.7) becomes a

concave problem and can be solved by using the Lagrangian dual problem. First, we

solve this problem under the assumption that the interference terms are given then we

provide an iterative algorithm that achieves the optimal power allocation. Obviously,

the Constraints in (2.7c) and (2.7d) are linear functions, while the objective function

and the Constraint in (2.7b) are well known as concave functions as shown in [82]

and [84]. Therefore, the optimization Problem in (2.7) is a concave problem with

one global optimum solution. Hence, we can use the dual problem to achieve the

optimal solution, where the strong duality holds in the concave problems. The dual

optimization problem of the Problem in (2.7) can be expressed as follows

ζ = −
Ni∑
j=1

Rj,i −
Ni∑
j=1

µj,i(Rj,i − γj,i) + vi

(
Ni∑
j=1

Pj,i − Pi,max

)
, (2.11)

where µj is the Lagrangian multiplier for the data rate constraint of the jth user and

vi is the Lagrangian multiplier for the total power constraint.

In the following, an efficient algorithm is proposed to solve the Problem in (2.7)

by minimizing the dual problem in (5.30). From the Karush-Kuhn-Tucker (KKT)
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conditions [56], we have
∂ζ

∂Pj,i
= 0, (2.12)

where

Pj,i =
(1 + µj,i)Bj,i

vi ln(2)
− N0Bj,i +Xj,i

|hj,i|2
, (2.13)

where the variable µj,i must guarantee that the Constraint in (2.7b) is feasible and vi

must guarantee that the Constraint in (2.7c) is feasible too. Now, these dual variables

must be found to obtain Pj,i ∀ j. In several papers such as [82], [83], [84], the authors

found such dual variables by using the gradient decent method, which is an iterative

algorithm that needs a large number of iterations to converge, a very careful selection

of the step size, and a careful initial values selection for the dual variables. Proposing

another approach that get red off these requirements (optimizing step size and the

careful selection of the initial values) significantly simplifies the problem and provides

a better performance. Here, we find a closed-form expression for vi in terms of µj,i

and vise versa. Then, we solve them alternatively until they converge. First, it is

trivial showing that the Constraints in (2.7c) must hold with equality at optimality.

Otherwise, we can increase one of the power variables until the constraints hold with

equality, which leads to increasing the objective function, and hence, contradicting

the optimality. By substituting (5.29) in (2.7c), we have

vi =

∑Ni

j=1Bj,i(1 + µj,i)

ln(2)
(
Pi,max +

∑Ni

j=1
Bj,iN0+Xj,i

|hj,i|2

) . (2.14)
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Similarly, by substituting (5.29) in (2.7b), µj,i must be

µj,i ≥
vi ln(2)Pmin

j,i

Bj,i

+
vi ln(2)(Bj,iN0 +Xj,i)

Bj,i|hj,i|2
− 1, (2.15)

where Pmin
j,i is given by

Pmin
j,i =

(2(γj,i/Bj.i) − 1)(Bj,iN0 +Xj,i)

|hj,i|2
, j = 1, .., Ni, (2.16)

which is the minimum required power to achieve Constraints (2.7b). Hence, (2.14)

and (2.15) depend on each other and can be solved alternatively starting from an

initial value of one of them until they converge. After that, (5.29) is used to find the

optimal power allocation. Algorithm 1 is proposed to solve the optimization problem

in (2.7) with a given interference information. Condition 5 in Algorithm 1 examines

Algorithm 1 Power allocation for the AP i.

1. Input Bj,i, µj,i(0) ∀j.

2. for q = 1 :M

3. Find vi(q) from (2.14) and ∀j, calculate Pj,i.

4. For all j, check if the calculated Pj,i ≥ Pmin
j,i . If so, µj,i(q) = µj,i(q−1); otherwise,

calculate µj,i(q) from (2.15) by equating both sides, then update Pj,i.

5. If |vi(q)− vi(q − 1)| ≤ ϵ, break;

6. end for

7. Find Pj,i ∀j using (5.29).

the convergence of all dual variables vi and µj,i, j = 1, 2, .., Ni.
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Convergence analysis

Here, we analyze Algorithm 1 in terms of convergence. Before we start analyzing the

convergence, we should note that the values of Pj,i ∀j after Step 3 are different from

the values of Pj,i ∀j after step 4 (i.e., the values of Pj,i ∀j change twice in the same

iteration). Specifically, in Step 3, the power values are changed because of updating

the value of vi, while in Step 4, the power values are changed because of updating the

values of µ′s. To avoid this confusion, we denote the values of Pj,i ∀j after Step 3 by

P
(3)
j,i and denote the values of Pj,i ∀j after Step 4 by P (4)

j,i .

At any qth iteration, it can be shown that in Step 3, the variable vi(q) steers the

the summation of powers to be equal to Pi,max (i.e., to achieve Constraint (2.7c) with

equality). In other words, if we find vi(q) at Step 3 and substitute it in (5.29) ∀j,

we find that
∑Ni

j=1 P
(3)
j,i (q) = Pi,max. On the other hand, Step 4 implies that each

P
(3)
j,i that is less than the corresponding Pmin

j,i (i.e. each P (3)
j,i that does not satisfy the

corresponding constraint in (2.7b)) is increased by increasing the associated µj,i to

achieve that P (4)
j,i (q) = Pmin

j,i . This increase in power yields violating Constraint (2.7c)

to be as
∑Ni

j=1 P
(4)
j,i (q) ≥ Pi,max. Hence, in the (q + 1)th iteration, vi(q + 1) will be

greater than vi(q) to have that
∑Ni

j=1 P
(3)
j,i (q + 1) = Pi,max again.

Without loss of generality, we assume that in the qth iteration, Pj,i(q) < Pmin
j,i

for j = 1, .., k − 1 and Pj,i(q) ≥ Pmin
j,i for j = k, .., Ni. From (5.29), we note that the

increase in vi leads to decreasing each P (3)
j,i ∀j with keeping the constraint

∑Ni

j=1 P
(3)
j,i (q+

1) = Pi,max satisfied. Hence, we have that P (3)
j,i (q + 1) < P

(3)
j,i (q), j = K, ..., Ni

(because Step 4 causes no change in these powers in the iteration q), and P (3)
j,i (q+1) >
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P
(3)
j,i (q), j = 1, ..., k − 1 to keep the constraint

∑Ni

j=1 P
(3)
j,i (q + 1) = Pi,max satisfied.

This means that µj,i(q + 1) must be increased to achieve the constraint P (4)
j,i (q +

1) = Pmin
j,i , j = 1, .., k − 1 but with less amount than what was required in µj,i(q).

Consequently, with implementing one iteration more, we have

µj,i(q + 2)− µj,i(q + 1) < µj,i(q + 1)− µj,i(q), j = 1, .., k − 1. (2.17)

Similarly,

vi(q + 2)− vi(q + 1) < vi(q + 1)− vi(q), (2.18)

Therefore, as the number of iterations increases, the amount of change in vi and all

µj,i∀j approaches zero. Thus, Algorithm 1 is convergent.

It is also important to note that in Equation (2.15), vi is a factor of the expression

1+µj,i, which means that starting with any initial values for µj,i will be compensated

by vi to have the same value of Pj,i as Equation (5.29) shows. Hence, Algorithm 1

does not depend on the initial values.

Finding the exact interference information

Now, in the VLC APs, the problem is how to find the instantaneous interference (Xj,i)

of each user, which is difficult to be found because the term Xj,i of user j depends on all

powers of the APs that are allocated for the jth user frequency spectrum. Therefore, we

provide an iterative algorithm that solves the power allocation problem of all the VLC

APs with finding the instantaneous interference of each user. Algorithm 2 provides
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Algorithm 2 Power allocation for all the VLC APs with a given distributed users.

1. Each AP allocates the power for the users equally.

2. for q = 1 :M

3. Calculate X(q)
j,i for all users in the system.

4. Perform Algorithm 1 for all APs.

5. if
∑Np

i=1

∑Ni

j=1(X
(q)
j,i −X

(q−1)
j,i )2 ≤ ϵ; break;

6. End for

the optimal power allocation for a given distributed users. It is worth stating that

the RF AP performs its power allocation using Algorithm 1 and it is not included in

Algorithm 2. This is because the interference of the users connected to the RF AP is

zero. In Algorithm 2, the only step that needs to exchange the information between

APs is Step 3 (Calculating the interference). To calculate the interference X(j, i), the

AP i must know the power allocated from the other APs for the BW used by User j.

Therefore, the APs must exchange their power information to have the interference

information at each user.

2.5.2 Load Balancing

As stated earlier, initially, each user is connected to its closest AP. Then, each AP

performs its own power allocation problem as shown in the previous section. However,

some APs will be overloaded, which may cause some users connected to these APs

to receive a poor QoS. Therefore, after the power allocation optimization problem

(Algorithm 2) is performed, the user with the poorest QoS is reconnected to either

the RF AP or another adjacent VLC AP if the later can provide a better service and
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increase the system capacity. The users connected to the RF AP do not receive any

interference so that the strongest candidate AP for the user (which needs to reconnect

to another AP) to travel to is the RF AP. The approach here is to arrange the users as

a queue starting from the user with the lowest QoS up to the highest quality serviced

user. Then, each user in its turn tests if the RF AP can provide a better achievable

data rate for it or not. If so, the user migrates to the RF AP; otherwise, the user

transfers to another adjacent AP if that AP can provide a better achievable data rate

for him. These procedures continue until no improvement in the system capacity can

be achieved. From the power allocation problem in (2.7), each VLC AP offers for each

user its QoS denoted by γj,i, which is a function of the number of users connected to

that AP as shown in (2.8). Hence, the maximum offered achievable data rate for user

j that is connected to the AP i is given by

R̄j,k = max
k∈χi

(γj,k), (2.19)

where χi is the set of the APs that are very close to the AP i andNk < Ni−1 ∀ k. Since

γj,k depends on the value of β, if Nk = 0, that means the AP k offers all its resources

for the coming user, and hence, β = 1 in (2.19). Otherwise; if Nk ≥ 1, β is determined

by the AP k. It is important to state that the transfer of a user connection changes the

interference information, which enforces the system to re-implement Algorithm 2 with

each transfer. This process of transfer continues only if there is an improvement in

the system capacity. To prove the convergence of this approach, first, we should note

that the step of sorting users is conducted at the beginning of every round of testing

47



all users not with each user transfer. In addition, we cancel each user transfer from

one AP to another that produces a degradation in the system capacity. Consequently,

with each user transfer the system capacity increases, and as we know the capacity

has a limit, which means that the convergence is occurred when we approach that

capacity limit.

2.5.3 Suboptimal Approach: Averaging the Interference

The disadvantage of the above approach is its high complexity since with each user

connection transfer, all the APs must perform the power allocation problem, which is

highly complex. The reason behind that is the need for exact interference information

to implement both the power allocation and LB together. In this section, we aim to

simplify the problem solution by relaxing this demand. User j experiences interference

from each AP with a power that might be less or greater than the average power. This

average power is calculated under the assumption that each AP distributes its power

equally for its associated users. Therefore, the essence of the approach here is that

instead of obtaining the instantaneous interference, we obtain the average interference

that is calculated by averaging the power of the interference coming from all the APs.

Therefore, the approximate inter-cell interference at user j that is connected to the

AP i is given by

Xj,i =

Np∑
l=1,l ̸=i

Pl,max
Ni

h2j,l. (2.20)

The above assumption significantly simplifies the problem as there is no need to

implement the power allocation optimization at all the APs at each user connection
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Table 2.1: Simulation Parameters

Name of the Parameters Value of the Parameters
Room hight 3 m
Maximum bandwidth of VLC AP, B(v)

max 30 MHz
Maximum bandwidth of RF AP, B(r)

max 30 MHz
The physical area of a PD, Ap 0.1cm2

Half-intensity radiation angle, θ1/2 60o

FoV semi-angle of PD,Θ 90o

Gain of optical filter, gof 1
Refractive index, n 1.5
Optical to electric conversion efficiency, ρ 1

Transmitted power of the VLC AP, P (v)
max 4 watt

Transmitted power of the RF AP, P (r)
max 2 watt

Noise power spectral density of LiFi, N (v)
0 10−21 A2/Hz

Variance of AWGN in RF AP, N (r)
0 10−19 A2/Hz

transfer. In other words, we only need to perform the power allocation optimization

problem (Algorithm 1) at only two APs (the departed from and the arrived to APs).
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Figure 2.2: Comparison between the proposed Algorithm 1 and the subgradient
method with different step sizes by plotting the violation of the constraints versus
number of iterations for AP i, Pi,max = 10 Watt.
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Figure 2.3: Comparison between the proposed Algorithm 1 and the sub-gradient
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2.6 Simulation Results
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Figure 2.4: Convergence of the proposed Algorithm 1 of the users powers connected
to AP i and compare it with the subgradient method, step size = 0.04, Pi,max = 10
Watt.

In this section, we verify the capability of the proposed algorithms for enhancing

the performance of the hybrid VLC/RF network. We show the convergence of the
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Figure 2.5: System capacity versus number of iterations for Algorithm 2 with different
numbers of system users.
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Figure 2.6: System capacity versus number of transferred users for different numbers
of system users.

proposed algorithms and how they increase the system capacity. A 10× 10 room area

is assumed with 16 VLC APs and 1 RF AP fixed in the ceiling. The values of all

parameters in the considered VLC/RF system are given in Table 2.1. Monte-Carlo

simulation is used to asses the performance of the proposed algorithms where in each
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simulation iteration, a uniform random number is generated between 0 and 1. If

that number is less than α (the probability of the availability of the LoS), the LoS

component is available; otherwise, LoS component is not available.

In Fig. 2.2 and Fig. 2.3, we show the performance and convergence of the proposed

Algorithm 1 implemented at AP i and compare it with the subgradient method. Both

figures should be analyzed together because Fig. 2.2 shows the maximum constraint

violation of the approaches (i.e., how much the approaches are close from achieving

the constraints versus the number of iterations), while Fig. 2.3 shows the value of

the objective function for the different approaches versus the number of iterations.

It is observed that the subgradient method with large step size, such as step size =

0.5, achieves the constraints slightly faster than the proposed approach as shown in

Fig. 2.2, but it can not achieve the same system capacity as the proposed approach

can achieve as shown in Fig. 2.3. In other words, if we assume that the violation

tolerance is 10−4, both approaches, the proposed and the subgradient with large step

size, almost satisfy the constraints after 100 iterations, while the proposed approach

provides higher AP capacity than the subgradient method as shown in Fig 2.3. On

the other hand, the subgradient method with small step size, such as step size = 0.04,

starts to satisfy the constraints after more than 107 iterations as shown in Fig. 2.2, and

after that huge number of iterations, it starts approaching the capacity achieved by

the proposed approach as shown in Fig 2.3. In addition, we implement the subgradient

method with random initial values of the dual variables to show that the subgradient

methods depends highly on the selected initial values, while the proposed algorithm

does not. It is important to note that the disadvantages of the subgradient method
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is that the step size must be optimized to have the best performance, which is an

additional problem that complicate the already subgradient method. Besides, the

initial values for the dual variables must be selected carefully. It is known that in

the subgradient method, the smaller step size, the closer optimal values we obtain as

the number of iterations goes to infinity. Hence, as shown in Fig. 2.4, the proposed

approach provides the same power values of the subgradient method (step size =

0.04) in less than 100 iterations, while the subgradient method achieves some of those

values after 107 iterations. Fig. 2.4 also shows that the subgradient method violates

the maximum power constraints over a wide range of iterations and it starts satisfying

that constraint after huge number of iterations (10 million iterations).

Fig. 2.5 shows the convergence of Algorithm 2. It is clear that Algorithms 2 needs

at most three iterations to converge. Furthermore, the number of iterations needed

to converge does not depend on the number of users in the system, which means that

the number of users does not affect the convergence of Algorithm 2. This indicates

that Algorithm 2 rapidly converges to the optimal solution. In addition, it can be

seen from Fig 2.5 that the value of the system capacity at iteration 1 is the resultant

of allocating the power equally between users (Step 1 in Algorithm 2), and the value

of the system capacity at iteration 2 is the result of solving the optimization problem,

where the interference information is calculated from the power allocated in the first

iteration which is the equal power allocation, and so on. Therefore, Fig. 2.5 highlights

the significant contribution of the proposed allocation power algorithm over allocating

the power equally among users.

In Fig. 2.6, the relation between the system capacity and number of reconnected

53



users is shown with different numbers of total users. The number of transferred users

means how many users transferred their connections form one AP to another. It can

be seen that the more the users transfers, the better the system capacity till the system

saturates. Also, it is obvious that more users transfers are needed for the system to

reach the saturation point as the number of users increases, as expected. In other

words, the rate of increasing the system capacity with 60 users is less than the rate of

increasing the system capacity with 20 or 40 users.
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Figure 2.7: System fairness versus number of transferred users for different number of
system users.

The impact of total number of users on the system fairness is studied in Fig.

2.7. It is clear from this figure that as the number of transferred users increases,

the system fairness is more enhanced with the best results achieved at the minimum

number of total users. Enhancing the system fairness and capacity together with each

user transfer comes from the fact that the users with poor services travel from the

overloaded APs to have better services from other less overloaded APs. This helps
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in decreasing the variance of the received data rate among users and provides a more

efficient utilization of APs resources.
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Figure 2.8: Comparison between Algorithm 2 and the suboptimal approach in terms
of system capacity for different values of α.
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Figure 2.9: Comparison between Algorithm 2 and the suboptimal approach in terms
of system fairness for different values of α.

Fig. 2.8 shows the relation between the number of users and the total system

capacity for different values of α. Here, α = 1 means no blockages is happened, while
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α = 0.85 means that the probability of having an objects between APs and users is

0.15. It is shown that the difference between the performance of Algorithm 2 and

the suboptimal solution (averaging the interference) is negligible. We also investigate

the effect of number of users on the system fairness in Fig. 2.9. The approach that

considers the approximate interference information slightly performs better than the

approach that considers the exact interference in terms of the system fairness. This

is due to the fact that the former depends on calculating interference matrix based

on the assumption that the power at the APs is distributed fairly among users, which

leads to a more fair power allocation among users than the later. As can be seen

from Fig. 2.8 and Fig. 2.9, as the probability of the LoS availability decreases, the

system capacity increases while the fairness decreases. This is because increasing

the blockages rate in the hybrid VLC/RF networks can enhance the system capacity

rather than compromising it. In other words, the blockages are more likely to prevent

the users from receiving the optical interference than blocking the intended signals.

On the other hand, blocking some users from some VLC APs increases the variance

of the received data rates among users which leads to decrease the system fairness.

The figures show also how the proposed joint LB and power allocation algorithms

significant improve the system capacity and fairness compared to the case where one

iteration is implemented only (each user is assigned to its closest AP and each AP

implements the power allocation only once).
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2.7 Conclusion

In this chapter, a joint LB and power allocation algorithms for hybrid RF/VLC net-

work were proposed. An iterative algorithm was proposed to maximize the total

system capacity and enhance the system fairness. Two approaches were implemented:

1) the approach that is based on the exact interference information for all users, which

provided better performance, 2) and a suboptimal approach that is based on the ap-

proximate interference information, which had a less complexity compared to the first

approach. In the power allocation subproblem, we derived a new efficient algorithm

that finds the optimal dual variables after formulating them in terms of each other.

This new algorithm provided a faster convergence and a better performance than the

traditional subgradient method. As a future work, we recommend to implement the

joint power and bandwidth allocation with load balancing in mobile users.
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CHAPTER 3

ALGORITHMS FOR

ENERGY-EFFICIENT VLC

NETWORKS WITH

USER-CENTRIC CELL

FORMATION

3.1 Introduction

In Chapter 2, we show that VLC networks can be supported by RF AP to improve

both the system capacity and fairness. Another approach to improve the VLC systems’

performance is by having the VLC APs cooperating and coordinating their transmis-

sion. This approach removes or mitigates interference, improves the space diversity
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gain, increases coverage, decreases the handover overhead, and decreases the received

SNR fluctuations. A coordinated multi-point (CoMP) transmission technique can be

implemented by connecting multiple APs through backbone networks so that they

can cooperate to design their transmitted signals. Therefore, the joint transmission

(JT) can be implemented between the coordinated transmitters to form one cell.

One advantage of VLC networks is that they can be considered as highly dens

networks, where the lamps fixed in the ceiling are most probable to be much more

than the number of receivers in indoor environments. In highly dense networks, it

is important to consider the consumed power that used for communication. Hence,

this chapter considers maximizing the EE in highly dense VLC networks. VLC net-

works has been considered as an energy-efficient technology [43], as the LEDs, which

are used as transmitters, are energy-efficient devices [15], and because the consumed

power used for communication is also used for illumination. However, the acceptable

illumination is ranging between maximum and minimum requirements, which means

that the consumed power can be controlled within these limits to maximize the EE.

In other words, the extra power consumed for communication should be minimized

with keeping the required QoS achieved to improve the system’s EE.

Aiming to maximize the EE in VLC, several factors can be employed such as

cell formation based on the UC design and power allocation. Because the inter-cell

interference is a major reason behind the QoS and EE degradation, the cell formation

has been proposed to mitigate this problem by grouping multiple APs to be in a one

cell. Efficient cell formation design is a crucial step that has a great impact on the

EE of the system.
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3.2 Literature Review

Extensive work has been done for throughput and system capacity maximization in

VLC networks using different modulation schemes [86], [87], power allocation and

load balancing [69], [80], [63], [88], [79], [89], and using MISO [90] and MIMO schemes

[91]. Cooperation between APs has also been proposed to enhance the VLC system

performance by mitigating the interference [92], [93], and decreasing the handover

with mitigating the blockages effect [94].

For managing interference in the N APs and N users system model, the APs in

the proposed system in [93], were designed to organize themselves into a cooperative

coalition based on the game theory coalition formation. In [92], authors adopted the

joint transmission scheme to alleviate the effect of the co-channel interference and to

improve the system throughput and the quality of the received signal. In addition to

the co-channel interference, the impact of blockages on users can be mitigated using

the CoMP joint transmission scheme [94]. Authors of [94] proposed an approach that

assigns multiple transmitters to each user, with proportional fairness. Serving a user

by multiple LEDs transmitters significantly mitigates the rate of blockages and the

handover overhead.

In [95], Zhang et al. investigated the UC design for VLC, for which the cells’

structures are not with regular shape. First, the users were clustered to multiple

clusters, then the APs were distributed to the clustered users. In [96], Li et al.

used the UC design to improve the system fairness by proposing algorithms aimed at

scheduling users and maximizing the sum utility of the system. In [47], in addition to
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forming the cells and associating the APs, the powers were allocated to the clustered

users to maximize the EE. In [1], authors used these techniques of cell formation and

power allocation to design energy-efficient scalable video streaming with considering

an adaptive modulation mode assignment. The common clustering approach used in

[96], [47], [1] is the edge distance clustering.

3.3 Contributions

in this chapter, we design an energy-efficient VLC network by proposing new efficient

algorithms that jointly form the cells, allocate the power for the users, and select the

appropriate APs. More specifically,

• We propose a new user clustering algorithm that aims at minimizing the distance

of the clustered users to their centers and maximizing the distance between the

different centers in order to mitigate the inter-cell interference.

• We establish a metric for each AP in order to select the appropriate users’ cluster

to work on.

• We show that the power allocation and APs association problems are not inde-

pendent as tackled in the previous works. Therefore, we develop a new algorithm

that finds a solution for joint power allocation and AP selection, resulting in a

significant improvement in the EE.

• We propose a low-complexity solution for the joint problem of power alloca-

tion and APs selection aimed at decreasing the complexity with an acceptable
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degradation in the EE compared to the first proposed algorithm.

• In the power allocation subproblem, in the previous works [47], [1], [96], authors

allocated the power based on the worst case of inter-cell interference which is

a fake interference information. Here, we propose an iterative algorithm that

approaches to having the exact interference information and improves the EE

as the number of iterations increases. In addition, for solving the power allo-

cation problem, we modify the traditional subgradient method by introducing

closed-form expression for some dual variables, resulting in speeding up the

convergence.

The rest of this chapter is organized as follows. The system and channel models are

introduced in Section 3.4. In Section 3.5, we present the problem formulation and the

proposed solutions. Some simulation results are presented and discussed in Section

3.6. Finally, the chapter is concluded in Section 3.7.

3.4 System and Channel Models

The system under consideration consists of NA VLC APs and Nu users, as shown in

Fig. 3.1. The users are distributed uniformly in the area and the APs are fixed in the

ceiling of the room. Each AP is equipped with multiple LEDs that use IM to transmit

the light signal to the users that can receive and convert the light to current, using

PDs. Also, the locations of users are assumed to be unchanged during a short time

duration T . This assumption can be justified by assuming that all the mobile users

are better to be served by WiFi APs to avoid the numerous handover usually occurs in

62



Figure 3.1: System model (an example of distributing the users uniformly in the area).

VLC networks [61], [63]. Thus, the CSI of the VLC links is considered to be constant

during T period. Several indoor environments can prove that the number of lamps

fixed in the ceiling are more than the number of users inside the considered room such

as labs, houses, offices, companies, etc. This motivates us to assume that the number

of users is less than the number of APs. However, the proposed algorithms in this

chapter can be implemented even if the number of users are more than the number

of APs. For instance, if the number of users are twice the number of APs, a user

scheduling algorithm can be implemented where half of the users served by the first

time slot while the others served in the second time slot, and the proposed procedures

can be implemented within each time slot. The VLC channel model is given in (1.1)

in chapter 1.
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3.4.1 Transmission Technique

For white LED transmission, we use the single blue LED chip with a phosphor layer,

which is commonly used, where the modulation bandwidth B is normally around

20 MHz, however this measured bandwidth is related to the specific LED product

employed. The energy-efficient ACO-OFDM is used as a modulation scheme in the

proposed system model. In each formed cth cell, we have NA,c APs transmitting the

signal vector Yt,c ∈ RNA,c×1 to Nu,c users. The equivalent channel can be modeled as

a multi-users MISO system and the vectored transmission (VT) zero-forcing based is

used to eliminate the intra-cell interference. Hence, we can express the received signal

vector of a particular sub-channel in the cluster c by

Yr,c = ρHcGcP̄cYt,c + nc, (3.1)

where Hc ∈ RNu,c×NA,c is the channel attenuation matrix between the end users and the

APs in the cluster c, P̄c =diag(Pc), where Pc is the electronic power vector assigned

to the users belong to the cluster c, nc is the noise plus the inter-cell interference,

and Gc is the pre-coding matrix that is designed to diagonalize the channel matrix by

setting Gc = Hc
H(HcHc

H)−1. This process (diagonalizing the channel or eliminating

the intra-cell interference) needs the accurate knowledge of the users’ channels. Since

the VLC channels are pre-dominantly static, the user’s channel can be attained using

a single attenuation factor. It can be estimated at the user side and then fed back

to the AP side at the cost of modest overhead [47]. It is important to note that the

amount of the exchanged information depends on the cluster size or the number of
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cells in the VLC systems. A low number of cells (large cells’ size in average) leads

to a less inter-cell interference and a large amount of exchanged information, while a

high number of cells (small cells’ size in average) leads to a high inter-cell interference

and a small amount of exchanged information. Hence, the number of cells must be

selected carefully based on the needed applications. The achievable data rate at the

user j in cluster c is given by

Rj,c = β log
(
1 +

(ρ2/2)Pj,c
BN0 +Xc,j

)
, (3.2)

where Pj,c is the assigned power for the user j in the cell c, Xc,j is the interference

received at the user j in the cell c, N0 is the noise power spectral density, and β is a

value which depends on the applied modulation scheme. Because of the assumption

that the ACO-OFDM modulation scheme is applied, the value of β = B/4, where B

is the modulation bandwidth. The transmit power at AP i in the cluster c, which is

the power consumed for communication, is given by

pi,c =

Nu,c∑
j=1

g2i,jPj,c, (3.3)

where gi,j is the element located in the ith row and jth column in matrix Gc.

3.5 Problem Formulation

In this section, we present algorithms and steps to efficiently form the cells and allo-

cate the powers to maximize the EE. The general procedures are represented in Fig.
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(a) Traditional procedures. (b) Proposed procedures.

Figure 3.2: Comparison between the proposed and the traditional procedures for EE
maximization.

3.2, where the difference between the proposed and the traditional procedures [96],

[47], [1] is shown. We start by proposing a users’ clustering algorithm, establishing

metrics for associating all APs to the clustered users, formulating the power allocation

optimization problem with providing an efficient solution, and proposing two differ-

ent iterative algorithm (one for seeking the optimality and the other for seeking the

simplicity) to jointly allocate the power and select the participating APs in commu-

nication. These individual procedures are followed by a flowchart that shows how the

proposed algorithms and steps are arranged and implemented, in general, to maximize

the EE.

3.5.1 Cell Formation

Here, we provide a new UC clustering algorithm under a given number of clusters, we

then provide a new procedures for APs association to the formed users’ clusters. Our

targets in users’ clustering are to cluster the users based on their distances to each

others and to maximize the separation between the clusters. The main contribution

of our clustering approach is the initial steps that have a significant impact on the

final results in terms of EE.
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User-Centric Clustering

In this section, we aim to group the users in a predefined K clusters aiming to maxi-

mize the EE of the whole network. Clustering the users based on their geographical

positions, to have the summation of the distances of all users in a cluster to their cen-

ters as small as possible, definitely helps in improving the EE of the system. Due to

its simplicity and speed, The traditional K-means clustering method has been widely

used in clustering. It is designed to minimize the following objective function

U =
∑
k∈K

∑
j∈c

∥xj,k − ck∥2, (3.4)

where xj,k, ck ∈ R2 are the position of the user j in the cluster k and the center

position of the cluster k, respectively. There are multiple improved versions of the

K-means method in the literature. Here, we pick the improved version of the K-

means method proposed in [97], which is called K-means++, to build on. Briefly, the

K-means++ augmented the K-means method with a randomized seeding technique

which helps in improving the speed and the accuracy. More details on the K-mean++

clustering method are provided in [97].

If a different clustering schemes are given, it is highly complex to implement both

the APs association and power allocation to specify the best clustering scheme that

provides the highest EE. To simplify the problem, first several clustering design are of-

fered, then the best clustering design that helps in mitigating the inter-cell interference

is estimated. The main disadvantage in the K-means++ method is that the selection

of the initial centers may lead to a poor EE. This is because it is based on a probabilis-
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tic initial selection and it is not built for the special structure of the VLC networks

that is highly affected by the inter-cell interference. Therefore, beside the objective of

the K-means++ algorithm, we augment another objective that helps in decreasing the

inter-cell interference. This objective is to maximize the average distance between the

users in the different clusters. This means having the distances between the cluster

centers as far as possible. To achieve such objective, it is important to note that if K

points are given and the distances between them di,j, i = 1, . . . , K, j = i+ 1, . . . , K,

under the constraint that the summation of them is less than or equal D, the solution

of the following optimization problem

max
di,j

K∏
i=1, j=i+1

di,j, s.t.
K∑

i=1, j=i+1

di,j ≤ D, (3.5)

is di,j = D
K
, i = 1, . . . , K, j = i+ 1, . . . , K. This means that if we have MK centers,

the K centers out of MK, which have maximum distance between them, can be found

by finding the product of the distances of all possible K centers and picking up the

maximum result, where M is an integer value and greater than or equal 1.

The main idea of the proposed algorithm is to start with a number of initial centers

that is much more than K, then select the centers that have the maximum distance

between them. Therefore, the following Algorithm 3 is the proposed clustering algo-

rithm.

Increasing M would enhance the performance and increase the complexity, and

decreasing it would decrease the complexity and degrade the performance. The com-

plexity of Algorithm 3 is at most M times the complexity of the K-means++ algo-
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Algorithm 3 User clustering algorithm.

1. Select a user randomly to be the first center c1.

2. For each user find the the shortest distance D(x) from the considered user to
the closest center.

3. Take a new center ck, selecting x ∈ X with probability D(x)2∑
x∈X D(x)2

, and repeat
that until we have K centers.

4. For each k ∈ 1, ..., K, set the cluster Ck to be the set of points in X that are
closer to ck than they are to cj for all k ̸= j, and then update the centers.

5. Calculate Tm =
∏K

i=1, j=i+1 di,j, where di,j is the distance between center i and
center j.

6. Repeat the steps above M times and select the K centers that give us maximum
Tm.

7. Update the centers of the selected K centers until no longer change.

rithm, but it yields a high impact on the EE, and it is negligible if we compare it

with the complexity of the power allocation problem. It is important to note that

the proposed clustering algorithm requires the location of all users to be known. The

users’ locations depend on the channel knowledge at APs. Once the APs acquire the

users’ channels, the distances between users can be inferred using the equation of the

channel model (1.1) [47]. Then, classical positioning and tracking can be used to de-

termine the users’ locations [98]. As a result, the users’ locations would be known at

AP side, where the clustering method can be implemented.

AP Association

It is plausible that increasing the number of APs in a cluster improves the EE of

that cluster, but on the other hand, it increases the inter-cell interference in the other
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clusters. This inspires us to propose a new cell formation technique that first involves

all the APs in the network, then switches off the ones that are harmful (in terms of

increasing the inter-cell interference) more than helpful (in terms of enhancing the EE

inside the cell). Here, we distribute the APs to the clustered users, and in Section 3.5.3,

we optimize the APs selection based on a given power allocation scenario. Our goal

here is that for each AP, we select the best cluster that might serve the associated

users or enhance the EE as possible as it can. Therefore, we propose two steps to

associate the APs to the formed cells:

1. We assign for each user its closest AP by using the following steps: 1) In the

channel matrix, find the maximum channel value, assign the corresponding AP

to the corresponding user, then make the row and the column of the correspond-

ing pair equal to zero, 2) Repeat Step (1) until the channel matrix equals the

zero matrix.

2. For the remaining APs, for each cluster c, we first find the average channel of

each AP to all users in the cluster c as follows

ĝi,c =
∑
j∈c

h2j,i. c = 1, . . . , K, i = 1, . . . , NA. (3.6)

Then, we associate the AP i to the cluster that satisfies the following relation

Ii = max
c

(ĝi,c), c = 1, . . . , K.

The target of the second step is to associate the AP to the cluster that would maximize
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(a) User clustering. (b) Associating APs.

Figure 3.3: An example of cell formation a) User clustering using Algorithm 3, b)
Associating APs using the proposed steps, when K = 3 and H-FoV=60o.

the cell capacity and minimize the inter-cell interference in the other cells.

In Fig. 3.3, we illustrate the cell formation by showing an example of clustering

a given distributed users to a three clusters using our proposed Algorithm 3 in Fig.

3.3a. In addition, we show how the proposed steps in the APs association associate

the APs to the clustered users in Fig. 3.3b. Fig. 3.3b shows that the number of APs

associated to cluster c is directly proportional to the the number of the users in that

cluster.

3.5.2 Power Allocation Scheme

Our goal in this section is how to allocate the power efficiently for the Nu users to max-

imize the EE. Specifically, the objective function is to maximize the EE of the whole

network under certain QoS constraints and maximum available power constraints.

These constraints are introduced to guarantee some fairness among users per cell and

to achieve the required illumination, respectively. The EE function is defined as the
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ratio of benifit provided by the system over the total consumed power [43]. In other

words, if the system benefit is the sum rate, hence the energy efficiency is given by:

FEE =
RT

PT
, (3.7)

where RT is the sum rate, PT is the total consumed power at the transmitters. In this

chapter, we consider only the consumed power for communication in the formulated

EE function. In the literature, two types of EE function have been introduced, which

are the average per-cell EE and the global EE (GEE). For the average per-cell EE,

let us define ηc as the EE at the cell c, hence, using Equations (3.2) and (3.3), the

average per cell EE of the whole network is defined as

EE =
1

K

K∑
c=1

ηc, (3.8)

where

ηc =
β
∑Nu,c

j=1 log
(
1 +

(ρ2/2)Pj,c

BN0+Xc,j

)
∑NA,c

i=1

∑Nu,c

j=1 g
2
i,jPj,c

. (3.9)

The GEE is the summation of data rates of users in all clusters over the total power

consumed at all APs, which can be expressed as

GEE =
β
∑K

c=1

∑Nu,c

j=1 log
(
1 +

(ρ2/2)Pj,c

BN0+Xc,j

)
∑K

c=1

∑NA,c

i=1

∑Nu,c

j=1 g
2
i,jPj,c

. (3.10)

Function (3.10) is usually optimized when the centralized approach is employed,

while Function (3.8) supports an efficient distributed approach. We select to optimize
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the average per-cell EE for its simplicity and for the reason that it can be implemented

in each cell independently. The optimization problem can be formulated as follows:

max
Pj,c,∀j,c

EE, (3.11a)

s.t. Rj,c ≥ γ, ∀j, c, (3.11b)
Nu,c∑
j=1

g2i,jPj,c ≤ pmax, ∀j, c, (3.11c)

Pj,c ≥ 0, ∀j, c, (3.11d)

where γ is the minimum required data rate, and pmax is the maximum electronic

transmit power available at the APs. It is important to note that the pmax must be

selected to satisfy the illumination requirements and must be within the operational

dynamic range of the LEDs. A detailed discussion about optimizing the value of pmax

is provided in [47]. Problem (3.11) can be separated equivalently to K subproblems,

where the optimization problem in cluster c can be expressed as follows:

max
Pj,c,j=1,...,Nu,c

ηc, (3.12a)

s.t. Rj,c ≥ γ, j = 1, . . . , Nu,c, (3.12b)
Nu,c∑
j=1

g2i,jPj,c ≤ pmax,

i = 1, . . . , NA,c, (3.12c)

Pj ≥ 0, j = 1, . . . , Nu,c. (3.12d)

Problem (3.12) must be implemented in each cell independently aiming to max-

imize the summation of the cells’ EE in the whole network. Problem (3.12) is not
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easy to be solved because the inter-cell interference terms depend on the allocated

powers and the power allocation problem depends on the interference terms. In order

to simplify this problem, we first solve it under the worst case where the interference

is considered to be at its highest value, which happens when all the APs are assumed

to transmit at their maximum power. Then in Section 3.5.2, we provide an algorithm

that solves the power allocation problem based on the exact or the approximate in-

terference information. Even if we assume the interference information is available,

Problem (3.12) is still not easy to solve since the objective function in (3.12) is a ratio

of two functions (concave in the numerator and a linear function in the denominator),

which is generally considered as a non-convex function. It is noted that there is no

standard approach for solving non-convex optimization problems. However, this class

of optimization problems, can be solved using fractional programming tools [99], [100]

such as the Dinkelbach method [101] that transforms this problem into a successive

concave functions. In the following, we decompose the solution of (3.12) into two

loops:

Main Loop: Using Dinkelbach method, we can transform the objective function in

(3.12) to be as

max
Pj,c, j = 1, . . . , Nu,c

β

Nu,c∑
j=1

log
(
1 +

(ρ2/2)Pj,c
BN0 +Xc,j

)
− qc

NA,c∑
i=1

Nu,c∑
j=1

g2i,jPj,c, (3.13a)

s.t. (3.12a), (3.12b), (3.12c), (3.13b)

where qc is a positive variable introduced to be optimized or selected to have the

objective function in (3.13) equal to zero at optimality. If qc is given, Problem (3.13) is
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concave and can be solved using the classic dual-decomposition method, since Slaters’

conditions are satisfied [56], which means that the duality gap is zero. In order to find

the optimal qc, the Dinkelbach algorithm is used to find the optimal value of qc by the

following steps: Step 1) Put qc = 0 as an initial value, Step 2) Solve Problem (3.13)

using the approach provided in the inner loop, and let P ∗
j,c as the optimal solution,

Step 3) update qc by

qc =
β
∑Nu,c

j=1 log
(
1 +

(ρ2/2)P ∗
j,c

BN0+Xc,j

)
∑NA,c

i=1

∑Nu,c

j=1 g
2
i,jP

∗
j,c

.

Step 4) Repeat Step 2 and Step 3 until the objective function of Problem (3.13) is less

than ϵ, where ϵ is a small value close to zero.

Inner Loop: Here, we solve the optimization problem under the assumption that

the value of qc is given. Therefore, the optimization problem in (3.13) is a concave

problem with one global optimal solution. Hence, we can use the dual problem to

achieve the optimal solution, where the strong duality holds in the concave problems.

Therefore, using the Lagrangian duality, the dual optimization problem of the problem

in (3.12) can be expressed as follows:

ζ = k

Nu,c∑
j=1

log
(
1 +

(ρ2/2)Pj,c
BN0 +Xc,j

)
− q∗c

NA,c∑
i=1

Nu,c∑
j=1

g2i,jPj,c

+

NA,c∑
j=1

µj,c(Rj,c − γ)−
NA,c∑
i=1

vi,c

(
Nu,c∑
j=1

g2i,jPj,c − Pmax

)
,

(3.14)

where µj,c ≥ 0, j = 1, . . . , Nu and vi,c ≥ 0, i = 1, . . . , NA,c are the Lagrangian dual
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variables. From the KKT conditions [56], we have

∂ζ

∂Pj
= 0. (3.15)

Solving (3.15), we obtain

Pj,c =
(1 + µj,c)k

ln(2)
(∑NA,c

i=1 (vi,c + q)g2i,j

) − 2(N0B +Xj,c)

ρ2
, (3.16)

where the variable µj,c must be selected to guarantee that the Constraints in (3.11b)

are feasible and vi,c must guarantee that the Constraints in (3.11c) are feasible too.

Now, these dual variables must be found to obtain Pj,i ∀ j. In [82], [84], [102], the

authors used the subgradient method in similar problems to find the optimal dual

variable. In brief, the subgradient method gives the dual variable initial values then

finds Pj,c using Equation (3.16). Then, the dual variables in each iteration can be

updated as follows

vi,c(n+ 1) = vi,c(n) + δv(

Nu,c∑
j=1

g2i,jPj,c − Pmax), i = 1, . . . , NA,c, (3.17)

µj,c(n+ 1) = µj,c(n) + δµ(γ −Rj,c), j = 1, . . . , Nu,c, (3.18)

where δµ and δv are steps size that should be sufficiently small to guarantee approach-

ing the optimal solution at the steady state. The subgradient is an iterative algorithm

that needs a large number of iterations to converge, a very careful selection of the step

size, and a very careful selection of the initial values of the dual variables. Therefore,
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in the following, we find a closed-form expressions for the µ′s dual variables in terms

of the v′s dual variables. By substituting (3.16) in Constraint (3.11b), µj,c must be

µj,c ≥
ln(2)
k

(
Pjminρ

2 + 2(N0B + Ij,c)

ρ2

)
 ∑
i∈NA,c

(vi,c + q)g2
j,i

− 1.

(3.19)

Hence, instead of updating the µ′s dual variables using (5.34), we update them

using (3.19). We show in details in our previous work [80] that the above substitution

increases the rate of convergence significantly with less constraints violation compared

to the sub-gradient method.

Finding the exact inter-cell interference information

In the literature, the power allocation problem was solved under the assumption that

the inter-cell interference is in its maximum value [47], [1], [96]. The aim of this

assumption is to simplify the power allocation problem and to guarantee that the

required QoS of the users is achieved. However, this assumption yields a significant

degradation in the objective function (EE), since the power is allocated based on

inaccurate interference information. Therefore, we provide iterative steps that lead

to find the actual interference information and enhance the EE as we increase the

number of iterations. If the complexity is not an issue, we can increase the number

of iterations to have a better EE. If not, we should decrease the number of iterations

to avoid implementing the power allocation problem several times. The main idea is

to implement the power allocation in the different clusters in a successive way and
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update the inter-cell interference in each step. Thus, the steps are:

1. Implement the power allocation in Cell 1 under the assumption that the inter-

ference at the users in that cell is in its maximum value, and then broadcast the

allocated transmit powers to all clusters to update their inter-cell interference.

2. Implement Step 1 for Cells 2, 3, . . . , K in a consecutive way with updating the

interference information in each cell.

3. Repeat Step 2 for all cells (including Cell 1) until no improvement is achieved

in the EE, or the number of iterations reaches its limit.

The above steps guarantee improving the EE and achieving the QoS constraints. This

is because as we increase the number of iterations, each cell approaches to gather the

exact interference information.

3.5.3 Joint Power Allocation and APs Selection

In the previous section, we provide a solution for allocating the power under a given

participating APs. In this section, we first show how the power allocation and APs

selection problems are interlinked, then we propose an iterative algorithm to solve

both problems jointly. This iterative algorithm can be implemented after clustering

the users and associating APs. To prove that the power allocation and the APs

selection problems are interlinked, we should show that the allocated powers for the

users’ messages depend linearly on the transmit power at the APs. From (3.1), the

relation between the transmit powers and the power assigned to the the users’ messages

in cluster c is given by pc = Gc
2Pc, where pc is the vector power at the APs, and
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the square at G2
c is the square of the elements in Gc. Hence, we can find the powers

assigned for the transmitted signals by

Pc = Fcpc, (3.20)

where Fc = (Gc
2HGc

2)−1Gc
2H . Equation (3.20) means that switching off any AP

(equating its transmit power by zero), affects the allocated power for users directly.

Also, adding or inactivating an AP to cluster c affects the SNR of the users, belonging

to the other cells, by changing the received interference. Therefore, selecting the

participating APs in cell c affects the allocated power in that cell and in the other

cells. This motivated us to deal with the power allocation and AP selection problems

jointly.

The goal of optimizing the participating APs in communication is to minimize the

inter-cell interference. It is clear that, under an optimal power allocation strategy,

as we increase the participating APs in the cell c, the EE in that cell is improved.

On the other hand, these added APs degrade the EE in the other cells by emitting

interference. Therefore, first, we classify the APs into three categories: 1) the APs

that have zero channels to all users, which must be switched off, 2) the APs that

have channels to the associated users but zero channels to the users belonging to

other cells (i.e. non-interfering APs), 3) the interfering APs that have LoS to their

associated users and also have LoS to the users in the other clusters (i.e. interfering

APs). The second category of the APs must be switched on because their participation

in the communication improves the EE as long as the power allocation optimization
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problem is applied. Our interest is in the third category, where each one of the APs

has to be selected carefully to be switched on or switched off. Participating these

APs definitely improves the EE in their own cells, but on the other hand, reduces

the EE of the other cells by causing inter-cell interference. Thus, we first establish

a metric that approximately measures the eligibility of each AP to participate in the

communication (in case it causes non-zero inter-cell interference). This metric of the

AP i in the cluster c can be given by

Υi,c =

∑
j∈c h

2
j,i∑

j /∈c h
2
j,i

. ∀i ∀c (3.21)

High value of Υi,c means that the quality of the information signal coming from the

AP i to the intended users is much greater than the emitted interference from that AP

and vice versa. The following algorithm solves the power allocation and APs selection

alternatively until they converge.

The benefit behind sorting the APs ascendingly based on their Υi,c values is that

we guarantee satisfying the condition that the number of active APs is greater than

the number of users in each cluster with the APs that have highest Υi,c. In addition,

sorting the APs ascendingly increases the rate of convergence significantly. Condition

in Step 4 in Algorithm 4 is needed to guarantee that the intra-cell interference is

totally eliminated, since this cannot be guaranteed if the number of APs is less than

the number of users. In addition, because of the assumption that the number of users

in the system is much less than the number of APs, it is not wise to have some cells

crowded with many users (number of users is greater than number of APs in the cell)
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Algorithm 4 Joint APs selection and power allocation for EE maximization.

1. Specify all interfering APs and sort them ascendingly based on their Υi,c value.
Let R be the number of interfering APs.

2. For q = 1 : L

3. For i = 1 : R

4. Change the AP i status (if it is on, switch it off and if it is off, switch it on)
with keeping the condition that the number of the active APs is greater than
the number of users in each cluster is satisfied.

5. Implement the power allocation problem and check if the EE is improved. If
not, return the AP to its previous status.

6. End for

7. If (EE(q − 1)− EE(q) < ϵ), break.

8. End for.

and some cells have only a few number of users. Therefore, we establish this condition

to avoid or alleviate the effect of having unbalanced VLC systems and guarantee zero

intra-cell interference.

Algorithm 4 is guaranteed to converge because with each change in the AP status in

Step 3, the EE either improves or stays fixed. In addition, it is guaranteed to approach

to the optimal solution as we increase the number of iterations. To show that, in each

iteration, the proposed algorithm tests all the interfering APs by implementing the

power allocation problem with each AP, which means that Algorithm 4 tries all the

possible solution to have the best one. The reason to repeat testing the interfering

APs is that the optimal state of AP i (on or off) depends on the given states of all

other interfering APs, especially the ones that are close to the AP i.
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Suboptimal Approach

Although Algorithm 4 approaches to the optimal joint power allocation and APs

selection as we increase the number of iterations, it suffers from high computational

complexity. In Algorithm 4, in each AP status change, we need to implement the power

allocation problem. In other words, if we have L interfering APs, we need to implement

the power allocation problem L times in each iteration. Therefore, in this section,

we propose a suboptimal solution for the joint power allocation and APs selection

optimization problem that is aimed at decreasing the complexity, by decreasing the

number of times of implementing the power allocation problem, and minimizing the

degradation in the EE as much as possible. This algorithm is based on estimating the

APs that should be switched off. The main idea of this algorithm is first to implement

the power allocation problem when all the APs are participating in communications,

then we list all the interfering APs with sorting them ascendingly based on their

eligibility factor. After that, we switch off all the APs that are contributing in the

EE degradation without implementing the power allocation problem with each AP

state change. Then, we can re-implement the power allocation problem after we finish

switching off all the harmful APs. It is important to say that when we switch off

the AP i in the cell c, we need to re-calculate the assigned power for the users in

the cluster c using the relation Pc = Fcpc, where the ith term in pc equal to zero.

Algorithm 5 illustrates the steps to clearly provide a suboptimal solution for the joint

power allocation and APs selection optimization problem. In Fig. 3.4, we show the

difference between Algorithms 4 and 5 by applying them in the above example in Fig.
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Algorithm 5 Joint APs selection and power allocation for EE maximization (subop-
timal solution).

1. Find all interfering APs and sort them ascendingly based on their Υi,c value.
Let R be the number of interfering APs.

2. Implement the power allocation problem when all APs are on.

3. For q = 1 : L

4. For i = 1 : R
Check if switching off the AP i would increase the EE. If so, switch the AP i
off; otherwise switch it on.

5. End for.

6. Implement the power allocation problem and check if the EE is improved.

7. If (EE(q − 1)− EE(q) < ϵ), break.

8. End for.

3.3, and see what are the APs that should be switched off from both algorithms. It

seems that both algorithms result in switching off the same APs with two added in

Algorithm 5. This is because in Algorithm 5, once it switches off an AP, it does not

return to test it again even if switching that AP on would be helpful in increasing the

EE.

In the following we show the relationship of the proposed algorithms and steps by

presenting a flowchart. Fig. 3.5 shows the whole proposed process for maximizing the

EE based on the UC design. At Step 3 in Fig. 3.5, we can either use Algorithm 4

or 5, where the difference between them is that in Algorithm 4 the power allocation

optimization problem is implemented with each AP status change, while in Algorithm

5 the power allocation is implemented after testing all the interfering APs.

83



(a) Algorithm 4. (b) Algorithm 5.

Figure 3.4: An example of switching off APs using a) Algorithm 4, b) Algorithm 5,
when K = 3 and H-FoV = 60o.

Figure 3.5: Flowchart showing how the proposed algorithms and steps would be ar-
ranged and implemented to maximize EE.
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Table 3.1: Simulation Parameters

Name of the Parameter Value of the Parameter
Maximum bandwidth of VLC AP, B 20 MHz
The physical area of a PD, Ap 0.1 cm2

Half-intensity radiation angle, θ1/2 60o

H-FoV, semi-angle of PD,Θ 45o − 65o

Gain of optical filter, gof 1
Refractive index, n 1.5
Efficiency of converting optical to electric, ρ 0.53 [A/W]
Maximum transmit power [1], pmax 0.386 Watt
Noise power spectral density of LiFi, N0 10−22 A2/Hz
Room size 16× 16 m2

Room height 3 m
User height 0.85 m
Number of APs 8× 8
Number of users 20
Monte Carlo 150 iterations
M in the proposed clustering algorithm 5
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Figure 3.6: Energy efficiency versus number of iterations of updating the interference
when all the APs are participating, H-FoV = 55o.

3.6 Simulation Results

In the following, we verify the capability of the proposed algorithms for enhancing the

performance of the VLC network. The values of all used parameters in the consid-
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Figure 3.7: Energy efficiency versus number of iterations in Algorithm 4 with different
number of clusters and different users clustering, H-FoV= 55o.
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Figure 3.8: Comparison between applying Algorithm 4 for AP selection and partici-
pating all APs by plotting EE versus number of clusters with different H-FoV.

ered VLC system are given in Table I. Monte-Carlo simulation is used to assess the

performance of the proposed algorithms where in each simulation iteration, a uniform

random user distribution is generated. We show the convergence of the proposed al-

gorithms and how they improve the system’s EE. We compare our work with those in
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Figure 3.9: Comparison between applying Algorithm 4 for AP selection and partici-
pating all APs by plotting GEE versus number of clusters with different H-FoV.

the literature in general such as: 1) in Figures 6 and 10, we compare the approach of

allocating the power based on the worst case interference, which is proposed in [47],

[1], and [96], and our iterative algorithm that updates the interference information

with each iteration, 2) in Figures 8-12, we consider the approach proposed in [47] of

participating all APs (that have LoS to any user) in communication as a baseline and

compare it with the proposed algorithm for the APs selection, where the approach in

[47] is indicated by ”without APs selection” in the figures, 3) in Fig. 14, we compare

the proposed algorithm for APs selection and association with the one proposed in [1],

4) we also compare the proposed clustering method versus the Kmeans++ clustering

method presented in [97].

In Fig. 3.6, we plot the EE versus the number of iterations of updating the inter-

ference when all the APs are involved in communications. As can be shown, as the

number of iterations increases, the EE increases, and the rate of increasing gets smaller
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with higher number of iterations. In each iteration, we need to implement the power

allocation problem in each cluster which means that increasing the number of itera-

tions would significantly increase the complexity but with a significant enhancement

in the performance. Hence, the proposed algorithm for interference updating provides

us with an optional decision whether to enhance the performance at the expense of

the complexity or vice versa.
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Figure 3.10: Comparison between the K-means++ and the proposed clustering meth-
ods with and without AP selection by plotting the EE versus number of cells when
H-FoV = 45o.

Fig. 3.7 shows the convergence of Algorithm 4. It is clear that Algorithms 2 needs

at most three iterations to converge. Furthermore, the number of iterations needed for

convergence does not depend on the number of clusters in the system. In addition, it

can be seen that only the first iteration yields a significant improvement in the EE of

the system, especially when the number of clusters is large. Furthermore, this figure

beside Fig. 3.6 fairly compare between the user clustering using the K-means++ and

the proposed Algorithm 3. Both show the superiority of our proposed users’ clustering
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algorithm over the K-means++ algorithm with different number of clusters whether

we implement one iteration or multiple iterations.

Fig. 3.8 illustrates how the EE behaves as we increase the number of cells. Besides,

it shows the significant improvement in the EE when we apply Algorithm 4 compared

to participating all the APs in the transmission. This figure shows unexpected results

since as we know, as the number of cells increases, the inter-cell interference increases

which degrades the EE. But, this figure shows that the average per-cell EE increases

and then decreases with the number of cells, which means that there is another factor

that helps in enhancing the average per-cell EE as the number of cells increases. This

factor is the number of users per cell since as the number of clusters increases the

average number of users per cell decreases. This means that the required transmit

power per cell decreases as the number of clusters increases, which results in enhancing

the average per-cell EE. Apparently, this factor has a great impact when the inter-cell

interference is small which occurs when the number of clusters is small or when the

H-FoV is small.

On the other hand, the GEE is decreasing with increasing the number of cells as

shown in Fig. 3.9, because the GEE depends on the number of users in the whole sys-

tem. It is important to note that in Fig. 3.9, we implement the proposed algorithms

that are established to maximize the average per-cell EE and based on the output

allocated power, we measure the GEE by calculating Equation (3.10). Fig. 3.9 also

shows that the proposed user clustering algorithm outperforms the K-means++ algo-

rithm in terms of GEE. Besides, Algorithm 4 provides a significant improvement in

GEE as shown in Fig. 3.9.
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Figure 3.11: Comparison between the Algorithm 4 and Algorithm 5 with and without
AP selection by plotting the average per cell EE versus number of cells with different
H-FoV.
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Figure 3.12: Comparison between Algorithm 4 and Algorithm 5 with and without AP
selection by plotting the GEE versus number of cells with different FoV.

Fig. 3.10, shows the effectiveness of the proposed algorithms in improving the

EE of the considered network. The best performance occurs when we apply the AP

selection along with the proposed user clustering algorithm with updating the inter-
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Figure 3.13: Comparison between complexity of Algorithms 4 and 5 by plotting the
execution time versus number of cells when with different H-FoV.

ference, while the worst performance happens when the K-maens++ user clustering

algorithm, all the APs participate in communication, and the powers are allocated

based on the worst case interference. This figure shows that efficient user clustering

methods leads to a significant improvement on the system’s EE.

In Figs. 3.11 and 3.12, we conduct a fair comparison between Algorithm 4 and

Algorithm 5 by plotting the average per cell EE and the GEE, respectively, versus

number of cells. It can be shown that with different number of clusters and different

H-FoV, Algorithm 4 is more energy-efficient than Algorithm 5. This is because in

Algorithm 4, with each AP status change, we test the average per cell EE by re-

implementing the power allocation problem, while in Algorithm 5, we implement the

power allocation after we test all the interfering APs. In other words, if the number

of interfering APs is L, in each iteration, we implement the power allocation problem

in Algorithm 4 L times, while we implement the power allocation problem only once
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in Algorithm 5 with each iteration.

On the other hand, in Fig. 3.13, we compare both Algorithms 4 and 5 in terms

of complexity by plotting the execution time spent by both algorithms. Fig. 3.13

shows that Algorithm 5 needs much less time than Algorithm 4 to implement the

joint power allocation and AP selection. This is because of the reason stated before

that in Algorithm 4, with each AP status change, we test the average per cell EE by

re-implementing the power allocation problem, while in Algorithm 5, we implement

the power allocation after we test all the interfering APs. Because the number of

interfering APs is increased as we increase H-FoV or the number of clusters, Fig. 3.13

shows that we need much time to test all the interfering APs and select the APs that

must participate in communication.

In Fig. 3.14, we compare our algorithms for APs association with the algorithm

that was proposed in [1]. The comparison is conducted under the same user clustering

algorithm, the same power allocation algorithm, and with 200 Monte-Carlo simula-

tions. The difference between them is that we deal with the power allocation problem

and AP association jointly, while they solved both problems separately. In addition,

we establish a metric for each AP based on its average channels to the clustered users

aiming to select the best cell to serve and to mitigate the inter-cell interference. The

algorithm proposed in [1] can be briefly explained by that, after selecting the anchor

AP for each user, the rest of the APs are associated to the clusters within a certain

range dα. In other words, the AP i is assigned to the cluster c if the distance between

that AP and the center of that cluster is less than or equal to dα. If more than one

cluster satisfy this condition for AP i, this AP must be switched off to mitigate the
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interference. The disadvantages of this approach are: increasing or decreasing dα may

switch on the harmful APs and switch off the helpful ones because it depends only

on the distance and not on the channel that is affected by different factors such as

the receiver FoV, the transmitter coverage and so on; switching the APs off or on is

not related to the transmit power at these APs, which is a crucial factor to consider.

Therefore, as shown in Fig. 3.14, our proposed algorithms (Algorithms 4 and 5) sig-

nificantly outperform the proposed algorithm in [1] for AP association in terms of the

average per cell EE.

1 2 3 4 5 6 7 8 9 10

Number of Clusters

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v
e
ra

g
e
 p

e
r 

C
e
ll 

E
E

 (
b
it
s
/J

)

×1010

Algor. 2

Algor. 3

Ref. [21], d
α

 = 3

Ref. [21], d
α

 = 5

Ref. [21], d
α

 = 8

Ref. [21], d
α

 = 15

Figure 3.14: Comparison of our proposed algorithms (Algorithms 4 and 5) to the
Algorithm proposed in [1] in terms of APs association to the clustered users, H-FoV
= 55o.

In Fig. 3.15, we show how the average per cell EE behaves when we change the

number of users in the system with different H-FoV. As shown in this figure, the EE is

degraded as we increase the number of users. This is because the amount of required

power needed by users to achieve the required QoS increases as we increase the number

of users. It is also shown that the amount of improvement in the EE caused by APs
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selection increases as we increase the number of users. This is because the number

of interfering APs increases with higher number of users, which means that the AP

selection is highly demanded when we have a high number of interfering APs. In other

words, the AP selection algorithms have a slight impact on the EE if we have 10 users

(small number of interfering APs), while the impact on the EE would be significant

when we have 30 users (large number of interfering APs).
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Figure 3.15: Energy efficiency versus the number of users in the system with different
H-FoV when we have 5 clusters, Algorithm 5 is used for AP selection.

3.7 Conclusion

In this chapter, an energy-efficient VLC network was designed based on amorphous

cell formation with jointly allocating the power and associating the APs. A new user

clustering algorithm was proposed based on distances between users and separating

the clusters as much as possible to mitigate the inter-cell interference. Also, two other

algorithms were proposed to jointly allocate the power and select the APs in order to
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maximize the EE. The aim of the first algorithm is to seek for the optimality of the

EE maximization problem, while the aim of the second algorithm was to decrease the

complexity of the first one with an acceptable degradation in the EE. We also proposed

an iterative algorithm to find the optimal power allocation based on exact interference

information, which significantly improved the EE. The results showed that designing

an appropriate user clustering algorithm with considering the inter-cell interference,

selecting the active APs based on the allocated power, and allocating the power based

on the exact inter-cell interference information results a significant improvement in

EE maximization problem.
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CHAPTER 4

OPTIMIZING HYBRID VLC/RF

COOPERATIVE NOMA FOR

SUM-RATE AND FAIRNESS

MAXIMIZATION

4.1 Introduction

It has been proved that VLC networks can provide data rates with several Giga-bits

per second [103], [8] which makes them a powerful alternative or complementary to

the existing RF networks. However, as discussed in the previous chapters, the main

disadvantages of multi-user VLC networks is the limited coverage, fairness among

users, and the blockages effect on the VLC link, resulting in unbalanced system con-

taining high-serviced (strong) and poor-serviced (weak) users. The communication in
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VLC networks mainly depends on line-of-sight (LoS) VLC links that can be blocked

entirely by any opaque objects. In addition, the LoS link is significantly attenuated

with distance between the transmitter and the receiver and this limits the coverage

area, resulting a very small cells that are called attocells [104]. Furthermore, the

users’ field-of-view (FoV) has a great impact on the system coverage and on the chan-

nel quality which leads to unbalanced VLC systems [105]. This motivates us in this

chapter to propose and evaluate a new scheme based on hybrid VLC/RF cooperative

non-orthogonal multiple-access (Co-NOMA) to mitigate the aforementioned VLC dis-

advantages. This chapter addresses the problem of jointly allocating the power, pairing

the users, and selecting links for weak users to maximize the weighted sum rate of a

VLC system, consisting of one AP and multiple users.

NOMA scheme has been proposed for the future wireless networks which aims

at increasing the throughput, decreasing the latency, and improving the fairness.

The principle of NOMA is the use of a single resource component by multiple users,

whether this component is a sub-carrier, a time slot, or a spreading code. This can be

implemented by setting different power levels for different users. For instance, for two

users served by the same access point (AP), and using the same resource block, the

AP assigns a high power to the user with poor channel (weak user) and a low power

for the user with a stronger channel (strong user). Then the weak user decodes the

received signal and accepts the strong user’s signal as a noise, whereas the strong user

first decodes the signal of the weak user, and then removes it from the received signal,

after that it decodes its own signal. This scheme improves the system performance

in VLC networks but it cannot extend the system coverage or mitigate the blocking
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effect.

In RF networks, one step further to improve NOMA is to propose Co-NOMA that

can improve the fairness and strengthen the received SNR at the weak users [106] by

exploiting the redundant information in NOMA systems. This can be implemented

in RF networks, in which the strong user can also work as an energy harvesting relay

to help the weak user. The weak user can use the maximal ratio combining (MRC)

to combine the signal coming directly from the base station and the relayed signal

coming from the strong user. This technique (Co-NOMA) has not been applied in

VLC networks because it is not plausible to forward the light signal by the strong

user to the weak user using light channel. However, the received light signal can be

converted to RF signal and then forwarded to the weak user through a RF channel.

The received visible light at the strong user can be used to charge a power storage

and this can be used as a power source to forward the weak user’s signal. The energy

can be harvested in VLC networks using the received direct current (DC) without

affecting the power of the transmitted signal [24], [107]. This chapter evaluates the

benefits of implementing the hybrid VLC/RF Co-NOMA scheme and allocates the

messages’ power, selects the links, and pairs the users to improve the sum-rate and

fairness in VLC systems.

4.2 Literature Review

Several techniques have been proposed in the literature and in this thesis to mitigate

the SNR fluctuations, increase the system coverage probability, and improve the sys-
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tem performance in terms of the total achievable data rates and the system fairness.

The most common solutions are the Hybrid VLC/RF networks, coordinated trans-

missions, and the relay-assisted VLC transmission. The main idea in hybrid VLC/RF

systems is to assign the users who suffer from interference, handover overhead, block-

ages, or uncovered to be served by RF AP(s) and maintain the rest users assigned

to the VLC networks [105]. Authors in [69] formulated an optimization problem to

jointly allocate the time slots and distributed the users among VLC APs and RF AP.

Supplement VLC by RF AP(s) was shown to support mobility and decrease the han-

dover overhead[61], [70]. Authors in [72] showed that the users that suffer from high

rate of blockages should be served by the RF network.

APs cooperation was also proposed to alleviate the VLC limitations by merging the

cells and providing more than one AP to serve a user [69], [47], [108]. The cooperating

APs can coordinate their transmissions to cancel the interference [92], [47], [108],

increase the cell size [69], and mitigate the blockages effect [94]. Relaying was also

investigated in VLC networks to extend the VLC coverage [109], [110], [111]. In [109]

and [110], a dual-hop hybrid VLC/RF links were proposed to serve an uncovered

user. The authors showed that visible light was used in the first hop to transmit data

and transfer the energy to the relay. The relay, could then forward the data to the

destination, using the harvested energy.

From NOMA perspective, NOMA has been extensively investigated in RF net-

works to improve the spectral efficiency and enhance the system fairness[58], [59]. In

VLC networks, authors of [112] showed the superiority of NOMA over OFDMA in

terms of sum-rate. Authors of [113] evaluated the NOMA-VLC system and compare
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it to orthogonal multiple-access (OMA)-VLC scheme in two cases: 1) when each user

has a minimum required data rate, and 2) when the data rates of all users were as-

signed opportunistically according to their channels. Authors of [114] evaluated and

compared the NOMA and OMA schemes, when the users change their locations and

their vertical orientations. For multiple APs, the work in [115] proposed a gain ratio

power allocation (GRPA) method and compared it with the fixed power allocation

method, when the users’ movement model was following the random walk model. For

more than one cell in VLC networks, the users in [116] were classified based on the

received interference. A special resource blocks were assigned for the interfered users,

while NOMA was implemented for the remaining users.

Despite all the work conducted on NOMA-VLC networks, Co-NOMA, for our

best knowledge, has not been studied before in VLC networks. Hence, this chapter

introduces the concept of hybrid VLC/RF Co-NOMA as a new technique to mitigate

the VLC drawbacks.

4.3 Contribution

Different from the aforementioned studies, this chapter introduces a cooperation

among users in VLC networks based on hybrid VLC/RF Co-NOMA. In particular,

this chapter studies a system model, consisting of one VLC AP and multiple users

classified into two sets, strong and weak users. A transmission scheme based on hybrid

VLC/RF Co-NOMA scheme is proposed, where the strong users can receive their own

signals through the direct VLC link and then help the weak users by forwarding their
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signal through RF links. This transmission scheme provides two options for the weak

users, either to be served by the direct VLC link, or by the relayed hybrid VLC/RF

link that is provided by a strong user. This technique extends the VLC coverage

area and helps serving the blocked users, which leads to improving the fairness and

balancing the load in VLC systems. For such kind of the proposed system mode, the

chapter

• formulates an optimization problem that jointly pairs the users, selects the op-

timal link for each weak user, and allocates the messages’ power by maximizing

the weighted sum-rate of the system under maximum transmit power constraint.

• provides an efficient solution for the formulated mixed-integer non-convex op-

timization problem and compare the solutions to a proposed baseline simpler

approach and to the optimal NOMA scheme. In the proposed solution, we first

provide optimal closed-form solutions for the non-convex power allocation op-

timization problem, when the user pairing matrix and link selection vector are

given. Second, we provide an efficient solution for joint link selection, user pair-

ing, and power allocation. The solution also proposes that the weights can be

updated in an outer loop to achieve a proportional fairness of the system, where

in each iteration, the weight of each user is set to be inversely proportional to

the long-term achievable data rate of that user.

• shows that both the system fairness and the sum-rate can achieve their own

maximum values simultaneously if the weak users are served through the hybrid

VLC/RF link.
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• shows that the proposed formulation and solutions are also solving the problem

in NOMA scheme for weighted sum-rate maximization which has not been solved

before in VLC systems.

The rest of this chapter is organized as follows. System and channel models are pre-

sented and discussed in Section 4.4. Section 4.5 formulates the optimization problem

and presents the proposed algorithms. Simulation results are shown and discussed in

Section 4.6. Finally, the chapter is concluded in Section 4.7.

4.4 System and Channel Models

4.4.1 System Model

As shown in Fig. 5.1, the considered system model consists of a VLC AP and Nu = 2K

multiple users, where K is the number of pairs. The users are classified into two sets,

a set of K users Us, defined as strong users, which are the users with best VLC

channels, and a set of K weak users Uw, which are the users with the worst VLC

channels. We assume that the number of users are even to investigate the proposed

cooperation technique, however, if the number of users are odd, we can dedicate a

specific bandwidth for the remaining user and can be treated as an equivalent pair.

Hybrid NOMA is adopted, where the available bandwidth is divided fairly into K

blocks. Each spectrum block is shared by a pair (two users, one strong and one weak

user). The weak user in each pair can be served either directly by the VLC AP through

the VLC link, or by the dual-hop hybrid VLC/RF link through the paired strong user.
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Figure 4.1: System model.

In the case where the weak user is not well served by the VLC, the strong user would

act as an energy harvesting relay which harvests the energy from the VLC AP (using

the received visible light), and would then use it to forward the information to the

paired weak user using the RF link.

The channel between the transmitter LED and the jth user is denoted by hj

and is given by (1.1). We assume that when there is an opaque objects between the

transmitter and a receiver, the channel is zero, otherwise the channel is given by (1.1).

4.4.2 RF Channel Model

The RF channel gain in indoor environment can be identified by the path loss model

and the multipath propagation model. The path loss model depends on the distance

between the transmitter and the receiver whether it is less than a breakpoint or greater

than it. The path loss between the jth transmitter and the ith receiver is given by

[117]
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L(di,j) = Lfs(di,j) + a+Xσ, (4.1)

where Lfs(.) is the free space loss, Xσ is the shadow fading and it is a Gaussian

random variable with zero mean and variance σ2, di,j is the distance between the jth

transmitter and the ith receiver, and a is given by

a =


0, di,j ≤ dBP ;

35 log10(
di,j
dBP

), di,j > dBP ,

(4.2)

where dBP is the breakpoint distance. The free space loss Lfs(.) with central carrier

frequency fc is given by

Lfs(di,j) = 20 log10(di,j) + 20 log10(fc)− 147.5. (4.3)

According to [117], the RF multipath propagation channel is given by

H
(RF )
i,j =

√
I

I + 1
ejψ +

√
1

I + 1
hs, (4.4)

where I is the Ricean factor (I = 1 if di,j ≤ dBP and I = 0 if di,j > dBP ), ψ is the

angel of the departure/arrival of the LoS component, and hs is a complex Gaussian

variable with zero mean and variance one. The RF channel gain between the jth user

and the i user can be expressed by

GRF
i,j = |H(RF )

i,j |210−
L(di,j)

10 . (4.5)
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4.4.3 Transmission Scheme: Direct Links

Following the NOMA principle, suppose that the weak user i is paired with the strong

user j (in the rest of this chapter, we associate the subscript i with the weak users

and j with the strong users), the transmitted signal at the AP for i and j users is

given by

yi,j =

√
P

(s)
j sj +

√
P

(w)
i si + Poptb, (4.6)

where P (s)
j and P (w)

i are the powers of the strong and weak users assigned for sj and si

messages, respectively, b is the direct-current (DC) that must be added to guarantee

that the transmitted signal is non-negative, and Popt is the emitted optical power from

the VLC AP. The observation at the jth and ith users, respectively, are given by

yj = ρh
(s)
j (

√
P

(s)
j sj +

√
P

(w)
i si) + ρh

(s)
j Poptb+ nj, (4.7)

yi = ρh
(w)
i (

√
P

(s)
j sj +

√
P

(w)
i si) + ρh

(w)
i Poptb+ ni, (4.8)

where h(s)j and h
(w)
i are the channels of the jth strong users and the ith weak user,

respectively, ρ is the detector responsivity, and nj or ni are the noise, including both

the thermal noise and the shot noise at the user, which can be modeled as zero-mean

real-valued additive white Gaussian noise (AWGN) with variance σ2 = NvB, where

B is the modulation bandwidth, and N0 is the noise power spectral density. The

received DC part ρh(s)j Poptb, at the strong user, can be blocked by a capacitor and

forwarded to the energy harvesting circuit [24], while at the weak user, the DC part

ρh
(w)
i Poptb can be removed using a capacitor. The strong user first decodes the weak
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user’s signal si and removes or forwards it to the weak user, while the weak user

decodes his own signal si with accepting the strong user’s signal sj as interference.

Hence, the achievable data rate of the strong user signal can be approximated by [113]

R
(s)
j (P

(s)
j ) =

Bv

2K
log2

(
1 +

ρ2h
(s)2
j P

(s)
j

BvNv/K

)
, (4.9)

while the achievable data rate of the weak user at the strong user is given by

R
(w)
j→i(P

(w)
i , P

(s)
j ) =

Bv

2K
log2

(
1 +

ρ2h
(s)2
j P

(w)
i

BvNv/K + ρ2h
(s)2
j P

(s)
j

)
, (4.10)

and the achievable data rate received at the weak user from the direct VLC link is

given by

R
(w)
i,DL(P

(w)
i , P

(s)
j ) =

Bv

2K
log2

(
1 +

ρ2h
(w)2
i P

(w)
i

BvNv/K + ρ2h
(w)2
i P

(s)
j

)
, (4.11)

where Bv is the total modulation bandwidth at the VLC AP.

4.4.4 Transmission Scheme: Relayed Links

The chapter assumes that the strong user can work also as a relay that can harvest the

energy from the received light and use it to forward the decoded weak user’s signal. To

harvest the energy, the DC component of the received signal is blocked by a capacitor

and forwarded to the energy harvesting circuit [24], [107], [118]. The harvested energy

is given by [55]

E = fIDCVoc, (4.12)
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where f is the fill factor (typically around 0.75), and IDC is the received DC current

which is at the jth user IDC = ρPopthjb, and Voc = Vt ln(1 + IDC

I0
), where Vt is the

thermal voltage and I0 is the dark saturation current of the PD. Hence, the harvested

energy at user j is given by

Ej = fρPoptVthjb ln(1 + ρhjPoptb

I0
). (4.13)

Suppose that the amplitude of the transmitted signal is A, so the DC-bias and the

signal amplitude A + b must be within the maximum and minimum input currents

that guarantee that the optical output power is a linear function of the input current.

In other words, let IH and IL be the maximum and minimum limits of the input

currents for the LEDs that guarantee a linear output optical power, the constraint

A ≤ min(b − IL, IH − b) must be achieved. The total transmit power at the AP is

related to A and b by Pmax = P 2
opt(A − b)2. This means that the total transmitted

power Pmax at the AP is a decreasing function of the DC-bias b, which also means

that the harvested energy is also a decreasing function of Pmax. The DC-bias can be

optimized to balance between the received harvested energy and the transmit power,

but this is out of the scope of this chapter. Hence, we assume that the DC-bias at

the AP is fixed and is given by b = IH+IL
2

which maximizes the total transmit power

[107]. Therefore, the transmit power is given by

Pmax = P 2
opt(

IH − IL
2

)2. (4.14)

107



The strong user is assumed to be able to receive the light signal and transmit the

RF signal at the same time. However, the energy storage device cannot charge and

discharge at the same time (i.e. the receiver cannot harvest the energy and transmit

the data at the same time). Hence, suppose that T1 is used to charge the battery and

T2 is used to re-transmit data through the RF link. Therefore, the RF re-transmission

power is given by Pj,RF =
EjT1
T2

. Under the assumption that T1 = T2, the achievable

data rate of the weak user that can be offered by the strong user j through the RF

link is given by

RRF
i,j =

Bf,j

2
log
(
1 +

GRF
i,j Pj,RF

Bf,jNRF

)
, (4.15)

where Bf,j is the RF modulation bandwidth at the user j and NRF is the power

spectral density of the RF signal. In case the number of users 2K > 2, the RF

interference should be considered if there are more than one pair of users connected

through the RF link in the second hub. To avoid this interference, we assign orthogonal

RF bandwidth for each pair connected through the RF link equally. Suppose that the

number of weak users that are served through RF links is Nf and the total modulation

bandwidth available for RF transmission is Bf , the modulation bandwidth at user j

is Bf,j =
Bf

Nf
.

From (4.15) and (4.10), the achievable data rate at the weak user through the

hybrid relayed link can be expressed as

R
(w)
i,RL(P

(w)
i , P

(s)
j ) = min

(
RRF
i,j , R

(w)
j→i(P

(w)
i , P

(s)
j )
)
, (4.16)
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4.5 Problem Formulation and Solutions

To formulate and tackle the problem, we should answer the three interlinked questions:

1) how should the users be paired? 2) how should the weak user in each pair select the

link to maximize its own data rate? 3) and how should the total power at the AP be

allocated to all users?. These three question are interlinked, meaning that the answer

of each question depends on the answers of the others. For the proposed system model,

in this section, we formulate these questions as an optimization problem to find the

power allocation vector P, the pairing index matrix Z, and the link selection index

vector x to maximize the weighted sum of the achievable data rates of users.

Define the user pairing indication as zi,j matrix as

zi,j =


1, if user i and user j are multiplexed,

0, otherwise,

(4.17)

where Z = {zi,j}, i = 1, . . . , K, j = 1, . . . , K. Define the link selection indicator xi

vector as

xi =


1, if user i is served through the hybrid RF/VLC link,

0, if user i is served through the direct VLC link.

(4.18)

From (4.18), the number of weak users that are connected through RF link is given
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by Nf =
∑K

i=1 xi and (4.15) becomes a function of x that can be re-written as

RRF
i,j (x) =

Bf

2
∑K

xi
xi

log
(
1 +

GRF
i,j Pj,RF

BfNRF/
∑K

i xi

)
. (4.19)

The received achievable data rate at the ith weak user through the hybrid VLC/RF

link is given by

R
(w)
i,RL(P

(w)
i , P

(s)
j ,x) = min

(
RRF
i,j (x), R

(w)
j→i(P

(w)
i , P

(s)
j )
)
. (4.20)

The summation of the achievable data rate of the ith weak user and jth strong user

is given by

Ri,j(P
(w)
i , P

(s)
j , zi,j,x) = zi,jR

(s)
j (P

(s)
j ) + zi,j(1− xi)R

(w)
i,DL(P

(w)
i , P

(s)
j )

+ zi,jxiR
(w)
i,RL(P

(w)
i , P

(s)
j ,x), (4.21)

while the weighted sum-rate of all users in the system is given by

K∑
i=1

K∑
j=1

Ri,j(P
(w)
i , P

(s)
j , zi,j, xi, w

(w)
i , w

(s)
j ) =

K∑
i=1

K∑
j=1

w
(s)
j zi,jR

(s)
j (P

(s)
j ) + wizi,j(1− xi)R

(w)
i,DL(P

(w)
i , P

(s)
j )

+ w
(w)
i zi,jxi min

(
RRF
i,j (x), R

(w)
j→i(P

(w)
i , P

(s)
j )
)
, (4.22)

where the weights w(w)
i and w

(s)
j ∀ i, j are imposed to balance between the system

sum-rate and the system fairness. These weights can be already given based on the
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required application or can be updated in an outer loop to provide a proportional

fairness.

The optimization problem to maximize the weighted sum-rate is given as follows

max
P,z,x

K∑
i=1

K∑
j=1

Ri,j(P
(w)
i , P

(s)
j , zi,j, xi,j, w

(w)
i , w

(s)
j ) (4.23a)

s.t.
K∑
i=1

K∑
j=1

zi,j(P
(w)
i + P

(s)
j ) ≤ Pmax (4.23b)

K∑
j=1

zi,j = 1, ∀i, (4.23c)

K∑
i=1

zi,j = 1, ∀j, (4.23d)

zi,j ∈ {0, 1}, ∀i, j (4.23e)

xi ∈ {0, 1}, ∀i (4.23f)

0 ≤ P
(s)
j ≤ P

(w)
i ∀i, j. (4.23g)

Constraint (4.23b) is imposed for the maximum transmit power. Constraints (4.23c),

(4.23d), and (4.23e) guarantee that each strong user is paired only with one weak

user. Constraint (4.23f) imposes that the weak user either receives the information

from the direct VLC link or the relayed hybrid VLC/RF link.

The problem in (4.23) is a challenging mixed non-convex combinatorial optimiza-

tion problem. In addition, the actual weak user’s data rate from the relayed link

cannot be determined without previous knowledge of the link selection vector x which

makes the problem more difficult. Nevertheless, in the following, we develop two so-

lutions, one is optimal with high complexity and the other is a simpler suboptimal
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solution. The idea is that we first find optimal closed-form solutions for the power

allocation problem with assuming that the pairing matrix Z and the link selection

vector x are given. Then we provide optimal and suboptimal solutions for the joint

user pairing, link selection, and power allocation problems.

4.5.1 Power Allocation for the Weighted Sum Maximization

This section solves the optimization problem (4.23), when the Z matrix and x vector

are given. In particular, we find the optimal power allocation under the given pairing

and link selection. Under the given Z and x, the weighted sum maximization problem

can be formulated as follows

max
P

K∑
i=1

K∑
j=1

Ri,j(P
(w)
i , P

(s)
j , zi,j, xi,j, w

(w)
i , w

(s)
j ) (4.24a)

s.t.

K∑
i=1

K∑
j=1

zi,j(P
(w)
i + P

(s)
j ) ≤ Pmax (4.24b)

0 ≤ P
(w)
j ≤ P

(s)
i ∀i, j. (4.24c)

Clearly, problem (4.24) is nonconvex since the objective function is not concave.

However, in the following we provide closed-forms for the the optimal power allocation.

Define a variable qi,j as the power budget of a pair consisting of the ith weak user

and jth strong user and is given by qi,j = zi,j(P
(w)
i + P

(s)
j ). Then, we can divide the

problem (4.24) into K problems to find P
(w)
i and P

(s)
j ∀i, j and one main problem to

find the power budgets qi,j ∀i, j. Without loss of generality, suppose that the weak
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user i is paired with the strong user j (i.e., zi,j = 1). We have two cases:

Case 1: The users i and j are paired through the relayed hybrid VLC/RF link.

The problem in this case can be formulated as follows

max
P

(w)
i ,P

(s)
j

w
(s)
j R

(s)
j (P

(s)
j ) + w

(w)
i min(RRF

i,j (x), R
(w)
j→i(P

(w)
i , P

(s)
j )) (4.25a)

s.t. P
(w)
i + P

(s)
j = qi,j (4.25b)

0 ≤ P
(s)
j ≤ P

(w)
i . (4.25c)

Because of the min term in the objective function, the problem above must be

carefully treated. It can be seen that function RRF
i,j (x) is given and not a function

of the powers, which means it is fixed. In addition, by using constraint (4.25b) to

re-write R
(w)
j→i(P

(w)
i , P

(s)
j ) and R

(s)
j (P

(s)
j ) in terms of only P

(w)
i , we can show that

R
(w)
j→i(P

(w)
i ) is increasing function, while R

(s)
j (P

(w)
i ) is decreasing. By looking at

the objective function in (4.25), increasing R
(w)
j→i(P

(w)
i ) to be greater than RRF

i,j (x)

will decrease the objective function, because the min term will be fixed and the

R
(s)
j (P

(w)
i ) will decrease. This means that the resulted optimal function R

(w)
j→i(P

(w)
i )

must be less than or equal to RRF
i,j (x). To solve Problem (4.25), we first assume that

min(RRF
i,j (x), R

(w)
j→i(P

(w)
i , P

(s)
j )) = R

(w)
j→i(P

(w)
i , P

(s)
j )) and solves the problem. If the re-

sulted R
(w)
j→i(P

(w)
i , P

(s)
j ) ≤ RRF

i,j (x), the assumption is correct and the resulted powers

are the optimal solution. If not, (i.e. R(w)
j→i(P

(w)
i , P

(s)
j ) > RRF

i,j (x)) that means optimal

solution is the value of the power P (w)
i that achieves that R(w)

j→i(P
(w)
i , P

(s)
j ) = RRF

i,j (x)

and P
(s)
j = qi,j − P

(w)
i .

Proposition 4.1 Under the assumption that min(RRF
i,j (x), R

(w)
j→i(P

(w)
i , P

(s)
j )) =
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R
(w)
j→i(P

(w)
i , P

(s)
j )), the optimal solution to (4.25) is given by P

(s)
j =

−1+
√

1+qi,jΨ
(s)
j

Ψ
(s)
j

and P (w)
i = qi,j − P

(s)
j .

Proof. Define Ψ(s)
j =

ρ2h
(s)2
j

BvNv/K
and Ψ

(w)
i =

ρ2h
(w)2
i

BvNv/K
, the objective function in (4.25) can

be rewritten as Ri,j = w
(s)
j

Bv

2K
log2(1 + Ψ

(s)
j P

(s)
j ) + w

(w)
i

Bv

2K
log2(

Ψ
(s)
j qi,j+1

Ψ
(s)
j P

(s)
j +1

). By deriving

the function Ri,j, we obtain

dRi,j

dP
(s)
j

=
Ψ

(s)
j Bv(w

(s)
j − w

(w)
i )

2KP
(s)
j

. (4.26)

From (4.26), we can see that the objective function is an increasing function of P (s)
j

if w(s)
j > w

(w)
i , a decreasing function if w(s)

j < w
(w)
i , and constant if w(s)

j = w
(w)
i . This

means that the sum-rate function is a constant function of P (s)
j and modifying the

values of w(w)
i and w(s)

j just affects the weighted sum-rate but not the sum-rate itself.

Hence, the maximum fairness can be implemented without any degradation in the

sum-rate with setting w(w)
i = w

(s)
j , and finding P (s)

j , that results

Bv

2K
log2(1 + Ψ

(s)
j P

(s)
j ) =

Bv

2K
log2(

Ψ
(s)
j qi,j + 1

Ψ
(s)
j P

(s)
j + 1

). (4.27)

Solving (4.27), we obtain that P (s)
j = ηi,j,1, where ηi,j,1 is given by

ηi,j,1 =
−1 +

√
1 + qi,jΨ

(s)
j

Ψ
(s)
j

, (4.28)

and

P
(w)
i = qi,j − ηi,j,1. (4.29)
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Now, if (4.28) and (4.29) achieve that min(RRF
i,j (x), R

(w)
j→i(P

(w)
i , P

(s)
j )) =

R
(w)
j→i(P

(w)
i , P

(s)
j )), Proposition 4.1 provides the optimal solution for (4.25); otherwise,

the values of P (s)
j and P (w)

i must be modified to have R(w)
j→i(P

(w)
i , P

(s)
j ) = RRF

i,j (x), and

this can be achieved with P
(s)
j = ηi,j,2, where ηi,j,2 is given by

ηi,j,2 =
qi,jΨ

(s)
j + 1− A

AΨ
(s)
j

, (4.30)

where A = 2R
RF
i,j (x−Bv

2K
) and P (w)

i can be given by P (w)
i = qi,j − ηi,j,2. It is important to

note that the values of both w
(w)
i and w

(s)
j must be selected carefully because as we

will show later the budget qi,j is a function of both.

Case 2: The users i and j are paired and the user i is served through the direct

VLC link (i.e. xi = 0). The problem in this case can be formulated as follows:

max
P

(w)
i ,P

(s)
j

w
(s)
j R

(s)
j (P

(s)
j ) + w

(w)
i R

(w)
i,DL(P

(w)
i , P

(s)
j ) (4.31a)

s.t. P
(w)
i + P

(s)
j = qi,j (4.31b)

0 ≤ P
(s)
j ≤ P

(w)
i . (4.31c)

Because of the interference term in R(w)
i,DL(P

(w)
i , P

(s)
j ), the optimization problem (4.31)

is still nonconvex. However, the optimal solution can be obtained in a closed-form.

Authors of [119] tackled such kind of problems and showed that the optimal solution

is given by P (s)
j = Ωi,j, where Ωi,j is given by
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Ωi,j =
wiΨ

(w)
i − w

(s)
j Ψ

(s)
j

Ψ
(s)
j Ψi(w

(s)
j − w

(w)
i )

, (4.32)

under the conditions that w(w)
i /w

(s)
j < Ψ

(s)
j /Ψ

(w)
i and qi,j > 2Ωi,j.

Then, with the given closed-form solutions in (4.28), (4.30), and (4.32), we aim to

find the optimal power budget qi,j ∀i, j. Using the above closed-form solutions, the

problem can be formulated as

max
qi,j

K∑
i=1

K∑
j=1

xizi,j

(
w

(s)
j F

(s)
j (qi,j) + w

(w)
i F

(w)
i (qi,j)

)
+

K∑
i=1

K∑
j=1

(1− xi)zi,jw
(w)
i

Bv

2K
log2(1 + Ωi,jΨ

(s)
j )

+
K∑
i=1

K∑
j=1

(1− xi)zi,jw
(w)
i

Bv

2K
log2

(
qi,jΨ

(w)
i + 1

Ωi,jΨ
(w)
i + 1

)
(4.33a)

s.t.
K∑
i=1

K∑
j=1

qi,j = Pmax, (4.33b)

where there are two possible expressions for F (s)
j (qi,j) and F

(w)
i (qi,j) since they both

have to be either

F
(s)
j (qi,j) = R

(s)
j (ηi,j,1) =

Bv

2K
log2(

√
Ψ

(s)
j qi,j + 1) (4.34)

and

F
(w)
i (qi,j) = R

(w)
i,RL(ηi,j,1) =

Bv

2K
log2(

√
Ψ

(s)
j qi,j + 1) (4.35)
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or

F
(s)
j (qi,j) = R

(s)
j (ηi,j,2) =

Bv

2K
log2(

Ψ
(s)
j qi,j + 1

A
) (4.36)

and

F
(w)
i (qi,j) = R

(w)
i,RL(ηi,j,2) = RRF

i,j (x). (4.37)

We cannot now decide what is the exact expression for F (s)
j (qi,j) and F

(w)
i (qi,j) ∀i, j

because they depend on whether the optimal power allocation of the pair is given

by (4.28) or (4.30) and this cannot be determined because qi,j is unknown. However,

Proposition 4.2 finds a unique optimal closed-form solution for qi,j (if xi = 1), for both

possible expressions of F (s)
j (qi,j) and F

(w)
i (qi,j).

Proposition 4.2 The optimal solution to Problem (4.33) is given by

qi,j =
wBv

2Kλ
− 1

Ψ
(s)
j

, (4.38)

where w = w
(w)
i if xi = 0 and w = w

(s)
j if xi = 1.

Proof. It can be seen that the Hessian matrix of the objective function in (4.33)

is negative definite whether F (s)
j (qi,j) and F

(w)
i (qi,j) are given by (4.34) and (4.35),

respectively, or given by (4.36) and (4.37), respectively. In addition, the constraints

in (4.33) are linear, which means that the optimization problem (4.33) is convex. To

find an optimal closed-form solution for qi,j ∀i, j, we first find the Lagrangian dual
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function that can be written as

ζ = −
K∑
i=1

K∑
j=1

xizi,j

(
w

(s)
j F

(s)
j (qi,j) + w

(w)
i F

(w)
i (qi,j)

)
−

K∑
i=1

K∑
j=1

(1− xi)zi,jw
(w)
i

Bv

2K
log2(1 + Ωi,jΨ

(s)
j )

−
K∑
i=1

K∑
j=1

(1− xi)zi,jw
(w)
i

Bv

2K
log2

(
qi,jΨ

(w)
i + 1

Ωi,jΨ
(w)
i + 1

)
+

λ

(
K∑
i=1

K∑
j=1

qi,j − Pmax

)
, (4.39)

where λ is a dual variable. Based on the first-order KKT conditions [56], we have

∂ζ

∂qi,j
= 0, ∀i, j. (4.40)

We have three cases, if zi,j = 0 (i.e., users i and j are not paired), qi,j = 0 whether

xi = 1 or xi = 0. The second case if we have zi,j = 1 and xi = 1, we can reformulate

(5.31), equivalently as

∂

∂qi,j

[
−
(
w

(s)
j F

(s)
j (qi,j) + w

(w)
i F

(w)
i (qi,j)

)
+ λ(qi,j − Pmax)

]
= 0. (4.41)

If F (s)
j and F

(w)
i are given by (4.34) and (4.35), respectively, (4.41) can be given by

∂

∂qi,j

[
−2w

(w)
j

Bv

2K
log2(

√
Ψ

(s)
j qi,j + 1) + λ(qi,j − Pmax)

]
= 0, (4.42)

where w(w)
i = w

(s)
j because F (s)

j = F
(w)
i in this case. On the other hand, if F (s)

j and
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F
(w)
i are given by (4.36) and (4.37), respectively, (4.41) can be given by

∂

∂qi,j

[
−w(w)

j

Bv

2K
log2(

Ψ
(s)
j qi,j + 1

A
)− w

(w)
i RRF

i,j (x) + λ(qi,j − Pmax)

]
= 0, (4.43)

Solving (4.42) or (4.43), we obtain the same expression for qi,j, which is given by

qi,j =
w

(w)
j Bv

2Kλ
− 1

Ψ
(s)
j

. (4.44)

Similarly, the third case if we have zi,j = 1 and xi = 0 (the weak user is served through

the direct VLC link), we can reformulate (5.31) equivalently as

∂

∂qi,j

[
−w(w)

i

Bv

2K
log2(

qi,jΨi + 1

Ωi,jΨ
(w)
i + 1

) + λ(qi,j − Pmax)

]
= 0 (4.45)

Solving (4.45), we have

qi,j =
w

(w)
i Bv

2Kλ
− 1

Ψ
(s)
j

. (4.46)

The dual variable λ can be found by substituting (4.44) and (4.46) in constraint

(4.33b), we then obtain

K∑
i=1

K∑
j=1

(xizi,j(
w

(s)
j Bv

2Kλ
− 1

Ψ
(s)
j

) + (1 − xi)zi,j(
w

(w)
i Bv

2Kλ
− 1

Ψ
(s)
j

)) = Pmax,

which results in

λ =
Bv

∑K
k=1(xkw

(w)
k + (1− xk)w

(s)
k )

Pmax +
∑K

k=1 1/Ψ
(s)
k

. (4.47)
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To summarize the procedures of allocating the power, we present the following

steps to allocate the power for users under given users’ pairing and link selection:

• Find λ using (4.47).

• For each pair (when zi,j = 1), if the corresponding xi = 0, find qi,j using (4.46),

P
(s)
j = Ωi,j, and P

(w)
i = qi,j − Ωi,j.

• if the corresponding xi = 1, find qi,j using (4.44) and find F (w)
i (qi,j) using (4.37).

If F (w)
i (qi,j) <= R

(x)
i,j , the optimal P (s)

j is given by ηi,j,1; otherwise, the optimal

P
(s)
j is given by ηi,j,2, and the optimal P (w)

i = qi,j − P
(s)
j .

Updating the Weights: The weights can be modified to guarantee a proportional

fairness of the system. We adopt the approach in [120] to find the weights. Simply,

we update the weights in an outer loop by setting that w(w)
i = 1

¯
R

(w)
i

and w
(s)
j = 1

¯
R

(s)
j

,

where ¯
R

(w)
i and ¯

R
(s)
j are the long term average rate of the ith weak user and the jth

strong user, respectively, [120]. For the paired users i and j, if xi = 0, we should be

careful in updating the weights since the condition w
(w)
i /w

(s)
j < Ψ

(s)
j /Ψ

(w)
i must be

satisfied to have a positive power for the strong user. Hence, if R̄j is dropped to be

less than R̄i, we select w(s)
j = αw

(w)
i , where the value of α is very close but less than

one.
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4.5.2 Joint Power Allocation, User Pairing, and Link Selec-

tion

In Section 4.5.1, we found the optimal power allocation for given user pairing and link

selection. In this section, we propose a heuristic solution for the joint power allocation,

user pairing, and link selection. In addition the optimal solution can be found but

with exponential complexity with respect to the number of users.

Optimal Approach

One important feature of VLC networks is that the covered area by a VLC AP is

small due to the dramatic decrease in the channel with the distance. This means

that each cell in VLC can serve only a small number of users. As a result, applying

the exhaustive search approach for finding the joint Z matrix and x vector is not

considered a complex approach if the number of users is small. To achieve the optimal

solution, we calculate the powers of the users for each possible pairing and link selection

combinations. The complexity of this approach depends on the number of users or

pairs in the system. For instance, if the number of pairs in the system is K, we need

to find the users’ powers 2KK! times and select the joint Z and x that maximize the

objective function in (4.23).

Suboptimal Approach

Solving the considered optimization problem using exhaustive search is not an efficient

approach especially if the number of users is high. Therefore, here, we propose an
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iterative algorithm that finds the three variables in an alternative way. In particular,

we first propose initial user pairing and link selection, we find the powers using the

proposed closed-forms based on the given user pairing and link selection initial values.

After that, we find the Z matrix under the given allocated power and link selection,

then the link selection vector is updated to maximize the weighted sum objective

function. These steps are repeated until the variables converge or a limit number of

iteration is reached. In Section 4.5.1, we show how the power is allocated for the

given user pairing and link selection combinations. In this section, we provide how to

optimally pair the users under a given power allocation and link selection, and how to

optimally select the links for the weak users under a given power allocation and user

pairing.

• User Pairing Optimization: For the given power allocation and link selection,

the optimization problem can be formulated as follows

max
Z

K∑
i=1

K∑
j=1

w
(s)
j zi,jR

(s)
j (P

(s)
j ) (4.48a)

+w
(w)
i zi,j(1− xi)R

(w)
i,DL(P

(w)
i , P

(s)
j )

+w
(w)
i zi,jxi min

(
RRF
i,j (x), R

(w)
j→i(P

(w)
i , P

(s)
j )
)

s.t.
K∑
j=1

zi,j = 1, ∀i, (4.48b)

K∑
i=1

zi,j = 1, ∀j, (4.48c)

zi,j ∈ {0, 1}, ∀i, j (4.48d)

The above problem is a mixed integer linear programming and can be considered
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as a one-to-one assignment that can be solved using the Hungarian method [121].

• Link Selection Optimization: The problem of selecting the optimal links for the

weak users even for the given power allocation and user pairing is not easy to

be tackled. However, we provide an optimal solution by generating a K × K

matrix that reduces the number of nominee x vectors from 2K to K vectors.

In particular, we find a matrix S, where the first row in S hosts the rates of

the weak users coming from the relayed links subtracted form the rates coming

from the direct link, when
∑K

i=1 xi = 1 and the second row is the same when∑K
i=1 xi = 2 and so on until the Kth row where

∑K
i=1 xi = K. After that we

find x corresponding to each row, for example, at the kth row we set that xi = 1

corresponding to the k highest values of the kth row. This results in having K

different x vectors. Then we examine all the resulted vectors and select the one

that maximizes the objective weighted sum function. This method is efficient if

K is high since the computational complexity is of order O(K ×K +K), while

the computational complexity of the exhaustive search is of order O(2K).

4.5.3 Baseline Approaches

Baseline 1 (NOMA approach)

In this approach, we implement NOMA scheme to compare it with the proposed

Co-NOMA. The difference between NOMA and Co-NOMA is that the Co-NOMA

allows the strong users to forward the weak users’ signal through RF links (i.e. there

is cooperation among users) which provides two options for the weak users, to be
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served by the VLC AP or by the paired strong user through the hybrid VLC/RF link.

Whereas, the weak users in NOMA have only one option which is to be served through

the direct VLC link (i.e., there is no cooperation among users in NOMA). NOMA is

a special case of the formulated problem before, where it can be implemented when

the link selection vector x = 0. Therefore, the optimal NOMA scheme can be found

by allocating the power using closed-forms (4.32) and (4.46) for all the possible user

pairing. This approach cannot provide a service for the uncovered or the blocked users.

It is important to note that if a strong user j is paired with a blocked or uncovered user

i (that means Ψ(w)
i = 0), the power allocation for this pair is distributed as P (s)

j = qi,j

and qi,j can be proved easily to be qi,j =
w

(s)
j Bv

2Kλ
− 1

Ψ
(s)
j

.

Baseline 2

In this approach we provide a very simple solution from the optimization perspective.

Specifically, for pairing the users, we propose that the best strong user is paired with

the worst weak user, the second best strong user is paired with the second worst weak

user, and so on. This approach of pairing is proposed to improve the fairness among

users. For the link selection vector, we propose that each blocked or uncovered user

(i.e. has a zero VLC channel) must be served through the relayed VLC/RF link, while

the rest weak users must be served through the direct VLC link. For the given user

pairing and link selection, we allocate the power using the derived closed-forms in

section 4.5.1.

124



Table 4.1: Simulation Parameters

Name of the Parameter Value of the Parame-
ter

Maximum bandwidth of VLC AP, B 20 MHz
The physical area of a PD, Ap 0.1 cm2

Half-intensity radiation angle, θ1/2 60o

Gain of optical filter, gof 1
Refractive index, n 1.5
Efficiency of converting optical to electric,
ρ

0.53 [A/W]

Maximum input bias current, IH 600 mA
Minimum input bias current, IL 400 A
Fill factor, f 0.75
LEDs’ power, Popt 10 W/A
Thermal voltage, Vt 25 mV
Dark saturation current of the PD, I0 10−10 A
Noise power spectral density of LiFi, N0 10−21 A2/Hz
LED height, 3 m
User height 0.85
Monte-Carlo for user distribution, 1000 different user

distributions
RF
The distance of breakpoint 5 m
Central carrier frequency 2.4 GHz
Bandwidth 16 MHz
Angle of arrival/departure of LoS 45o
Standard deviation of shadow fading (be-
fore the breakpoint)

3 dB

Standard deviation of shadow fading (after
the breakpoint)

5 dB

Noise power spectral density -174 dBm/Hz

4.6 Simulation Results

This section evaluates the performance of the proposed hybrid VLC/RF Co-NOMA

scheme and the proposed solutions in terms of the sum-rate and the system fairness.

We examine the effect of the FoV, number of users, blockage rate, and the cell size on

the system sum-rate and system fairness. All the simulation results are implemented
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Figure 4.2: Sum-rate versus users’ FoV when number of users is 6, the cell radius is
2.5 m, and the blockage rate 0.1.

under the given simulation parameters in Table 4.1. Monte-Carlo simulations are

used to assess the performance of the proposed algorithms, where every point in the

numerical results is the average of implementing 1000 different user distributions on

the given cell size. The blockage rate is defined as the number of times that the user

is blocked over the times of total simulation realizations.

Fig. 4.2 compares the proposed hybrid VLC/RF Co-NOMA scheme associated

with the optimal and suboptimal solutions with the optimal NOMA and the baseline

approaches by plotting the sum-rate versus the users’ FoV. It can be seen that the sum-

rate increases then decreases for all approaches with the users’ FoV. This is because

the very small users’ FoV provides a potential for having some users uncovered or the

LoS to these uncovered users is zero. As the users’ FoV increases, the probability of

coverage increases, but the channel quality decreases because of the relation (1.2) that

affects equation (1.1). On the other hand, Fig. 4.3 compares the proposed hybrid
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Figure 4.3: System fairness versus users’ FoV when number of users is 6, the cell
radius is 2.5 m, and the blockage rate 0.1.

VLC/RF Co-NOMA scheme associated with the optimal and suboptimal solutions

with the optimal NOMA and the baseline approaches by plotting the sum-rate versus

the users’ FoV. It can be seen that the fairness is low when the users’ FoV is low

because the users that are far from AP would be out of the view (i.e. the LoS channel

is zero), while the users that are close to the AP would get a good quality of service

because of their channel quality. As the users’ FoV increases, the probability that the

number of covered users increases with a fixed certain area.

Figs. 4.2 and 4.3 show that the proposed hybrid VLC/RF Co-NOMA scheme

(optimal or suboptimal) outperforms the NOMA and the proposed baseline 2 in terms

of both the sum-rate and fairness. The improvement in terms of fairness is more than

that in sum-rate because the NOMA scheme cannot reach the out-of-coverage or the

blocked users, while the proposed hybrid VLC/RF Co-NOMA scheme can reach them

through the hybrid VLC/RF relayed link. In addition, the hybrid VLC/RF links
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can provide the maximum fairness (rather than the direct VLC link that provides

proportional fairness) among the strong and weak users without affecting the sum-

rate as we show in Section 4.5.1, Case 1.
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Figure 4.4: Sum-rate versus number of users in the system when the cell radius is 2.5
m, the blockage rate 0.1, and the user FoV= 50o.

Fig. 4.4 plots the sum-rate versus the total number of users located in the circle

with radius 2.5 m, while Fig. 4.5 plots the fairness of the same users and with the

same cell size. In general, Increasing the number of users in the system increases the

sum-rate, but decreases the system fairness. However, this decrease in fairness (in

Fig. 4.5) is significant in the NOMA scheme and negligible in the proposed hybrid

VLC/RF Co-NOMA scheme. On the other hand, the sum-rate in the Co-NOMA

scheme increases in a faster rate than in NOMA. Figs. 4.4 and 4.5 also show that the

optimal and the suboptimal Co-NOMA scheme provide the same performance, which

is much better than the proposed baseline approach.

Fig. 4.6 shows the effect of the blockage rate on the sum-rate. Increasing the
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Figure 4.5: System fairness versus number of users in the system when the cell radius
is 2.5 m, the blockage rate 0.1, and the user FoV= 50o.
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Figure 4.6: Sum-rate versus blockage rate when, Nu = 6, the cell radius is 2.5 m, and
the and the users’ FoV= 50o.

blockage rate decreases the probability of the availability of the VLC LoS to the users.

In other words, the number of blocked users increases which leads to decreasing the

sum-rate of the system. It can be seen that the proposed hybrid VLC/RF Co-NOMA

is better than NOMA for all the given blockage rate, even when there is no blockage
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at all. This is because of the selection diversity at the weak user in Co-NOMA (the

weak user in Co-NOMA can select the link that provides a maximum rate), while the

weak user in NOMA has only one option.
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Figure 4.7: System fairness versus blockage rate when, Nu = 6, the cell radius is 2.5
m, and the users’ FoV= 50o.

The effect of the blockage rate on the fairness is shown in Fig. 4.7. It can be

seen that increasing the blockage rate has a very small impact on the fairness of the

proposed hybrid VLC/RF Co-NOMA scheme until some point. This is because all

the blocked users are considered as weak users and could be served through the paired

strong users using the relayed link. But increasing the blockage rate further more may

result in having the number of blocked users greater than the half of the total number

of users, which affects also the fairness of the proposed Co-NOMA. The fairness of

the baseline 2 increases with blocking rate because of that, when there is no blockage

that means all the users in the baseline 2 approach are served through the direct

link, which results to have a proportional fairness like NOMA. As the blockage rate
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increases, the number of served users through the relayed link will increase, which

results in approaching the maximum fairness like the proposed Co-NOMA.

Fig. 4.8 shows the impact of increasing the cell size that the AP must cover

on the sum-rate. That means as the cell size increases the average channel quality

decreases and the probability of having uncovered users increases. As a result, the

sum-rate decreases as the cell size increases for Co-NOMA and NOMA and with

different users’ FoV. Whereas, the fairness, as shown in Fig. 4.9, is approximately

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Cell raduis

90

95

100

105

110

115

120

125

130

S
u
m

 r
a
te

 (
b
it
/s

e
c
)

Co-NOMA, optimal, FoV=50
o

Co-Noma, suboptimal, FoV=50
o

NOMA, optimal, FoV=50
o

Co-NOMA, optimal, FoV=60
o

Co-Noma, suboptimal, FoV=60
o

NOMA, optimal, FoV=60
o

Figure 4.8: Sum-rate versus the cell size when, Nu = 6, blockage rate is 0.1, and with
different users’ FoV.

stay fixed with a slight decrease in case of the proposed hybrid VLC/RF Co-NOMA

scheme. This is because such scheme extend the coverage area by the RF link and

increases the probability of coverage. In contrast, the NOMA scheme cannot reach

the out-of-coverage users, which leads to having a high rate of reduction in system

fairness. However, increasing the users’ FoV would increase the coverage probability,

but at the expense of decreasing the channel quality, resulting in degrading the system
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Figure 4.9: System fairness versus the cell size when, Nu = 6, blockage rate is 0.1,
and with different users’ FoV.

sum-rate as shown in Fig. 4.8.

4.7 Conclusion

VLC technology is expected to be one of the most participant tools in meeting the tar-

geted metrics in the next wireless communication networks. This chapter introduced a

novel cooperative scheme among users that contributed in extending the coverage, im-

proving the sum-rate, and maximizing the fairness in VLC systems. This cooperation

was based on Co-NOMA that can provide another chance for poor-serviced users to

be served through a hybrid dual-hub VLC/RF link with the help of the good-serviced

users. Furthermore, the chapter formulated an optimization problem for maximizing

the weighted sum-rate by jointly allocating the power for users, pairing the users, and

selecting the links for the weak users. An optimal and sub-optimal solutions were pro-

posed and compared with a simpler baseline solution and with the traditional NOAM
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scheme. Simulation results showed that a significant improvement in terms of sum-

rate and fairness can be achieved by applying the proposed scheme and by optimizing

the system jointly.
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CHAPTER 5

DC-BIAS AND POWER

ALLOCATION IN

COOPERATIVE VLC

NETWORKS FOR JOINT

INFORMATION AND ENERGY

TRANSFER

5.1 Introduction

Much attention has recently been paid to energy-harvesting techniques at user-

equipment devices, either from exploiting the surrounding environment, or by trans-
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ferring wireless power. Energy harvesting is the capability of converting the RF signals

or light intensity into electrical voltage/current. With the advent of the era of the

IoT, the demand for transferring the power and enabling IoT devices to harvest en-

ergy using light or RF transmission is increasing, especially in indoor applications

where smart buildings, health monitoring, and sensors devices applications become

abundant.

One important attractive VLC feature of valuable interest is its energy harvesting

capabilities, which are best enabled through equipping the VLC receivers with solar

panels, so as to directly convert the light intensity into current signals without the

need for external power supply [24], and with up to 40% conversion efficiency [122].

In practical indoor environments, however, two different types of users can typically

co-exist, i.e., information-users (IUs) (such as mobiles, laptops, or tablets) and energy-

harvesting users (EHUs) (IoT devices, sensors, or relays). While IUs are data-hungry

devices with specific data rate constraints, EHUs aim at harvesting visible light en-

ergy, which is especially feasible in indoor applications such as smart buildings, health

monitoring, and sensors devices’ applications. This motivates us in this chapter to

evaluate the benefit of a particular VLC-based scheme which considers the coexistence

of both IUs and EHUs, and addresses the problem of jointly optimizing and balanc-

ing the achievable sum-rate at the IUs and the total harvested energy by EHUs, by

means of adjusting the DC-bias at the VLC access-points and the powers of the users’

messages.
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5.2 Literature Review

Investigating the harvesting of energy in VLC systems has been a timely topic of in-

terest [55], [123], [109], [110], [124], [125], [126], [118]. A few papers recently published

proposed to investigate systems that use the light to jointly transfer power, meet illu-

mination requirements, and transmit data. Authors of [55] experimentally harvested

the solar energy with mobile phone by equipping it with a commercial solar panel in

an indoor environment. They showed that the devices directly exposed to the indoor

light could be charged to a satisfactory level. Authors of [123] investigated the concept

of indoor optical wireless power transfer to solar cells during darkness hours. By using

laser diodes and a solar panel, they measured the power efficiency and showed an im-

provement over the inductive power transfer systems, of approximately 2.7 times. By

using 42 laser diodes, they claimed to deliver 7.2 W of optical power to a solar panel

30 m distant from the diodes. Authors of [127] studied how much artificial indoor

light could deliver an amount of energy, using different types of receiving cells.

In [109] and [110], a dual-hop hybrid VLC/RF communication system was studied

as a means to reach out to the out-of-the-coverage user. The authors showed that

visible light could be used, in the first hop, to transfer both data information and

energy to the relay. The relay, could then forward the data to the destination, using

the harvested energy. In [124], [125], authors maximized the sum-rate utility of a VLC

system consisting of one AP and K users, subject to individual QoS constraints. Li

et al. [124] assumed that a user k can receive the information in their assigned time

slot, and the power within the time slots assigned to other users. In [125], on the
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other hand, Abdelhady et al. proposed solving the problem by allocating the optical

intensity and time slots, using an upper bound on the individual required harvested

energy. Authors in [126] characterized the outage performance of a hybrid VLC-RF

system, where the visible light is used for the downlink to transfer the energy and

data to the users, who then use the harvested energy to transmit a RF signal in the

uplink.

All the studies mentioned above use the alternating current (AC) component for

harvesting the energy, where the DC component of the transmitted light is fixed and

readily used to harvest energy [24]. In [24], authors designed an optical wireless

receiver using a solar panel and enabled it to receive information and harvest energy

simultaneously. Because the received current signal contains both DC-current and the

AC-current components, authors in [24] suggested to attenuate the AC current, using

an inductor to remove the ripples from the DC-current that is forwarded to energy

harvesting branch, and to block the DC-current, using a capacitor, to obtain only

an AC-current in the communication circuit. Sandalidis et al. [128] investigated the

three functions of the LED lamp, i.e. the illumination, communication, and the energy

harvesting, on a system consisting of a desk LED close to the receiver equipped with

a solar cell. The authors divided the received optical power between the information

signal and the harvested energy, using a splitter.

Diamantoulakis et al. [118] studied the lightwave information and power transfer

for a system consisting of one transmitter and one receiver. They provided the two

following protocols to maximize the harvested energy at the receiver, under data

rate constraint: 1) Splitting the time into two portions, one dedicated to maximize
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the user’s SINR, and the second assigned purely to maximize the harvested energy

by maximizing the DC component, 2) Optimization of the DC bias, in phase 1, to

maximize the harvested energy under QoS constraints, with phase 2 assigned only to

harvesting the energy. However, optimizing the DC bias for the whole time is more

general, and there is no need to split the time between harvesting the energy and

transmitting the data. In addition, the formulated problem would be more challenging

if there were multiple receivers, since the fairness, in terms of data rate and harvested

energy, is required.

5.2.1 Contributions

Different from the aforementioned references, this chapter considers a VLC network,

where multiple APs cooperate to serve both EHUs (e.g. sensors or IoT devices),

and IUs (e.g. laptops, mobile phones, etc.), so as to best capture the multi-diverse

applications schemes expected in next generations of wireless networks. The chapter

then investigates the problem of balancing the achievable sum-rate at the IUs and

the total harvested energy by the EHUs, by means of adjusting the DC-bias at APs

and allocating users’ powers. For mathematical tractability, the chapter adopts the

zero-forcing (ZF) precoding approach to cancel intra-cell interference, similar to [47],

[129].

To balance between the performance of the IUs and the EHUs, the chapter formu-

lates the optimization problem which maximizes a weighted sum of the IUs sum-rate

and the EHUs total harvested energy, under QoS and illumination constraints. The

performance of the system is a function of both the DC bias values allocated at each
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AP, and the powers assigned to the users’ messages. One of this work contributions is

to solve such a difficult non-convex optimization problem using an iterative approach,

which uses inner convex approximations of the objective and constraints. It then

compensates for the approximations using proper outer-loop updates. The chapter

also proposes a simpler sub-optimal baseline approach, which provides a feasible, yet

simple, solution to the formulated problem based on equal DC-bias allocation. The

chapter further considers solving the two special cases of the original optimization,

i.e., the problem of maximizing the IUs sum-rate, and the problem of maximizing

the EHUs total harvested energy, both subject to the same constraints as above.

Simulation results highlight the performance and the convergence of our proposed al-

gorithms. They particularly suggest that appreciable harvested energy and sum-rate

improvement can be reached by optimizing the DC-bias and messages’ powers in VLC

systems.

The reminder of this chapter is organized as follows. The system model, VLC

channel and the energy harvesting channel are presented in Section 5.3. In Section

5.4, we formulate the problem and present the proposed algorithms that solve the

formulated problem. We introduce and discuss simulation results in Section 5.5. The

chapter is then concluded in Section 5.6.
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Figure 5.1: System model (an example of user distribution when Nu,1 = 3, Nu,2 = 2,
and NA = 9).

Figure 5.2: Receiver Model (The blocks inside the dashed square represent the receiver
of the IUs, while the blocks inside the solid square represent the receiver of EHUs).

5.3 System and Channel Models

5.3.1 System Model

Consider an indoor VLC system consisting of NA VLC access points (APs), which

serve Nu users in total. Among the Nu users, Nu,1 users are IUs, and Nu,2 are EHUs,

i.e., Nu = Nu,1+Nu,2. We assume that the EHUs are equipped with the functionality

of energy harvesting as shown in Fig. 5.2. The chapter considers the case where Nu,1 <
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NA, and adopts a zero-forcing (ZF) approach to cancel the intra-cell interference, so

as to simplify the mathematical tractability of the problem. This assumption, i.e.,

Nu,1 < NA, emulates several indoor environments where the number of IUs are less

than the number of lamps in the ceiling such as offices, labs, companies ,houses, etc.

Let s ∈ RNu,1×1 be the vector hosting the information of the Nu,1 users, and let

G ∈ RNA×Nu,1 be the precoding matrix associated with s. The matrix G can be

written as G = [g1 . . .gNA
]T , where gi ∈ RNu,1×1 is the ith column of matrix GT . The

AC input electrical signal to the AP i can be written as xi = gTi �s, where s ∈ RNu,1×1

is the message vector with unit power, � = diag([
√
P1,

√
P2, . . . ,

√
PNu,1 ]), and where

Pj is the AC electrical power allocated to sj (the jth user’s message). The DC-bias of

the ith AP is denoted by bi and must be added to xi to avoid the resulting non-positive

signals [118]. The electrical signal, afterwards, modulates the optical intensity of the

light-emitting diodes (LEDs) at AP i. The transmitted signal at AP i can, therefore,

be written as

yt,i = ρse(bi + xi), (5.1)

where ρse is the slope efficiency of the LED or the electrical-to-optical conversion

factor of the LED and measured in W/A. Let IL and IH be the minimum and the

maximum input bias currents, respectively, i.e., bi ∈ [IL, IH ]. To guarantee that the

output optical power is a linear function of the input current, the transmitter LED

must be in its linear region. To this end, the peak amplitude of the modulated signal
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xi, denoted by Ai, must satisfy the following constraint

Ai ≤ min(bi − IL, IH − bi). (5.2)

Constraint (5.2) implies that Ai must satisfy two constraints, which are Ai + bi ≤ IH

and bi − Ai ≥ IL, to guarantee that the input electrical current to the LED is within

the range of the linear region LED operation. It is important to note that restricting

the amplitude of the input signal to be lower than a given maximum current implies

the eye safety constraint. This is because the eye safety constraint can be achieved by

limiting the radiated optical power, which can be controlled by the maximum limit of

the input current IH .

After blocking the DC-bias at the receiver side, the signal vector received at the

users from all APs (Yr with size Nu,1 × 1) is given by

Yr = ρoeρseHG�s + n, (5.3)

where H ∈ RNu×NA is the channel attenuation matrix that is assumed to be known

at APs, ρoe is the optical-to-electric conversion factor, and n is the noise vector with

size Nu,1 × 1, which includes the thermal noise and the shot noise at the user, and

can be modeled as zero-mean real-valued AWGN with variance σ2 = N0W , where

W is the modulation bandwidth, and N0 is the noise power spectral density. The

precoding matrix G is used to cancel the inter-cell interference by diagonalizing the

channel matrix, i.e., G = HT (HHT )−1. This means that the received signal at the
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jth user or the jth element of vector Yr is given by

yr,j = ρoeρse
√
Pjsj + nj. (5.4)

Since the power of sj is normalized, a tight lower bound on the network sum-rate at

the Nu,1 IUs can then be written as [130]

fR(P) = β

Nu,1∑
j=1

log
(
1 +

eρ2oeρ
2
sePj

2πWN0

)
, (5.5)

where P is a vector with size Nu,1×1 hosting the messages powers of the IUs, β = W/2

is a constant, and e is the constant exponential (Euler’s number). It is important to

note that, from (5.3), we can define the relation between the electronic transmit power

at AP i and the assigned powers of the messages as [1]

pi =

Nu,1∑
j=1

g2i,jPj, (5.6)

where gi,j is the (i, j)th element of matrix G.

5.3.2 Energy Harvesting Signals

For the EHUs, the DC component of the received signal is blocked by a capacitor

and forwarded to the energy harvesting circuit [24], [118]. The harvested energy (per

unit-time) is given by [55]

E = fIscVoc, (5.7)
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where f is the fill factor (typically around 0.75), and Isc is the received DC current

measured by shutting the solar panel charging circuit [55], which is given at the kth

energy-harvesting user by

Isc,k = ρoeρsehTkb, (5.8)

where b = [b1, b2, . . . , bNA
]T is the DC-bias vector at APs, hk is the channel vector

from all APs to the user k with size NA × 1, and Voc is the voltage that is measured

by opening the solar panel charging circuit and is given by [118], [110]

Voc,k = Vt ln(1 +
Isc,k
I0

), (5.9)

where Vt is the thermal voltage and I0 is the dark saturation current of the PD.

Hence, the harvested energy (per unit-time) at user k is given by

Ek(b) = fρoeρseVthTkb ln
(
1 +

ρoeρsehTkb
I0

)
, (5.10)

and the total harvested energy at all Nu,2 users is given by

fE(b) =
Nu2∑
k=1

Ek(b). (5.11)

5.4 Problem Formulation and Algorithms

In order to jointly optimize the achievable sum-rate utility at the IUs and the to-

tal harvested energy utility at the EHUs, this section motivates and then considers
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maximizing a weighted sum of both utilities under QoS constraints and maximum

transmit power constraint. The section then proposes two different solutions to solve

the formulated non-convex problem by efficiently adjusting the DC-bias vector and

the users’ powers. The section finally addresses the two individual optimization prob-

lems separately, i.e., maximizing the sum-rate utility, and then maximizing the total

harvested energy utility, both under the same constraints.

5.4.1 Weighted Sum Utility Maximization and Constraints

The utility function for the IUs is the sum-rate that is given in (5.5), which is a

function of the messages’ powers, while the utility function for the EHUs, given in

(5.11), is the total harvested energy, which is a function of the APs DC-bias.

The first constraint that should be considered is that the DC-bias at each AP

should be within the maximum and minimum input currents (i.e., IL ≤ bi ≤ IH ∀i).

It is important to note that the DC-bias bi at the ith AP must be greater than or

equal to IH+IL
2

. This is because decreasing bi to be less than IH+IL
2

results in decreasing

the harvested energy (5.10). It also decreases Ai (based on (5.2)), which decreases

the transmit power of the signal that leads to a decrease in the sum-rate (5.5). bi,

therefore, should satisfy bi ≥ IH+IL
2

, and min(IH−bi, bi−IL) becomes equal to IH−bi.

The second constraint that should be considered is that the input signal should

be positive and within the maximum and minimum allowable limit currents. In other

words, the input signal for the ith AP should satisfy the following

IL ≤ gTi �s + bi ≤ IH . (5.12)
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Constraint (5.12) can be written equivalently as

gTi �s ≤ IH − bi, (5.13)

and

− gTi �s ≤ bi − IL. (5.14)

Constraints (5.13) and (5.14) can be written equivalently as

|gTi �s| ≤ min(IH − bi, bi − IL). (5.15)

Constraint IH+IL
2

≤ bi ≤ IH implies that min(IH − bi, bi − IL) = IH − bi. Therefore,

constraint (5.15) can be written equivalently as

|gTi �s| ≤ (IH − bi). (5.16)

If the optimal bi satisfies bi ≤ IH −|gTi �s|, bi can be increased to have bi = IH −|gTi �s|,

which increases the objective function without violating the constraints. Hence, the

inequality in (5.16) should be satisfied with equality. In order to represent constraint

(5.16) in terms of power, we should find the expectation of the square of both sides

[82]. Because E(ssT ) = INu,1 , where INu,1 is the identity matrix with size Nu,1 ×Nu,1,

constraint (5.16) can be represented equivalently as

gTi ��Tgi = (IH − bi)
2. (5.17)

146



Since Λ = diag[
√
P1, . . . ,

√
PNu,1 ], constraint (5.17) can be written as

Nu,1∑
j=1

g2i,jPj = (IH − bi)
2, ∀i, (5.18)

where gi,j is the jth component of gi vector.

Expression (5.18) shows that the relation between both vectors is not one-to-one.

More specifically, a unique DC-bias vector b can be calculated for a given messages’

power vector. The messages’ power vector P might, however, have several solutions

from a given DC-bias vector. Expression (5.18) also shows that increasing the DC-

biases increases the total harvested energy at the EHUs, but decreases the data rate

at the IUs. Such conflicting impact of the DC-bias motivates the need for jointly

optimizing both utilities by means of maximizing a weighted-sum under QoS and

LEDs’ linear operational region constraints. In this formulated problem, the weights

of the utility functions can be controlled by a variable, called α ∈ [0, 1]. In other

words, α is the weight which balances between the sum-rate and harvested energy

utilities. Mathematically, the considered optimization problem can be formulated as
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follows

max
b,P

αfR(P) +
(1− α)

ω
fE(b) (5.19a)

s.t. β log
(
1 +

eρ2oeρ
2
sePj

2πWN0

)
≥ Rth,j, j = 1, . . . , Nu,1 (5.19b)

fρoeρseVthTkb ln(1 + ρoeρsehTkb
I0

) ≥ Eth,k, k = 1, . . . , Nu,2 (5.19c)
Nu,1∑
j=1

g2i,jPj = (IH − bi)
2, i = 1, . . . , NA (5.19d)

IH + IL
2

≤ bi ≤ IH , i = 1, . . . , NA, (5.19e)

where Rth,j and Eth,k are the minimum required data rate at the jth user and the

minimum required energy to be harvested by the kth user, respectively, and ω is a

constant chosen to numerically equalize the order of magnitudes of the functions fR(P)

and 1
ω
fE(b). Constraints (5.19b) and (5.19c) are imposed to satisfy the minimum

required fairness among IUs and the EHUs, while constraints in (5.19d) and (5.19e)

are imposed to avoid any clipping and guarantee that the LEDs operate in their linear

region. It is important to note that problem (5.19) solves three types of problems: 1)

maximizing the sum-rate, which is achieved when we set α = 1, 2) maximizing the

total harvested energy, which can be achieved by setting α = 0, 3) and maximizing a

weighted sum of both utility functions for any α ∈ (0, 1).

Problem (5.19) cannot be easily solved, since the objective function and the con-

straint (5.19c) are not concave, resulting in a difficult non-convex optimization prob-

lem. Specifically, fR(P) is a concave function in terms of P, while fE(b) is a convex

function in terms of b, which makes their weighted sum a non-concave objective func-
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tion. This chapter next solves problem (5.19) by first reformulating the problem in a

more compact form, and then by proposing an numerical iterative approach.

The main idea of the proposed approach is that the problem is first formulated in

terms of the messages’ power vector P only, using the relation given in (5.18). The

chapter then proposes a heuristic, yet efficient, algorithm to solve the reformulated

problem through considering an approximated convex version of the problem, and

then by correcting for the approximation in an outer loop update. For the sake of

comparison, the chapter further proposes a simple baseline approach, which guarantees

a feasible solution to (5.19).

5.4.2 Problem Reformulation

As discussed earlier, a unique DC-bias vector b can be calculated for a given messages’

power vector. Thus, to reformulate problem (5.19) in a more compact fashion, we

choose to formulate the objective function and constraints of problem (5.19) in terms

of the vector P only. Using the relation in (5.18), the DC-bias vector can be expressed

as

b = IH1NA
−
√ �GP, (5.20)

where 1NA
is the unity vector of length NA with all entries set to 1, the matrix Ḡ

is defined as Ḡ = [ḡ1, ḡ2, . . . , ḡNA
]T , with ḡi = [g2i,1, g

2
i,2, . . . , g

2
i,Nu,1

]T , and where the

square root denotes the componentwise square root of the vector argument.
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Plugging (5.20) in the energy harvesting functions (5.10) and (5.11), we obtain

Ek(P) = fρoeρseVthTk (IH1NA
−

√ �GP) ln(1 + ρoeρsehTk (IH1NA
−
√ �GP)

I0
), (5.21)

and

fE(P) =

Nu,2∑
k=1

Ek(P). (5.22)

Using (5.20), the constraints in (5.19e) can be rewritten as

0 ≤ �gTi P ≤
(
IH − IL

2

)2

, i = 1, . . . , NA. (5.23)

Substituting (5.21), (5.22), and (5.23) in the optimization problem (5.19), the

problem can then be formulated in terms of the messages’ power vector as follows

max
P

αfR(P) +
(1− α)

ω
fE(P) (5.24a)

s.t. Pj ≥ Pj,min, j = 1, . . . , Nu,1 (5.24b)

Ek(P) ≥ Eth,k, k = 1, . . . , Nu,2 (5.24c)

�gTi P ≥ 0, i = 1, . . . , NA (5.24d)

�gTi P ≤ (
IH − IL

2
)2, i = 1, . . . , NA, (5.24e)

where Pj,min = (2

Rth,j
β −1)2πWN0

eρ2seρ
2
oe

. Because functions fE(P) and Ek(P) are not con-

cave, the problem in (5.24) is still a non-convex optimization problem. Hence, we

next propose a novel method that solves problem (5.24) by using a proper convex

approximation, and then by compensating for the approximation in the outer loop.
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5.4.3 Problem Convexification

To convexify problem (5.24), we utilize a two-step iterative approach. At the first

step, we fix the DC-bias vector values for specific terms of the non-concave functions,

so as to get rid of the square root and the logarithm function expression in the energy

functions. After solving the problem, the second step substitutes the updated value

of the DC-bias vector in the terms of the non-concave functions. More specifically, in

the first step (and at the very first iteration), let b̂ = IH+IL
2

1NA
(i.e., b̂i = IH+IL

2
) be

the initial DC-bias vector. Therefore, the relation in (5.18) can be approximated as

follows

�GP ∼= (IH1NA
− b) ◦ (IH1NA

− b̂). (5.25)

The DC-bias vector can be approximated as follows

b ∼= IH1NA
− �GP ⊘ (IH1NA

− b̂). (5.26)

Define

Gb = [
1

IH − b̂1
ḡ1,

1

IH − b̂2
ḡ2, . . . ,

1

IH − b̂NA

ḡNA
]T ,

we can re-write (5.26) as follows

b ∼= IH1NA
− GbP. (5.27)

To further convexify the energy functions, define zk(b̂) as zk(b̂) = ln(1+ ρoeρsehT
k b̂

I0
),

which is a constant that depends on b̂.
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Problem (5.24) can now be readily approximated as a convex optimization problem.

For the completeness of presentation, define the following variables (which are all

functions of the estimated DC-bias vector b̂):

xk = fρoeρseVtzk(b̂)hk, k = 1, . . . , Nu,2,

x =
∑Nu,2

k=1 xTk (IH1NA),

w =
∑Nu,2

k=1 xTkGb, mk = IHxk1NA
− Eth,k, and

wk = xTkGb, k = 1, . . . , Nu,2.

Using the above notations, problem (5.24) can be approximated as follows

max
P

αfR(P) +
(1− α)

ω
(x− wTP) (5.28a)

s.t. Pj ≥ Pj,min, j = 1, . . . , Nu,1 (5.28b)

wT
kP ≤ mk, k = 1, . . . , Nu,2 (5.28c)

�gTi P ≥ 0, i = 1, . . . , NA (5.28d)

�gTi P ≤ (
IH − IL

2
)2, i = 1, . . . , NA, (5.28e)

Since the function fR(P) is concave and the function x−wTP is linear, the objec-

tive function in (5.28) is concave. Furthermore, all the constraints in (5.28) are linear,

which means that the optimization problem (5.28) is convex and, thus, can be solved

using efficient algorithms [56]. We next characterize the optimal solution of problem

(5.28) by deriving the first-order Karush-Kuhn-Tucker (KKT) conditions, which helps

iteratively finding the primal and dual variables associated with problem (5.28).
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Proposition 5.1 The solution of problem (5.28) is given by

Pj =
−αβ

ln(2)
(
− 1
ω
(1− α)w(j) + λj −

∑Nu,2

k=1 µkwk(j)−
∑NA

i=1 di �gi(j)
) − 1

γ
, j = 1, . . . , Nu,1,

(5.29)

where γ = eρ2oeρ
2
seP

2πWN0
, λj, µk, and di are the dual variables associated with constraints

(5.28b), (5.28c), and (5.28e), respectively, pmax = ( IH−IL
2

)2 is the electrical maximum

transmit power, and w(j) denotes to the jth element of the vector w.

Proof. The proof hinges upon the interpretation of the Lagrangian duality of

problem (5.28). Observe first that constraints in (5.28d) are rather redundant, since

all the elements in �gi are positive, ∀i = 1, . . . , NA, and since the values of the vector

P are guaranteed to be positive by constraints (5.28b). The Lagrangian function of

problem in (5.28) can, therefore, be expressed as follows

ζ = −αβ
Nu,1∑
j=1

log (1 + γPj)−
(1− α)

ω
(x− wTP)−

Nu,1∑
j=1

λj(Pj − Pj,min) +

Nu,2∑
k=1

µk(wT
kP −mk)

+

NA∑
i=1

di( �gTi P − pmax).

(5.30)

Based on first-order KKT conditions [56], we have

∂ζ

∂Pj
= 0, j = 1, . . . , Nu,1. (5.31)
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Solving (5.31), we obtain

−αβ γ

ln(2)(1 + γPj)
+

1

ω
(1− α)w(j)− λj +

Nu,2∑
k=1

µkwk(j) +

NA∑
i=1

di �gi(j) = 0. (5.32)

Re-ordering (5.32) then gives (5.29), which completes the proof.

The dual variables λj, µk, and di must be selected in such a way that the resulted

allocated power vector achieves the associated constraints. For instance, the value of

the dual variables λj must be selected to achieve the jth constraint in (5.28b). λj

can in fact be found after substituting (5.29) in constraints (5.28b), which gives the

following

λj ≤
−αβ

ln(2)(Pj,min + 1
γ
)
+

1

ω
(1− α)w(j) +

Nu,2∑
k=1

µkwk(j) +

NA∑
i=1

di �gi(j)). (5.33)

The other dual variables, i.e., µk and di, can be found by using the subgradient

method. More specifically, for a fixed value of Pj (i.e., using (5.29) based on preset

dual variables values), the subgradient method iteratively updates the values of µk

and di as follows

µk(n+ 1) = µk(n) + δµ(wT
kP −mk), j = 1, . . . , Nk, (5.34)

di(n+ 1) = di(n) + δd( �gTi P − pmax), i = 1, . . . , NA, (5.35)

where δµ and δd are steps sizes, that are used to guarantee the algorithmic convergence.
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5.4.4 Iterative Algorithm

In this section, we present the overall algorithm which is proposed to solve the origi-

nal optimization problem (5.19). The algorithm compensates for the approximations

made earlier while convexifying the optimization problem. Because the proposed solu-

tion of the reformulated problem iteratively updates the dual variables, the estimated

DC-bias vector is also updated at each iteration, so as to reflect the newest update of

the values of the dual variables. The steps of the proposed algorithm are summarized

in Algorithm 6 description.

Algorithm 6 Find the vectors b and P

1. Find the initial estimated DC-bias vector by choosing b̂ = IH+IL
2

1NA
and assign

initial non-negative random values for the dual variables.

2. Set n = 1

3. Find Pj using (5.29) ∀j = 1, . . . , Nu,1, and the corresponding b using (5.20).

4. Update the estimated DC-bias vector and update the corresponding values of
xk and wk ∀k = 1, . . . , Nu,2, w, and x.

5. Update the dual variables, using (5.33), (5.34), and (5.35).

6. if ∥b − b∥2 < ϵ, break;

7. Increment n and go to step 3).

Remark 1 The main idea of Algorithm 6 is to update the dual variables along with

the estimated DC-bias vector in each iteration by equating it with the resulted DC-bias

vector from the previous iteration. This process continues until convergence. It is

important to note that there is no unique values for the dual variables that can reach

the optimal power. Such conclusion is due to the fact that the dual variables must be
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selected to achieve the corresponding constraints. Hence, in step 5) in Algorithm 6,

we can find the λ′s using (5.33) by replacing the inequality with equality, which helps

achieving the corresponding constraints.

5.4.5 Baseline Algorithm

For benchmarking purposes, we now propose a simple, yet feasible, solution to problem

(5.19). In this approach, for simplicity, the DC-bias values are assumed to be equal

across all APs, i.e., bi = b. Based on this assumption and within the bounds of the

DC-bias values, we find the maximum and minimum DC-bias values that achieve the

constraints in (5.19). It can be noticed that the minimum feasible DC-bias value is the

one that maximizes the sum-rate, while the maximum feasible DC-bias value is the

one that maximizes the total harvested energy. Therefore, the idea of this approach is

that, instead of weighting the utility functions, we weight the corresponding DC-bias

values. In other words, we linearly combine the minimum and the maximum DC-bias

vectors based on the given α value. After obtaining the fixed DC-bias vector, we

formulate a linear optimization problem to find the corresponding messages’ power

vector. If we scrutinize the constraints in (5.19), we see that the value of the DC-bias

b must be increased if at least one of the constraints in (5.19c) is violated, while it

must be decreased if at least one of the constraints in (5.19b) is violated. That means

the constraints in (5.19c) and the constraint b ≥ IH+IL
2

specify the minimum DC-bias

vector that achieves all the constraints. On the other hand, the constraints in (5.19b)

and the constraint b ≤ IH specify the maximum DC-bias vector that achieves all the

constraints. If the value reached while searching for the maximum DC bias value is
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found to be less than the value reached while searching for the minimum DC-bias

value, the problem of finding equal DC-bias at all APs is then unfeasible.

To determine the minimum DC-bias vector, we solve all the equations in (5.19c)

under the assumption that all the values in the vector b are equal. For the kth user,

we find a solution for bk from the following equation

bkfρoeρseVthTk 1NA
ln(1 + bk

ρoeρsehTk 1NA

I0
) ≥ Eth,k. k = 1, . . . , Nu,2 (5.36)

Equations (5.36) can be solved using any numerical methods such as Newton method.

Define �b ∈ RNu,2×1 as the vector that hosts the solutions of equations (5.36), the

minimum DC-bias vector can be given by

bmin = max
(
IH + IL

2
,max( �b)

)
1NA

. (5.37)

To determine the maximum DC-bias vector, we solve all the equations in (5.20)

when Pj = Pj,min, j = 1, . . . , Nu,1. Therefore, the maximum DC-bias vector is given

by

bmax = min
(
IH , IH −

√
max( �GP)

)
1NA

. (5.38)

Based on a predefined α, the DC-bias solution of the baseline approach is given by

b = αbmin + (1− α)bmax. (5.39)

It can be seen that all the values in the solution vector b are equal. Because there is
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more than one solution of the messages’ power vector P for the given DC-bias vector,

we formulate the following simple optimization problem to find an efficient power

allocation

max
P

Nu,1∑
j=1

γPj (5.40a)

s.t. Pj ≥ Pj,min, j = 1, . . . , Nu,1 (5.40b)

�GP ≤ (IH1NA
− b)2, i = 1, . . . , NA (5.40c)

P ≥ 0. (5.40d)

Note that the vector b in the constraints (5.40c) is given by (5.39). Problem (5.40) is

a linear programming (LP) and can be solved easily by the CVX solver [57]. All the

baseline approach procedures are summarized in Algorithm 7.

Algorithm 7 Baseline approach to find the vectors b and P

1. Find �b ∈ RNu,2×1 by solving the Nu,2 equations in (5.36).

2. Find bmin and bmax using (5.37) and (5.38), respectively, then find the solution
DC-bias vector using (5.39).

3. Using the given DC-bias vector, find the vector P by solving the linear opti-
mization problem (5.40) using CVX solver [57].

5.4.6 Special cases

In this section, we consider the two special cases of the weighted-sum formulated

problem. In these cases, we focus on solving the problem that considers maximizing
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one of the two extreme utilities (i.e., either the total harvested energy or the sum-rate)

under the same considered constraints.

Maximizing the total harvested energy (α = 0)

To maximize the harvested energy instead of the weighted sum function, we set α to

0 for both Algorithm 6 and the baseline approach. For the proposed Algorithm 6, the

problem is interestingly cast and approximated as the following linear optimization

problem

max
P

(x− wTP) (5.41a)

s.t. Pj ≥ Pj,min, j = 1, . . . , Nu,1 (5.41b)

wT
kP ≤ mk k = 1, . . . , Nu,2 (5.41c)

�gTi P ≥ 0, i = 1, . . . , NA (5.41d)

�gTi P ≤ (
IH − IL

2
)2, i = 1, . . . , NA. (5.41e)

Problem (5.41) can be solved efficiently using the CVX solver [57], without the

need for the use of the dual decomposition method and the subgradient method. The

steps of solving problem (5.41) are given in Algorithm 8.

For the baseline approach, the underlying algorithm (equal DC-bias allocation) for

solving problem (5.41) is given by

b = min
(
IH , IH −

√
max( �GPmin)

)
1NA

, (5.42)
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Algorithm 8 Find the vector b that maximizes the total harvested energy

1. Find the estimated DC-bias vector by putting b̂ = IH+IL
2

1NA
.

2. Solve problem (5.41) using CVX solver, with the given b̂, and find the solution
b using (5.20).

3. if ∥b̂ − b∥2 > ϵ or the maximum iteration is not reached, update b̂ = b and go
to step 2.

which is the maximum feasible DC-bias that achieves the constraints while maximizing

the total harvested energy. The messages’ power herein are given by P = Pmin.

Maximizing the sum-rate (α = 1)

The problem of sum-rate maximization under the established constraints can be ob-

tained by setting α = 1. The problem can be approximated as (5.28) with setting

α = 1, and Algorithm (6) can be used to find the joint DC-bias and power vector that

maximize the sum-rate function. Similarly, the power vector in the baseline approach

for the sum-rate maximization can be obtained by solving (5.40), where the DC-bias

vector is given by

b = max
(
IH + IL

2
,max( �b)

)
1NA

, (5.43)

which is the minimum equal DC-bias that achieves the constraints while maximizing

the sum-rate.

5.4.7 Computational Complexity

This section discusses the computational complexity of both the Algorithm 6 and the

baseline approach. It is shown in [131], [82] that the complexity of the subgradient
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approach is a polynomial function of the number of the dual variables, which is M =

Nu,1+Nu,2+NA. Besides, in each iteration, we need to update the estimated DC-bias

and the corresponding variables xk, k = 1, . . . , Nu,2 and wk, k = 1, . . . , Nu,2. This

means that for updating the DC-bias vector, the number of the updated variables in

each iteration is NA×Nu,2 +NA×Nu,1. Therefore, Algorithm 6 has a computational

complexity in the order of O(IR(M+NA×Nu,2+NA×Nu,1)), where IR is the iterations’

number needed for Algorithm 6 convergence.

On the other hand, the computational complexity of the proposed baseline ap-

proach is mainly due to solving a LP optimization problem, which is shown to be

bounded by O(n2l), where l is the number of constraints and n = Nu,1 is the number

of variables [56].

5.5 Simulations

This section evaluates the performance of the proposed algorithms by illustrating how

the weight α, the number of users (either IUs or EHUs), and the FoV affect the total

harvested energy, sum-rate, and the weighted sum function. All the simulation results

are implemented under the simulation parameters given in Table 5.1, similar to [118],

[47], and [109]. Consider an 8× 8× 3 m3 room equipped with 16 VLC APs that are

at ceiling level, and serve several IUs and EHUs. Monte-Carlo simulations are used to

assess the performance of the proposed algorithms, where every point in the numerical

results is the average of implementing 100 different user realizations.

Fig. 5.3 compares the proposed Algorithm 6 with the proposed baseline approach
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Table 5.1: Simulation Parameters

Parameter Name Parameter Value

VLC AP maximum bandwidth, W 20 MHz
The physical area of a PD for IUs, Ap(IU) 1 cm2

The solar cell physical area for EHUs, Ap(EHU) 0.04 m2

Gain of optical filter, gof 1
Half-intensity radiation angle, θ1/2 60o

FoV semi-angle of PD, Θ 40o − 65o

Optical-to-electric conversion factor of IUs, ρoe(IU) 0.53 [A/W]
Optical-to-electric conversion factor of EHUs, ρoe(EHU) 0.4 [A/W]
Refractive index, n 1.5
Maximum input bias current, IH 12 mA
Minimum input bias current, IL 0 A
Fill factor, f 0.75
Electric-to-optical conversion factor, ρse 10 W/A
Thermal voltage, Vt 25 mV
Dark saturation current of the PD, I0 10−10 A
Noise power spectral density, N0 10−22 A2/Hz
Room size 8× 8 m
Room height 3 m
User height 0.85 m
Number of APs 4× 4
Minimum IUs data rate, Rth,j, j = 1, . . . , Nu,1 10 (Mbits/sec)
Minimum EHUs energy, Eth,k, k = 1, . . . , Nu,2 1 µJoule

by plotting the weighted sum function versus α. The figure shows that the proposed

Algorithm 6 outperforms the proposed baseline approach for all different weights and

different users’ FoV. The figure further shows that the weighted sum function is maxi-

mized when α = 0 or 1, i.e., when the weighted sum function is just the total harvested

energy or the sum-rate function, respectively. Such performance behavior can be jus-

tified by the fact that when α is small (i.e. when α ≤ 0.3), the dominating function is

the total harvested energy, and hence the increase in α decreases the weighted sum,

while when α is large (α ≥ 0.4) the dominating function is the sum-rate and, hence,

the increase in α increases the weighted sum function.
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Figure 5.3: Comparison between the proposed algorithm and the proposed baseline
by plotting the weighted sum function versus the weight α for different users’ FoV,
Nu,1 = 5, Nu,2 = 5, and ω = 10−3

12×W .
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Figure 5.4: The sum-rate function versus α for different users’ FoV.

To show how the weight α affects the sum-rate and the total harvested energy, we

plot the sum-rate function versus α in Fig. 5.4, and the total harvested energy versus α

in Fig. 5.5. It can be seen from both figures that as the weight increases, the sum-rate

increases and the total harvested energy decreases, but with a decreased rate. The
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figures also show that for the different values of α, as the sum-rate increases (as shown

in Fig. 5.4), the total harvested energy decreases (as shown in Fig. 5.5). These results

confirm that the sum-rate and the total harvested energy functions exhibit an opposite

behavior, and can be controlled by allocating the DC-bias, since decreasing the DC-

bias decreases the total harvested energy and preserves much power for transmitting

data. Both figures further show that at some values of α, if the proposed baseline

approach outperforms the proposed Algorithm 6 at one utility function (either the

sum-rate or the total harvested energy), it provides much less performance at the

same points at the other utility function. Both figures also show that in the proposed

approach, the impact of α on sum-rate and harvested energy functions decreases as α

increases from 0 to 1. We observed that the numerical choice of ω affects the decrease

(and increase) rate of the sum-rate and the harvested energy. To decrease this rate of

increasing (or decreasing), the value of ω should be adapted with α. However, this is

not our interest, since we can confine our study in the range of α effectiveness.

Figs. 5.3, 5.4, and 5.5 show that the performance of the utility functions is better

at lower values of FOVs, i.e., the 45o FOV case as compared to the 55o FOV case.

Such result is further illustrated in Fig. 5.6 with different number of EHUs and IUs.

Equation (1.2) further justifies this fact, since if the FoV (Θ) increases between 0o and

90o, the channel quality decreases significantly. On the other hand, from equation in

(1.2), decreasing the user’s FoV decreases the probability of coverage at that user.

As a result, we can conclude that if the users’ FoV is adjustable, decreasing its value

subject to having at least one VLC AP in the FoV of that user would indeed increase

the network harvested energy. The figures also show that the proposed iterative
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Figure 5.5: The total harvested energy function versus α for different users’ FoV.

Algorithm 6 outperforms the proposed baseline approach with all the different users’

FoV and different number of IUs and EHUs. To balance between the sum-rate and the

total harvested energy functions, we select α = 0.1, where as shown in Figs. 5.4 and

5.5 α = 0.1 provides a sensible trade-off between the sum-rate and the total harvested

energy functions. Fig. 5.6 further shows the behavior of the weighted sum function

when the number of EHUs is dominating, when the number of both EHUs and IUs

are equal, and when the number of IUs is dominating. It can be seen that the effect of

increasing number of EHUs is higher than the effect of increasing the number of IUs.

Increasing the number of EHUs would increase the total harvested energy linearly,

while increasing the number of IUs would increase the sum-rate but at a decreasing

rate. This is because the available bandwidth and power per information-user depends

on the number of users, while the harvested energy is not a function of the bandwidth

and the AC power. Another reason is because of the value of ω, which should be

ideally adapted with changing the number of users.

165



40 45 50 55 60 65

FoV (Θ
o
)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

W
e
ig

h
te

d
-s

u
m

×108

Proposed, Nu,1 = 2, Nu,2 = 8

Baseline, Nu,1 = 2, Nu,2 = 8

Proposed, Nu,1 = 5, Nu,2 = 5

Baseline, Nu,1 = 5, Nu,2 = 5

Proposed, Nu,1 = 8, Nu,2 = 2

Baseline, Nu,1 = 8, Nu,2 = 2

Figure 5.6: The weighted sum function versus users’ FoV with different number of
EHUs and IUs α = 0.1 and ω = 10−3

12×W .

Fig. 5.7 studies the effect of the users’ FoV and the number of users on the sum-rate

function. In this figure, we optimize the sum-rate under QoS constraints which can be

implemented by setting α = 1 in the weighted sum function. As expected, decreasing

the users’ FoV, increasing the IUs, or decreasing the number of EHUs improve the

sum-rate as shown in Fig. 5.7. The figure also shows that the proposed Algorithm 6

outperforms the proposed baseline approach or the equal DC-bias allocation approach

at the different scenarios considered in the figure, especially when the number of IUs

is high.

Fig. 5.8 studies the effect of the users’ FoV and the number of users on the total

harvested energy function. In this figure, we use Algorithm 8 instead of Algorithm 6 to

solve the optimization problem, which is a special case that can be implemented when

α = 0 in the weighted sum function. As expected, the figure shows that decreasing the

users’ FoV, increasing the IUs, or decreasing the number of EHUs lead to increasing
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Figure 5.8: The total harvested energy versus users’ FoV with different number of
EHUs and IUs, α = 0.

the total harvested energy. The figure also shows that the proposed Algorithm 8 out-

performs the proposed baseline approach (i.e., the equal DC-bias allocation approach)

at the different scenarios considered in the figure.

To illustrate the convergence of the iterative algorithm proposed to compensate for
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Figure 5.9: The total harvested energy versus number of iterations with different users’
FoV and different number of IUs and EHUs, α = 0.

the used approximations, Fig. 5.9 studies the behavior of Algorithm 8 and plots the

total harvested energy at all EHUs versus the number of iterations, for two values of

the FoV and different numbers of IUs and EHUs. The figure shows the fast convergence

of Algorithm 8 for all values of FoV for the different number of users, which further

highlight the numerical efficiency of our proposed algorithm.

Fig. 5.10 plots the sum-rate as a function of the percentage of number of EHUs out

of the total number of users, also denoted by η (i.e. η = Nu,2

Nu,2+Nu,1
). This figure shows

that the sum-rate decreases as η increases, because increasing the EHUs or decreasing

the IUs lead to decreasing the sum-rate. This figure also shows that increasing the total

number of IUs increases the sum-rate but with a slower rate, since the rate achieved

by increasing Nu = 4 to Nu = 8 is around double the rate achieved by increasing

Nu = 8 to Nu = 12. This is because adding one user to the system decreases the

assigned power (on average) for the existing users for a given fixed transmit power.
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Figure 5.10: The sum-rate versus η (the percentage of EHUs out of total number of
users Nu), with different total number of users, FoV= 45o.
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Figure 5.11: The total harvested energy versus η (the percentage of EHUs out of total
number of users Nu) with different total number of users, FoV= 45o.

Lastly, Fig. 5.11 shows that as the fraction of EHUs increases, the total harvested

energy increases. As expected, this is mainly due to two main reasons. Firstly, for

a fixed number of users Nu, as the fraction of EHUs increases, the number of EHUs

increases, which adds to the total harvested energy. Secondly, decreasing the number
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of IUs leads to decreasing the number of constraints in (5.19b), which increases the

search space of (5.19b); thereby increasing the objective function. The figure further

shows that, if η = 1 (i.e. when all users are EHUs), all the APs operate with a highest

DC-bias (i.e. bi = IH , i = 1, . . . , NA), and so both the iterative algorithm and the

baseline achieve the same performance. On the other hand, if η = 0 (i.e., when all

users are IUs), the total harvested energy becomes zero.

5.6 Conclusions

VLC-based systems are expected to play a major role in achieving the ambitious

metrics of next generation indoor wireless networks. This chapter considered a VLC

setup which considered the coexistence of both IUs and EHUs, and addressed the

problem of maximizing a weighted sum of the total harvested energy and the sum-

rate by means of properly adjusting the DC-bias values at the coordinating VLC

APs and the messags’ power vector subject to QoS constraints (minimum required

data rate at IUs and minimum required harvested energy at EHUs). The chapter

solved such a difficult problem using an iterative algorithm by first using an inner

convex approximation, and then by properly compensating for the approximation in

an outer loop. Simulation results showed that an appreciable, balanced performance

improvement in both utility functions (the sum-rate and the total harvested energy)

can be achieved by jointly optimizing the DC-bias vector and the messages’ power

vector.
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CHAPTER 6

CONCLUSION AND FUTURE

WORK

6.1 Conclusion

In this thesis, we considered and studied multiple types of VLC systems: hybrid

VLC/RF systems, standalone VLC networks based on APs cooperation and user-

centric design, cooperative NOMA-VLC networks, and VLC networks that contain

energy-harvesting users. Different schemes and optimization techniques were proposed

to improve the performance of VLC networks and to make them qualified for the future

wireless communication networks.

Solving the power allocation and APs assignment problems jointly can provide

an appreciable improvement in terms of achievable data rates and fairness in hybrid

VLC/RF systems. When the number of users is less than the number of APs, it is

appropriate to use the user-centric design to mitigate the inter-cell interference and

improve the energy efficiency of standalone VLC networks. Based on user-centric
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design, we proposed a new clustering method, a new metric for APs association,

and algorithms to jointly allocate the power and select the APs for energy efficiency

maximization.

For extending the VLC coverage and mitigating the blockage rate, we proposed a

new users’ cooperation approach based on cooperative NOMA. A problem to jointly

allocate the power, select the links for poor users, and pair the users was formulated

to maximize the weighted sum rate. For such formulated problem, an optimal and

suboptimal solutions were proposed and compared with traditional NOMA scheme.

It can be concluded that, the proposed scheme and solutions provide a significant

improvement in sum-rate and fairness in VLC networks.

VLC networks might contain an energy-harvesting users such as sensors and IoT

devices. Hence, we studied a VLC system that contains two types of users which

are energy-harvesting users (EHUs) and information users (IUs). In such system, we

used a cooperative transmission, DC-bias allocation, and power allocation to balance

between the received harvested energy at EHUs and the received data rates at IUs.

Simulation results showed that an appreciable, balanced performance improvement in

both utility functions (the sum-rate and the total harvested energy) can be achieved

by jointly optimizing the DC-bias vector and the messages’ power vector.

6.2 Future Work and Open Research Problem

Based on the existing work in the literature, in this section, we outline different

challenges and open research problems that need to be considered and investigated in
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the future work.

6.2.1 Load Balancing, and CoMP Transmission

• Users’ FoV alignment for balancing the load: we show before that many studies

have been dedicated to balance the load in VLC or in hybrid VLC/RF net-

works. These studies focused mainly on optimizing the users’ association, time

or bandwidth resource allocation, and the power allocation. However, as we

show in Section 1.2.1, the users’ FoV parameter has a great impact on the sys-

tem coverage, inter-cell interference, handover overhead, and on channel qual-

ity. Therefore, optimizing the users’ FoV jointly with distributing the users

and allocating the power would be more effective in balancing the load and in

maximizing the system utilities.

• User-centric design in hybrid VLC/RF systems: different papers optimized the

user-centric cell design in standalone VLC networks [47], [108]. However, opti-

mizing the user-centric cell design in hybrid RF/VLC networks would be more

challenging and leads to a high impact in improving the system utilities. The

problem can be divided into two interlinked problems, which are assigning the

users to networks (either RF or VLC) and clustering the users and assigning

the APs in each network. These two problems can be solved alternatively to

improve the system utility and to achieve the required constraints.

• Optimizing the joint cell formation and power allocation in user-centric VLC

design: it was shown that the procedures user clustering, APs association, and

173



power allocation are interlinked problems [108], but only a subboptimal ap-

proach has been proposed for jointly associating the APs and allocating the

power. However, formulating an optimization problem that considers the three

procedures and proposing solutions for the formulated problem would be more

efficient in improving the energy efficiency or the sum-rate. This problem can

be formulated to optimize global energy efficiency of the system by jointly im-

plementing the user clustering, APs association, and the power allocation.

• Extending the proposed hybrid VLC/RF Co-NOMA scheme to be applied in

multi-cell VLC systems: In multi-cell VLC system the inter-cell interference

shows up and the decision of classifying the users into weak and strong users

does not depend only on the channel quality. It depends also on the received

interference and on the load distribution in cells. Hence applying the proposed

hybrid VLC/RF Co-NOMA scheme (proposed in Chapter 4) can be extended

to balance the load in multi-cell and to improve the sum-rate and fairness of the

system.

6.2.2 NOMA-VLC Networks

Despite all the aforementioned work on NOMA-VLC systems, numerous challenges

remain, and important topics in this area of research are still to be investigated. Below

is a list of some key open problems in NOMA-VLC networks:

• Hybrid NOMA-VLC systems: the hybrid NOMA is to group the users into mul-

tiple clusters, and assign to each cluster a designated resource block, following
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the NOMA principle in each cluster. To our knowledge, the hybrid NOMA has

not been studied yet in VLC systems. The rational for using the a hybrid NOMA

is its ability to reduce the system’s complexity. Indeed, having a large number

of users in the VLC system, and assigning them to the same resource block can

be problematic, since the user with the best channel must decode all the signals

of all the users before decoding his/her own signal, creating delays the decoding

and resulting in high complexity. Hybrid NOMA systems have been proposed

in RF networks to take into account both the system performance and complex-

ity. Therefore, we propose to study the hybrid NOMA-VLC system by finding

the optimal user grouping, allocating the power to each group, the power inside

each group, or grouping the users and allocating the power jointly, for sum-rate

maximization purposes. This system can be extended to be a multi-cell system,

in which the user-to-AP association problem also exists and should be consid-

ered. Hence, the problem would be then a two layer user grouping with power

allocation.

• NOMA with different QoS requirements: In real life, not all users require the

same amount of data rate. For example, some of them may stream videos,

whereas others are texting or exploring websites. Also some receivers can be

IoT devices that need low data rates. Allocating power, in the most effective

way, to users with different needs still remain a challenge, and obtaining the

required data rate for each user, even when some weak users (users with poor

channels) require higher data.
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• Modulation and coding for NOMA-VLC system: several papers studied the

modulation and coding schemes in NOMA RF networks [132], [133]. As the

modulation and coding in VLC networks is different (based on IM/DD), inves-

tigating the modulation and coding schemes in NOMA-VLC systems would be

worthy for practical implementation.

• NOMA in coordinated multi-point (CoMP) VLC networks: CoMP VLC system

means that multiple APs are cooperating to transmit the data for the users.

The cooperation is for mitigating the inter-cell interference and enhancing the

received data rate by optimizing the precoding matrix. Assume a VLC system

consisting of N APs and M users, where M > N , the questions should be raised

is that how the users should be sorted from the strongest user to the weakest

user?, how should the users be grouped to be served by the cooperating APs?,

and how should the power be allocated. Combining the two techniques NOMA

and CoMP surly leads to having a significant performance improvement in VLC

systems.

• Hybrid SDMA and NOMA: SDMA in VLC can be implemented using angle

diversity transmitters that can generate several parallel narrow light beams di-

rected to different directions using different LEDs. The goal of using SDMA

is to mitigate inter-cell interference in VLC networks by directing the light to

intended users and decreasing the overlap areas. However, some LEDs can be

directed to non users, some to one user, and others to multiple users. The LEDs

that are assigned or directed to serve multiple users can use the NOMA as a
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Figure 6.1: The proposed hybrid SDMA/NOMA system.

multiple access and to maximize the data rate. SDAM is used to mitigate or

eliminate inter-cell interference, and NOMA is used to mitigate the intra-cell

interference using SIC. By combining both of them, the system performance is

significantly improved, in terms of data rate and system’s fairness. Fig. 6.1

shows a system model in which SDMA and NOMA can coexist in VLC systems,

where the NOMA can be used in LEDs that serve more than one user.

6.2.3 Harvesting the Energy in VLC Systems

Despite all the work conducted in the literature (see Introduction section in Chapter

5), there are several remaining challenges associated with the transfer of information

and power, using a light wave. Here are below a few key issues that need to be

investigated and optimized for obtaining the most efficient power and information

transfer systems.

• Simultaneous light-wave for information, illumination, and power transfer: Sev-

eral studies investigated VLC systems in which both energy and information

could be transferred to users. However, achieving both functions in VLC net-

works might violate the illumination requirements. We therefore propose to

study the three functions of the light simultaneously by formulating optimiza-
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tion problems that allocate DC bias, available power, and available resources.

• Joint DC-bias and resource allocation for sum rate with the presence of energy-

harvesting users: allocating both the DC bias and the available resources at the

VLC APs leads to a significant improvement of the VLC performance under

simultaneous lightwave information and power transfer (SLIPT). An effective

allocation of resources (to the users) provides opportunities to preserve high

energy that can be harvested by users.

• As proposed in the NOMA-VLC Section, a cooperative NOMA can be imple-

mented in VLC systems; however, the strong user may do not want to consume

some of his/her power by forwarding the signal to the weak user. We therefore

suggest investigating ways for the strong user to harvest the energy from the

light intensity, in the first phase, and then use it to forward the weak user’s

signal. This means that the transmitter should optimize the DC bias and the

information power to maximize the sum rate and guarantee acceptable fairness.

• Optimizing the MISO-VLC network with NOMA: when the system consists of

multiple VLC APs cooperating to transmit the information and power for mul-

tiple users, if the number of users is larger than the number of APs, the key

issue that should be addressed is whether orthogonal multiple access (OMA) or

NOMA is the best system for scheduling users and harvesting the energy. As

previously reported in the literature, NOMA can provide better data rates than

OMA. In other words, NOMA can achieve the required users’ data rate with a

small amount of transmit power (information power), which allow the DC bias
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to increase, resulting in increasing the harvested energy.

• Placing the energy harvesting users: suppose that a VLC system consisting of

multiple information users (users interested only in gathering the information),

and IoT devices that work only in uplink (like sensors) and interested only in

harvesting the energy (energy harvesting (EH) users). Optimizing the positions

of the EH users in order to maximize the harvested energy and to achieve the

required QoS at the information users is crucial in VLC systems. Yet, it remains

challenging. Therefore, there is needed to investigate ways of implementing and

simplifying this task.

6.2.4 Securing VLC Networks

Despite the significant number of studies already performed, there are still some im-

portant issues to tackle and still many challenges for researchers to overcome in the

future. A few of them are highlighted below, together with potential solutions that

may improve the physical layer security (PLS) in VLC systems:

• Joint PLS and load balancing in hybrid RF/VLC systems with considering the

illumination constraints: All the conducted works on balancing the load in hy-

brid VLC/RF networks are implemented to maximize the system utilities (such

as sum-rate and/or fairness) without considering the secrecy constraints. Hence,

we propose to design and optimize the joint load balancing with secrecy and illu-

mination constraints when single or multiple, known or unknown, eavesdroppers

exist. This problem contains joint user-to-APs association and power allocation
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to maximize the secrecy capacity and achieve the required illumination.

• How to optimize the beamforming vector in MISO-VLS systems when an active

and passive eavesdropper exists. The common approach for the active eaves-

dropper is the zero-forcing preacoding approach, the common approach for the

passive eavesdroppers is the design of protected zones, using an artificial noise

or by steering the beamforming lobes. This raises an important question: what

would the appropriate method be to improve the security, if the transmitters

know the CSI of some eavesdroppers and they do not know the CSI of the others,

or have a limited information about the eavesdropper (e.g. location only).

• PLS in NOMA-VLC system: Several recent papers investigated the PLS in

NOMA RF networks for different system models [134], [135]. To this day, no

paper has studied the PLS in NOMA-VLC systems. Because of the unique

properties of VLC systems, the PLS in NOMA-VLC systems is required to be

investigated, evaluated, and optimized.

• User-centric cell formation based in the presence of eavesdroppers: As shown

above, the user-centric cell formation is an appropriate scenario when the num-

ber of users is much smaller than the APs. Suppose that the network contains

some eavesdroppers (whether their CSI are available or not), the questions raised

are: 1) how should the users be clustered? 2) how should the APs be associated

to the clustered users? 3) which APs should participate in communication, and

which should be switched off? 4) could the switched off APs help enhance the

secrecy sum-rate in emitting jamming signals?

180



All the above questions indicate that the joint PLS and user-centric design

should be investigated and optimized together.

6.2.5 Multi-User Outdoor VLC Networks

Toward developing smart cities, the street and park lamps can be utilized as VLC APs

that can be used to serve multiple users. The feasibility and popularity of the VLC

outdoor communication depends highly on defeating or mitigating the effect of the

contaminating light stemming from the sun and the ambient lights [136]. Most of the

optimization techniques proposed for indoor VLC networks cannot be applied directly

in outdoor VLC networks. To extend the techniques which have been proposed for

indoor VLC networks to be used in outdoor VLC networks, different issues should be

considered in formulating and solving the optimization problems:

• Because of the sun light, the receivers might be blinded to detect the received

light since the ambient light illuminance might be stronger than the transmitter

illuminance. This contaminating light varies during the day time and can be

mitigated using lens and filter at the receivers [136]. Islim et al. [137] showed

that in the presence of the sun light, a reliable communication can be achieved

at high speed data rates and by employing an optical bandpass blue filter that

can reduce the effect of the sun light.

• The outdoor VLC channel is not stable and static like the ones in the indoor.

The outdoor VLC channel is attenuated due to the atmosphere pressure and

the inhomogeneities in the temperature, resulting in having the refractive index
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varies along the transmission path [138].

• In outdoor VLC systems, the transmitters’ distribution, transmitters’ height,

density of transmitters, and coverage area are different from those in indoor

VLC systems [139]. In particular, the typical transmitters’ height is 8 m, the

cell radius is around 7 m, and the APs’ distribution might be one dimensional

in the street. Whereas, in indoor systems, the typical transmitters’ height is 3

m, the cell radius is around 2-3 m, and the APs’ distribution is two dimensional

in the ceiling. These outdoor features lead to having a less inter-cell interference

(because of the one dimensional distribution), lower channels quality (because of

the longer distances between users and receivers), larger cell coverage (because

of the APs heights), and less rate of blockages than the case in indoor VLC

systems. In addition, the required illumination (in Lux) in the outdoor is less

restricted than the one in the indoor environments [139].
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