
 



II 

 

 



iii 

 

 

 

 

 

 

 

© Azzat Ahmed Ali AL-Sadi 

2018 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

  



v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedication 

 

To my father, whose journey through life has demonstrated the true meaning of hard work, 

courage, and perseverance; I dedicate this work to your valuable and imprinted words for 

higher academic achievements. 

 

May your soul rest in eternal peace. 

 

 

 

 

  



vi 

 

ACKNOWLEDGMENTS 

 

Acknowledgment is due to King Fahd University of Petroleum and Minerals and 

Hadhramout University for supporting this research. I would also like to acknowledge my 

sponsors, Hadhramout Establishment for Human Development, for granting me this 

outstanding opportunity to obtain my Ph.D. degree, and for their generous support.   

Moreover, I would like to express my sincere appreciation to the dissertation committee 

for the encouragement and trust that they have extended to me. Many thanks due to Dr. 

Mahmood Niazi, Dr. Mohammad Alshayeb, Dr. Shokri Selim, Dr. Tareq Sheltami and Dr. 

Mohammad Elrabaa. 

 

I would also like to express my deep gratitude for my main mentor in this research, Dr. 

Mahmood Niazi for his guidance and support. I am particularly grateful and fortunate to 

have worked with him, and with my thesis committee members, as I have gained valuable 

insights into this field. 

 

I would also like to thank all my family and friends who cared to share this experience and 

provided mental support. 

  



vii 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................ VI 

TABLE OF CONTENTS ........................................................................................................... VII 

LIST OF TABLES ..................................................................................................................... XIII 

LIST OF FIGURES ................................................................................................................... XIV 

LIST OF ABBREVIATIONS ................................................................................................... XVI 

ABSTRACT ..............................................................................................................................XVII 

 XIX ............................................................................................................................... ملخص الرسالة

CHAPTER 1 INTRODUCTION ................................................................................................. 1 

1.1 Overview ............................................................................................................................... 1 

1.2 Problem Statement and Motivation....................................................................................... 2 

1.2.1 The Ability of Physiological Signals to Identify Human Moods and Intentions ....................... 4 

1.2.2 Ease of Physiological Data Collection and Analyzing .............................................................. 5 

1.3 Research Objectives ............................................................................................................... 6 

1.4 Research Questions ............................................................................................................... 9 

1.5 Summary of Research Contribution ..................................................................................... 10 

1.6 Thesis Roadmap ................................................................................................................... 12 

1.7 Summary ............................................................................................................................. 13 

CHAPTER 2 BACKGROUND .................................................................................................. 14 

2.1 Cybersecurity ....................................................................................................................... 14 

2.1.1 Access Control ..................................................................................................................... 15 

2.1.2 Software Development Security .......................................................................................... 15 



viii 

 

2.1.3 Business Continuity and Disaster Recovery Planning ........................................................... 15 

2.1.4 Cryptography ....................................................................................................................... 16 

2.1.5 Information security and risk management ......................................................................... 16 

2.1.6 Law, Investigation, and Ethics .............................................................................................. 17 

2.1.7 Operations Security ............................................................................................................. 17 

2.1.8 Physical and Environmental Security ................................................................................... 17 

2.1.9 Security Architecture and Design ......................................................................................... 18 

2.1.10 Telecommunications and Network Security ........................................................................ 18 

2.2 Classics System Security Characteristics .............................................................................. 19 

2.3 Types of Insider Attacks ....................................................................................................... 20 

2.3.1 Fraud ................................................................................................................................... 20 

2.3.2 IT Sabotage .......................................................................................................................... 21 

2.3.3 Insider Theft of Intellectual Property ................................................................................... 22 

2.3.4 Espionage ............................................................................................................................ 22 

2.4 Motivations behind Insider Attacks ..................................................................................... 24 

2.5 Impact of Insider Attacks ..................................................................................................... 27 

2.6 Insider Threat Detection: Existing Solutions ........................................................................ 28 

2.7 Summary ............................................................................................................................. 29 

CHAPTER 3 LITERATURE REVIEW ................................................................................... 31 

3.1 Overview ............................................................................................................................. 31 

3.2 Awareness of Insider Attacks ............................................................................................... 31 

3.3 Insider Attack Detection Methods ....................................................................................... 33 

3.3.1 Anomaly Detection Methods ............................................................................................... 35 

3.3.2 Honeypot Traps ................................................................................................................... 40 

3.3.3 Graph-Based Methods ......................................................................................................... 44 



ix 

 

3.3.4 Game-Based Methods .......................................................................................................... 48 

3.3.5 Physiological Methods ......................................................................................................... 50 

3.4 Limitations in the Existing Studies ........................................................................................ 64 

3.4.1 Limitations of Anomaly Detection Methods ......................................................................... 64 

3.4.2 Limitations of Honeypot Traps ............................................................................................. 65 

3.4.3 Limitations of Game-Based Approaches............................................................................... 66 

3.4.4 Limitations of Graph-Based Approaches .............................................................................. 67 

3.4.5 Limitations of physiological methods ................................................................................... 68 

3.5 Summary ............................................................................................................................. 71 

CHAPTER 4 RESEARCH METHODOLOGY ........................................................................ 73 

4.1 Overview ............................................................................................................................. 73 

4.2 Stage 1: The Literature Survey ............................................................................................. 73 

4.3 Stage 2: Building the Bio-signals Data Set ............................................................................ 75 

4.4 Stage 3: Features Extraction ................................................................................................. 79 

4.5 Stage 4: Proposed System .................................................................................................... 80 

4.5.1 Sensors ................................................................................................................................ 81 

4.5.2 Interfaces ............................................................................................................................. 83 

4.5.3 Features Extractor ................................................................................................................ 83 

4.5.4 Attack Assessment ............................................................................................................... 84 

4.5.5 Comparative Signal Database .............................................................................................. 85 

4.5.6 Attack Detector .................................................................................................................... 86 

4.6 Evaluating the Proposed System .......................................................................................... 86 

4.7 Summary ............................................................................................................................. 87 

CHAPTER 5 EXPERIMENTAL WORK ................................................................................. 89 



x 

 

5.1 Overview ............................................................................................................................. 89 

5.2 Experiment Setup ................................................................................................................ 90 

5.3 Experiment Environment ..................................................................................................... 90 

5.4 Experiment Scenarios .......................................................................................................... 91 

5.4.1 First Scenario: Normal Activities .......................................................................................... 92 

5.4.2 Second Scenario: Malicious Activities .................................................................................. 93 

5.5 Bio-signals Data set ............................................................................................................. 95 

5.6 Ethical Considerations ......................................................................................................... 95 

5.7 Experiment Devices ............................................................................................................. 96 

5.7.1 The NeuroSky MindWave .................................................................................................... 96 

5.7.2 Wild Divine .......................................................................................................................... 97 

5.8 Brain Waves ........................................................................................................................ 98 

5.8.1 An Electroencephalogram (EEG) .......................................................................................... 98 

5.8.2 Brainwaves: Types and Functions ........................................................................................ 98 

5.9 An Electrocardiogram (ECG)............................................................................................... 100 

5.9.1 Types of ECG Wave Components ....................................................................................... 101 

5.10 Feature Extraction ............................................................................................................. 103 

5.10.1 Signal Preprocessing .......................................................................................................... 103 

5.10.2 EEG Features ..................................................................................................................... 104 

5.10.3 ECG Features ..................................................................................................................... 107 

5.10.4 Feature Frame ................................................................................................................... 108 

5.11 Machine Learning .............................................................................................................. 108 

5.11.1 Random Forest .................................................................................................................. 110 

5.11.2 Support Vector Machine .................................................................................................... 111 

5.11.3 Neural Network ................................................................................................................. 113 



xi 

 

5.12 Summary ........................................................................................................................... 114 

CHAPTER 6 RESULTS AND EVALUATION .................................................................... 116 

6.1 Overview ........................................................................................................................... 116 

6.2 Hypotheses ........................................................................................................................ 116 

6.3 Evaluation Metrics ............................................................................................................. 118 

6.3.1 Accuracy ............................................................................................................................ 120 

6.3.2 Precision ............................................................................................................................ 120 

6.3.3 Recall ................................................................................................................................. 121 

6.3.4 F-score ............................................................................................................................... 121 

6.3.5 Area Under the Curve AUC ................................................................................................. 121 

6.3.6 Kappa ................................................................................................................................. 122 

6.3.7 Matthews Correlation Coefficient ...................................................................................... 122 

6.3.8 Percent Difference ............................................................................................................. 123 

6.3.9 Cross-Validation ................................................................................................................. 123 

6.3.10 Confidence Interval ............................................................................................................ 123 

6.4 Hypotheses Testing and Validity ........................................................................................ 124 

6.5 Presenting Results ............................................................................................................. 125 

6.6 Results of EEG Features ...................................................................................................... 127 

6.6.1 Rejection of Null Hypothesis H0-1 ...................................................................................... 135 

6.7 Results of EEG+ECG Features ............................................................................................. 136 

6.7.1 Rejection of Null Hypothesis H0-2 ...................................................................................... 138 

6.8 Classification Accuracy Assessments .................................................................................. 138 

6.9 Evaluation Using Three Classifiers ...................................................................................... 141 

6.10 Evaluation Using a Group of Frames .................................................................................. 146 

6.11 Evaluation Using Varied Amount of Malicious Data ........................................................... 147 



xii 

 

6.12 Evaluation for New Incoming Data .................................................................................... 152 

6.13 Evaluating proposed method with Suh and Yim approach ................................................. 155 

6.14 Summary ........................................................................................................................... 157 

CHAPTER 7 CONCLUSION, LIMITATIONS AND FUTURE RESEARCH ................... 158 

7.1 Conclusion ......................................................................................................................... 158 

7.2 Limitations......................................................................................................................... 162 

7.2.1 Sensors .............................................................................................................................. 162 

7.2.2 Number of Used Devices ................................................................................................... 163 

7.2.3 Hardware Limitations ........................................................................................................ 163 

7.2.4 Unused Bio-signals ............................................................................................................ 163 

7.2.5 Environment of collecting Data ......................................................................................... 164 

7.2.6 Final Product Deployment ................................................................................................. 164 

7.3 Future Research ................................................................................................................. 165 

REFERENCES .......................................................................................................................... 166 

APPENDIX A ........................................................................................................................... 180 

APPENDIX B ........................................................................................................................... 189 

VITAE ....................................................................................................................................... 191 

 

 

 

  



xiii 

 

LIST OF TABLES 

Table 1: The Description of XABA Scenarios ........................................................................ 38 

Table 2: The Proposed Scenarios by Young et al. [57] ........................................................... 39 

Table 3: The Categorization of Insider Threats Target The Nuclear Reactors ....................... 50 

Table 4: The Main And Subclasses Of The Human Factors by Greitzer et al. [93] ............... 52 

Table 5: The Evaluation Indicators Greitzer et al. [9] ............................................................. 53 

Table 6: Extracted Features by Babu and Bhanu [83] ............................................................. 55 

Table 7: Summarizing The Surveyed Methods ....................................................................... 62 

Table 8: Features Extractor Output ......................................................................................... 84 

Table 9: Frequency Ranges of EEG Bands ........................................................................... 105 

Table 10: Confusion Matrix .................................................................................................. 119 

Table 11: PD of Accuracy Ranges ........................................................................................ 137 

Table 12: Comparing Approaches using Confidence Interval, FPR and FNR ...................... 142 

Table 13: Comparison of Proposed Approaches and the Raw Brainwaves .......................... 143 

Table 14: Comparing EEG+ECG with the Extracted EEG Based on Gender ...................... 143 

Table 15: PD of The Classifiers' Accuracy Using EEG Features.......................................... 145 

Table 16: PD of Classifiers's Accuracy Using EEG+ECG ................................................... 146 

Table 17: Confidence Intervale, FP and FN Rates of Proposed EEG+ECG ......................... 152 

Table 18: Results of EEG+ECG Approach Per Participant .................................................. 153 

Table 19: Average Accuracy, FPR and FNR of The 84 Participants .................................... 153 

Table 20: Comparing Approaches Based on Gender ............................................................ 155 

  



xiv 

 

LIST OF FIGURES 

Figure 1: The CERT Breakdown of Intentional Insider Crimes in United States .................. 23 

Figure 2: Vulnerable Assets For Insider Attacks .................................................................... 28 

Figure 3: The Taxonomy of Insider Attacks Detection Methods ........................................... 34 

Figure 4: KFUPM Distributed Honeynet ................................................................................ 42 

Figure 5: PAS Graph For a Single User .................................................................................. 46 

Figure 6: The Main Classes of Organizational Factors by Greitzer et al. [93] ....................... 53 

Figure 7: Research Methodology ............................................................................................ 74 

Figure 8: Data set Naming Process ......................................................................................... 78 

Figure 9: Data set Structure .................................................................................................... 78 

Figure 10: ECG Data Representation...................................................................................... 79 

Figure 11: Schematic Diagram of The Proposed System ....................................................... 81 

Figure 12: Wearable ECG Sensors ......................................................................................... 82 

Figure 13: Transforming EEG From Time Domain To Frequency Domain .......................... 83 

Figure 14: The Experimental Lab Environment ..................................................................... 91 

Figure 15: NeuroSky MindWave Headset .............................................................................. 96 

Figure 16: The Wild Divine Device ........................................................................................ 97 

Figure 17: Frequency Spectrum of Normal EEG .................................................................. 100 

Figure 18: R Peak To R Peak Interval of ECG [147] ........................................................... 101 

Figure 19: Heart Rate Variability (HRV) [149] .................................................................... 102 

Figure 20: The Main Diagram of The Features Extraction Process...................................... 104 

Figure 21: EEG Feature Frame ............................................................................................. 108 

Figure 22: Feature Frame ...................................................................................................... 108 

Figure 23: Random Forest Procedures .................................................................................. 111 

Figure 24: Selecting The Best Hyperplane ........................................................................... 112 

Figure 25: Neural Network Structure.................................................................................... 114 

Figure 26: One Tail t-Test ..................................................................................................... 118 

Figure 27: Testing The Validity of The Null Hypotheses .................................................... 125 

Figure 28: Results Presentation ............................................................................................ 126 



xv 

 

Figure 29: Generating a Group of Frames ............................................................................. 127 

Figure 30: Features for Comparison ...................................................................................... 128 

Figure 31: Classification Accuracy using RF ........................................................................ 129 

Figure 32: Accuracy of Proposed Approach in Detail .......................................................... 129 

Figure 33: Impact of Features on the Results ........................................................................ 130 

Figure 34: Effect of AD Factor ............................................................................................. 131 

Figure 35: Effect of AD Factor in Details ............................................................................. 131 

Figure 36: Accuracy Comparison of Feature-frames ............................................................ 132 

Figure 37: Accuracy Comparison of Feature-frames using Scatter Chart ............................. 133 

Figure 38: EEG Frequency Bands During Normal and Malicious Acts ............................... 134 

Figure 39: Accuracy of The Proposed EEG And Raw EEG Data Using RF ........................ 134 

Figure 40: Scatter Chart of Accuracy for The Proposed EEG and Raw EEG ....................... 135 

Figure 41: Accuracy of The Proposed EEG+ECG and EEG Features Using RF ................. 136 

Figure 42: Scatter Chart of Participant' Accuracy using EEG+ECG .................................... 137 

Figure 43: (a,b,c,d,e,f): Evaluating the Results using Several Metrics ................................. 141 

Figure 44: Accuracy of proposed EEG+ECG method using three classifiers ....................... 144 

Figure 45: Accuracy of proposed EEG method using three classifiers ................................. 145 

Figure 46: Comparing EEG+ECG Accuracy of AVG, Median, and STD ............................ 147 

Figure 47: Percent incorrect with Different Size of Data ...................................................... 148 

Figure 48: Incorrect Data of the Proposed EEG+ECG and the EEG Only ........................... 149 

Figure 49: ROC Curves and the Training Time per Second Using RF ................................. 150 

Figure 50: ROC Curves and the Training Time per Second Using SVM ............................. 151 

Figure 51: ROC Curves and the Training Time per Second Using NN ................................ 151 

Figure 52: Accuracy per participant ...................................................................................... 154 

Figure 53: Feature Frame of Suh ans Yim Approach ............................................................ 155 

Figure 54: Comparing proposed approach with Suh’s  Method using Accuracy .................. 156 

Figure 55: Comparing proposed with Suh’s  Method using Training Time ......................... 156 

 

 

  



xvi 

 

LIST OF ABBREVIATIONS 

EEG  :  Electroencephalogram 

ECG  :  Electrocardiogram 

EEG+ECG :  A Combination of EEG and ECG Features 

SVM  :  Support Vector Machine Classifier 

RF  :  Random Forest Classifier 

NN  :  Backpropagation Neural Network Classifier 

TP  :  True Positive (Detected Malicious Signals) 

TN  :  True Negative (Detected Normal Signals) 

FP  :  False Positive (Undetected Malicious Signals) 

FN  :  False Negative (Undetected Normal Signals) 

 

 

 

  



xvii 

 

ABSTRACT 

 

Full Name : Azzat Ahmed Ali AL-Sadi 

Thesis Title : TOWARDS AN EFFECTIVE APPROACH OF INSIDER ATTACKS 

DETECTION USING THE HUMAN PHYSIOLOGICAL SIGNALS 

Major Field : Computer Science and Engineering 

Date of Degree : November 2018 

 

CONTEXT: Insider threats are among the most serious security concerns for organizations 

because of their catastrophic consequences on the organization's revenues and reputation. 

Several approaches have been proposed to detect the insider threats and mitigate their risk. 

However, discovering such attacks is a very challenging task because of the difficulty of 

distinguishing between the normal and the malicious activities conducted by trusted users. 

Insider threats are committed by people with enhanced knowledge about the organization's 

security mechanisms, such as employees and trusted partners who have authorized access 

to the digital systems. 

OBJECTIVES: The primary objective of this study is to detect the insider attacks before 

it causes catastrophic damage to the organization system. Furthermore, providing a data 

set of bio-signals that collected during real insider threats to develop and extend the 

research in this area.  

METHODS: We propose an approach that utilizes a combination of the human brain 

activities and the electrocardiogram (ECG) to identify the malicious acts of a trusted 

employee. The approach compares the normal and malicious patterns of the human bio-

signals to recognize the insider threats. The experimental scenarios for collecting the brain 

activities and ECG signals were carefully designed based on physiological considerations, 
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without affecting the participants' decision to commit the attacks. The wearable devices 

were utilized to collect the bio-signals because of their benefits such as being small, easy 

to connect to a computer, comfortable, and cheap. 

RESULTS: Eighty-four participants were included in this study. The achieved results 

illustrate that the proposed approach can detect the malicious threats with an average 

accuracy up to 98.4%. The results were evaluated further using several metrics to achieve 

high credibility and great confidence. In addition, this research provides a data set of the 

bio-signals collected from a wide range of participants for further research in this area. 

CONCLUSION: The proposed approach can accurately identify the malicious activities 

even if the amount of the incoming data is too small. Thus, it will help organizations to 

detect the insider attackers and to take the necessary actions to mitigate the risk of such 

devastating attacks. 
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التهديدات الداخلية من بين أكثر المخاوف الأمنية خطورة للمنظمات بسبب عواقبها الكارثية على  تعتبر

التخفيف من ف عن التهديدات الداخلية والعديد من الأساليب للكشقترحت وقد ا   إيرادات المنظمة وسمعتها.

للغاية بسبب صعوبة التمييز بين الأنشطة  معقدةمهمة يعتبر ، فإن اكتشاف هذه الهجمات ومع ذلكخطورتها. 

يتم تنفيذ التهديدات الداخلية من حيث  العادية والنشاطات الضارة التي يقوم بها المستخدمون الموثوقون.

، مثل الموظفين والشركاء الموثوق بهم الذين حول آليات أمان المؤسسة جيدةأشخاص لديهم معرفة قبل 

الدراسة للكشف عن الهجمات الداخلية قبل  هذهتهدف  .للمؤسسة لديهم حق الوصول إلى الأنظمة الرقمية

 هذا المجال نطاق البحث فيإثراء وتطوير  أن تتسبب في أضرار كارثية للمؤسسات. وعلاوة على ذلك،

ولتحقيق  توفير قاعدة بيانات من الإشارات الحيوية التي تم جمعها خلال تهديدات داخلية حقيقية. من خلال

وتخطيط القلب ( EEG)هذه الاهداف تقترح هذه الدراسة نهجًا يستخدم مزيجًا من أنشطة الدماغ البشري 

(ECGلتحديد الأعمال الخبيثة لموظف موثوق به ) . النهج المقترح بين الأنماط الطبيعية والخبيثة يقارن

للحصول على الإشارات الحيوية المستخدمة . للإشارات الحيوية البشرية للتعرف على التهديدات الداخلية

، عنايةتم تصميم السيناريوهات التجريبية لتجميع أنشطة الدماغ وإشارات تخطيط القلب بفي هذه الدراسة 

تم الهجمات الداخلية.  دون التأثير على قرار المشاركين بارتكابو فيزيولوجية،العتبارات الا مع مراعاة

يرة وسهلة التوصيل استخدام الأجهزة القابلة للارتداء لجمع الإشارات الحيوية بسبب فوائدها مثل كونها صغ

تائج النتوضح وتشمل هذه الدراسة مشاركة أربعة وثمانون متطوعا.  ، ورخيصة.بجهاز كمبيوتر، مريحة

تم  ٪.98.4اكتشاف التهديدات الخبيثة بمتوسط دقة يصل إلى  ايمكنه ةالمقترح الطريقةالتي تم تحقيقها أن 

 تقييم النتائج بشكل أكبر باستخدام عدة مقاييس لتحقيق مصداقية عالية وثقة كبيرة.اختبار النهج المقترح و

 ممات الواردة صغيرًا جداً. إذا كان حجم البياناحتى عالية يمكن للنهج المقترح تحديد الأنشطة الضارة بدقة 

هذه الهجمات  جراءات اللازمة للتخفيف من مخاطريساعد المنظمات على الكشف عن المهاجمين واتخاذ الإ

المدمرة.
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1 CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Currently, information is the new world currency: money has value and so too does 

information. Multinational corporations, financial institutions, military organizations, and 

even small companies go to great lengths to protect their privacy and security from attacks. 

When a single computer is compromised in the organization, all other computers are 

vulnerable to attack [1]. Although traditional security methods are commonly used to 

protect computers and networks from attacks or unauthorized intrusions, these standard 

methods cannot prevent modern sophisticated insider attacks or initiate alerts to malicious 

insider activity. Several solutions have been developed for protecting organizations from 

outsider attacks. Among these solutions are data encryption, intrusion detection and 

prevention systems (IDS/IPS), and firewalls [2, 3]. However, attacks do not just come from 

outside; most of the harmful attacks occur from inside the organization, where the trusted 

employees can compromise the organization’s security. 

Insider attacks or insider threats become a significant security concern to organizations 

since differentiating between these crimes and non-malicious activities is difficult. Insider 

threats are committed by insiders who have more knowledge than outsiders do about the 

organization’s system and its security mechanisms [4]. There are two categories of insider 
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attacks: the first category occurs when insiders accidentally or without malicious intent 

cause harm to the organization’s security, whereas second-category insider attacks are 

malicious and happen when insiders use their privileges intentionally to attack the 

organization’s security [5]. 

The scope of this research is to protect organizations from the second category of insider 

threats. This research aims to reduce the risk of intentional insider attacks by utilizing bio-

signals associated with human behavior in addition to machine-learning classifiers. This 

research includes conducting experimental scenarios on a segment of volunteers to 

discriminate between malicious and normal activities by distinguishing their bio-signals. 

1.2 Problem Statement and Motivation 

When most people think of attacks, they picture criminals and hackers trying to break into 

a network from outside the organization. However, they do not realize that some of the 

biggest threats are already inside. Insiders are employees and trusted partners with 

authorized access to digital systems and information. A recent survey on insider threats 

conducted by SpectorSoft on 355 IT professionals reveals that almost all organizations 

have experienced at least one insider attack; moreover, around 75% of all insider crimes 

are undetected. The survey goes further, describing the state of internal attacks as unlikely 

to improve soon, and pointed out that the total losses of organizations amounted to around 

$2.9 trillion globally per year as a result of employee fraud, while the US losses amounted 

to around $40 billion because of such insider fraud [6]. 

Insider attacks have become a significant security concern to financial institutions, 

organizations, and small companies. Several incidents of insider attacks targeting 
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governments, organizations, and even universities [7, 8] have been reported. The trusted 

nature of the insider access means that data breaches are largely undetectable by standard 

cybersecurity measures such as antivirus programs, firewall filtering, blocking systems, 

and disk encryption. 

Insider attacks cause extensive damage to organizations. Thinking about the added cost of 

the data breach is even more disconcerting and brings a bigger financial burden to an 

organization. The added costs come from a variety of sources, not just the financial loss of 

that information but also responding to that incident, fixing all damages, and installing 

preventative systems. Moreover, there are numerous tangible costs such as the loss of 

customer loyalty. Therefore, governments and organizations invest money and enact laws 

to reduce the impact of such attacks. 

Currently, several solutions have been used by organizations to mitigate the risk of insider 

attacks, such as monitoring employees’ behaviors or applying signature-based solutions. 

Monitoring employees’ behaviors (i.e., anger or revenge) is based on human experience to 

distinguish such behaviors [9]. Thus, this solution does not provide accurate results, and 

the organization could be deceived since human behaviors, which are bound to emotions, 

are not very clear and are difficult to reveal. in Greitzer’s model [9] or verbal behavior [10] 

to recognize a potential risk could be deceived by individuals. On the other hand, signature-

based solutions allow organizations to act against the insider attack—but after the incident 

[11]. When the incident occurs, organizations attempt to identify the signatures of insider 

attacks and develop a mechanism or policy to prevent the reoccurrence of this incident. 

This solution can protect organizations from the same attacks only and does not provide 

impregnable protection against different mechanisms of insider attacks. A new insider 
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attack could seriously damage the organization’s data and cost them substantial financial 

losses as the rapid development of technology supports attackers to develop new and 

sophisticated methods of insider attacks. 

Therefore, different and new solutions to insider attacks are urgently needed. The ongoing 

optimal solution for addressing the insider threat issue requires new tools and new thinking. 

Being able to detect an insider attack before it causes catastrophic losses is far better than 

being attacked and then building a defense system using policies and signatures to prevent 

similar incidents from happening again. So, the insider attack detection system must be 

based on fixed measures present in each attacker. No matter how different the techniques 

used by the attacker, these measurements remain constant as the attacker cannot control 

them. In this research, we target human physiological involuntary signals to distinguish 

between the employee’s normal and suspicious activities, thus detecting insider attacks. 

Physiological signals are spontaneous patterns that give indications of emotions and bad 

intentions [12]. Therefore, the difference between the physiological patterns of normal and 

suspicious acts would well indicate insider threats without human intervention or even 

knowledge of the attack mechanism. The reasons that prompted us to utilize human 

physiology in detecting insider attacks are as follows: 

1.2.1 The Ability of Physiological Signals to Identify Human Moods and 

Intentions 

Human physiological signals are spontaneous signals—i.e., signals done without will or 

self-control. Therefore, imitating these signals is extremely difficult. Physiological signals 

occur inside the human body and nervous system, where these processes are measured to 

assess bodily functions. Physiological signals are constantly changing in response to 
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changes in the outer environment of the human body and also in response to human 

emotions and thoughts. Physiological signals such as blood pressure, heart rate, 

temperature, and brain signals change themselves to find the optimal balance to human 

physiological states based on feedback from the human body’s built-in sensors [12, 13]. 

Human behaviors are usually accompanied by feelings and psychological changes such as 

anger, stress, and fear. Many researchers are keenly interested in studying the relationship 

between human behaviors and nervous system feedback. The process of monitoring bio-

signals and neuro-signals is called biofeedback or neurofeedback, which enables us to 

associate physiological signals with human feelings and behaviors. 

Moreover, biofeedback and neurofeedback have been used by researchers in several 

systems such as emotion recognition, intention detection [14], cryptographic systems 

(cryptographic key) [15], detecting read book genres [16], control systems, and crime 

detection systems such as a polygraph or lie detector [17]. 

1.2.2 Ease of Physiological Data Collection and Analyzing 

Human bodies radiate data loudly, continuously, and individually. Typically, clinics and 

hospitals have the appropriate equipment to listen to that data, and these devices are 

expensive, large, and difficult to use. However, with the advent of wearable sensors, we 

now deal with gadgets and trackers that can collect physiological data and allow us to 

analyze these data in real time. 

Wearable sensors are small devices of varying shapes that fit on different locations on the 

body. These sensors can collect several types of human data, such as brain waves through 

electroencephalography (EEG), heart rate through electrocardiography (ECG), body 
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temperature, and skin conductance. These devices can be easily connected to the computer 

or to the smartphone to transfer the collected data. Moreover, the ease of use and low costs 

led to the widespread use of these devices [18, 19]. 

Physiological readings resulting from wearable sensors have become very important for 

individual health care. Several people have these devices. Recently, some third-party 

companies have increased the importance of collecting data via wearable sensors to the 

employers because these data could eventually affect the health insurance payments of their 

employees. Wearable sensors could be utilized by companies that want to lower their 

health-care bills. Some companies like Fitbit have begun selling their devices in bulk to 

employers; for instance, Autodesk sells discounted Fitbit devices to their employees, with 

the idea to encourage healthier behavior and a happier workforce [20]. 

We are motivated by all these features of modern techniques in measuring and collecting 

human physiological signals, which would give quick and accurate measurements of 

biofeedback and neurofeedback of the human body. Moreover, these devices have already 

been used in some companies [20], which increases the acceptance of using these devices 

to determine insider attacks. 

1.3 Research Objectives 

To mitigate the catastrophic influences of insider attacks by providing a solution to detect 

such threats, we have developed the following main research objective and a set of 

objectives that seek to achieve it. 
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Main Objective: To explore and study the potential of using physiological signals to detect 

insider attacks. 

The potential of using physiological signals to detect insider attacks is investigated by 

determining the ability of these signals to differentiate between normal and suspicious 

activities. To address the main objective challenge, we support the research with the 

following objectives: 

Objective 1: To conduct a survey of the existing insider threat detection approaches. 

This objective promotes research through knowledge regarding previous approaches, 

which will give a clear idea of the previous systems that were used to detect insider threats. 

The objective supports the further verification of the quality of the proposed system. 

Objective 2: To create a data set of physiological signals and make this data set available 

for further research. 

To the best of our knowledge, there is no available data set containing human physiological 

signals that were collected during suspicious and normal acts. Therefore, objective 2 is 

essential for achieving the main objective because the existence of such a data set supports 

the ability to conduct research experiments on the proposed system. In addition, the 

availability of the data set for research use would provide an opportunity to develop and 

extend the research in this area. The data set would contain human physiological signals 

that were collected during normal and malicious activities. 

Objective 3: To characterize changes in some physiological activities that might lead to 

the detection of insider malicious activities. 
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If the physiological signals provide certified results in the determination of insider attacks, 

certainly not all physiological signals are equal in the determination of such attacks. 

Therefore, highlighting signals that play a significant role in identifying internal violations 

as well as clarifying the changes in these signals will be directed at improving the proposed 

system’s mechanism for detecting attacks. 

Objective 4: To propose and design a continuous monitoring system that might help in 

the detection of insider threats. 

This objective provides the design of the proposed system for combatting insider attacks. 

The main research objective will be taken into consideration as the design of the proposed 

system will depend on the human physiological signals collected but not on the monitoring 

of user actions in the network (for instance, the monitoring of the user’s log files). 

Objective 5: To evaluate the potential of using the proposed system for detecting insider 

attacks using physiological activities. 

Objective 5 explores the potential of using the proposed approach to reduce the damage of 

internal attacks by identifying these attacks using human physiological signals. This 

objective will assess the effectiveness of the proposed approach in distinguishing between 

the physiological signals of humans during normal and suspicious activities. Furthermore, 

this objective will clarify the ease and possibility of using the proposed system by 

organizations to act as a line of defense against insider attacks. 
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1.4 Research Questions 

To fulfill the above research objectives and to provide a feasible solution for detecting 

insider attacks, we have addressed the following research questions: 

1) What is the potential of using physiological signals to detect insider attacks? 

The first research question investigates the ability to use human involuntary signals to 

detect insider threats. This research question raises other inquiries such as what 

physiological signals should be available to conduct this research and, in case no data set 

that contains such signals is available, how experiments should be conducted to collect 

such signals. 

2) What are the experimental scenarios that will be followed for collecting data and 

building the signal database? 

To the best of our knowledge, no available data set contains physiological signals collected 

during normal and suspicious activities. So, the signals should be collected from volunteers 

during different experiments. RQ2 explores how to collect signals and what possible 

experimental scenarios will be used to assemble these signals. 

3) Which physiological signals are most important in detecting insider attacks from the 

selected signals in the experiments? 

RQ3 investigates whether all signals have an equal ability to identify internal attacks—in 

other words, whether all the signals collected during the experiments would be used in the 

proposed approach. Moreover, this research question determines the format of the signals 

that would help increase the accuracy of detecting insider threats and inspects the 
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relationship between changes in the collected signals and the identification of malicious 

activities. 

4) How can a practically robust monitoring system for the identification of insider attacks 

be designed? 

This research question investigates a critical point in the proposed system for detecting the 

insider threats: how the system should be designed. The design of the proposed system 

should determine the format of input signals and the output results that will clearly indicate 

insider attacks. 

5) Is the monitoring system practically robust in terms of identifying insider attacks? 

RQ5 investigates the quality of the proposed system for detecting insider attacks and 

discusses how the proposed system will be evaluated as well as what criteria are used for 

evaluation and how accurate the system is. 

1.5 Summary of Research Contribution 

Conducting an insider attack is risky and, in many cases, has catastrophic consequences on 

an organization’s security as well as its financial resources. To address the vulnerability of 

malicious insider threats, this research tackles the potential of using human physiological 

signals to detect such insider attacks. In particular, this work reports the design of a new 

approach that based on extracting a new set of features from biofeedback and 

neurofeedback. Instead of monitoring human-controlled behaviors, we emphasize on 

monitoring hard-to-imitate human involuntary signals. In the proposed approach, we utilize 

electroencephalography (EEG) and electrocardiography (ECG) data of the human body to 
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distinguish between the malicious and normal activities conducted by employees. The 

proposed approach converts the collected EEG and ECG signals into features to increase 

the efficiency of these signals to detect insider attacks, and the extracted features showed 

promising results. 

Additionally, the proposed approach was built on the identity theory, which states that 

trusting a user’s identity is one of the main weaknesses of the system and could leave a 

system vulnerable to insider attacks [21]. The proposed system does not rely on the user’s 

identity, but it acts as a line of defense against the authorized user’s attacks. Thus, the 

authorized user may be prevented from using the system if he or she is suspected of 

performing malicious activities. 

The proposed set of features is automatic and does not rely on human intervention or human 

experience to detect insider threats and utilizes machine learning to classify the malicious 

activities. Machine learning is a field of artificial intelligence that seeks to create predictive 

models and algorithms, giving computers the ability to build enough experience to carry 

out tasks without being explicitly programmed [22, 23]. 

The overall evaluation of results shows that the extracted features from EEG and ECG 

signals can correctly distinguish between a user’s malicious and benign activities. The 

results also ensured that the proposed approach would produce accurate results despite the 

period difference between normal and suspicious activities. In other words, the proposed 

approach detects an insider attack using a small period of malicious activities conducted 

by the attacker; thus, the proposed approach can detect the insider attack before any serious 

damage is done to the organization. 
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This research provides a data set that contains the physiological signals for 84 volunteers. 

Experiments were conducted to collect the physiological signals of the volunteers during 

their normal and suspicious processes. The proposed experimental scenarios for collecting 

data simulate as much as possible real-life insider attacks. 

Our research can help mitigate the risk of insider attacks targeting organizations. 

Regardless of the insider attack mechanisms, the proposed system helps address such 

insider threats. This will help organizations protect their privacy and provide security 

against attacks. In addition, the human physiological data set collected during normal and 

malicious activities for research use would provide an opportunity to develop and extend 

the research in this area. 

1.6 Thesis Roadmap 

The remaining chapters of this thesis are organized as follows. The glimpse of the research 

background is presented in chapter 2. Chapter 3 surveys the related work of insider attacks. 

Chapter 4 describes the research methodology, where the research challenges are 

addressed, and the proposed approach is discussed. Chapter 5 describes the experimental 

scenarios for collecting data and presents the experimental devices. It also discusses the 

data set creation and characterizes the process of extracted features from the collected 

signals. Chapter 6 introduces the evaluation criteria and presents and discusses the 

experimental results. It also highlights the evaluation of the proposed approach using 

several comparisons. Finally, chapter 7 concludes this thesis and presents the future work. 
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1.7 Summary 

Information has substantial value for large organizations or even small companies. Chapter 

one presents an overview of the importance of information security for organizations and 

illustrates the risk of insider attacks over those that occur from outside the organization. 

Moreover, this chapter describes the two categories of insider attacks, namely, accidental 

and malicious. It also defines the scope of this research, which tackles the second category 

of insider threats. 

The research problem, which is detecting insider threats by utilizing human bio-signals, is 

presented. To detect insider attackers, normal and malicious activities must be 

distinguished first. To address this problem, the main objective of this research is divided 

into five supporting objectives. These five objectives are integrated to solve the research 

problem. To fulfill the research objectives, five research questions are developed and 

discussed in this chapter. 

Furthermore, the research motivation is presented and divided into two main parts, namely, 

utilizing the advantage of human bio-signals’ ability to identify the human mood that may 

help to distinguish malicious activities and utilizing the advantage of modern technologies 

in capturing and analyzing human bio-signals. Moreover, the research contribution, which 

aimed at mitigating the risk of insider attacks that target organizations, is discussed. 

Finally, the roadmap of this research is demonstrated. 
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2 CHAPTER 2 

BACKGROUND 

2.1 Cybersecurity 

Cybersecurity has been known by several names, such as data security, IT security, and 

computer security. Regardless of the definition, the information stored on computers is 

almost always worth more than the computers themselves. Cybersecurity is the protection 

of computer systems, programs, networks, and data from undesirable behaviors of attackers 

under different circumstances and is an important issue for organizations because damaged 

security systems may cost significant financial losses. The organization’s security requires 

constant development to provide protection from several modern attacks [24].  

The scope of cybersecurity is wide, growing, and constantly changing as a result of the 

development of new attack methods. Generally, cybersecurity aims at protecting 

organizations’ invaluable data, such as assets where the organizations’ information security 

efforts should be focused. These assets can be divided into three types: data, software, and 

hardware assets. Data assets have the greatest value over other assets and include but are 

not limited to databases, the organization’s files, and the information that the organization 

generates daily, whereas software assets include mobile applications, programs, and 

operating systems. On the other hand, hardware assets include computers, communication 

channels, networks, and mobile devices that belong to the organization’s employees [25]. 

Cybersecurity can be divided into the following domains: 
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2.1.1 Access Control 

Controlling the access to the organization's assets or protecting the organization's resources 

from unauthorized disclosure is one of the important cybersecurity domains. Access 

control is the process of rejecting or accepting a specific request to enter physical facilities 

and/or using information services. Sometimes, there is a confusion between the term access 

with the authorization and authentication. Access is the ability to reach, read and modify 

the resources. On the other hand, the authorization is the rights and permissions to use the 

resources, whereas the authentication is the process of identifying and proving the user 

who he claims to be, using different methods such as username and password [26]. 

2.1.2 Software Development Security 

Software Development Security is the process of embedding the principles of software 

security through the software development life-cycle. As the best practices of software 

development, embedding the security in the early stages of software development leads to 

ensuring the software quality [27]. 

2.1.3 Business Continuity and Disaster Recovery Planning 

This domain mainly focuses on business; it does not concentrate on the problem of data 

violation or unauthorized access. This domain aims at providing emergency plans to ensure 

the business continuity in the event of a disaster. It consists of two sub-domains, which are 

the Business Continuity Planning (BCP) and the Disaster Recovery Planning (DRP). For 

organizations, the BCP requires a comprehensive approach to ensure the continuity of the 

organization's business even after the occurrence of disasters, such as a natural disaster and 

even power outages. On the other hand, the DRP deals with the procedures of how the 

organization can resume its business after major disruptions. However, both sub-domains 
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have several common considerations include the development, testing, updating of the 

essential actions for protecting the critical processes of the organization's business from 

being influenced by a disruptive event such as a network failure [28]. 

2.1.4 Cryptography 

Cryptography is protecting the stored and transmitted data from being understood or read 

by unauthorized parties. Encryption is the process of transforming the plaintext into 

ciphertext using several methods such as transposition and substitutions. On the other hand, 

the process of returning the plaintext is called the decryption. The strength of encryption 

depends on the algorithm and the key. Based on the key, there are two main types of 

cryptography, which are symmetric and asymmetric cryptography.  The symmetric 

cryptography system utilizes the same key for encrypting and decrypting the information 

such as the Data Encryption Standard (DES) algorithm, whereas the asymmetric 

cryptography system utilizes a pair of keys which are called public and private keys. The 

public key is used for enciphering the plaintext, and the private key is used for deciphering 

the ciphertext. A common example of asymmetric cryptography system is the RSA 

algorithm [29]. 

2.1.5 Information security and risk management 

Information security and risk management is an important cybersecurity domain that 

focuses on identifying data assets, risk management, and mitigation. Also, this domain 

includes the organizational structures, the importance of security awareness training, as 

well as the development of standards, procedures and guidelines to address the 

confidentiality, integrity, and availability of information system [30]. 
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2.1.6 Law, Investigation, and Ethics 

Cybersecurity crimes have become very dangerous to organizations as well as individuals. 

We often hear about internal and external attacks that cost organizations billions of dollars. 

Statistics show that one of the main motivations of cybercrimes is the financial gain, as we 

will discuss later in this Chapter. The stolen information can be resold in a black market 

for a financial gain. Therefore, the public and private sectors have worked together to 

establish rules and regulations about cybersecurity crimes, and how to deal with the 

perpetrators. This domain addresses ethics and compliance with various regulatory 

frameworks as well as the understanding of the laws that associated with the cybercrimes 

and the liabilities to these laws. Also, this domain focuses on the basics of conducting 

investigations to determine if a crime has occurred, as well as the evidence gathering 

techniques [31]. 

2.1.7 Operations Security 

Security operations domain focuses on identifying the critical data and the execution of 

specific measures that eliminate or mitigate the risk of the adversary attacks on the 

information system. This domain describes the controls over the resources (such as 

hardware and media) that needs to ensure the security, as well as the definition of the 

operators with access privileges to any of these resources [32]. 

2.1.8 Physical and Environmental Security 

This domain addresses the problem of securing the physical environment that affects the 

confidentiality, integrity, and availability of the organization's information system. This 

domain examines the infrastructure and physical environment around the information 
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system against physical threats such as natural disasters, emergencies, sabotage, and even 

the electric power issues. The physical security includes alarms, guards, and locks [33]. 

2.1.9 Security Architecture and Design 

This domain essentially concentrates on securing the hardware, software, and operating 

system of the organization. This domain covers several topics such as the evaluation 

criteria, the distributed environment security issues, as well as the security models that 

provide the framework for ensuring the organization's security policies. Examples of 

security models that assist in designing a system to protect the organization's assets are the 

Role-Based Access Control (RBAC) and Mandatory Access Control (MAC) [34]. 

Furthermore, an example of evaluation criteria is the Software Engineering Institute 

Capability Maturity Model Integration (SEI-CMMI) [35]. 

2.1.10 Telecommunications and Network Security 

This domain tackles the problem of securing the transmitted information over the private 

and public communication networks. It includes the structures, transmission formats and 

transport methods of the communication networks. This domain involves protecting 

transmitted data, detection and correction of transmission errors, intrusion detection and 

response, network attacks and abuses as well as different network protocols such as 

connection-oriented and connectionless protocols.  It considered as the largest and most 

comprehensive domain of cybersecurity. The Open Systems Interconnect (OSI) model is 

an important area of this domain which was developed to assist the vendors in developing 

interoperable network devices. The OSI model consists of seven layers that describe the 

procedures of how the applications can communicate over the network [1]. 
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2.2 Classics System Security Characteristics 

Every secure information system should satisfy three classic security characteristics; 

breaches to these characteristics are considered undesirable behavior. These characteristics 

are confidentiality, integrity, and availability. Confidentiality ensures that only authorized 

parties who have sufficient privileges may edit or view the information. The most common 

tool used to achieve confidentiality is encryption. Integrity, probably more critical than 

either confidentiality or availability, ensures that the stored data on organization resources 

is correct and unaltered by unauthorized parties or malicious applications. Measures to 

protect integrity include error-checking methods such as checksums and file hashing. 

Availability means that network resources are readily available to authorized users. 

Although a secure computer must prevent access attempts by unauthorized users, it still 

must allow immediate access to authorized users; for instance, a banking customer should 

be able to check their balance or withdraw their funds effortlessly [36]. 

Violations of the security properties can occur during insider and outsider attacks [37]. 

Despite numerous reports of destructive outsider attacks, both accidental and malicious 

insider attacks put a lot of corporate data at risk. Predominantly, organizations do not know 

how much data they have at risk. The inside attacker has one or more of the following 

advantages: authorized system access, knowledge about the organization’s system, the 

ability to reveal the organization system vulnerabilities to outsiders, and trust by the 

organization [21, 38]. The Insider Threat Center of Computer Emergency Response Team 

(CERT) defines the malicious insider threat as: 
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"A malicious insider threat is a current or former employee, contractor, or business 

partner who has or had authorized access to an organization's network, system, or data 

and intentionally exceeded or misused that access in a manner that negatively affected the 

confidentiality, integrity, or availability of the organization's information or information 

systems" [39]. 

2.3 Types of Insider Attacks 

According to the CERT Insider Threat Center, there are four primary types of insider 

attacks, classified based on the similarity of attack patterns analyzed among more than 

seven hundred real insider attack cases: fraud, IT sabotage, insider theft of intellectual 

property (IP), and espionage [39]. Figure 1 shows the CERT breakdown of intentional 

insider attacks targeting the United States. 

2.3.1 Fraud 

Fraud usually targets financial services and is one of the crime types where the attacker 

maliciously accesses information, stealing credit card data or changing the data for 

financial gain. This type of malicious crime could be committed even by employees who 

have low-level access to the organization data or even customers. Fraud may continue for 

a considerable period before it is identified [39]. 

An example of fraud includes the fraud case that occurred at the military contractor’s office 

where a member of the computer help desk team took advantage of his position for creating 

a fake e-mail address on the military system. He fraudulently requested replacement parts 

of equipment from the vendor using the fake e-mail address. The vendor expected that the 

original parts of equipment would be restored later after the replacement parts were sent. 
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The fraudulent member put his home address for receiving the shipments. The fraud was 

successful, with shipments being sent to the employee for more than twenty months. The 

employee received five hundred products at a cost of around $8 million and sold around 

ninety products on the Internet for more than $0.5 million. The fraudulent employee was 

convicted and sentenced to four years imprisonment and ordered to pay the amount of $8 

million to the vendor [39]. 

2.3.2 IT Sabotage 

Usually, the main purpose behind IT sabotage crime is revenge. For instance, disgruntled 

workers cause damage to IT systems or destroy data. Unlike fraud, IT sabotage is 

committed by insiders who have high-level access to the organization’s system, such as 

database administrators, network managers, and system programmers. The preparation of 

IT sabotage is typically done while the attacker is still working at the organization, but the 

execution of the IT sabotage may occur after the employment termination [39]. 

A case of insider IT sabotage is presented in [39]. Around one thousand files related to 

employee compensation were deleted from an organization by a disgruntled former 

employee of a human resources department. After the employee had been dismissed 

from the organization, he broke into the organization’s systems remotely using his previous 

privileges. To implicate another person in this crime, the attacker modified the payroll 

records of his former coworker. He increased the salary and added substantial bonus to 

her payroll records. The attacker also used the last name of this female coworker to send 

an e-mail to senior managers containing some parts from the deleted files. He was angry 

at this coworker because she rejected his previous romantic interest. The attacker was 
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convicted and sentenced to eighteen months of imprisonment and was ordered to 

pay more than $90,000 as compensation. 

2.3.3 Insider Theft of Intellectual Property 

The aim of insider theft of intellectual property (IP) is to steal the IP using IT resources. IP 

theft includes stealing business plans and source codes. These crimes are usually 

committed by insiders who are aware of the IP value, such as scientists, programmers, and 

engineers. The main purpose behind IP theft is personal gain, where the attacker sells the 

stolen IP to a competitor company or utilizes the stolen IP for his own company [39]. For 

example, a government organization responsible for maintaining a reliable medical 

database was contracted formally with a programmer to help create their programs. Prior 

to the termination of the contract, the contractor was informed that his privileges to access 

the system had been disabled and his responsibilities were reduced. After these actions 

taken by the organization against him, the programmer resigned from the organization. 

However, before he quit the organization, he installed a back door into the system with 

administrator privileges. The attacker used the installed back door to attack the 

organization three times over two weeks to steal source codes and password files from 

the system. The organization was alerted by the large amount of remotely downloaded 

files. The downloaded files were traced. Then the attacker was convicted and sentenced 

to five months in jail in addition to paying around $10,000 as compensation [39]. 

2.3.4 Espionage 

Espionage is the process of obtaining secret or confidential information without the 

permission of the information holder. Espionage may target governments, organizations, 
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and even individuals. But the term “espionage” is mostly related to spying on veritable 

enemies and is usually committed for military purposes [39, 40]. 

An example of espionage is the Robert Philip Hanssen case, known as possibly the worst 

intelligence disaster in US history. Hanssen was an FBI counterintelligence agent who 

began spying for the KGB in 1985. Using his privileges, he voluntarily passed highly 

classified national security and counterintelligence documents to Soviet intelligence 

officers in return for diamonds and large quantities of cash. As a counterintelligence agent, 

he could monitor the FBI’s surveillance of the KGB and lead investigators down false 

trails, which allowed him to continue leaking classified information for an extended period. 

He was discovered after a Soviet spy had switched over to the CIA. Hanssen was eventually 

caught, found guilty on fifteen charges of espionage, and sentenced to life without the 

possibility of parole [41, 42]. 

 

Figure 1: The CERT Breakdown of Intentional Insider Crimes in United States 
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2.4 Motivations behind Insider Attacks 

Conducting an insider attack is risky and, in many cases, highly dangerous, so what would 

make an individual decide to commit such an action? Motivations for conducting insider 

attacks are highly diverse, but they can be classified into four basic categories, forming the 

acronym MICE: money, ideology, coercion, and ego [43–45]. An attacker may seek 

monetary payment if they face a large debt or simply have expensive tastes. Many have 

betrayed their organization or country for personal financial gain. 

Ideology as a motivation can take various forms. One is political in nature, such as 

procommunism. In 2002, Ana Montes, an analyst with the Defense Intelligence Agency, 

was found guilty of spying for the Cuban government. She was recruited by the Cubans as 

a result of her disagreement with US policies toward Latin America and motivated by 

political ideology [46]. Another politically motivated insider attack penetrated the Greek 

cell phone provider Vodafone. A malicious software was injected into a phone switch to 

control the incoming and outgoing calls for specific numbers. The primary goal of this 

attack was to eavesdrop on the prime minister and prominent legislators. When exactly the 

malicious software was injected and what information was leaked are unknown. The attack 

was accidentally discovered in 2005, when the malicious software was incorrectly updated 

after the beginning of tapping. The incorrect update conflicted with other system processes 

and initiated an alarm. The attack was reported as an insider threat and was attributed to an 

employee with sufficient experience on the operating system of the cell phone switches 

[47]. 
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 Ideology can also take the form of fanatical convictions, such as extreme religious or anti-

establishment beliefs or the idea that their actions are somehow helping people or an 

oppressed portion of society. For instance, the WikiLeaks leakage is a famous insider attack 

that targeted sensitive classified documents. WikiLeaks is a well-known journalistic 

website that leaked the confidential information of governments. Private Bradley Manning, 

who was the US Army intelligence analyst, violated US information security and had 

legitimate access to a secure network belonging to the US Department of Defense. Over 

250,000 secret US embassy cables were leaked and passed to WikiLeaks. To conduct this 

attack, Manning utilized his authority to access a computer with a writable drive. He 

smuggled the data out on a rewritable CD (music CD) [48]. Manning was depressed by US 

counterterrorism operations in Iraq. “Manning said he’d sought to make the world a better 

place” [49]. 

Coercion, commonly used as blackmail, is the forced participation of an insider in an attack 

against their will. They may not always be aware of their participation, making them an 

unwitting passive insider. An example of an insider attack through coercion is the Northern 

Bank headquarters robbery in Belfast, Ireland. Late in the evening of Sunday, December 

19, 2004, armed and masked gang members arrived at the homes of two Northern Bank 

executives. Pretending to be police officers, the gang members entered the homes, taking 

both families as hostage at gunpoint. The following day, both executives were instructed 

to go to work as usual or risk the deaths of their families. That night, the armed men entered 

the underground vaults of the bank, where they took over twenty-six million in pounds 

sterling and smaller quantities of various other currencies, including US dollars and euros. 

Who committed the crime is still unclear, but all hostages survived the incident [50, 51]. 
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Ego encompasses both personal and psychological motivations. Personal motivations are 

highly diverse and wildly unpredictable. They include anger, revenge, problems at work or 

home, and divided loyalties. Psychological motivations—including mental instability and 

sociopathic behavior, such as finding thrill or adventure in malicious acts—can be detected 

in some cases by preemployment testing and evaluations. However, this is not foolproof, 

and many cases are not detected. In 2001, a series of letters containing anthrax arrived at 

locations at several places in the United States. It took the US government years to figure 

out how this had happened [52]. Bruce Ivins was a scientist at Fort Detrick, the army’s 

biological defense labs, and he was deeply troubled; he had signed documents authorizing 

the organization to look at his medical records, but no one took care. Long before the 

anthrax attacks, Bruce’s psychiatrist thought that he was the most dangerous patient she 

had ever seen in her entire career. When the anthrax attacks occurred, even though she did 

not know he was working with biological agents, she immediately thought that Bruce was 

behind these attacks. Bruce sent so many red flags; he e-mailed his own staff, complaining 

about his increasing paranoia. Even though the staffers were afraid he was going to hurt 

them, nobody reported his case. Bruce’s case ended up in the newspaper with the headline 

“Paranoid man in charge of deadly anthrax” [53, 54]. 

As seen in many cases, usually, more than one underlying motivation is behind a malicious 

act. John Walker, a US Navy warrant officer, was found guilty in 1985 of passing one 

million classified messages to the Soviet Union over a seventeen-year period [37, 55]. John 

was known to have a major ego, driving him to take risks in life to prove his superior 

abilities, displaying sociopathic behavior. He also took great joy in engaging in dangerous 

acts, committing his first crime as a young boy and never looking back. Walker was also 
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paid large sums of cash, which he initially used to pay off debts but eventually used to 

supplement his insatiable spending habits [56]. He embodies the money and ego prongs of 

MICE; these dual categories make the detection of insiders that much more complex as no 

two insider motivations are the same.  

Some insiders carefully plan out their intentions and deliberately take steps to put 

themselves in the best position to carry out these attacks, as seen with the Walker case. 

However, not all individuals fall into the role of malicious insider through long-term 

scheming. A major life change such as a divorce, unexpected debt, or the loss of a job may 

trigger an insider to commit an attack on a whim. When an insider’s opportunities and their 

motivations align, the environment for an insider attempt is created. Because of the 

expansive nature of motivations behind insider attacks, combined with the multitude of 

insiders and sensitive positions, prescribing a formula to identify and stop all insider threats 

before they occur is difficult. However, steps such as data encryption, access management, 

and log monitoring can be taken to reduce the ability of insiders to commit these attacks 

and mitigate the damage they’re capable of inflicting. 

2.5 Impact of Insider Attacks 

According to the 2018 insider threat report from Securonix Security Analytics, based on 

an online survey of 472 cybersecurity professionals about the insider threats that faced their 

organizations, 66% of the organizations consider insider attacks more likely to happen than 

external attacks. Moreover, 44% perceive that outsider and insider attacks have the same 

impact, whereas 42% believe that insider attacks are more damaging than outsider attacks 

[57]. Figure 2, shows the vulnerable assets targeted by insider attacks. 
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Furthermore, the true cost of a successful insider attack is hard to determine; however, 27% 

of the organizations estimate the cost of each successful insider attack in range of $100,000 

to $500,000, whereas 21% estimate the cost ranges between $500,000 and $2 million, and 

9% believe that the cost exceeds $2 million [57]. The cost is not limited to financial losses 

and may include that of the incident response, loss of reputation, and loss of customer 

loyalty—a catastrophic impact on organizations. 

 

Figure 2: Vulnerable Assets For Insider Attacks 

2.6 Insider Threat Detection: Existing Solutions 

Although there are several security tools for detecting insider threats, as per the insider 

threat report, only 36% of the organizations have formal insider threat detection programs. 

Some existing solutions to insider attacks are data loss prevention, data encryption, identity 

and access management, monitoring users’ behavior, and endpoint security. Moreover, 

Securonix’s report revealed that 63% of the organizations use IDS or IPS to detect the 

insider attacks, and 62% utilize user log management, whereas 51% depend on the 
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available security information [57]. More details about the existing techniques for detecting 

insider attacks are presented in the literature survey. 

Recently, a new research direction was established to distinguish between the benign and 

malicious activities of employees [18, 26]. The aim of the new research direction is to 

detect the malicious insider activities beforehand. Therefore, it can serve as an early 

detection system from the insider attacks. This direction of research is based on human 

physiological signals (i.e., human bio-signals) such as EEG and ECG signals. 

Physiological signals provide clear ideas about human emotions. EEG signals are brain 

waves—delta, alpha, beta, gamma, etc.—whereas ECG signals pertain to heart rate. 

2.7 Summary 

Chapter two provides the research's background by discussing the cybersecurity and 

presenting the classic system security characteristics which are the confidentiality, the 

integrity, and the availability of the system. According to CERT, the formal definition for 

the insider threats has been presented. Also, the four types of insider threats have been 

discussed which are fraud, IT sabotage, IP theft, espionage. Several examples have been 

discussed to explain the four types insider threats. 

Four motivations which are money, ideology coercion and ego behind each insider attack. 

Where the insider attack may be conducted for a single motive, which facilitates the 

identification of this attack by conventional methods. on the other hand, the detection of 

insiders who aim at more than one motivation is more complex. The four motivations of 

insider attacks have been discussed. The devastating impact of internal attacks on 
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companies has been explained, which include not only the financial losses, but also the 

cost to respond to the incident, loss of reputation, and the loss of customer loyalty. 

The existing solutions of insider threats utilized by organizations have been presented. 

Presenting these solutions were based on a recent insider threat report that provided by 

Securonix. This report survived 472 cybersecurity professionals. The report revealed that 

most of organizations use intrusion detection and prevention, and the user log management 

techniques to detect the insider attacks. 
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3 CHAPTER 3 

LITERATURE REVIEW 

3.1 Overview 

This chapter discusses the importance of increasing awareness of insider attacks and 

presents some research that aims to increase such awareness. This chapter additionally 

provides a categorization for existing strategies to mitigate the risk of insider threats. Each 

category will be discussed separately, and several methods from each category will be 

presented. The research gap in the field of insider attack detection will be discussed by 

presenting the limitations of each category, with emphasis on methods that utilize human 

bio-signals as they are in the area of this research. 

3.2 Awareness of Insider Attacks 

When you hear the word “hacker” or “attacker,” often, an external attacker comes to mind. 

Numerous officers in the cybersecurity field are more concerned about outsider threats 

because they perceive the enemy as outside the organization. Therefore, almost all the 

military, educational, and financial organizations have several mechanisms and defensive 

actions to defeat the outside attacker. However, the insider threat is considered as one of 

the most complicated situations to deal with in cybersecurity. According to an Association 

of Certified Fraud Examiners report, organizations and companies in the United States lost 

around 5% of their revenue because of fraudulent insider attacks. In addition, about two-
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thirds of the malicious fraud cases faced by US organizations are conducted by insider 

employees [58]. An inside attacker has more privileges, facilities, and advantages than an 

outside attacker. Moreover, according to a report by the Intelligence and National Security 

Alliance (INSA), no training and qualification programs exist that can used as a reliable 

framework to tackle insider attacks [59, 60]. For these reasons, raising the awareness of 

organizations about the insider threat risk is important. Consequently, some researchers 

and institutes tackle the problem of increasing awareness by developing strategies as well 

as providing training and courses about insider attacks. 

For example, Ortiz et al. [61] described the necessary processes to develop a training 

environment for insider threat situations. Their study aims at ensuring that cognitive 

processing and some insiders’ behaviors should be included in the training environment. 

They encouraged to utilize serious gaming, an area of game development for the purpose 

of training. Moreover, they encouraged the training designers to use three-dimensional 

game development tools, such as Unreal Engine, to simulate the insider threat training 

environment. Ortiz et al. [61] suggested that the development process of the training 

environment include some essentials, such as scenario narratives, artistic components, 

training components, and programmatic components. Furthermore, they proposed an 

insider threat training scenario that consists of two levels of conditions: the control 

condition and the insider threat condition. 

Moreover, Chi et al. [62] from Florida University describe the guidelines for implementing 

an educational virtual lab that would enhance the knowledge and increase the security skills 

of trainers regarding insider threats. They implemented training modules utilizing the 

CyberCIEGE scenario development kit. CyberCIEGE is an educational security game 
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supported by some US governmental organizations, among them the US Navy and the 

Office of the Secretary of Defense. This video game allows students to design the 

environment of the corporate’s network and customize several attack situations that could 

target this corporation, including physical and logical attacks [63]. The training module 

proposed by Chi et al. [62] includes three types of insider attacks: fraud, IT sabotage, and 

IP theft. 

On the other hand, the Rochester Institute of Technology (RIT) offers a new security course 

for software developers. The course focuses on insider threats and their devastating 

consequences on security. This course was proposed as a practical activity for students. 

Students are divided into groups; each group consists of four to six students and is 

responsible for designing and implementing a reasonable-sized security system. However, 

one student in each group will play the role of an inside attacker and will try to design and 

implement some vulnerabilities in the system, such as leaving back doors in the source 

code to be utilized maliciously later. This student is informed secretly by e-mail to play the 

role of the inside attacker. The course gives a chance for software development students to 

be aware of insider threats [64]. 

3.3 Insider Attack Detection Methods 

Because of the major damage caused by insider attacks, detection and protection from these 

attacks became a necessity. To achieve this goal, researchers have proposed several 

methods to detect and relieve the risk of these attacks. Although researchers have utilized 

different sciences in their methods, the main goal of these methods is to detect and protect 

from insider threats. The conducted research so far aims to answer the following questions: 
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1. How the insider threat will be identified? 

2. In case of insider attack, how to enhance defenses against such an attack? 

3. What is the amount of risk on the organization when a specific user conducts an 

insider attack? 

In the following parts of this chapter, a literature survey about insider attack detection 

methods has been conducted. The aim of this survey is to investigate the previous 

approaches to detect insider attacks as well as discuss their shortcomings, in addition to 

providing a categorization of these methods. In our classification, we relied on the 

technique used in each method of detecting insider threats. Based on the threat-detection 

technique, insider attack detection methods can be classified into five categories. Figure 3, 

illustrates the taxonomy of insider attacks detection methods. 

 

Figure 3: The Taxonomy of Insider Attacks Detection Methods 
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3.3.1 Anomaly Detection Methods 

These methods usually come as software or hardware that monitors several devices, such 

as computers, communication networks, and logging information, to identify normal 

activities and attempt to build a model containing the characteristics of these activities. In 

addition, these methods aim to identify malicious activities that violate and deviate from 

this model [65]. Anomaly detection methods are often known as intrusion detection 

methods, which are approaches widely used for detecting external attacks. Although 

detecting insider attacks is more complicated than detecting external attacks since the 

inside attacker is a legitimate user with authorized access to the system and can commit 

attacks using his privileges, external threats can be detected more easily via sensing 

infiltrations to the system or any unauthorized and unusual behavior. However, some of 

the intrusion detection methods are adapted to identify the insider attacks based on the 

differentiation between the normal and malicious activities of insiders [66, 67].  Detecting 

insider threats using anomaly detection methods can be classified into indicator-based 

methods and scenario-based methods. 

3.3.1.1 Indicator-Based Methods 

In [68], the authors proposed an insider attack detection system based on the indication of 

the employee’s suspicious behavior. This approach works as part of intrusion detection 

systems. It assesses the employee’s behaviors based on several types of log information 

collected during the employee’s activities. The logging information stored in a dedicated 

database are the device ID, user ID, activity name, time stamp, and attributes of each 

activity. The system updates the employee’s profile through analyzing the stored logging 

information that has been observed from the employee’s activities hourly. The analyzing 
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process divides the employee’s profile into three parts: current, previously suspicious, and 

normal observations. Utilizing the previously suspicious and normal observations, the 

system can assess the deviation of current activities from the previously observed activities. 

The system has three levels of alert: the first alert takes place when the organization’s 

policies are violated; the second alert happens when the specific employee’s act exceeds a 

threshold level of anomalies; and the third alert occurs during a deviation between the 

employee’s activities and his profile records. 

Ambre and Shekokar [11] utilized the log management technique to build a log monitoring 

system for detecting insider threats. The log management technique consists of two related 

aspects, which are log analysis and event correlation. Log analysis deals with collecting, 

analyzing, and filtering log files (i.e., computer files that record several events for computer 

operating systems and users, such as system information, keystrokes, and data 

manipulation). On the other hand, event correlation is the process of finding mutual 

relationships among several events. Unlike offline monitoring approaches, which suffer 

from the inability of detecting attacks in real time, Ambre and Shekokar proposed a 

continuous monitoring system for the log files. However, given the huge number of log 

files in the network and types of malicious activities, analyzing and correlating different 

events would be extremely difficult. As a result, Ambre and Shekokar considered only 

three activities that indicate malicious events: Internet control message protocol (ICMP) 

requests, unsuccessful log-ins, and rebooting the server. 

Moreover, detecting insider threats is not enough because detection always takes place 

after the attack. Predicting insider threats reduces the consequences and impact of these 

threats. Schultz [10] proposes a framework to predict and detect insider threats that uses 
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multiple indicators based on the best practice. Each indicator’s contribution is represented 

mathematically by weight. The indicator’s weight depends on the number of incident 

results from that indicator. Equation 3.1 shows the mathematical representation of 

Schultz’s approach: 

𝑋𝑒 = 𝑉1𝑋1𝑖 + 𝑉2𝑋2𝑖 + 𝑉3𝑋3𝑖 … … + 𝐶                                           (3.1) 

where Xe is the predictive value, X1i is the first indicator, V1 is the first weight, and C is 

the constant. 

The indicators suggested by Schultz [10] are deliberate markers, meaningful errors, 

preparatory behavior, correlated usage patterns, verbal behavior, and personality traits. The 

previous indicators are listed from the highest to the lowest weight based on Schultz’s 

framework, whereas the weight for each one can be calculated from the indicator’s density 

after carefully analyzing the number of attacks accrued. 

3.3.1.2 Scenario-Based Methods 

Zargaret et al. [66] utilized the raw logs of user network sessions to detect insider attacks. 

They proposed a method called XABA, which analyzes the raw logs of each network 

session to detect abnormal activities. Based on the user behavior profile, which represents 

the exclusive user behavior and potential access, XABA analyzes the network traffic to 

detect the activities and patterns that violate the user profile meaningfully. The researchers 

in [66] classified XABA as a zero-knowledge approach because it is independent of any 

log syntax or any data entry about the user. XABA has been designed to detect five diverse 

scenarios of insider attacks that have a common feature, which is the misuse of the 

exclusive user behavior. The five scenarios are (1) betrayer admin, (2) third-party back 
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door, (3) credential sniffer, (4) e-mail spoofing, and (5) foothold hosting. Table 1 illustrates 

the description of these scenarios. Moreover, XABA consists of five units: 

1. Session gathering utilizes the user IP address to collect the user sessions by 

analyzing the network traffic. 

2. Session PBI (potential behavior indicator) making utilizes text mining to analyze 

the user session and extract useful information such as time stamps and the IP 

address. 

3. Anomaly detection checks for malicious user sessions. 

4. Insider detection matches malicious behavior with user-exclusive behavior. 

5. Alert prioritization utilizes the suspicious degree to prioritize alerts. 

Table 1: The Description of XABA Scenarios 

Scenario Name Scenario Descriptions 

Betrayer Admin Detecting the Traitor admin who misapply his privileges. 

Third Party 

Backdoor 

Detecting the web applications that stealthy provides 

server's control to the backdoor developer. 

Credential Sniffer Detecting the insider who sniffs the user's credentials 

E-Mail Spoofing Detecting the insider who spoof the user's e-mails 

Foothold Hosting 
Detecting the insider who Intentionally download a 

malicious software from the e-mail attachment. 

Another approach that aims to mitigate the risk of insider threats by detecting inside 

attacker scenarios was proposed in [69]. Young et al. [69] use an ensemble with an 

unsupervised learning technique to detect insider threat scenarios without any prior 

knowledge about the kind of scenario and when it would take place. They conducted their 

experiments on a well-known database collected by the Advanced Research Projects 

Anomaly Detection at Multiple Scales (ADAMS) program, which consists of the data of 
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around 5,500 users [70]. The database contains several user actions, e-mails, log-in/log-off 

time stamps, printer URLs, and instant messages. Furthermore, Young et al. developed 

insider attack scenarios based on those created by the red team, an independent evaluator 

group who utilizes their experience in developing a description about several insider attack 

scenarios [39]. Additionally, the proposed scenario-based detector by Young et al. consists 

of a combination of three components, which are the classifier and the indicator-based and 

anomaly-based detectors. Table 2 illustrates the proposed scenarios by Young et al. [69] 

and the corresponding Red-Team scenarios. 

Table 2: The Proposed Scenarios by Young et al. [57] 

Young et al. 

Scenarios 
Descriptions 

Corresponding 

Red-Team 

Scenarios 

IP Thief 

The insider uses the organization IT resource to steal 

IP address. This scenario usually conducted by 

salespeople, engineers and scientists to get advantage 

of IP addresses in their work.  

 Anomalous 

encryption 

 Bona Fides 

 Manning Up 

(Redux) 

Saboteur 

The technical insider such as a system administrator 

uses the IT resources to harm the organization. This 

scenario should be planned before the attacker leaving 

the organization. 

 Circumventing 

SureView 

 Layoff Logic 

Bombs 

 Survivor's Burden 

Fraudster 

This scenario is conducted for a financial gain by low-

level employees. The insider aims at destroying or 

denying the organization's data. The insider in this 

attack is usually recurred by outsider attacker. 

 Hiding undue 

Affluence 

 Indecent RFP 

 Masquerading 2 

Ambitious 

Leader 

This insider is usually an IP thief motivated by the 

ambition to steal as much as possible before leaving 

the work. 

 Insider Startup 

 Selling Login 

Credentials 

Rager Insider uses threatening, vociferous language in his 

mails to other employees or against the organization. 
None 

Careless 

User 

This scenario is usually unintentionally conducted by 

an insider employee who expose the organization to 

considerable risk. 

None 
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3.3.2 Honeypot Traps 

Information is power; the more you know about your enemies and how they operate, the 

more power you have against them. One of the tools that assist in gathering information 

from attackers is a honeynet, a network-connected computer software or even a device that 

appears to be attractive and vulnerable. Honeynets were designed expressly to be attacked 

and to attract attackers just as honey attracts bears [71, 72]. 

A honeynet contains multiple honeypots. A honeypot has no production value and no 

authorized activity; it sits on the organization’s system within its containing honeynet to 

be attacked because a honeypot can be accessed directly without any authorization [73]. 

All access to a honeypot is considered inimical. Any connection started from a honeypot 

to the external network is considered as an indication that the honeynet has been 

compromised. This connection is usually initiated by an attacker to download some 

malicious tool kit that will be used to commit his attack and to hide his trace from being 

tracked [74]. Without the knowledge of the attacker, the honeypot monitors every action 

of the attacker, and it strives to capture as much data as possible.  

Data control is an important concept in deploying the honeypots. Data control means that 

the attacker must be prevented from using the compromised honeypot to attack other 

computers. Thus, the attacker will be locked into a cyber jail and be unable to utilize the 

compromised honeypot to commit an effective attack. A honeynet monitors and captures 

attackers’ logs, actions, and methods [75].  

Honeynets can be classified into three major categories based on the interaction level: high 

interaction, medium interaction, and low interaction. However, the higher the honeynet 
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interaction level, the higher the risk on the operational system since the intruder would deal 

with real systems. Unlike in the low-interaction honeynet, where the intruder deals with 

the systems that emulate vulnerable services, the intruder in the high-interaction honeynet 

deals directly with real vulnerable systems. Moreover, the honeynet interaction level is 

directly proportional to the amount of data that can be collected from the intruders [75].  

Honeynets can detect intentional as well as unintentional insider attacks, where the 

honeynet traps may contain several phantom assets for the organization, such as fake files, 

databases, and servers. These phantom assets play a vital role in the detection of the 

intentional inside attacker, where the honeynet’s traps use unknown IP addresses for 

employees of the organization or are programmed to change their IP addresses 

automatically to deceive the insiders [76, 77]. On the other hand, the computer of an 

organization’s employee can be infected by malware or an Internet worm. This computer 

becomes a source of penetration without the knowledge of the employee. A honeynet can 

detect and protect against such unintentional attacks. 

We did previous work for deploying a distributed high-interaction honeynet at King Fahd 

University of Petroleum and Minerals (KFUPM) [78, 79]. The university’s data traffic was 

captured for twenty different intervals, each of which was around ninety minutes, so the 

total interval for collecting data is thirty hours. More than thirty thousand activities were 

collected during all the experiment’s intervals. Then the data was replayed on the proposed 

honeynet system. Figure 4, illustrates the implemented system. We utilized the following 

tools for implementing the system: 
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1. Honeywall CDROM, which is a high-level interaction honeynet that acts as a 

centralized logging server for the distributed honeypots. 

2. Snort, which is a network intrusion detection/prevention system that was used for 

a real-time traffic analysis. 

3. Sebek, which was used to intercept the attacker’s data after decryption in the 

honeypot. 

4. Wireshark, which was used to capture the university network traffic. 

5. Tcpreplay, which was used to simulate and replay the university network traffic. 

The results show that around 35% of the traffic is considered as low risk, which contains 

traffic such as DHCP requests and NetBIOS datagram services. On the other hand, around 

65% of the traffic is considered as medium risk; most of this traffic is BitTorrent traffic. In 

addition, the proposed system successfully detects an insider attack on Internet Information 

Service (IIS), which was previously installed on the Windows XP honeypot [78, 79]. 
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Additionally, multiple deception techniques were proposed by Virvilis et al. [80] to address 

the advanced persistent threats (APTs) that may be utilized by the inside attackers. APTs 

are highly sophisticated attacks targeting organizations and looking to steal personal 

identifiable information or IP. In APTs, the attacker wants to gain access to the network 

and stay there as long as they can to understand what is happening in this network, 

searching for valuable data for exfiltration, i.e., transfer these data illegally from the 

organization. Virvilis et al. divide the APT life cycle into two phases. The first phase is the 

attack preparation (information gathering), and the second phase is the exploitation and 

data exfiltration. Virvilis et al. proposed a specific deception technique for each phase. The 

deception techniques for the first phase are as follows: 

1. Using DNS honeytokens: A honeytoken or honeypot is a system resource that can 

track and analyze malware traffic [73]. DNS honeytokens are fake records in the 

DNS server. Requesting these records accounts as brute-force network scanning, 

when the attacker tries to gather information about the network IPs. DNS is 

configured to initiate an alert when fake records are requested. 

2. Using Web server honeytokens, such as invisible links, fake entries in the Web 

server, and fake HTML comments. 

3. Creating fake social network avatars in major social networks: To appear more 

realistic, these fake avatars must have connections to people from inside and outside 

the organization. In addition, these fake avatars should have real but monitored e-

mails in the organization. Attackers may target these e-mails with malicious 

attachments. Therefore, these avatars can help detect attackers from inside or 

outside the organization. 
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The deception techniques for the second phase are as follows: 

1. Monitoring the darknets, which are unallocated IP addresses: Connections to these 

addresses are done by scanning the darknets’ range of IP addresses either by 

malicious activity or by user mistyping. Therefore, multiple connections are 

counted as suspicious activity. 

2. Deploying a honeynet, which is a security system that attracts hackers to attack: 

These systems appear to be open and vulnerable to attackers, but they have 

deliberate vulnerabilities that are monitored and controlled [69]. 

3. Using the honeytoken or honeypot in the database servers. 

4. Generating and spreading honey-files in the organization’s network: Honey-files 

are files containing fake interesting information to attackers, such as usernames, 

passwords, and credit card numbers [74]. 

5. Creating honey accounts or bait accounts with simple passwords for detecting 

attackers. 

3.3.3 Graph-Based Methods 

Detecting insider threats using graph-based approaches is the process of finding the inside 

attacker’s activities from the data represented as a graph. Graph approaches use several 

techniques to extract useful information about the insider attacks from graph data. The 

graph approach is one of the most powerful insider attack detection methods because of 

the following reasons: 
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1. Interdependent graph data objects 

Graph data objects are dependent on one another, and these objects can strongly 

represent relational data, which makes graph data objects effective in presenting an 

organization network’s information [81]. This can help detect insider attacks 

because using graph objects provides abundant information about the organization 

network, such as the users’ activities on the network computers and, facilitates the 

representation of the organization network and the attacker activities on that 

network. 

2. Robust representation 

Graph objects such as nodes, edges, and attributes can efficiently represent several 

data sets such as computer networks, cell phone networks, social networks, and 

biological data. For example, in computer networks, the computers are represented 

by the graph nodes, whereas the events and activities among these computers are 

represented by the graph edges. The powerful representation of an organization 

network facilitates that of the inside attacker’s activities on that network, which 

improves the detection of such attacks. 

The area of detecting insider threats using graph-based approaches is popular and 

promising. Several methods were proposed to mitigate the risk of insider attacks [81]. Kent 

et al. [82] use bipartite authentication graphs to mitigate insider attacks and assess the 

authentication of an enterprise network. To represent the activity of each user, they 

proposed a Parsons authentication subgraph (PAS), which is a directed subgraph 

representing the authentication user activity over a period of the data set. The period 

depends on the type of user. They select a period of one year for the administrators and 
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general users, whereas the period of compromised users is one month. Figure 5, shows an 

example of PAS. 

 

Figure 5: PAS Graph For a Single User 

Each vertex in a PAS graph represents a computer that the user accessed during the 

specified period, whereas each directed edge represents one or more authentication events 

on the specified computer. From Figure 5, we can notice that the user accessed six 

computers, including the user’s computer (i.e., node C1, normally his/her desktop). From 

each PAS, authors extract some features such as time features, i.e., Tfirst and Tlast, where 

Tfirst represents the first time the authentication event of the user on a specific computer 

was observed and Tlast is the last time the event was observed. Authors use logistic 

regression to classify the general and administrative users as well as differentiate between 

malicious and benign users [82]. Moreover, to conduct their experiments, authors utilize 

the logs of the authentication data set from the LANL enterprise, which contains around 

33.9 billion event logs collected during one year from around twenty-four thousand 

computers. 

On the other hand, because the inside attackers are authorized persons, they do not perform 

abnormal activities all the time, so they try to hide malicious activities over time during 
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daily work to avoid being caught. Therefore, discovering rare activities, which are the 

minority compared to daily work, may help in detecting insider threats. A graph approach 

for detecting inside attackers by detecting the rare categories was presented by Zhou et al. 

in [83]. They proposed two incremental algorithms called SIRD and BIRD to solve the 

problem of detecting the rare categories on time-evolving graphs. The algorithms 

dynamically update the detecting models to fit the changes in data during the period. To 

increase the efficiency, these algorithms update only the local changes in the models 

instead of rebuilding the whole models. The SIRD algorithm deals with a single-edge 

update, when there is a change in only one edge. On the other hand, when there are changes 

in a batch of edges in the same period, BIRD facilitates the updating process of the batch 

of edges. In addition, the priors of the minority classes in some applications are hard to 

obtain; therefore, Zhou et al. proposed BIRD-L1, which is a modified version of the BIRD 

algorithm. Instead of detecting the exact boundaries, BIRD-L1 needs only the upper bound 

of all minority classes. Moreover, Zhou et al. tackle the problem of reducing the number 

of updated queries, and they introduce five categories to detect the rare activities as soon 

as possible with the minimum cost during multiple time steps.     

Moreover, Mongiovi et al. [84] use a window-based events technique to detect the attacks 

in the network. This technique utilizes a time window on each network graph to detect 

suspicious behaviors and patterns. Normal behavior is modeled using a number of known 

previous instances of the graph, whereas the incoming graph that represents unknown 

behavior is compared with the normal behavior model to characterize it as malicious or 

benign behavior. Mongiovi et al. proposed a method to detect the significant anomalous, 

contiguous region in the network graph over time by detecting the heaviest dynamic 
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subgraph (HDS). For each weighted subgraph, authors converted the problem of finding 

the HDS to the NP-hard problem. Utilizing the empirical distribution of each edge weight, 

the authors represented the suspicious degree of each edge as a statistical probability 

measure (p-value). The higher positive p-value corresponds to a lower suspicious edge (i.e., 

network event). To approximate the NP-hard problem of HDS, the authors utilized a large-

scale neighborhood search approach to propose an iterative algorithm that can detect the 

suspicious regions in the graph. 

Another approach that traces user behaviors and converts these behaviors into a graph to 

detect malicious insider activities was proposed by Lamba et al. [85]. The graph represents 

the system architecture, where each node in the graph is a system resource. The path 

between the nodes represents the user behavior, which is a sequence of user events, so 

when the user accesses resource B from resource A, an edge between nodes A and B is 

generated. To trace the user behavior, this approach depends on three attributes collected 

from the user’s log files. The attributes are the time stamp, user ID, and resource ID. 

Moreover, normal users’ behaviors fall under different clusters based on the user role or 

task. Each user behavior belongs to only one cluster. Therefore, when the user behavior 

differs from its cluster, this behavior is suspected as an anomaly. Then the anomalous 

behavior needs to be investigated and determined if it is a malicious insider attack. 

However, the number of log files in a network is large compared to the number of threats. 

This challenge affects the results of similar approaches. 

3.3.4 Game-Based Methods 

Feng et al. [86] used game theory to effectively protect against two types of complex 

threats, namely, APTs and insider threats. An APT is considered one of the most dangerous 
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and cost-effective attacks that targets the organization’s security systems. APTs are usually 

conducted by stealthy outside attackers to do considerable harm to the organization. One 

of the reasons that complicate these attacks and make them more harmful is the presence 

of an insider who facilitates these attacks. Researchers in [86] used game theory to 

understand the strategies of these complex attacks, build a security system, and reduce the 

risk of such attacks. They proposed a game that consisted of three characters—the attacker, 

the insider, and the defender—to simulate the interactions among these characters during 

the attack. The game is an extension of a two-player game called FlipIt, proposed in 2013 

by RSA Labs [87]. The role of the insider is to utilize his/her privileges to leak information 

about the organization to the attacker for money, whereas the role of the attacker is to 

utilize this leaked information to create sophisticated attacks against the organization’s 

security system. On the other hand, the defender plays the role of the development of cost-

effective protection methods, where the balance between an organization’s data loss and 

the cost of defense against the attack is taken into consideration. 

On the other hand, the traditional methods of protecting critical constructions such as 

nuclear reactors rely on protection from specific and predefined attacks. These traditional 

methods neglect the attacker’s intentions, which can create a variety of intelligent and 

unexpected attacks. As a solution to this problem, Kim et al. [88] relied on game-theoretic 

modeling to analyze and develop the capabilities of physical protection systems for nuclear 

reactors. The researchers used the advantages of modeling games to create an intelligent 

inside attacker with full knowledge of the nuclear reactor parts, the potential to access the 

reactor, and the intention to harm it. The intelligent virtual attacker works on analyzing the 

physical protection system of the nuclear reactor and develops methods and strategies to 
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penetrate this system by conducting certain actions that will weaken the protection system. 

In addition, the researchers developed an intelligent defender who would protect the system 

by taking actions to protect the reactor and mitigate the risk of inside attacker. The authors 

aim at promoting the protection of nuclear reactors by changing and adopting new physical 

protection systems as well as changing the reactor policies. Furthermore, based on the 

evaluation of the physical protection and proliferation resistance, the researchers categorize 

the insider threats that target the nuclear reactors as in Table 3. 

Table 3: The Categorization of Insider Threats Target The Nuclear Reactors 

Category Types 

Type Authorized individual. 

Capabilities 

1. Knowledge. 

2. Number of attackers. 

3. Skills. 

4. Dedication. 

Objective 
1. Malicious attack on reactor facility. 

2. Sabotage. 

Strategy 
1. Exceeding security measures. 

2. Neutralize protection systems 

3.3.5 Physiological Methods 

Physiology is a part of biology that attempts to explain the activities and functions of living 

beings as well as the chemical and physical phenomena. Moreover, it deals with living 

matter such as cells, tissues, and organs in addition to attributes such as feeling, sensing, 

and emotions. Human physiology is the part of physiology that endeavors to clarify specific 

human body mechanisms and characteristics that make human life possible under vastly 

varying conditions [89, 90].  

Because human physiology explains and deals with many of the functions, characteristics, 

and vital signals that characterize a person and determine his behavior, this part of science 
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has become a fertile environment for studying suspicious human behavior associated with 

insider attacks. Several methods utilizing human physiology have been proposed to detect 

insider threats in organizations. We have categorized these methods as behavioral, 

biometric, and bio-signals. 

3.3.5.1 Behavioral Methods 

Human behavior refers to the observable emotions and physical actions that can be 

performed by an individual. There are two operations by which human behavior can be 

distinguished: It is observable and countable. So, human behavior is an action or emotion 

that can be observed several times. Human behavior may be influenced by several factors, 

such as ethics, attitudes, culture, and persuasion [91, 92]. 

Several studies have been conducted to identify and classify the factors with which an 

insider attacker can be detected. Greitzer et al. [93] classified the human behavioral factors 

that help to understand the insider attacker and mitigate the risk of such attacks into 

individual human factors and organizational factors. The individual human factors 

concentrated on the human personality, temperament, ideology, attitude, and behavior 

issues, whereas the organizational factors concentrated on the work features that affect the 

attitude, satisfaction, protection, and safety of the employee as well as the organization’s 

policies and practices. Greitzer et al. divided the human behavior into classes and sub-

classes up to 7 levels deep. The overall factors are 223 human factors and 39 organizational 

factors. Table 4 shows the main classes and subclasses of the human factors, whereas 

Figure 6, illustrates the main classes of organizational factors. 
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Table 4: The Main And Subclasses Of The Human Factors by Greitzer et al. [93] 

Human Factors 

Concerning Behaviors 

Job Performance 

Boundary Violation 

Cyber security Violation 

  
Capability  

  

Dynamic State 
Attitude 

Affect 

  

Static Trait 

Personality Dimensions 

Other Personality Traits 

Temperament 

  

Life Narrative 

Financial Concern 

Criminal Record 

Personal History 

  

Ideology 

Disloyalty 

Radical Belief 

Unusual Foreign Contact 

Furthermore, Greitzer et al. developed a psychosocial model for predicting insider attacks 

[9]. This model utilized employee behavior to predict insider malicious activities through 

proactive means. The model evaluated employees’ behavior to recognize potential risks. 

This evaluation was based on the automation of different indicators that result from the 

experience and best practices of the Human resources (HR) managers in recognizing 

employees’ psychosocial behavior. Table 5 illustrates an example of the evaluation 

indicators based on the experience of two HR managers. Furthermore, the authors 

recommended three prediction algorithms for analyzing the model's result: nonlinear 

feedforward neural network, Bayesian model, and a linear regression model, which give 

the best results for predicting attacks. 
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Figure 6: The Main Classes of Organizational Factors by Greitzer et al. [93] 

Table 5: The Evaluation Indicators Greitzer et al. [9] 

Indicator Description 

Disgruntlement Ex. negative feelings about being disregarded. 

Not Accepting Feedback Taking criticism personally, or does not confess to mistakes 

Anger Management 

Issues 
Cannot manage anger range or emotional feeling. 

Disengagement The employee does not cooperate with individuals and groups. 

Disregard for 

Authority 
Neglecting polices and authority feeling above the rules. 

Performance Receiving a worming because of poor performance. 

Stress Physical or mental tension. 

Confrontational 

Behavior 
Aggressive behavior such as intimidation. 

Personal Issues Personal issues interfere with work issues. 

Self-Centeredness Concerned mainly with own welfares 

Lack of 

Dependability 
Undeserving of trust and cannot keep promise 

Absenteeism Continuous absenteeism without reasonable excuse. 

 

3.3.5.2 Biometric Methods 

Human biometrics are measurable and distinctive characteristics that can identify a person. 

Some biometric identifiers such DNA cannot be changed or revoked. Examples of human 

biometrics are iris, fingerprint, and face recognition, as well as human behavioral patterns 

such as the way a person walks or writes [94, 95]. The fingerprint is one of the earliest 
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human biometrics used in crime investigations. Following are some studies that used 

human biometrics for the purpose of detecting insider threats. 

The control of eye movement is one of the physiological biometrics that may give an 

indication of voluntary and involuntary actions. Matthews et al. [96] investigated the 

potential for using eye tracking to detect probable insider attacks. Also, they proposed some 

design principles that may be used in real environments to detect such attacks. They utilized 

active indicators, which are stimuli that would evoke from the insider attacker distinctive 

responses, which can be distinguished by tracking eye movements. Matthews et al. utilized 

some eye tracking metrics such as the fixation duration and the saccadic frequency of eye 

movements to detect insider attackers. Such metrics were used to identify some 

characteristics of the insider attacker such as general concealment of interest, implicit 

responses during the malicious act and intentional strategic concealment. Participants in 

the experiments were divided into two groups, the control group which conducted (normal 

- normal) role, and the insider group which changed its role from normal to malicious 

activities and conducted (normal - insider attacker) role. 

Babu and Bhanu proposed a biometric authentication system that utilized keystroke log 

files to mitigate the impact of insider attacks in cloud computing [97]. This approach 

consisted of a combination of trust, risk, access control, and user typing behavior. The log 

files of keystrokes represented user typing behavior. Risk was counted as any activity that 

caused damage to the cloud. Furthermore, they classified insider attackers into three types: 

Two were from the cloud service provider company (a rogue administrator and an 

employee who had access to the clients’ sensitive data), while the third type of insider 

attackers was defined as a rogue administrator from the client company. This system 
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recognized the users’ behavior by converting the dynamics of the users’ keystrokes into 

numerical features. Then, these features are fed to the Support Vector Machine (SVM) 

classifier to identify the malicious activities, based on the threshold of risk analyzer. To 

provide more flexibility, scalability, and different levels of security for the authentication 

system, the threshold level of the risk was proposed to be dynamic. The extracted features 

from the keystrokes are illustrated in Table 6 where: P is pressing, and R is releasing. 

Table 6: Extracted Features by Babu and Bhanu [83] 

Feature Name Feature value 

X 1 or -1 to identify the data belong to the user or not 

F1 Keywords represented by most frequently 2, 3 or 4 letters 

F2 Difference between P(last key) and P(first key) of the word 

F3 Difference between P(last key) and R(first key) of the word 

F4 Difference between R(last key) and P(first key) of the word 

F5 Difference between R(last key) and R(first key) of the word 

 

Although the user’s typing behavior and keystroke log files can help identify some 

malicious attacks, analyzing only the log files cannot add great impact on preventing 

insider attacks in cloud-computing systems because inside attackers have control over such 

authentication systems. 

Rudrapal et al. [98] propose an algorithm to increase the immunity of the organizations’ 

systems from insider attacks. Their algorithm works as the second line of defense to protect 

the user’s privacy besides traditional authentication, which are the username and password. 

The algorithm utilizes the dynamics of keystrokes to identify the user’s identity. It tends to 

protect the organization from the insider attack when the attacker tries to impersonate 

another person’s identity by using legitimate credentials for a different user. The keystroke 

features for every user are extracted and stored in a database. Then these features are 
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compared with the user’s keystrokes, when the user types a specific text or credentials, 

before authenticating the user. The extracted features rely on the duration between pressing 

and releasing keyboard keys for digraphs and trigraphs, a digraph defined as two keys typed 

one after the other and trigraph as three consecutive keystrokes. The duration between 

pressing the first key and pressing the second key represents the digraph duration, whereas 

the trigraph duration is represented by the duration between pressing the first key and 

pressing the third key or the duration between releasing the first key and releasing the third 

key. Although this approach can prove the authentication and can help verify the user’s 

identity, it does not guarantee protection from insider attacks. The attacker can use his 

legitimate credentials to steal valuable and precious information. Moreover, the furious 

employee can install harmful software such as logic bombs that may cause catastrophic 

damages to the organization. 

3.3.5.3 Bio-signals Methods 

Bio-signals are physiological signals emitted by biological beings, which can be measured 

through electrical probes. In other words, for human beings, bio-signals are tiny electrical 

signals emitted from the human body when the muscles flex or eyes move or even during 

thinking or sleeping. The human body produces thousands of bio-signals every second. 

The most common bio-signals are as follows: 

 Electroencephalogram (EEG) signals: brain signals 

 Electrocardiogram (ECG) signals: heart signals 

 Electromyogram (EMG) signals: muscle movement signals 
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The fact that vital signals are not voluntary is what distinguishes them and makes them 

difficult to imitate. Furthermore, because vital signals reflect the psychological state of a 

human being, these signals can be a distinctive tool to identify internal threats.  

Recently, a new research direction was established to distinguish between the benign and 

malicious activities of employees [99]. The aim of this new research direction is to detect 

malicious insider activities beforehand. Therefore, it can be served as an early detection 

system for insider attacks. This direction of research based on the human bio-signals such 

as EEG ECG or EKG signals.  

Suh and Yim [18] investigated the applicability of using bio-data to detect insider attacks 

in nuclear power plants. They collected the bio-data from only two males, both of whose 

ages were around 25, and one of whom was left-handed. The experiments were based 

entirely on two tests: an emotion test and an intentional wrong decision test. The emotion 

test was based on showing some photos randomly to participants. The authors selected 

about 30 photos related to emotions. These photos could stimulate bio-signals in 

participants. The photos contained natural stimuli as well as immoral stimuli. For example, 

one photo showed a crime scene, whereas another photo showed a smiling child. On the 

other hand, the intentional wrong decision test was based on 140 scenarios that were 

programmed using MATLAB. The participants clicked the YES/NO button to make a 

specific decision. The two participants played different roles in this experiment, where each 

role represented a particular position or job in the organization. Some of these positions 

were truck driver, director, nuclear power plant operator, IT worker, and official in the 

National Intelligence Service. The 140 procedures of this test included crimes such as 
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giving an identity card to strangers and planting a bomb in the organization. Although the 

authors claimed they received promising results, their work had some drawbacks: 

1. The size of the experimental sample is too small, where conducting the experiments 

on two participants surely will provide a low level of confidence in the results. To 

achieve a high level of confidence, the experimental sample size must be more than 

twenty participants [94]. 

2. Some aspects of the experiment are unrealistic. For example, in the intentional 

wrong-decision test, the two participants played different roles, and they occupied 

various unreal jobs, such as IT worker, truck driver, and director, so the participants 

will not be completely affected by making the wrong decisions in these unreal jobs. 

Furthermore, in the emotion test, some images have been presented to the 

participants, such as crime images. This test has two drawbacks. First, such images 

may not represent any real internal violations in the institutions. Second, the 

reactions of the participants from such images are unrealistic and do not represent 

real reactions of the inside attackers. 

3. The participants realize they are conducting experiments related to inside attackers, 

so their emotions may not reflect the attackers’. Such experiments must be 

conducted in realistic situations and include real procedures. 

Moreover, Hashem et al. [99] investigated the usability of detecting insider malicious 

activities by analyzing human electroencephalography (EEG) signals. They conducted 

their experiments on ten participants, five males and five females, whose ages varied from 

18 to 33 years old. Each participant performed three scenarios. The duration of each 

scenario was ten minutes. Two scenarios were malicious, whereas the third was benign. 
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Malicious scenarios were an unauthorized login to a remote computer and the theft of 

source code files from a folder in the lab network, whereas the non-malicious activity was 

a regular office job such as surfing the internet, reading e-mails or using computer 

applications. The brain EEG signals were collected by using Emotiv EPOC device [100]. 

Then, the wavelet transformation was used to decompose the EEG frequencies into 

different sub-bands, which was used as frequency domain features. by recording signals 

from each electrode of the device in the same period. Then, the features are reduced using 

the principal component analysis (PCA) [101, 102]. Hashem et al. used the Support Vector 

Machine (SVM) to differentiate between the malicious and benign signals. Error rate, 

Accuracy, Precision, F-measure, and recall were utilized as measurements in the 

experiments. However, the sample of 10 participants is not enough to prove the results 

accurately [103]. Furthermore, SVM classifier tends to ignore the minority class while 

building the model, especially when dealing with unbalanced data [104, 105]. Ignoring the 

skewness in the data set leads to provide less accurate results. Therefore, in such cases, the 

receiver operating characteristics (ROC) curve provides results that are more accurate than 

using accuracy. 

Almehmadi and El-Khatib [106] proposed an access control system (IBAC) based on the 

bio-signals. They used the EEG reactions toward visual stimuli to grant or deny users from 

access the protected resources based on the calculated risk. IBAC was based on the idea 

that users know their intentions of access. So, the system measured the user's intention 

using the amplitude of P300 waveform after stimulating the brain with the question “What 

is your intention to access the resource?". P300 is a positive EEG peak takes place 300 

milliseconds after the visual stimuli. However, the procedure of calculating P300 ignores 
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Gamma brainwaves and relies only on Theta, Alpha and Beta bands. The first experiment 

aimed at detecting the lousy intention of a specific resource. The participants were asked 

to think of burning a lab while looking at random images that represent intentions such as 

burning lab, studying in the lab, and organizing labs. The second experiment aims to detect 

the internal threat using the IBAC system. To this end, participants were informed not to 

access some private folders unless they can do without getting caught and if they were 

caught the experiment failed. 

Furthermore, Almehmadi and El-Khatib [107] used the amplitude of ECG signals, the 

galvanic skin response (GSR), and the skin temperature to detect the insider threats. The 

signals were collected from fifteen students during normal and malicious scenarios. The 

malicious scenario was similar to the second experiment in [106]. The system did not 

utilize different features in the ECG signals; it used the ratio of the average of data that 

each sensor records per second to the standard deviation of the collected bio-signals as 

illustrated in the following equations: 

𝑆𝑒𝑛𝑠𝑜𝑟𝐷𝑎𝑡𝑎𝐴𝑣 =
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Hashem et al. [108] studied the possibility of detecting insider threats using EEG signals 

and tracking eye movements. Twenty-five participants conducted five experimental 

scenarios, three normal and two malicious. The normal tasks aimed to study the reactions 

of the participant while performing benign daily activities, daily activities under stress, and 

high mental workload activities. On the other hand, the malicious scenarios were the SQL 

injections attack and unauthorized remote access. Participants were instructed to conduct 

the malicious tasks and told that no extra rewards if they leave any trace while performing 

the tasks. Hashem et al. extracted two types of features: the EEG features using the wavelet 

transform algorithm and the eye tracking features (i.e., the movements and pupil features). 

Suh and Yim [109] discussed the feasibility of using the EEG signals to predict the insider 

threats in the nuclear environment. Their study aimed to investigate the feasibility of 

developing specific EEG signals to identify an insider before committing the attack. They 

analyzed the difference in the EEG data during the normal brain state and malicious 

actions. They utilized a wearable device to collect the signals from eleven participants. 

During the experiment, the participants had to read some problems about the nuclear 

reactor and click on YES or NO button. Clicking YES button represents a bad action 

whereas NO button represents a good action. To predict the insider threat, they used a 

quantitative EEG analysis to develop two types of indicators which are the relative power 

of (alpha, beta, theta, the sum of alpha and theta and gamma waves) and the ratio of 

brainwave-to-brainwave (i.e., gamma/alpha and beta/alpha). 
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Table 7: Summarizing The Surveyed Methods 

Category Reference  Components Description 

Increasing 

awareness 

about insider 

threats 

Training Chi et al. [62] 
Educational 

Virtual Lab 

Training lab for insider 

attacks awareness 

Educational 

Course 

Rochester 

Institute of 

Technology[64] 

Security course to 

the software 

developers 

Educational course for 

insider attacks awareness 

Anomaly 

detection 

Indicator 

Based 

Legg et al. [68] 

Log files, device 

ID, user ID, 

activity name, 

timestamp 

Network monitor to detect 

the user' activities. Using the 

current user's profile as an 

indicator 

Ambre and 

Shekokar [11] 

Log analysis and 

event correlation. 

Network monitor to detect 

malicious (ICMP) request, 

rebooting server, and 

unsuccessful login as an 

indicator of attack. 

Schultz [10] 

Deliberate marker, 

Meaningful errors, 

Correlated usage 

patterns. 

Using multiple weighted 

indicators to detect the 

insider threat. 

Scenario 

Based 

Zargaret et al. 

[66] 

Betrayer Admin, 

Third Party 

Backdoor, 

Credential Sniffer, 

E-Mail Spoofing 

Monitoring each network 

session, analyzing raw logs 

to detect the suspicious 

scenarios 

Young et al. [69] 

IP Thief, Saboteur, 

Fraudster, 

Ambitious Leader 

Using an ensemble with 

unsupervised learning 

technique detect the 

suspicious scenarios 

Honeypot 

Traps 

High 

interaction 

Honeynet 

Sqalli et al. [70] 

Honey-wall 

CDROM, Snort 

Sebek 

Monitoring KFUPM 

network to detect the 

suspicious activities 

Multiple 

deception 

techniques 

Virvilis et al. 

[80] 

Ex. honeynets, 

social network 

avatars and dark-

nets monitoring. 

Monitoring the network 

traps to detect the insider 

threats 

Graph Based 

Kent et al. [82] 

Parsons's 

Authentication 

Subgraphs (PAS) 

Using bipartite 

authentication graphs to 

represent the activities of 

each user's 

Zhou et al. in 

[83] 

SIRD, BIRD and 

BIRD-L1 

Using the time-evolving 

graphs to detect the user's 

suspicious actions 

Mongiovi et al. 

[84] 

Heaviest Dynamic 

Subgraph 

Utilizing time window on 

each network graph to detect 

the suspicious behaviors and 

patterns 
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Lamba et al. [85] 

Network 

architecture graph, 

timestamp, user 

and resource IDs 

Monitoring the user 

behavior in network based 

on graphs. 

Game Based 

Feng et al. [86] 

Three-player game 

attacker, insider, 

and defender 

Using game theory to 

protect against two types of 

threats, namely the 

advanced persistent threats 

(APT) and the insider 

threats 

Kim et al. [88] 
Intelligent attacker 

and defender 

Using game theoretic 

modeling to analyze and 

develop the capabilities of 

physical protection systems 

for nuclear reactors 

Physiological 

Behavioral 

Greitzer et al. 

[93] 

Criminal Record, 

Financial Concern, 

Disloyalty and 

Security practices 

Using individual human 

factors and organizational 

factors to detect the insider 

threats 

Greitzer et al [9] 

Disengagement, 

Disgruntlement 

and Stress 

Using the best practice and 

experience of HR managers 

to detect the suspicious 

behavior 

Biometric 

Matthews et al. 

[96] 

Fixation duration 

and saccadic 

frequency of eye 

movements 

Utilizing the eye tracking 

for detecting the insider 

attackers 

Babu and Bhanu 

[97] 

Keystroke and 

Typing behavior 

Using biometric 

authentication system to 

detect the insider attacks in 

the cloud computing 

Bio-signals 

Suh and Yim 

[18] 

EEG, ECG and 

GSR 

Detecting insider attacks in 

nuclear power plants 

Hashem et al. 

[99] 
Brain EEG signals 

Monitoring brain EEG 

signals to detect threats  

Almehmadi and 

El-Khatib [106] 
EEG signals 

Access control system 

(IBAC) based on the bio-

signals 

Almehmadi and 

El-Khatib [107] 

ECG, GSR, and 

Temp 

Detecting malicious insider 

threats  

Hashem et al. 

[108] 

EEG and Eye 

tracking 
Detecting insider attacks 

Suh and Yim 

[109] 
EEG signals 

Monitoring brain EEG 

signals to detect threats 
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3.4 Limitations in the Existing Studies 

Despite the great variety of strategies to identify insider attacks, as we have already 

mentioned in the literature of this research, the physiological strategies remain efficient in 

detecting insider attacks and overcoming the shortcomings of most other strategies because 

they depend on fixed metrics related to the human body, where the individual cannot 

change or control these metrics easily. In this section, the limitations of the strategies 

mentioned in the literature will be presented; moreover, the gap in research of detecting 

insider threats will be discussed. 

3.4.1 Limitations of Anomaly Detection Methods 

Although anomaly detection methods are common and used to identify internal attacks as 

they are also used to protect against outsider attacks, these methods have some 

shortcomings. These shortcomings can be summarized as follows: 

1. Huge number of log files and network packets 

Many anomaly detection methods rely on log files and network packets to extract 

the data and behaviors of the users; however, the number of log files in large 

organizations is extremely high. For example, a single user can have thousands of 

log files per workday, so the process of analyzing these log files lengthens the 

detection period of the suspicious behavior of inside attackers. 

2. Detection of predefined attacks 

These methods provide protection against a limited number of insider attacks, 

where the idea behind these methods is to identify specific scenarios or indicators 

of insider attacks as a blacklist [110], where new unknown scenarios are compared 
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with previously known suspicious scenarios in the blacklist to distinguish the 

behaviors of inside attackers. However, in the case of a new insider attack scenario 

that is not listed in the blacklist, this attack will not be recognized by these methods 

before causing catastrophic losses to the organizations. Research has proved that 

even the best application for malware detection can only detect, at most, 87% of 

the latest attacks [111]. Furthermore, the principle of these methods depends on the 

assumption that the number of insider attacks the organizations may face is low. 

On the contrary, it has been proven that the number of internal attacks grows 

because of the rapid development of technology, where these attacks pose a great 

threat to organizations. 

3. Information security staff capabilities 

Angry information security managers and staff who participate in the installation 

and management of anomaly detection devices have full knowledge of the 

capabilities of these devices and can control them, making them suspected as inside 

attackers because they can utilize their knowledge and their facilities to bypass 

these security systems. 

3.4.2 Limitations of Honeypot Traps 

Honeypots and network traps, sophisticated anomaly detection methods, have some 

advantages over traditional malware detection methods. The honeypot approaches can 

detect and protect from unknown malware that have been caught by these traps. Moreover, 

these approaches can provide the opportunity to enhance the security system of the 

organization by providing further investigation and analyzing for anomalies. However, 

honeypots and network traps have substantial shortcomings: 
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1. Complexity of honeynet 

The design and control of the honeynet, especially the high-interaction honeynet, 

is complex because building an emulating system for several network services and 

controlling the attackers are not easy processes; moreover, this emulating system 

must be immune to malware [112]. 

2. Honeynets have the highest risk 

If the honeynet is compromised and controlled by the attacker, the attacker would 

have an opportunity to attack the organization’s resources and use the honeynet as 

a platform to attack different institutions using its IP address, which would expose 

the institution to organization accountability [113, 114]. 

3. Honeynets increase the cost and complexity of the network 

Building a honeynet requires the organization to dedicate resources, systems, and 

IP addresses to the honeynet. This may be expensive and complicate the 

organization network [113]. 

3.4.3 Limitations of Game-Based Approaches 

Although using game theory in designing security games has several advantages, such as 

using intelligent systems for discovering vulnerabilities in security systems and simulating 

characters, game-based approaches have considerable shortcomings: 

1. Lack of scalability 

Most of the security-game models are not scalable where the game consists of two 

or three players. Players represent the attacker, the defender, and the insider 

(betrayer). These models neglect some real-life cases of multiple attackers dealing 
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with multiple defenders because these models treat the whole number of defenders 

as only one, as with the attackers [115]. 

2. Lack of motivation 

One main problem in modeling network security games is the lack of motivation 

from the difficulty of quantifying the value of protecting the organization’s network 

as a result of modeling such games by non-specialist persons in the security systems 

because of confusion between how to assess and how to quantify the security of the 

organization’s network [116]. 

3. Unrealistic Models 

Security games treat the security system as finite, with no errors, which is false in 

real-life situations, where intrusion detection systems are erroneous [115]. 

3.4.4 Limitations of Graph-Based Approaches 

Despite the factors that give graph-based methods advantages and robustness in simulating 

the organization’s network topology to detect network threats, these methods have several 

drawbacks: 

1. Approximate values from NP-complete problems 

Although graph-based methods can represent the structure of the organization’s 

network effectively, detecting insider attacks using these methods could lead to 

approximate results. The insider attack is a sequence of events in the network; each 

event can be represented as an edge. Traversing these edges in the organization’s 

network, which consists of many computers, printers and other resouces, leads to 

nondeterministic polynomial time problems, such as NP-complete or NP-hard 
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problems. These problems have approximation solutions that may affect the 

detection results [84, 117]. 

2. Unacceptable computing time 

Graph-based methods consume relatively little time when run on small graphs 

(around fifteen to twenty minutes with a graph of three hundred nodes). However, 

in the real world, an organization’s network consists of thousands of computers. 

Detecting insider threats using graph-based approach leads track the insider attack 

events in the graph; the computing time for traversing graph edges to detect such 

threats may lead to NP problems, which cannot be solved in real time [118]. 

3.4.5 Limitations of physiological methods 

Physiological strategies, especially bio-signals, are among the latest strategies to detect 

insider threats. Several factors have contributed to the emergence of such methods, 

including but not limited to the rapid technical development, low cost, and ease of use of 

small bio-signal measurement devices. Detecting insider threats with bio-signals is one 

promising research area. Although these approaches use bio-signals such as EEG and ECG 

signals for mitigating the risk of insider attacks, the existing approaches have some 

considerable shortcomings: 

1. Size of the experimental sample 

The experimental sample size of existing methods is small. Experiments with fewer 

than 20 participants may achieve low credibility and poor confidence scores [103]. 

2. Measurements and classification 

Detecting suspicious behavior using bio-signals is the process of searching for 

minority-class activities compared with normal activities. Existing bio-signal 
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methods did not use the right measurements or more than machine-learning 

classifiers to prove their results. Almost all of these methods relied on accuracy 

alone, which may not be a good indicator. Moreover, they used classifiers that tend 

to ignore the minority class while building their models, especially when dealing 

with the unbalanced data of insider attacks. 

3. Unrealistic experimental scenarios 

In the existing bio-signals methods to detect insider attackers, the experiments for 

collecting bio-signals from participants relied on unrealistic scenarios in which the 

participants were instructed to act suspiciously. This significantly affected 

participants’ decisions and certainly had a negative effect on their locus of control. 

The locus of control, a concept developed in 1954 by Julian B. Rotter, is defined as 

“the degree to which people believe that they have control over the outcome of 

events in their lives, as opposed to external forces beyond their control” [119]. 

When individuals believe that events in their lives derive mainly from their own 

actions and that they are responsible for their actions, they are known as individuals 

with an internal locus of control. On the other hand, individuals with an external 

locus of control believe that events in their lives are affected by external forces 

beyond their control. Giving instructions to the participants affected their locus of 

control and led to a lack of a sense of responsibility for the consequences of their 

actions, thus affecting their brains’ responses [120, 121]. Furthermore, Edward and 

Ryan [122] published a model of human motivation called self-determination 

theory. In the context of self-determination theory, autonomy represents your 

ability to choose not only the things you do but the way in which you do that. 
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Autonomy has a significant impact on human's motivation. The motives of 

individuals who simply conduct an objective that they're responsible for are entirely 

different from the way that they do the same objective when instructions are given. 

So, the truly human acts are associated with the freedom to conduct that act. So, in 

the existing bio-signals approaches, the participants were not truly acting 

suspiciously like real insider attackers, which completely affected the shape of their 

brainwaves as well as the rest of their bio-signals. 

4. Lack of responsibility 

A sense of responsibility arises from the awareness that an individual has control 

over his actions. This awareness stems from linking an action with its consequence 

and from counterfactual reasoning when the individual has a choice to do a different 

action [121]. Responsibility plays a vital role in individual decision-making and in 

intentional antisocial behavior. It has been proven that the feeling of responsibility 

affects brain signals because it is associated directly with regret, which is also 

associated with processes occurring in the brain’s prefrontal cortex [123]. 

Therefore, instructing the participants to act maliciously affected the brain signals 

used in decision-making and feeling. Thus, the participants’ bio-signals do not 

represent real insider attackers’ bio-signals. Moreover, Frith [121] proved that 

volition and responsibility are also influenced by instructions. 

Despite the bio-signal methods in the literature survey, little research has been carried out 

on the area of detecting insider threats using human bio-signals. As we have explained, 

many shortcomings in these methods affect the credibility of the results. One major 

shortcoming was that all the scenarios used in the experiments did not represent real 
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internal attacks to the best of our knowledge. The participants received instructions to act 

maliciously and did not feel responsible about their actions, which affects their bio-signals. 

Therefore, conducting research in this area is promising and may provide useful insight 

into the implementation. 

In this research, the shortcomings of existing bio-signal approaches were taken into 

consideration. We reported the results of 84 participants to achieve high credibility. Also, 

we developed a real insider attack scenario based on physiological considerations, where 

we did not instruct the participants to carry out malicious activities, so they had real 

motivations. The decision-making was left to the participants to perform the attack, so not 

all the participants acted maliciously. Additionally, participants were fully aware that they 

were responsible for their activities as we will discuss in the next Chapter 5. Furthermore, 

to provide more accurate results without relying solely on the accuracy measurement, 

several measurements have been used to ensure the correctness of the results, such as the 

receiver operating characteristics (ROC) curve. These measurements would overcome the 

problem of searching for the minority classes as discussed in Chapter 6. 

3.5 Summary 

The difficulty in distinguishing crimes of internal attacks from non-malicious activities is 

one of the reasons internal attacks are a concern for organizations. Increasing awareness 

among the organizations’ employees about insider attacks is one of the solutions to prevent 

such attacks. Several studies that aim to increase the awareness about insider attacks have 

been presented in this study. Some of these studies provide technical solutions, such as the 
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virtual laboratory, to increase the security skills of trainers, while others have developed 

security courses about insider threats. 

Moreover, based on the technique used in the threat detection, the existing detection 

methods of insider attacks have been categorized into five categories which are anomaly 

detection, honeypot traps, graph-based methods, game-based methods, and physiological 

methods. Each of these categories has been discussed, and several examples about each 

category has been surveyed in this chapter. 

Additionally, the shortcomings of the insider attack categories have been discussed, where 

the focus was on the disadvantages of the detection methods that were related more to the 

problem of this research. One of the disadvantages of the existing insider threat 

identification methods is using unrealistic scenarios to simulate the attack from within and 

affecting the nature of the bio-signals being collected. However, the existing bio-signal 

methods to detect insider attacks neglected some of the physiological theories, such as the 

locus of control and the sense of responsibility. In addition, the size of the experimental 

sample for these methods is very small, which makes the results unreliable. 
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4 CHAPTER 4 

RESEARCH METHODOLOGY 

4.1 Overview 

To investigate the research problem, which is the utilization of human bio-signals to detect 

insider attacks, we divided the research methodology into five stages, where each stage 

aims to address a separate objective from this research. Moreover, each stage has its own 

results and deliverables, which are vital to the other methodology stages. Figure 7 

illustrates the stages of the research methodology and the relationship between these stages. 

4.2 Stage 1: The Literature Survey 

The first stage of this research methodology is to survey the literature at it provides full 

and up-to-date understanding about the research problem in addition to delivering the 

shortcomings of existing methods. So, to investigate the problem of insider attacks and to 

explore the existing approaches that aim to protect from such attacks, we conducted a 

literature survey about the methods that tackle this problem.  

We discovered diverse methods of protection from internal attacks and classified these 

methods according to the technique used to identify the attack into five categories. Despite 

the number and variety of existing methods, we have found that only a few researches 

utilize human bio-signals to protect against insider threats [107]. An effective insider attack 

protection system should overcome the disadvantages of previous protection methods. 
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Therefore, in our literature review (Chapter 3, section 3.4.5), we have provided and 

discussed the disadvantages of existing methods that used human bio-signals. Moreover, 

as shown in Figure 7, this stage of research methodology (i.e., literature survey) has played 

an important role in the design of the protection system as it discovers the weaknesses of 

the previous approaches. 

 

Figure 7: Research Methodology 
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4.3 Stage 2: Building the Bio-signals Data Set 

Protecting the organizations' security by detecting insider threats is a hot research area, 

despite that only few methods have been proposed recently using human bio-signals. 

Regardless of the number of these solutions, to the best of our knowledge, no data set exists 

that contains such bio-signals for research purposes. The data set for developing this 

research area—and as a reference of comparison among insider attack detection methods 

that use bio-signals—must meet the following conditions: 

1. The data set should contain a sufficient number of bio-signal samples, from more 

than twenty persons [103] . 

2. The volunteers’ bio-signals should be collected through real scenarios that simulate 

the reality of the problem of the research (i.e., insider threats). 

3. Psychological factors should be considered during the scenarios of collecting the 

bio-signals. These factors include the locus of control, decision making, and the 

feeling of responsibility about the consequences of the decision. 

4. The data set should contain real human bio-signals collected during experiments 

and must not contain any autogenerated bio-signals using a simulator. 

Consequently, to build a bio-signals data set that will be used also to design our system, 

which aims at accurately identifying internal violations using human physiological signals, 

the experimental scenarios for collecting the bio-signals from volunteers must be designed 

to simulate real cases. To this end, we have proposed two scenarios. The first scenario 

simulates the presence of an employee in a normal work environment, where the employee 

performs daily routine tasks using the computer. The second scenario simulates the 



76 

 

presence of the employee in a normal work environment, but the employee acts 

suspiciously and violates the organization’s laws. In the second scenario, the volunteer has 

the opportunity and decision to carry out internal attacks without his knowledge that such 

violations are part of the experiment. The experiment scenarios are discussed in Chapter 5. 

On the other hand, to build a data set of human physiological signals for detecting inside 

attackers requires identifying which bio-signals will be collected during experiments, 

where these signals are key to solving the main research problem. So through the literature 

review and exploring human physiological signals in some research fields—such as 

emotion recognition, intention detection [14], cryptographic systems (cryptographic key) 

[15], detecting read book genres [16], control systems, and crime detection systems, such 

as polygraphs or lie detectors [17]—several signals (biofeedback and neurofeedback) have 

been identified in these researches. The identified signals are vital in determining human 

moods, behaviors, and emotions. These signals are also important in distinguishing 

between a person’s conditions when performing normal and suspicious activities. In this 

research, the experiments were conducted to collect these influential signals for the design 

of the proposed system. 

This data set has been collected at Hadhramout University in the Republic of Yemen. The 

process of collecting bio-signals and conducting experimental scenarios continued for 

about seven months, where the experiments were conducted in two stages (i.e., suspicious 

and normal activities) according to the availability of the students. Each stage has been 

conducted separately. The data set contains bio-signal files for eighty-four volunteers, 

forty-three of which are males. These bio-signals were collected when volunteers 

performed two types of scenarios: normal work and suspicious activities. As a result of 
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these two types of scenarios, the data set contains four files for each volunteer’s bio-signals. 

Each scenario produces two bio-signal files for each volunteer, the first file containing EEG 

signals and the second one containing ECG signals. 

To protect the privacy of the volunteers, all personal information, such as the volunteers’ 

names and departments, will be removed from the files. To differentiate the files in the data 

set, we have divided the file names into four parts. Figure 8 illustrates the naming process. 

Moreover, we have followed the subsequent rules for naming the files: 

1. Part one of the file name contains a two-digit number that identifies the volunteer’s 

number. 

2. The second part of the file name contains three letters that identify the type of bio-

signals, either EEG or ECG. 

3. The third part of the file name contains only one letter that represents the scenario 

or the behavior of the volunteer; this will be either S for suspicious behavior or N 

for normal behavior. 

4. Part four of the file name consists of one letter that identifies the volunteer’s gender; 

this will be either F for females or M for males. 

The files in the data set are grouped into two separate groups; the first group contains the 

files of the EEG signals for both suspicious and normal scenarios, whereas the second 

group contains the files of ECG signals for both scenarios. Moreover, one of the most well-

known and popular file formats has been used to store the files in the data set: the extensible 

markup language (XML), which can be transformed easily into other files and can be used 

by any programming language. Furthermore, the XML format can store more than one type 
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of signals, such as heart rate, the standard deviation of the peaks and the peaks value, etc. 

where each type has a different style of representation, so storing data such as ECG in XML 

format is easy. Figure 9 shows the data set structure. 

 

Figure 8: Data set Naming Process 

 

Figure 9: Data set Structure 
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in the file because of hardware limitations. In most cases, the bad signals between 

consecutive samples were five seconds at most and were symbolized in the file as NA (not 

available). 

On the other hand, each ECG file consists of three groups of data. The first group, called 

samples, represents the information about each heart pulse and contains the sample 

number, sample time, and raw heart data, which represent the ECG signal value. The 

second group of data contains information about the R peaks, which is the maximum 

amplitude during a specific interval of the ECG wave. The information about the R peaks 

includes peak time, peak value, and the interval between successive R peaks. The third 

group of data contains the heart rate variability value (i.e. SDNN), which is calculated 

every sixty seconds. Figure 10 shows the ECG data representation in the file. 

 

Figure 10: ECG Data Representation 
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suspicious behaviors. Features are the measurable, independent, and informative 

characteristics extracted from raw signals [23], which makes these signals more effective 

in identifying internal violations. Therefore, it is necessary to change the format of raw 

signals into features using the appropriate equations that will increase the strength of these 

features in determining internal violations. 

Obviously, not all features have the same effect in detecting changes in bio-signals during 

attacks; some of these features should be nominated. On the other hand, the nominated 

features may play different roles in determining internal violations because of the changing 

rate of physiological signals in normal and suspicious activities. Therefore, it is necessary 

to determine the impact of each nominated feature on the accuracy of the proposed system. 

To achieve this, several evaluation criteria were used. Chapter 6 explores the importance 

of each nominated feature. 

4.5 Stage 4: Proposed System 

The idea of the proposed system is to detect malicious activities by distinguishing whether 

the changes in the bio-signals (EEG and ECG) are due to malicious behavior or the normal 

behavior of the employee. Figure 11 shows the schematic diagram of the proposed system. 

The proposed system consists of eight units, each of which has its turn in detecting 

suspicious behavior and mitigating the risk of insider attack. Each unit is discussed 

individually in the following subsections. 
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Figure 11: Schematic Diagram of The Proposed System 

4.5.1 Sensors 

From the schematic diagram of the proposed system, units 1 and 2 represent the sensors, 

which are devices that are frequently used to detect signals or measure a property [124]. 

Sensors have been utilized to capture human bio-signals. Two types of sensors were used 

in our experiments to collect the human bio-signals. The first type is the EEG sensors that 

are part of the NeuroSky MindWave device, whereas the second type is a part of the Wild 

Divine device that is used to collect ECG signals. More details about these devices are 

discussed in Chapter 5, Section 5.7.1 and 5.7.2.  
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This research did not put any restriction on the types of sensors to collect human bio-

signals. Any type of sensor could be used as long as it has the ability to collect bio-signals 

accurately. With the rapid development of science and technology, the shapes, sizes, and 

techniques of these sensors have changed greatly. Several kinds of small, convenient, easy-

to-use sensors have been developed. These sensors can be used extensively by corporate 

employees. An example is the Motorola MC10 tattoo sensor [125], Figure 12 Shows 

several types of sensors to collect ECG signals. 

 

Figure 12: Wearable ECG Sensors 

Furthermore, depending on the sensor types, transforming the received signals from one 

format to another could be done either in the interfaces or in the devices that contain the 

sensors, such as in our case. The NeuroSky MindWave device transforms EEG signals 

from the time domain to the frequency domain using the standard fast Fourier transform 

(FFT) [126]. Because an EEG signal consists of different frequencies, FFT converts the 

EEG signal to its frequency component, i.e., delta, theta, alpha, etc. Figure 13 illustrates 

the process of transforming EEG signals from time to frequency domain. 
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Figure 13: Transforming EEG From Time Domain To Frequency Domain 

4.5.2 Interfaces 

An interface is hardware and/or software that enables sensors to communicate with a 

computer. The aim of using these units in the proposed system is to receive the collected 

signals from the sensors and record these signals in the computer for analysis. In this 

research, we used two different interfaces: the LightStone Monitor v0.8, to collect the ECG 

signals, and the NeuroExperimenter, to collect the brain signals [127]. These interfaces are 

free, easy to use, and open-source. Thus, the code for collecting the data from the device 

could be traced and modified. 

4.5.3 Features Extractor 

In this unit of the proposed system (i.e., Unit 5), the features of the collected signals are 

extracted. The extracted features will have an influential role in distinguishing between 

activities. The purpose of this unit is to extract the features from both EEG and ECG 
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suspicious behaviors, the process of converting signals into features passes through several 

equations. These equations have been utilized to maximize the differences between 
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extracted features during normal and malicious activities. MATLAB R2014b was used to 

implement the features extractor unit. The output of the features extractor unit is thirteen 

features which illustrated in Table 8. After the output of this unit, the extracted features 

will be transmitted to the next unit, which is the attack assessment unit. The feature 

extraction process is discussed in Chapter 5, Section 5.10. 

Table 8: Features Extractor Output 

Type Features 

EEG Features 

Delta 

Theta 

Alpha1 

Alpha2 

Beta1 

Beta2 

Gamma1 

Gamma2 

The difference of alpha1 and Alpha2 (AD) 

Total power of EEG signal 

ECG Features 
R-Peak (heart power) 

R-Peak to R-Peak Interval 

Heart rate variability 

4.5.4 Attack Assessment 

The attack assessment unit is responsible for distinguishing between normal and suspicious 

activities performed by the employee during his/her daily work. This unit uses the extracted 

features from EEG and ECG signals to assess whether the difference in features amounts 

to being classified as an internal attack. The attack assessment process is carried out using 

the employee’s bio-signals, which have been assembled during normal activities and stored 

for the purpose of comparison. So, the attack assessment unit also utilizes the stored 

features in the signal database (i.e., Unit 7 in Figure 11).   

The attack assessment unit distinguishes between normal and suspicious activities using 

supervised machine learning to monitor and direct the execution of a task, project, or 
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activity. Thus, the supervised machine-learning model is to teach the model or load the 

model with enough knowledge to predict decisions for future instances by training it with 

some labeled data. Therefore, the model can classify and predict the type of future data 

based on knowledge from the previous examples of labeled data. 

The supervised model reduces the time for analyzing the incoming data, classifying, and 

decision making as the process of training the model occurs only once. The classification 

algorithms used in this research are implemented using Java and WEKA API, where 

WEKA is an open-source software that contains a set of machine-learning algorithms for 

research purposes [128, 129]. The output results of this unit will be transmitted to the attack 

detector unit. The classification algorithms used in the experiments are presented and 

described in chapter 5, section 5.11. 

4.5.5 Comparative Signal Database 

This unit of the proposed system will contain samples of the human bio-signals collected 

from the organization’s employees during normal activities. The aim of this unit is to store 

the employees’ normal bio-signals to be compared with the collected bio-signals to detect 

the insider attack. The stored signals in this unit are already converted into features. These 

stored features play the role of the fingerprint for the employees’ physiological signals in 

the cases of normal activities. As explained in the previous section, this unit will be utilized 

by the attack assessment unit to train and build the supervised model, used for detecting 

malicious activities. 
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4.5.6 Attack Detector 

The period of suspicious activity is very small compared to the time spent by the attacker 

in normal work. Moreover, an inside attacker, as any thief, will be keen not to be detected 

or tracked, so he will try to hide the trace of his malicious act by executing the attack in 

several stages at different times. The amount of suspicious incoming data will vary among 

attackers and among suspicious acts. Therefore, the amount of detected suspicious signals 

from the total incoming signals varies from person to person. The decision-making process 

must have a certain boundary or threshold. The attacker detector unit holds the threshold 

to judge if the incoming data is considered as an attack. The threshold will vary based on 

the type of protection; the lower the threshold, the higher the level of protection. The 

threshold is determined by the organization, depending on the nature of the organization’s 

work and security. When the organization aims at a safer system, it should use a low 

threshold level, which means that the proposed system will raise alarm and suspect harmful 

activities even with high error rate. 

4.6 Evaluating the Proposed System 

To address the fifth research objective, the potential of the proposed system to differentiate 

between normal and suspicious activities has been evaluated. Around eight evaluation 

criteria have been used to measure and summarize the quality and specify the efficiency of 

the proposed system from different points of view. 

For instance, the accuracy, recall and precision of the proposed system have been used to 

measure the ability of the system to discriminate between normal and malicious activities. 

The area under the ROC curve has been used to measure the ability of the proposed system 
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to achieve high accuracy in case the input data to the proposed system vary in size—i.e., 

the normal activity period varies from that of malicious activity. 

The evaluation of the proposed system was not limited to the use of different measurement 

criteria, but the system was evaluated using several classification algorithms. To 

demonstrate the quality of the extracted features from the bio-signals, three classification 

algorithms have been used, each algorithm with a different learning technique. Despite the 

type of algorithm used for building a model during the training and performance of each 

algorithm, extracting good features should give better results. The proposed system has 

proved that it can recognize malicious activity despite using different classification 

algorithms and the small malicious activity period compared to that of normal activity. 

Evaluating the results of the proposed approach is discussed in Chapter 6. 

4.7 Summary 

The methodology of this research has been divided into five stages, each stage intended to 

address one of the research objectives. The stages are the literature survey, the construction 

of the bio-signal data set, the feature extraction, a description of the proposed system, and 

the evaluation of the proposed system. A literature survey revealed considerable diversity 

in the methods of protection from insider threats. The outcome of the literature survey stage 

was the development of a categorization of the existing methods, as well as the discovery 

of the shortcomings of these methods, which played an important role in improving the 

proposed system. 

When collecting the bio-signals for the creation of the data set, some criteria were taken 

into consideration, such as collecting the bio-signals for a sufficient number of samples to 
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produce reliable results and developing the scenarios of insider threats to be as realistic as 

possible. Moreover, the feature extraction stage is an important stage intended to convert 

the collected signals into measurable characteristics that play a vital role in detecting 

malicious activity. 

Furthermore, in this chapter, the main units of the proposed system have been discussed: 

the sensors, the interfaces, the feature extractor, the attack assessment, the comparative 

data set, and the attack detector. The last stage of this research methodology—the 

evaluation of the proposed system—utilized several techniques to assess the potential of 

the proposed system for detecting insider threats. Examples of these techniques include 

using several metrics to assess the accuracy of the proposed system, evaluating the system 

using different classifiers, and using different frame sizes. 
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5 CHAPTER 5 

EXPERIMENTAL WORK 

5.1 Overview 

This chapter mainly discusses in detail two stages of the research methodology: the 

construction of the bio-signal data set and the feature extraction (i.e., stages two and three 

in the research methodology). Also, this chapter partially deals with the proposed system 

(i.e., stage four of the research methodology), by presenting the machine learning 

algorithms used in the attack assessment unit. 

On the database construction stage, this chapter presents the experiments' preparation 

process as well as the experimental environment and discusses the experimental scenarios 

for collecting the human bio-signals. Also, this chapter presents the devices that are used 

for assembling the bio-signals and discusses components of the collected brainwaves and 

ECG signals, for instance Delta, Theta, Alpha Beta, Gamma, and the heart rate variability. 

On the other hand, this chapter discusses the feature extraction stage by illustrating the 

procedure of extracting the features from the collected bio-signals. In addition, it 

demonstrates the processes and equations that have been used in constructing the final 

feature-frame. Also, this chapter discusses the field of machine learning and presents the 

classification techniques that are utilized by the attack assessment unit of the proposed 

system. 
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5.2 Experiment Setup 

The main objective of our experiments is to distinguish between insider threats and benign 

activities by utilizing bio-signals. To achieve this objective, the participants’ brain and 

ECG activities were recorded while they were performing two different scenarios: normal 

and malicious. The duration of each scenario is between eight to twelve minutes. The first 

scenario simulated the normal activities of the employee during his daily work. In contrast, 

the second scenario simulated as much as possible real insider threats performed by 

authenticated users who do not have any authorization to conduct such activities. To this 

end, during the second scenario, we sought to fulfill the following criteria: 

1. The participant is aware that his malicious work is not permitted and that he is 

responsible for any consequence of that work. 

2. The participant is the only person who has the decision to conduct malicious 

activity. 

3. The participants have a suitable environment for conducting malicious actions, but 

where they are not aware that their malicious acts are part of the experiments and 

are being monitored by the researcher. 

5.3 Experiment Environment 

The experiments were conducted at the campus of Hadhramout University, where the 

researcher works as a lecturer. The necessary approvals were obtained from the concerned 

authorities at Hadhramout University as well as the colleges that provided us with facilities 

for using their resources and their own labs to conduct these experiments. Moreover, in 
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order to conduct and record the malicious activities during the second scenario, the 

university offered the necessary facilities to obtain mock exams and fake documents with 

the collaboration of the subjects’ professors. 

To provide the appropriate environment, the experiments were conducted in a dedicated 

lab. Figure 14, shows the environment of the experimental lab. The participants sit alone 

in the lab, and the researcher monitors the computer's screen and recording the bio-signals 

while he was sitting in a separate room (i.e., Lab technician room). 

 

Figure 14: The Experimental Lab Environment 

5.4 Experiment Scenarios 

To simulate a realistic insider threat scenario, we tried to provide an appropriate 

environment that would attract the participants to perform a malicious activity without their 

knowledge that the attack was part of the experiment. To achieve this, in agreement with 

the colleges where the experiments were carried out, we announced fake goals for this 

experiment. It was announced that the main goal of this experiment was to develop 

software that would allow users to write on a computer using their bio-signals and brain 
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reactions without relying on a keyboard. The announcement claimed that bio-signals and 

brain reactions would be recorded while the participants were writing simple paragraphs 

using any word editor; the recordings would help the alleged software to distinguish the 

changes in bio-signals during the writing of each character or number. Moreover, the 

participants were notified that the experiment contained two scenarios. In the first scenario, 

the participants would write Arabic paragraphs, whereas in the second scenario, the 

participants would write English paragraphs. Moreover, the Arabic and English scenarios 

would take place on different days. 

Each time, the scenarios were conducted on a group of two participants. During the normal 

scenario, the bio-signals were collected from both participants. But during the malicious 

scenario, one participant (i.e., a fake participant) was hired by the researcher to play the 

role of a motivator as we would discuss in the following paragraphs. 

5.4.1 First Scenario: Normal Activities 

In this scenario, the participants were given some paragraphs written by hand in Arabic, 

which included some simple questions asking the participants to do the following tasks: 

1. Use any word editor to rewrite the given Arabic paragraphs. 

2. Answer the simple questions and write the results. 

3. Save the document in a specific folder on the server machine (the folder path was 

given). 

The bio-signals recorded during this scenario were stored in the data set as normal 

activities. This scenario included three regular office tasks: typing paragraphs, thinking 
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about solving problems, and using the organization’s network to save the document on the 

server. 

5.4.2 Second Scenario: Malicious Activities 

In the second session, the participants were asked to rewrite some paragraphs already 

written by hand in English, which included some simple questions requesting that the 

participants do the same tasks as in the first scenario. 

Prior to the second scenario, some extra folders were added to the server, exactly in the 

path where the participants would store their documents. These folders contained some 

fake private data that would pique the participants’ curiosity to read them or to copy these 

data from the remote server to the local machine or to their flash drives. Examples of the 

counterfeit data are exam models and solutions, lecturers’ private data, lists of staff salaries 

and allowances, and a list of candidates for bonuses. The variation in folders’ titles was 

intended to provoke the curiosity of participants of different ages covered by the 

experiments. All counterfeit data were obtained with the consent of the parties involved; 

for example, the old exams were obtained from the actual professors of the subjects.  

To make the participants spend a long time searching for the data, the folders did not 

contain the counterfeit data directly. The counterfeit data were saved in subfolders that 

were scattered in other subfolders. Moreover, in order to make the process of copying the 

entire folder to the local machine take a long time, the size of the subfolders that contained 

the fake data was increased by compressing these subfolders with additional large files. 

The goal of making the process of searching and copying the data quite long was to record 
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as many bio-signals as possible from the participants while they were doing such 

unauthorized activities.   

To ensure that the participants had observed the presence of the fake files, the fake 

participant who was hired by the researcher would play the role of a motivator, especially 

in the second malicious scenario. In case the real participant did not notice the existence of 

the files, the fake participant would pretend that he had discovered some important files on 

the server while he was storing the document. The real participant would be notified about 

the existence of the files cautiously and confidentially by the fake participant. The bio-data 

collected from the fake participant were ignored. To maintain the secrecy of the actual goal 

of the malicious scenario, it was conducted after completing the normal scenario, and the 

fake participant was asked to play the role of motivator only one day before conducting 

this scenario. The fraudulent participant was carefully chosen from the same age and 

academic level for the real participant. 

The second scenario simulated a real insider threat in which the user had authentication to 

access some files on the network, but he did not have any authorization to reach all folders, 

read the files, and copy private data. In addition, the user had the choice to conduct the 

malicious activity or to ignore the fake files. During the second scenario, the network 

devices were monitored using Net Monitor for Employee [130]. This software allowed the 

researcher to monitor the computer screens in the network, which helped to determine the 

time that the participant began to conduct malicious activities. When the real participant 

did not conduct any harmful activities, the collected bio-signals of that participant were 

ignored and were not stored in the data set as suspicious signals. 
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5.5 Bio-signals Data set 

The experiments were conducted on 172 participants. In the normal scenario, all 

participants’ bio-signals were collected. However, during the second scenario, only 84 

participants noticed the existence of the fake exams and decided to view or copy these files. 

These acts were considered malicious, so the bio-data of these 84 participants were stored 

in our data set and will be used as incoming data. Thus, the data set contains the bio-signals 

of only 84 participants, of whom 43 were male and 41 were female. All participants were 

in the range of 19 to 36 years old. 

5.6 Ethical Considerations 

The experiments were conducted with the approval of Hadhramout University, which 

provided such facilities as official letters to the colleges where the experiments were 

performed. Also, written permission was obtained from the colleges to carry out these 

experiments in their laboratories. Participating in the experiments was voluntary, where the 

participants had rights to attend the scenarios when they had free time. To maintain the 

secrecy of the second scenario, the real objective of the experiment was revealed to the 

participants after completing the entire experiment. Participants were informed about their 

right to participation and use their bio-signals for that objective. They were also informed 

that their personal data would be protected. The consent of 84 participants was obtained to 

use their bio-signals for research purposes. 
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5.7 Experiment Devices 

Two types of devices were used for collecting the EEG and ECG bio-signals: the NeuroSky 

MindWave and the Wild Divine. The devices have many advantages such as being small, 

wearable, easy to connect to a computer, comfortable, cheap, have several support 

programs, and having been used in several studies [131–133]. The NeuroSky transmits the 

signals wirelessly to the computer, whereas the Wild Divine uses the universal serial bus 

(USB) to connect with your computer. 

5.7.1 The NeuroSky MindWave 

The NeuroSky is a headset consisting of two sensors located on the forehead and earlobe. 

The NeuroSky monitors the brain activity; particularly those signals pertain to the attention. 

Unlike the medical EEG devices that use a paste or electrolyte gel to improve the contact 

between the scalp and the electrode, NeuroSky uses dry sensor technology which sensitive 

enough to pick up electrical activity without using the paste. [126]. Figure 15 illustrates the 

NeuroSky headset. 

 
Figure 15: NeuroSky MindWave Headset 

Forehead 

Sensor 

Ear Clip  

Reference electrode 

Amplifier  



97 

 

To improve EEG clarity, the device collects EEG brainwaves by calculating the potential 

difference between the forehead and the ear electrodes. The reference electrode was chosen 

in the earlobe because there's none EEG activity in the earlobe; which leads to calculate 

the voltage difference between accurately [126]. 

5.7.2 Wild Divine 

The Wild Divine device is a biofeedback component that can measure human biological 

data from the autonomic nervous system, which responds to a person’s inner world of 

thought, perception, and indicators of positive emotions, like excitement, and negative 

ones, like nervousness. The Wild Divine device has three finger rings, as illustrated in 

Figure 16.  To measure human bio-signals, three fingers, i.e., ring, middle, and index, are 

inserted into the rings. The middle ring measures HRV, whereas the other two rings 

measure the skin conductance level [134]. 

 

 

Figure 16: The Wild Divine Device 



98 

 

5.8 Brain Waves 

5.8.1 An Electroencephalogram (EEG) 

The human brain consists of billions of neurons which emit electrical impulses to 

communicate with each other. The changes of electrical impulses are represented in the 

form of brainwaves that are strong enough to be recorded by using electrodes on the scalp 

with a technique called electroencephalography (EEG) [135]. Researchers have made 

considerable strides to link the brainwaves with memory, consciousness and even certain 

diseases such as Epilepsy [136–138]. 

5.8.2 Brainwaves: Types and Functions 

Brainwaves have different patterns based on their frequencies and amplitudes. The 

frequency of a brainwave is directly proportional to the number of times that neurons are 

firing per second, whereas the amplitude is directly proportional to the number of neurons 

fired synchronously. There are five types of brainwave patterns, namely Delta, Theta, 

Alpha, Beta and Gamma [139, 140]. Figure 17 illustrates the frequency spectrum of normal 

EEG signals. 

5.8.2.1 Delta Brainwaves 

Delta brainwaves have the frequency range of (0.5 to 4 Hertz), which is the lowest 

frequency among the different types. It has relatively high amplitudes in the range of (75 

− 200μV). Delta activities are typically linked to a deep sleep or unconscious state and are 

predominantly found in human beings who hold a strong sense of empathy and intuition. 
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Moreover, Delta brainwaves allow us to access subconscious activity if generated in the 

waking state [141, 142]. 

5.8.2.2 Theta Brainwaves 

Theta waves are slightly higher in frequency than Delta waves. Theta waves travel between 

neurons in the frequency range of 4 to 8 Hertz. They are often associated with the 

meditative or deep relaxation state of consciousness. The deeper the meditation, the higher 

the creativity and the faster the learning displayed by a person. Theta activities increase in 

the daydreaming state when a person dreams consciously or is in a light sleep. They are 

linked with highly monotonous daily tasks such as walking on the same road, wearing 

clothes and combing hair [142]. 

5.8.2.3 Alpha Brainwaves 

Alpha waves are formed when neurons fire signals at frequency ranges of (8 to 13 Hz), 

which is faster than in the case of Theta waves. The typical amplitude of Alpha waves is 

around (50μV peak-peak). Alpha waves are usually dominant in normal situations, 

especially with closed eyes, and in the relaxed but wakeful state. On the other hand, Alpha 

waves are attenuated when the eyes are open and when a mental effort is required to solve 

difficult problems [135, 142]. 

5.8.2.4 Beta Brainwaves 

Beta waves travel between neurons at frequency ranges of 13 to 30 Hertz. Beta waves are 

dominant with the state of awareness, concentration and the active state of wakefulness 

when the eyes are open. Beta activities are associated with a state of increased alertness 
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and a focus on the task at hand. Furthermore, when Beta activity increases, the brain is 

working efficiently and can develop new ideas and generate solutions [141, 142]. 

5.8.2.5 Gamma Brainwaves 

Gamma waves have the highest frequency compared with the rest of brainwaves. Gamma 

waves travel between brain neurons in the frequency of more than 30 Hertz. Gamma waves 

are associated with the high energy moments, the concentration and focus. Moreover, 

Gamma waves are linked to language processing, memory, and regional learning [142].   

It is worth mentioning that, always the five brainwaves are generated together. However, 

when one of the brainwaves dominates, it means that the other brainwaves are weak but 

still can be distinguished. Thus, the strength of the brainwave is related to the activity type 

and a state of the person [143]. 

 
Figure 17: Frequency Spectrum of Normal EEG 

5.9 An Electrocardiogram (ECG) 

The human heart is capable of generating electrical signals, which it uses to create the 

muscular contractions that are needed to move the blood through the body’s blood vessels. 
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In fact, physicians can study and analyze the way that the heart produces electrical signals 

and determine different types of abnormalities that might exist within the heart simply by 

using a tool known as an electrocardiogram (ECG). An electrocardiogram measures the 

electrical signal generated by the heart. ECG is not a tracing of a single action potential but 

an amalgamation of the many action potentials that constitute the electrical activity of the 

heart [144, 145]. 

5.9.1 Types of ECG Wave Components 

In this research, three components are extracted from the ECG wave to be used in the 

proposed system: heart rate variability, R peaks, and the interval between R peaks. 

5.9.1.1 Heart Rate Variability HRV 

Heart rate is controlled by the balance of sympathetic and parasympathetic of the 

autonomic nervous system. Heart rate variability HRV is the variation of heart period or 

inter-beat interval. It is the time between successive R peaks in the electrocardiogram as 

illustrated in  Figure 18. HRV is measured by calculating the standard deviation (SDNN) 

of all normal to normal inter-beat intervals (i.e., all normal R to R intervals) [146]. 

 
Figure 18: R Peak To R Peak Interval of ECG [147] 
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Heart rate variability is used as an indicator of mental workload. Moreover, it can be used 

as a measure of emotional response to certain stimuli. Clinical research has proved that the 

heart rate variability HRV level becomes low when a person experiences high stress, 

whereas the increases in HRV level is an indication of a high resilience. Figure 19, shows 

low and high HRV [148]. 

 
Figure 19: Heart Rate Variability (HRV) [149] 

5.9.1.2 R Peak (Heart Power) 

The electrocardiogram R wave which is denoted by QRS complex in Figure 18, is used in 

the analysis of the irregularities of heart rhythm. Furthermore, the R wave has a vital role 

in determining HRV. The R wave is a positive deflection upwards that represents 

depolarization of the left ventricle and myocardium. The maximum amplitude in the R 

wave is known as R peak. R peak is measured in millivolts [150, 151]. 

5.9.1.3 R to R Interval 

The R–R interval represents the interval between two consecutive R peaks, i.e., the interval 

between two heartbeats. The R–R interval is an important component to differentiate 

between malicious and normal activities. We can assume that the heart rate is affected when 

a person conducts malicious activities, and the R–R interval is a good indicator of the 
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amount the heart rate is increasing. The R–R interval is used to calculate the heart rate in 

beats per minute by multiplying by 60 the invert number of R–R interval per second [144]. 

Figure 18, illustrates the R-R interval. 

5.10 Feature Extraction 

Features are the characteristics of signals that have the primary role in identifying the major 

changes these signals. Features will increase the effectivity of the raw signals for 

distinguishing the malicious activities [152]. This section discusses Feature Extraction 

which is the third stage of the research methodology (Chapter 4, Figure 7). It presents the 

signals' preprocessing, the procedures of extracting features from the raw signals, and the 

equations used for converting the raw signals into features. Moreover, this section presents 

the process of producing the final feature-frame that used by the proposed system to detect 

the malicious activities. Figure 20 illustrates the main diagram of the features extraction 

procedures; starting with collecting of raw signals to the process of configuring the final 

feature-frame. 

5.10.1 Signal Preprocessing 

The preprocessing is taking place by two units of the proposed system, the sensors and 

interfaces. The sensors collect several signals, separate them, and send these signals to the 

interfaces. The interfaces recorded the received signals and utilizing these signals for 

calculating additional parameters.  

The device collects EEG brainwaves by calculating the potential difference between the 

forehead and the ear electrodes. The signals are amplified by the device 8,000 times in 

order to improve the faint EEG waves. Moreover, the EEG signals are filtered using low- 



104 

 

and high-pass filters to correct any possible distortion. Then, the standard fast Fourier 

transform (FFT) is performed on the filtered signals to convert them to the frequency 

domain, i.e., EEG bands [126]. 

On the other hand, The ECG signals are processed and converted from analog to digital 

signals in the ECG sensor (i.e. Wild Divine device). The device extracts the main 

components of the signal such as heart rate, the peak of ECG wave and the intervals 

between peaks [134]. Then those components are sent to the ECG interface to be recorded 

and utilized for calculating additional features such as the intervals between signals, and 

HRV heart rate variability. 

 
Figure 20: The Main Diagram of The Features Extraction Process 

5.10.2 EEG Features 

The proposed EEG features are based on three factors which are: dividing the EEG waves 

into smaller ranges to extract features, Normalizing the features and extract additional 

features from the influential EEG waves. 
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5.10.2.1 Small Ranges of EEG Waves 

The NeuroSky device sends the brainwaves' power in the form of sessions of one-second 

duration. In this research, the frequency ranges of brainwaves were divided into smaller 

bands as illustrated in Table 9. Since the proposed approach uses machine learning 

techniques to detect malicious activities, dividing the brainwaves into smaller frequency 

bands would increase the number of features used in the detection. Moreover, although the 

brainwaves would not have the same impact on the results, using smaller frequency bands 

allows for an extensive study of each part of the brainwave and its impact on the detection 

of internal threats. 

Table 9: Frequency Ranges of EEG Bands 

EEG Band Frequency Range 

Delta 1-3 Hz 

Theta 4-7 Hz 

Alpha1 8-9 Hz 

Alpha2 10-12 Hz 

Beta1 13-17 Hz 

Beta2 18-30 Hz 

Gamma1 31-40 Hz 

Gamma2 41-50 Hz 

5.10.2.2 Normalization 

In the normalization stage, we normalized each EEG component (i.e., Delta, Theta, Alpha1, 

Alpha2, Beta1, Beta2, Gamma1, and Gamma2) in a single session using Equation 5.1. 

Normalizing the power of EEG bands has two major advantages to the efficiency of the 

extracted features [153]; which are: 

1. Reduce the impact of the signal variability. 
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2. Allow the proposed features to distinguish between the active and idle EEG 

activities by increasing the separation between these activities. 

𝑁𝑊𝑥,𝑖 = √
𝑤𝑥,𝑖

𝑡𝑜𝑡 𝑝𝑤𝑟𝑖
                                           (5.1) 

NWx,i: Normalized EEG component x in session i. 

totpwri: the total power of session i. 

5.10.2.3 Calculating Additional Features 

Two more features were calculated during this stage: the total power and the alpha 

difference (AD). The total power (totpwr) of each EEG session is the summation of the 

power of the eight components in that session. Unlike the normalized EEG signals, which 

can facilitate comparison among the EEG components, the total power provides an 

opportunity to study the overall change in the EEG signals by comparing the total power 

of signals during both malicious and normal scenarios. Equation 5.2 demonstrates the 

calculation of total power. 

𝑡𝑜𝑡𝑝𝑤𝑟𝑖 = ∑ 𝑤𝑥
8
𝑥=1                                           (5.2) 

i: the frame number. 

x: the brainwave number. 

w: the brainwave power. 

Moreover, Alpha wave plays an important role in determining the transition of a person's 

condition from the relaxing or calm state to the thinking and concentration state [141, 154]. 

The concentration level of the participant will change when conducting the unauthorized 

actions. So, Alpha wave can provide more information when the participant starts the 

harmful activities. Therefore, we studied the effect of the Alpha difference (AD) in the 

training and testing data. From the collected bio-signals, we found the percent change of 



107 

 

Alpha difference increased by around 46.6% more than Alpha1 in the training and testing 

data, and it increased by around 66% more than Alpha2. So, using AD as an additional 

feature would improve the accuracy of the proposed system. The AD and the percent 

change illustrated in Equations 5.3 and 5.4. 

𝐴𝐷 = |𝐴𝑙𝑝ℎ𝑎2 − 𝐴𝑙𝑝ℎ𝑎1|                                               (5.3) 

Alpha1 and Alpha2 are normalized 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶ℎ𝑎𝑛𝑔𝑒 =
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐴𝐷))𝑇𝑒𝑠𝑡−(𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐴𝐷))𝑇𝑟𝑎𝑖𝑛

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐴𝐷))𝑇𝑟𝑎𝑖𝑛
× 100%                            (5.4) 

5.10.3 ECG Features 

In this research, three features were extracted from the ECG waves: The R peak, the R–R 

interval, and heart rate variability. The R peak is the maximum amplitude of the 

electrocardiogram (ECG) signal, whereas the term interval refers to the time difference 

between the consecutive R peaks [144]. Moreover, heart rate variability, or SDNN, is the 

standard variation of heart period, which is calculated using Equation 5.5. It is worth 

mentioning that the ECG interface calculates the value of SDNN once every minute. 

Therefore, every 60 seconds, the application calculates the standard deviation of the 

intervals from the last 60 seconds. 

𝑆𝐷𝑁𝑁 = √ 1

𝑁−1
∑ (𝑅𝑅𝑖 − 𝑅𝑅)

2
𝑁
𝑖=2                                           (5.5) 

RRi: denotes the time from ith to the i+1st R peak. 

RR: the average interval. 

N: intervals in total. 
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5.10.4 Feature Frame 

The final feature frame consists of a combination of the EEG and the ECG feature frames. 

The EEG feature frame contains 10 features, which are illustrated in Figure 21. Only the 

total power (totpwr) is not normalized, whereas the other nine features are normalized. 

Delta Theta Alpha1 Alpha2 Beta1 Beta2 Gamma1 Gamma2 AD totpwr 

  

Normalized  

Figure 21: EEG Feature Frame 

On the other hand, the ECG feature frame consists of three features: R peak, interval, and 

SDNN. The class field contains the label that is used to train the machine learning 

algorithm. The label or the class determines the type of frame that has been extracted from 

either the normal or the suspicious activities. Figure 22, illustrates the final feature frame. 

EEG features R peak Interval SDNN Class 

 
ECG Features 

 

Figure 22: Feature Frame 

R peak: the maximum amplitude of ECG R peak in second. 

Interval: the time between R to R peaks.  

SDNN: standard deviation of all R to R intervals. 

5.11 Machine Learning  

Machine learning is an area of computing that is improving the ability of the computer 

systems to learn from past experience. Tom M. Mitchell, who is a professor at Carnegie 

Mellon University, defined the machine learning as: 
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"A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E." [155] 

In other words, the computer program has learned when it utilizes past experience to 

improve how it performs a particular task. A machine learning program is fairly different 

compared to a normal computer program, because in the normal computer program, all the 

data and the parameters needed to perform a certain task have already been defined by its 

programmer. 

Based on the learning technique, the field of machine learning can be divided into 

categories: supervised, unsupervised, and reinforcement learning [156]. Supervised 

learning is where the machine is trained and taught using labeled data, i.e., tagged data with 

the correct answer, to utilize this past experience to give an outcome for new, previously 

unseen data. Examples of supervised learning are classification and regression. On the 

other hand, unsupervised learning is where the machine is trained with unlabeled or 

untagged data to draw inferences and create a model for the data set. Examples of 

unsupervised learning are clustering and frequent-patterns. The third category of machine 

learning is reinforcement learning, which deals with how the software agents can maximize 

some concept of cumulative reward by taking necessary actions in a specific environment. 

For example, a game agent can utilize cumulative effect in order to create a winning 

strategy by playing the game many times [22, 157].  

Detecting the attacker from inside organizations, which is the main problem of this 

research, tends to be a classification problem, where the machine should classify the 
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incoming data as malicious or normal. Therefore, in this research, supervised learning will 

be utilized where the machine will be trained using labeled data with correct answers to 

teach the machine how to classify new, previously unseen data. In this research, three 

classification algorithms were used: Random Forest, Support Vector Machine and Neural 

Network. Each algorithm has its technique of learning from labeled data. 

5.11.1 Random Forest 

The Random Forest (RF) method uses a random selection of data and a random selection 

of variables to create many decision trees. The random selection of data leads to the 

creation of several subsets of data that have different sizes and may have overlapped data, 

so the sizes of the decision trees will be random. On the other hand, the random selection 

of variables or features leads to the creation of decision trees with a different number of 

variables [158]. So, the RF technique consists of many decision trees. The idea behind the 

correctness of the RF method is that the huge number of trees leads to a better prediction 

because of the following: 

1. The decision tree is usually correct, but it may have some parts of the data which 

are incorrect. 

2. The huge number of decision trees will never have the same incorrect parts of data. 

It worth to mention that each decision tree will classify the new incoming data and vote for 

this classification. The RF will choose the classification that has the most votes over all the 

other trees. Figure 23 the RF procedures for selecting data and variables, and voting for the 

results. From the Figure, it can be noted that the sizes of the selected data and the number 

of variables is varied. This variation leads to creating decision trees of different sizes. Also, 
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we can notice that the number of decision trees which vote for the suspicious activity is 

more than the trees which vote for the normal activity; in this case, the incoming signals 

will be classified as suspicious [158, 159]. 

 
Figure 23: Random Forest Procedures 

5.11.2 Support Vector Machine 

Support Vector Machine (SVM) uses support vectors to draw the decision boundary 

(hyperplane) to segregate the classes of data. The best hyperplane is one that leaves the 
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where the SVM basically implies that only these extreme points in the data set distinguish 

between different classes, whereas the other training examples are ignored [160, 161]. 

The SVM algorithm segregates the classes of data by drawing the decision boundary or a 

hyperplane. The best hyperplane is the one that leaves the maximum margin from the 

classes of data. Therefore, the SVM algorithm uses the support vectors which are the 

extremes of the data sets to draw the hyperplane. The SVM algorithm implies that only 

these extreme points in the data set distinguish between different classes, whereas the other 

training examples are ignored. Figure 24 illustrates the process of selecting the best 

hyperplane. This Figure shows how the SVM algorithm segregates between two classes, 

which are the black and white squares [160].  

From Figure 24, the SVM selects the extreme points of the classes, i.e., the extreme 

elements of white and black squares, to draw the hyperplanes. Also, it can be noticed from 

the same Figure that the margin Z2 of the second hyperplane H2 is wider than the margin 

Z1 of the hyperplane H1. Therefore, the second hyperplane H2 can distinguish between the 

classes of data better than the first hyperplane H1. 

 
Figure 24: Selecting The Best Hyperplane 
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5.11.3 Neural Network 

The principle of neural networks lies in trying to emulate how the human brain works. A 

neural network is made up of several nodes, which are called neurons. The connections 

between these neurons are called synapses. So, information is passed between neural 

network nodes via the synapses. When a neural network node receives information, it can 

process it and transmit it to the connected nodes. The connections or synapses have values 

that represent their weights. The higher the weight of the connection, the more important 

the information of that connection. Therefore, when a node is stimulated by several nodes, 

it can decide which node is more important [162, 163].  

The neural network consists of several layers of nodes, where the information travels from 

the input layer to the output layer of the network. The layers between the input and output 

layers are called the hidden layers. Figure 25, illustrates the structure of neural network.  

Each node of the neural network judges its input and sets its value using a transfer function, 

which is a simple math equation that allows the node to accept or reject the triggers. The 

transfer function produces a combination value from the trigger value and the current value 

of the node [162, 164].  

The neural network learns through a process called backpropagation. The network starts 

with random connection weights, then calculates a set of outputs for a given set of inputs. 

These outputs are compared with the desired output, but because the network starts with 

random connections, there will be an error, or a difference between the outputs. So, the 

neural network will adjust the connection weights to reduce the error. This process is 
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known as backpropagation. In it, the output nodes tell the nodes in the previous layers about 

the error and try together to adjust their connection weights to reduce the output error [165]. 

 
Figure 25: Neural Network Structure 

5.12 Summary 

Collecting the human bio-signals are essential in two phases of this research: Building the 

bio-signals data set and feature extraction. So, two experimental scenarios have been 

developed to collect the bio-signals from volunteers during the normal and suspicious 

activities. The proposed scenarios aimed at creating a realistic environment for the normal 

and insider threats where the volunteers have the decision to conduct the malicious activity 

without knowing that their malicious activities are part of the experiment. 

Moreover, the procedure of feature extraction from the collected human bio-signals have 

been illustrated in this chapter, including presenting the EEG and ECG signals, 

demonstrating the devices that have been used for collecting the signals and discussing 
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equations that have been used in extracting the features. The extracted features have been 

illustrated in the form of a frame, which contains both EEG and ECG features. The feature 

frame contains ten EEG features and three ECG features, in addition to a class filed which 

was used as a label for the machine learning. 

Since the classification is a crucial phase in the proposed system for distinguishing between 

the insider threats and normal activities, three machine learning algorithms that have been 

used to evaluate the proposed system, these algorithms are the random forest, the support 

vector machine, and the back propagation neural network. Each of these algorithms has its 

learning method and model. Using several machine learning algorithms is intended to 

assess the impact of these algorithms on the proposed system results. 
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6 CHAPTER 6 

RESULTS AND EVALUATION 

6.1 Overview 

This chapter presents the research hypotheses and the procedures to address them. 

Moreover, it discusses the results and efficiency of the proposed system using several 

metrics. Selecting those metrics takes into account the evaluation of the proposed system 

from various aspects such as the accuracy of detecting the insider attacks, and to what 

extent this accuracy is correct. 

Also, this chapter deliberates the feasibility of using only the brainwaves to identify the 

insider threats, where the accuracy of the proposed system would be examined using only 

the EEG features. Furthermore, it clarifies the most influential features on the results. 

Moreover, this chapter discusses the performance of the proposed system to detect 

malicious threats by using three of the machine learning classification algorithms. The aim 

of using different algorithms to illustrate that the results are not affected by the models and 

learning methods of several machine learning techniques. 

6.2 Hypotheses 

To address the main research problem, detecting insider threats using human bio-signals, 

the proposed approach will be evaluated by assessing its ability to distinguish between 
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normal and malicious activities. To achieve this goal, the following main null hypothesis 

has been developed: 

H0) The proposed approach has no potential to distinguish between the normal and 

malicious activities by using human bio-signals; thus, it is not able to detect the insider 

attackers. 

In order to address the main null hypothesis, the following support hypotheses have been 

developed: 

H0-1) The extracted features from the brainwaves (EEG signals) have no potential to 

detect an insider attacker by differentiating between normal and suspicious activities. 

To address the hypothesis H0-1, we have generated only the EEG features frame, which is 

illustrated in Figure 21. Then, using machine learning techniques, the extracted EEG 

features have been tested for their ability and efficiency to distinguish between the two 

experimental scenarios, i.e., malicious and normal activities.  

H0-2) The extracted features from the electrocardiogram (ECG) signals have no potential 

to detect an insider attacker by differentiating between normal and suspicious activities. 

To address the second null hypothesis H0-2, we have generated the full features frame (i.e., 

the frame that contains both EEG and ECG features), as illustrated in Figure 22. Then, 

utilizing machine learning techniques, the extracted features (i.e., ECG and EEG together) 

have been tested for their ability and efficiency to distinguish between the two experimental 

scenarios. Moreover, in order to study the effect of the ECG features on the results, the 
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results using the full frame have been compared with the EEG frame results. The full frame 

will be abbreviated as EEG+ECG. 

To determine the results’ significance, and to test the validity of the null hypotheses, the 

Paired t-Test has been used [166, 167]. The t-Test uses when the observation on the two 

populations are collected in pairs. The following expression has been used to test the 

validity of the main null hypothesis using the Paired t-Test: 

𝑡0 = �̅�/(𝑆/√𝑛)                                           (6.1) 

�̅� and S are the sample average and standard deviation of the difference. 𝑛: Sample number. 

The one tail t-Test was used with significance value α: =1% as illustrated in Figure 26. So, 

the null hypothesis will be rejected if the t-Test is in the rejection area. 

 

Figure 26: One Tail t-Test 

6.3 Evaluation Metrics 

Evaluation metrics play a vital role in assessing the performance and efficiency of the 

proposed system for distinguishing between benign and malignant bio-signals. Therefore, 

several metrics have been used each of which evaluates the system for different objectives. 

Since the research problem—identifying the malicious activities—is a classification 

problem, the confusion matrix is utilized. The confusion matrix is a technique that 
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evaluates the performance of the classification model and illustrates the errors of the 

classification problem by summarizing the prediction results. The confusion matrix of the 

binary classification problem that distinguishes between two different groups is 

represented by a 2-by-2 matrix [166] as illustrated in Table 10. Also, the confusion matrix 

plays an important role in deriving several of the following evaluation metrics. 

Table 10: Confusion Matrix 

Actual Class 
Predicted Class 

Negative Positive 

Negative TN FP 

Positive FN TP 

 

True Negative (TN): TN are negative cases that are correctly predicted to be negative 

[166]. In this research, TN represents the bio-signals that are collected during a first 

scenario while the participants are doing a regular activity, which is correctly predicted by 

the classifier as a regular activity. 

True Positive (TP): TP are positive cases that are correctly predicted to be positive [166]. 

TP represents the bio-signals that are collected during a second scenario (suspicious 

activity), which is correctly predicted as a suspicious activity.  

False Negative (FN): FN are positive cases that are incorrectly predicted to be negative 

[166]. FN represents the bio-signals that are collected during a suspicious activity, which 

is incorrectly predicted as a regular activity.  

False Positive (FP): FP are negative cases that are incorrectly predicted to be positive 

[166]. FP represents the bio-signals that are collected during a regular activity, which is 

incorrectly predicted as a suspicious activity. 
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6.3.1 Accuracy 

Accuracy is the ratio of correctly classified bio-signals (TP and TN) to the total number of 

bio-signals collected from the participant. It Indicates the degree of conformity and 

correctness of the results obtained when compared to the true value [166]. The accuracy is 

calculated using Equation 6.2. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙
=

𝑇𝑃+𝑇𝑁

𝑁
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                    (6.2) 

Given that the accuracy metric has limitations when used with unbalanced data (i.e., 

usually, the number of normal frames is greater than the number of malicious frames) 

[166]. For example, negative (normal) cases account for 9850 frames of data, whereas 

positive (suspicious) cases account for only 150 frames of the data. If the classifier always 

predicts the majority class (i.e., predicts all the data as TN), the accuracy will equal 98.5%. 

However, the classifier did not ever predict any of the TP (suspicious). So, accuracy may 

not be a good measurement when the data has unbalanced classes. To ensure that classifier 

performance is correct when using the proposed features, several support metrics are used. 

6.3.2 Precision 

Precision is the proportion of correct positive prediction (true positive) to the total 

classified positive cases. Precision is a way of describing how multiple measurements are 

close to each other. It ensures that the test shows the same results when repeated several 

times under stable conditions. High precision leads to fewer false positive cases [166]. In 

this research, the precision measures how often the classifier correctly predicts the 

suspicious feature-frames. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                          (6.3) 

6.3.3 Recall 

Recall is the proportion of correct positive classification (true positive) to the total actual 

positive cases. Recall measures the true positive rate. High recall leads to fewer false 

negatives cases [166]. 

𝑅𝑒𝑐𝑎𝑙 =
𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                           (6.4) 

6.3.4 F-score 

F-score or F-measure is a metric that returns a value between zero and one and utilized to 

assess the usefulness of the classification technique. The higher the F-score, the better the 

prediction of the classifier. F-score is the harmonic mean for the recall and precision [166, 

168]. The value of the F-score is calculated as: 

𝐹 =
2

1

𝑅𝑒𝑐𝑎𝑙𝑙
+

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

= 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                           (6.5) 

6.3.5 Area Under the Curve AUC 

Receiver Operating Characteristic (ROC) curve is commonly used with Area Under the 

Curve (AUC), to evaluate the binary classification that is the classification of two classes. 

ROC curve summarizes the performance of the binary classifier by plotting the correctly 

classified instances, the True-Positive rate against the False-Positive rate. The 

misclassification rate is a type of simple classification measure, which visualizes the error 

rate for the single threshold. ROC curve has several advantages over this as it deals with 

all possible classification thresholds when representing the error rate. The AUC, which is 
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just the percentage of area that is under the ROC curve is an effective metric with data sets. 

This is the case even when the classes are highly unbalanced [166, 169]. 

6.3.6 Kappa 

The performance of the classifier, which is the ‘Observed Accuracy’ can be compared with 

the possibility of achieving this performance by random chance, also called ‘Expected 

Accuracy’. The chance-corrected metric that is utilized for this comparison and assessment 

is ‘Kappa’. The Kappa score is directly proportional to the difference between the 

accuracies. So, we can say that a model will have a high Kappa score if there is a big 

difference between the observed accuracy and the expected accuracy. As Kappa considers 

random change in its calculation, it is more reliable than using the accuracy [170, 171]. 

Kappa is calculated using the following equations: 

𝑘𝑎𝑝𝑝𝑎 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

1−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
                                           (6.6) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐸𝑥𝑝 𝐴𝑐𝑐 𝑁𝑜𝑟𝑚𝑎𝑙+𝐸𝑥𝑝 𝐴𝑐𝑐 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠

𝑛
                                   (6.7) 

𝐸𝑥𝑝 𝐴𝑐𝑐 𝑁𝑜𝑟𝑚𝑎𝑙 =
(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁) 

𝑛
                                            (6.8) 

𝐸𝑥𝑝 𝐴𝑐𝑐 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 =
(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁) 

𝑛
                                            (6.9) 

Observed Accuracy: Instances classified correctly. 
Expected Accuracy: Expected accuracy by any random classifier. 
n: Number of instances in the data. 

6.3.7 Matthews Correlation Coefficient 

B.W. Matthews had developed the Matthews Correlation Coefficient (MCC), a type of 

machine learning metrics used to assess the quality of the binary classifiers [172, 173].  

Biomedical research widely makes use of MCC and it has been selected as one of the 
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elective metrics in the US FDA-led initiative, MAQC-II [174]. MCC is also suitable to 

assess the binary classifier when dealing with data that is imbalanced that means classes of 

different sizes of data. The coefficients are returned between -1 to 1 by using MCC. The 

higher the coefficient, the better the classifier is considered to be. 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                  (6.10) 

6.3.8 Percent Difference 

To compare two experimental results when both results are obtained using different 

approaches, the Percent Error or Percent Difference (PD) is usually used. When the value 

is equal to zero or when the two values have a big difference, the maximum PD will never 

be higher than 200% [175]. Percent Error is calculated using Equation 6.11. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑃𝐷) = |
1𝑠𝑡 𝑣𝑎𝑙𝑢𝑒−2𝑛𝑑 𝑣𝑎𝑙𝑢𝑒

(1𝑠𝑡 𝑣𝑎𝑙𝑢𝑒+2𝑛𝑑 𝑣𝑎𝑙𝑢𝑒)/2
|                            (6.11) 

6.3.9 Cross-Validation 

The k folds cross-validation is an evaluation technique for the machine learning predictive 

model. The cross-validation separates the data into k equal-size subsets. One of these 

subsets is used to test the machine learning model, whereas the k-1 is used to train the 

model. The k folds cross-validation repeats the learning algorithm k times, and then the 

average performance of the k different testing subsets is calculated [166]. In this research 

10 folds cross-validation is used. 

6.3.10 Confidence Interval 

To ensure that the achieved results for the proposed approach are correct, and to describe 

the uncertainty in the estimates, the 95% confidence interval of the accuracy that achieved 
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by the classifiers has calculated. The confidence interval of the results was calculated as 

following: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = �̅� ± 𝐸                           (6.12) 

𝐸 = 𝑧𝛼

2
 

𝜎

√𝑛
               (6.13) 

𝜎 = √𝑆2               (6.14) 

𝑆2 =
1

𝑛−1
[∑ 𝑓𝑖𝑥𝑖

2 − 𝑛�̅�2𝑘
𝑖=1 ]   (6.15) 

Where �̅� is the mean, E is the error, n is the number of participants, 𝑧𝛼

2
  is a constant, 𝜎 is 

a standard deviation, S2 is the variance, while f is the frequency of participants in each 

range and x is the midpoint of each range. 

6.4 Hypotheses Testing and Validity 

We validate the null hypotheses by evaluating the proposed system and the extracted 

features using the following procedures. First, the accuracy of EEG features is presented 

to assess hypothesis H0-1. Then, the accuracy of the proposed EEG+ECG method is 

discussed and compared with the EEG method to test hypothesis H0-2 and illustrate the 

impact of adding ECG features on results. Validation of the research hypotheses using the 

accuracy metric does not provide high credibility, given that the accuracy metric has 

limitations when used with unbalanced data (i.e., usually, the number of normal frames is 

greater than the number of malicious frames). Therefore, additional support metrics 

mentioned in section 6.3 have been used to assess the correctness of the accuracy metric. 

Figure 27 shows the procedures for testing the validity of the research hypotheses. 
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Figure 27: Testing The Validity of The Null Hypotheses 

6.5 Presenting Results 

Bio-data were collected for 84 participants during both scenarios (normal and suspicious). 

In order to illustrate the results for this large number of participants, the results will be 

presented in the form of a histogram. Histograms provide a visual display of vast amounts 

of data that are hard to understand in a tabular format. The values of each metric (ex. 

accuracy) are divided into ranges, which are used as the histogram ranges. Each range is 

determined by the highest and lowest values of the range. The histogram separates the 

results into groups, each of which contains the number of participants that fall within the 

same range of the histogram and thus, the same range boundaries of the metric.  

Figure 28 shows an example of the results presentation. From the figure, the X and Y axis 

of the graph shows the metric's ranges and the number of participants, respectively. Clearly, 

the figure illustrates the results of 66 participants fall within the range of 90–100% of the 

histogram, meaning that these participants achieved results higher than 90% and less than 
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100% when using the specified metric. Moreover, in our experiments, no volunteers fall in 

the range from zero to 50%. Therefore, ranges with low values are ignored to abbreviate 

the empty results.  

In addition to the histogram results, the results of each participant will be presented in 

scatter graph. Unlike the histogram that represents a range of accuracy values, each point 

in the scatter graph represents only one value of accuracy and the number of participants 

achieved that value of accuracy.  

Moreover, evaluating each frame of incoming data individually to distinguish insider 

threats would keep the system busy all the time and waste the resources of the device 

containing the proposed system. Therefore, the average of each five feature-frames is 

calculated and packaged as a single frame. So, instead of evaluating each frame, a group 

of frames will be evaluated by converting them into a single frame as shown in Figure 29. 

Moreover, the average of ten and the average of fifteen feature-frames will be tested to 

illustrate if there is a degradation in the quality of the detection when the multiple frames 

compressed together. 

 
Figure 28: Results Presentation 
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Figure 29: Generating a Group of Frames 

6.6 Results of EEG Features 

This section justifies accepting or rejecting research hypothesis H0-1. To this end, the 

results of using only the EEG features are presented and discussed. Moreover, the proposed 

EEG approach is compared with different feature-frames illustrated in Figure 30 to 

demonstrate the effect of each factor of the EEG feature-frame (i.e., using small ranges, 

normalization, and additional features). The results are compared with the raw EEG waves 

(i.e., Figure 30, frame d) in detail, to assess the effectiveness of the extracted features. The 

accuracy metric is used as a reference to evaluate the validity of H0-1 because accuracy 

describes how the results of the proposed approach are close to the true results. However, 

due to the accuracy limitations when used with unbalanced data as in this research, the 

other metrics mentioned earlier in this chapter were used to support and measure the 

correctness of the reference metric. 
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Figure 31 illustrates the classification accuracy of the proposed EEG approach using the 

Random Forest (RF) classifier. The figure shows that most of the participants are correctly 

classified, with an accuracy of more than 90%. In other words, the classifier can 

differentiate between normal and malicious activities for those cases with an error less than 

10%. On the other hand, accuracy is lower than this for 17 participants. To investigate these 

results further, Figure 32 illustrates more details about the accuracy of the proposed 

approach. The figure shows the distribution of classification accuracy of the range 90–

100% in more detail. The classifier can detect malicious activities in 44 cases with an 

accuracy of more than 98%, which indicates the efficiency of the proposed approach for 

identifying such threats. 

 
Figure 30: Features for Comparison 
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Figure 31: Classification Accuracy using RF  Figure 32: Accuracy of Proposed Approach in Detail 

The timeframe of suspicious activity is always very small compared to the time spent by 

the insider attacker in normal work. Like any thief, an insider attacker will be keen not to 

be detected or tracked. He will try to hide the traces of his malicious acts by executing the 

attack in several stages at different times. So, the amount of suspicious incoming data will 

vary between attackers and between suspicious acts. Therefore, the number of the detected 

suspicious signals among the total incoming signals varies from one person to another, 

resulting in different detection accuracy. 

The attribute selection method was used to illustrate the effect of the alpha difference AD 

factor on the results. During the classification of data, the classifier may rely on some 

features (trusted or selected features) more than others. These trusted features have a 

significant impact on the results. Thus, the classifier can obtain almost the same 

classification results using only the trusted features. The procedure of selecting the trusted 

features is called the attribute selection method. In this research, the supervised attribute 

selection is implemented using Weka API with Java code [128, 129]. The supervised 

attribute selection requires a search algorithm and an evaluation method. The 

GreedyStepwise [176] and the WrapperSubsetEval [177] were used as the search and 
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evaluation respectively. The WrapperSubsetEval generates all possible subsets of features 

and uses an induction algorithm to select the subset of features that achieved the highest 

evaluation [178]. Figure 33 shows the impact of each feature on the results of the proposed 

approach. The figure shows that AD was one of the most influential features in more than 

half of the classification cases, because the concentration level of the participant will 

change when conducting the unauthorized actions as well as the AD level. 

 
Figure 33: Impact of Features on the Results 

Furthermore, to demonstrate that the addition of the AD factor increased the accuracy of 

detecting insider threats, Figure 34 illustrates the accuracy comparison of the proposed 

approach with and without using the AD factor. The figure shows that there is a significant 

increase in cases detected with accuracy greater than 90% when adding the AD factor to 

the proposed approach. The number of malicious cases discovered by the classifier 

increased by around 55.8% with accuracy above 90% when using the AD factor. Moreover, 

Figure 35 illustrates the effect of AD factor in for each participant using scatter chart. Each 

point in the scatter graph represents the number of participants achieved that accuracy. 
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Figure 34: Effect of AD Factor 

 

Figure 35: Effect of AD Factor in Details 

In order to clarify the effect of using small frequency bands and feature normalization, we 

compare the proposed EEG feature-frame with the feature-frames in Figure 30 (i.e., a, b, 

and c). Figure 36 illustrates that the normalized frame with small frequency ranges 

achieved better results than the normalized frame with large ranges. Using small ranges, 

the classifier detected 43 cases with accuracy above 90%, compared to 32 cases when using 

large ranges. The small ranges of frequency provide more features for comparison, thus 

improving the detection of harmful activates. Moreover, Figure 37 shows the results in 
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details for each participant. Each point in Figure 37 represents the number of participants 

achieved the corresponding accuracy. 

Furthermore, Figure 36 shows a comparison of the normalized and un-normalized frame 

with small frequency ranges. Using the un-normalized feature-frame, the classifier detected 

only 23 cases with accuracy above 90%, which is the worst result compared to the rest of 

the feature-frames. The normalization reduced the impact of EEG signal variability and 

increased the ability of the proposed approach to distinguish between normal and malicious 

activities [153]. This result demonstrates the effect of normalizing the extracted features. 

In contrast, the proposed EEG approach significantly outperformed in this comparison.   

 
Figure 36: Accuracy Comparison of Feature-frames 

0 0
6

11

67

0
7

15 19

43

1
9

24
18

32

2
12

27
20 23

[0 - 60] [60 - 70] [70 - 80] [80 - 90] [90 - 100]

P
ar

ti
ci

p
an

ts

Accuracy Ranges %

Proposed Norm small R Norm large R Not Norm small R



133 

 

 
Figure 37: Accuracy Comparison of Feature-frames using Scatter Chart 
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proposed EEG features, the classifier can correctly detect insider threats more than two 

times better than when using the raw brainwaves: Using the proposed EEG features, the 

classifier detected 67 cases with accuracy above 90%, compared to 24 cases when using 
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raw EEG waves. Moreover, unlike the raw EEG waves, the proposed EEG features 

achieved fewer cases within the smaller accuracy ranges. Furthermore, Figure 40 provides 

more details about the comparison between the proposed EEG features and the raw 

brainwaves by illustrating the accuracy of individual participant in a scatter chart. 

 
Figure 38: EEG Frequency Bands During Normal and Malicious Acts 

 
Figure 39: Accuracy of The Proposed EEG And Raw EEG Data Using RF  

3815 2338
219 406 477 460

212 174

3
.1

7
E+

0
6

1
.3

3
E+

0
6

3
.7

5
E+

0
5

2
.5

8
E+

0
5

2
.2

4
E+

0
5

1
.9

9
E+

0
5

9
.6

9
E+

0
4

8
.6

1
E+

0
4

5349 2859

313 442 520 569
224 276

3
.2

3
E+

0
6

1
.6

0
E+

0
6

4
.6

7
E+

0
5

3
.1

5
E+

0
5

2
.1

7
E+

0
5

1
.8

8
E+

0
5

9
.1

1
E+

0
4

1
.8

2
E+

0
5

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Delta Theta Alpha1 Alpha2 Beta1 Beta2 Gamma1 Gamma2

Lo
ga

ri
th

m
ic

 S
ca

le

Train Test

24

15

23

20

2

[90-100]

[80-90]

[70-80]

[60-70]

[0-60]

67

11

6

0

0

Accuracy

Raw EEG Proposed



135 

 

 

Figure 40: Scatter Chart of Accuracy for The Proposed EEG and Raw EEG 

6.6.1 Rejection of Null Hypothesis H0-1 

To reject the first null hypothesis H0-1, the proposed EEG features must increase the 

detection values of malicious activities more than using the raw brainwaves. To 

demonstrate this, the Z-score test (equation 6.1) is used as following: 

�̅�: The average of difference = 15.11.  𝑆: Standard Deviation = 12.28 

𝑛: Sample Number = 84. 𝛼: Significance Value =1%. The t state 𝑡0 = 11.28  

The t Critical one-tail (cutoff point) is 2.372. In right-tail hypothesis testing, any 𝑡0 greater 

than the critical value will be used to reject H0-1. Since t state =11.28 which is greater than 

2.372, we reject the first null hypothesis H0-1 and developed an alternative hypothesis, 

which we will refer to as H1-1.  

H1-1) The extracted features from the brainwaves (EEG signals) have a positive effect on 

detecting an insider attacker, by differentiating between normal and suspicious activities. 
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6.7 Results of EEG+ECG Features 

This section aims to validate the second research hypothesis H0-2 and illustrate the 

potential improvement of using the ECG features for identifying insider threats. To achieve 

this end, the classification results of the extracted EEG+ECG features will be presented, 

then the EEG+ECG accuracy is compared with only the accuracy of the EEG features. The 

improvement in the EEG+ECG accuracy over the EEG-only features illustrates the effect 

of using ECG on detecting insider threats. 

Figure 41 shows that when using EEG+ECG features, the classifier can distinguish 

between normal and malicious activities in 81 cases with an accuracy of more than 90%, 

compared with 67 cases when using only the EEG features. The number of cases in which 

the classifier was confident that the participant was doing malicious work increased when 

using EEG+ECG. This improvement demonstrates the effect of adding the extracted ECG 

features to the proposed EEG frame. Moreover, Figure 42 provides more details using the 

scatter chart. 

 
Figure 41:Accuracy of The Proposed EEG+ECG and EEG Features Using RF 
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Figure 42: Scatter Chart of Participant' Accuracy using EEG+ECG and EEG features 

Percent difference (PD) is usually used when comparing two experimental results when 

the results have been obtained using two different approaches. Table 11 illustrates the PD 

of EEG and EEG+ECG accuracy. With accuracy of more than 90%, cases detected using 

the EEG+ECG method increased by around 18.9% over EEG only. When the classifier is 

confident with more than 90%, the classifier can detect 81 participants using EEG+ECG 

compared with 67 participants when using only EEG features. Using EEG+ECG signals 

increases the variation between normal and malicious signals. Thus, it can achieve better 

results when detecting insider threats than EEG can. 

Table 11: PD of Accuracy Ranges 

Accuracy Ranges in 

% 

Participants 

(PD) EEG 

Features 

EEG+ECG 

Features 

[70 - 80] 6 0 200% 

140% 

[80 - 90] 11 3 114.3% 

[90 - 100] 67 81 18.9% 
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6.7.1 Rejection of Null Hypothesis H0-2 

The results of the proposed EEG+ECG approach illustrate that the ECG features had a 

positive impact on detecting insider threats, by increasing the variation between normal 

and suspicious activities. Adding ECG features to the EEG feature-frame leads to accuracy 

improvement of the proposed system. To test H0-2, the Z-score test (equation 6.1) is used. 

�̅�: The average of difference = 3.623  𝑆: Standard Deviation = 5.85 

𝑛: Sample Number = 84. 𝛼: Significance Value =1%. The t state 𝑡0 = 5.67  

The critical value (cutoff point) is 2.372. The t state of 5.67 is in the rejection area. We 

reject the second null hypothesis H0-2 and develop an alternative research hypothesis 

which we will refer to as H1-2. 

H1-2) The extracted features from the electrocardiogram (ECG) signals have a positive 

effect on detecting an insider attacker, by differentiating between normal and suspicious 

activities. 

6.8 Classification Accuracy Assessments 

Given that the accuracy metric has limitations when used with unbalanced data (i.e., 

usually, the number of normal frames is greater than the number of malicious frames) 

[152], we justified the results using six additional metrics illustrated in Figure 43. These 

metrics are effective with data sets containing highly unbalanced classes. For instance, the 

area under the curve, and Matthews correlation coefficients that are widely used in the 

biomedical research and selected in the US FDA-led initiative MAQC-II as one of the 

elective metrics [174]. Figure 43 shows the evaluation of the proposed EEG and 
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EEG+ECG approaches when using the RF classifier. It can be noticed that both approaches 

achieved high results within the range of 90–100%, which proves the accuracy and quality 

of the extracted features to detect insider attacks. 

Precision represents the ratio of the true number of malicious frames detected by the 

classifier to the total frames that were predicted as malicious. Figure 43.a shows that when 

using the proposed EEG+ECG features, the RF classifier can correctly detect 80 cases with 

precision range above 90%. This result indicates that the proposed system is accurate for 

detecting malicious threats, and the change in the detection accuracy will not exceed 10% 

when the test is repeated several times. On the other hand, within the same precision range, 

the classifier can correctly detect 66 cases using proposed EEG features. This high level of 

precision value illustrates that the classification accuracy of the proposed features is stable 

and is not achieved randomly. 

Recall demonstrates the ratio of the number of malicious frames detected to the total 

number of true malicious frames for a participant. Figure 43.b illustrates that the proposed 

EEG+ECG detected 79 cases with recall range above 90%. This result demonstrates the 

number of true positives (malicious frames) that the RF classifier can detect from the 

participant data. In other words, the classifier can predict correctly 90–100% of the total 

suspicious signals for 79 participants. Conversely, using EEG features, 63 cases were 

detected with recall range above 90%. 

Matthews’s correlation coefficient (MCC) returns coefficients in the range of -1 to 1. 

Regardless of the size of unbalanced data, the higher the coefficients are, the better the 

classifier's prediction is. From Figure 43.c, both EEG and EEG+ECG methods achieved 
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positive MCC values much higher than -1. Using EEG+ECG, the classifier detected 75 

cases with MCC above 90%. 

The area under the curve (AUC) demonstrates how good the classifier is to distinguish 

between normal and malicious activities. The high value of AUC proves that the FP rate 

(i.e., detected malicious data) is much more than the FP rate (i.e., normal data identified as 

malicious). From Figure 43.d, when using the EEG+ECG approach, the classifier can 

detect all the cases within the AUC range above 90%. This result proves the quality of the 

extracted features which reduce the number of normal frames that are detected as 

suspicious. In contrast, using the proposed EEG approach, RF classifier detects 74 cases 

with AUC above 90%, which is considered a high result. 

F-score is a single measure which represents the harmonic mean for recall and precision. 

F-score is utilized to assess the usefulness of the classification technique. The higher the 

F-score, the better the prediction of the classifier. Figure 43.e shows that when using the 

EEG+ECG approach, the classifier detected 80 cases with F-score above 90%. This result 

shows the predictive power of the classifier due to the advantages of the proposed features. 

Moreover, within the F-score range above 90%, the classifier detected 67 cases using the 

proposed EEG method. 

Kappa evaluates the performance of the classifier compared with the possibility of 

achieving this performance through random chance. The higher the Kappa value, the more 

accurate the classifier is. Figure 43.f illustrates that when using both the EEG+ECG and 

EEG methods, the classifier detects most of the cases with kappa range above 90%. 
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To summarize this section, the proposed approaches (EEG+ECG and EEG) achieved high 

results within the range of 90–100%, which proves the quality of the extracted features to 

detect the insider threats and supports the accuracy metric. 

      

  5.a 5.b 

  5.c 5.d 

  5.e 5.f 

Figure 43: (a,b,c,d,e,f): Evaluating the Results using Several Metrics 
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results of the proposed approach: the random forest (RF) [158], support vector machine 

(SVM) [160], and back propagation neural network (NN) [162]. Each algorithm has its 

model and learning method, discussed earlier in Chapter 5. This section illustrates the effect 

of these classifiers on the results of the proposed EEG and EEG+ECG methods. 

Table 12 compares the proposed approach with the raw brainwaves. The table summarize 

the results of the eighty four participants that are shown in Figure 40 and Figure 42 by 

illustrating the average accuracy, the confidence interval (C.I.), false positive rate (FPR)  

and false negative rate (FNR). The table illustrates the comparison using three classifiers 

which are RF, SVM and NN. The table illustrates the improvement of the proposed 

approach for detecting internal threats.   

Table 12: Comparing Approaches using Confidence Interval, FPR and FNR 

Classifier Random Forest Support Vector Machine Neural Network 

Measure 
Accuracy ± 

95% C. I. 
FPR FNR 

Accuracy ± 

95% C. I. 
FPR FNR 

Accuracy ± 

95% C. I. 
FPR FNR 

          Raw BW 79.69 ± 2.74 13.5% 31.4% 75.51 ± 2.3 10.3% 48.6% 77.9 ± 2.72 13.5% 36.1% 

EEG 94.8 ± 1.49 3.9% 7% 95 ± 1.6 3.4% 7.1% 95.33 ± 1.71 3.8% 4.2% 

EEG+ECG 98.42 ± 0.62 1.1% 2.3% 98.26± 0.77 1.3% 2.4% 98.3± 0.82 1.4% 2.1% 

Table 13 illustrates the performance of the proposed approaches using different classifiers 

and several evaluation metrics. Although the three classifiers achieved high average 

accuracy in identifying the insider threats when using the proposed EEG+ECG features, 

the random forest (RF) slightly outperformed, with an average accuracy up to 98.42%. The 

very close results of the three classifiers when using EEG+ECG indicate the quality of the 

extracted features that allow the three classifiers to identify the malicious activities with 

high accuracy. On the other hand, when using the EEG features, the back propagation 

neural network (NN) achieved an average accuracy of 95.33%. Moreover, the table 
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clarifies the improvement in the results when using the extracted EEG features over those 

when using the raw brainwaves. 

Table 13: Comparison of EEG+ECG with EEG Approach and the Raw Brainwaves 

Classifier Random Forest Support Vector Machine Neural Network 

Measure EEG+ECG  EEG 
Raw 

EEG 
EEG+ECG EEG 

Raw 

EEG 
EEG+ECG EEG 

Raw 

EEG 

          Accuracy 98.42 94.80 79.69 98.26 95.01 75.51 98.30 95.33 77.90 

Precision 0.98 0.94 0.76 0.98 0.95 0.76 0.98 0.95 0.74 

Recall 0.98 0.93 0.69 0.98 0.93 0.51 0.98 0.94 0.64 

AUC 1.00 0.97 0.84 0.98 0.95 0.71 0.99 0.97 0.81 

F-measure 0.98 0.94 0.72 0.98 0.94 0.57 0.98 0.94 0.67 

Kappa 0.97 0.89 0.56 0.96 0.90 0.43 0.97 0.90 0.51 

MCC 0.97 0.89 0.56 0.96 0.90 0.46 0.97 0.90 0.52 

Furthermore, Table 14 shows that, for the three classifiers, the results of detecting insider 

threats from females are better than the results for males when using the extracted EEG 

features. This can be attributed to the fact that females report more levels of fear and 

anxiety than males due to different factors, including biological and cultural influences 

[179, 180]. On the other hand, the accuracy gap between males and females diminished 

when using the EEG+ECG features; this can be attributed to that the addition of the ECG 

features increases the distinction between the normal and suspicious activities in both 

genders, thus diminishing the gap between the results. 

Table 14: Comparing EEG+ECG with the Extracted EEG Based on Gender 

Measure 

Classifier 

Random Forest Support Vector Machine Neural Network 

EEG+ECG EEG EEG+ECG EEG EEG+ECG EEG 

M F M F M F M F M F M F 

             
Accuracy 98.17 98.68 92.68 97.01 98.05 98.47 92.67 97.46 98.21 98.39 92.90 97.87 

Precision 0.98 0.98 0.92 0.97 0.98 0.98 0.93 0.97 0.98 0.98 0.92 0.97 

Recall 0.97 0.98 0.90 0.96 0.97 0.98 0.89 0.96 0.98 0.98 0.91 0.97 

AUC 0.99 0.99 0.96 0.99 0.98 0.98 0.92 0.97 0.99 0.99 0.96 0.99 

F-measure 0.98 0.98 0.91 0.96 0.98 0.98 0.91 0.97 0.98 0.98 0.92 0.97 

Kappa 0.96 0.97 0.85 0.94 0.96 0.97 0.85 0.95 0.96 0.97 0.85 0.96 

MCC 0.96 0.97 0.85 0.94 0.96 0.97 0.85 0.95 0.96 0.97 0.85 0.96 
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Figure 44 illustrates the classification accuracy of EEG+ECG features using three 

classifiers, i.e., RF, SVM, and NN. The RF classifier detects 81 cases with accuracy above 

90%, which shows some improvement over SVM and NN. The SVM and NN classifiers 

correctly classified 80 and 79 cases with accuracy range above 90%, respectively. To 

simplify the comparison and discuss the classification results further, the percent difference 

PD is calculated as illustrated in Table 15. 

Table 15 shows a comparison between the classifiers using the PD and a threshold level of 

85%. The threshold level was selected to illustrate the accuracy of the three classifiers 

above this level. We can notice that when accuracy is above 85%, the RF classifier 

outperforms the remaining classifiers with around 1.2%, whereas the NN and SVM 

achieved the same number of detected cases. On the other hand, when accuracy is below 

the threshold level, the RF achieved accuracy 66.7% lower than the NN and SVM 

classifiers, where the RF detected one case compared with two cases identified by the other 

classifiers. Despite the small value of PD, the results of the three classifiers are almost the 

same. 

 

Figure 44: Accuracy of proposed EEG+ECG method using three classifiers 
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Table 15: PD of The Classifiers' Accuracy Using EEG Features 

Accuracy 

Ranges in % 

Volunteers Percent Difference (PD) 

RF SVM NN RF&SVM RF&NN SVM&NN 

[75 - 80] 0 0 1 --- 
66.7% 

200% 
66.7% 

200% 
0% 

]80 - 85] 1 2 1 66.7% 0% 66.7% 

[85 - 90] 2 2 3 0% 

1.2% 

40% 

1.2% 

40% 

0% [90 - 95] 5 5 4 0% 22.2% 22.2% 

[95 - 100] 76 75 75 1.3% 1.3% 0% 
 

Figure 45 demonstrates the influences of the classification algorithms on the results of EEG 

features. When accuracy is above 90%, the RF and SVM classifiers detect 67 cases 

compared to 66 cases detected by the NN classifier. Moreover, the three classifiers detected 

eleven cases within the accuracy range of 80–90%. The figure demonstrates that the 

classifiers achieved approximately the same accuracy, which proves the quality of 

proposed EEG features is not affected by the learning algorithms of the classifiers. 

 

Figure 45: Accuracy of proposed EEG method using three classifiers 
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the same number of cases. Thus, they do not have any PD. In contrast, SVM achieved 1.4% 

higher results within the accuracy range above 85%. 

Table 16: PD of Classifiers's Accuracy Using EEG+ECG 

Accuracy 

Ranges in % 

Volunteers Percent Difference (PD) 

RF SVM NN RF&SVM RF&NN SVM&NN 

[70 - 75] 1 2 4 66.7% 

8.7% 

120% 

0% 

33.3% 

8.7% [75 - 80] 5 4 3 22.2% 50% 13.3% 

[80 - 85] 6 5 5 18.2% 18.2% 0% 

[85 - 90] 5 6 6 18.2% 

1.4% 

18.2% 

0% 

0% 

1.4% [90 - 95] 8 11 5 31.6% 46.2% 75% 

[95 - 100] 59 56 61 5.2% 3.3% 8.6% 

6.10 Evaluation Using a Group of Frames 

Using an average of five frames certainly reduces the data processing time compared to 

analyzing each frame of incoming data. However, the accuracy of the proposed EEG+ECG 

could be affected by compressing the data. To illustrate the effect of using a group of five 

frames on detecting malicious attacks, a comparison between the accuracy of the whole set 

of incoming data (1F) and the accuracy of a group of five frames was conducted, as shown 

in Figure 46. The comparison includes the average (AVG), median, and standard deviation 

(STD) of a group of five frames. From the figure, we can notice that, when accuracy is 

above 95%, the RF classifier classifies the data of only 18 volunteers using the standard 

deviation, which is very far from the classification results when using one frame 

(EEG+ECG) or the average and the median of five frames. However, using 1F, the 

classifier correctly classifies the data of 74 volunteers, with an accuracy above 95%. In the 

same range, the classification results of the average and the median of five frames are 75 

and 76 volunteers, respectively. 
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The average and the median of a group of five frames do not significantly affect the 

accuracy of detecting malicious activities, which indicates the quality of extracted 

EEG+ECG features. The proposed EEG+ECG approach succeeded to differentiate 

between normal and malicious activities, and it divided the related signals of each activity 

into a separate group of similar signals. So, the average and the median of the similar five 

frames provide approximate value to the values in the five frames. On the contrary, the 

standard deviation of each five frames increased the dispersion of values and decreased the 

accuracy of detecting malicious activities. 

 
Figure 46: Comparing EEG+ECG Accuracy of AVG, Median, and STD 
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with the proposed EEG approach can correctly detect the malicious activities with an error 

rate around 8% when using only 10% of the incoming data. On the other hand, the NN 

classifier has an error rate around 24.7% with the raw EEG data. Moreover, Figure 47 

shows that when the incoming data are too small, the results of the proposed EEG approach 

using NN classifier are much better than RF and SVM classifiers. On the other hand, the 

results of the RF classifier outperformed the other classifiers when using the raw EEG data. 

 
Figure 47: Percent incorrect with Different Size of Data 
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class while building the model, especially when dealing with unbalanced data [104, 105]. 

This drawback of the SVM classifier appears clearly in the proposed approach only when 

we use less than 20% of the incoming data. Therefore, the SVM classifier is not 

recommended when there is too little data. 

 
Figure 48: Incorrect Data of the Proposed EEG+ECG and the EEG Only  
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models. Additionally, the problem with the SVM results when there is 20% less incoming 

data affects the results of the SVM classifier when a group of five frames is used, but it 

does not affect the one-frame results (1F) of the EEG+ECG, as illustrated in Figure 50. 

 
Figure 49: ROC Curves and the Training Time per Second Using RF 

Moreover, there is no direct correlation between the results obtained and the training time. 

The average training time of the NN classifier is around 10 times more than that of the RF 
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training time less than that of 5F STD, as clearly shown in Figure 49. 
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Figure 50: ROC Curves and the Training Time per Second Using SVM 

 

 
Figure 51: ROC Curves and the Training Time per Second Using NN 
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6.12 Evaluation for New Incoming Data 

To evaluate the proposed features for the new incoming data, we tested the approach as a 

unit for the whole population. Two types of evaluation were used including 10 folds cross-

validation of the whole participants' data and 70% Training – 30% Testing of the data. 

Moreover, to assess the detection quality when the number of frames is changed, the test 

includes the utilization of a different number of frames, where each session's frames were 

compressed as discussed in Section 6.5. 

Table 17 illustrates the results of the proposed EEG+ECG approach that calculated over 

the whole population per session when each participant's session consists of whole frames 

(1 Frame), a group of (5, 10 and 15) Frames. The table shows the false positive (FP) and 

false negative (FN) rates, and the accuracy. From the table, we can notice that the proposed 

approach has no major difference in the accuracy when the number of frames is changed. 

 
Table 17: Confidence Intervale, FP and FN Rates of Proposed EEG+ECG Approach 

Frames 
10 Folds Cross-Validation 70% Training, 30% Testing 

FNR FPR Accuracy ± CI FNR FPR Accuracy ± CI 

1 Frame 4% 11% 93.38 ± 0.21 6.4% 14.4% 90.59 ± 0.14 

5 Frames 10% 21% 85.75 ± 0.27 11.5% 22.5% 84.45 ± 0.18 

10 Frames 9% 17.4% 87.88 ± 0.38 10.2% 21.4% 85.6 ± 0.34 

15 Frames 7.7% 18.6% 88.26 ± 0.44 10.7% 19.6% 86 ± 0.40 

 
Moreover, we evaluated the proposed features for the whole population per participants, 

using 10 folds cross-validation and 70% Training – 30% Testing of participants. In the 

cross-validation the participants were divided into 10 groups one of the groups used as a 

test whereas the other 9 groups used for training the model. The test repeated 10 times then 
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the average of the results is calculated. On the other test, the 70% of the participants used 

as Training – and 30% used as Testing. The test repeated 10 times where the 30% of 

participants in the testing selected randomly from the populations. Table 18 shows the 

results of the evaluation. 

Table 18: Results of EEG+ECG Approach for the Whole Population per Participant 

Folds 
10 Folds Cross-Validation 70% Training, 30% Testing 

FNR FPR Accuracy FNR FPR Accuracy 

1 22% 5% 87.87 24% 12% 83.0 

2 21% 8% 86.37 22% 16% 81.10 

3 19% 10% 86.04 31% 4% 85.74 

4 35% 1% 85.91 24% 9% 84.93 

5 17% 7% 88.60 26% 11% 83 

6 18% 11% 85.75 30% 7% 84.4 

7 31% 2% 87.87 26% 11% 82.82 

8 15% 8% 88.91 23% 6% 87.1 

9 23% 2% 90.46 20% 12% 84.6 

10 16% 7% 89.40 36% 7% 82.12 

Avg 22% 6% 87.72 26% 10% 83.88 

Furthermore, to further evaluate the proposed approach for new incoming data, the 

approach evaluated for participant separately. To achieve this goal, only one participant is 

used as testing data whereas the others 83 participants used for training the model. Figure 

52 illustrates the accuracy of each participant. The X axis illustrates the accuracy value 

whereas the Y axis illustrates the number of participants achieved this value. Moreover, 

Table 19 shows the average accuracy, FPR and FNR of the 84 participants where the 

detailed results of each participant is illustrated in Appendix B. 

Table 19: Average Accuracy, FPR and FNR of the 84 Participants 

Features FNR FPR Accuracy 95% C.I. 

EEG+ECG 19.7% 4.6% 90% 90 ± 1.26 

EEG 19.3% 11.8% 85.6% 85.6 ± 2.27 

Raw Brainwaves 62% 11.5% 69.88% 69.88 ±1.97 
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Figure 52: Accuracy per participant 

To evaluate the efficacy of the proposed approach based on gender, Table 20 shows the 

average of accuracy, FPR and FNR for the males and the females. Where this average is 

calculated from the test of evaluated each participant separately (1 person test, 83 persons 

Train). From the table, we can notice that the results of detecting insider threats from 

females are better than the results for males when using the extracted EEG features. This 

can be attributed to the fact that females report more levels of fear and anxiety than males 

due to different factors, including biological and cultural influences [179, 180]. Moreover, 

this fact can be noticed when using a raw brainwaves. In contrast, when using the 

EEG+ECG features, the accuracy gap between genders diminished; this can be attributed 

to that the addition of the ECG features increases the distinction between the normal and 

suspicious activities in both genders, thus diminishing the gap between the results. 
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Table 20: Comparing Approaches Based on Gender 

Method 
EEG+ECG EEG Brainwaves 

Males Females Males Females Males Females 

FPR 7.7% 1.4% 18% 4% 8% 14.3% 

FNR 15% 23% 19% 19% 57% 68% 

Accuracy 89.44 90.57 80.92 90.5 72.89% 66.7% 

95% C.I. 89.44±1.7 90.57±1.8 80.92±3.3 90.5±2.3 72.89±2.65 66.7±2.7 

 

6.13 Evaluating proposed method with Suh and Yim approach 

To assess the performance of the proposed approach, we compared our approach with Suh 

and Yim approach [109] utilizing our dataset. Suh and Yim used a quantitative EEG 

analysis to develop two types of indicators which are the relative power of (alpha, beta, 

theta, the sum of alpha and theta, and gamma waves) and the ratio of brainwave-to-

brainwave (i.e., gamma/alpha and beta/alpha). Figure 53 shows the feature frame of Suh 

and Yim approach. 

 

Theta Alpha Beta Gamma Alpha + Theta 
Beta

Alpha
 

Gamma

Alpha
 

Figure 53: Feature Frame of Suh ans Yim Approach 

 

Figure 54 and Figure 55 illustrate the comparison of the proposed approach with Suh’s 

method using RF classifier. The comparison includes two techniques of classification 

which are the 10 folds cross-validation and 70% of the data for the training. From the 

figures, we can notice that the proposed EEG only and EEG+ECG features achieved better 

results than Suh’s method in detecting insider threats. This can be attributed to the proposed 

feature-factors which are dividing the EEG waves into smaller ranges, Normalization and 

extract additional features from the influential EEG waves. Moreover, Figure 55 illustrates 
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that the proposed approach achieved better computation training time than Suh’s method, 

this can be attributed to the small values resulting from normalizing of extracted features 

compared to the un-normalized data in Suh's method.   

 
Figure 54: Comparing proposed approach with Suh’s  Method using Accuracy  

 

 

 
Figure 55: Comparing proposed approach with Suh’s  Method using Training Time 
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6.14 Summary 

Evaluating the proposed system is the final stage of the methodology of this research. To 

evaluate the proposed system, two null hypotheses were developed. Each hypothesis 

addressed the potential effect for a type of the bio-signals on distinguishing between the 

malicious and non-malicious activities. In this chapter, the null hypotheses have been 

rejected based on the accuracy of the classification results. Although the accuracy may give 

unreliable results when used with unbalanced classes of data, additional more reliable 

metrics were used to assess the correctness of the accuracy metric including precision, 

recall, area under the ROC curve, kappa, F-score, and Matthews correlation coefficients. 

The classification results illustrate the ability of the proposed system to differentiate 

between malicious and normal activities with a considerable accuracy. The results show 

that the proposed approach can detect insider threats with an average accuracy up to 98.4%, 

which negates the validity of the null hypotheses and demonstrates the positive effect of 

the extracted features on detecting the insider threats. 

Moreover, since the classification is a crucial phase in the proposed system, three 

classification algorithms were used to test and assess their influence on the results. The 

results illustrated that there is an insignificant difference between the accuracy of these 

classification algorithms in detecting the insider threats. Furthermore, the system has been 

evaluated when using a group of frames. Using a group of 5 frames showed some 

improvements in the classification results. 
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7 CHAPTER 7 

CONCLUSION, LIMITATIONS AND FUTURE 

RESEARCH 

This research studies the feasibility of detecting insider threats by distinguishing between 

normal and malicious activities utilizing human bio-signals. Although the results of the 

proposed system are promising and worthy of future research, this research has some 

limitations which should be illustrated. This chapter concludes the dissertation, discusses 

the limitations and demonstrates the future research directions. 

7.1 Conclusion 

Insider threats are a considerable risk to organizations, more than external hackers, because 

insiders have more knowledge than outsiders do about the organization's system and its 

security mechanisms. Insiders are employees and trusted partners who have authorized 

access to the information and digital systems of the organization. Moreover, some insiders 

carefully plan out their intentions and deliberately take steps to put themselves in the best 

position to carry out these attacks. Therefore, the discovery of insider attacks is not easy, 

since it is hard to differentiate between these crimes and non-malicious activities. 

Insider attacks cause extensive damage to organizations. Thinking about the added cost of 

the data breach, that is even more disconcerting and brings a bigger financial burden to an 

organization. The added costs come from a variety of sources: it is not just the financial 
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loss of that information, but it is everything from the cost of responding to that incident, to 

cleaning all damages, and installing preventative systems. There are also many tangible 

costs such as the loss of customer loyalty. Therefore, governments and organizations invest 

money and enact laws for mitigating the risk of such attacks. 

This research aims to mitigate the risk of insider threats by proposing an insider attack 

detection system using human involuntary bio-signals. Human bio-signals are spontaneous 

signals done without will or self-control. Thus they are hard to imitate. Unfortunately, no 

available data set contains the bio-signals collected during malicious and normal activities 

of insiders, to the best of our knowledge. Therefore, this research provides a data set that 

contains sufficient samples of human bio-signals collected during real suspicious activities. 

To this end, two experiments were conducted to collect such signals. These experiments 

were based on two scenarios: normal and malicious activities. 

In the first scenario, the human bio-signals were collected from participants while 

conducting normal work activities such as writing or thinking for solving problems. On the 

other hand, the second scenario was developed based on physiological rules, which state 

that intervention in decision-making and the sense of responsibility play an important role 

in influencing human bio-signals. So, in the second scenario, the appropriate environment 

and motivators have been provided for the participants to conduct malicious activities, 

leaving the decision-making to the participants to conduct such activities. 

The bio-signals were assembled into a data set which is divided into two parts: normal 

activities and suspicious activities. Each part of the data set contains two types of bio-

signals, which are: the electroencephalogram (EEG) and the electrocardiogram (ECG). In 
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order to support this search area, the data set was created to be public for conducting further 

researches. 

To detect the insider threats using human bio-signals, thirteen features have been extracted 

from the collected EEG and ECG signals. These features represent the measurable 

characteristics of the bio-signals that can be used to distinguish between the normal and 

malicious behaviors. 

Furthermore, an insider threat detection system was proposed in this study. The proposed 

system consists of eight units, which are: EEG sensors, ECG sensors, EEG interface, ECG 

interface, a feature extractor, attack assessment, comparative signals data set and attack 

evaluator. These units represent the different stages starting from the collecting of bio-

signals to the stage of determining the attack. With the rapidity of technological 

advancement, new wearable techniques are developed to collect and analyze human bio-

signals. It is worth mentioning that this research did not put any restriction on sensor type; 

any types of sensor could be used as long as they can collect bio-signals accurately and do 

not obstruct the employees' work. 

The results show that the proposed EEG+ECG approach can detect insider threats with an 

average accuracy up to 98.4% when building a machine learning model for each 

participant, which means that less than 2% of all the incoming malicious signals were 

misclassified. Thus, classifiers can detect the insider threats even if the incoming data is 

too small. Furthermore, since the accuracy can be influenced by the small size of the 

malicious data class, the correctness of accuracy metric has been verified using several 
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reliable metrics. All in all, the results illustrate that the proposed system is effective for 

detecting insider threats. 

Furthermore, we have tested the proposed EEG+ECG approach for new incoming data 

using several methods. When testing the whole data of participant using 10 folds cross-

validation and 70% of the data for training, the proposed EEG+ECG achieved accuracy of 

93.38%, and 90.59% respectively. Moreover, the proposed EEG+ECG approach has been 

tested for each participant individually by using the data for a single participant for testing 

whereas the data for the rest of 83 participants has been used for training the machine 

leaning, the EEG+ECG features achieved an average accuracy of 90%. 

In closing, this research study makes some contributions: developing an insider threat 

detection system that can accurately identify malicious activities, which will help 

organizations to detect insider attackers and to take the necessary actions to mitigate the 

risk of such attacks. Regardless of the insider attack mechanisms, the proposed system uses 

involuntary signals to detect such attacks. Also, this research work provides a data set 

which contains the physiological signals for 84 volunteers. The availability of the human 

physiological data set collected during normal and malicious activities for research use 

would provide an opportunity to develop and extend the research in this area. 
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7.2 Limitations 

The results of this research study are promising and worthy of further research. However, 

this research has some limitations to be discussed. The following subsections clarify these 

limitations. 

7.2.1 Sensors 

Although the sensors used in this research to collect bio-signals have many features such 

as the small size, wearable, easy to connect to the computer, comfortable, cheap, and have 

been used in several types of research [131–133], but there are several devices that are 

more accurate and contain many sensors such as the 32-channel Biosemi headset [181], the 

64-channel g.Nautilus [182], and the 14-channel Emotiv EPOC [100]. Using these devices 

to collect human bio-signals, more signals can be assembled with additional details about 

the signals collected, thereby enriching the data set and ensuring the reliability of the 

results. A useful comparison between several EEG devices was conducted by Nijboer et 

al. [183].  

Furthermore, the devices used in this research to collect EEG and ECG signals are 

developed by different vendors. This led to the use of different interfaces to handle the 

collected bio-signals, which further complicated the analysis and storage of data in the data 

set. Utilizing devices created by the same company would facilitate the collection and 

analysis of the bio-signals. An example of a company that provides different devices for 

collecting human bio-signals is g.tec medical engineering [184]. 

https://scholar.google.com/citations?user=i_QJztcAAAAJ&hl=en&oi=sra
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7.2.2 Number of Used Devices 

In this research, only four devices were used to collect human bio-signals due to the limited 

funds. These are two devices for collecting EEG signals and two for ECG signals. In each 

experiment session, only two participants use the devices. However, in the second scenario, 

one of the participants is a true participant, as we discussed in Chapter 5. So, the bio-signals 

of only one participant were collected each time. The nature of the second scenario 

(suspicious activities) requires that the procedures of this scenario be confidential, so this 

scenario should be carried out during a short period. However, due to the limited number 

of devices, conducting this scenario took a longer time. 

7.2.3 Hardware Limitations 

The EEG signals were collected using the NeuroSky device that runs on battery power and 

transmits the signals to the computer via Bluetooth. Such devices have lower data 

transmission range to minimize power consumption and called Class 2 Bluetooth devices 

[185]. Due to the range limitations, some EEG files in our data set contain very few bad 

signals which are not recorded in the file. In most cases, the bad signals between 

consecutive samples were five seconds at most and were symbolized in the file as NA (not 

available). 

7.2.4 Unused Bio-signals 

This research focuses on using EEG and ECG signals to detect insider threats. It is worthy 

of mention that the skin conductance level was also assembled and stored in the data set to 

be used for further research. Moreover, the NeuroSky device which was utilized for 

collecting EEG signals produces additional data. These data are the meditation level, 

attention level, and eye blink. But the device's company did not reveal the algorithms that 
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have been used to produce these data. Therefore, these data were considered informal 

signals. These data were collected and not used or stored in the formal data set but will be 

available upon request. 

7.2.5 Environment of collecting Data 

The experiments were conducted in the academic environment and the bio-signals were 

collected from university students and staffs. However, more bio-signals needs to be 

collected from industry environment to assess the implications of our research in the 

different environments. 

7.2.6 Final Product Deployment   

Since the major aim of this research to propose a new approach to detect insider threats, 

we extracted features and achieved the classification results by (the batch mode) using two 

different software MATLAB and Java + WEKA APIs. Because the mentioned software 

are reliable and have great facilities. However, deploying the final product of the proposed 

approach should consist of integrated client and server applications. 
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7.3 Future Research 

Providing the human physiological data set collected during normal and malicious 

activities for research purposes would provide an opportunity to develop and extend the 

research in this area. Although the results of the proposed system offer excellent potential 

for detecting insider threats, the proposed system has not utilized all the collected bio-

signals, because this study focused only on EEG and ECG signals. For instance, the skin 

conductivity level was collected during the experiments and stored in the bio-signals data 

set for further investigation. Moreover, the proposed system uses only three ECG features; 

more features can be extracted from the collected data, such as the heartbeat irregularity 

[186]. Further research is needed to refine the proposed system by extracting new features. 

Furthermore, using devices that have many sensors will provide more accurate results and 

offer additional details on the collected human bio-signals. The more details on the bio-

signals will provide additional features for detecting insider threats. Although the devices 

that have many sensors are expensive, we are planning to contact the vendors to denote the 

devices for a research purposes.      
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Appendix A 

Samples of Source Code 

 

MATLAB 

1. Get EEG data from Neurosky Device  

clear all 

clc 

filename = fullfile('Arabic.csv'); 

fileID = fopen(filename); 

C = textscan(fileID,'%f %f %f %f %f %f %f %f %f %f %f %f %f 

%f %f %s','Delimiter',';','TreatAsEmpty',{'NA','na'}, 

'CommentStyle','#'); 

fclose(fileID); 

obs=[C{1,1}];  %% Get the number of the signal 

t=[C{1,2}];  %% Read Time 

Delta=[C{1,3}]; %% Get Delta 

Theta=[C{1,4}]; 

Alpha1=[C{1,5}]; 

Alpha2=[C{1,6}]; 

Beta1=[C{1,7}]; 

Beta2=[C{1,8}]; 

Gamma1=[C{1,9}]; 

Gamma2=[C{1,10}]; 

Attention=[C{1,11}];%% Get the value of Attention 

Meditation=[C{1,12}];%% Get the value of Meditation 

Blink=[C{1,13}]; %% Get the value of Blink  

Derived=[C{1,14}]; %% derived by the interface 

totPwr=[C{1,15}];  %% Get the total power 

class=[C{1,16}]; %% get the class added by the device 

train_dataA=[Delta,Theta,Alpha1,Alpha2,Beta1,Beta2,Gamma1,G

amma2,Attention,Meditation,Blink,Derived,totPwr]; 

train_dataA(:,14)=0; %% add 0 as class of the train data 

and 1 as class of test data 

 
2. Get ECG date from the Wild Divine Device 

clear all 

clc 

Root_directory='Path to the directory'; 

%Root_directory='D:\First part of test WildDivine'; 

%Read the Subdirectories 

sub_directories=dir(Root_directory); 

sa=1; % counter for samples 

sd=1; % counter for sdnn 
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pk=1; % counter for peak 

na=0; % counter for directories names 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% Modify file names so they are handled easily 

for sub_dir_index=3:length(sub_directories) 

csvs=dir(fullfile(Root_directory,sub_directories(sub_d

ir_index).name)); 

     na=na+1; 

    sub_name{na}=sub_directories(sub_dir_index).name; 

    n=sub_name{na}; 

    % change any space in the filename with _ 

    h=''; 

    for f=1:length(n) 

        if(n(f)==' ') 

           h(f)='_'; 

        elseif (n(f)=='.') 

        break 

        else 

        h(f)=n(f); 

        end 

     end 

     display(h) 

     sub_name{na}=h; 

%Read the data from files      

     for j=3:length(csvs) 

      filename = fullfile(csvs(j,1).name); 

%Get The ECG Data  

          if  strcmp(filename,'sample.csv') 

s=strcat(Root_directory,'\',sub_directories(sub_d

ir_index).name,'\',csvs(j,1).name); 

          fileID = fopen(s); 

C = textscan(fileID,'%*f %*f %*f %*f %s %f 

%f','Delimiter',';','TreatAsEmpty',{'NA','na'},'C

ommentStyle','#'); 

          xsample{sa}=C; 

          sa=sa+1; 

          fclose(fileID);   

          end 

             

          if  strcmp(filename,'sdnn.csv') 

s=strcat(Root_directory,'\',sub_directories(sub_d

ir_index).name,'\',csvs(j,1).name); 

          fileID = fopen(s); 

Q = textscan(fileID,'%*f %*f %*f 

%f','Delimiter',';','TreatAsEmpty',{'NA','na'},'C

ommentStyle','#'); 

          xsdnn{sd}=Q; 
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          sd=sd+1; 

          fclose(fileID); 

          end 

             

          if  strcmp(filename,'peak.csv') 

s=strcat(Root_directory,'\',sub_directories(sub_d

ir_index).name,'\',csvs(j,1).name); 

          fileID = fopen(s); 

p= textscan(fileID,'%*f %*f %*f %s %f 

%f','Delimiter',';','TreatAsEmpty',{'NA','na'},'C

ommentStyle','#'); 

          xpeak{pk}=p; 

          pk=pk+1; 

          fclose(fileID); 

          end 

      end 

 end 

%%%% Save data to file      

save('Full_WD_English.mat','sub_name','xsample','xsdnn','xp

eak'); 

 

3. Average Mean and standard Deviation of Five frames 

clear all 

clc 

load ('brain_waves_Ar_EN.mat') 

  

Frame_size=5; 

  

for i=1:length(brain_waves_Nurosky) 

count=0; % count represents the number of train signals 

count_test=0; % represents the number of test signals 

var_nero_train=0; 

var_nero_test=0; 

train_feature=[]; 

test_feature= []; 

% Seperate the train from the test data for a person 

var=brain_waves_Nurosky{1,i};% var contains neurosky and WD 

(train and test )data for a single person 

var_nero=var;% var_nero contains the EEG+ECG signal 

(train+test) data with the class value 

    for j=1:length(var_nero) 

        if(var_nero(j,17)==0) 

        count=count+1; 

        end 

    end 
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 count_test=length(var_nero)-count; 

 var_nero_train=var_nero(1:count,:); 

 var_nero_test=var_nero(count+1:length(var_nero),:); 

%% mean of train data 

    c=1; 

    for k=1:Frame_size:count- mod(count,Frame_size) 

        train_frame=var_nero_train(k:k+(Frame_size-1),:); 

        train_feature(c,:)=mean(train_frame); 

        c=c+1; 

    end 

    if(mod(count,Frame_size)~=0) 

    s1=floor(count/Frame_size)*Frame_size+1; 

        if(count-s1~=0) 

            train_last=mean(var_nero_train(s1:count,:)); 

            train_feature(c,:)=train_last; 

        end 

    end 

    train_feature(:,17)=0;    

%% mean of test data 

  c2=1; 

    for k=1:Frame_size:count_test- 

mod(count_test,Frame_size) 

        test_frame=var_nero_test(k:k+(Frame_size-1),:); 

        test_feature(c2,:)=mean(test_frame); 

        c2=c2+1; 

    end 

    if(mod(count_test,Frame_size)~=0) 

    s2=floor(count_test/Frame_size)*Frame_size+1; 

        if(count_test-s2 ~=0) 

            test_last=mean(var_nero_test(s2:count_test,:)); 

            test_feature(c2,:)=test_last; 

        end 

    end 

    test_feature(:,17)=1; 

     

%% merege train and test data then generate the arff file 

  

features=[train_feature;test_feature]; 

        sname=strcat(all_fname{1,i},'_5F_Brainwaves_mean'); 

        generatefile2(features, sname, 'arff',1); 

end 
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JAVA with Weka API 

1. Evaluation with 10 folds cross validation  

package weka.api; 

//import classes 

import weka.core.Instances; 

import java.util.Random; 

import weka.core.converters.ConverterUtils.DataSource; 

import weka.classifiers.trees.J48; 

import weka.classifiers.functions.MultilayerPerceptron; 

import weka.classifiers.functions.SMO; 

import weka.classifiers.Evaluation; 

import weka.classifiers.functions.supportVector.Puk; 

import java.io.File; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.io.File; 

 

public class Evaluation_CrossValidation2_CSV { 

  

 public static void main(String args[]) throws 

Exception{ 

  // set the path for the data set 

String path="path for the dataset"; 

  // Read the list of files from the folder 

  File folder = new File(path); 

  File[] listOfFiles = folder.listFiles(); 

  int no_of_files=0; 

     

    for (int i = 0; i < listOfFiles.length; i++)  

{ 

      if (listOfFiles[i].isFile())  

{ 

         no_of_files=no_of_files+1; 

System.out.println("File " + 

listOfFiles[i].getName()); 

  //load data sets 

DataSource source = new 

DataSource(path+ 

listOfFiles[i].getName()); 

    Instances dataset = 

source.getDataSet();  //set class index to the last 

attribute 

  dataset.setClassIndex(dataset.numAttributes()-1); 

  //create and build the classifier! 
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  Evaluation eval = new Evaluation(dataset); 

  Random rand = new Random(1); 

  int folds = 10; 

   

// the evaluation using Neural Network Classifier 

 MultilayerPerceptron nn = new MultilayerPerceptron(); 

 nn.buildClassifier(dataset); 

 eval.crossValidateModel(nn, dataset, folds, rand); 

 

// Evaluation using Random Forest Classifier 

RandomForest RF = new RandomForest(); 

 RF.setMaxDepth(0); 

 RF.setNumExecutionSlots(1); 

 RF.setNumDecimalPlaces(2); 

 RF.setNumFeatures(0); 

 RF.buildClassifier(dataset); 

 eval.evaluateModel(tree, testDataset); 

 eval.crossValidateModel(RF, dataset, folds, rand); 

   

// the evaluation using SVM Classifier 

 SMO svm = new SMO(); 

 Puk rbf = new Puk(); 

 svm.setKernel(rbf); 

 svm.buildClassifier(dataset); 

 eval.crossValidateModel(svm, dataset, folds, rand); 

 

// Print the evaluation results in a file 

try{ 

PrintWriter writer = new PrintWriter(new 

FileOutputStream(new File("destination path with file 

name"), true)); 

writer.append(listOfFiles[i].getName()+","); 

writer.append("Correct % =,"+eval.pctCorrect()+","); 

writer.append("Correct_NO =,"+eval.correct()+","); 

writer.append("Incorrect % =,"+eval.pctIncorrect()+","); 

writer.append("Incorrect NO =,"+eval.incorrect()+","); 

writer.append("AUC = ,"+eval.areaUnderROC(1)+","); 

writer.append("kappa = ,"+eval.kappa()+","); 

writer.append("MAE = ,"+eval.meanAbsoluteError()+","); 

writer.append("RMSE = ,"+eval.rootMeanSquaredError()+","); 

writer.append("RAE = ,"+eval.relativeAbsoluteError()+","); 

writer.append("RRSE = 

,"+eval.rootRelativeSquaredError()+","); 

writer.append("Precision = ,"+eval.precision(1)+","); 

writer.append("Recall = ,"+eval.recall(1)+","); 

writer.append("fMeasure =,"+eval.fMeasure(1)+","); 
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writer.append("Error Rate =,"+eval.errorRate()+","); 

writer.append("No of instances 

=,"+eval.numInstances()+","); 

writer.append("FN =,"+eval.numFalseNegatives(1)+","); 

writer.append("FP =,"+eval.numFalsePositives(1)+","); 

writer.append("TN =,"+eval.numTrueNegatives(1)+","); 

writer.append("TP =,"+eval.numTruePositives(1)+","+"\n"); 

//the confusion matrix 

//writer.append(eval.toMatrixString("=== Overall Confusion 

Matrix ===\n")); 

writer.close(); 

  }  

catch (IOException e) { 

// do something 

  } 

  }  

  }       

} 

} 

 

2. Attribute Selection 

package weka.api; 

import weka.attributeSelection.*; 

import weka.core.*; 

import weka.core.converters.ConverterUtils.*; 

import weka.classifiers.*; 

import weka.classifiers.meta.*; 

import weka.classifiers.trees.*; 

import weka.filters.*; 

import weka.attributeSelection.WrapperSubsetEval; 

import java.io.File; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.util.*; 

import weka.classifiers.functions.MultilayerPerceptron; 

import weka.classifiers.functions.SMO; 

import weka.classifiers.functions.supportVector.Puk; 

 

/** 

 * performs attribute selection using CfsSubsetEval and 

GreedyStepwise 

 * (backwards) and trains J48 with that. Needs 3.5.5 or 

higher to compile. 

 * 
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 * @author FracPete (fracpete at waikato dot ac dot nz) 

 */ 

public class AttributeSelectionTest2 { 

 

/**uses the low level approach */ 

protected static void useLowLevel(Instances data, 

String   name) throws Exception { 

    System.out.println("\n3. Low-level"); 

    AttributeSelection attsel = new AttributeSelection(); 

    WrapperSubsetEval eval = new WrapperSubsetEval(); 

    //J48 base = new J48(); 

    SMO base = new SMO(); 

 Puk rbf = new Puk(); 

    base.setKernel(rbf); 

    //MultilayerPerceptron base = new 

MultilayerPerceptron(); 

    eval.setClassifier(base); 

    GreedyStepwise search = new GreedyStepwise(); 

    search.setSearchBackwards(false); 

    search.setThreshold(-1.7976931348623157E308); 

    attsel.setEvaluator(eval); 

    attsel.setSearch(search); 

    attsel.SelectAttributes(data); 

    int[] indices = attsel.selectedAttributes(); 

    for (int i = 0; i < indices.length; i++) { 

     int w=indices[i]; 

     w=w+1; 

     indices[i]=w; 

    } 

    System.out.println("selected attribute indices 

(starting with 0):\n" + Utils.arrayToString(indices)); 

    try{ 

  PrintWriter writer = new PrintWriter(new 

FileOutputStream(new File("D:\\Exprements Data 

final\\Results\\SVM\\Final_extracted_EEG_Selected_features_

SVM.txt"), true)); 

writer.append(name+","); 

writer.append("features,"+ 

Utils.arrayToString(indices)+"\n"); 

  writer.close(); 

    }  

catch (IOException e) { 

// do something 

 } 

  } 
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  public static void main(String[] args) throws Exception { 

        

 // Load Dataset 

   

String path="Path to the dataset\\"; 

// Read the list of files from the folder 

File folder = new File(path); 

 File[] listOfFiles = folder.listFiles(); 

 int no_of_files=0; 

      

 for (int i = 0; i < listOfFiles.length; i++) { 

  if (listOfFiles[i].isFile()) { 

  no_of_files=no_of_files+1; 

System.out.println("File " + 

listOfFiles[i].getName()); 

  String name=listOfFiles[i].getName(); 

    

//Read Each File from the dataset path 

DataSource source = new DataSource(path+ 

listOfFiles[i].getName()); 

  Instances dataset = source.getDataSet();  

  //set class index to the last attribute 

  dataset.setClassIndex(dataset.numAttributes()-1); 

     

    useLowLevel(dataset,name); 

} 

   }   

} 

} 
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Appendix B 

 

Participant Accuracy FPR% FNR% Participant Accuracy FPR% FNR% 
1 95.22 0.00 12.21 43 89.13 8.61 14.83 
2 90.36 9.17 10.34 44 89.20 0.00 29.72 
3 90.48 8.48 11.30 45 95.06 0.00 13.04 
4 97.02 2.32 3.81 46 87.72 8.28 18.76 
5 76.81 0.12 64.42 47 95.62 1.91 8.43 
6 87.37 8.75 19.33 48 91.79 0.00 22.17 
7 87.96 0.00 19.69 49 90.70 0.00 27.51 
8 94.50 0.12 15.35 50 88.95 0.00 30.60 
9 90.51 10.55 7.64 51 94.35 0.00 20.30 

10 92.24 8.15 7.10 52 92.68 7.38 7.23 
11 93.87 0.00 17.28 53 83.07 0.00 55.96 
12 88.32 0.00 33.19 54 74.14 0.00 72.90 
13 85.63 0.00 40.60 55 99.91 0.00 0.32 
14 91.89 8.19 8.00 56 83.95 5.37 34.51 
15 80.67 12.82 26.26 57 86.72 0.00 34.10 
16 93.28 6.52 7.02 58 96.96 0.00 9.29 
17 92.15 11.72 1.56 59 87.77 0.00 33.40 
18 88.75 16.27 5.14 60 97.09 0.00 7.80 
19 92.08 0.00 20.86 61 86.70 12.23 14.73 
20 74.05 32.66 16.45 62 77.00 38.13 1.04 
21 90.89 4.51 19.20 63 94.29 7.87 1.98 
22 88.45 12.84 9.73 64 92.57 8.68 5.46 
23 95.76 0.00 11.76 65 99.57 0.12 1.35 
24 92.26 0.00 21.00 66 93.41 5.21 8.54 
25 82.12 0.00 49.58 67 92.71 0.23 21.15 
26 80.44 0.00 53.66 68 93.35 0.00 28.27 
27 91.04 9.36 8.41 69 84.97 0.00 42.60 
28 90.77 0.00 25.48 70 83.48 3.43 35.20 
29 89.96 0.36 28.98 71 90.03 0.00 27.93 
30 96.22 0.18 9.82 72 92.81 8.75 4.69 
31 87.56 0.00 34.39 73 90.46 10.22 8.53 
32 86.55 0.00 37.31 74 79.24 0.12 59.09 
33 88.07 0.00 34.00 75 89.34 10.65 10.69 
34 86.66 0.00 33.78 76 99.01 0.00 3.03 
35 89.97 10.51 9.23 77 92.82 5.96 9.29 
36 98.50 0.12 4.02 78 90.06 11.25 7.48 
37 98.91 0.12 2.72 79 95.04 1.25 9.63 
38 82.03 15.57 21.84 80 93.88 0.00 18.27 
39 87.06 20.74 3.00 81 82.64 0.00 50.23 
40 98.66 0.00 5.38 82 93.06 0.00 19.87 
41 97.81 0.00 5.87 83 96.94 0.00 12.59 
42 80.02 26.78 3.06 84 88.31 0.00 32.91 
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