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ABSTRACT

Full Name : Mohammed Mehdhar Al-Mehdhar
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Support Vector Machines (SVMs) are widely used in data classification. They are
typically preferred due to their low generalized error. However, the conventional SVM
models are sensitive to noise (outliers). Therefore, there is a need to develop robust data

classification models that are insensitive to noise.

In this thesis, a total of 3 robust data classification models for binary classification are
proposed. The three proposed models utilize the robust properties of the Correntropic
Loss Function (CLF). Two of these models use the CLF as an error measure (C-SVM
and C-PSVM), and the third uses the CLF as a membership degree (CMD-SVM). The
proposed robust models are developed for the case of Linear Decision Boundary (LDB).
For the case of Nonlinear Decision Boundary (NLDB), the proposed robust models were

developed using the Generalized Representer Theorem (GRT).

An iterative solution methodology is developed to efficiently solve the proposed robust
models. The proposed methodology exploits a very critical tuning parameter (o) in the
CLF, which controls the shape of the CLF. As a result, the objective function’s convexity
is controlled throughout the solution process so that a local minimum is eventually

guaranteed.

Xiv



Finally, numerical experiments are conducted to illustrate the performance of the
proposed robust models against the conventional SVM models. The experiments reveal
that the proposed models are insensitive to noise and achieve higher prediction
accuracies. However, this improved accuracy is achieved at the cost of the solution time.
The introduction of the parameter o into the robust models increases the total solution
time due to the additional line search for o. Nevertheless, to sum, based on the numerical

experiments, the proposed methods works well in the presence and absence of noise.
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CHAPTER 1

INTRODUCTION

People rely on their experience and conjecture to predict the future before they ever used
science to help them get better insights. That experience and intuition is related to
something those people have learned or experienced before, which forms the content of
what so called “history”. History can be seen as a huge database full of different types of
data. This data can be carefully observed and analyzed to discover patterns and
knowledge which can help us draw pictures of future events. The real challenge in the
past was collecting, maintaining, and analyzing that extensive volume of data with

limited tools and resources.

For the last two decades, the rapid technological evolution made data capturing,
processing, and storage possible in huge volumes and incredible speed. This opened the
gate to develop solutions that helped people and systems learn from existing data to make
better decisions in the future. Since then, the concept of extracting knowledge from
historical data has gained a huge interest from many researchers, entrepreneurs, and end-
users around the globe. The demand of systems like image processing, voice recognition,
and motion sensing are in steep growth, especially with the expanding arena of their
applications. Corporates in many industries such as in IT security, digitalization,
multimedia, and robotics are budgeting significant amounts of money for developing and

improving those systems.



Learning from data originally came from two main fields known as Pattern Recognition
and Machine Learning. The former originated from Engineering and the latter from
computer science [1]. As the two fields grew, more fields were developed based on the
background, types of applications, and the techniques used. One of the well-known fields
is Data Mining, which is heavily linked to numerous applications in science, engineering,

and business.

1.1 Data Mining & Analysis

Data mining is defined in [2] as a systematic process of analyzing given data from a
system to discover patterns using algorithms in order to produce data analysis
applications. The terms “Data Mining” is usually linked to the so called “knowledge
discovery process”. This process uses discovery algorithms to recognize patterns and
establishes models from the existing data [3]. The application areas for data mining are
limitless and it currently takes important roles in sectors like banking, insurance,
education, telecommunication, health, medicine, public, construction, engineering, and

science [4].

The types of problems in data mining can be divided into two main categories. The first
category is supervised learning where sufficient information about the data is given and
future prediction is carried out using that given knowledge. The second category is
unsupervised learning where no knowledge about the data to be worked on is available
aside from the data points themselves. There are three major areas in data mining:

clustering, classification, and regression. Clustering is considered to be a type of
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unsupervised learning, and classification & regression are known as supervised learning

problems.

Before performing any data mining or analysis, the data needs to be organized in a format
that is readable and easily understood. Table (1) represents an example of a hypothetical
data set. The rows are the data instances whereas the columns represent the data features.
This means the number of rows can be interpreted as the number of data points (samples)
and the number of columns as the space dimension of the points. The last column (not a

feature) is usually kept to identify the instance label in the case of supervised learning.

Table 1: Typical data representation before processing

Instance Feature 1 Feature 2 Feature m
Label
ID (concentration) | (temperature) (pressure)
1 C1 T1 P1 Good
2 C2 T2 P2 Good
n Cn Tn Pn Bad

1.2 Classification

Classification is the process of learning from the available data to extract a pattern that
will enable the user to classify a new instance. Classification is divided into three types:
unary classification, binary classification, and multi-class classification. In unary
classification, there is only one class and a new instance will be classified as “yes”
(belongs to the class) or “no” (does not belong to the class). An example is the novelty
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detection problem, which classifies whether a machine’s status is “normal” or not. In this
case, the data points used to build the classification model are the ones which indicate a
“normal” machine status. This is because in nature, a machine’s status is “normal” most

of the time hence, a sufficient number of data points can be obtained.

Binary classification classifies a data point into either one of two classes. One example of
this type are classifying whether a person is well or sick. Another example is classifying
whether a client will subscribe to a certain service or not. Binary and unary classifications
are often confused for each other. The main difference between unary and binary
classifications is the availability of the data. In novelty detection for example, it is
difficult to collect data for the “abnormal” status because a machine fails once or twice a
year. This makes it impractical to establish a second class with sufficient number of data

points.

Multiclass classification is similar to binary classification but with more than two classes.
An example is to classify whether a photo belongs to person X, person Y, or person Z. In
some classification techniques, this type of classification is treated a set of multiple

binary classification problems which eventually form a multiclass classification problem.

This thesis focuses on binary classification. The process of binary classification is
summarized in Figure (1). It starts with collecting data from history and present it in a
suitable format. Then a classification technique is chosen to train the classification model.
Classification techniques are the algorithms that are applied on the available data to
construct the classification models. This process is well known as model training. Several

techniques are available to train the classification model such as artificial neural network,



support vector machines, decision trees, and Bayesian Networks. Each technique has its
own advantages and disadvantages w.r.t common performance measures like accuracy,
speed of learning, tolerance to irrelevant attributes, and overfitting [5]. After training the
model, the decision rule will be constructed. That decision rule is a function which takes

a new data point as an input and assign it to one of the two classes.

1.3 Objective of The Thesis

The objective of this thesis is to develop binary classification models that are insensitive
to data noise. The models will be developed upon the SVMs' framework. SVMs have
unique characteristics (maximum margin) that distinguish the technique from other
classification techniques. It is developed from a sound theory, and formulated as a
convex problem. It also has low sensitivity to sample size and dimensionality. Moreover,
SV Ms have better generalization accuracy compared to the other classification techniques
[5]. In addition to that, the proposed models will exploit the robustness of the CLF. It has
been proven that the function is locally pesudoconvex. This key property will be used in
developing the solution method for solving the proposed models. Thus, the proposed

models will inherit the properties of SVM and CLF.



Collect Data
From History

>

Select a
classification
technique

Train the
model

New
input/instance

Establish a
decision rule

Figure 1: A flow chart illustrating the major steps in a binary classification problem




1.4  Thesis Organization

This rest of this thesis is organized as follows. In Chapter 2, the mathematical model of
support vector machines is derived followed by a discussion on the robust SVM models
from the literature. A literature gap is then presented in addition to the problem statement,
which highlights the importance of this work. In Chapter 3, three robust SVM models are
proposed and discussed followed by the solution methodologies in Chapter 4. After that,
numerical experiments on well-known problems are presented in Chapter 5 to
demonstrate the performance of the proposed models. Lastly, Chapter 6, a discussion on
the critical concepts related to the thesis is presented, followed by conclusion and future

research opportunities.



CHAPTER 2

LITERATURE REVIEW

In Section 2.1, different conventional formulations of the SVM models from the literature
are presented. These conventional SVM models are not robust and they are sensitive to
noise. Some improvements on the conventional models are presented in Section 2.2.
These improvements will induce robustness and reduce noise sensitivity. Finally, a
literature gap is presented to highlight the shortcomings in the literature and identify

potential areas of improvement.

2.1 Support Vector Machine Models

Support Vector Machines are parametric methods, which are derived from the concept of
maximum margin classification. The margin is defined as the Euclidean distance between
the separating hyperplane (also known as the decision boundary) and the nearest data
points [1][3]. The SVM defines the decision boundary, which separates the two classes
into two distinct half-spaces, such that the margin is as large as possible. Such decision
boundary will ideally result in the best classification accuracy. Figure (2) illustrates two
possible decision boundaries and the associated margins. The decision boundary B has

the largest margin, and it is the boundary that would be produced by the SVM model.



x2

Figure 2: Two different linear decision boundaries with their associated margins
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Data points are presented in pairs of (x;,y;), where x; represents the data point in m
dimensions, y; is the class label defined as y; = —1 V i's which belong to class 1 and
y; = +1Vi's which belong to class 2. The decision boundary is mathematically
represented by the linear equation of the separating line (in higher dimensional space it is

a hyperplane), which takes the form:
wix+b=0 )

where w € R™ and b € R are parameters to be determined by the SVM model, and x is a
data point. After obtaining the parameters (w and b) by solving the SVM model, the
decision boundary can be used for classifying a new point into either of the two classes.
This classification is carried out by the “rule function”, to decide whether a point x

belongs to Class 1 or Class 2. The rule function is defined as:
sign(w'x + b) (2)

where if the rule function is positive, then point x belongs to the positive class (Class 2),

or if the rule function is negative, then x belongs to the negative class (Class 1).

Since the SVM aims to maximize the margin, the mathematical model can be constructed
as an optimization problem that maximizes the margin between two disjoint classes.
Figure (3) shows two classes separated by a line (decision boundary). The two dashed
lines are known as “support hyperplanes” and they define the margin of the decision
boundary. From the concept of SVMs as maximum margin classifiers, it is simple to
realize that each support hyperplane must pass through at least one point. Those points

which lie on these support hyperplanes are called “support vectors”. The vector normal to
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the decision boundary is denoted as w, which can be associated with the margin using a

multiplier r € R*. It can be clearly seen that maximizing the margin is equivalent to

maximizing r. Taking a support vector from one class, say x~ from Class 1, and let x* be

the image of x~ on the other supporting hyperplane, along the direction w, defined as:

t=x"4+ rw

X
The equations of the two supporting hyperplanes are:
wixt +b=+1
wix~+b=-1
Substituting (3) in (4a) we get:
wli(x™+rw)+b=+1
> rlwl?+wix +b=+1
Substituting (4b) in (5) leads to:
rlw|[? —1=+1

2

S>Sr=—-—
[lw]|?

11

(3)

(42)

(4b)

(5)

(6)



\ O
\ \_xt ®) o
O \ W
\ \\ o)
O
O x_\ \\
O 0 \ \ O o
O \ \ Class label
O \ \ y= +1
Class label \ \
y= -1 H \ \\
\ wlix+b=+1
O . wix+b=0
2 wix+b=-1
x1

Figure 3: The basic components to derive the SVM model
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Now the SVM model can be formulated as follows:

1

min: o [wl? (72)
s.t.: wix;+b> +1 Vi=1,2, --,q €Class1 (7b)
wlhx;+b< -1 Vi=gq,q+1, -~-,n €Class?2 (7c)

where w and b are the unknowns, m is the number of features in the data, and n is the
total number of data points. The two sets of constraints (7b) and (7c) can be combined

into one set without changing the number of individual constraints as follows:
1
min. : 5 [lw]|? (8a)

s.t.: 1—yl-(wa,-+b)S0 vi=1,2, --,n (8b)

This model is feasible only when the data classes are linearly separable. In practical
scenarios, linear separability is extremely difficult to find. To allow for a feasible solution
to exist in such scenarios, a soft-margin SVM developed by Cortes and Vapnik [6] can be
used. As shown on Figure (4), a slack variable for each data point is added to allow the
data point to violate the constrains in (8b) and penalize that violation in the objective

function. The soft -margin SVM is formulated as:

n
1
min.: f = E”WHZ + Cz S; (9a)
i=1
s.t.: 1—ywlx;+b)<s; Vi=12,-,n (9b)
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;=20 Vi (9¢)

where C is a parameter used as a scaling factor, and s; represents the slack variable for
data point x;. The second term in the objective function (X7-,s;) is called “loss

function”.

Another SVM model was proposed by Mangasarian and Wild in [7] that achieved a
significant improvement on the solution time while maintaining a comparable solution
accuracy. The model is referred to as "Proximal SVM (PSVM)" which utilizes two
parallel support planes, where each plane crosses the center of mass of the associated data
class. PSVM performs the classification of a new data point in a way such that the data
point is closest to the associated plane of the class. On the other hand, the SVM classifies
a data point with respect to the disjoint half-space around the decision boundary. The

PSVM is modeled as follows:
) 1 1
min.: 7 (lwl|l? + b?) + ECIISII2 (10a)

s.t.: 1—-ywi'x;+b)=s; Vi=12,-,n (10b)
where the notations are as previously defined for models (8) and (9).

It is important to mention that before the development of the PSVM, Suykens and

Vandewalle [8] developed the Least Squares SVM (LS-SVM), formulated as:
1 1
min. : > lwl|? + §C||S||2 (11a)

s.t.: 1—yWwix;+b)=s; Vi=12,-,n (11b)
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Figure 4: Incorporating the slack variables to derive the soft-margin SVM
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which is the same as the PSVM but without the bias term "b2?" in the objective function.
The objective function in LS-SVM is not strongly convex like in the PSVM [7] and that
is because of the absence of the term "b2" in the objective function. Furthermore, the
speed of the PSVM solution algorithm is better than that of the LS-SVM, which is a

differentiating factor for the PSVM [7].

The soft-margin SVM (it will call be called as SVM from now on for convenience) and
PSVM models are attractive due to their convexity which makes the problems easy to
solve. However, a major weakness of these models is their sensitivity to outliers. In soft-
margin SVM and PSVM, the error is computed by the loss functions which are linear and
quadratic, respectively. Those loss functions return high values for outliers, which

influence the decision boundary and may result in poor classification accuracy.

2.2 Robust Support Vector Machine Models

One major reason for noise sensitivity in SVM is treating all data points with the same
importance, without differentiating outliers from regular points. To overcome this
obstacle, Fuzzy Support Vector Machine (FSVM) was proposed. FSVM allocates a

weight to each individual data point to adjust its contribution in the model [9]. The
objective function from the SVM model is reformulated as % lwll?> + C X", a;s; , where

a; is called "fuzzy membership” and it determines the importance of data point x;. The
same concept was applied by Meng et al. on the PSVM model to induce robustness [10].

The model is called as Weighted Support Vector Machine (WSVM) and the second term

16



%allsll2 becomes %IIasIIZ, where, a = [a,,a,, -+, a,]. Each weight value «; in the
WSVM is a function of the data point distance to the class center, and it can be

mathematically expressed as o = 1 — RdTy' where the parameter d can be defined as the

Euclidian distance from the associated class center, R is the radius of the class, and y is a
positive real number to ensure that « # 0. Although this weighing method enhanced the
PSVM robustness, such a simple formula to calculate the weights does not necessarily
capture the real demography of the data. One improvement upon this shortcoming is
using sophisticated statistical methods to calculate the membership weights. Principal
Component Analysis (PCA) was utilized by Heo & Gader [11] to calculate the
reconstruction error, which measures the relationship of a data point to the whole data
structure. The idea is to perform PCA on each class to come up with the principal
components. Then the reconstruction error is used to calculate the membership of the data
points. The simple expression of the reconstruction error for a centered data point is
expressed as: E(x) = ||lx — PxP%x||?; and Py is a matrix consisting of the principal

components of the covariance matrix of X.

The FSVM can be further improved by utilizing the concept of bilateral weighing. The
bilateral-weighted fuzzy SVM (BW-FSVM) introduced in [12] aims to reduce the effect
of noise in classification problems. The method restructures the data sets from G =
{Ce1, y1), (22, 2), +, (X, v} to G ={(xy,+1,71), (21,11 -
v1), (x5, +1,75), (x5, —1,1 — y5), -+, (x,, +1, 1), (x,, —1,1 — y,,)}, where y; is  called
the membership degree (weight) and it constructs the association level of that data point

to its assigned class. As a result, the BW-FSVM model is built as follows:

17



min.: f = %HWH2 + Czn:( visi + (1 —vidsi ) (12a)
i=1

Ss.t.: 1-—Wwlx;+b)<s; Vi=12,-,n (12b)

1+WwWix;+b)<s] Vi=12,-,n (12¢)

Si,s; =20 Vi (12d)

Despite the contribution by Wang et al. in [12], the BW-FSVM still performs on a simple
weight assignment platform. To impose more robustness into the model, Yang et al. [13]
incorporated a bilateral truncated hinge loss function abbreviated as BTL-RSVM and

presented as:
1 n
min. : 3 lwll3 + CZ T(w,b,x;) (13a)
i=1

T(w,x;,b) = min{1,[1 — (WTx; + b)].} + min{1,[1+ (WTx; + b)],} (13b)

This enhanced model was inspired by some earlier improvements on the well-known
hinge loss function [14]. This function is a common function used in classification and
regression (because of its simplicity and early discovery). The hinge loss function can be

written as:

H(z) =(1-2),,

a ifa=0

where (), = { 0 otherwise

. To incorporate the hinge loss function into SVM, the

model is written as:

18



1 S 1 N
min: f = slwl?+ €Y Hf () = FIWlZ+ ¢ Y (1-yf@), (4

The hinge loss function can be truncated to become bounded and avoid extreme cost
values caused by outliers [14]. As a result, the model robustness will be improved. The

truncated hinge loss T, (z) developed by Wu and Liu [14] is expressed as
Ts(2) = H,(2) — Hy(2),
where H,(z) = (1 — z),.
=> T(2)=0-2);—(s—2),4 (15)

The truncated loss function shown in Figure (5) prevents the error values of z < s to be

inflated and assign high importance to noise.

Because of the simplicity and effectiveness of the hinge loss function, it can be deployed
in a wide range of formulations to suppress noise sensitivity. For instance, the hinge loss
function can be utilized as a similarity measure term built in another loss function. This is

called the "hinge-loss-based loss function™ [15] and it is formulated as:
-Hf -(1-yt)?,
I,(y,t) = 02<1—eoz>= 02<1—e o2 >;y€{—1,+1} (16)

Figure (6) shows the loss function [;(y,t) at different scaling parameter o.
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Figure 5: Plot of the functions HI(z) (__ ) ,Hs(2) (----),and Ts(2) (....) with Ts=HI -Hs [14]
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1 yt

Figure 6: The loss function (16) at different values of the scaling parameter ¢
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The model can be formulated per the following:
1 n
min.: f = alwll3 + Z I(y; , W™ x; + b) (17a)
i=1

Or

1 n —(1—Yi(WTxi+b))2+
min.: f = a|lw|? + EZ o’l1—e a2 (17b)
i=1

where «a is a scaling factor that assigns the contribution of the relevant terms in the
objective function. In a generally similar model structure, the hinge loss function was re-
scaled and smoothed to allow for a more general form of the function as illustrated in
Figure (7) [16]. The rescaled hinge loss function is formulated to be a function of the
hinge loss function as H,.(z) = B(1—e @), where f=(1—-e™ ! is a
normalizing constant and n is a smoothing parameter. The mathematical model in [16] is

constructed as follows:
min.: f = [wll? + C XL, Hyo(z) =5 wll3 + CB T,y [1— e Gizd]  (18)

The hinge loss function was also implemented in statistical models utilizing the concept
of "Least Median Regression". The Hinge loss function H;(z) in model (14) is replaced

with Class Conditional Median Loss function (CCML). The CCML is written such that:
CCML =3¢ [ median (1 - (Df(x), + 2edian, (1 - (~Df(x)), ] (19)

in addition to a balancing constraint [17].
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Figure 7: Plot of the rescaled hinge loss function at different scaling parameter 1 [16]
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Although truncated loss functions provide good noise insensitivity, the optimization
problem may be difficult to solve in general. This is mainly because these truncated loss
functions are not differentiable. Wang et al. [18] developed a smooth ramp loss function
which integrates the concave Huber loss and convex Huber loss functions. Figure (8)
shows the smooth Ramp loss function which is bounded, continuous, and twice

differentiable. The model is formulated as follows:

min.: f = Zlwll2 +C XL, H (ef () + C Xy HE (vif (x) (20)
0 if z>h, 0 ifz>1+h,
where  HEU(2) =4~ if |zl < h,, HIY(2) = {8 gp g g <,
A if z< —h, 11—z ifz<1-—h,

and h is Huber parameter. The proposed model in [18] achieved better generalization

performance than the classical SVMs.

In addition to the above approaches, there are approaches that focus on the insensitivity
w.r.t the spread of the data. For example, SVM takes into consideration the spread of the
data within each class and reacts to changes in data spread along any direction [19]. To
overcome this drawback, Jebara & Shivaswamy [19] developed the Relative Margin

Machines (RMMs), which is a modification to the SVM, by adding the following
constrain %(wal- +b)? < 372 Vi, where B is a constant with the range B > 1. RMM

is insensitive to the data spread parallel to the decision boundary, which induces
robustness to affine scaling. This indicates that the RMM model will position the decision
boundary in a way that maximizes the margin only in the direction relative to the spread

of the data. Moreover, RMM can be enhanced to deal with complicated data distributions.
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This can be achieved by incorporating a loss function in the model such as the pinball

loss function [20].
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Figure 8: The Ramp loss function (black-solid) and smooth Ramp loss function (red-
dashed) [18]
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2.3 Literature Gap

Despite the improvements presented in the literature to reduce noise sensitivity in
SVM’s, there are still some aspects which have not been sufficiently improved. The
robust models that relied on the membership degrees are limited to basic calculations to
assign the weights to the points. For some complicated data structures, those methods
may not be sufficiently effective to reduce the role of outliers. Additionally, those models
would require significant computational effort to calculate the weights in advance before
solving the model. Therefore, using loss functions in the SVM models has been preferred

and gained more interest from researchers.

The loss function in the objective function of the optimization model aims to penalize
incorrectly classified points. The model becomes robust when outliers are not penalized
(or only slightly penalized). This will prevent the outliers from playing a significant role
in determining the decision boundary. One way to obtain this behavior in loss functions is
truncation. Truncated loss functions limit their output to constant values beyond certain
argument values in its domain, thus limiting the penalty in the objective function.
However, the main drawback of truncated loss functions is smoothness. Truncated loss
functions are normally not smooth, hence not continuously differentiable. That may cause

the SVM optimization problem to be difficult and inefficient to solve.

To overcome the shortcoming of non-smoothness in some loss functions, they were
modified to be smooth and continuously differentiable. Despite these improvements, the

modified models are still non-convex and require global optimization algorithms to solve.
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The robust SVM work by Feng, et al. [15] starts with a reasonable model formulation
which seems to be promising for achieving their objective of designing a robust and
smooth loss function. However, the mathematical derivations afterwards and the
proposed problem solution have some gaps. The problem is initially formulated as:

n
min 1
UWERY D ER ;Z}Kﬂ—%Kﬁbﬂwﬁj+AWKu
i=1

—(1—y-KTu—y-b)2
min 1 vt Tty
mootll—e o2 + Au"Ku

“ueRLbER iz (21)
where u is the Lagrangian variable, and K; is the ith column of the kernel matrix. This
formulation is for non-linear decision boundaries, which has not been tackled yet in this
thesis but will be discussed in detail in later chapters. For the sake of simplicity, we
rewrite (21) for a linear decision boundary (LDB) in terms of w and b and the problem

will be changed to:

weR"bEeER

. n —(1—ywTxi—yb)?
min 1 5 (1-yw :l Yib), 5
;Z o2 1—e s + Alwll (22

Taking the partial derivatives for (22) with respect to w and b:

—(1—yinxi—yib)2

OR(w,b) _1 ?:1 2(1 _ yi(WTxi + b))+e#+(—yixi) + 2w =0 (233.)

ow n

2
dR(W,b) _ 0._2 n (—l)XZX(l—yi(wai+b)) _(1—3’i(wai+b)>+

ab  n &=t 0 - o2 t(=Dye o? +0=0 (23b)
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—(1—yl~(wai+b))i

Now let 4; = 2e a2 , then equations (21) and (22) can be reduced to:
OR(w, b
& Z [Alylx (1-y,(W'x; + b)) ] —2w=0 (24a)
ow
dR(w,b) <
== ) (1 -y + b)), = 0 (24b)

i=1

Equations (24a) and (24b) can be written in a kernelized form as:

aR(u b) _ Z Ak, (1 - yi(KTu + b))+] —AKu =0 (25a)

OR (u b)

ZM 1 yi(Kiu+ b)) =0 (25b)

Equation (25a) is found to be matching with that of Feng, et al. However, Equation (25b)

was derived by the authors to be:
n
> 40— Klu-b)=0 (26)

The two equations (25b) and (26) are not the same and they yield to different solutions.
The authors further utilized equations (25a) and (25b) in [15] to develop the following

iteratively reweighted algorithm to solve the model (Q1):

argmin

r+1 r+1) —
(™%, b )_ue]R”,beR

Lol (y; — Kf'u—b)2 + 2u"Ku (272)
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where

~(i=KTw "),
wltl=e o? ) i=1,2,..,n (27b)

and r is the iteration number.

Again, it is easier to illustrate the performance of model (27) in the LDB form instead of

the kernelized form. Therefore, model (27) is rewritten in terms of w and b as follows:

argmin

r+1 pr+1) —
W™, b )_we]Rm,be]R

o 0] = wha = D)3 + Allwll” (280)
where

AT 7 z
(yl w' xi—b )+
=e o2 , i=1,2,..,n

(28b)

r+1

w;

and r is the iteration number.

The loss function X, w7 **(y; — wlx; — b)% is the term which penalizes an incorrectly
located point (an outlier). Now consider the two data sets with the LDB in Figure (9). Al