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Web applications’ operators have many motivations to track users and gather as

much user identifiable information about them as possible. With about three quar-

ters of the web pages including third party trackers, privacy continues to be one

of the major concerns to web users. This research is mainly focused on a tracking

technique called Canvas fingerprinting. Canvas is an HTML element that allows to

dynamically render 2D shapes and bitmap images. It is one of several technologies

introduced in HTML5 making it a serious alternative to Flash which is being dis-

continued because of its multitude of security vulnerabilities. Interestingly, Canvas

can be used for fingerprinting browsers, and hence for tracking users. This thesis

is a state of the art of Canvas fingerprinting in which we explore the functional-

ity the Canvas element was originally introduced for, provide updated results about

the prevalence of Canvas in the web, its distinguishing capabilities, its positive (at-
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tack detection) and negative (attacks on privacy) use-cases. The major findings

of this study is that Canvas is very common among web applications (1 out of 4

websites are using Canvas for all constructive and destructive purposes), while it

was recently reported that the Canvas usage for fingerprinting is (10.44%), which

demonstrates the significance of Canvas and cost of disabling it, and by optimizing

Canvas elements we could improve the distinguishing entropy from 0.49 to 0.83,

which exceeds the distinguishing capability of the 18 non-Canvas fingerprints we

studied. We performed several assessments that show the reliability of this re-

ported entropy including cross data validation and benchmarking with other major

fingerprinting datasets in the literature. The two novel constructive use cases we

propose for utilizing Canvas are Using Canvas fingerprinting for the detection of

fake accounts creation on web applications, and for session hijacking prevention.

We studied the effectiveness of both techniques through an empirical study and the

implementation of a proof of concept, respectively. We finally explored five sce-

narios where Canvas fingerprinting can be exploited to attack users privacy even

when using different devices or visiting separate web applications.
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CHAPTER 1

INTRODUCTION

Privacy on the web continues to be a concern for many web users, as the majority

of web services strive to track users and get hold of as much of their personal

identifiable information as possible [7]. This information can include the products

web users purchase, the people with whom they interact, the websites they fre-

quently visit, and their areas of interest. Although the purpose of gathering such

information is commercial in many of the cases, it can easily jeopardize users’

privacy. For example, a web application may be able to tell that the owners of

two different accounts belong to roommates if the two accounts are being accessed

regularly from the same computer [8]. According to a study conducted on 850,000

web users and 144 million web page visits, 77.4% of the web page loads contain

implanted trackers [9]. The same study pointed out that Google and Facebook

trackers are the most commonly used ones, as Google Analytics was found in 46%

of the included websites and Facebook Connect in 21.9% of them. If a user visits

multiple web applications where a third party tracker is planted, the tracker can
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create a detailed user profile and keep updating it with every visit. With this,

trackers can obtain highly personal information, like health information, finan-

cial situation, religious and political views. It has been reported that third-party

trackers monitor to know the users who visit a web page that belongs to Mayo

Clinic, which provides information about HIV tests, and by this the trackers can

tell if a user clicks the button to arrange an appointment [10].

A quantitative survey conducted by the market research agency CG Selecties

on 924 respondents concluded that there is a relationship between consumers’

privacy and their behaviour [11]. People are generally concerned about their

privacy, and it is critical to them to be able to stay in control of their personal

data and the information they decide to share. The more privacy concerns the

consumers have, the more negative their attitude is towards the collection of their

data. For example, the consumers would adjust the settings of their smart phones

and disable the location services, sacrificing the features that comes with it, in

order to prevent their browsing from being tracked. In other words, when the

consumers do not feel in control of their data, it can trigger a negative behavior

and the consumers will resist and try to avoid it.

1.1 Tracking Motivations

There are many motivations why a web application would track users and gather

identifiable information about them. These motivations go beyond the targeted

advertisements to serve the web users giving them personalized and seamless ex-
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perience. This includes showing relevant content when a web user searches for

general search key words in a search engine, as well as giving the right movie sug-

gestions in Netflix, products recommendations in Amazon, and business reviews in

Yelp [12]. However, such personalized experience facilitates price discrimination.

Hannak et al. found evidence that nine out of sixteen e-commerce websites in-

cluded in their study present customizing prices as a result of user tracking [12]. It

has been shown that the web users’ geographical location can change the returning

price by up to 166%, the wealth by up to 400%, and the referring website by up to

50% [13]. Mikians et al. performed a crowd sourcing study where 340 users surfed

the web, while information was gathered using a browser extension, showing that

many retailers give product prices for returning users that range between 10% and

30% [14]. Moreover, tracking users and gathering identifiable information helps

in assessing the financial credibility of people. Some financial organizations use

as much as 8,000 data points in order to evaluate a loan application, including

data from the social network accounts of a person, e-commerce websites, and user

behaviors like whether a user spent adequate time reading about the loan details

before applying [15]. Further more, Insurance companies like Allfinanz and TCP

LifeSystems can utilize user information to determine the probability of a per-

son getting a disease or making an accident based on information coming from

credit card spending, magazine subscriptions and customer surveys [16]. Also,

web tracking serves government surveillance. It has been reported that govern-

ment spying agencies like National Security Agency (NSA) utilize the third party

3



trackers to spy on individuals, and even know several aspects including the user

location data [17]. These agencies can also have the authority to force companies

to share web users records [17].

Previous work in the literature revealed that even when web clients clear cook-

ies or use private browsing, they are still not completely protected from being

tracked. In fact, clearing cookies for every request may be an identifying behavior

that distinguishes the hosts from others. Web users who wish not to be tracked

can take more tracking counter measures such as modifying the default settings,

using proxies, using anonymous routing, or a combination of these techniques [18].

1.2 Evolution of Web Tracking

Web tracking techniques are increasingly sophisticated and are made more per-

vasive, intrusive, and persistent. The authors of [19] point out that using IP

addresses to track web users is inadequate for several reasons. One of the reasons

is that if more than one user are browsing the web behind the same Network

Address Translation (NAT) domain, they are very likely to have the same IP

address, which makes it difficult to distinguish between them. Another reason is

that when a user uses Tor, an adversary will see different IP addresses for different

requests from the same user. Cookies have been used for tracking purposes for

a long time. However, because cookies lack persistence, and because users can

erase them easily, adversaries designed more persistent techniques including Ev-

ercookies and the use of cookie syncing in conjunction with Evercookies [4]. Flash
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cookies (also known as Evercookies) can be utilized to regenerate HTTP cookies

removed by the user via a technique called cookie re-spawning. Interestingly, a

study found that 41 out of the 100 most popular websites stored flash cookies with

content matching with the regular cookies [20]. The re-spawning technique starts

when a user visits the website in which the technique is implemented, which in

turn creates an ID and stored it in both the HTTP cookies and the flash cookies.

When the user erases the HTTP cookies, the website reads the value stored in the

flash cookie and places a new HTTP cookie with the same ID.

1.3 Fingerprinting and Canvas

Fingerprinting works by requesting a browser’s version and configuration infor-

mation that are available to the web application upon request, and connecting

this information with a device or user account to identify users when they visit

later. In his research about device fingerprinting, Eckersley investigated the ex-

tent to which web browsers are vulnerable to fingerprinting [21]. The researcher

implemented a fingerprinting algorithm that retrieves browsers version and con-

figuration information, and according to the collected sample of fingerprints, he

showed that if we pick a fingerprint randomly, not more than 1 out of 286,777 of

other browsers would share the same fingerprint. The same research suggests that

fingerprints can be used as global identifiers. They can be thought of as cookies

that cannot be deleted except with a large enough configuration change to break

the fingerprint. The research also suggests using a combination of a fingerprint
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and IP address to regenerate cookies in a similar way to the website that use flash

cookies to regenerate HTTP cookies [4], or use the IP address and the fingerprint

on their own to replace the functionality of cookies.

It has been reported that an authentication technology has been widely used

for e-commerce and online bank to minimize fraud, which come at the price of

privacy. When a bank user logs in to the bank website, they provide their user-

name and password, but in addition to that, the website checks some fingerprints

to identify the device and make sure the person owning the account is the same

one accessing, assuming that most users use the same device for banking [8]. Fin-

gerprinting in these technologies works by requesting a computer for some details

such as browser type, language, time zone, cookie ID, flash ID, and IP address. If

there is a sufficient number of matches, the account is granted access.

A later research published in 2016 proposed a fingerprinting script composed

of 17 attributes. This research was based on a data set of 118,934 fingerprint

collected by the website AmIUnique.org [1]. The aim of launching the website

was to gather as many samples of fingerprints as possible to study the diversity

of fingerprints. The research showed the effectiveness of each attribute in distin-

guishing browsers by reporting the number of distinct values and unique values

of each attribute in the dataset. The research also demonstrated the effectiveness

of the fingerprinting of mobile devices in spite of the less number of fonts and

plugins available. In addition, several research papers reported that Canvas was

one of the most distinguishing attributes of the fingerprint [4] [1] [3].
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1.4 Contributions

The contributions of our work can be summarized as follows:

1. We studied Canvas presence in the top 100,000 Alexa sites to find out that

almost one out of four websites use Canvas in the landing page of the website.

This indicates that blocking the Canvas feature for the sake of privacy on

the browser level would result in functionality failure on a significant number

of websites, and hence researchers need to find other creative solutions to

protect users privacy.

2. We designed 23 Canvas samples with various components and characteristics

and analyzed the impact of each on the distinguishing capability of Canvas

fingerprinting, and came up with observations and guidelines for designing

optimal fingerprinting Canvas samples.

3. We proposed an enhanced Canvas sample to use in fingerprinting users,

which increased the normalized entropy for Canvas fingerprinting with the

widely used sample from 0.490 when calculating the entropy in our dataset

(and 0.491 in the AmIUnique dataset with the same sample [1]) to a nor-

malized entropy of 0.837 when using our enhanced sample. This normalized

entropy achieved by our enhanced Canvas sample is higher than any Canvas

and non-Canvas fingerprint used in AmIUnique [1] and Panopticlick [21].

4. We proposed a technique that utilizes Canvas fingerprinting for the detection

of fake accounts creation on web applications. We carried out an empirical
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study that showed the effectiveness of the proposed technique, resulting in

6.67% of false positives and 7.44% false negatives.

5. We proposed a technique that utilizes Canvas fingerprinting for the preven-

tion of session hijacking. We built a fully functioning proof of concept to

demonstrate the effectiveness of the technique.

6. We studied five practical scenarios and explained how Canvas fingerprinting

could be taken advantage of in order to attack users’ privacy even when

using different devices or visiting separate web applications.

This thesis is structured as follows: Chapter 2 reviews the literature related

to Canvas prevalence, distinguishing capability and major fingerprinting datasets.

Chapter 3 studies the Canvas HTML element, its history, support, what a web

developer can use Canvas to build, and the extent to which Canvas is present

in web applications, in order to understand the impact of disabling the feature

for the sake of privacy. Chapter 4 presents an empirical study to demonstrate

the possibility of enhancing the Canvas fingerprinting samples to exceed the dis-

tinguishing capabilities of other fingerprinting techniques. Chapter 5 proposes

and assesses novel constructive applications to utilize Canvas fingerprinting: the

detection of fake accounts creation on web applications, and the prevention of ses-

sion hijacking. Chapter 6 spots the light on five different scenarios where Canvas

fingerprinting can be exploited to attack the privacy of web users, and discusses

some issues Tor browser users face when visiting websites with Canvas content.

Chapter 7 points out how we validated our findings, what threat we see to the

8



validity of our results, demonstrates how to replicate our empirical studies, and

finally concludes the research and proposes future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter sheds the light over the relevant literature to our research. It starts

by explaining web fingerprinting as a tracking technique, how it is classified, and

pointing out the main focus of our research. It then explains why we chose to

study Canvas as opposed to the other fingerprinting techniques. Afterwards, it

reviews the relevant work done on Canvas prevalence and the earlier findings,

and how these results complement our findings. This chapter also discusses the

enhancement of Canvas samples used for fingerprinting over time, and explains

the gap left unanswered, which we address in future chapters. Finally, this chapter

reviews three large scale fingerprinting datasets, pointing out the targets, findings

and drawbacks of each, in order to have benchmarks that we can compare our

findings to.
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2.1 Web Fingerprinting

When studying web fingerprinting for tracking users, it is important to note that

fingerprinting is not a single tracking technique. In fact, web fingerprinting can be

done using a combination of fingerprinting techniques. Those techniques can be

of the same type or different types that are combined to achieve better tracking of

web users. Hence, it is important to understand the various types of fingerprint-

ing techniques, and how they are classified in the literature. In their research,

Upathilake et al. studied web browser fingerprinting and focused on providing a

logical way of classifying the different techniques [22]. The outcome of their clas-

sification was the following four categories. First, Browser Specific fingerprinting

which is associated to the browsing environment. Algorithms belonging to this

category utilize java or flash to obtain browser specific information that is used

as fingerprints like resolution, User Agent, list of fonts, HTTP Accept, and list

of plugins. The weaknesses mentioned are the instability of these fingerprints as

small changes like installing a new font or changing the monitors resolution can af-

fect the fingerprint [23], and the inability of distinguishing identically configured

devices [24]. The Second category is Canvas fingerprinting which utilizes pixel

data of rendered images at the web client device, which is the main focus of our

research. The third category is JavaScript Engine fingerprinting that performs

conformance testing such as Sputnik test suite [25] and matches the failed tests of

a browser to the browser version known for failing these test, as suggested by Mu-

lazzani et al. [26]. This fingerprinting technique can detect modified user-Agent
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strings and even identifies Tor browser users [27]. Finally, Cross-browser finger-

printing is similar in concept to the browser specific fingerprinting except that it

uses JavaScript to obtain the information, instead of relying on Java or Flash.

Hence, it shares the same weakness of the inability to distinguish devices with

the same configurations. Finally, Cross-browser fingerprinting is similar in con-

cept to the browser specific fingerprinting except that it uses JavaScript to obtain

the information, instead of relying on Java or Flash. Hence, it shares the same

weakness of the inability to distinguish devices with the same configurations. It

is important not to confuse this last type (i.e. cross browser fingerprinting) with

the cross-device tracking studied extensively by Brookman et al., which uses a

combination of web tracking techniques including several fingerprinting and non-

fingerprinting techniques aiming to track users and link users on their different

devices [28]. Companies specialized in cross device tracking work on developing

graphs which link users to their different devices to provide these graph to other

parties who subscribe to this service and are interested in tracking users.

The previous fingerprinting techniques of different classifications are applicable

to both desktops and mobile devices. However, since mobile devices are more

likely to have the exact same hardware and software configurations, and due to

the lack of plug-ins in mobile devices, it became necessary find alternatives to these

fingerprinting techniques. Bojinov et al. utilized the components more relevant to

mobile devices to come up two implementations to track web users: one through

analyzing the mobile device accelerometer behavior and calibration errors which

12



do not require specific user permissions to obtain, while the other by emitting

sounds using different frequencies and recording them back to analyze values like

sound amplitude and distortions to use as fingerprints [29]. Canvas fingerprinting

is the major focus of our research, as this research analyze it from various aspects

like prevalence, distinguishing capability, constructive and destructive use cases.

In our research, we also considered many other fingerprints that are part of browser

fingerprinting and cross-browser fingerprinting in the previous classification in

order to confirm the findings of other research and to compare their distinguishing

capability with Canvas. We do not consider JavaScript Engine fingerprinting,

accelerometer fingerprinting nor spearker-microphone fingerprinting.

2.2 Fingerprinting via Canvas

In this research, our focus is to study the different aspects related to one type

of fingerprints from the previous classifications (i.e. Canvas fingerprint) from

the perspective of prevalence, distinguishing capability, positive and negative use

cases. There are many reasons why we select to study Canvas fingerprinting as a

tracking technique. Some of which are the several positive characteristics reported

by Mowery [3], including consistency in the value of the fingerprint coming from

the same device and browser, the high entropy, transparency to the web users,

and not requiring permission to obtain. Another reason why we chose to study

Canvas fingerprinting is that despite the observed drop in the entropy of several

fingerprinting characteristics due to the changes in the web trends, like the entropy
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drop for the list of plugins with the decreasing support especially in mobile devices

[1] [5], we continue to see stable and high distinguishing capability for Canvas

fingerprint. Moreover, Alaca et al. studied 29 types of fingerprints and classified

according to their properties, to show that fingerprinting by Canvas has high

repeatability of fingerprint values, consumes low device resources and is ranked

medium in terms of the distinguishing information it carries [30], despite being

vulnerable to client spoofing like any fingerprint that requires client side execution

of JavaScript which returns the output to the server.

In addition to that, we find Canvas to be one of the tracking techniques that

has high potential to enhance, as we can see in the different research in reviewed

in Section 2.2.2 where more complex Canvas samples are used over time for better

entropy, and as we extensively show in Chapter 4 using 23 different samples to

study how the components of Canvas can affect the entropy. The following two

sections review the prevalence of Canvas as reported in the literature by different

research between the years 2014 and 2016, and show the enhancement done to the

Canvas samples that are used in fingerprinting over time.

2.2.1 Canvas Prevalence

After Mowery discovered Canvas as an effective, high entropy fingerprinting tech-

nique to track users without any permission required in 2012 [3], websites started

to deploy Canvas fingerprinting gradually. That is why several researchers started

looking at Canvas prevalence among websites on the web. In an effort to find out
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the prevalence and effectiveness of post cookies tracking techniques, Acar et al.

studied the extent to which the HTML Canvas feature is used in fingerprinting

and tracking users [4]. In their experiment, they used an instrumented Firefox

browser that was modified to log function calls that could indicate a website is

fingerprinting users through Canvas, and crawled the top 100,000 Alexa sites look-

ing for function calls which are used in fingerprinting. The results indicate that

over 5.5% of sites ran scripts to fingerprint users through Canvas on their home

pages. Acar filtered out false positives by removing websites that do not have both

Canvas drawing and pixel retrieving calls coming from the same URL as they are

not likely to be used for tracking, the Canvas images with very few pixels as they

are not effective enough to be used for tracking, and the Canvas with images in a

lossy compression format that can render differently at different times.

In 2017, Englehardt et al. presented on of the most comprehensive stud-

ies of web tracking ever done [31]. In their study, they covered as many

as 15 types of tracking measurement, including stateful and stateless track-

ing methods. Fingerprints studied included Canvas Fingerprinting, Audio Con-

text fingerprinting and Battery API Fingerprinting. They utilized the an open

source tool that they built for web privacy measurement and named OpenWPM

(https://github.com/citp/OpenWPM). It is noteworthy that Englehardt et

al. built on the 2014 study [4], and added more elimination criteria to reduce

false positives. This explains some of the reduction in the Canvas fingerprinting

prevalence reported Englehardt et al. Some of the added criteria to consider the
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Canvas a false positive is that the text written into Canvas has less than 10 dis-

tinct characters since the Canvases used in fingerprinting are likely to have more

characters for better distinguishing capability, and that the script uses an API

call like addEventListener, save or restore that are typically used for legitimate

purposes. The reported prevalence of Canvas was 4.03% for the top 10,000, and

2.61% for the top 100,000 Alexa websites, respectively.

In 2016, Le et al. performed an empirical study to detect the prevalence of

Canvas fingerprinting among the top 10,000 Alexa websites [32]. Their research

was a pioneering one in analyzing and reporting the websites that use obfuscated

tracking along with those that do not. Obfuscated tracking refers to a commonly

used process to hide the JavaScript code making it very difficult to read, modify

and reuse, as well as less visible to pattern detecting techniques [33]. There

are even free web services that can be used to perform obfuscation and mimic

the JavaScript code producing the same exact execution outcome [34] [35]. The

methodology Le et al. proposed and utilized is based on a dynamic analysis of

the JavaScript API calls performed by the browser in comparison with the source

code sent to the browser by the website in order to detect obfuscated tracking.

When applying the proposed methodology, it was found that 10.44% of the top

10,000 Alexa websites use Canvas fingerprinting in the home page of the website,

out of which 2.25% use obfuscation techniques.

In our research, we use the results of Le et al. in [32] to calculate the estimated

prevalence of Canvas used for legitimate purposes, as they are the most recent and
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close in time to our experiments, which means that the Canvas deployment would

have changed the least compared to other earlier research. Also, the results of

[32] proved to be more accurate as in the comparison done by Le et al. showing

that in the top 100 websites, the methodology used by Englehardt et al. in [31]

results in false positives (6 websites that contain Canvas were missed out of 8).

Table 2.1 summarizes the finding of previous research on the Canvas fingerprinting

prevalence over time among the top Alexa websites.

Table 2.1: Canvas Fingerprinting Prevalence According to Different Research

Author Year Websites Crawling Prevalence (top Prevalence (top
Published Date 10K Websites) 100K Websites)

Acar et al. [4] 2014 May 2014 4.93% 5.73%
Englehardt et al. [31] 2017 January 2016 4.03% 2.61%
Le et al. [32] 2017 April 2016 10.44% -

Chapter 3.2 of this research complements the previously reported results about

Canvas fingerprinting prevalence to show the overall prevalence of Canvas on the

web for all purposes, and provides an estimation of how much of this prevalence

is in fact for legitimate purposes.

2.2.2 Canvas Distinguishing Capability

Reviewing the research done on Canvas fingerprinting over time, we notice that the

Canvas samples being used for fingerprinting have been increasing in complexity.

When discovering Canvas as a fingerprinting technique in 2012, Mowery gathered

Canvas fingerprints from 300 web users using the 5 samples in Figure 2.1 [3].
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Mowery used a pangram (i.e. a sentence that contains all the alphabetical letters)

with some punctuation in the 5 samples. The font in the first two samples was

Arial with font sizes of 18pt and 20pt. The font in the two following samples

was Sirin Stencil (imported from Google Web Fonts) with font sizes of 12pt and

15pt. Finally, the last sample’s font is a a fake font name that was used to study

the effect of the fallback handling of fonts by different browsers. These Canvas

samples are relatively simple and result in low entropy with distinct fingerprint

values between 43 and 50 from the 300 users who were fingerprinted. Meaning

that the fingerprints gathered are able to distribute the users into 43 to 50 groups

of users (depending on which sample is used), each group has a distinct fingerprint

value.

Figure 2.1: The 5 Canvas Samples used by Mowery [3]

In 2014, Acar et al. performed an empirical study to show the percentage of
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the top 100,000 Alexa websites which use Canvas for the sake of Fingerprinting

(refer to Chapter 3.2 for more details) [4]. They found out the Canvas sample

used the most among the websites is the one in Figure 2.2. This sample contains

perfect pangram text drawn twice using two colors and a fake font name (to

include the text fallback factor). The sample also included the Unicode smiling

face character, and an orange rectangle. The research does not calculate the

entropy of the sample as their main target is to calculate the Canvas prevalence

for fingerprinting purposes.

Figure 2.2: The Canvas Sample reported by Acar [4]

The fingerprinting dataset gathered by Laperdrix et al. in 2016 via the website

AmIUnique used the same Canvas sample to fingerprint users, except that the

two texts do not overlap as in Figure 2.3 [1]. The normalized Shannon entropy

of this Canvas sample was 0.491 when calculated on the dataset of over 118,000

fingerprints (more analysis on this dataset in Section 2.3). This sample became

more commonly used than the samples used by Mowery (Figure 2.2) as their

complexity produces more entropy, which increases the distinguishing capability.

Figure 2.3: The Canvas Sample used by Laperdrix in AmIUnique [1]
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The most recent large scale fingerprinting study performed in 2018 by Gomez-

Boix et al. using one of the top French websites was able to gather fingerprints

from over two million user visits [5]. Gomez-Boix et al. used the Canvas sample

in Figure 2.4, which is the most complex Canvas sample we have seen in a large

scale fingerprinting research. Although the sample is more complex than the one

in Figure 2.3, it produced an entropy of 0.407, which is less than the entropy

produced by the less complex sample. This can be explained by several reasons:

the differences between the percentages of Operating Systems and browsers in-

cluded in each of the studies (which is what we refer to as the market share bias

in Table 2.2), or the changes in web trends over time affecting the entropy of a

fingerprinting techniques. Here arises the importance of performing the distin-

guishing capability analysis on the same dataset of web users using many Canvas

samples, to understand the impact of introducing more complexity while fixing

all the other variables, as we do in Chapter 4.

Figure 2.4: The Canvas Sample used by Gomez-Boix [5]
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2.3 Significant Fingerprinting Datasets

Several research papers studied the effectiveness of fingerprinting, and the extent

to which it can be used to uniquely identify web users. For benchmarking, we chose

three large scale datasets to compare our findings to. These datasets span over 8

years since the discovery of fingerprinting, to also have an idea of any trends occur

in the distinguishing capability of the various fingerprints. In 2010, Eckersley

performed the first large scale study of device fingerprinting, using the website

Panopticlick [36]. The number of fingerprinting samples gathered by the website

were initially 1,043,426, and reduced to 470,161 fingerprints by several stages of

preprocessing and filtering, to remove some records affected by a client side bug,

and to eliminate any bias [21]. In his research, Eckersley was able to show the

large diversity of devices over the web, and that by collecting device and browser

specific information such as HTTP headers, list of plug-ins and attributes gathered

by JavaScript, it was possible to uniquely identify over 94% of the browsers at

the time of performing the research according to his gathered samples. It is

noteworthy that the data gathered by this website is biased, as the visitors are

mostly technical people who are privacy aware.

In 2016, Laperdrix et al. performed another large scale experiment to study

the effectiveness of web fingerprinting, how the user uniqueness has changed from

2010, and how the fingerprinting techniques have developed [1]. This was the first

extensive experiment that studies fingerprinting on mobile devices in addition to

desktops. They built the website AmIUnique [37], using which they gathered
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fingerprints from over 118,000 user visits, each of them were fingerprinted using

17 attributes. Unlike Eckersley (2010) [21], Laperdrix et al. included Canvas

as a fingerprinting attribute in their research, since Canvas fingerprint was only

discovered by Mowery et al. in 2012 [3]. Laperdrix et al. reported that 89.4%

of the clients visiting the AmIUnique website are unique. They analyzed the

differences in the distinguishing capability of the various fingerprinting attributes

over time. Some major findings are the significant and continuous reduction in

the browser plugins, and showing that Canvas is one of the most discriminating

attributes. They performed a simulation that estimates the impact of the removal

of plugins and the usage of generic HTTP headers to reduce the uniqueness of

desktop fingerprints by 36%. Table 4.8 compares the normalized entropy for some

of attributes that vary significantly between desktop and mobile devices, according

to their dataset. One of the downsides of this research is the bias towards the

privacy aware community, who tend to visit the website more than the average

users of the web. Table 2.2 presents the bias in the AmIUnique dataset and in our

dataset (as analyzed later in Chapter 4.3) in terms of the proportion of operating

systems in the web against the actual, as reported by StatCounter in October

2018 [38]. It is noteworthy that the bias in our dataset is less than the dataset

obtained from the Website AmIUnique, as all our percentages are the closer to

the actual OS market share.

Gomez-Boix et al. (2018) targeted to overcome this bias of privacy aware web-

site visitors by collecting and analyzing over 2 million fingerprints gathered from
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Table 2.2: Bias in the Various Datasets in the proportion of Operating Systems
Against the Actual

OS Type AmIUnique [1] French Website [5] Our Dataset Actual [38]

Windows 57% 82% 56% 36%
Linux 15% <1% 1% <1%
Mac 13% 5% 8% 6%
Android 5% 9% 19% 40%
iOS 4% 2% 15% 13%

one of the top 15 French site to target broader audience [5]. A noteworthy finding

is that the percentage of unique fingerprints has reduced to 33.6% from 89.4%

in 2016, showing a significant reduction in the ability to distinguish web users

in about 2 year time span. Gomez-Boix et al. explained that this drop in the

distinguishing capability was due to the less biased dataset towards privacy aware

people, as well as the reduction of plugins in desktops, showing that the changes

happening to web technologies nowadays improve user privacy. Gomez-Boix et al.

shows the the fingerprinting attribute that is the most capable of distinguishing

mobile devices is Canvas, while it is the list of plugins in desktops. They also

showed experimentally that the non-unique fingerprints in desktops are signifi-

cantly more fragile than mobile devices, meaning that if a browser fingerprint is

not unique, it is more probable to become unique by changing a fingerprinting

attribute in desktops than in mobile devices. Table 2.2 also lists the operating

system proportions in the dataset of [5], and how it compares to our dataset and

the actual operating system market share, presenting less bias than the AmIU-

nique dataset [1]. Finally, Table 2.3 summarizes the Shannon normalized entropy
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reported of the various fingerprinting attributes as reported by the tree bench-

marking datasets, which our research refers to in the upcoming chapters.

Table 2.3: Shannon Normalized Entropy of the Three Major Fingerprinting
Datasets in Literature

Fingerprinting Attribute Panopticlick AmIUnique Hiding In The
(2010) [21] (2016) [1] Crowd (2018) [5]

Platform - 0.137 0.057
Do Not Track - 0.056 0.091
Timezone 0.161 0.198 0.008
List of plugins 0.817 0.656 0.452
Use of local/session storage - 0.024 0.002
Use of an ad blocker - 0.059 0.002
WebGL Vendor - 0.127 0.109
WebGL Renderer - 0.202 0.264
Available fonts 0.738 0.497 0.329
Canvas - 0.491 0.407
Header Accept - 0.082 0.035
Content encoding - 0.091 0.018
Content language - 0.351 0.129
User-agent 0.531 0.580 0.341
Screen resolution 0.256 0.290 0.231
List of HTTP headers - 0.249 0.085
Cookies enabled 0.019 0.015 0.000
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CHAPTER 3

HTML CANVAS: OVERVIEW

AND PREVALENCE

This chapter consists of two major sections. The first section gives an overview

about Canvas starting from its history and support. It describes the various

functionality Canvas was introduced for, showing why it is a serious candidate

to replace Flash with real life examples. It also demonstrates how JavaScript is

used to manipulate Canvas and shows the corresponding output. Finally, it shows

what API methods are being utilized for the tracking purposes, which is the main

basis for the following chapters. The second section of this chapter includes an

empirical study to understand the extent to which Canvas is prevalent in the web

for both the legitimate and tracking purposes, in order to understand the cost of

disabling Canvas to protect users’ privacy. This is to complement the literature

which only focuses on the Canvas prevalence for tracking. The second section

starts by defining the approach and experimental setup, reporting initial results,
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revising the approach and reporting the final findings.

3.1 Canvas Feature Background

Canvas was introduced with HTML5, and it is one of the most powerful features

of it. Canvas works as a placeholder on which shapes, images and text can be

drawn on the fly. There is Canvas specific API that can be used for many pur-

poses including drawing shapes like lines, curves, circles, rectangles and fill them

with colors, gradients or patterns. Drawing and manipulating text, changing

the font properties and position, manipulating images, processing videos, mak-

ing smooth animations and developing games are all possible using the Canvas

powerful API [6]. Geary has used Canvas to implement several applications that

can be otherwise implemented using Flash. For example, the image panning

application in Fig. 3.1, a paint application that runs on browsers and iPads,

as well as animations and games [6]. We observed several scientific web ap-

plications using Canvas to build animated solar system model, for example, to

teach kids, while other websites implemented user interactive 3D application that

shows how chemical atoms are bound to construct molecules. Countless web-

sites built games with complex physics, while others included animated analog

clocks built by Canvas. With the expected death of Flash in 2020 [39], Canvas

seems to be a strong possible replacement for many of its capabilities including

drawing, animations, and interactivity. We see popular websites shifting from

Flash to Canvas such as http://www.speedtest.net which utilizes Canvas in
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its new Flash-free version and moved the original Flash version of the website to

http://legacy.speedtest.net/. Fig. 3.2 shows how the Canvas version looks

in the Flash-free SpeedTest. Canvas is supported in most of the major browsers

nowadays. The support has started from version 4.0 of Google Chrome, version

9.0 of Internet Explorer, version 2.0 of Mozilla Firefox, version 3.1 of Safari and

version 9.0 of Opera [40].

Figure 3.1: Image Panning Implemented Using Canvas API [6]

3.1.1 Concrete Canvas Example

Canvas is an HTML container for a Context, which is used to draw graphics.

This is done by retrieving the HTML tag <canvas> using the JavaScript method

document.getElementById(), then getting the Canvas context by the method

getContext(‘2d’), and using the context to draw content to the Canvas. After
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Figure 3.2: Flash-free Version of speedtest.net

getting the context of the Canvas, JavaScript is used to set the values of the

attributes such as the font color attribute of the drawn text (fillStyle) and the size

and type attribute of the font (font), and so on [6]. Listing 3.1 shows an example

on how to get a Canvas element, retrieve the context, change the attributes and

finally draw shapes and text. The output of the example is displayed as in Fig.

3.3.

The attributes of the Canvas context such as the text font, fill style and shadow

can be updated dynamically upon the user’s interaction with the website. In

addition to that, the attributes can be saved and restored any time by JavaScript

methods if there is a need to temporarily change the attribute values. Canvas
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Listing 3.1: Example of an HTML Canvas Element Retrieved and Manipulated
Using JavaScript

1 <canvas id='canvas ' width= '500' height= '330' style= '
border:1px solid; '>

2 </canvas>

3
4 <script type= 'text/javascript '>
5
6 var canvas = document.getElementById('canvas '); //

Creating the Canvas Variable

7 var context = canvas.getContext('2d'); // Retrieving the

Canvas Context

8
9 context.font = '38pt Times New Roman '; // Changing the

font type and size

10 context.fillStyle = 'brown '; // Changing the fill color

to brown

11 context.strokeStyle = 'Green '; // Changing the stroke

color to brown

12
13 context.fillText('Canvas Example ', 60 ,60); // Filling

Text

14 context.strokeText('Canvas Example ', 60,60); // Stroking

Text

15
16 context.lineJoin = 'round '; // Making the stroked

rectangle with rounded edges

17 context.lineWidth = 30; // Changing the width of the

stroked rectangle

18 context.strokeStyle = 'cornflowerblue '; // Choosing

stroke color

19 context.strokeRect (85 /*x*/, 100 /*y*/, 140 /*width */,

180 /* height */); // Stroking a rectangle

20
21 context.fillStyle = 'burlywood '; // Choosing fill color

22 context.fillRect (250, 140, 160, 100); // Filling a

rectangle

23
24 </script>

applications can be built to detect user interactions such as mouse and keyboard

events and respond accordingly. For example, event listeners can be added for

actions like onmousedown, onmouseup, onmouseout and onmousemove to
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Figure 3.3: Output of The Canvas Manipulation

handle mouse events, as well as keydown, keypress and keyup for keyboard

events. Canvas has a coordinate system with the origin at the upper left corner.

The X-axis increases to the right and the Y-axis increases to the bottom.

3.1.2 Attack Surface

Canvas is a bitmap, not an image HTML element. So, if the web developer would

like to give access to users to retrieve or download the Canvas as an image, a

method named toDataURL() can be used to get a Data URL and assign it

to an image HTML element in the src attribute. This enables the user of an

online paint application built by Canvas, for example, to download a snapshot of

the drawing they made. Another method named toBlob() allows to store the

Canvas in a file. These two JavaScript methods make it possible to return the
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Canvas data as it was rendered on the client machines’ web browsers. However,

these methods are found to be implemented and used by many web applications

to substitute the common techniques of tracking users such as cookies [4] [1] [3]

[23]. The applications proposed and implemented in this research also use one of

these methods (i.e. toDataURL()) to retrieve the Canvas data and use it as a

fingerprint for detecting attacks like session hijacking and fake accounts creation

on web applications, as well as in attacking users’ privacy.

3.2 Canvas Prevalence

In order to establish a common understanding of how important and widely used

Canvas is, we defined a different target and approach to those research experiments

previously published and pointed out in Chapter 2.2.1. Our target is to find out

the number and percentage of websites using Canvas, both for legitimate purposes

which the Canvas feature was initially meant for, or for defeating users’ privacy.

Either of these ways of using Canvas is convincing for us to continue our research

in Canvas, given that the more Canvas is used legitimately, the more difficult it

is for users to block the Canvas feature on the browser level, as this will result on

functionality failure of a significant number of websites. Also, the more Canvas is

being used to track users, the more researchers need to find solutions to protect

users’ privacy. So we decided to look for the percentage of top Alexa websites

that use Canvas for all purposes, both for legitimate and user tracking purposes,

and rely on the results published in [32] to estimate the percentage of which that
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are using Canvas for legitimate purposes.

3.2.1 Experimental Setup

In our initial definition, we considered a website to be using Canvas if we find

the HTML element <canvas> in the main HTML source code of the web-

site. To know the Canvas prevalence, we developed a script that scrapes the

top 100,000 Alexa websites looking for the ones that contain the <canvas>

in the HTML. The script is written in Python and uses Selenium web driver

(http://www.seleniumhq.org/). Selenium is a tool that runs and drives a

web browser application, like Mozilla Firefox in our case, through a programming

interface, and is designed for testing web applications. Choosing Selenium was to

mimic real browser’s behavior, and to overcome anti scrapping techniques that are

implemented in some websites where other libraries fail to circumvent, as well as

Selenium helped in avoiding decoding errors we faced when trying other libraries.

Once a website is visited by the web browser, the source HTML is passed to Beau-

tiful Soup. Beautiful Soup is a Python Library that provides methods to enable

parsing, searching and navigation through a document to extract the needed in-

formation from it (https://www.crummy.com/software/BeautifulSoup/).

Our script used Beautiful Soup to look for the <canvas> HTML element, and if

found, it marks the website as a website that uses Canvas. Algorithm 1 is explains

the logic of our initial scrapping script.

We ran our Scrapping script between 27-December-2017 and 3-January-2018
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Algorithm 1 Initial Scrapping Algorithm for Canvas Usage

Input: list of n websites to be scrapped on the current server (i.e. subset of
the top 100,000 Alexa sites)

Output: Percentage of websites containing <canvas> in HTML source

1: Each server concurrently executes the following code for its corresponding list
of websites:

2: Read a CSV file and construct a list of n websites to be run on the current
server

3: x← 0 {i.e. number of websites containing Canvas}
4: y ← 0 {i.e. number of websites failed in reading}
5: z ← 0 {i.e. number of websites successfully read}
6: for i← 0, i < n, i← i + 1 do
7: Initialize a selenium webdriver instance
8: Set the page load timeout value to 60 seconds
9: Pass the URL to the browser through the webdriver

10: Get HTML source from the browser
11: if website loading time passes page load timeout then
12: y ← y + 1
13: Continue to the next for loop iteration
14: else
15: z ← z + 1
16: end if
17: Pass HTML source to BeautifulSoup parser
18: Search for “<canvas>” in HTML
19: if “<canvas>” is found then
20: x← x + 1
21: end if
22: end for
23: return x, y, z, x/z {i.e. percentage of websites containing <canvas> in HTML

source}

on 10 Google Cloud servers in parallel, each server visiting 10,000 websites from

the list of the top 100,000 Alexa sites. Each of the servers ran Windows Server

2016 as the operating system, on a dual core Intel Xeon CPU with a speed of 2.30

GHz and a RAM size between 7.5 and 10 Gigabytes. The Internet connectivity

is stable on the Google Cloud servers, with more than 270 Mbps of download

speed and over 85 Mbps of upload speed. The reasons why we decided to run the

script on Google Cloud servers are the easiness in selecting the exact hardware
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specifications that we need and pay for them only during the execution of the

script, the Internet connectivity stability, the ability to execute the scripts in

parallel to reduce the execution duration, and to reduce the number of blocked

sites by the local ISP, since the cloud servers used were in the United States,

where less sites may be blocked.

3.2.2 Initial Results

The results of running the scrapping script showed that 9.34% of the top 500

websites had the <canvas> element in their main website page. This percentage

kept decreasing to be 5.37% for the top 1000 websites, 2.83% for the top 10,000

and 2.45% for the top 100,000 websites. Table 3.2 shows the number of websites

attempted to be visited by the script, the number of websites successfully read, the

number of websites failed in reading, the number of websites using the <canvas>

element, and the percentage of websites using the <canvas> element from the

successfully read websites. It is noteworthy that around 10% of the website were

not successfully read because of reachability problems or due to the 60 seconds

explicit timeout that we set for reading a website. Table 3.1 points out the per-

centage of websites containing Canvas elements among the top 500, 1000, 10,000

and 100,000 websites.
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Table 3.1: Usage of Canvas Elements by top 500, 1K, 10K and 100K Websites

Top 500 9.34%
Top 1000 5.37%
Top 10K 2.83%
Top 100K 2.45%
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Table 3.2: Portion of the top 100K Websites that Contain <canvas> Element in the HTML by 10K intervals

Alexa Sites’ Range [1-10K] (10K-20K] (20K-30K] (30K-40K] (40K-50K] (50K-60K] (60K-70K] (70K-80K] (80K-90K] (90K-100K] Total
Successfully Read 9,182 9,030 9,020 8,901 8,915 8,950 8,933 8,989 8,950 9,017 89,887
Reading Failed 818 970 980 1,099 1,085 1,050 1,067 1,011 1,050 983 10,113
Contains Canvas 260 226 220 193 218 215 232 210 211 220 2,205
Canvas Prevalence % 2.83% 2.50% 2.44% 2.17% 2.45% 2.40% 2.60% 2.34% 2.36% 2.44% 2.45%

Table 3.3: Portion of the top 100K Websites that Use Canvas by 10K Intervals According to the Revised Definition

Alexa Sites’ Range [1-10K] (10K-20K] (20K-30K] (30K-40K] (40K-50K] (50K-60K] (60K-70K] (70K-80K] (80K-90K] (90K-100K] Total
Successfully Read 9,182 9,088 9,018 8,922 8,894 8,932 8,971 8,995 8,993 9,002 89,997
Reading Failed 818 912 982 1,078 1,106 1,068 1,029 1,005 1,007 998 10,003
Contains Canvas 2,016 2,116 2,030 2,029 2,151 2,174 2,320 2,238 2,266 2,297 21,637
Canvas Prevalence % 21.96% 23.28% 22.51% 22.74% 24.18% 24.34% 25.86% 24.88% 25.20% 25.52% 24.04%
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3.2.3 Revised Definition and Findings

After investigations, we realized that many websites that use Canvas do not nec-

essarily contain the <canvas> element in the main HTML source, but rather

in the iframes loaded with the website. Some websites even do not even

contain a <canvas> element, as they use the JavaScript method createEle-

ment(“canvas”) to create the Canvas in a <script> element or in an imported

JavaScript file. Thus, we revised the initial definition and correspondingly the

script to consider a website to be using Canvas if:

• A Canvas element is found in the source HTML or any associated iframe.

• The method createElement(“canvas”) or createElement(‘canvas’) is

found in any <script> element the source HTML or any associated iframe.

• The method createElement(“canvas”) or createElement(‘canvas’) is

found in any imported JavaScript file whether from the main source HTML

or any associated iframe.

We realize that the script detection can be circumvented by passing a string

variable instead of “canvas” in the argument of the method, but this is a limitation

that can be accepted. Algorithm 2 shows how the logic of our revised scrapping

script looks like.

We ran our revised scrapping script between 12-January-2018 and 16-January-

2018 on the same 10 Google Cloud servers. The results showed that an average

of 24.04% of the top 100,000 websites use Canvas. Table 3.3 shows the number
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of websites attempted to be visited by the script, the number of websites suc-

cessfully read, the number of websites failed in reading, the number of websites

using Canvas according to the revised definition, and their percentage from the

successfully read websites. Again, around 10% of the website were not successfully

read because of reachability problems or due to the 60 seconds explicit timeout

that we set for reading a website. Table 3.4 points out the percentage of websites

containing Canvas according to the revised definition among the top 500, 1000,

10,000 and 100,000 websites. Table 3.5 presents our findings in conjunction with

[32] to get an estimation of the Canvas prevalence by type of usage, showing that

over 50% of the websites we crawled and reported to be using Canvas are using it

for legitimate purposes. Since this calculation is a direct subtraction, it considers

a website that uses Canvas for both legitimate and tracking purposes only in the

tracking side, which is a safe assumption that may only reduce the prevalence for

legitimate usage. Besides being the first reported Canvas prevalence statistic for

legitimate purposes that is reported in the literature, the percentages reported

in Table 3.5 help quantify the potential high cost of completely blocking Canvas.

This may occur if users decide to use browser plugins to block Canvas from ap-

pearing in the loaded web pages, or if web browsers decide to disable Canvas for

the sake of protecting user’s privacy. In either cases, web users will face partial

or complete functionality failures when visiting 24% of all the web applications,

out of which over 50% are solely using Canvas for legitimate purposes, according

to our estimation. Therefore, users will not continue to have seamless experi-
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Table 3.4: Usage of Canvas According to the Revised Definition by top 500, 1K,
10K and 100K Websites

Top 500 20.80%
Top 1000 20.04%
Top 10K 21.96%
Top 100K 24.04%

ence when visiting a huge amount of websites (1 out of 4), leading to the need of

rebuilding new versions of the same websites that are Canvas-free.

Table 3.5: Estimated Canvas Prevalence by Type of Usage

Author Year Websites Crawling Prevalence (top
Published Date 10K Websites)

Our Research
(Overall Canvas Usage) 2018 January 2018 21.96%

Le et al. [32]
(for tracking purposes) 2017 April 2016 10.44%

Our Research
(for legitimate purposes) 2018 - 11.52%

It is noteworthy that several websites do not fingerprint the user on the landing

page, so they were not detected or included in our calculations by definition.

An example of these websites is https://amiunique.org/ which was initially built

by Laperdrix et al. to carry out their research on fingerprinting techniques [1].

Another observation is that many websites like Google and its variants use Canvas

in some days but not in others. Since our reported results were based on the

empirical study we carried out in conjunction with another research findings [32], it

is important take into consideration the following dependencies: there is a duration
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of 21 months separating the execution of our crawling script and the crawling done

in [32], which may cause some impact in the web trends that affect our reported

percentage of Canvas prevalence for legitimate purposes. Moreover, calculating

the Canvas prevalence for legitimate purposes was through a direct subtraction

of the overall usage minus tracking usage, which introduced a limitation when a

website uses Canvas for both legitimate and tracking purposes, as it has been only

considered in the tracking side.

3.2.4 Algorithms Explanation

Algorithm 1 aims to visit each of the top 100,000 Alexa websites searching for the

HTML element <Canvas> in the source code, and and outputs the percentage of

websites that include the element in the main HTML page. It takes as an input

a CSV file with the list of websites. The algorithm starts by distributing the

list of websites to be visited among the servers available, and each participating

server reads the corresponding list from the CSV file. Afterwards, the script starts

three counter on each server and initializes the counter to 0. The counters are

x (the number of websites containing <Canvas> in the HTML source code), y

(the number of websites failed in reading, so they do not contribute positively or

negatively in the percentage of Canvas prevalence) and z (the number of websites

successfully read by the server). The percentage of Canvas prevalence will be

calculated later by dividing x/z.

The main body of Algorithm 1 (i.e. lines 6-22) consists of a loop and two if
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statements, where each loop is for a single website visit. every iteration of the

loop initializes a Selenium webdriver instance and passes a website’s URL to it

in order to mimics a user visit to the website. The instance is set to time out if

the website does not load within 60 seconds, increments the y counter (websites

failed in reading), and continues to the next loop iteration. Otherwise if the

website is read successfully the z counter increments (successfully read websites’

counter) and the website HTML source is passed to the BeautifulSoup parser,

which in turn searches for the HTML element <canvas>. If found, the x counter

increments. Once the loop passes over all the websites a server is assigned to visit,

the algorithm returns the values of the three counters x, y and z, as well as the

percentage of websites containing <canvas> (i.e. x/z).

Algorithm 2 shares the same input, initial steps and counters as Algorithm 1.

The differences are in the Output and the main body of the loop. The output of

Algorithm 2 is the percentage of websites using Canvas in the HTML or JavaScript,

in all the frames loaded with the home web page of the website. For every iteration

of the main loop body (i.e. lines 6-35), a Selenium webdriver instance is initialized

with a website’s URL. If the website times out, the y counter in cements (failed

websites), and continues to the next loop iteration. Otherwise if the website is read

successfully the z counter increments (successfully read) and a list of the loaded

frames is constructed. Another internal loop iterates over the list of loaded frames

with the website, retrieving all the JavaScript loaded (whether in loaded files or

inside <script> tags). If any of the HTML pages in any of the frames include
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a Canvas tag, or any of the JavaScript components use the method to create a

Canvas element, the x counter increments. Once the outermost loop passes over

all the websites a server is meant to visit, the algorithm returns the values x, y,

z, and x/z.

3.3 Conclusion

In this chapter, we shed the light over the HTML5 Canvas element, the feature

used for developing interactive content on web applications. The wide support of

Canvas among browsers, the examples given of applications developed using Can-

vas, and the websites switching their content to newer Canvas versions from what

previously was developed in Flash are all facts that make it possible to observe

the trend of the increasing adoption of Canvas. This chapter also gives a concrete

example of how to retrieve a Canvas element using JavaScript, manipulate it by

drawing content, then shows the actual output of how it looks after rendering

on the web page. Afterwards, it was pointed out which API function can be

used to fingerprint users, enabling the constructive and destructive applications

we propose and validate in Chapters 5 and 6.

The literature studied the prevalence of Canvas fingerprinting, and reported

the significant increase overtime since the discovery of Canvas as a fingerprinting

mechanism in 2012 [3]. A recent study published in 2017 reported the over 10% of

the top 10,000 Alexa websites use Canvas for fingerprinting. To complement the

reported findings, we studied the Canvas prevalence for all purposes, to help realize
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the cost of disabling Canvas entirely if someone wishes to protect themselves

from being tracked. To do this, we developed and ran the scrapping algorithms

explained in this chapter on 10 rented servers which visited 100,000 websites to

find out that about 1 out of 4 websites use Canvas, out of which 11.52% use

Canvas for legitimate purposes.
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Algorithm 2 Revised Scrapping Algorithm for Canvas Usage

Input: list of n websites to be scrapped on the current server (i.e. subset of
the top 100,000 Alexa sites)

Output: Percentage of websites using Canvas in HTML or JavaScript,
whether in the main frame or any iframe

1: Each server concurrently executes the following code for its corresponding list
of websites:

2: Read a CSV file and construct a list of n websites to be run on the current
server

3: x← 0 {i.e. number of websites containing Canvas}
4: y ← 0 {i.e. number of websites failed in reading}
5: z ← 0 {i.e. number of websites successfully read}
6: for i← 0, i < n, i← i + 1 do
7: Initialize a selenium webdriver instance
8: Set the page load timeout value to 60 seconds
9: Pass the URL to the browser through the webdriver

10: Construct a list F of all iframes loaded including the default frame
11: if website loading time passes page load timeout then
12: y ← y + 1
13: Continue to the next for loop iteration
14: else
15: z ← z + 1
16: end if
17: for each f ∈ F do
18: Retrieve HTML source loaded in frame f
19: Retrieve and construct a list S of all JavaScript tags’ and files’ content

loaded in frame f
20: Pass HTML source and list S of frame f to BeautifulSoup parser
21: Search for “<canvas>” in HTML
22: if “<canvas>” is found then
23: x← x + 1
24: Continue to the next outermost for loop iteration
25: else
26: for each s ∈ S do
27: Search for “createElement(“canvas”)” in s
28: if “createElement(“canvas”)” is found then
29: x← x + 1
30: Continue to the next outermost for loop iteration
31: end if
32: end for
33: end if
34: end for
35: end for
36: return x, y, z, x/z {i.e. percentage of websites using Canvas according to the

revised definition}
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CHAPTER 4

CANVAS DISTINGUISHING

CAPABILITY ANALYSIS

In Section 2.2.2 of the Literature Review, we observed a trend in the Canvas

samples used for fingerprinting, which is the increased complexity over time. Ob-

serving this trend helps realizing that Canvas is one of the tracking techniques

that has high potential to enhance. Moreover, there are many pros of Canvas like

the consistency in the fingerprint value coming from the same device and browser,

the high entropy, the transparency to web users, and not requiring permission to

obtain [3]. All of these reasons are the basis of dedicating this chapter to study

the distinguishing capability of different Canvas samples. To achieve that, we

designed and carried out an empirical study with the following targets: drafting

guidelines on how to enhance the Canvas samples used to fingerprint users, pro-

viding strong Canvas samples in terms of distinguishing users, and comparing the

Canvas samples to other widely used fingerprinting techniques.
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4.1 Experimental Setup

To achieve our targets, we built a website and hosted it publicly. The website

asks the visitors to fill out a form with the specifications of the device and browser

from which they are currently browsing. The website asks the user to select the

category of the device she is using, then shows different forms and instructions for

the different types of devices. For example, the iPhone and iPad specific form does

not ask the user to provide the Graphics Card Type and Version or the RAM size

because it is less intuitive to the user to obtain such pieces of information, and we

can obtain these details by the device model information the user provides. Also,

the user instructions on how to obtain the specifications information are platform

specific. On each of the form fields, we provided a link that opens the steps on a

new browser tab. Fig. 4.1 shows the landing page of the website.

Figure 4.1: Landing Page of the Data Gathering Website

The specifications we asked for included the browsers type and version, operat-
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ing systems type and version, device model, whether the browser used is installed

in a virtual environment, Graphics Card Type and Version, Graphics Card Mem-

ory, RAM Size, CPU Type and number of cores. The step-by-step instructions

provided to the visitors explained how to gather these details from the operat-

ing systems: Windows, Linux, MacOS, iOS and Android, and from the browsers:

Google Chrome, Mozilla Firefox, Microsoft Edge, Internet Explorer and Opera.

Once the user submits the devices specifications, the website retrieves many

other Canvas and non-Canvas fingerprints along with the user provided details.

This allows for correlating the device specifications to the fingerprints retrieved.

The non-Canvas fingerprints gathered are listed in Table 4.1 with corresponding

values gathered from a Chrome browser on a laptop running Windows 10 as

examples of what the fingerprints could look like. The reason why we gathered

the non-Canvas fingerprints is to see how our dataset compares to the datasets

other research on fingerprinting previously used, such as Laperdrix et al. [1]

and Eckersley [21] in terms of entropy, especially for the fingerprints with high

entropy like the list of fonts, plugins, and user agent. In addition, gathering non-

Canvas fingerprints allows us to compare our top Canvas fingerprints to other

that are being used currently in the wild, and to set a benchmark that we try

to reach by our enhanced Canvas fingerprints. These fingerprints became handy

during the data filtering and helped us being confident that a certain person has

submitted the online form more than once. The fingerprinting code that gathered

the fingerprints in Table 4.1 was originally developed by Valentin Vasilyev and
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updated by Dave Alger, who has published the source code with a free license to

use (https://codepen.io/run-time/pen/XJNXWV).

We also designed 23 Canvas samples and gathered them to fingerprint users.

While designing the samples, we took into account making them diverse. We

did this by adding various components to the different samples like text, emojis,

shapes, backgrounds, pictures. Even for those samples with similar components,

we changed other characteristics such as the number of characters and emojis,

types of fonts, colors, adding shadows. For several Canvas samples, we also com-

bined several components in a single Canvas. Table 4.2 summarizes the characters

of each of the 23 Canvas samples we gathered, and Appendix A includes the ac-

tual rendered samples along with statistics on how many unique samples, distinct

samples, and how many characters there are in the Data URL version of each

sample.
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Table 4.1: The Samples of the Non-Canvas Fingerprints We Gathered

Fingerprint Description Example Shannon Normalized
Entropy Entropy

Browser Represents the browser name and ma-
jor version

Chrome 64 2.743 0.304

Flash A string that includes the Flash Player
version

N/A 0 0

Canvas A string in Base 64 representing
how pixels are rendered on a de-
vice. The printed image in this case:

data:image/png;base64,iVBORw0KGgo
AAAANSUhEUgAAASwAAACWCAYA
AABkW7XSAAAgAElEQVR4Xu

4.426 0.490

Connection Specifies if the connection is wifi,
celullar or undefined

Undefined 1.442 0.160

Cookie A boolean that indicates whether cook-
ies are enabled

True 0.020 0.002

Display Actual & available width & height, and
color depth

24—1366—768—1366—728 5.271 0.584

Font Smoothing A boolean that indicates if font
smoothing is enabled. Smoothing aims
to avoid pixelation across resolutions

True 0.839 0.100

Fonts Includes the list of fonts detected at the
client browser

Agency FB—Arial Black—Bodoni MT
—Calibri Light—Castellar—Colonna
MT —Conso-
las—Constantia—Copperplate Gothic
Light

5.809 0.643

Form Fields Returns all form fields a user can input
data into, to detect if certain clients try
to inject extra form fields into the web-
site

url=https://s.codepen.io/boomerang/
iFrameKey-20452a66-c145-f241-f16d-
fb053c67cd18/index.html

1.497 0.166

Java A boolean that indicates whether Java
is enabled

False 0.309 0.034

Language The current browser, user and system
language settings

lang=en-US—syslang=—userlang= 1.101 0.122

Silverlight A string that includes the Silverlight
version

N/A 0.135 0.0150

Operating System The operating system on which the
browser is running

Windows NT 4.0—32 bits 3.020 0.334

Time Zone A number that represents the relative
time of a client

3 2.761 0.306

Touch A boolean that indicates whether touch
is enabled

False 0.802 0.0888

True Browser Looks specifically for the real applica-
tion name

Safari 0.648 0.072

Plugins Includes the list of plugins detected at
the client browser

chrome pdf plugin—chrome pdf
viewer—native client—widevine con-
tent decryption module

2.769 0.307

User Agent An HTTP header string that is passed
from a client to the web server to tailor
responses according to the capabilities
of a client

mozilla/5.0 (windows nt 10.0; win64;
x64) applewebkit/537.36 (khtml,
like gecko) chrome/64.0.3282.140
safari/537.36—Win32—en-US

6.181 0.684

Comprehensive Hash of the combination of all at-
tributes in this table

2876715415 8.490 0.940
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vas
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Has text X X X X X X X X X X X X X
Has Emoji X X X X
Has all alphabetical letters X X X X X X X X X X X X
Has more than 20 emojis X X X
Several fonts X X
Has Shapes X X X X X X X X X X
Has several shapes X X X X X X X X
Has Shadows X X X
Text/Shapes in diff. colors X X X X X X X X X
Has Gradient X X X X X X X X
Contains picture X
Background entirely Covered X X X X X
Canvas String Length 5,304

17,164

15,076

74,000

63,592

52,940

44,240

28,064

96,072

29,528

32,108

16,876

26,000

30,376

35,644

36,616

31,716

29,784

226,416

228,708

11,196

29,080

228,708

Distinct Values 119

36 60 89 105

103

126

117

132

96 99 83 88 94 84 83 92 152

317

276

79 135

275

Unique Values 62 13 22 32 43 36 52 50 63 42 47 42 43 47 39 38 48 89 232

186

41 76 185

Shannon Entropy 5.570

3.141

4.677

5.510

5.767

5.788

6.078

5.922

6.078

4.999

5.002

4.225

4.730

4.846

4.661

4.653

4.375

5.934

7.884

7.558

4.438

5.857

7.551

Normalized Entropy 0.617

0.348

0.518

0.610

0.638

0.641

0.673

0.656

0.673

0.553

0.554

0.468

0.524

0.536

0.516

0.515

0.484

0.657

0.873

0.837

0.491

0.648

0.836

Table 4.2: Characteristics of the Canvas Samples Gathered
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4.2 Dataset

The website containing the online form was distributed publicly to our acquain-

tances, the academic community, and social networks. In addition, we posted

a task to fill out the online form on Mechanical Turk [41]. Mechanical Turk is

a marketplace for human intelligence where on-demand workforce is available to

complete tasks that cannot otherwise be automated. The task we posted forwards

the people who accept the task to our website to fill out the online form with the

details of the device and browser from which they are browsing. Once they fill

out the form, our website gives them a unique random number to enter in the

Mechanical Turk website as a confirmation that they completed the task, and

they get paid accordingly. People were asked to only provide one submission from

the same device, so that the number of distinct values is not impacted by similar

fingerprints submitted from the same device.

We reviewed and analyzed the data submitted by users on our website to

remove duplicates and incorrect input. Several factors helped us in determining

whether certain submissions are duplicated. The indications we looked at are that

the user provided details are exactly same, the user writing style and submission

timeframe are very close, all or most Canvas and non-Canvas fingerprints are the

same, the submission is done from the same IP address. We eliminated all the

submissions where the input was determined to be duplicated submissions from

the same devices. Afterwards, we reviewed the submissions looking for inaccurate

data input. A third review of the data was done to ensure the entered data is
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consistent and spelled correctly in order to be able to filter the data by specific

fields. Some submissions included data that appears to be accurate, but not all

the fields were filled. We accepted some of these submissions and included them

in the entropy calculations, but did not use them in any specific analysis that

required the missing information. After the data filtering took place, the number

of submission that were considered in the study has decreased from 701 to 524

submissions.

4.3 Analysis

Tables 4.3 and 4.4 show the number of users’ submissions per operating system

and browser respectively. several of the submissions were missing those details,

and hence, the number of samples does not sum up to 524. It is interesting to

note that the devices running the different versions of Windows constructed 56%

of the dataset, and the submissions done from the Chrome browser were 70% of

the dataset.

The bar chart in Fig. 4.2 shows the total number of user submissions in the

leftmost bar, which is the maximum number of distinct values a fingerprint can

achieve. The higher number of distinct values a Canvas sample (or any fingerprint)

has, the better it is in fingerprinting and in distinguishing different devices. Fig.

4.2 also shows the ability of each Canvas sample in Appendix A to distinguish users

into different groups via fingerprinting. The two rightmost bars in the bar chart

represent the number of distinct values retrieved by the Canvas sample commonly
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Table 4.3: Number and Percentage of Submissions per Operating System

Operating System Number of Samples Percentage

Windows 10 145 28.9%
Windows 7 99 19.8%
Android (several versions) 95 19.0%
iOS (several versions) 76 15.2%
MacOS (several versions) 41 8.2%
Windows 8 31 6.2%
Linux (several distributions) 6 1.2%
Windows XP 4 0.8%
Windows Vista 3 0.6%
ChromeOS 1 0.2%

Table 4.4: Number and Percentage of Submissions per Browser

Browser Type Number of Samples Percentage

Chrome 359 69.7%
Safari 60 11.7%
Firefox 59 11.5%
Internet Explorer 13 2.5%
Opera 10 1.9%
Edge 6 1.2%
UC browser 5 1.0%
Dolphin 3 0.6%

used in the wild, which is also used as part of the multi-attribute fingerprinting

algorithm in Table 4.1, as well as the number of the distinct values retrieved by

the comprehensive multi-attribute fingerprinting algorithm.

Canvas samples 19, 20 and 23 seem to be the best three samples in distinguish-

ing devices. Although 19 is able to distribute devices into the highest number of

groups (i.e. 317) based on the Canvas fingerprint, we do not recommend using it

because this sample is not very persistent. When we loaded the website on the

same browser using the same device, we got more than one fingerprint value at
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different times. When investigated further, we found out that Google fonts are

not always loading correctly although the same setting was in place. Canvases

20 and 23 are among the most powerful in distinguishing devices. Our preference

is Canvas 20, since it does not require loading a picture from the Internet like

Canvas 23 does, and therefore requires less downloading time.

Figure 4.2: Number of Distinct Canvas Values per Sample

As in the major fingerprinting research papers, we use Shannon entropy to

indicate the amount of information a fingerprint gives. The fingerprint is better

and more identifying when the entropy is higher. We calculated the Shannon’s

entropy using the formula:

Entropy = −
n∑

i=1

P (xi) log2 P (xi)
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Where P (xi) is the probability of the value xi occurring according to our

dataset, and n is the total number of distinct fingerprint values in the dataset.

The probability is calculated for a fingerprint value xi by dividing the number of

times the same value of the fingerprint appeared by the total number of values

(i.e. valid user submissions) in the dataset.

In order to eliminate the factor of the dataset size, and to compare our obtained

fingerprints with other datasets like AmIUnique and Panopticlick, we calculated

the Normalized Shannon’s Entropy by dividing the entropy obtained using the

previous equation by the maximum possible entropy log2(N) where all devices’

fingerprints are unique (N represents the entire size of the dataset). The Normal-

ized Shannon Entropy results always in a value between 0 and 1. Practically on

large datasets, it is very unlikely to see any fingerprinting technique with Normal-

ized Shannon Entropy reaching 1, which indicates that the technique is ideal in

fingerprinting web users. However, reaching the maximum normalized entropy is

theoretically possible if and only if all the values appearing in the dataset being

analyzed are unique. Even if a dataset includes distinct values that appear exactly

the same number of times each, this condition does not apply and the Shannon

entropy would be less than 1. For illustration, let D1 and D2 be 2 datasets

of size 8 where D1 = {v1, v2, v3, ..., v8}, and v1 6= v2 6= v3 6= ... 6= v8. While

D2 = {v1, v1, v2, v2, v3, v3, v4, v4}, and v1 6= v2 6= v3 6= v4. We demonstrate below

how D1 (which contain values that are all unique) result in Normalized Shannon

Entropy that equals 1 and how D2 (which contain distinct values repeated the
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same number of times) result in Normalized Shannon Entropy that is less than 1:

Shannon entropy of D1 = −
∑8

i=1 P (vi) log2 P (vi) = −8[P (vi) log2 P (vi)]

= −8[(0.125)(−3)] = 3

Since the maximum possible entropy of a dataset with 8 values is log2(8) = 3,

then the Normalized Shannon Entropy of dataset D1 = 1.

Similarly, Shannon entropy of D2 = −
∑4

i=1 P (vi) log2 P (vi)

= −4[P (vi) log2 P (vi)] = −4[(0.25)(−2)] = 2

Since the dataset has the same number of values, the maximum possible en-

tropy is log2(8) = 3, then the Normalized Shannon Entropy of dataset D2 =

0.667. The advantage of using the Normalized Shannon Entropy is that it is de-

pendent on the distribution of probabilities, and does not take into consideration

the dataset size, making it fair to compare distinguishing capability results of a

fingerprinting technique across datasets of different sizes. In addition, Normalized

Shannon Entropy is widespread among the other web fingerprinting research and

other well known datasets in the literature. With this, we find the Normalized

Shannon Entropy to be the most fit measurement to use. Table 4.5 compares the

normalized entropy of seven of the most common fingerprints including Canvas

on separate datasets: Panopticlick [21], AmIUnique [1], Hiding In The Crowd [5]

and our research. It also shows how our enhanced Canvas sample compares to
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the commonly used Canvas sample (as well as other non-Canvas fingerprints) in

terms of entropy.

Table 4.5: Normalized Entropy of the Major Fingerprinting Attributes on Three
Datasets

Attribute Our Research Hiding In The AmIUnique Panopticlick
(2018) Crowd (2018) (2016) (2010)

User agent 0.684 0.431 0.570 0.531
List of plugins 0.307 0.452 0.578 0.817
List of fonts 0.643 0.329 0.446 0.738
Display 0.584 0.341 0.277 0.256
Time Zone 0.306 0.008 0.201 0.161
Cookies enabled 0.002 0.000 0.042 0.019
Canvas 0.490 0.407 (Different 0.491 -

Sample)
Enhanced Canvas 0.837 - - -
(Sample no. 20)

The most significant entropy differences between our dataset and other previ-

ous research is observed in the Display and List of plugins attributes. AmIUnique

explained the drop of 0.24 in the entropy of the List of Plugins comparison to

Panopticlick to be a result of the absence of plugins in the mobile devices, espe-

cially with the increasing use of mobile devices to surf the web, as well as because

of the stopped support for the old NPAPI plugin architecture since 2015 on Google

Chrome [1]. The entropy of the list of plugins continues to drop by 0.27 compared

to AmIUnique. AmIUnique’s dataset includes 13,105 mobile devices fingerprints

out of 118,934, constituting a percentage of 11% of the overall dataset, while

34.2% of the fingerprinted devices in our dataset are mobile devices, which can

explain the drop in our List of Plugins entropy. The observed increase of 0.31
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in the entropy of the display attribute in comparison to AmIUnique can be ex-

plained by the difference in the information gathered by the different algorithms.

While AmIUnique gathers the screen’s width, height and color depth, we gather

the available width and available height in addition.

It is interesting to note that the Canvas fingerprint gives almost identical

entropy in both AmIUnique dataset and our dataset. Panopticlick’s research

occurred before Mowery et al. discovered Canvas fingerprinting in 2012, and

hence it did not include Canvas in their study. Our enhanced Canvas sample

(number 20) showed a significant increase in the entropy and the distinguishing

capability to successfully exceed all other fingerprints studied in this research,

in AmIUnique and in Panopticlick. These results give us high confidence that

Canvas samples can be enhanced to be more effective in distinguishing devices

than the other existing fingerprints.

4.4 Results and Validation

To understand the extent to which the reported entropy of our enhanced Canvas

sample is reliable, and the ability of our dataset to represent the population of

web user, we did the following:

• Compare the entropy of a Canvas sample that is common between our re-

search and another large dataset.

• Perform Cross Data Validation
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As table 4.5 points out, Our research and the AMIUnique dataset have a

Canvas sample in common. When calculating the Shannon Entropy of this Canvas

sample according to our dataset, it was 0.490, while the calculated entropy for the

same Canvas sample is 0.491 according to AmIUnique [1]. This gives confidence

that our dataset is valid and representative of similar large datasets, and can be

used to calculate the entropy of other Canvas fingerprinting samples to determine

their distinguishing capability.

To perform the Cross data validation, we randomized the 524 fingerprints

gathered from every Canvas sample, and each visit was fingerprinted with multi-

ple Canvas and non-Canvas fingerprints. This randomization is to eliminate the

potential effect of people using similar devices at different times of the day when

visiting our website (e.g. people tend to use mobile devices in the evening more

than desktops). Afterwards for each Canvas fingerprinting sample, we picked 90%

of the fingerprints for each sample and calculated the entropy for this 90%. We

repeated this 10 times for each of the 23 Canvas samples we gathered. The 90%

happens to be 471 or 472. While doing this, we ensured that a single fingerprint

value gathered from a Canvas sample coming from a user visit is included exactly

9 times. This is to ensure that all the values are represented enough in this as-

sessment. Table 4.6 lists all the entropies calculated for each of the 10 90% folds,

calculated for the 23 Canvas samples.

After calculating the entropy of the 10 folds of fingerprint values for each

Canvas sample, we calculated several other relevant values: the mean of the 10
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folds’ entropy (to compare it with overall entropy of the entire sample of 524 visits),

highest fold entropy, lowest fold entropy and the standard deviation. Table 4.7

summarizes these values for every Canvas sample, while Figure 4.3 presents this

information in a plot with the Canvas sample number in the x-axis and entropy

value in the y-axis. The values in the plot include the overall entropy of a single

Canvas sample (based on the 524 user visits) represented by the blue diamond,

the mean of the 10 folds’ entropies represented by the orange circle, and the

highest and lowest fold entropy represented by 2 ”X” symbols. The closer the

overall entropy to the mean entropy of the 10 folds, the more confidence we have

in the reported Canvas sample entropy. If we look at the plot in Figure 4.3, we

find that 3 of the Canvas samples (i.e. Canvas 15, 17 and 20) happen to have

the overall entropy within 1 standard deviation around the mean entropy, giving

more confidence of the reported results for these samples. One of these samples

is our enhanced Canvas sample we propose for the best distinguishing (Sample

20). The plot also shows that 11 of the Canvas samples have the overall entropy

within the highest and lowest fold entropy of the same Canvas, which shows

high confidence that is relatively less than when the overall entropy is within the

standard deviation from the mean entropy. These 11 Canvas samples are Canvas

samples 1, 2, 10, 12, 14, 15, 16, 17, 20, 21 and 22. We dropped Canvas sample 2

from the plot due to its low entropy, to makes the plot more interpretable to the

reader. The Canvas samples’ printed images and their description are available in

Appendix A.
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Figure 4.3: Overall vs. Mean Entropy
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Canvas 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Sample Fold Fold Fold Fold Fold Fold Fold Fold Fold Fold

Can. 1 0.631 0.631 0.615 0.625 0.626 0.628 0.623 0.618 0.616 0.629

Can. 2 0.356 0.351 0.351 0.354 0.346 0.357 0.358 0.346 0.353 0.355

Can. 3 0.524 0.522 0.528 0.525 0.524 0.524 0.528 0.529 0.526 0.521

Can. 4 0.614 0.622 0.618 0.616 0.616 0.624 0.620 0.619 0.618 0.616

Can. 5 0.645 0.642 0.648 0.641 0.646 0.650 0.652 0.651 0.644 0.648

Can. 6 0.648 0.646 0.641 0.652 0.648 0.652 0.645 0.649 0.653 0.655

Can. 7 0.680 0.681 0.680 0.679 0.682 0.682 0.684 0.681 0.685 0.681

Can. 8 0.665 0.659 0.668 0.658 0.663 0.665 0.664 0.667 0.666 0.661

Can. 9 0.677 0.682 0.686 0.682 0.681 0.681 0.679 0.681 0.682 0.679

Can. 10 0.553 0.559 0.558 0.563 0.556 0.560 0.564 0.564 0.564 0.563

Can. 11 0.566 0.556 0.562 0.559 0.559 0.562 0.561 0.564 0.557 0.561

Can. 12 0.478 0.473 0.473 0.480 0.475 0.479 0.469 0.465 0.470 0.475

Can. 13 0.525 0.529 0.531 0.524 0.534 0.530 0.529 0.532 0.530 0.539

Can. 14 0.540 0.548 0.546 0.541 0.547 0.544 0.542 0.545 0.535 0.545

Can. 15 0.507 0.529 0.529 0.513 0.519 0.527 0.521 0.527 0.524 0.528

Can. 16 0.515 0.527 0.520 0.518 0.526 0.522 0.524 0.521 0.521 0.524

Can. 17 0.488 0.499 0.486 0.488 0.480 0.487 0.497 0.488 0.492 0.497

Can. 18 0.660 0.660 0.674 0.666 0.662 0.661 0.666 0.671 0.662 0.658

Can. 19 0.880 0.875 0.879 0.879 0.878 0.878 0.876 0.884 0.876 0.878

Can. 20 0.833 0.849 0.844 0.834 0.838 0.844 0.842 0.850 0.838 0.850

Can. 21 0.497 0.498 0.499 0.497 0.491 0.497 0.500 0.498 0.501 0.498

Can. 22 0.651 0.662 0.660 0.646 0.652 0.658 0.654 0.656 0.653 0.662

Can. 23 0.841 0.843 0.847 0.843 0.841 0.845 0.838 0.841 0.840 0.842

Table 4.6: Normalized Entropy of Random 90% Folds of Each Canvas Sample
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Canvas Mean Ent. Overall Highest Lowest Std. Dev. Mean Mean
Sample of Folds Entropy Fold Ent. Fold Ent. (x10−3) - STD + STD

Can. 1 0.624 0.617 0.631 0.615 5.89 0.618 0.630

Can. 2 0.353 0.348 0.358 0.346 4.07 0.349 0.357

Can. 3 0.525 0.518 0.529 0.521 2.61 0.522 0.528

Can. 4 0.618 0.610 0.624 0.614 3.06 0.615 0.621

Can. 5 0.647 0.638 0.652 0.641 3.72 0.643 0.650

Can. 6 0.649 0.641 0.655 0.641 4.18 0.645 0.653

Can. 7 0.681 0.673 0.685 0.679 1.78 0.679 0.683

Can. 8 0.663 0.656 0.668 0.658 3.39 0.660 0.667

Can. 9 0.681 0.673 0.686 0.677 2.25 0.679 0.683

Can. 10 0.560 0.553 0.564 0.553 3.96 0.557 0.564

Can. 11 0.561 0.554 0.566 0.556 2.96 0.558 0.564

Can. 12 0.474 0.468 0.480 0.465 4.66 0.469 0.478

Can. 13 0.530 0.524 0.539 0.524 4.25 0.526 0.534

Can. 14 0.543 0.536 0.548 0.535 3.91 0.539 0.547

Can. 15 0.522 0.516 0.529 0.507 7.40 0.515 0.530

Can. 16 0.522 0.515 0.527 0.515 3.65 0.518 0.525

Can. 17 0.490 0.484 0.499 0.480 5.90 0.484 0.496

Can. 18 0.664 0.657 0.674 0.658 5.31 0.659 0.669

Can. 19 0.878 0.873 0.884 0.875 2.44 0.876 0.881

Can. 20 0.842 0.837 0.850 0.833 6.36 0.836 0.848

Can. 21 0.498 0.491 0.501 0.491 2.66 0.495 0.500

Can. 22 0.655 0.648 0.662 0.646 5.23 0.650 0.661

Can. 23 0.842 0.836 0.847 0.838 2.71 0.839 0.845

Table 4.7: Reliability of our Reported Canvas Samples’ Normalized Entropy

63



Our enhanced Canvas sample is composed of a linear gradient with 5 color

stops in the background, two stroke rectangles with round edges and different line

widths, and two filled rectangles, one of which is transparent. All the shapes have

shadows, different colors, positions and dimensions, and some of them overlapping.

On top of that are all the alphabetical letters in capital and small, numbers, and

25 characters, printed twice in the Windows local fonts “Palatino Linotype” and

“Arial” with a size of 25, in addition to 21 different selected emojis. Fig. 4.4

shows our enhanced Canvas sample.

Figure 4.4: Our Enhanced Canvas Sample (Canvas 20)

4.5 General Observations

The following observations are drawn from the various Canvas samples we gath-

ered in Appendix A and show the impact of changing some factors on the number

of distinct fingerprint values (refer to Fig. 4.2 and Table 4.2 for better visualiza-
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tion). Utilizing these observations can help in improving the samples a website

uses to fingerprint its users.

• Canvas sample 2 contains 4 shapes in black, whereas Canvas 3 have the

same 4 shapes in 4 different colors. By changing the colors, the number of

distinct fingerprint values increased from 36 to 60.

• Canvas sample 3 has a white background, by changing the background into

a gradient with 5 colors as in Canvas 5, the number of distinct fingerprint

values increased from 60 to 105.

• Canvas 9 is the same as Canvas 5, except that the shapes have shadows,

which increased number of distinct values from 105 to 132.

• By printing all the alphabetical letters in capital and small, numbers, and 25

characters twice in different Windows available fonts and adding many Emo-

jis, the number of distinct fingerprint values increased from 132 in Canvas

9 to 276 in Canvas 20.

• Canvas 21 is what several researchers use for fingerprinting the users. By

increasing the size of the sample (i.e. pixels) and adding more distinct

letters and characters in Canvas 22, the number of distinct fingerprint values

increased from 79 to 135.

• Canvas 1 contains some text and an Emoji, which results in 119 distinct

fingerprint values. By printing many emojis (even with no text at all) in

Canvas 18, the number of distinct fingerprint values became 152.
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• Increasing the font size results in more distinct values as in Canvas 10 with

the font Arial size 18 and 96 distinct values versus Canvas 11 with the font

Arial size 20 and 99 distinct values. Also applies to samples 12 and 13, using

Sirin Stencil (a font that is imported Google Web Fonts server) with sizes

12 and 15, resulting in 83 and 88 distinct fingerprint values respectively.

• Canvas 19 and Canvas 20 have the same components, except that Canvas

19 uses a font that is imported Google Web Fonts server. Because of this,

Canvas 19 resulted in 317 distinct values as opposed to 276 in Canvas 20.

This increase in Canvas 19 is caused by the occasional failure in loading the

font from the web, which would be misleading as a device can have different

fingerprints at different user visits.

• Printing a picture in a Canvas, like in sample 23, can be as good as our

suggested enhanced Canvas version (i.e. Canvas 20) which contains many

other various components.

• Google Chrome and Opera showed to have the most similar fingerprints

among the other browsers when installed on the same device. Most of the

Canvas samples obtained gave the same fingerprint for both browsers on the

same device. However, our enhanced sample (Canvas 20) was able to distin-

guish both browsers. Unlike earlier ones, this observation is based on over

60 submissions we performed on Google Cloud servers using the browsers:

Internet Explorer, Google Chrome, Firefox and Opera. We changed the

hardware specifications after submitting the form from the 4 browsers.
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4.6 Why Canvas is a Reliable Fingerprint

When Mowery et al. discovered the possibility of using Canvas to fingerprint

users in 2012, they mentioned several characteristics that make Canvas a desirable

fingerprinting technique [3]. These characteristics include: consistency in getting

the same Canvas fingerprint value from the same user device, the high entropy

in the returned value, transparency to the user as there is no indication that

they are being fingerprinted, being independent of other fingerprints, and finally

being readily obtainable since there is no access permission required to be able to

fingerprint users.

Laperdrix et al. constructed a 17-attribute fingerprinting technique, and stud-

ied the distinguishing capabilities of each attribute on a dataset of 118,934 fin-

gerprinted users, which was collected through a website they published: AmIU-

nique.org [1]. Table 4.8 summarizes the Normalized Shannons Entropy for the top

4 gathered attributes through the AmIUnique.org website for all of their samples,

and divided by desktop samples only then mobile samples only. We notice that

the normalized entropy is very low for the list of plugins and fonts for mobile

devices, indicating that it can be challenging to fingerprint mobile devices using

the list of plugins, due to the absence of plugins in mobile devices, and the list of

fonts, given that a considerable proportion of the mobile devices do not have flash

activated, and the flash API is used to gather the list of fonts. With the increased

adoption and use of mobile devices to surf the web, it is important for fingerprint-

ing attributes to have high entropy for both desktop and mobile devices. User
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Agent and Canvas remain on the top of the attributes that have similar and high

entropy for both desktops and mobile devices.

Table 4.8: Normalized Shannons Entropy for the Top 4 AMIUNIQUES Attributes
[1]

Attribute All Desktop Mobile

List of plugins 0.656 0.718 0.081
User agent 0.580 0.550 0.741
List of fonts 0.497 0.548 0.033
Canvas 0.491 0.475 0.512

The reasons why we see high potential in Canvas is that the web application

which is fingerprinting users have control over what to render on the clients ma-

chine. Therefore, enhancing the sample gathered would increase the entropy and

consequently the distinguishing capability significantly, unlike fonts, plugins and

user-agent, which web applications do not have control over. Looking at the num-

ber of distinct fingerprints obtained by our enhanced Canvas sample (i.e. Canvas

sample 20) in our experiment in this chapter, the results are promising. The num-

bers of distinct fingerprint values achieved by each of the non-Canvas fingerprint

we gathered are all way less than our enhanced Canvas sample. With this, it is

possible to enhance the distinguishability of users by utilizing enhanced samples

of Canvas.

4.7 Conclusion

In this chapter, we aimed to provide high entropy Canvas samples to be used for

better fingerprinting, check how their entropy compare to Canvas and non-Canvas
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Figure 4.5: Number of Distinct Values per Non-Canvas Fingerprints

fingerprints, and come up with conclusions on how the different components added

to a Canvas sample can boost the entropy. To achieve our targets we developed a

website and hosted it publicly, asking users to enter details about the device from

which they are visiting, while the website gathers 23 Canvas fingerprints and 17

non-Canvas fingerprints from each user visit. The website was distributed to our

acquaintances, the academic community, social networks and paid visitors from

Mechanical Turk, who provided 701 submissions, filtered down to 524 included in

our study.

Our three topmost Canvas samples in entropy are higher than any Canvas and

non-Canvas fingerprints in the literature reviewed in Section 2.2.2. The analysis

show that the more content and characteristics a Canvas sample includes, the more

capable it is in distinguishing web users. Our proposed enhanced version has all

alphabetical characters written in several fonts, over 20 emojis, several shapes,
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shadows, and a completely covered background, resulting a normalized entropy

of 0.837. The output of this empirical study confirm our initial expectation that

the entropy of Canvas fingerprinting can be boosted by the web application that

wishes to fingerprint users, as opposed to other types of fingerprints.

To assess the reliability of our reported findings, we compared the Shannon

Entropy of a commonly used Canvas sample in our dataset versus AmIUnique,

and the entropy in both dataset was almost identical, which gives confidence that

our dataset is valid and representative of similar large dataset when calculating

other samples’ entropies. As another data validation measure, we calculated the

entropy of ten 90% folds for each Canvas sample and compared the mean entropy

resulted with the overall entropy of all the samples. The sample we propose in

this chapter (sample 20) happened to have the overall entropy within one standard

deviation from the mean entropy of the 10 folds. Finally, the Operating Systems

percentages in our dataset is the closest to the actual Operating Systems market

share when compared to the significant fingerprinting dataset in section 2.3, and

hence it is the least in bias.
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CHAPTER 5

CANVAS FINGERPRINTING

FOR ATTACK DETECTION

This chapter visits two different applications that can significantly benefit from

Canvas fingerprinting. These two applications are the detection of fake accounts

on web applications and the prevention of session hijacking. In this chapter, we

propose a methodology for both applications. In addition to that, an empirical

study has been carried out to understand the effectiveness of the proposed tech-

nique in detecting fake accounts on web applications, and a proof of concept was

built to test the usage of Canvas fingerprinting in session hijacking prevention.

5.1 Motivation

Detecting fake accounts on web applications and online social networks have sev-

eral benefits including preventing the owners of these accounts to sell unauthentic

“likes” and followers on these social networks. Moreover, the detection of fake ac-
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counts prevents attackers from creating many accounts for illegitimate purposes

such as studying the session management of a website to find vulnerabilities that

can be exploited. In addition to that, the results of behavior studies of the target

audience of a website may be impacted, which may cause financial implications if

the website operators took decisions depending on these studies. For these reasons

and multiple other reasons, we proposed the use of Canvas fingerprint to detect

the creation of fake accounts in websites and online social networks [2].

Cookies are being used for session authentication since mid-90’s. When a user

logs in to a web application and his credentials get validated, session cookies are

generated and sent to the client’s web browser. The web browser then attaches the

cookie values in every subsequent request to prove that the user is authenticated

[42], instead of the need for users to provide their credentials in every sensitive

page they visit. Session hijacking happens when an unauthorized user steals a

session that belongs to another user by obtaining the other user’s cookies, which

gives the stealer unauthorized access to information or services. Therefore, it

became important to provide protection measures against session hijacking.

5.2 Proposed Methodology

The methodology we propose for our two security applications are composed of a

two-stage process that starts with rendering and drawing some shapes or text on

a Canvas after the HTML page is sent to the user’s browser. Then, the website re-

trieves the pixel data back and stores it in the database to use it for identifying the
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user or the session depending on the application. Choosing Canvas fingerprinting

for the two applications comes from the consistency in the pixel data retrieved

from the Canvas across different user visits from the same device, in addition to

the high entropy which helps in differentiating users (refer to Section 4.6). The

Canvas fingerprint is linked to the user account in the fake accounts detection ap-

plication. Therefore, if the number of accounts with the same Canvas fingerprint is

large, flags should be raised and investigated as they may indicate that the owner

of these accounts is the same person. On the other hand, the Canvas fingerprint

is linked to the session of the user in the session hijacking prevention application.

So, if the value of this fingerprint is changed while the same session is active, it

means the users session has been stolen, because the Canvas fingerprint is more

persistent than the user’s session. The proposed process for both applications

has two stages: Canvas storing and Canvas checking. The Canvas storing stage is

similar in the two applications, while the checking stage takes different approaches

based on the application. The first stage of the fake accounts detection process

is implemented in the registration HTML page. The registration web page has a

Canvas HTML element <canvas> with shapes or text rendered on it in the client

machine. When the user signs up for a new account and his input gets validated,

the JavaScript function toDataURL() retrieves the Base64 representation of the

pixel data. This data is hashed and stored in the database associated with the

username of the newly created account. A brief overview of the storing stage

is summarized in Figure 5.1. The first stage of the session hijacking prevention
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process is implemented in the login page and the Canvas pixel data is retrieved

the same way when the user logs in and used as a fingerprint for the user session.

Figure 5.1: Canvas Storing Stage of the Detection Process [2]

The second stage of the fake account detection process checks for repeated

fingerprints in the database that are associated with different accounts at the

time of accounts creation. When the number of accounts associated with a single

fingerprint exceeds a specific threshold, the operators of this website or online

social network should perform further investigation as this gives an indication

that these accounts may be fake accounts that belong to the same user, and

that they could be used to perform malicious activities. The threshold should be

specified taking into account statistical analyses to reach an optimal value that

reduces false positives and false negatives. The authors of Beauty and the Beast

published the website AmIUnique.org to analyze 17 attributes that can be used to

fingerprint users, including Canvas fingerprint [1]. The analysis showed that the

118,934 responses have 8,375 distinct Canvas values, with an average of around
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14 sample per Canvas value. This study and similar ones would help in deciding

the best thresholds. After the analysis and investigations, the operator can take

the appropriate actions such as disabling or blacklisting the accounts. Figure 5.2

covers the Canvas repetition checking stage of the detection process.

Figure 5.2: Repetition Checking Stage of the Fake Accounts Detection Process [2]

The second stage of the session hijacking prevention process checks if the

Canvas value associated with the session which was stored in the first stage is

still the same. This stage is deployed in any webpages the web applications

owners would like to secure against session hijacking. When the user navigates

to a sensitive page in which the Canvas checking function is implemented, the

web application retrieves the pixel data resulted from rendering the same Canvas

and hashes it using the same hash function used in the first stage. After that,

the Canvas fingerprint newly generated in the second stage is compared to the

fingerprint stored earlier in the database during the first stage of the process. If

the newly generated fingerprint matches the stored one, it means that the current

session belongs to the same legitimate user who successfully logged in earlier,

and the user will be able to access and stay at the same page she was requesting.

If the result is a mismatch, then there is a very high probability that the user’s

session has been hijacked and the user will be redirected to the login page to
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re-enter her credentials, and if correctly entered, the value of the new fingerprint

is stored in the database as in the Canvas storing stage that was done at the login

time. The implementation of this process can accommodate users who login from

different devices at the same time by allowing the web application to store more

than one session ID per user with their associated Canvas fingerprint for each

device. Figure 5.3 illustrates the second stage of the session hijacking prevention

process.

Figure 5.3: Checking Stage of the Session Hijacking Prevention Process

The target of the two-stage processes is protecting web applications from the

creation of fake account and users’ sessions from getting hijacked. Hence, it is

not required to gather user identifying information that can be considered as a

privacy breach. This is why we are using the fingerprint as a black-box and only

store the hash of the pixel data we get back from the Canvas. The hashing is

expected to introduce collisions, which can be taken into consideration by the

person performing the analysis in the second stage of the fake account detection

process. The collisions are not very critical in the session hijacking application

either since what we care about is detecting if the person using the session is not

the owner of the account, as opposed to having unique identifiers for users.
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5.3 Empirical Study of the Fake Account Detec-

tion Application

A simple website with user registration functionality was built and hosted publicly.

PHP was used as the server side programming language, and JavaScript was the

client side scripting language. Figure 5.4 shows how the website looks like. We

selected 14 different participants to take part of this empirical study. For the

accessibility of the research participants, we selected university students that were

attending an Information Security Fundamentals course, who were also aware of

the purpose of the experiment beforehand. It was not a requirement to have

participants that are privacy or security aware. Any participant with basic skills

on browsing the web would be sufficient. Our selection of the privacy aware

participants has impacted our reported false negatives rate. After that, we asked

the participants to register on the website a random number of times with different

usernames and passwords each time. The total number of registered accounts was

148 account. We then tried to use the participants’ input to detect which group

of accounts belong to the same user by following the two-stage process described

earlier. To validate the output of our analysis of Canvases to determine if Canvas

fingerprints belong to the same user, we asked the users to provide their email

addresses every time they sign up for a new account.

The experiment showed that the proposed detection process is effective in

detecting which accounts belong to the same user with a good accuracy. Table

5.1 points out the expected flags that should be raised when a fake account is
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Figure 5.4: Simple Website with Registration Functionality

created, and compares it with actual raised flags. A flag is raised when a Canvas

fingerprint being stored in the database matches at least one value previously

stored.

A total of 120 flags were raised in the repetition checking stage. 8 of these flags

were false positive. These cases occurred because of machines with very similar

or identical hardware and software specifications. In one of the cases, a collision

occurred by two desktop machines next to each other in a lab. The checking

stage did not alert for 9 flags. 8 of these flags were missed because the users

were changing the browser’s configurations by changing the zoom ratio. When

investigated, we found out that this was due to some participants using Mozilla

Firefox, who were intentionally trying to register for multiple account while being

undetected. This is an impact of our selection for the participants of our empirical

study, which could have been avoided if we selected random web users. With

further analysis and replication of their activity, we saw that in some cases the

zoom ratio had impact on the fingerprints coming from Mozilla Firefox. We were

not able to replicate this behavior on any other browser. One missed flag was
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because Internet Explorer 8 does not support Canvas. The Canvas sample used in

this experiment is sample 1 in Appendix A. Using a sample with a better entropy

(like Sample 20) could have decreased the false positives. It is noteworthy that this

study included 148 registered accounts that were created by 14 participant, which

might not adequate to represent the rate of false positives and false negatives

that would be observed if the study covered the entire population of web users.

However, this study shows initial findings on the effectiveness of the proposed

technique, and could be expanded to cover significantly larger audience for more

accurate results.

Table 5.1: Expected and Actual Results [2]

Registered Accounts 148
Expected Flags 121

Raised Flags 120
Falsely Raised Flags (False Positives) 8

Missed Flags (False Negatives) 9
False Positives Inaccuracy 6.67%
False Negatives Inaccuracy 7.44%

5.4 Proof of Concept for the Session Hijacking

Prevention Application

As a proof of concept, we developed a website using PHP as the server side

language, and JavaScript as the client side scripting language. This website has

basic login functionality that enables the user who is successfully logged in to
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post comments. This website is vulnerable to session hijacking, meaning that by

copying the cookie value that is created to store the session to another browser in

the same device or a different device, the session is obtained without the need to

provide the username and password.

To protect against stealing sessions, we implemented the proposed solution by

building two extra functions: Store Canvas and Check Canvas. When a user enters

the credentials and logs in successfully, the Store Canvas function renders some

text on the Canvas, retrieves pixel data, and then calculates the fingerprint and

stores it in the database associated with the current session. The Check Canvas

function is included in every sensitive page in the website, so that whenever the

user who has the current session visits a sensitive web page, the Check Canvas

function renders the same text on the Canvas, retrieves pixel data, calculates the

fingerprint, and compares it to the fingerprint stored earlier in the database. In

the case of a mismatch, the user is sent back to the login page to provide the

credentials since there is a high probability that the session has been stolen.

We tested the website after adding the Store Canvas and Check Canvas func-

tions. When the user logged in to a browser, a new cookie was created to store

the session, and the user was able to post comments to the website. When the

cookie value was copied to another browser in the same device or in a different

device, and tried to post a comment, the web application detected that the Canvas

fingerprint associated to the session has changed and redirected the user to the

login page to enter the credentials. When entering the correct credentials from
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the other browser, the fingerprint stored in the database was updated with the

new fingerprint value.

5.5 Existing Techniques to Detect Fake Ac-

counts and Prevent Session Hijacking

Several researchers approached the problem of detecting the creation of fake ac-

counts from different angles. Some researchers tried to detect the creation of bulk

of fake accounts by finding patterns in the username of the account and patterns

in the time of certain activities performed by the account owner, such as posting

or tweeting in specific and fixed time patterns [43]. Other researchers analyze the

mutual friends between accounts and use this to indicate whether some accounts

are fake [44]. These detection techniques can be circumvented by the creator of

the fake accounts. For example, the creation can happen in random times to

avoid the fixed time patterns, and the usernames can be randomized in order not

to have detectable naming patterns. The technique proposed in this research does

not rely on finding time and naming patterns, nor does it rely on mutual friends

analysis. Thus, it can be implemented in addition to the existing techniques to

achieve layered security.

In an effort to prevent session hijacking, the authors of [45] presented a client

side mechanism named SessionShield, which protects users against session hijack-

ing even if the web application is vulnerable. The idea of SessionShield works by
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detecting and isolating session identifiers from the browser, as this information is

not used by legitimate client side scripts. Another research proposes getting rid

of cookies completely and deploying One Time Cookies (OTC). OTC is resistant

to session hijacking, and keeps the simplicity and performance advantages of con-

ventional cookies [42]. The technique proposed in this research is a server side

protection measure that can be employed easily in a web application along with

other server side and client side techniques without needing to deploy a whole new

cookies system and without compromising performance.

5.6 Conclusion

Canvas fingerprinting is typically used by web applications to track users, but it

can also be utilized for the good. In this chapter we proposed and explored two

novel constructive use cases. We also studied the effectiveness of these use cases.

The first use case we propose helps detecting the creation of fake accounts

on social networks. This protects the web application owners from unneeded

behaviors such as the selling of unauthentic followers, and impacting the target

audience analyses performed by the web application owners. For this we propose a

two stage process that starts with retrieving and storing the Canvas fingerprint at

the time of account creation, and linking it to the user created. The second stage

checks for repeated fingerprints and raises alerts for potential fake accounts. The

empirical study we performed to validate this technique raised 120 flags where 121

flags were expected, resulting in 6.67% false positives and 7.44% false negatives.
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The second use case prevents session hijacking. To implement this use case,

the Canvas fingerprint is linked to the user session, since the fingerprint is more

persistent than the session. the web application checks for the fingerprint in the

sensitive web pages. If the fingerprint is different while the same session is active,

this indicates a stolen session and the application asks the user to re-enter their

credentials. We developed a proof of concept that proved the effectiveness of this

use case.
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CHAPTER 6

ATTACKING PRIVACY USING

CANVAS FINGERPRINTING

The purpose of this chapter of our research is to show specific examples of how

web applications could utilize the easily obtainable Canvas fingerprints to de-

anonymize web users. We present here five different targets of de-anonymizing

users, and how they can be achieved via Canvas.

1. Linking guest user to a logged in user

2. Conclude a person or entity owns several accounts, or that several users are

related (e.g. family members, roommates, friends or classmates)

3. Conclude that a user owns several devices

4. Attribute activities done across different web applications to the same user

even when using different browsers on the same or different devices

5. Confirmation of identity speculation
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This chapter also explains how the Tor browser protects users from being

fingerprinted via Canvas, and sheds the light on some functionality failures Tor

users face when using Canvas applications.

6.1 Linking a guest user to a logged in user

Let us say a website W would like to identify its guest users and link them to

registered user accounts. This would typically be done easily via cookies. How-

ever, a privacy aware user who would like to protect their identity can erase the

cookies. Website W can utilize Canvas to identify its visitors as in Fig. 6.1 and

as demonstrated in these steps:

1. If a Visitor V1 visits website W and performs some activities as a guest user

(even if the visitor doesnt own an account yet), the website will link the

activity to the visitors fingerprint F1.

2. If in the future a Visitor V2 visits the same website W while being logged in

as user U with a fingerprint F2 that is equal to F1, the website can attribute

the activities done by the guest user to the user U, and can conclude that

V1 = V2.

85



Figure 6.1: Linking a guest user to a logged in user

6.2 Conclude a person or entity owns several ac-

counts

Lets say a website W uses Canvas to identify its visitors as in Fig. 6.2 and the

following steps:

1. If a Visitor V1 visits the website W while being logged in as user U1, the

website will link the user U1 to the obtained fingerprint F1.

2. If in the future a Visitor V2 visits the same website W while being logged in

as user U2 whose fingerprint F2 is equal to F1, the website can understand

that the owner of U1 and U2 is the same person, or that the visitors V1 and

V2 are related (e.g. family members, roommates, friends or classmates)
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Figure 6.2: Conclude a person or entity owns several accounts

6.3 Conclude that a user owns several devices

Lets say a website W uses Canvas to identify its visitors as in Fig. 6.3 and the

following steps:

1. If a Visitor visits the website W and performs some activities while being

logged in as user U, the website will link the fingerprint F1 to the User U,

and can as well record the type of activities done while the fingerprint is F1.

2. If in the future a Visitor visits the same website W while being logged in as

the same user U with a fingerprint F2 that is different from F1, and performs

different types of activities from the first visit, the website can know that the

user U owns two different devices and understand which types of activities

the user performs from each.
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Figure 6.3: Conclude a user owns several devices

6.4 Attribute activities done across different

web applications to the same user despite

using different devices

Let us say websites W1 and W2 use Canvas to identify their visitors, and are

owned by the same entity or have mutual agreement to share users fingerprints

(Note that W1 and W2 can be the same website). W1 and W2 can utilize the

steps in Fig. 6.4 and described as follows:

1. If a visitor V1 visits the website W1 without being logged, the website will

link the activities done by V1 to the obtained fingerprint F1.

2. If V1 visits W2 while being logged as user U, W2 will link the User U to

the obtained Fingerprint F1.
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3. Once a visitor V2 logs in to W2 as user U, W2 will link the newly obtained

fingerprint F2 to the same user U. Therefore, F1 and F2 potentially belong

to the same person.

4. Given that W1 and W2 share the fingerprints information, if V2 visits W1

without being logged in, W1 will be able to attribute the activities done by

V2 to the same source as V1.

Figure 6.4: Attribute Activities to Users Across Devices

6.5 Confirmation of identity speculation

Lets say websites W1 and W2 constructed their own banks of Canvas fingerprints

that link each of their registered users to the fingerprints of the devices from which

they regularly visit the websites, and assuming that the websites are owned by

the same entity or have mutual agreement to share users fingerprints. An identity
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speculation can be confirmed as in Fig. 6.5 and the following steps:

• User U1 has an account on website W1, and speaks up about sensitive

matters using a pseudonym.

• User U2 has an account on website W2, and has provided his accurate

identifying information like his name and email address.

• One of the websites (or a governmental entity) suspects that user U1 is the

same as user U2 (e.g. because they use the same style of writing), and wishes

to confirm this speculation.

• As users U1 and U2 visit the websites W1 and W2 respectively from multiple

devices, W1 would populate its bank of fingerprints by linking U1 to the

fingerprints of the devices used in the visits, and W2 would populate its

bank the same way.

• By comparing the fingerprints of the devices associated to the two users in

each of the fingerprint banks, it is possible to confirm the speculation if some

fingerprints match, and the confidence would increase when more matches

are found.

Note that W1 and W2 can be the same website, and that the same approach

still applies to users visiting the websites from the same device using browsers

with different fingerprints.
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Figure 6.5: Confirmation of identity speculation

6.6 Privacy of Tor Browser Users

A user of Tor is protected from getting fingerprinted via Canvas on at least two

layers: the scripting language level, and the specific implementation Tor for Can-

vas. At the scripting language level, the user of Tor has the option of stopping

any scripts from running on the browser by enabling the option “Forbid Scripts

Globally”, which is what Tor recommends, and what a typical privacy aware user

would choose. If this option is enabled, the user experience browsing the web

would not be smooth, because many dynamic web pages will not function prop-

erly with the scripting language disabled. In our case, all the Canvas applications

and games failed when using this option since Canvas requires a scripting lan-

guage. Tor browser has an effective mechanism that informs the user when a

website is trying to obtain the Canvas fingerprint by looking for calls to the func-
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tion toDataURL() and displaying the pop up in Fig. 6.6 if any is found. The

user has the following three options to select from:

• “Not Now”

• “Never for this site”

• “Allow in the future”

With the first option being the default and the second being the recommended

option. Tor does not allow the fingerprinting to happen unless the user approves

it.

Figure 6.6: Canvas Fingerprint Alert in Tor

Many Canvas applications work fine with Tor as long as the fingerprinting

algorithm is not used. If the function toDataURL() is a requirement in imple-

menting a Canvas application (like for saving the resulted picture from a Canvas

Paint application), the application works fine until the user tries to store the pic-

ture of the Canvas, then Tor would display the Canvas fingerprinting alert asking
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for users approval. Fig. 6.7 shows this scenario in action, where we only got the

fingerprinting alert at the time of saving the picture. In some Cases, we observed

failure in the functionality of some Canvas applications when using Tor, while the

applications work fine in other major browsers. Fig. 6.8 shows an example of a

Paint application that failed to store the drawing when browsing via Tor, while

the application works fine on other browsers.

Figure 6.7: Paint Application Based on Canvas Only Displaying the Alert When

Saving the Drawing

While studying how applications function on Tor versus other browsers, the

alert Tor displays gave us insights on some applications that may appear to be

using Canvas only for legitimate purposes, while in fact it uses Canvas for tracking

users as well. Fig. 6.9 is for a game that allowed us to play and at a certain point

the alert was triggered, which indicates the site is trying to fingerprint users. Not

allowing the fingerprinting did not prevent us from continuing playing.
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Figure 6.8: Canvas Paint Application Failing to Store the Drawing in Tor

Figure 6.9: Canvas Game Trying to Fingerprint Users

6.7 Conclusion

In this chapter, we discussed five specific scenarios where Canvas fingerprints

can be utilized by web applications to de-anonymize web users. Some of these
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scenarios -if not all- may have been implemented by web applications to track the

users across web applications, even when using different devices. Our research

provides more accuracy and effectiveness to these applications that attack privacy

especially when the tracking web applications utilize our enhanced Canvas sample,

or follow the guidelines we provide in Chapter 4 to create their own Canvas sample.

It is noteworthy that there are companies specialized in cross-device tracking using

a combination of several techniques [28]. These companies store graphs that link

users to their devices, and can provide this information to other parties or web

applications which subscribe to the service and may also be sharing information

back with the tracking companies.

This chapter also demonstrates that while Tor browser provides effective mech-

anisms to protect web users from being fingerprinted, these mechanisms do not

affect the importance and relevance of performing research on Canvas for several

reasons, including the inconvenience caused for normal web users in terms of func-

tionality failure as well as the large number of alerts that a user needs to respond

to. Moreover, considering the portion of web users who are using Tor on regular

basis, they account for a negligible percentage of those whom a web application

owner wishes to track. According to StatCounter, the top 29 used web browsers

account for over 99.8% of the market share as of October 2018. These 29 browsers

do not include Tor among them [46].
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CHAPTER 7

RESEARCH VALIDATION,

REPLICATION, CONCLUSION

AND FUTURE WORK

This chapter explains how we validated our performed empirical studies and points

out the threats we see to the validity of our research in Section 7.1, while Section

7.2 gives the research community the key elements with which they can replicate

our research to confirm our findings, or to pick up from where we reached with

our empirical studies instead of reinventing the wheel. Finally, we conclude this

thesis and suggest future direction. The sections of this chapter refer mainly to

the four major experiments and empirical studies we carried out:

1. Canvas prevalence on the web

2. Canvas distinguishing capability analysis
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3. Detecting the creation of fake accounts on web applications

4. Session hijacking prevention on web applications

7.1 Research Validation and Threats to Validity

When studying the Canvas prevalence in Chapter 3.2 to show the cost of dis-

abling Canvas, our initial results showed that only 2.45% websites use Canvas.

However, when validating this by comparing with the literature, we found that a

research published in 2014 showed that over 5.5% of the top 100,000 Alexa web-

sites used Canvas for tracking purposes [4], and this percentage kept growing till

it reached 10.44% in April 2016 when measured on the top 10,000 Alexa websites

[32], which cannot be more than the number of websites using Canvas in general

for all purposes. After investigations, we found out that our scrapping algorithm

misses some cases with which Canvas can be included in a website. Our revised

algorithm showed that 24.04% of websites use Canvas as of January 2018.

We reported in Chapter 3.2 that 21.96% of the top 10,000 Alexa websites were

detected by our crawling script to be using Canvas for all purposes, and estimated

that 11.52% of them (over 50% of the reported) use Canvas for legitimate purposes.

This estimation has three threats to validity. First, one year and nine months

separate the execution of our crawling script and the crawling done by [32], which

may have impacted the percentage of deployed Canvas for fingerprinting purposes

on the web. Second, it is possible that the reported percentage of websites using

Canvas fingerprinting in [32] was subject to false negatives especially with their
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false positive elimination criteria, and consequently affecting their reported results.

Third, since the estimation of the of the Canvas used for legitimate purposes is a

direct subtraction of the overall usage minus tracking usage, it considers a website

that uses Canvas for both legitimate and tracking purposes only in the tracking

side, which is a more restrictive (hence safer) assumption that may only reduce

the prevalence for legitimate usage. These three threats are only for the estimated

prevalence for legitimate purposes, while the overall percentage we reported does

not change.

In addition to the Canvas samples we designed to fingerprint the users in the

Canvas distinguishing capability analysis performed in Chapter 4, we also gathered

the Canvas sample used widely (like in [1] and [4]) to confirm the quality of our

data by comparing the entropy we get in our dataset with the other large datasets

including AmIUnique [1] when using the same fingerprinting sample. The entorpy

obtained by the Canvas sample in both datasets is almost identical, showing the

reliability of our dataset. We also gathered 17 non-Canvas fingerprints to study

the effectiveness of Canvas against each fingerprint, showing that Canvas is the

highest in entopy and distinguishing capability. A threat to the validity of this

empirical study is that we based our analysis on 701 user responses (524 after

filtration), as opposed to 118,934 in the research performed by Laperdrix et al.

[1], and the potential bias the distribution of our dataset, as the different versions

of Windows constructed 56% of the responses, and the submissions done from the

Chrome browser were 70% of the dataset.
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The empirical study performed in Chapter 5 aimed to asses the effectiveness

of the technique we proposed for detecting the creation of fake accounts on web

applications using Canvas. The study was based on 148 registered accounts cre-

ated by 14 different people. These numbers may not be sufficient to accurately

represent the false positives and negatives when it comes to the entire population

of web users, but they give an indication to the effectiveness of the technique.

Chapter 6 discusses five scenarios of how to attack the privacy of web users

and de-anonymize them. In these scenarios the attacks are shown in diagrams and

explained theoretically, but the effectiveness is not empirically proven yet because

this is not in the scope of our research. As a future direction, it is valuable to

design empirical studies that show the effectiveness of these scenarios, and assess

the potential overhead.

7.2 Replication and Reproducing Results

In the Canvas prevalence empirical study of our research, we showed that the per-

centage of websites including Canvas exceeds 24%, which proved the high cost of

disabling Canvas at the browser level. In order for researchers to see how our find-

ings may change over the time, we created a repository with the source code we

used to reach our results, which takes a CSV file (with the list of URLs to be vis-

ited) as an input and outputs a subset list of URLs for the websites containing Can-

vas. The repository can be found on: https://github.com/abouollo/Canvas-

Prevalence.
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In the Canvas distinguishing capability empirical study, we gathered and stud-

ied the distinguishing capability of 23 Canvas samples to fingerprint users. We

summarized the the characteristics of each sample in Table 4.2 and provided the

output of how the samples look like when rendered using Google Chrome on

an HP 2000 Notebook that is running Microsoft Windows 10 and has Intel HD

Graphics 4000 as its graphics card in Appendix A. In addition to that, we cre-

ated a repository with the source code we used to draw each of the 23 samples,

and gave directions on how to use the code in a different website if someone

wishes to replicate our research or extend it. The repository can be found on:

https://github.com/abouollo/Canvas-Samples.

In the empirical study we performed to validate the technique we pro-

posed for detecting the creation of fake accounts on web applications, we

used Canvas sample number 1 on the Canvas Samples Github repository

https://github.com/abouollo/Canvas-Samples, however according to the

distinguishing capability analysis performed in Chapter 4, we expect Canvas sam-

ple number 20 to give better results (i.e. less false positives and negatives).

For the proof of concept built for the technique we proposed to prevent session

hijacking on web applications, we used sample number 1 on the Canvas Samples

Github repository. We also expect Canvas sample number 20 to give more effective

results.

That said, We see that there is a large room for enhancement in the Canvas

samples that can be used in tracking users, and in addition the two novel construc-
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tive applications we proposed for utilizing Canvas, it is possible to brainstorm and

study the effectiveness of more applications. The repositories we provide can help

as a starting point.

7.3 Conclusion

In this thesis we explored Canvas, one of the most powerful HTML features from

various perspective, looking at its history, support, and the functionality for which

Canvas was introduced, showing why it is a serious candidate to replace Flash

which is being discontinued for many security concerns. We demonstrated how

JavaScript is used to manipulate Canvas, and showed the API functions being

utilized for the tracking purposes, how they empower web applications developers,

and why these functions cannot be easily avoidable, which is the main basis of

this thesis.

We implemented a script that uses Selenium to scrape the top 100,000 Alexa

websites looking for the websites that contain Canvas element in the main source

HTML, any iframe, and any JavaScript component that is loaded with the landing

page of the websites. The result showed that the Canvas is very widespread, as

over 24% of the websites use this feature, and hence disabling it to protect users’

privacy comes with a large cost.

To understand the distinguishing capability of Canvas, we performed an em-

pirical study that included over 500 participants who provided their Canvas and

non-Canvas fingerprints. The main targets of this study are to compare the Can-
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vas samples to other widely used fingerprinting techniques, drafting guidelines

on how to enhance the Canvas samples, and to provide strong Canvas samples

in terms of distinguishing users. The results demonstrate how the various com-

ponents and characteristics of each of the 23 different Canvas samples gathered

impact the distinguishing capability of the sample. The enhanced Canvas sample

we proposed surpassed every other Canvas and non-Canvas fingerprint studied

by AmIUnique [1] and Panopticlick [21], and was able to raise the distinguishing

entropy from 0.49 to 0.83.

Moreover, we proposed two novel applications where Canvas fingerprint can

be constructively utilized to detect and prevent attacks. The first application is

to detect fake accounts creation on web applications through a two-stage process,

starting by storing the Canvas fingerprint at the time of account creation, fol-

lowed by a repetition checking stage to analyze and raise alerts for potential fake

accounts. To assess the effectiveness of our proposed methodology, we performed

an empirical study that included 148 accounts registered on a website we built.

The analysis resulted in 6.67% of false positives inaccuracy and 7.44% of false

negatives inaccuracy. The second application is a technique for session hijacking

prevention. We built a proof of concept to demonstrate how a vulnerable appli-

cation can be protected from session hijacking by our suggested mechanism. The

key benefit here is that these two techniques can be implemented in addition to

any existing techniques to achieve layered security.

This work also explores scenarios of how web applications can take advantage of
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Canvas fingerprint to attack the privacy and de-anonymize web users who could be

browsing through different devices and visiting separate web applications. These

scenarios included linking a guest user to a logged in user, concluding a person

or entity owns several accounts, identifying that several users are related (e.g.

family members, roommates, friends or classmates), concluding that a user owns

several devices, attributing activities done across different web applications to the

same user even when using different browsers on the same or different devices,

and confirming identity speculation.

7.4 Future Work

In the Canvas prevalence area, to overcome the threats to validity and to achieve

more accurate results, it is beneficial to replicate our Canvas prevalence experi-

ment for all purposes as well as replicate the Canvas prevalence only for tracking

purposes at the same time frame to avoid any potential impact of time in the

trends of the ever-changing web. To avoid the false positives we expect in our re-

search findings, it is important pay more attention to the obfuscation techniques

and find methods to overcome them. It can be useful to record the websites that

uses Canvas constructively and for tracking in the same web page.

For the Canvas distinguishing capability analysis, our research and analysis

were based on the fingerprinting data from 524 user visits. Although this dataset

gives an understanding of how the distinguishing capability of Canvas is increased

with the enhanced samples (especially with the normalized entropy), it is impor-
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tant to confirm the findings on a much larger dataset for more reliable results,

while trying to maintain less biased samples in terms of operating system and

web browser market share. The observations we found can also be utilized for

designing new Canvas samples that are even more in entropy.

In addition to that, we suggest selecting some of the most distinguishing Can-

vas samples and identify what the actual differences in the rendered pixels are.

This can be done by creating an animation that cycles fast through all the images

resulted from the dataset, or by constructing a big matrix where we subtract pairs

of images and highlight the pixels that differ. Accomplishing this could reveal the

underlying causes of the differences and lead to further principles.

Further more, we suggest deep investigations to identify the root causes of the

differences in pixel rendering. As starting points, we recommend to record and

analyze the system calls triggered by the rendering of different Canvas samples

(e.g. one sample can be an empty Canvas while another may have some simple

component, or two samples the vary in complexity). System calls are the way via

which an application requests services from the kernel of the operating system.

By analyzing the differences in the type and the amount of triggered system calls

when rendering different Canvas samples, it may be possible to identify the main

factors contributing to the pixel differences. This can help quantify the extent to

which each hardware components like CPU, GPU and graphics card or software

configurations like operating systems and browser types and versions contribute

to the overall differences in the rendered Canvas.
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We proposed the fake account creation detection application via Canvas, and

tested the effectiveness based on 148 registered accounts created by 14 partici-

pants. This experiment can be repeated on a larger scale of audience to confirm

the effectiveness. It is also important to study how a malicious user can defeat

our proposed technique (by methods like Canvas URL Data randomization) and

implement defences against that.

We also proposed and implemented a session hijacking prevention technique

utilizing Canvas. This implementation we provided only accommodates an ac-

count login from a single browser at a time. This implementation can be enhanced

to allow simultaneous legitimate logins while continuing to detect session hijack-

ing. Calculating the overhead of this technique and quantifying the dissatisfaction

that may be caused by this protection measure are open research areas to consider

in future research.

It would be valuable to address the destructive use cases of Canvas, as the

attack scenarios are shown in diagrams and explained theoretically. Designing and

performing empirical studies can better assess the effectiveness of these scenarios,

and measure the potential overhead.

Finally, utilizing the GitHub repositories we provide would help in replicating

all the empirical studies performed in this research, and is going to provide more

trustworthiness to our findings.
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APPENDIX A

CANVAS SAMPLES

The screenshots were taken from Google Chrome (64bit) 62.0.3202.94 on Mi-

crosoft Windows 10 Home Single Language (Version 10.0.15063 Build 15063).

The laptop model is HP 2000 Notebook PC. Graphics Card: Intel HD Graphics

4000.

Canvas Sample 1:

Contains the sentence ”I love InfoSec” written in the font “Arial” with size

18 pt, followed by an emoji.
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Canvas Sample 2:

Two stroke rectangles (with round edges and different line widths) and two

filled rectangles. All the shapes are in black, have different positions and

dimensions, and some of them overlapping.

Canvas Sample 3:

Two stroke rectangles with round edges and different line widths, and two

filled rectangles, one of which is transparent. All the shapes have different

colors, positions and dimensions, and some of them overlapping.
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Canvas Sample 4:

Linear gradient with 5 color stops.

Canvas Sample 5:

Linear gradient with 5 color stops in the background. Two stroke rectangles

with round edges and different line widths, and two filled rectangles, one of

which is transparent. All the shapes have different colors, positions and

dimensions, and some of them overlapping.

116



Canvas Sample 6:

Radial gradient with 5 color stops in the background.

Canvas Sample 7:

Radial gradient with 5 color stops in the background. Two stroke rectangles

with round edges and different line widths, and two filled rectangles, one of

which is transparent. All the shapes have different colors, positions and

dimensions, and some of them overlapping.
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Canvas Sample 8:

Two stroke rectangles with round edges and different line widths, and two

filled rectangles. All the shapes have different positions and dimensions, and

some of them overlapping. The shapes are colored with a gradient of 5 color

stops.

Canvas Sample 9:

Linear gradient with 5 color stops in the background. Two stroke rectangles

with round edges and different line widths, and two filled rectangles, one of

which is transparent. All the shapes have shadows, different colors, positions

and dimensions, and some of them overlapping.
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Canvas Sample 10:

All the alphabetical letters in capital and small, numbers, and 25 characters,

printed in the font “Arial” with a size of 18. This sample is to mimic a

sample in [3].

Canvas Sample 11:

All the alphabetical letters in capital and small, numbers, and 25 characters,

printed in the font “Arial” with a size of 20. This sample is to mimic a

sample in [3].
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Canvas Sample 12:

All the alphabetical letters in capital and small, numbers, and 25 characters,

printed in the font “Sirin Stencil” from the Google Web Fonts server with a

size of 12. This sample is to mimic a sample in [3].

Canvas Sample 13:

All the alphabetical letters in capital and small, numbers, and 25 characters,

printed in the font “Sirin Stencil” from the Google Web Fonts server with a

size of 15. This sample is to mimic a sample in [3].
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Canvas Sample 14:

All the alphabetical letters in capital and small, numbers, and 25 characters,

with a non-existent specified font “Fake-Font-Name” with a size of 18. This

sample is to mimic a sample in [3].

Canvas Sample 15:

All the alphabetical letters in capital and small, numbers, and 25 characters,

printed in the font “Sedgwick Ave Display” from the Google Web Fonts

server with a size of 18.
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Canvas Sample 16:

All the alphabetical letters in capital and small, numbers, and 25 characters,

printed in the font “Gloria Hallelujah” from the Google Web Fonts server

with a size of 18.

Canvas Sample 17:

All the alphabetical letters in capital and small, numbers, and 25 characters,

printed in the local windows font “Palatino Linotype” with a size of 18.
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Canvas Sample 18:

21 different selected emojis.

Canvas Sample 19:

Linear gradient with 5 color stops in the background. Stroke rectangles and

filled rectangles, one of which is transparent. All the shapes have shadows,

different colors, positions and dimensions, and some of them are overlapping.

On top of that are all the alphabetical letters in capital and small, numbers,

and 25 characters, printed twice in the fonts “Palatino Linotype” (a

Windows font) and “Sedgwick Ave Display” from Google Web Fonts with a

size of 25. In addition to 21 different selected emojis.
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Canvas Sample 20:

Linear gradient with 5 color stops in the background. Two stroke rectangles with

round edges and different line widths, and two filled rectangles, one of which is

transparent. All shapes have shadows, different colors, positions and dimensions,

some of them overlapping. On top of that are all the alphabetical letters in capital

and small, numbers, 25 characters, printed twice in the Windows local fonts

“Palatino Linotype” and “Arial” with a size of 25, and 21 different emojis.

Canvas Sample 21:

All the alphabetical letters in small and many of them in capital printed

overlapping in blue and green, with a little orange rectangle in the background.

This sample is similar in concept to the ones presented in [4] and [1].
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Canvas Sample 22:

All the alphabetical letters in capital and small, numbers, and 30 characters

printed overlapping in blue and green, with a little orange rectangle in the

background. This sample is similar in concept to the ones in [4] and [1].

Canvas Sample 23:

A landscape picture printed on a Canvas.
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Canvas Widely Used:

This image was re-generated from the Canvas DataURL stored by the

multi-factor algorithm in Table 4.1, using an online converter. It is similar to

our Canvas sample 21.
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