

iii

© Mohammed Al-Mehdhar

2018

iv

To my parents Mehdhar and Fatimah, who are my sources of inspiration.

To my wife Manal, and my daughters Layan and Lamar, for all the love and support

v

ACKNOWLEDGMENTS

All praise to Allah for giving me the opportunity to pursue my master’s degree and for

helping me throughout the last three years to successfully reach the end of this journey.

I would like to thank my thesis advisor Dr. Syed Mujahid for his ultimate support. He

was always available to offer his advice and guidance throughout my thesis work. His

passion for research has taught me a lot and motivated me to always go the extra mile.

The experience I gained from him during the research and the process of writing the

thesis is invaluable.

I also would like to thank the committee members: Dr. Shokri Selim and Dr. Hesham Al-

Fares for their time and contribution. All the constructive comments and the

encouragement they provided had a positive impact on my thesis research.

Finally, I express my gratitude to my parents who provided me with all the support I

needed to finish my degree. I also pass my sincere gratefulness and appreciation to my

wife for her endless support and patience throughout all the years of study and research.

All this success would have been impossible without my family.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS .. VI

LIST OF TABLES .. IX

LIST OF FIGURES .. X

LIST OF ABBREVIATIONS .. XIII

ABSTRACT .. XIV

الرسالة ملخص .. XVI

CHAPTER 1 INTRODUCTION .. 1

1.1 Data Mining & Analysis ... 2

1.2 Classification... 3

1.3 Objective of The Thesis ... 5

1.4 Thesis Organization .. 7

CHAPTER 2 LITERATURE REVIEW ... 8

2.1 Support Vector Machine Models .. 8

2.2 Robust Support Vector Machine Models .. 16

2.3 Literature Gap .. 27

2.4 Problem Statement .. 33

CHAPTER 3 ROBUST MATHEMATICAL MODELS .. 36

3.1 Robust SVM Models for LDB ... 39

3.1.1 Correntropic Support Vector Machine (C-SVM) .. 42

vii

3.1.2 Correntropic Proximal SVM (C-PSVM) .. 43

3.1.3 Correntropic Membership Degree SVM (CMD-SVM) .. 43

3.2 Methods for NLDB... 45

3.2.1 Dual Formulation.. 45

3.2.2 Feature Space and Kernel Trick ... 48

3.2.3 Generalized Representer Theorem ... 54

3.3 Robust SVM Models for NLDB ... 56

3.3.1 Correntropic Support Vector Machine (C-SVM) .. 56

3.3.2 Correntropic Proximal SVM (C-PSVM) .. 59

3.3.3 Correntropic Membership Degree SVM (CMD-SVM) .. 62

CHAPTER 4 SOLUTION METHODOLOGY ... 64

4.1 Model Convexity and Role of (𝝈) ... 65

4.2 Iterative Solution Method ... 72

4.3 Handling Parameter 𝝈 ... 73

4.4 Selection of Parameters (𝝀, 𝜸, and 𝝈) ... 83

4.4.1 Grid Search for 𝜸 and 𝝀... 83

4.4.2 Selecting 𝝈.. 84

4.4.3 Grid Search Algorithm Using Iterative Solution Method ... 85

4.5 Solving Method for CMD-SVM Model ... 87

CHAPTER 5 NUMERICAL EXPERIMENTS... 89

5.1 Cross Validation (CV) ... 90

5.2 Experiments Setup .. 94

5.3 Synthetic Illustration Problems ... 96

5.3.1 Segmented Blocks Experiment for LDB ... 97

viii

5.3.2 Double Banana Experiment for NLDB ..107

5.4 Real-Life Problems ...116

CHAPTER 6 DISCUSSION AND CONCLUSION ... 125

6.1 Discussion and Highlights ..125

6.1.1 Robustness in Classification ..125

6.1.2 The Special Effect of 𝝈 ...126

6.1.3 The Trade-off Between Time and Robustness ...126

6.2 Conclusion ...127

6.3 Future Research ...128

6.3.1 GRT versus The Dual Formulation ...128

6.3.2 A Closed Form for Determining 𝝈𝒔, 𝝈𝒆, and 𝝉..128

REFERENCES ... 130

VITAE .. 133

ix

LIST OF TABLES

Table 1: Typical data representation before processing ..3

Table 2: Typical confusion matrix ... 92

Table 3: Details of the real-life data sets .. 117

Table 4: The prediction accuracies obtained by the 4 models for the 3 scenarios,

using the real-life data sets. ... 119

Table 5: The total solution time in seconds for one complete repetition........................ 122

Table 6: The time (average time for C-SVM and C-PSVM) taken to solve the NLP

problem for once .. 123

x

LIST OF FIGURES

Figure 1: A flow chart illustrating the major steps in a binary classification problem 6

Figure 2: Two different linear decision boundaries with their associated margins 9

Figure 3: The basic components to derive the SVM model .. 12

Figure 4: Incorporating the slack variables to derive the soft-margin SVM 15

Figure 5: Plot of the functions Hl(z) (___) , Hs(z) (- - - -), and Ts(z) (. . . .) with Ts

= Hl – Hs [14] ... 20

Figure 6: The loss function (16) at different values of the scaling parameter σ 21

Figure 7: Plot of the rescaled hinge loss function at different scaling parameter η [16] .. 23

Figure 8: The Ramp loss function (black-solid) and smooth Ramp loss function (red-

dashed) [18] ... 26

Figure 9: An illustration of two outliers imposing penalties ... 32

Figure 10: SVM best separating line before and after noise ... 34

Figure 11: PSVM best separating line before and after noise ... 35

Figure 12: The correntropic function in terms of the absolute error 38

Figure 13: The CLF at different values of σ ... 41

Figure 14: Data points for two classes are created in 2D (m=2) 49

Figure 15: Adding one space dimension (the vertical z-axis) and projecting the blue

class along that new axis .. 50

Figure 16: The mapping from 2D to 3D allowed the two classes to be linearly

separable .. 51

Figure 17: A plot of the C-SVM compact objective function using synthetic data.

Critical areas of the graph are also identified. ... 66

Figure 18: Contours of the objective function (𝑤1 × 𝑤2) at different values of 𝜎 and

for 𝜆 = 10 and the bias term 𝑏 = 1. ... 68

file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249464
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249468
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249468
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249469
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249470
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249471
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249471
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249472
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249473
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249474
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249475
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249476
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249477
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249478
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249478
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249479
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249479
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249480
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249480

xi

Figure 19: Contours of the objective function (w_1×w_2) for σ=0.001 and λ=10 and

the bias term b=1.. Multiple minima can be seen from the plot. 69

Figure 20: Contours of the objective function (𝑤1 × 𝑤2) for different values of 𝜆 and

for given 𝜎 = 0.001 and the bias term 𝑏 = 1. .. 70

Figure 21: Contours of the objective function (w_1×w_2) for λ=0.556 and for given

σ=0.001 and bias term b=1. Multiple minima can be seen from the plot. 71

Figure 22: Two dimensional synthetic data points for two classes. Noise is represented

by the blue points at the extreme top left corner and the red points at the

extreme bottom right corner. .. 75

Figure 23: The predicted LDB obtained by a robust SVM model 76

Figure 24: The C-SVM model at sufficiently high values of 𝜎 produces the same LDB . 78

Figure 25: The LDB produced by two different solution methodologies for the same

parameters. This the onset of changing from pseudo-convex function to

non-convex... 79

Figure 26: While reducing 𝜎, the LDB obtained by the proposed method is optimal

and stable, whereas the LDB obtained by the existing method is bouncing

and never reached the optimal orientation. .. 80

Figure 27: The LDB obtained by both methods and very low values of 𝜎 82

Figure 28: The structure of the data set used in the Segmented Blocks experiment 98

Figure 29: The LDB obtained by the SVM model for 4 different scenarios 101

Figure 30: The LDB obtained by the PSVM model for 4 different scenarios 102

Figure 31: The LDBs obtained by the C-SVM model for 4 different scenarios 103

Figure 32: The LDBs obtained by the C-PSVM model for 4 different scenarios 104

Figure 33: The LDBs obtained by the CMD-SVM model for 4 different scenarios....... 105

Figure 34: The NLDB obtained by the SVM for the 3 scenarios 109

Figure 35: The NLDB obtained by the PSVM for the 3 scenarios 110

Figure 36: The NLDB obtained by the C-SVM for the 3 scenarios............................... 111

file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249482
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249482
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249484
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249484
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249485
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249485
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249485
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249486
file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249491

xii

Figure 37: The NLDB obtained by the C-PSVM for the 3 scenarios 112

Figure 38: The NLDB obtained by the CMD-SVM for the 3 scenarios 113

Figure 39: An example of a continuous NLDB .. 114

Figure 40: An example of a discontinuous NLDB and the relevant classes 115

Figure 41: Line chart of the prection accuracies across the noise levels and per data set

 .. 120

file:///C:/Users/malmehdhar/Desktop/Master%20Degree/Thesis/Thesis%20Report/ROBUST%20SUPPORT%20VECTOR%20MACHINES_v10.docx%23_Toc533249502

xiii

LIST OF ABBREVIATIONS

SVM : Support Vector Machine

PSVM : Proximal Support Vector Machine

C-SVM : Correntropic Support Vector Machine

C-PSVM : Correntropic Proximal Support Vector Machine

CMD-SVM : Correntropic Membership Degree Support Vector Machine

LDB : Linear Decision Boundary

NLDB : Nonlinear Decision Boundary

CLF : Correntropic Loss Function

GRT : Generalized Representer Theorem

CV : Cross Validation

NLP : Non-Linear Programming

xiv

ABSTRACT

Full Name : Mohammed Mehdhar Al-Mehdhar

Thesis Title : Robust Support Vector Machines in Classification

Major Field : Industrial and Systems Engineering

Date of Degree : December 2018

Support Vector Machines (SVMs) are widely used in data classification. They are

typically preferred due to their low generalized error. However, the conventional SVM

models are sensitive to noise (outliers). Therefore, there is a need to develop robust data

classification models that are insensitive to noise.

In this thesis, a total of 3 robust data classification models for binary classification are

proposed. The three proposed models utilize the robust properties of the Correntropic

Loss Function (CLF). Two of these models use the CLF as an error measure (C-SVM

and C-PSVM), and the third uses the CLF as a membership degree (CMD-SVM). The

proposed robust models are developed for the case of Linear Decision Boundary (LDB).

For the case of Nonlinear Decision Boundary (NLDB), the proposed robust models were

developed using the Generalized Representer Theorem (GRT).

An iterative solution methodology is developed to efficiently solve the proposed robust

models. The proposed methodology exploits a very critical tuning parameter (𝜎) in the

CLF, which controls the shape of the CLF. As a result, the objective function’s convexity

is controlled throughout the solution process so that a local minimum is eventually

guaranteed.

xv

Finally, numerical experiments are conducted to illustrate the performance of the

proposed robust models against the conventional SVM models. The experiments reveal

that the proposed models are insensitive to noise and achieve higher prediction

accuracies. However, this improved accuracy is achieved at the cost of the solution time.

The introduction of the parameter 𝜎 into the robust models increases the total solution

time due to the additional line search for 𝜎. Nevertheless, to sum, based on the numerical

experiments, the proposed methods works well in the presence and absence of noise.

xvi

 ملخص الرسالة

محمد محضار المحضار :الاسم الكامل

نماذج آلة متجه الدعم المتينة في عمليات التصنيف عنوان الرسالة:

هندسة النظم الصناعية التخصص:

2018أكتوبر :تاريخ الدرجة العلمية

في تطبيقات اليوم الصعبة والمتطورة (Robust Classification Modelsمتينة)التصنيف الأصبحت نماذج

على نطاق واسع ()أ.م.د(Support Vector Machinesمتجه الدعم) . يتم استخدام نماذج آلةذو طلب عال

التقليدية حساسة أ.م.د واشتقاقها الرياضي. ومع ذلك، فإن نماذج قوة نظريتهال عادةً بسبب هي تفضفي التصنيف و

 غير حساسة لضوضاء البيانات. ةقوي نماذج تصنيف ولذلك، هناك حاجة إلى تطوير "الشاذة"البيانات للضوضاء

في هذه الرسالة، يتم اقتراح ثلاثة نماذج أ.م.د متينة للتصنيف الثنائي. تستخدم هذه النماذج الثلاثة دالة تستند إلى

()د.ف.ج(. اثنان من هذه النماذج Correntropic Loss Functionالفقدان الجزئي)المفارقة وتسمى بـدالة

، أما الثالث فيستخدم الدالة كمقياس لدرجة C-PSVMو C-SVMيستخدم الدالة كدالة خسارة واضحة و هما الـ

 Linear). تم تطوير النماذج المتينة المقترحة لحالة حدود القرار الخطيةCMD-SVMالعضوية و هو الـ

Decision Boundary) بالنسبة لحالة حدود القرار غير الخطية .(Nonlinear Decision Boundary) ،

 (.Generalized Representer Theoremتم تطوير النماذج المقترحة باستخدام نظرية التمثيل المعممة)

لية. تستغل منهجية الحل التكرارية تم تطوير منهج حل تكراري مخصص لحل النماذج المتينة المقترحة بكفاءة عا

المقترحة معلمة بالغة الأهمية في الـ د.ف.ج وهي معلمة ضبط تتحكم في شكل الـدالة. و نتيجة لذلك، يتم التحكم في

 تحدب دالة الهدف طوال عملية الحل، و بالتالي يتم ضمان نقطة حرجة محلية في النهاية.

أداء النماذج المتينة المقترحة ضد نماذج أ.م.د التقليدية. تكشف التجارب أن وأخيراً، تم إجراء تجارب رقمية لتقييم

النماذج المقترحة غير حساسة للبيانات الضوضائية كما أنها تحقق دقة تنبؤيه أعلى. ومع ذلك، يتم تحقيق هذه الدقة

لمتينة إلى زيادة الوقت في النماذج ا 𝜎المحسنة على حساب الوقت المستغرق في الحل. يؤدي استخدام المعلمة

xvii

. وعلى الرغم من ذلك، فإن 𝜎المستغرق في حل المسألة الكلية بسبب إضافة دورة بحثية جديدة حول المعلمة

 الخلاصة تكمن في أن النماذج المتينة المقترحة تعمل بشكل جيد في ظل وجود البيانات الضوضائية أو عدمها.

1

1 CHAPTER 1

INTRODUCTION

People rely on their experience and conjecture to predict the future before they ever used

science to help them get better insights. That experience and intuition is related to

something those people have learned or experienced before, which forms the content of

what so called “history”. History can be seen as a huge database full of different types of

data. This data can be carefully observed and analyzed to discover patterns and

knowledge which can help us draw pictures of future events. The real challenge in the

past was collecting, maintaining, and analyzing that extensive volume of data with

limited tools and resources.

For the last two decades, the rapid technological evolution made data capturing,

processing, and storage possible in huge volumes and incredible speed. This opened the

gate to develop solutions that helped people and systems learn from existing data to make

better decisions in the future. Since then, the concept of extracting knowledge from

historical data has gained a huge interest from many researchers, entrepreneurs, and end-

users around the globe. The demand of systems like image processing, voice recognition,

and motion sensing are in steep growth, especially with the expanding arena of their

applications. Corporates in many industries such as in IT security, digitalization,

multimedia, and robotics are budgeting significant amounts of money for developing and

improving those systems.

2

Learning from data originally came from two main fields known as Pattern Recognition

and Machine Learning. The former originated from Engineering and the latter from

computer science [1]. As the two fields grew, more fields were developed based on the

background, types of applications, and the techniques used. One of the well-known fields

is Data Mining, which is heavily linked to numerous applications in science, engineering,

and business.

1.1 Data Mining & Analysis

Data mining is defined in [2] as a systematic process of analyzing given data from a

system to discover patterns using algorithms in order to produce data analysis

applications. The terms “Data Mining” is usually linked to the so called “knowledge

discovery process”. This process uses discovery algorithms to recognize patterns and

establishes models from the existing data [3]. The application areas for data mining are

limitless and it currently takes important roles in sectors like banking, insurance,

education, telecommunication, health, medicine, public, construction, engineering, and

science [4].

The types of problems in data mining can be divided into two main categories. The first

category is supervised learning where sufficient information about the data is given and

future prediction is carried out using that given knowledge. The second category is

unsupervised learning where no knowledge about the data to be worked on is available

aside from the data points themselves. There are three major areas in data mining:

clustering, classification, and regression. Clustering is considered to be a type of

3

unsupervised learning, and classification & regression are known as supervised learning

problems.

Before performing any data mining or analysis, the data needs to be organized in a format

that is readable and easily understood. Table (1) represents an example of a hypothetical

data set. The rows are the data instances whereas the columns represent the data features.

This means the number of rows can be interpreted as the number of data points (samples)

and the number of columns as the space dimension of the points. The last column (not a

feature) is usually kept to identify the instance label in the case of supervised learning.

Table 1: Typical data representation before processing

Instance

ID

Feature 1

(concentration)

Feature 2

(temperature)

⋯

Feature m

(pressure)

Label

1 C1 T1 ⋯ P1 Good

2 C2 T2 ⋯ P2 Good

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

n Cn Tn ⋯ Pn Bad

1.2 Classification

Classification is the process of learning from the available data to extract a pattern that

will enable the user to classify a new instance. Classification is divided into three types:

unary classification, binary classification, and multi-class classification. In unary

classification, there is only one class and a new instance will be classified as “yes”

(belongs to the class) or “no” (does not belong to the class). An example is the novelty

4

detection problem, which classifies whether a machine’s status is “normal” or not. In this

case, the data points used to build the classification model are the ones which indicate a

“normal” machine status. This is because in nature, a machine’s status is “normal” most

of the time hence, a sufficient number of data points can be obtained.

Binary classification classifies a data point into either one of two classes. One example of

this type are classifying whether a person is well or sick. Another example is classifying

whether a client will subscribe to a certain service or not. Binary and unary classifications

are often confused for each other. The main difference between unary and binary

classifications is the availability of the data. In novelty detection for example, it is

difficult to collect data for the “abnormal” status because a machine fails once or twice a

year. This makes it impractical to establish a second class with sufficient number of data

points.

Multiclass classification is similar to binary classification but with more than two classes.

An example is to classify whether a photo belongs to person X, person Y, or person Z. In

some classification techniques, this type of classification is treated a set of multiple

binary classification problems which eventually form a multiclass classification problem.

This thesis focuses on binary classification. The process of binary classification is

summarized in Figure (1). It starts with collecting data from history and present it in a

suitable format. Then a classification technique is chosen to train the classification model.

Classification techniques are the algorithms that are applied on the available data to

construct the classification models. This process is well known as model training. Several

techniques are available to train the classification model such as artificial neural network,

5

support vector machines, decision trees, and Bayesian Networks. Each technique has its

own advantages and disadvantages w.r.t common performance measures like accuracy,

speed of learning, tolerance to irrelevant attributes, and overfitting [5]. After training the

model, the decision rule will be constructed. That decision rule is a function which takes

a new data point as an input and assign it to one of the two classes.

1.3 Objective of The Thesis

The objective of this thesis is to develop binary classification models that are insensitive

to data noise. The models will be developed upon the SVMs' framework. SVMs have

unique characteristics (maximum margin) that distinguish the technique from other

classification techniques. It is developed from a sound theory, and formulated as a

convex problem. It also has low sensitivity to sample size and dimensionality. Moreover,

SVMs have better generalization accuracy compared to the other classification techniques

[5]. In addition to that, the proposed models will exploit the robustness of the CLF. It has

been proven that the function is locally pesudoconvex. This key property will be used in

developing the solution method for solving the proposed models. Thus, the proposed

models will inherit the properties of SVM and CLF.

6

Select a
classification

technique

Collect Data
From History

Train the
model

Establish a
decision rule

New
input/instance

Classify

Class 2 Class 1

Figure 1: A flow chart illustrating the major steps in a binary classification problem

7

1.4 Thesis Organization

This rest of this thesis is organized as follows. In Chapter 2, the mathematical model of

support vector machines is derived followed by a discussion on the robust SVM models

from the literature. A literature gap is then presented in addition to the problem statement,

which highlights the importance of this work. In Chapter 3, three robust SVM models are

proposed and discussed followed by the solution methodologies in Chapter 4. After that,

numerical experiments on well-known problems are presented in Chapter 5 to

demonstrate the performance of the proposed models. Lastly, Chapter 6, a discussion on

the critical concepts related to the thesis is presented, followed by conclusion and future

research opportunities.

8

2 CHAPTER 2

LITERATURE REVIEW

In Section 2.1, different conventional formulations of the SVM models from the literature

are presented. These conventional SVM models are not robust and they are sensitive to

noise. Some improvements on the conventional models are presented in Section 2.2.

These improvements will induce robustness and reduce noise sensitivity. Finally, a

literature gap is presented to highlight the shortcomings in the literature and identify

potential areas of improvement.

2.1 Support Vector Machine Models

Support Vector Machines are parametric methods, which are derived from the concept of

maximum margin classification. The margin is defined as the Euclidean distance between

the separating hyperplane (also known as the decision boundary) and the nearest data

points [1][3]. The SVM defines the decision boundary, which separates the two classes

into two distinct half-spaces, such that the margin is as large as possible. Such decision

boundary will ideally result in the best classification accuracy. Figure (2) illustrates two

possible decision boundaries and the associated margins. The decision boundary B has

the largest margin, and it is the boundary that would be produced by the SVM model.

9

Figure 2: Two different linear decision boundaries with their associated margins

10

Data points are presented in pairs of (𝒙𝑖 , 𝑦𝑖), where 𝒙𝑖 represents the data point in 𝑚

dimensions, 𝑦𝑖 is the class label defined as 𝑦𝑖 = −1 ∀ 𝑖's which belong to class 1 and

𝑦𝑖 = +1 ∀ 𝑖's which belong to class 2. The decision boundary is mathematically

represented by the linear equation of the separating line (in higher dimensional space it is

a hyperplane), which takes the form:

𝒘𝑻𝒙 + 𝑏 = 0 (1)

where 𝒘 ∈ ℝ𝒎 and 𝑏 ∈ ℝ are parameters to be determined by the SVM model, and 𝒙 is a

data point. After obtaining the parameters (𝒘 and b) by solving the SVM model, the

decision boundary can be used for classifying a new point into either of the two classes.

This classification is carried out by the “rule function”, to decide whether a point 𝒙

belongs to Class 1 or Class 2. The rule function is defined as:

𝑠𝑖𝑔𝑛(𝒘𝑻𝒙 + 𝑏) (2)

where if the rule function is positive, then point 𝒙 belongs to the positive class (Class 2),

or if the rule function is negative, then 𝒙 belongs to the negative class (Class 1).

Since the SVM aims to maximize the margin, the mathematical model can be constructed

as an optimization problem that maximizes the margin between two disjoint classes.

Figure (3) shows two classes separated by a line (decision boundary). The two dashed

lines are known as “support hyperplanes” and they define the margin of the decision

boundary. From the concept of SVMs as maximum margin classifiers, it is simple to

realize that each support hyperplane must pass through at least one point. Those points

which lie on these support hyperplanes are called “support vectors”. The vector normal to

11

the decision boundary is denoted as 𝒘, which can be associated with the margin using a

multiplier 𝒓 ∈ ℝ+. It can be clearly seen that maximizing the margin is equivalent to

maximizing 𝒓. Taking a support vector from one class, say 𝒙− from Class 1, and let 𝒙+ be

the image of 𝒙− on the other supporting hyperplane, along the direction 𝑤, defined as:

𝒙+ = 𝒙− + 𝑟𝒘 (3)

The equations of the two supporting hyperplanes are:

𝒘𝑇𝒙+ + 𝑏 = +1 (4a)

𝒘𝑇𝒙− + 𝑏 = −1 (4b)

Substituting (3) in (4a) we get:

𝒘𝑇(𝒙− + 𝑟𝒘) + 𝑏 = +1

⇒ 𝑟‖𝒘‖2 +𝒘𝑇𝒙− + 𝑏 = +1 (5)

Substituting (4b) in (5) leads to:

𝑟‖𝒘‖2 − 1 = +1

⇒ 𝑟 =
2

‖𝒘‖2
 (6)

12

Figure 3: The basic components to derive the SVM model

13

Now the SVM model can be formulated as follows:

min. ∶
1

2
‖𝒘‖2 (7a)

s. t. ∶ 𝒘𝑻𝒙𝒊 + 𝑏 ≥ + 1 ∀ 𝑖 = 1, 2, ⋯ , 𝑞 ∈ 𝐶𝑙𝑎𝑠𝑠 1 (7b)

 𝒘𝑻 𝒙𝒊 + 𝑏 ≤ − 1 ∀ 𝑖 = 𝑞, 𝑞 + 1, ⋯ ,𝑛 ∈ 𝐶𝑙𝑎𝑠𝑠 2 (7c)

where 𝒘 and 𝑏 are the unknowns, 𝑚 is the number of features in the data, and 𝑛 is the

total number of data points. The two sets of constraints (7b) and (7c) can be combined

into one set without changing the number of individual constraints as follows:

min. ∶
1

2
‖𝒘‖2 (8a)

s. t. ∶ 1 − 𝑦𝑖(𝒘
𝑻𝒙𝒊 + 𝑏) ≤ 0 ∀ 𝑖 = 1, 2, ⋯ ,𝑛 (8b)

This model is feasible only when the data classes are linearly separable. In practical

scenarios, linear separability is extremely difficult to find. To allow for a feasible solution

to exist in such scenarios, a soft-margin SVM developed by Cortes and Vapnik [6] can be

used. As shown on Figure (4), a slack variable for each data point is added to allow the

data point to violate the constrains in (8b) and penalize that violation in the objective

function. The soft -margin SVM is formulated as:

min. ∶ 𝑓 =
1

2
‖𝒘‖2 + 𝐶∑𝑠𝑖

𝑛

𝑖=1

 (9a)

s. t. ∶ 1 − 𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≤ 𝑠𝑖 ∀ 𝑖 = 1, 2,⋯ , 𝑛 (9b)

14

𝑠𝑖 ≥ 0 ∀ 𝑖 (9c)

where C is a parameter used as a scaling factor, and 𝑠𝑖 represents the slack variable for

data point 𝒙𝑖. The second term in the objective function (∑ 𝑠𝑖
𝑛
𝑖=1) is called “loss

function”.

Another SVM model was proposed by Mangasarian and Wild in [7] that achieved a

significant improvement on the solution time while maintaining a comparable solution

accuracy. The model is referred to as "Proximal SVM (PSVM)" which utilizes two

parallel support planes, where each plane crosses the center of mass of the associated data

class. PSVM performs the classification of a new data point in a way such that the data

point is closest to the associated plane of the class. On the other hand, the SVM classifies

a data point with respect to the disjoint half-space around the decision boundary. The

PSVM is modeled as follows:

min. ∶
1

2
(‖𝒘‖2 + 𝑏2) +

1

2
𝐶‖𝒔‖2 (10a)

s. t. ∶ 1 − 𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) = 𝑠𝑖 ∀ 𝑖 = 1,2,⋯ , 𝑛 (10b)

where the notations are as previously defined for models (8) and (9).

It is important to mention that before the development of the PSVM, Suykens and

Vandewalle [8] developed the Least Squares SVM (LS-SVM), formulated as:

min. ∶
1

2
‖𝒘‖2 +

1

2
𝐶‖𝒔‖2 (11a)

s. t. ∶ 1 − 𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) = 𝑠𝑖 ∀ 𝑖 = 1,2,⋯ , 𝑛 (11b)

15

Figure 4: Incorporating the slack variables to derive the soft-margin SVM

16

which is the same as the PSVM but without the bias term "𝑏2" in the objective function.

The objective function in LS-SVM is not strongly convex like in the PSVM [7] and that

is because of the absence of the term "𝑏2" in the objective function. Furthermore, the

speed of the PSVM solution algorithm is better than that of the LS-SVM, which is a

differentiating factor for the PSVM [7].

The soft-margin SVM (it will call be called as SVM from now on for convenience) and

PSVM models are attractive due to their convexity which makes the problems easy to

solve. However, a major weakness of these models is their sensitivity to outliers. In soft-

margin SVM and PSVM, the error is computed by the loss functions which are linear and

quadratic, respectively. Those loss functions return high values for outliers, which

influence the decision boundary and may result in poor classification accuracy.

2.2 Robust Support Vector Machine Models

One major reason for noise sensitivity in SVM is treating all data points with the same

importance, without differentiating outliers from regular points. To overcome this

obstacle, Fuzzy Support Vector Machine (FSVM) was proposed. FSVM allocates a

weight to each individual data point to adjust its contribution in the model [9]. The

objective function from the SVM model is reformulated as
1

2
‖𝒘‖2 + 𝐶 ∑ 𝛼𝑖𝑠𝑖

𝑛
𝑖=1 , where

𝛼𝑖 is called "fuzzy membership" and it determines the importance of data point 𝒙𝑖. The

same concept was applied by Meng et al. on the PSVM model to induce robustness [10].

The model is called as Weighted Support Vector Machine (WSVM) and the second term

17

1

2
𝛼‖𝒔‖2 becomes

1

2
‖𝜶𝒔‖2, where, 𝜶 = [𝛼1, 𝛼2, ⋯ , 𝛼𝑛] . Each weight value 𝛼𝑖 in the

WSVM is a function of the data point distance to the class center, and it can be

mathematically expressed as 𝛼 = 1 −
𝑑

𝑅+𝛾
 , where the parameter d can be defined as the

Euclidian distance from the associated class center, R is the radius of the class, and 𝛾 is a

positive real number to ensure that 𝛼 ≠ 0. Although this weighing method enhanced the

PSVM robustness, such a simple formula to calculate the weights does not necessarily

capture the real demography of the data. One improvement upon this shortcoming is

using sophisticated statistical methods to calculate the membership weights. Principal

Component Analysis (PCA) was utilized by Heo & Gader [11] to calculate the

reconstruction error, which measures the relationship of a data point to the whole data

structure. The idea is to perform PCA on each class to come up with the principal

components. Then the reconstruction error is used to calculate the membership of the data

points. The simple expression of the reconstruction error for a centered data point is

expressed as: 𝐸(𝑥) = ‖𝑥 − 𝑷𝑋𝑷𝑋
𝑇𝑥‖2 ; and 𝑷𝑋 is a matrix consisting of the principal

components of the covariance matrix of X.

The FSVM can be further improved by utilizing the concept of bilateral weighing. The

bilateral-weighted fuzzy SVM (BW-FSVM) introduced in [12] aims to reduce the effect

of noise in classification problems. The method restructures the data sets from 𝐺 =

{(𝒙1, 𝑦1), (𝒙2, 𝑦2), ⋯ , (𝒙𝑛 , 𝑦𝑛)} to 𝐺′ = {(𝒙1, +1, 𝛾1), (𝒙1, −1,1 −

𝛾1), (𝒙2, +1, 𝛾2), (𝒙2, −1,1 − 𝛾2),⋯ , (𝒙𝑛 , +1, 𝛾𝑛), (𝒙𝑛 , −1,1 − 𝛾𝑛)}, where 𝛾𝑖 is called

the membership degree (weight) and it constructs the association level of that data point

to its assigned class. As a result, the BW-FSVM model is built as follows:

18

min. ∶ 𝑓 =
1

2
‖𝒘‖2 + 𝐶∑(𝛾𝑖𝑠𝑖 + (1 − 𝛾𝑖)𝑠𝑖

′

)

𝑛

𝑖=1

 (12a)

s. t. ∶ 1 − (𝒘𝑇𝒙𝑖 + 𝑏) ≤ 𝑠𝑖 ∀ 𝑖 = 1, 2,⋯ , 𝑛 (12b)

 1 + (𝒘𝑇𝒙𝑖 + 𝑏) ≤ 𝑠𝑖
′ ∀ 𝑖 = 1, 2,⋯ , 𝑛 (12c)

𝑠𝑖 , 𝑠𝑖
′ ≥ 0 ∀ 𝑖 (12d)

Despite the contribution by Wang et al. in [12], the BW-FSVM still performs on a simple

weight assignment platform. To impose more robustness into the model, Yang et al. [13]

incorporated a bilateral truncated hinge loss function abbreviated as BTL-RSVM and

presented as:

min. ∶
1

2
‖𝒘‖2

2 + 𝐶∑𝑇(𝒘, 𝑏, 𝒙𝑖)

𝑛

𝑖=1

 (13a)

 𝑇(𝒘, 𝒙𝑖, 𝑏) = min{1, [1 − (𝒘
𝑇𝒙𝑖 + 𝑏)]+} + min{1, [1 + (𝒘

𝑇𝒙𝑖 + 𝑏)]+} (13b)

This enhanced model was inspired by some earlier improvements on the well-known

hinge loss function [14]. This function is a common function used in classification and

regression (because of its simplicity and early discovery). The hinge loss function can be

written as:

𝐻𝑙(𝑧) = (1 − 𝑧)+ ,

where (𝑎)+ = {
𝑎 𝑖𝑓 𝑎 ≥ 0

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . To incorporate the hinge loss function into SVM, the

model is written as:

19

min. ∶ 𝑓 =
1

2
‖𝒘‖2 + 𝐶∑𝐻𝑙(𝑦𝑖𝑓(𝒙𝑖)) =

1

2
‖𝒘‖2 + 𝐶∑(1 − 𝑦𝑖𝑓(𝒙𝑖))+

𝑛

𝑖=1

𝑛

𝑖=1

 (14)

The hinge loss function can be truncated to become bounded and avoid extreme cost

values caused by outliers [14]. As a result, the model robustness will be improved. The

truncated hinge loss 𝑇𝑠(𝑧) developed by Wu and Liu [14] is expressed as

𝑇𝑠(𝑧) = 𝐻𝑙(𝑧) − 𝐻𝑠(𝑧),

where 𝐻𝑠(𝑧) = (1 − 𝑧)+.

⇒ 𝑇𝑠(𝑧) = (1 − 𝑧)+ − (𝑠 − 𝑧)+ (15)

The truncated loss function shown in Figure (5) prevents the error values of 𝑧 < 𝑠 to be

inflated and assign high importance to noise.

Because of the simplicity and effectiveness of the hinge loss function, it can be deployed

in a wide range of formulations to suppress noise sensitivity. For instance, the hinge loss

function can be utilized as a similarity measure term built in another loss function. This is

called the "hinge-loss-based loss function" [15] and it is formulated as:

𝑙𝜎(𝑦, 𝑡) = 𝜎
2 (1 − 𝑒

−𝐻𝑙
2

𝜎2) = 𝜎2 (1 − 𝑒
−(1−𝑦𝑡)2+

𝜎2) ; 𝑦 ∈ {−1, +1} (16)

Figure (6) shows the loss function 𝑙𝜎(𝑦, 𝑡) at different scaling parameter 𝜎.

20

Figure 5: Plot of the functions Hl(z) (___) , Hs(z) (- - - -), and Ts(z) (. . . .) with Ts = Hl – Hs [14]

21

Figure 6: The loss function (16) at different values of the scaling parameter σ

22

The model can be formulated per the following:

min. ∶ 𝑓 = 𝛼‖𝒘‖2
2 +

1

𝑛
 ∑𝑙(𝑦𝑖 , 𝒘

𝑇𝒙𝑖 + 𝑏)

𝑛

𝑖=1

 (17a)

Or

 min. ∶ 𝑓 = 𝛼‖𝒘‖
2 +

1

𝑛
∑𝜎2 (1 − 𝑒

−(1−𝑦𝑖(𝒘
𝑇𝒙𝑖+𝑏))

2

+
𝜎2)

𝑛

𝑖=1

 (17b)

where 𝛼 is a scaling factor that assigns the contribution of the relevant terms in the

objective function. In a generally similar model structure, the hinge loss function was re-

scaled and smoothed to allow for a more general form of the function as illustrated in

Figure (7) [16]. The rescaled hinge loss function is formulated to be a function of the

hinge loss function as 𝐻𝑟𝑒(z) = 𝛽(1 − 𝑒
−𝜂 𝐻𝑙(z)); where 𝛽 = (1 − 𝑒−𝜂)−1 is a

normalizing constant and 𝜂 is a smoothing parameter. The mathematical model in [16] is

constructed as follows:

min. ∶ 𝑓 =
1

2
‖𝒘‖2 + 𝐶 ∑ 𝐻𝑟𝑒(z𝑖)

𝑛
𝑖=1 =

1

2
‖𝒘‖2

2 + 𝐶𝛽 ∑ [1 − 𝑒−𝜂 (1−𝑦𝑖𝑧𝑖)+]𝑛
𝑖=1 (18)

The hinge loss function was also implemented in statistical models utilizing the concept

of "Least Median Regression". The Hinge loss function 𝐻𝑙(𝑧) in model (14) is replaced

with Class Conditional Median Loss function (CCML). The CCML is written such that:

 𝐶𝐶𝑀𝐿 =
1

2
𝐶 [(1 − (1)𝑓(𝒙𝑖))+ + (1 − (−1)𝑓(𝒙𝑖))+ 𝑖∈𝑐𝑙𝑎𝑠𝑠 2

𝑚𝑒𝑑𝑖𝑎𝑛
𝑖∈𝑐𝑙𝑎𝑠𝑠 1
𝑚𝑒𝑑𝑖𝑎𝑛] (19)

in addition to a balancing constraint [17].

23

Figure 7: Plot of the rescaled hinge loss function at different scaling parameter η [16]

24

Although truncated loss functions provide good noise insensitivity, the optimization

problem may be difficult to solve in general. This is mainly because these truncated loss

functions are not differentiable. Wang et al. [18] developed a smooth ramp loss function

which integrates the concave Huber loss and convex Huber loss functions. Figure (8)

shows the smooth Ramp loss function which is bounded, continuous, and twice

differentiable. The model is formulated as follows:

min. ∶ 𝑓 =
1

2
‖𝒘‖2 + 𝐶 ∑ 𝐻1

ℎ𝑢𝑛
𝑖=1 (𝑦𝑖𝑓(𝒙𝑖)) + 𝐶 ∑ 𝐻0

ℎ𝑢𝑛
𝑖=1 (𝑦𝑖𝑓(𝒙𝑖)) (20)

where 𝐻0
ℎ𝑢(𝑧) = {

0 𝑖𝑓 𝑧 > ℎ,

−
(ℎ−𝑧)2

4ℎ
𝑖𝑓 |𝑧| ≤ ℎ,

 𝑧 𝑖𝑓 𝑧 < −ℎ,

, 𝐻1
ℎ𝑢(𝑧) = {

0 𝑖𝑓 𝑧 > 1 + ℎ,
(1+ℎ−𝑧)2

4ℎ
 𝑖𝑓 |1 − 𝑧| ≤ ℎ,

1 − 𝑧 𝑖𝑓 𝑧 < 1 − ℎ,

and ℎ is Huber parameter. The proposed model in [18] achieved better generalization

performance than the classical SVMs.

In addition to the above approaches, there are approaches that focus on the insensitivity

w.r.t the spread of the data. For example, SVM takes into consideration the spread of the

data within each class and reacts to changes in data spread along any direction [19]. To

overcome this drawback, Jebara & Shivaswamy [19] developed the Relative Margin

Machines (RMMs), which is a modification to the SVM, by adding the following

constrain
1

2
(𝒘𝑇𝒙𝑖 + 𝑏)

2 ≤
𝐵2

2
 ∀ 𝑖 , where 𝐵 is a constant with the range 𝐵 ≥ 1. RMM

is insensitive to the data spread parallel to the decision boundary, which induces

robustness to affine scaling. This indicates that the RMM model will position the decision

boundary in a way that maximizes the margin only in the direction relative to the spread

of the data. Moreover, RMM can be enhanced to deal with complicated data distributions.

25

This can be achieved by incorporating a loss function in the model such as the pinball

loss function [20].

26

Figure 8: The Ramp loss function (black-solid) and smooth Ramp loss function (red-

dashed) [18]

27

2.3 Literature Gap

Despite the improvements presented in the literature to reduce noise sensitivity in

SVM’s, there are still some aspects which have not been sufficiently improved. The

robust models that relied on the membership degrees are limited to basic calculations to

assign the weights to the points. For some complicated data structures, those methods

may not be sufficiently effective to reduce the role of outliers. Additionally, those models

would require significant computational effort to calculate the weights in advance before

solving the model. Therefore, using loss functions in the SVM models has been preferred

and gained more interest from researchers.

The loss function in the objective function of the optimization model aims to penalize

incorrectly classified points. The model becomes robust when outliers are not penalized

(or only slightly penalized). This will prevent the outliers from playing a significant role

in determining the decision boundary. One way to obtain this behavior in loss functions is

truncation. Truncated loss functions limit their output to constant values beyond certain

argument values in its domain, thus limiting the penalty in the objective function.

However, the main drawback of truncated loss functions is smoothness. Truncated loss

functions are normally not smooth, hence not continuously differentiable. That may cause

the SVM optimization problem to be difficult and inefficient to solve.

To overcome the shortcoming of non-smoothness in some loss functions, they were

modified to be smooth and continuously differentiable. Despite these improvements, the

modified models are still non-convex and require global optimization algorithms to solve.

28

The robust SVM work by Feng, et al. [15] starts with a reasonable model formulation

which seems to be promising for achieving their objective of designing a robust and

smooth loss function. However, the mathematical derivations afterwards and the

proposed problem solution have some gaps. The problem is initially formulated as:

min
𝒖 ∈ ℝ𝑛 , 𝑏 ∈ ℝ

1

𝑛
∑𝜑((1 − 𝑦𝑖𝑲𝑖

𝑇𝒖 − 𝑦𝑖𝑏)+
2)

𝑛

𝑖=1

+ 𝜆𝒖𝑇𝑲𝒖

 =
min

𝒖 ∈ ℝ𝑛 , 𝑏 ∈ ℝ

1

𝑛
∑ 𝜎2 (1 − 𝑒

−(1−𝑦𝑖𝑲𝑖
𝑇𝒖−𝑦𝑖𝑏)+

2

𝜎2)+ 𝜆𝒖𝑇𝑲𝒖𝑚
𝑖=1

(21)

where 𝒖 is the Lagrangian variable, and 𝑲𝒊 is the ith column of the kernel matrix. This

formulation is for non-linear decision boundaries, which has not been tackled yet in this

thesis but will be discussed in detail in later chapters. For the sake of simplicity, we

rewrite (21) for a linear decision boundary (LDB) in terms of 𝒘 and 𝑏 and the problem

will be changed to:

min
𝒘 ∈ ℝ𝑚 , 𝑏 ∈ ℝ

1

𝑛
∑𝜎2 (1 − 𝑒

−(1−𝑦𝑖𝒘
𝑇𝒙𝑖−𝑦𝑖𝑏)+

2

𝜎2)+ 𝜆‖𝒘‖2
𝑛

𝑖=1

(22)

Taking the partial derivatives for (22) with respect to 𝒘 and 𝑏:

𝜕𝑅(𝒘,𝑏)

𝜕𝒘
=
1

𝑛
∑ [2(1 − 𝑦𝑖(𝒘

𝑇𝒙𝒊 + 𝑏))+𝑒
−(1−𝑦𝑖𝒘

𝑇𝒙𝑖−𝑦𝑖𝑏)+

2

𝜎2 (−𝑦𝑖𝒙𝒊)]
𝑛
𝑖=1 + 2𝜆𝒘 = 0 (23a)

𝜕𝑅(𝒘,𝑏)

𝜕𝑏
=

𝜎2

𝑛
∑ [0 −

(−1)×2×(1−𝑦𝑖(𝒘
𝑇𝒙𝒊+𝑏))

+

𝜎2
(−1)𝑦𝑖𝑒

−(1−𝑦𝑖(𝒘
𝑇𝒙𝒊+𝑏))

+

2

𝜎2] + 0 = 0𝑛
𝑖=1 (23b)

29

Now let 𝐴𝑖 = 2𝑒

−(1−𝑦𝑖(𝒘
𝑇𝒙𝒊+𝑏))

+

2

𝜎2 , then equations (21) and (22) can be reduced to:

𝜕𝑅(𝒘, 𝑏)

𝜕𝒘
=
1

𝑛
∑[𝐴𝑖𝑦𝑖𝒙𝑖(1 − 𝑦𝑖(𝒘

𝑇𝒙𝒊 + 𝑏))+]

𝑛

𝑖=1

− 2𝜆𝒘 = 0 (24a)

𝜕𝑅(𝒘, 𝑏)

𝜕𝑏
= ∑[𝑦𝑖𝐴𝑖(1 − 𝑦𝑖(𝒘

𝑇𝒙𝒊 + 𝑏))+] = 0

𝑛

𝑖=1

 (24b)

Equations (24a) and (24b) can be written in a kernelized form as:

𝜕𝑅(𝒖, 𝑏)

𝜕𝒖
=
1

𝑛
∑[𝐴𝑖𝑦𝑖𝑲𝑖 (1 − 𝑦𝑖(𝑲𝑖

𝑇𝒖 + 𝑏))
+
]

𝑛

𝑖=1

− 𝜆𝑲𝒖 = 0 (25a)

𝜕𝑅(𝒖, 𝑏)

𝜕𝑏
=∑𝑦𝑖𝐴𝑖 (1 − 𝑦𝑖(𝑲𝑖

𝑇𝒖 + 𝑏))
+
= 0

𝑛

𝑖=1

 (25b)

Equation (25a) is found to be matching with that of Feng, et al. However, Equation (25b)

was derived by the authors to be:

∑𝐴𝑖(𝑦𝑖 −𝑲𝑖
𝑇𝒖 − 𝑏) = 0

𝑛

𝑖=1

 (26)

The two equations (25b) and (26) are not the same and they yield to different solutions.

The authors further utilized equations (25a) and (25b) in [15] to develop the following

iteratively reweighted algorithm to solve the model (Q1):

(𝒖𝑟+1, 𝑏𝑟+1) =
𝑎𝑟𝑔𝑚𝑖𝑛

𝒖 ∈ ℝ𝑛 , 𝑏 ∈ ℝ
∑ 𝜔𝑖

𝑟+1(𝑦𝑖 −𝑲𝑖
𝑇𝒖 − 𝑏)+

2 + 𝜆𝒖𝑇𝑲𝒖𝑛
𝑖=1

(27a)

30

where

𝜔𝑖
𝑟+1 = 𝑒

−(𝑦𝑖−𝑲𝑖
𝑇𝒖𝒓−𝑏𝑟)

+

2

𝜎2 , 𝑖 = 1, 2,… , 𝑛 (27b)

and 𝑟 is the iteration number.

Again, it is easier to illustrate the performance of model (27) in the LDB form instead of

the kernelized form. Therefore, model (27) is rewritten in terms of 𝒘 and 𝑏 as follows:

(𝒘𝑟+1, 𝑏𝑟+1) =
𝑎𝑟𝑔𝑚𝑖𝑛

𝒘 ∈ ℝ𝑚 , 𝑏 ∈ ℝ
∑ 𝜔𝑖

𝑟+1(𝑦𝑖 − 𝒘
𝑇𝒙𝒊 − 𝑏)+

2 + 𝜆‖𝒘‖𝑛
𝑖=1

2

(28a)

where

𝜔𝑖
𝑟+1 = 𝑒

−(𝑦𝑖−𝒘
𝑟𝑇𝒙𝒊−𝑏

𝑟)
+

2

𝜎2 , 𝑖 = 1, 2, … , 𝑛.
(28b)

and 𝑟 is the iteration number.

The loss function ∑ 𝜔𝑖
𝑟+1(𝑦𝑖 −𝒘

𝑇𝒙𝒊 − 𝑏)+
2𝑛

𝑖=1 is the term which penalizes an incorrectly

located point (an outlier). Now consider the two data sets with the LDB in Figure (9). All

points in the two data sets are correctly classified except for the two points shown in

bold. Those two points are considered as noise since they belong to one class but are

located in the other class’s half-space. Consider any correctly classified point from the

positive class (class label y = +1) which is not a support vector. That point 𝒙 will always

result in 𝒘𝑻𝒙 + 𝑏 > 1. Moreover, 𝜔𝑖 ∈ [0,1]. This implies that 𝑦𝑖 − 𝒘
𝑇𝒙𝒊 − 𝑏 < −1

and as a result, 𝜔𝑖
𝑟+1(𝑦𝑖 −𝒘

𝑇𝒙𝒊 − 𝑏)+
2 = 0. This means the objective function will not

impose any penalty for a correctly classified point from the positive class. Now consider

the same procedure but with a point from the negative class. This results in 𝒘𝑻𝒙 + 𝑏 <

31

−1 which implies that 𝑦𝑖 −𝒘
𝑇𝒙𝒊 − 𝑏 > 1, hence 𝜔𝑖

𝑟+1(𝑦𝑖 −𝒘
𝑇𝒙𝒊 − 𝑏)+

2 > 0. This

means that the objective function will always penalize a correctly classified point from

the negative class.

One can see that the same flaw is also found with noise points. For example, a noise point

from the negative class located in the positive class half-space should be penalized.

However, in this case 𝒘𝑻𝒙 + 𝑏 > 1 and 𝜔𝑖
𝑟+1(𝑦𝑖 − 𝒘

𝑇𝒙𝒊 − 𝑏)+
2 = 0 which implies no

penalties for a noise point from the negative class.

32

Figure 9: An illustration of two outliers imposing penalties

34

Figure 10: SVM best separating line before and after noise

35

Figure 11: PSVM best separating line before and after noise

36

3 CHAPTER 3

ROBUST MATHEMATICAL MODELS

From the literature, it can be concluded that there are several approaches to induce

robustness into the SVM models, including membership degrees and loss functions. In

this thesis, three novel robust SVM models are proposed. In two of the proposed models

the robustness is induced via a robust loss function, and in the third model the robustness

is induced via the concept of membership function.

Two preferred characteristics in a loss function (ℓ) that makes SVM robust are

boundedness and smoothness [16]. The first characteristic can be defined as

lim
𝜖→−∞

ℓ(𝜖) = 𝑐1 and lim
𝜖→+∞

ℓ(𝜖) = 𝑐2 , where 𝜖 ∈ ℝ is the absolute error such that 𝜖 =

|𝑦 − 𝑓(𝒙)|, and 𝑐1, 𝑐2 ∈ ℝ
+. This characteristic in loss function is a key to induce

robustness in the model. As the error 𝜖 increases beyond certain values, the loss function

ℓ tends to remain constant, thus insensitive to the higher error values. The second

characteristic (smoothness) implies that the loss function is continuously differentiable.

As explained in Chapter 2, non-smoothness is a major concern in robust SVM models.

Since it limits the optimization algorithms that can be used for the SVM models. The loss

function in the three proposed models has these two characteristics, as it will be shown

shortly.

The loss function in the proposed robust SVM models is derived from the correntropic

loss function developed in [24]. The function is written as follows:

38

Figure 12: The correntropic function in terms of the absolute error

39

 It is more convenient to start with the LDB models first and then use these models to

develop the ones for NLDB. In this chapter, the three proposed models are presented for

LDB. After that, the kernel trick and the representer theorem are discussed as key

concepts for developing the NLDB models. Finally, the robust SVM models for NLDB

are formulated using the generalized representer theorem.

3.1 Robust SVM Models for LDB

Typically, for SVM models, absolute error 𝜖 is not an apt measure of the

misclassification error. For instance, if a point is correctly classified but is located far

away from the decision boundary, then 𝑓(𝒙) will be very far from 1 (say the point

belongs to class label 1). Thus, the absolute error will be high, i.e., |1 − 𝑓(𝑥)| will be

high though the point is correctly classified. This indicates the need for an alternative

way to calculate the error. In this thesis, the marginal error approach is considered.

Marginal error considers the sign matching instead of absolute difference. The marginal

variable 𝑧 is defined as the product of the decision boundary function and the associated

label, 𝑧 = 𝑦𝑓(𝒙). Note that if the sign of the boundary function matches the class label,

the product 𝑧 will always be positive. On the other hand, if the two values mismatch then

𝑧 will be negative.

The marginal variable by itself is not an error measure. To utilize 𝑧 and develop what so

called marginal error “𝜁”, additional steps are required. From the SVM model, a point is

correctly classified if it lies in the relevant half space or support hyper plane. This means

40

a point between the decision boundary and the relevant hyper plane will be treated as a

misclassified point. To encounter this idea in the calculation of the marginal error, we

will have 𝜁 = 1 − 𝑦𝑓(𝒙). Now we can easily realize that if 𝜁 < 0, then point 𝒙 is

correctly classified and if 𝜁 > 0 then 𝒙 is misclassified. Since we need to penalize

misclassified points only, we can then modify 𝜁 to be as follows:

𝜁 = max{0, 1 − 𝑦𝑓(𝒙)} (30)

The CLF can be then re-formulated using (30) to be as follows:

𝐶𝐿𝐹 = 𝛽 (1 − 𝑒
−(1−𝑧)+

2

2𝜎2), (31)

where (1 − 𝑧)+
 = 𝑚𝑎𝑥{0, 1 − 𝑧}. It is important to note that the 𝑚𝑎𝑥 function in the

exponent precedes the square (power function), otherwise the modification will become

meaningless. Figure (13) demonstrates the behavior of the CLF presented in Equation

(31). The function returns zero as long as the point is correctly classified. Then the loss

function starts to penalize as the marginal error from misclassification increases (towards

the negative direction) until it settles on a certain value and becomes irresponsive to

higher marginal errors.

In the following sections, the three proposed robust models are presented: Correntropic

Support Vector Machine (C-SVM), Correntropic Proximal Support Vector Machine (C-

PSVM), and Correntropic Membership Degree Support Vector Machine (CMD-SVM),

respectively.

41

Figure 13: The CLF at different values of σ

42

3.1.1 Correntropic Support Vector Machine (C-SVM)

In C-SVM robust model, the correntropic function is incorporated into the objective

function of the SVM model (9) to enhance its noise insensitivity.

The C-SVM model for a given 𝜆 and 𝜎 can be formulated as follows:

min.: 𝜆‖𝒘‖
2 +

1

𝑛
∑ (1 − 𝑒

−𝑠𝑖
2

𝜎2

)𝑛

𝑖 (32a)

s. t. : 1 − 𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≤ 𝑠𝑖 ∀ 𝑖 ∈ 1, 2, … , 𝑛 (32b)

 𝑠𝑖 ≥ 0 ∀ 𝑖 ∈ 1, 2, … , 𝑛 (32c)

The model also can be written in a compact form as follows:

min.: 𝜆‖𝒘‖
2 +

1

𝑛
∑ (1− 𝑒

−(1− 𝑦𝑖(𝒘
𝑇𝒙𝑖+𝑏))+

2

𝜎2

)𝑛

𝑖 (33)

The objective function consists of two terms. The first term ‖𝒘‖
2 is the regularization

term which tends to orient the decision boundary, so the maximum margin is obtained.

The second term is the loss function which penalizes the incorrectly classified points but

limits the penalty to a relatively low value for the outliers.

 The loss function term imposes the robustness in the model. One can notice that

minimizing these two terms under one objective function can be contradictory. In other

words, a decision boundary that results in minimum loss function value may not achieve

the maximum margin. The role of 𝜆 in the model is to set up the weight of the

43

regularization term in order to tune the contribution of that term in the objective function

with respect to the loss function.

3.1.2 Correntropic Proximal SVM (C-PSVM)

C-PSVM is the modification of PSVM using the correntropic function. The C-PSVM

model for a given 𝜆 and 𝜎 is formulated as follows:

min. : 𝜆(‖𝒘‖
2 + 𝑏2) +

1

𝑛
∑ (1 − 𝑒

−𝑠𝑖
2

𝜎2

)𝑛

𝑖 (34a)

s. t. : 1 − 𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) = 𝑠𝑖 ∀ 𝑖 ∈ 1, 2,… , 𝑛 (34b)

 The model can also be written as:

As discussed in Section 2.1, the PSVM model outperforms the SVM model in solution

time. It is highly likely that the C-PSVM will inherit the same property from the PSVM,

at least to a certain extend. However, the only way to find out is by a rigorous

mathematical proof or empirically by conducting numerical experiments. The C-PSVM

performance with solution time will be demonstrated later in Section 5.4.

3.1.3 Correntropic Membership Degree SVM (CMD-SVM)

Based on the research directions from the literature survey, it can be seen that, designing

the weights of the penalty term (the slack variable 𝑠𝑖) of the SVM model can reduce the

effect of outliers. The key idea is that the weights associated to the outliers should have a

min. : 𝜆(‖𝒘‖
2 + 𝑏2) +

1

𝑛
∑ (1 − 𝑒

−(1− 𝑦𝑖(𝒘
𝑇𝒙𝑖+𝑏))

2

𝜎2
)𝑛

𝑖 (35)

44

very low value compared to the regular data points. However, the outliers are not known

beforehand, and deciding the right value of weights is not straightforward.

The strong similarity measure characteristic found in the correntropic function will be

utilized to identify the membership weights. The membership weights will determine the

contribution (importance) of each data point in the model. The proposed CMD-SVM

model at the tth iteration and at given values for 𝜎 and λ is formulated as follows:

min. : 𝜆‖𝒘𝑡‖
2 +

1

𝑛
∑ 𝛼𝑖

(𝑡−1)
 𝑠𝑖

𝑛
𝑖 (36a)

s. t. ∶ 1 − 𝑦𝑖(𝒘𝒕
𝑇𝒙𝑖 + 𝑏𝑡) ≤ 𝑠𝑖 ∀ 𝑖 ∈ 1, 2, … , 𝑛 (36b)

 𝑠𝑖 ≥ 0 ∀ 𝑖 ∈ 1, 2, … , 𝑛 (36c)

where 𝛼𝑖
(𝑡)
= 𝑒

−[1−𝑦𝑖(𝒘𝑡
𝑇𝒙𝑖+𝑏𝑡)]+

2

𝜎2

 ∀ 𝑖, and the superscript (𝑡) indicates the iteration

number. At any iteration 𝑡, the CMD-SVM resembles the fuzzy membership model

proposed in [9] with 𝛼𝑖 being a constant which is obtained from the previous iteration.

The model can be re-written in a compact form as follows:

min. : 𝜆‖𝒘(𝑡)‖

2
+
1

𝑛
∑ 𝛼𝑖

(𝑡−1)
 [1 − 𝑦

𝑖
(𝒘𝑡

𝑇𝒙𝑖 + 𝑏)]+
𝑛
𝑖 (37)

In the following section extension of the proposed models in the nonlinear decision

boundary is proposed.

45

3.2 Methods for NLDB

3.2.1 Dual Formulation

The formulations that have been discussed so far for C-SVM, C-PSVM, and CMD-SVM

are primal model formulations, which intend to find a LDB. The objective function is

minimized subject to a set of linear constraints with the decision variables being 𝒘 ∈

ℝ𝑚 and 𝑏 ∈ ℝ. These two decision variables become the coefficients of the LDB

function given in Equation (1). Therefore, the primal formulations as shown previously

are not yet capable to produce NLDB. It is well known that the dual formulation of SVM

model has a unique structure, which allows the model to exploit the kernel tricks to

develop NLDB.

For the illustration purpose, the dual formulation for the SVM model (9) is derived using

the Lagrange relaxation technique as:

min
𝒘, 𝑏

max
𝒖
 ℒ(𝒘, 𝑏, 𝒖) =

1

2
‖𝒘‖2 +∑𝑢𝑖(1 − 𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏))

𝑛

𝑖=1

 (38)

where 𝑢𝑖 ≥ 0 ∀ 𝑖 are the dual variables. Since the SVM model given in (9) is convex,

the strong duality holds and this implies the following:

min
𝒘, 𝑏

max
𝒖
 ℒ(𝒘, 𝑏, 𝒖) =

max
𝒖

min
𝒘, 𝑏

 ℒ(𝒘, 𝑏, 𝒖) (39)

The formulation in (38) can be rewritten using (39) as follows:

max
𝒖

min
𝒘, 𝑏

 ℒ(𝒘, 𝑏, 𝒖) =
1

2
‖𝒘‖2 +∑𝑢𝑖(1 − 𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏))

𝑛

𝑖=1

 (40)

46

For a given set of data points and their corresponding set of labels, the following

stationarity conditions must satisfy at optimality for the inner minimization problem:

∇𝒘ℒ = 𝒘 −∑𝑢𝑖𝑦𝑖𝒙𝑖

𝑛

𝑖=1

= 0 → 𝒘 = ∑𝑢𝑖𝑦𝑖𝒙𝑖

𝑛

𝑖=1

 (41a)

∇𝒃ℒ = −∑𝑢𝑖𝑦𝑖

𝑛

𝑖=1

= 0 → ∑𝑢𝑖𝑦𝑖

𝑛

𝑖=1

= 0 (41b)

Substituting (41a) and (41b) in (40), the problem can be written as:

max
𝒖
 ℒ(𝒖) =

1

2
∑∑𝑢𝑖𝑢𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗

𝑛

𝑖

+∑𝑢𝑖

𝑛

𝑖=1

−∑𝑢𝑖𝑦𝑖𝒘𝒙𝑖

𝑛

𝑖=1

−∑𝑢𝑖𝑦𝑖𝑏

𝑛

𝑖=1

 (42a)

s. t. : 𝑢𝑖 ≥ 0 ∀ 𝑖 (42b)

∑𝑢𝑖𝑦𝑖

𝑛

𝑖=1

= 0 (42c)

𝒘 = ∑𝑢𝑖𝑦𝑖𝒙𝑖

𝑛

𝑖=1

 (42d)

One can see that Equation (41b) implies the last term in the objective function (42a) to be

zero. Additionally, ∑ 𝑢𝑖𝑦𝑖𝒘𝒙𝑖
𝑛
𝑖=1 = ∑ ∑ 𝑢𝑖𝑢𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗
𝑛
𝑗

𝑛
𝑖 , which can be easily shown

using constraint (42d). Finally, constraint (42d) will no longer be needed since 𝒘 will

disappear from the new formulation after substituting all 𝒘’s with (42d). This implies

that the new formulation can be reduced as:

47

max
𝒖
 ℒ(𝒖) = ∑𝑢𝑖

𝑛

𝑖=1

−
1

2
∑∑𝑢𝑖𝑢𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑗

𝑛

𝑖

 (43a)

s.t. : 𝑢𝑖 ≥ 0 ∀ 𝑖 (43b)

∑𝑢𝑖𝑦𝑖

𝑛

𝑖=1

= 0 (43c)

So far, the dual formulation in (43) will provide a LDB in terms of 𝒘 and 𝑏. The LDB

can be obtained from 𝒖∗ as follows: Typically, 𝒖∗ is normally sparse. Hence the values of

𝒖 such that 𝑢𝑖 > 0 plays a critical role in identifying the LDB. If 𝑢𝑖 > 0 then the

associated data point 𝒙𝑖 will be the “support vector” of the LDB. Support vectors are the

data points that lie on the support hyperplanes and as a result, dictate the position and the

slope of the LDB. Now to find 𝒘∗, we can refer to (42d) which yields to 𝒘∗ =

∑ 𝑢𝑖
∗𝑦𝑖𝒙𝑖

𝑛
𝑖=1 . 𝑏∗ can be computed by solving any of the two support hyperplanes’

equation for 𝑏 using a support vector that lies on the same support hyperplane. For

example, the equation of the positive support hyperplane is 𝒘𝑇𝒙𝑖 + 𝑏 = +1 and a

support vector 𝒙̂𝑞 on that hyperplane with 𝑢𝑞 > 0 will lead to 𝑏∗ = 𝟏 −𝒘∗𝑻𝒙̂𝑞.

The discussion so far has been related to the LDB. In the primal model, the decision

boundary is defined so that the margin is maximum, then the support hyperplanes identify

the support vectors. In the dual model, the support vectors are identified first, then the

orientation of the decision boundary is defined such that the support hyperplanes lie on

the support vectors [3].

48

Now, to identify the NLDBs, typically the kernel tricks are used. The key idea of using

kernels is to project the current data into high dimension Hilbert space, such that the low

dimension NLDB converts to LDB in the higher dimensions. The inner product 𝒙𝑖
𝑇𝒙𝑗

available in the objective function of the dual formulation serves as a gate for the usage

of the kernel tricks. The following sub-section explains the utilization of the inner

product to manipulate the feature space and develop nonlinear separation for binary

classification.

3.2.2 Feature Space and Kernel Trick

It is critical to emphasize that NLDB may not be represented by a non-linear function.

Generally, the NLDB in the lower dimension is represented by a corresponding LDB in

the higher dimension. Therefore, the key is to transform the linearly inseparable classes

into a space where they can be linearly separable. This can be accomplished by adding a

new dimension (or multiple dimensions) to the feature space. For example, in Figure

(14), the given set of data points 𝒙 ∈ ℝ2 are not linearly separable. Thus, a third

dimension in the feature space can be created in terms of the two existing dimensions

using a mapping function Φ(𝒙). This additional dimension will modify the data structure

and allow for a LDB to exist and separate these two classes. This concept is demonstrated

in Figures (15) and (16).

49

Figure 14: Data points for two classes are created in 2D (m=2)

50

Figure 15: Adding one space dimension (the vertical z-axis) and projecting the blue class along that new axis

51

Figure 16: The mapping from 2D to 3D allowed the two classes to be linearly separable

53

mapping is needed or when the data points dimension is high, an explicit computation

like the one in (45) are impractical. Therefore, kernel functions like the one shown in (46)

provides a huge advantage.

Now the advantage of the dual formulation for the SVM can be realized. Based on the

above discussion, the data points are mapped as follows Φ: 𝒙 → Φ(𝒙) . Moreover, the

kernel function of any two points is the dot product of the mapping functions of these two

points. This implies 𝒙𝑖
𝑇𝒙𝑗 → Φ(𝒙𝒊)

T Φ(𝒙𝒋) = 𝐾〈𝒙𝒊, 𝒙𝒋〉. As a result, the dual problem of

the SVM can be reformulated by replacing the dot product 𝒙𝑖
𝑇𝒙𝑗 with 𝐾〈𝒙𝒊, 𝒙𝒋〉.

The kernelized dual problem of the SVM is solved for 𝒖, similar to solving the dual

problem explained in Sub-section 3.2.1. Nevertheless, the two models yield to two

different solutions of 𝒖∗. The kernelized dual formulation will identify the support

vectors (𝒖𝒊 >1) in a way that a NLDB can be achieved on the primal domain.

It is interesting to know that some kernel functions perform the transformation in infinite

dimension space, yet the problem dimension remains the same. This shows the power of

the kernal trick and the convenience of using it for classification problems with large

number of features, where transformation into very high dimension spaces is required.

There are many transformation functions that can be used in the process to develop a

NLDB. However, not every transformation function is a kernel function. For a

transformation function to be classified as kernel function, the function needs to satisfy

Mercer condition. The Mercer theorem is summarized as follows [25]:

54

If 𝐾(𝒂, 𝒃) satisfies Mercer’s condition:

∫ ∫ 𝐾(𝒂, 𝒃)𝑔(𝒂)𝑔(𝒃) 𝑑𝑎 𝑑𝑏 ≥ 0 ∀

𝑏

𝑎
data sets {𝑥: 𝑔𝑇𝐾𝑔 ≥ 0}

then 𝐾(𝒂, 𝒃) = 𝚽(𝒂) ∙ 𝚽(𝒃) for some Φ(𝑥)

where 𝐾 is a kernel function, Φ(𝑥) is a mapping function, 𝒂 and 𝒃 are data points in ℝ𝑛.

As a result of satisfying the above Mercer’s condition, the kernel function will possess

the finitely positive semi-definite property. This property privileges the kernel function to

have that unique performance in space transformation and similarity measure [25]. Some

examples of well-known kernel functions are the linear kernel, homogeneous polynomial

kernel, and Gaussian kernel (also known as radial basis function).

3.2.3 Generalized Representer Theorem

Sub-sections 3.2.1 and 3.2.2 discuss the key concepts to construct an SVM model for

NLDB. Developing the dual SVM models eliminate the primal variables 𝒘 and 𝑏 and

introduces a new term 𝒙𝑖
𝑇𝒙𝑗, which then can be kernelized as follows:

𝒙𝑖
𝑇𝒙𝑗 = 𝐾(𝒙𝑖 , 𝒙𝑗) = Φ(𝒙𝑖)

TΦ(𝒙𝑗) (47)

Depending on the primal formulations of the proposed robust models, deriving the dual in

terms of only the Lagrange multipliers (eliminating 𝒘 and 𝑏 from the formulation), may

not be achievable. Moreover, the dot product of the training points 𝒙𝒊
𝑻𝒙𝒋 may not appear

in the objective function of the dual formulation, which is the main motivation for

deriving the dual. It is clear that utilizing the dual formulation to apply the kernel trick

55

can be very challenging. This challenge can be overcome by utilizing the Generalized

Representer Theorem (GRT).

The GRT allows the primal model to be kernelized without the need for the dual

formulation. The representer theorem is generalized in [26] to accommodate a wider class

of regularizers and risk (loss) functions. The theorem states that minimizing a regularizer

𝑔 and a loss function 𝑙 can be represented in a kernelized form in the primal formulation

if certain conditions are satisfied. The theorem is summarized as follows:

Given a nonempty set of training samples (𝒙𝟏, 𝑦1), ⋯ , (𝒙𝒏, 𝑦𝑛) ∈ ℝ
𝑚 × ℝ, a class of

functions ℱ = {𝑓 ∈ ℝ𝑚|𝑓(𝒙) = ∑ 𝑢𝑗𝑘(𝒙, 𝒙𝑗), 𝑢𝑗 ∈ ℝ, 𝒙𝒋 ∈ ℝ
𝒎, ‖𝑓‖ < ∞}𝑛

𝑗=1 , an

arbitrary loss function 𝑙: (ℝ × ℝ𝑚) → ℝ ∪ {∞}, a function 𝑔 → ℝ, and a set of 𝑀 real-

valued function {𝜓𝑝(𝒙)}𝑝=1
𝑀 , then a function 𝑓 ≔ 𝑓 + ℎ, with 𝑓 ∈ ℱ and ℎ ∈ span{𝜓𝑝},

that is minimizing the objective function:

𝐻 = 𝑔(‖𝑓‖) + 𝑙 ((𝑦1, 𝑓(𝒙𝟏)) , ⋯ , (𝑦𝑛, 𝑓(𝒙𝒏))), (48)

can be represented in the so-called “representation form” (or kernelized form) as:

𝑓(𝒙) = ∑𝑢𝑗𝑘(𝒙, 𝒙𝑗)

𝑛

𝑗=1

+∑𝛽𝑝𝜓𝑝(𝒙) ,

𝑀

𝑝=1

 (49)

where 𝑘 ∈ ℝ𝑚 is a kernel function and 𝛽𝑝 ∈ ℝ ∀ 𝑝 = 1, ⋯ , 𝑀 are unique coefficients,

only if the following conditions are satisfied:

1) The kernel function 𝑘 is a real-valued positive definite on ℝ𝑚 .

2) Function 𝑔 → ℝ is strictly monotonically increasing on [0, ∞).

56

3) The set of functions {𝜓𝑝}𝑝=1
𝑀 on 𝑿 represented by the 𝑛 ×𝑀 matrix (𝜓𝑝(𝒙𝑖))𝑖𝑝

has a rank 𝑀.

The theorem states that if a primal model is in GRT form, and the three conditions are

satisfied, then the proposed decision boundary function 𝑓(𝒙) is a valid representation for

the kernelized model.

3.3 Robust SVM Models for NLDB

The motivation behind using the GRT is the simplicity of constructing the kernelized

model without the need to go through the detailed mathematics of deriving the dual. We

also explained previously that the dual formulation needs to meet certain criteria in order

for the kernelization to be applicable. In other words, the dual formulation does not

guarantee the appearance of the dot product 𝒙𝒊
𝑻𝒙𝒋 and the disappearance of 𝒘 and 𝑏. This

indicates that utilizing the GRT is easier once the model satisfies the required six

conditions. In this thesis, the GRT will be used to develop the robust SVM models (C-

SVM, C-PSVM, and CMD-SVM) for NLDB. In each of the following subsections, the

theorem is proved to be applicable to the model, followed by the construction of the

kernelized robust model.

3.3.1 Correntropic Support Vector Machine (C-SVM)

The C-SVM model for LDB formulated in (9) can be reformulated in a compact form as

follows:

57

min. : 𝜆‖𝒘‖
2 +

1

𝑛
∑ (1 − 𝑒

−(1− 𝑦𝑖(𝒘
𝑇𝒙𝑖+𝑏))+

2

𝜎2

)𝑛

𝑖 (50)

The compact formulation is more convenient when dealing with the GRT since the

theorem is built to deal with unconstrained models. Now we need to build the kernelized

objective function as per the format stated in the representer theorem in (48) which is:

𝑔(‖𝑓‖) + 𝑐 ((𝑦1, 𝑓(𝒙𝟏)) ,⋯ , (𝑦𝑚 , 𝑓(𝒙𝒎))) (48)

where 𝑓 ≔ 𝑓 + ℎ is the decision boundary function formulated in the kernelized form as:

𝑓(𝒙) = ∑𝑢𝑗𝑘(𝒙, 𝒙𝑗)

𝑛

𝑗=1

+∑𝛽𝑝𝜓𝑝(𝒙),

𝑀

𝑝=1

 (49)

The function 𝑓 can be simply defined as 𝑓(𝒙) = ∑ 𝑢𝑗𝑘(𝒙, 𝒙𝑗)
𝑛
𝑗=1 = ℎ, where 𝑓 ∈ ℱ is

clearly seen. Furthermore, by selecting 𝑀 = 1, we have {𝜓𝑝}𝑝=1
𝑀

= 𝝍 ∈ ℝ𝑛. Note that 𝜓

is a function of the data points 𝒙 (i.e. 𝜓(𝒙) ∈ ℝ). However, we can define 𝜓 to be a

constant function such that 𝜓(𝒙𝒊) = 𝑏 ∀ 𝑖. By having 𝛽𝑝 = 𝛽 = 1, the decision boundary

function in Equation (49) can be redefined as follows:

𝑓(𝒙) =∑𝑢𝑗𝑘(𝒙, 𝒙𝒋)

𝑛

𝑗=1

+ 𝑏 (51)

This implies that the decision boundary in the primal form (i.e. 𝒘
𝑇𝒙𝑖 + 𝑏 = 0) is

kernelized into the kernelized form as ∑ 𝑢𝑗𝑘(𝒙𝑖, 𝒙𝒋)
𝑛
𝑗=1 + 𝑏 = 0.

58

Now consider the following:

a) The loss function 𝑙 =
1

𝑛
∑ (1 − 𝑒

−[1− 𝑦𝑖(𝒘
𝑇𝒙𝑖+𝑏)]+

2

𝜎2
)𝑛

𝑖 can be formulated in the

kernelized form using Equation (51). The kernelized loss function is written as:

𝑙 =
1

𝑛
∑ (1 − 𝑒

−[1− 𝑦𝑖(∑ 𝑢𝑗𝑘(𝒙𝒊,𝒙𝒋)
𝑛
𝑗=1 +𝑏)]

+

2

𝜎2
)𝑛

𝑖 .

b) The regularization function 𝑔 can be defined in our model to be the square

function. This implies that 𝑔(‖∙‖) = 𝜆(‖∙‖)2.

By incorporating points (a) and (b), it is easy to show that

𝑔(‖𝑓‖) + 𝑐 ((𝑦1, 𝑓(𝒙𝟏)) ,⋯ , (𝑦𝑚 , 𝑓(𝒙𝒎)))

= 𝑔(‖∑𝑢𝑗𝑘(𝒙,𝒙𝒋)

𝑛

𝑗=1

‖)+ 𝑐 ((𝑦1,∑𝑢𝑗𝑘(𝒙𝟏, 𝒙𝒋)

𝑛

𝑗=1

+ 𝑏) ,⋯ ,(𝑦𝑚,∑𝑢𝑗𝑘(𝒙𝒎, 𝒙𝒋)

𝑛

𝑗=1

+ 𝑏))

= 𝜆∑∑𝑢𝑖𝑢𝑗𝑘(𝒙𝒊,𝒙𝒋)
𝑗𝑖

+
1
𝑛∑

(

1− 𝑒

−[1− 𝑦𝑖(∑ 𝑢𝑗𝑘(𝒙𝒊,𝒙𝒋)
𝑛
𝑗=1 +𝑏)]

+

2

𝜎2

)

𝑛

𝑖

This concludes that the objective function is constructed as per the theorem with the loss

function 𝑙 written in terms of 𝑓. Nevertheless, the three conditions still need to be

satisfied before we conclude the validity of our kernelization. The three conditions are

verified as follows:

1) The kernel function 𝑘 is a real-valued positive definite on ℝ𝑚: in this thesis, the

Radial Basis Function (RBF) is used for NLDB models. RBF is a kernel function

59

satisfying Mercer’s condition [25]. Therefore, the function is a real-valued

positive definite function over its domain.

2) Function 𝑔 → ℝ is strictly monotonically increasing on [0,∞): the function 𝑔

was chosen to be a parabolic function centered over the origin. It is well known

that 𝑔 in this case is strictly convex with a global minimum at the origin (i.e.

‖𝒘‖ = 0). Therefore, 𝑔 is strictly monotonically increasing on [0,∞).

3) The set of functions {𝜓𝑝}𝑝=1
𝑀 on 𝑿 represented by the 𝑛 × 𝑀 matrix (𝜓𝑝(𝒙𝑖))𝑖𝑝

has a rank 𝑀: since 𝑀 is defined as 𝑀 = 1 in this model, 𝜓 becomes a vector of

size 𝑛, which means this condition will always be satisfied.

This implies that 𝑓 defined in (51) is a valid kernelized representation of the primal

decision boundary function and the C-SVM model for NLDB can be represented as:

min. : 𝜆 ∑ ∑ 𝑢𝑖𝑢𝑗𝑘(𝒙𝒊, 𝒙𝒋)𝑗𝑖 +
1

𝑛
∑ (1 − 𝑒

−𝑠𝑖
2

𝜎2

)𝑛

𝑖 (52a)

s. t. ∶ 1 − 𝑦𝑖 (∑𝑢𝑗𝑘(𝒙𝒊, 𝒙𝒋)

𝑛

𝑗=1

+ 𝑏) ≤ 𝑠𝑖 ∀ 𝑖 ∈ 1, 2, … , 𝑛 (52b)

 𝑠𝑖 ≥ 0 ∀ 𝑖 ∈ 1, 2, … , 𝑛 (52c)

where 𝑘(𝒙𝒊, 𝒙𝒋) = 𝑒
−𝛾‖𝒙𝒊−𝒙𝒋‖

𝟐

, 𝛾 ∈ ℝ+.

3.3.2 Correntropic Proximal SVM (C-PSVM)

The C-PSVM model for LDB has a lot of similarities compared to the LDB C-SVM,

hence the method to derive the C-PSVM for NLDB is not expected to be very different

from that of C-SVM. The C-PSVM for LDB is reformulated into a compact form as:

60

min. : 𝜆(‖𝒘‖
2 + 𝑏2) +

1

𝑛
∑ (1 − 𝑒

−(1− 𝑦𝑖(𝒘
𝑇𝒙𝑖+𝑏))

2

𝜎2
)𝑛

𝑖 (53)

Following the same procedure before applying the theorem, the objective function needs

to be written in the standard form proposed by the theorem and that is:

𝑔(‖𝑓‖) + 𝑐 ((𝑦1, 𝑓(𝒙𝟏)) ,⋯ , (𝑦𝑛 , 𝑓(𝒙𝒏))) (48)

The C-PSVM in (10) has the term 𝑏2 appearing in the objective function, which slightly

complicates the implementation of the theorem. One way to come over this obstacle is to

reformulate (53) such that 𝑏2 disappears but the general structure remains the same. This

can be achieved by defining a new variable 𝒘̂ and a new parameter 𝒙̂𝑖. The variables 𝒘

and 𝑏 can be combined in the new augmented variable 𝒘̂ such as 𝒘̂ = [
𝒘
𝑏
]. Note that 𝒘

and 𝑏 will be implicit in the new formulation and the dimension of the replacement

variable will be 𝒘̂ ∈ ℝ𝑚+1. This new dimension of 𝒘̂ will disable the dot product

because we still have 𝒙𝒊 ∈ ℝ
𝒎. This issue can be resolved by assigning 𝒙̂𝑖 = [

𝒙𝒊
1
]. The C-

PSVM for LDB (53) can then be re-written as:

min. : 𝜆‖𝒘̂‖2 +
1

𝑛
∑ (1 − 𝑒

−(1− 𝑦𝑖𝒘̂
𝑇𝒙̂𝑖)

2

𝜎2
)𝑛

𝑖 (54)

One can easily see that (53) and (54) are identical by substituting 𝒘̂ and 𝒙̂𝑖 and writing

the model in terms of 𝒘, 𝑏, and 𝒙𝒊 explicitly. It can be also clearly seen that (54) is in the

theorem proposed form. However, because the bias term does not appear in the

exponential term in the loss function, we will have the decision boundary function as:

61

𝑓 = 𝑓 + ℎ = 𝑓 + 0 = 𝑓 (55)

Equation (55) implies that ∑ 𝛽𝑝𝜓𝑝(𝒙)
𝑀
𝑝=1 = 𝛽𝜓(𝒙) = 0. As a result, the kernelized form

of 𝑓 as well as 𝑓 is formulated as:

𝑓(𝒙̂) = 𝑓(𝒙̂) = ∑𝑢𝑗𝑘(𝒙̂, 𝒙̂𝒋)

𝑛

𝑗=1

 (56)

Furthermore, the regularization function is defined as 𝑔(‖∙‖) = 𝜆(‖∙‖)2 and the loss

function in the kernelized form is defined as 𝑙 =
1

𝑛
∑ (1 − 𝑒

−(1− 𝑦𝑖 ∑ 𝑢𝑗𝑘(𝒙̂𝒊,𝒙̂𝒋)
𝑛
𝑗=1)

2

𝜎2
)𝑛

𝑖 . By

verifying the three conditions of the theorem and referring to the GRT implementation

for the C-SVM model, it can be concluded that the three conditions are satisfied. The C-

PSVM model for NLDB is then formulated as:

min. : 𝜆 ∑ ∑ 𝑢𝑖𝑢𝑗𝑘(𝒙̂𝒊, 𝒙̂𝒋)𝑗𝑖 +
1

𝑛
∑ (1 − 𝑒

−𝑠𝑖
2

𝜎2

)𝑛

𝑖 (57a)

s. t. ∶ 1 − 𝑦𝑖∑𝑢𝑗𝑘(𝒙̂𝒊, 𝒙̂𝒋)

𝑛

𝑗=1

= 𝑠𝑖 ∀ 𝑖 ∈ 1, 2,… , 𝑛 (57b)

where 𝒙̂𝑖 = [
𝒙𝒊
1
], 𝑘(𝒙̂𝒊, 𝒙̂𝒋) = 𝑒

−𝛾‖𝒙̂𝒊−𝒙̂𝒋‖
𝟐

, 𝛾 ∈ ℝ+.

62

3.3.3 Correntropic Membership Degree SVM (CMD-SVM)

Applying the GRT for CMD-SVM will be exactly the same as in the C-SVM except that

the loss function is slightly different. Recall the CMD-SVM model for LDB written in

the compact form as:

min. : 𝜆‖𝒘(𝑡)‖

2
+
1

𝑛
∑ 𝛼𝑖

(𝑡−1)
 [1 − 𝑦𝑖 (𝒘

(𝑡)𝑇𝒙𝑖 + 𝑏
(𝑡))]

+

𝑛
𝑖 (58)

where 𝛼𝑖
(𝑡)
= 𝑒

−[1−𝑦𝑖(𝒘
(𝑡)
𝑇
𝒙𝑖+𝑏

(𝑡))]
+

2

𝜎2

 ∀ 𝑖, and 𝑡 indicates the iteration number.

The kernelized form of the decision boundary 𝑓 ≔ 𝑓 + ℎ is formulated as:

𝑓(𝒙) = ∑ 𝑢𝑗𝑘(𝒙, 𝒙𝒋)
𝑛
𝑗=1 + 𝑏, (49)

With 𝑓 = ∑ 𝑢𝑗𝑘(𝒙, 𝒙𝒋)
𝑛
𝑗=1 and ℎ = 𝑏. As a result, the kernelized form of the loss function

is written as 𝑙 =
1

𝑛
∑ 𝛼𝑖

(𝑡−1)
[1 − 𝑦𝑖(∑ 𝑢𝑗𝑘(𝒙𝒊, 𝒙𝒋)

𝑛
𝑗=1 + 𝑏)] 𝑛

𝑖 . The regularization function

is the same for all three models which is 𝑔(∙) = (∙)2. The three conditions of the theorem

can be verified the similar to the C-SVM, and it can be concluded that all conditions are

satisfied. The CMD-SVM can be kernelized for NLDB as follows:

 min. : 𝜆 ∑ ∑ 𝑢𝑖𝑢𝑗𝑘(𝒙𝒊, 𝒙𝒋)𝑗𝑖 +
1

𝑛
∑ 𝛼𝑖

(𝑡−1)
𝑠𝑖

𝑛
𝑖 (59a)

s. t. ∶ 1 − 𝑦𝑖 (∑𝑢𝑗𝑘(𝒙𝒊, 𝒙𝒋)

𝑛

𝑗=1

+ 𝑏) ≤ 𝑠𝑖 ∀ 𝑖 ∈ 1, 2,… , 𝑛 (59b)

63

 𝑠𝑖 ≥ 0 ∀ 𝑖 ∈ 1, 2, … , 𝑛 (59c)

where 𝛼𝑖
(𝑡)
= 𝑒

−[1−𝑦𝑖(∑ 𝑢
𝑗
(𝑡)
𝑘(𝒙𝑖,𝒙𝑗)

𝑛
𝑗=1 +𝑏(𝑡))]

+

2

𝜎2

 , 𝑘(𝒙𝒊, 𝒙𝒋) = 𝑒

−𝛾‖𝒙𝒊−𝒙𝒋‖
𝟐

, 𝜆 and 𝛾 ∈ ℝ+.

The three models formulated in (52), (57), and (59) are the kernelized formulation of the

robust models developed in Section 3.1. These kernelized models are solved to find 𝒖∗

and 𝑏 which are then used to build a NLDB. The nonlinear classification is conducted

numerically using the associated kernelized rule function.

The proposed robust models for LDB and NLDB embed the admired characteristics of

the CLF, which grant them unique behavior. In next chapter, an iterative solution

methodology is proposed, which exploits the potential capability of these proposed robust

models.

64

4 CHAPTER 4

SOLUTION METHODOLOGY

The solution methodology is a critical stage of any optimization problem. It demonstrates

the value of the proposed model, thus highlights the motivation behind using this model

instead of others. The solution methodology is usually developed based on the problem

(or the model) structure (convex/non-convex, smooth etc.). A good methodology tends to

exploit some unique characteristics of the model in order to produce better solutions or

improve solution times.

 The solution methodology for each of the three models (C-SVM, C-PSVM, and CMD-

SVM) will follow the same strategy for both cases (LDB and NLDB). Therefore, the C-

SVM model is used for illustrations and explanation of the solution methodology. The

illustrated ideas will then be generalized for the other remaining models and cases. The

CMD-SVM model will have a slightly different solution algorithm compared to the other

two models, because the model is based on the membership degrees (rather than the loss

functions as in the other two models). The methodology that is specifically developed for

the CMD-SVM model is discussed at the end of this chapter.

65

4.1 Model Convexity and Role of (𝝈)

The two models, C-SVM and C-PSVM, are non-convex optimization models for any

given 𝜎. This non-convexity is imposed by the non-convex correntropic loss function in

the objective function. The parameter 𝜎, as a tuning parameter for the loss function,

determines the shape and geometry of the function. The effect of 𝜎 is what makes the

function unique. For relatively low values of 𝜎, the function demonstrates high non-

convex behavior globally. However, the function tends to be locally pseudoconvex until

𝜎 becomes significantly large, then the function becomes strictly convex [27]. Figure (17)

illustrates the graph of a C-SVM model (in the compact form Equation (33)) during the

pseudoconvex stage. The figure also names some critical areas to simplify the discussion

in the following sections.

Pseudoconvex functions have good characteristics and they are the preferred in the field

of optimization after the convex functions [28]. Since the regularization term in the

objective function 𝒖𝑇𝒌(𝒙𝒊, 𝒙𝒋)𝒖 (or ‖𝒘‖
2 for the LDB case) is quadratic thus convex,

then the whole objective function will be strictly convex as long as the loss function is

strictly convex. Similarly, the whole objective function will be locally peseudoconvex as

long as the loss function is locally pseudoconvex [29]. Moreover, the objective function

covers large amount of area in the valley domain as 𝜎 takes higher values. This feature

distinguishes the correntropic loss function from other loss function, and thus

distinguishes the SVM models incorporating this function.

66

Figure 17: A plot of the C-SVM compact objective function using synthetic data. Critical areas of the graph are also

identified.

67

It would be interesting to visualize the model behavior as the value of 𝜎 decrease. This

can be done by plotting the contours of the objective function (the compact form of the

model Equation (33)) and fixing the values of 𝜆 and 𝑏 while varying 𝜎. Figure (18)

shows the C-SVM LDB objective function contours for a set of different values of 𝜎, for

𝑛 synthetic data points in a feature space dimension of 𝑚 = 2. The figure also shows that

the function gradually changes from being convex at very large 𝜎, to pseudoconvex at

smaller values, until it becomes non-convex with different local minima at small values

of 𝜎.

The shape of the contours and the number of local minima shown in Figure (18) are

highly dependent on: the parameter 𝜆, the structure (or distribution) of the data sets, and

the existence of noise in the data sets. Figure (20) illustrates the effect of 𝜆 on the model

convexity for a fixed value of 𝜎.

68

𝜎 = 60 𝜎 = 26 𝜎 = 13

𝜎 = 5.5

𝜎 = 1.8

𝜎 = 1.15

𝜎 = 0.74

𝜎 = 0.24

𝜎 = 0.02

Figure 18: Contours of the objective function (𝒘𝟏 ×𝒘𝟐) at different values of 𝝈 and for 𝝀 = 𝟏𝟎 and the bias

term 𝒃 = 𝟏.

69

Figure 19: Contours of the objective function (w_1×w_2) for σ=0.001 and λ=10 and the bias term

b=1.. Multiple minima can be seen from the plot.

70

𝜆 = 20

𝜆 = 14.6

𝜆 = 9.6

𝜆 = 4.1

𝜆 = 1.6

𝜆 = 0.76

Figure 20: Contours of the objective function (𝒘𝟏 ×𝒘𝟐) for different values of 𝝀 and for given 𝝈 = 𝟎.𝟎𝟎𝟏 and

the bias term 𝒃 = 𝟏.

71

Figure 21: Contours of the objective function (w_1×w_2) for λ=0.556 and for given σ=0.001 and bias

term b=1. Multiple minima can be seen from the plot.

72

4.2 Iterative Solution Method

The three proposed models have parameters that need to be tuned to get the optimum

decision boundary. In the case of LDB models, the parameters are 𝜆 and 𝜎 only. In

NLDB models, a third parameter 𝛾 is added, which is the parameter for the kernel

function. As it is the case in almost all robust SVM models, there is no direct method to

predetermine these parameters.

Solving the NLP problem of any of the 3 proposed models for a given combination of

𝜆, 𝛾, and 𝜎 may not lead to an optimum solution. The domain of the objective function

can be classified into two types of areas: flat areas, and the valley domain areas, see

Figure (17). For low values of sigma, the flat area gets very large and the valley domain

(where multiple local minima exist) becomes small. Additionally, if the initial solution

(starting point) is under the flat area, then the algorithm will terminate. The mathematical

explanation for terminating the algorithm in that case is the inability to get a direction to

minimize the function from that point (gradient ∇𝑓(𝒖, 𝑏) = 0). Therefore, it is very

important that the selected initial solution is located in the valley area.

The iterative solution method proposed in this thesis is a modification to the normal grid

search, but specific for the proposed robust models which use the correntropic loss

function. The key modification in the method is that the problem solution from the

previous search is used as an input in the following search. This method utilizes the fact

that the objective function is convex when the parameter 𝜎 is sufficiently large. The

search starts with the highest value of 𝜎, say 𝜎𝑠, for certain values of 𝜆 and 𝛾 and with an

initial solution 𝑠𝑜𝑙0 to solve the problem and get the new solution 𝑠𝑜𝑙𝑛𝑒𝑤. The next

73

iteration will be for the same 𝜆 and 𝛾 but with a slightly smaller 𝜎 such that 𝜎𝑛𝑒𝑤 = 𝜏𝜎𝑠,

where 𝜏 is a fraction close to 1 (i.e. 𝜏 ~ 1−). Additionally, the initial solution for the new

iteration is the final solution from the previous iteration (i.e. 𝑠𝑜𝑙0,𝑡=2 = 𝑠𝑜𝑙𝑛𝑒𝑤,𝑡=1). The

above process allows the final solutions throughout all iterations to lie within the valley

domain, when 𝜎 is gradually reduced throughout the iterations. As 𝜎 decreases, the

objective function moves from pseudoconvexity to non-convexity, with more than one

minimum point. The reducing factor 𝜏 can be set such that the change in the function

shape will be slow enough for the algorithm to catch one of the newly formed local

minima, if not the global minimum.

4.3 Handling Parameter 𝝈

In this section, the proposed solution methodology is depicted on a two-dimensional data.

For the purpose of illustration, a synthetic data set was developed with two classes (class

A in red color and class B in blue color). The data set was designed for an LDB case, so it

can be easily interpreted. The classification problem was modeled with C-SVM. As

shown on Figure (22), the data set contains some outliers at the opposite side of each

class. The two small groups of data in the middle may look as outliers, but they are not.

That’s because it is possible to come up with an LDB that would accommodate the small

group in the middle and the large one of the same label in the same class. Additionally,

from the definition of loss functions, noise around the decision boundary receives less

attention than the noise in other locations. This is because the loss function returns low

74

penalty cost for small marginal errors. As a result of the above discussion, the decision

boundary is expected to be similar to the one shown in Figure (23).

75

Figure 22: Two dimensional synthetic data points for two classes. Noise is represented by the blue points at the

extreme top left corner and the red points at the extreme bottom right corner.

76

Figure 23: The predicted LDB obtained by a robust SVM model

77

Figures (24)-(27) show the response of the decision boundary by gradually decreasing

values of 𝜎. In Figure (24), the graphs which use the proposed iterative solution method

(we will call it “proposed method” in this section for simplicity) are identical to the ones

which did not use that method (we will call it “existing method” in this section). This is

because 𝜎 is sufficiently high which means the optimization model is in the convex zone.

This implies that any random initial solution will lead to the global minimum. With 10%

reduction in 𝜎, different decision boundaries begin to appear, as shown in Figure (25).

This is because the optimization model now transforms into a non-convex model.

After a few more iterations, the model that is solved by the proposed method develops a

decision boundary as shown in Figure (26), which is similar to the one predicted initially

in Figure (23). However, the LDB obtained using the existing method seems to be

bouncing between two positions, which are even far away from the optimum one shown

in Figure (23). Moreover, the ultimate decision boundary developed by the proposed

method, has never been obtained by the existing method throughout the experiment.

78

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

(1): 𝜎 = 9

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

(2): 𝜎 = 3.4868

Figure 24: The C-SVM model at sufficiently high values of 𝝈 produces the same LDB

79

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

𝜎 = 3.12

Figure 25: The LDB produced by two different solution methodologies for the same parameters. This the onset

of changing from pseudo-convex function to non-convex.

80

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

(1): 𝜎 = 0.28

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

(2): 𝜎 = 0.046

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

(3): 𝜎 = 0.042

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

(4): 𝜎 = 0.038

Figure 26: While reducing 𝝈, the LDB obtained by the proposed method is optimal and stable, whereas the LDB

obtained by the existing method is bouncing and never reached the optimal orientation.

81

Furthermore, at very small values of 𝜎, the decision boundary obtained by the proposed

method appear to be in the same position even when 𝜎 is as low as ~10−7. This shows

that the iterative solution procedure is successful in retaining the solutions inside the

valley domain. On the other hand, the existing method produces decision boundaries that

don’t even appear within the frame of the data sets. This can be clearly seen in Figure

(27). One reason could be due to the fact that the random initial solution is unlikely to be

located in the valley domain. This shows the disadvantage of directly solving the robust

model for a specific value of 𝜎 since some possible good solutions may be skipped.

The parameter 𝜏 determines the smoothness of the convergence process. From our

experience, it is recommended to have 𝜏 at least between 0.9 and 0.95. The value of 𝜏

can be selected to be higher or lower than the recommended value depending on different

factors such as the data sets structure and the required accuracy. Furthermore, higher

values of 𝜏 increases the solution time, thus the trade-off between the solution time and

the smoothness of convergence needs to be studied carefully.

82

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

(1): 𝜎 = 0.025

Using Iterative Solution Method (proposed method)

Without Using Iterative Solution Method (existing method)

(2): 𝜎 = 1.12 × 10−6

Figure 27: The LDB obtained by both methods and very low values of 𝝈

83

4.4 Selection of Parameters (𝝀, 𝜸, and 𝝈)

In this section, a grid-search based method is proposed for identifying the best values of

𝜆, 𝛾, and 𝜎. The grid search process covers the one parameter 𝜆 and 𝜎 for the LDB

models and the 3 parameters 𝜆, 𝛾, and 𝜎 for the NLDB models. We will tackle only the

latter case since it is more generalized and more commonly used in the literature.

4.4.1 Grid Search for 𝜸 and 𝝀

During the training phase of the model, the gird search is conducted to identify 𝛾∗ and 𝜆∗

among certain sets of values 𝛾̅ and 𝜆̅. Each parameter can take a value in the range

[0,∞), but it is not possible to conduct the search on an infinite set. This imposes the

need to have a finite set of possible values, in order to have a practical search procedure.

Moreover, the finite search set should have good range of values to capture the optimal

value of the parameter. For example, suppose the actual 𝜆∗ is 20 but the search set is

𝜆̅ ={0.1, 0.2, 0.3, 0.4, 0.5}. In that case, the model will probably select 𝜆∗ = 0.5 in every

time the search is conducted, which may not produce a sufficiently good result. A better

definition of the set will be something like 𝜆̅ ={1, 5, 10, 15, 20}. The challenging part, in

selecting the finite search set, is the difficulty to estimate the parameters ranges before

running the experiment.

Before investigating any method to establish the search sets, two main points about the

proposed models in this thesis should be considered. The first point is the scaling of the

data. This indicates that for the same model but different data sets, the search sets should

not differ much. Scaling plays a significant role in the learning process and all the data

used in this thesis are scaled, as explained in Section 5.2. The second point is related to

84

the objective function. The penalty term (loss function) in the objective function is

exponential, hence it is bounded within the range [0, 1]. This simplifies the generation of

𝜆̅ and helps determining the boundaries of the set (smallest and largest value).

In this thesis, the search sets 𝛾̅ and 𝜆̅ are developed by trial and error. A starting search

set is first created, and the model is solved several times with different training,

validation (tuning), and testing sets. If the optimum parameters value in most of the runs

takes the value of either boundary of the search set, that value is pushed out so larger

positive (or larger negative) values enter the search set. If the optimum parameter value

alternates the two boundary values of the search set, this means the set range is too small

and it should be expanded to accommodate more values. An ideal search set will have all

the optimum parameter values far away from the boundary elements. However, there

should be some hard limits for the search sets in case the optimum parameter value is

continuously taking a boundary value. In some cases, it is possible that the optimum

parameter value is zero or infinity. In that case, a relatively small or large number should

be established as a boundary of the search set.

The larger the size of the search set, the more accurate the learning process becomes.

However, this may cause the solution time to significantly increase, due to the large

number of evaluations in the process. Therefore, a good compromise between the

solution speed and the size of the search set is highly required.

4.4.2 Selecting 𝝈

Once 𝛾∗ and 𝜆∗ are identified, the model is trained over the entire training data for

multiple values of 𝜎, using the iterative solution method proposed in section 4.2. Unlike

85

the other two parameters, the optimum value of 𝜎 is determined during this phase of

training. The value of 𝜎∗ corresponds to the value of 𝜎 that gives highest training

accuracy over the entire training data at 𝛾 = 𝛾∗ and 𝜆 = 𝜆∗. Once 𝜎∗ is identified, the

decision boundary can be constructed. To sum, the optimal triplet (𝛾∗, 𝜆∗, 𝜎∗) obtained in

the training phase will be used for obtaining (𝒘, 𝑏) for LDB, and (𝒖, 𝑏) for NLDB.

4.4.3 Grid Search Algorithm Using Iterative Solution Method

Finding the optimum values for the two parameters is the core purpose of the learning

process (known as Cross Validation), discussed in detail in the following chapter. In our

proposed methodology, the iterative solution concept and the effect of 𝜎 are integrated in

the grid search of multiple parameters. This forms a sound procedure for optimizing the

parameters. Algorithm (1) shows the proposed grid search method:

86

After solving the NLP model for all values of 𝛾, 𝜆, and 𝜎, the validation accuracy for

every parameter combination is obtained. The validation accuracies are bundled in a 3D

matrix, where each dimension corresponds to one of the three parameters. The optimum

parameters (𝛾∗and 𝜆∗) are the ones corresponding to the maximum validation accuracy in

the 3D matrix. The model is then solved using these two optimum parameters to find 𝜎∗

and the decision variables 𝒖, 𝒘, and 𝑏, depending whether the problem is for LDB or

NLDB.

 Algorithm 1: Proposed Iterative Solution Algorithm

1 Set 𝛾 = 𝛾𝑠, 𝜆 = 𝜆𝑠 , 𝜎 = 𝜎𝑠

2 Set the reduction factor 𝜏 for 𝜎

3 While (𝛾 ≠ 𝛾𝑒) {

4 Set 𝜆 = 𝜆𝑠

5 While (𝜆 ≠ 𝜆𝑒) {

6 Set 𝜆 = 𝜆𝑠,

7 Set 𝒖𝑖𝑛𝑖𝑡 and 𝑏𝑖𝑛𝑖𝑡 randomly

8 While (𝜎 ≥ 𝜎𝑒) {

9 𝒖 = 𝒖𝑖𝑛𝑖𝑡 and 𝑏 = 𝑏𝑖𝑛𝑖𝑡

10 Solve NLP model

11 𝒖𝑖𝑛𝑖𝑡 = 𝒖
∗ , 𝑏𝑖𝑛𝑖𝑡 = 𝑏

∗

12 𝜎 = 𝜏𝜎

13 }end

14 Update 𝜆

15 }end

16 Update 𝜆

17 }end

87

4.5 Solving Method for CMD-SVM Model

The solution for the CMD-SVM model follow the same concept and methodology

explained in the previous sections. However, the structure of the CMD-SVM model is

different from the other two proposed models since membership degrees are used instead

of the loss function. The model requires a different solution approach to handle

membership degree α in the objective function. Therefore, solving the model, which is

step number 10 in Algorithm (1), is replaced by Algorithm (2) for CMD-SVM model.

We are proposing an iterative solution method, see Algorithm (2), where 𝛼 is updated in

each iteration for a specific combination of 𝛾, 𝜆, and 𝜎. The algorithm starts with

assigning a random initial solution 𝒖0 and 𝑏0. The initial solution is then used to find 𝛼0,

which is substituted in the objective function. The objective function is solved for 𝒖1 and

𝑏1 and the process is repeated until no significant improvement is observed in the

objective function value.

 Algorithm 2: solving the CMD-SVM at given 𝛾, 𝜆, and 𝜎

1 Set 𝑡 = 0, 𝒖0
 , 𝑏0= random, 𝜀 = 0+, 𝑓𝑡 = 0, 𝑓𝑡−1= M

2 While (
|𝑓𝑡− 𝑓𝑡−1|

𝑓𝑡−1
≥ 𝜀) {

3 Calculate 𝛼𝑖
(𝑡+1)

 ∀ 𝑖 using 𝒘𝑡
 and 𝑏𝑡

4 𝑡 = 𝑡 + 1

5 Solve the NLP for 𝒘𝑡
 and 𝑏𝑡

6 } end

The parameter 𝛼 is constant when the problem is solved for 𝒖 and 𝑏, which makes the

problem convex at that particular iteration 𝑡. Because the objective function is convex,

88

there are plenty of fast and efficient algorithms for solving the convex problem. Despite

the admired convexity of the objective function, it is very difficult to mathematically

prove that the solution will always converge. Alternatively, a simple experiment was

conducted to test the solution convergence of the model empirically. For a certain 𝛾, 𝜆,

and starting from large value of 𝜎, the model was solved per Algorithm (1). The

algorithm was executed multiple times with different initial solutions. It was found that

the solution produced by the CMD-SVM model is empirically converging. One drawback

of using CMD-SVM is the increase in the solution time, which is due to a new loop

added to the overall learning process.

89

5 CHAPTER 5

NUMERICAL EXPERIMENTS

Numerical experiments are crucial in any research since they demonstrate whether the

proposed work meets the expected deliverables. Furthermore, they allow comparing the

quality of the proposed work to existing works in the literature. In this chapter, we test

the performance of the three proposed models and compare it to the original SVM and

PSVM, and existing robust methods. The main objective of this chapter is to show that

the proposed models are robust when outliers exist in the data sets.

This chapter starts with explaining a key concept known as Cross Validation (CV), which

is a milestone in solving any data analysis problem. Next, the solution algorithm is

discussed followed by the experiment setup. After that, LDB classification problem using

synthetic data set is illustrated, followed by the well-known Double Banana (crescent)

data set for the NLDB case. These two data sets are in 2D (feature space dimension 𝑚 =

2), which means the data sets and the decision boundary can be visualized. Lastly, the

performance of the proposed NLDB algorithm is illustrated on real life data sets, obtained

from public data repositories.

90

5.1 Cross Validation (CV)

Recall the classification process demonstrated in Figure (1). The third stage “Train the

model” is where CV takes place. In fact, CV is all about estimating the model parameters.

CV aims to come up with the optimum values of the model’s parameters (𝜆, 𝛾) by

evaluating the model at different combination of those parameters. In this thesis, the

combinations are obtained through the proposed grid search with the iterative solution

method, discussed in the previous chapter.

Generally, the first step of the CV process is to randomly split the data set into two

subsets: one subset is for training “TR” and one for testing “TS”. The training subset is

then further split (randomly) into two subsets (say TR1 and TR2). For a given

combination of the two parameters, TR1 is used for developing the decision boundary,

and TR2 is used to evaluate (validate) that decision boundary. Then the parameter

combination that corresponds to the best validation performance measure is selected to

build the ultimate decision boundary using TR. For example, if 𝜆 has three potential

values (𝜆1, 𝜆2, 𝜆3), and 𝛾 has two potential values (𝛾1, 𝛾2), then we will have 6 different

combinations of (𝜆𝑞, 𝛾𝑟) to evaluate. For each combination, the model will be solved

using the subset TR1 to obtain the optimum decision boundary variables 𝒖 and 𝑏. After

that, the resultant rule function from the obtained optimum variables is used to classify

the data instances in subset TR2, and calculate the classification accuracy of the model

w.r.t TR2. This accuracy is called “cross validation accuracy” or simply “validation

accuracy”. There are several accuracy measures used in classification. Different accuracy

measures provide different interpretation and insight. Some of the measures are

91

applicable in certain conditions, such as balanced or imbalanced data [30]. Depending on

the type of CV, the validation accuracy is obtained 𝐾 times for each parameter

combination, where each time TR1 and TR2 are regenerated randomly. The parameter

combination corresponding to the best average accuracy is selected for further analysis.

The last training step is to train the model with the entire training subset (TR1+TR2)

using the optimum parameters (𝜆∗, 𝛾∗) to obtain 𝜎∗ and the optimum 𝒖 and 𝑏, hence the

rule function.

The last stage in CV is testing, which aims to evaluate the rule function produced in the

training phase. The TS is not involved in any way in the training process described

earlier. It can be considered as a set of new instances from the future, which need to be

classified based on the obtained rule function. The performance measures obtained by the

testing subset, such as accuracy and sensitivity, are called “prediction accuracy” or

“prediction sensitivity”, respectively.

The most important performance measure is the accuracy. Different measures (formulas)

were developed to calculate the prediction accuracy of a decision rule. Each formula has

its own meaning and interpretation of accuracy, which may suit certain classification

problems or areas of applications. Moreover, some accuracy measures are preferred for

certain data configuration, such as the case of class imbalanced data sets (when the two

classes are extremely different in size). For example, in case of class balanced data,

normal accuracy can be used which is formulated as follows:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (60)

92

In case of class imbalanced data, balanced accuracy measure is sounder and more

realistic, which is formulated as:

𝐵𝐴𝐶𝐶 = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
) 2⁄ (61)

It is convenient to have the testing results summarized in a tabulated format. The testing

results are mainly the counts of the data points that are correctly/incorrectly classified as

positive; and the points which are correctly/incorrectly classified as negative. This test

summary table is known as the “confusion matrix”. Table (2) shows the configuration of

the confusion matrix, which only provides the counts of TP, FN, FP, and TN data points.

These four numbers are the building blocks for most of the performance measures. The

confusion matrix minimizes the time and effort of computing the accuracy especially if

multiple types of accuracy measures are to be computed. Additionally, it represents the

results in neat and organized manner, which usually minimizes the risk of making a

mistake in the calculations.

Table 2: Typical confusion matrix

 Classified as Positive Classified as Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

There are several methods of CV and each method has a different training procedure and

data subset configuration. The three most common methods are:

94

5.2 Experiments Setup

This section introduces the setup of the numerical experiments conducted in this chapter.

The experiments are coded in Matlab, which is then linked to GAMS using GDX files to

solve the optimization problems. SNOPT solver is selected to solve the NLP model, since

it is suitable for problems with large number of variables and constrains. Generally, this

solver requires less matrix computation and less evaluation of the objective function

compared to the other solvers, which impacts solution speeds. All the experiments are run

on a laptop with Intel Core i7-3610QM CPU and an installed RAM of 6 GB. The OS is

Windows 7 Professional 64-bit.

The experiments are generally setup similar to the ones in [15]. The hold-out cross

validation method is used with the following data split: 60% for training, 20% for

validation (tuning), and 20% for testing. The validation and testing accuracies are

measured using the formula in (60). The random functions in Matlab are controlled by

the “GlobalStream” facility to ensure consistency in splitting the data sets and selecting

the outliers. This should eliminate any bias that may occur because of different selection

of the data points, allowing a fair comparison between different models. The stream is

reset before solving a classification problem for a different noise level (scenario) or

before solving for a new model.

For all the experiments in this chapter, the noise is added to a dataset by flipping the class

labels of some randomly selected data points. For instance, if 10% noise is to be added to

the data set of 𝑛 = 100, it means we randomly select a total of 10 points from the data

and flip their class labels. The resultant data set becomes the new set to be used in the CV

95

process. It is important to mention that the random selection of the 10 points may

encounter some bias if the selection is not balanced across the two classes. This is a

critical point that needs to be incorporated in the experiments, which will be explained in

the coming sub-sections.

All the data sets are scaled to [0, 1] scale prior to establishing the models. Data scaling

has a significant impact on the training performance [32]. It also normalizes the feature

space across the data set to prevent any biased influence of a certain feature due to

extremely high or low values. For example, consider a data set of 50 points with a two-

dimensional feature space. Feature 1 is temperature which normally takes a value

between [100, 200] and Feature 2 represents a status of something which takes an integer

value between [1, 4]. Training the model with this data may affect the performance of the

training process due to the extremely higher values of Feature 1 compared to those of

Feature 2. Therefore, the data needs to be scaled to avoid this effect. Several methods are

available to scale data such as the Min-Max and the Z-score methods [32]. In this thesis,

the Min-Max method is used, where the values of the 𝑗𝑡ℎ feature are mapped to the new

scaled values as follows:

𝑥𝑖,𝑗
′ =

𝑥𝑖,𝑗 − 𝑥𝑚𝑖𝑛,𝑗
𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗

 , ∀ 𝑖 = 1,2,⋯ , 𝑛 (62)

where 𝑥𝑚𝑖𝑛,𝑗 is the smallest value in the 𝑗𝑡ℎ feature across the whole dataset.

For all the experiments in this chapter, the search sets of the parameters were developed

under the guidance from Sections 4.3 and 4.4. The search sets for 𝛾 and 𝜆 are developed

on a logarithmic scale. The regularization parameter of the objective function has a

96

search set 𝜆̅ = {𝜆: 10−8+𝑙 | 𝑙 = 0, 1,⋯ ,11}. The lower bound of the set is 𝜆 = 10−8

which is small enough to be considered as zero. The upper bound is 𝜆 = 103 which is

sufficiently large to be considered as infinity. The non-linear overfitting parameter has a

search set 𝛾̅ = {𝛾: 5−5+𝑙 | 𝑙 = 0, 1,⋯ ,7}. The shaping parameter 𝜎 starts at 𝜎𝑠 = 30 and

it ends 𝜎𝑒 = 0.1 with a reduction factor 𝜏 = 0.9.

As shown in Algorithm (1), the nested loops are expected to slow down the solution time

heavily. Therefore, the Grid & Multi-Threading facility in GAMS is used to perform

parallel computing. Instead of solving the NLP for each 𝛾, 𝜆, and 𝜎 one at a time, the

NLP is solved with all combinations of 𝛾 and 𝜆 in parallel at a single value of 𝜎. This is

achievable because the solution (𝒘, 𝑏) or (𝒖, 𝑏) at a certain combination (𝛾, 𝜆) is

independent on the other combinations. On the other hand, the solution at any 𝜎 is

directly dependent on the solution at the previous 𝜎, as per the iterative solution method

explained in Section 4.2.

5.3 Synthetic Illustration Problems

It is always preferred to graphically present the data of both classes along with the

decision boundary. This helps in verifying the mathematical interpretation of the results

and perhaps comparing different outcomes easily. Because it is very difficult to find

proper real-life data that can be plotted in 2D or 3D (i.e. feature space is 𝑚 = 2 or 𝑚 =

3, respectively), synthetic data is used. Two experiments were developed: The

Segmented Blocks experiment for the LDB case, and the Double Banana experiment for

the NLDB case.

97

5.3.1 Segmented Blocks Experiment for LDB

In this experiment, the data is evenly split into two halves: the right-hand side half

representing once class and the left hand side half representing the other class. Each class

is divided into a top half and a bottom half. This means a top or a bottom half within a

class constitutes quarter the total data, and we call it a “block”. Each block is divided

vertically into three segments laid out next to each other. Figure (28) describes the data

layout.

In an ideal scenario with no noise involved, the decision boundary should be a straight

vertical line separating the two classes. As the purpose of this experiment is to test the

models’ robustness, noise will be added to the data in order to test the response of the

LDB to that noise. To achieve the maximum effect on the LDB position, the outliers are

placed in Block 1 and Block 4. Having the outliers in those two blocks will try and push

the decision boundary to move counter-clockwise. Placing the outliers in Blocks 2 and 3

should also work the same.

As explained in a previous chapter, the reason behind noise sensitivity in SVM and

PSVM is the error function. That is, higher penalties are assigned for higher marginal

errors. As the outliers are close to the “division gap” (the vertical gap around where the

two classes are separated) the penalty remains minimal. On the other hand, if the outliers

are on the outboard of the data, then the penalty will be significantly huge, causing the

decision boundary to move counter clockwise to minimize the total error. Therefore, the

location of the outliers has a strong role in determining the position of the LDB.

98

Figure 28: The structure of the data set used in the Segmented Blocks experiment

99

The three segments in each block are utilized to evaluate each model’s performance, by

adding noise at different locations. The experiment is divided into 4 scenarios. In

Scenario-1, the problem is solved with no added noise. In Scenario-2, the problem is

solved by adding noise to the third segment of each block. In Scenario-3, the noise is

added to the second segment only of each block. The same process is replicated for the

Scenario-4, but the noise is added to the last segment (Segment 1) of each block. This

way, the robustness can be evaluated by observing the change in the LDB position as

noise move from one segment to another, away from the division gap. The total number

of data points generated for this experiment is 300. The points are split evenly into two

classes, where class A is highlighted with the red circles and class B is highlighted with

the blue ones.

Every model is trained to obtain the optimum 𝜆. This is done by solving the model using

the training data, and then calculating the accuracy using the validation data set. This

process is repeated 20 times. In each time, the data is randomly split into training and

validation sets. After that, the accuracies are averaged across the 20 repetitions, and the 𝜆

corresponding to the highest average accuracy (𝜆∗) is selected. The model is then re-

solved with 𝜆∗ using the entire data to obtain the optimum variables 𝒘∗ and 𝑏∗. Those

optimum variables are used to plot the LDB.

It is expected that the noise-sensitive models will heavily respond to the addition of the

outliers and will try to accommodate them into the relevant classes. However, the robust

models are expected to remain unchanged, or perhaps experience some minor changes.

Figures (29)-(33) show the outcome of the experiment, where the green lines represent

the decision boundaries.

100

For a given 𝛾 and 𝜆, the SVM and PSVM models produce one single solution (𝒘 and 𝑏),

whereas the proposed robust models produce a number of solutions equal to the number

of values for 𝜎. The logical step in this case is to select the solution from the 𝜎 that

returns the highest accuracy. In most cases, it is possible to have multiple solutions giving

the highest level of accuracy for the same combination (𝛾, 𝜆). In other words, multiple

values of 𝜎 may provide different solutions but they all give the same (highest) accuracy.

For the optimum combination (𝛾∗, 𝜆∗), all the best accuracy solutions are incorporated in

the following plots. Thus, multiple decision boundaries are shown on the plot of each of

the proposed robust models, forming a “cloud” of optimum boundaries.

101

Figure 29: The LDB obtained by the SVM model for 4 different scenarios

102

Figure 30: The LDB obtained by the PSVM model for 4 different scenarios

103

Figure 31: The LDBs obtained by the C-SVM model for 4 different scenarios

104

Figure 32: The LDBs obtained by the C-PSVM model for 4 different scenarios

105

Figure 33: The LDBs obtained by the CMD-SVM model for 4 different scenarios

106

In Scenario-1, all models performed similarly by splitting the two classes in the middle

with a vertical decision boundary. It can be seen that the LDB for the SVM and PSVM is

perfectly vertical and exactly in the middle. This is expected since both models tend to

maximize the margin between the two classes. In the three proposed robust models,

multiple boundaries are shown, and it can be seen that there is at least one perfectly

vertical LDB that is located exactly in the middle. The other boundaries are also good

solutions since they provide a 100% accurate separation.

Scenario-2 is quite tricky, and it can be misleading. Because the outliers are scattered

around the boundary, slanted LDB can correctly classify (separate) some of these outliers

to produce a better accuracy. Note that these decision boundaries are selected because

they achieve the highest accuracy against the testing samples, which are not highlighted

on the plots.

In Scenario-3 and Scenario-4, the outliers are placed far from the division gap, thus

started to enforce high penalties on the models. The SVM and PSVM reacted heavily to

those outlier whereas the proposed robust models showed less sensitivity and produced

an LDB with almost 100% accuracy. Although the CMD-SVM model performed below

expectation in the 3rd scenario, it shows an acceptable solution in the 4th scenario. In

general, we can confidently conclude that the three proposed models showed excellent

robustness and less sensitivity to outliers compared to the conventional models.

Moreover, the C-SVM and C-PSVM models outperformed the CMD-SVM model,

perhaps due to the inaccuracy caused by the stopping criteria in Algorithm (2).

107

5.3.2 Double Banana Experiment for NLDB

The Double Banana or Double Crescent data set is a well-known set used for evaluating

NLDB models. The purpose of this experiment is to assess the models’ ability to create a

NLDB to separate the two classes in the presence of noise. The data is generated

randomly in the shape of two bananas facing each other, corresponding to the two data

classes. Each class contains 90 data points. The experiment is conducted in three

scenarios: the original data without any noise, data with 10% noise added, and data with

25% noise.

 The experimental setup for the Double Banana is similar to the previous experiment

(sub-section 5.2.1). Because the decision boundary in the Double Banana data set is non-

linear, the model is trained to obtain two optimum parameters (𝜆 and 𝛾). The model is

trained and validated over 20 iterations, and the accuracy is averaged over those 20

iterations, as explained earlier. The optimum 𝜆∗ and 𝛾∗ are then obtained, and the model

is solved with the optimum 𝜆∗ and 𝛾∗ using the training and validations sets. As a result,

the optimum solution 𝒖∗ and 𝑏∗(or 𝒖∗ only for C-PSVM model) are then obtained.

It was discussed in sub-section 3.2.2 that the NLDB is not represented by a non-linear

function. This may raise questions about the mechanism of plotting the NLDB on a 2D

screen. This is simply done by equating the decision boundary function to zero and

solving for (𝑥1, 𝑥2). Note that, there are an infinite number of solutions to this equation.

Therefore, the easiest way to practically plot the NLDB is to create a 2D grid of points

(mesh) with a relatively high resolution, and substitute each point from the grid in the

decision boundary function. If the result equals zero or very close to zero, then it can be

108

safely concluded that the point belongs to the decision boundary. Those points belonging

to the decision boundary are then plotted to construct the NLDB.

Figures (34)-(38) show the data sets and decision boundary for SVM, PSVM, C-SVM,

and C-PSVM, respectively. Each figure is divided into 3 rows and 2 columns. The

columns represent the 3 different scenarios (i.e. no noise added, 10% noise, and 25%

noise, respectively). The first column shows the test sample only against the final

decision boundary. Note the test sample determines the prediction accuracy and

therefore, a perfect separation of the test sample indicates a 100% prediction accuracy.

The second column shows the decision boundary with the training and validation data set.

When the decision boundary is continuous as shown in Figure (39), the domain is divided

into two distinct areas (A and B), and each area represents the domain of one class. When

the data points of the two classes are linearly or non-linearly separable, a continuous

decision boundary can always be obtained. However, when the data sets are not

separable, then the decision boundary is always exposed to experience a discontinuous

behavior to accommodate the points which migrate into the other class’s vicinity. This is

also known as overfitting. The higher a model’s sensitivity to outliers the higher the

probability is to experience overfitting, thus a discontinuous decision boundary. Figure

(40) shows an example of a discontinuous decision boundary, where each class domain is

represented by multiple areas.

109

SVM – Scenario 1 (Showing TS Points)

SVM – Scenario 1 (Showing TR Points)

SVM – Scenario 2 (Showing TS Points)

SVM – Scenario 2 (Showing TR Points)

SVM – Scenario 3 (Showing TS Points)

SVM – Scenario 3 (Showing TR Points)

Figure 34: The NLDB obtained by the SVM for the 3 scenarios

110

PSVM – Scenario 1 (Showing TS Points)

PSVM – Scenario 1 (Showing TR Points)

PSVM – Scenario 2 (Showing TS Points)

PSVM – Scenario 2 (Showing TR Points)

PSVM – Scenario 3 (Showing TS Points)

PSVM – Scenario 3 (Showing TR Points)

Figure 35: The NLDB obtained by the PSVM for the 3 scenarios

111

C-SVM – Scenario 1 (Showing TS Points)

C-SVM – Scenario 1 (Showing TR Points)

C-SVM – Scenario 2 (Showing TS Points)

C-SVM – Scenario 2 (Showing TR Points)

C-SVM – Scenario 3 (Showing TS Points)

C-SVM – Scenario 3 (Showing TR Points)

Figure 36: The NLDB obtained by the C-SVM for the 3 scenarios

112

C-PSVM – Scenario 1 (Showing TS Points)

C-PSVM – Scenario 1 (Showing TR Points)

C-PSVM – Scenario 2 (Showing TS Points)

C-PSVM – Scenario 2 (Showing TR Points)

C-PSVM – Scenario 3 (Showing TS Points)

C-PSVM – Scenario 3 (Showing TR Points)

Figure 37: The NLDB obtained by the C-PSVM for the 3 scenarios

113

CMD-SVM – Scenario 1 (Showing TS Points)

CMD-SVM – Scenario 1 (Showing TR Points)

CMD-SVM – Scenario 2 (Showing TS Points)

CMD-SVM – Scenario 2 (Showing TR Points)

CMD-SVM – Scenario 3 (Showing TS Points)

CMD-SVM – Scenario 3 (Showing TR Points)

Figure 38: The NLDB obtained by the CMD-SVM for the 3 scenarios

114

A

B

Figure 39: An example of a continuous NLDB

115

Figure 40: An example of a discontinuous NLDB and the relevant classes

A

A

A

A

A

B

B B

116

All 4 models delivered similar results in Scenario 1. In Scenario 2 and 3, the proposed

robust models outperformed the SVM and PSVM models in noise insensitivity

(robustness). From Figures (34)-(38), it is observed that the NLDBs obtained by the

conventional SVM models experience higher discontinuity as the noise level increases.

The discontinuity of a decision boundary can be related to overfitting. Generally, when a

model overfits, the resultant NLDB becomes discontinuous, similar to the one shown in

Figure (40). This observation of overfitting can be related to the model’s sensitivity to

noise. When the model is noise sensitive, it will try to accommodate every violating point

into its associated class. Consequently, NLDBs will be created to isolate those violating

points from the other class’s points near them. In this case, the validation accuracy tends

to be high, whereas the prediction accuracy using the testing data is expected to be

significantly lower.

5.4 Real-Life Problems

The main purpose of Section 5.3 is to illustrate the behavior of the decision boundaries

obtained by various models, when noise is added to the clean (noise free) synthetic data.

However, those data sets may not represent real-life data scenarios. Normally, real-life

data sets contain some natural noise, which is extremely difficult to identify

straightforward. Typically, real-life data sets come in higher feature space dimension

(𝑚 ≥ 3), which influences the model behavior due to the curse of dimensionality [1].

117

These reasons highlight the importance of solving real-life problems to judge the models

for robustness.

The data sets used in this section are downloaded from the UCI data repository [33]. A

total of 8 well-known data sets were selected to run the experiment, which are described

in Table (3). It was observed that solving the CMD-SVM model takes a tremendous

amount of time due to the additional nested loop for 𝛼. Therefore, the CMD-SVM model

is excluded from the experiments, and the remaining four models are evaluated in this

section.

Table 3: Details of the real-life data sets

No.
Data Set

Name

Number
of points

(𝒏)

Number of
features

(𝒎)

Missing
Values?

Number of
removed data

instances

1 SPECTF Heart 267 44 No N/A

2 Breast 699 10 Yes 16

3 Sonar 208 60 No N/A

4 Haber 306 3 No N/A

5 Inosphere 351 34 No N/A

6 Monks1 432 6 No N/A

7 Monks2 432 6 No N/A

8 Monks3 432 6 No N/A

All the experiments in this section are carried out in 3 scenarios. In the first scenario, the

experiment is run with the original data without any noise added. The second and third

scenarios will have the same original data set but with 10% and 20% noise added,

respectively. In each scenario, the complete CV process is repeated 20 times and the

prediction accuracy measure is averaged across the 20 repetitions. The prediction

accuracies resulted from the experiments using the real-life data sets are shown in Table

118

(4). Moreover, the highest accuracies are shown in bold. As seen from the table, the

highest accuracies are mainly obtained by the C-SVM and C-PSVM.

Figure (41) provides a different insight on each model’s performance in addition to a

visual comparison among the 4 models. One interpretation of Figure (41) is that the

smaller the change over the noise level (x-axis) the higher is the robustness. Additionally,

it is easier to compare the 4 models in terms of their prediction accuracies, as the higher

the line the higher is the accuracy. Generally, it can be seen that the proposed robust

models experience a smaller change across the noise levels, whereas the SVM and PSVM

appear to have steeper negative slopes.

The proposed robust models demonstrated higher prediction accuracy compared to the

conventional SVM models. Generally, the C-SVM model outperformed all the models in

terms of prediction accuracy. The C-SVM scored the highest prediction accuracy 62.5%

of the time and the C-PSVM scored the highest 37.5% of the time.

119

Table 4: The prediction accuracies obtained by the 4 models for the 3 scenarios, using the real-life data sets.

 No Noise Added

 Dataset SVM PSVM
r_hinge-SVM

[16]
C-SVM C-PSVM

SPECTF 0.7905 ± 0.059 0.8160 ± 0.062 0.7849 ± 0.078 0.8458 ± 0.046 0.8383 ± 0.047

Breast 0.9430 ± 0.019 0.9583 ± 0.015 0.9510 ± 0.014 0.9487 ± 0.02 0.9750 ± 0.015

Sonar 0.7711 ± 0.083 0.8679 ± 0.047 0.7674 ± 0.078 0.8606 ± 0.032 0.8791 ± 0.047

Haber 0.7350 ± 0.054 0.7281 ± 0.047 0.7282 ± 0.066 0.7806 ± 0.032 0.7354 ± 0.052

Ionosphere 0.7142 ± 0.033 0.8747 ± 0.037 0.7172 ± 0.045 0.8632 ± 0.03 0.8854 ± 0.031

Monks1 0.7604 ± 0.065 0.7750 ± 0.042 0.7771 ± 0.063 0.8170 ± 0.044 0.8164 ± 0.025

Monks2 0.7771 ± 0.046 0.7767 ± 0.050 0.7644 ± 0.047 0.8211 ± 0.035 0.8089 ± 0.026

Monks3 0.8756 ± 0.040 0.8852 ± 0.027 0.9004 ± 0.028 0.9219 ± 0.029 0.8882 ± 0.036

 10% Noise Added

Dataset SVM PSVM
r_hinge-SVM

[16]
C-SVM C-PSVM

SPECTF 0.7624 ± 0.073 0.8308 ± 0.051 0.7675 ± 0.083 0.8535 ± 0.047 0.8336 ± 0.048

Breast 0.9382 ± 0.026 0.9502 ± 0.019 0.9557 ± 0.021 0.9528 ± 0.016 0.9762 ± 0.016

Sonar 0.7128 ± 0.127 0.8019 ± 0.074 0.7550 ± 0.070 0.8400 ± 0.052 0.8403 ± 0.048

Haber 0.7424 ± 0.04 0.7264 ± 0.047 0.7596 ± 0.064 0.7618± 0.050 0.7476 ± 0.052

Ionosphere 0.7085 ± 0.054 0.8314 ± 0.048 0.7270 ± 0.043 0.8383 ± 0.043 0.8662 ± 0.030

Monks1 0.7020 ± 0.062 0.7268 ± 0.046 0.7297 ± 0.044 0.7881 ± 0.036 0.7933 ± 0.049

Monks2 0.7251 ± 0.063 0.7222 ± 0.062 0.7273 ± 0.045 0.8002 ± 0.032 0.7545 ± 0.056

Monks3 0.8120 ± 0.071 0.8602 ± 0.032 0.8487 ± 0.032 0.8831 ± 0.034 0.8692 ± 0.052

 20% Noise Added

Dataset SVM PSVM
r_hinge-SVM

[16]
C-SVM C-PSVM

SPECTF 0.7180 ± 0.130 0.7805 ± 0.072 0.7678 ± 0.123 0.8451 ± 0.041 0.8243 ± 0.051

Breast 0.9367 ± 0.021 0.9451 ± 0.027 0.9443 ± 0.020 0.9502 ± 0.018 0.9788 ± 0.012

Sonar 0.6715 ± 0.095 0.7476 ± 0.065 0.7170 ± 0.084 0.8312 ± 0.060 0.8203 ± 0.058

Haber 0.7180 ± 0.069 0.7297 ± 0.049 0.7270 ± 0.062 0.7642 ± 0.043 0.7435 ± 0.046

Ionosphere 0.6956 ± 0.055 0.8147 ± 0.045 0.7165 ± 0.046 0.8341 ± 0.044 0.8527 ± 0.041

Monks1 0.6568 ± 0.053 0.6542 ± 0.076 0.7132 ± 0.042 0.7557 ± 0.030 0.7372 ± 0.068

Monks2 0.6749 ± 0.055 0.6828 ± 0.048 0.7057 ± 0.52 0.7487 ± 0.045 0.7441 ± 0.048

Monks3 0.7877 ± 0.079 0.8068 ± 0.061 0.8082 ± 0.038 0.8721 ± 0.043 0.8553 ± 0.036

120

Figure 41: Line chart of the prection accuracies across the noise levels and per data set

121

Although the focus of this thesis is the accuracy as a performance measure, the solution

time remains a critical issue. From Chapter (4), the proposed solution methodology

introduces the parameter 𝜎, which imposes an additional iteration on the solution

algorithm. Therefore, it is obvious to notice that the proposed models would take more

time to solve compared to the SVM and PSVM. Table (5) illustrate the solution time in

seconds for one complete repetition of each experiment. For 𝜎𝑠 = 30, 𝜎𝑒 = 0.1, and 𝜏 =

0.9, a total of 55 values for 𝜎 are to be evaluated. From the last two columns of the same

table, it can be observed that the solution time for a robust model is close to 55 times the

solution time of its associated conventional (noise sensitive) model. This indicates that

the solution time of a robust model for a specific value of 𝜎 is comparable to the solution

time of the associated conventional model for one repetition.

Based on the discussion so far and the results shown in Table (5), the relatively longer

solution time for the robust models are caused by the handling of 𝜎. This can be verified

by observing the time for solving only the NLP model. Regarding the proposed robust

models, the solution time for every value of 𝜎 was recorded, and the figures shown in

Table (6) are the average values in seconds. It can be seen that the average time it takes to

solve the NLP problem of the proposed robust models is comparable or better than the

conventional models. The reason for that is the iterative solution methodology. In every

iteration, the initial solution obtained from the previous iteration is always in the valley,

hence closer to the optimum solution. Therefore, the average solution time for one 𝜎 is

less compared to the models that are not solved by the proposed iterative methodology.

However, the total time to solve the proposed models using the iterative solution

methodology is higher due to the ramification of 𝜎.

122

Table 5: The total solution time in seconds for one complete repetition

0% Noise

Dataset SVM PSVM C-SVM C-PSVM
Ratio

(C-SVM:SVM)
Ratio

(C-PSVM:PSVM)

SPECT 9.47 9.94 463.22 459.79 49 46

Breast 120.73 112.84 4091.64 4048.74 34 36

Sonar 18.80 36.67 689.05 675.04 37 18

Haber 11.72 11.12 615.89 556.56 53 50

Inosphere 13.55 15.38 881.81 735.96 65 48

Monks1 19.13 24.90 1301.00 939.72 68 38

Monks2 19.08 22.90 1289.48 952.89 68 42

Monks3 20.59 21.88 1424.72 960.70 69 44

 Av e rage 55 40

10% Noise

Dataset SVM PSVM C-SVM C-PSVM
Ratio

 (C-SVM:SVM)
Ratio

 (C-PSVM:PSVM)

SPECT 19.43 19.15 1010.91 924.53 52 48

Breast 238.58 226.55 9663.79 1347.62 41 6

Sonar 36.95 54.27 1394.14 9559.39 38 176

Haber 22.70 22.65 1239.18 1103.48 55 49

Inosphere 28.32 29.60 1744.55 1480.61 62 50

Monks1 38.55 46.14 2689.07 1880.82 70 41

Monks2 38.62 43.73 2551.02 1907.27 66 44

Monks3 43.46 42.70 2799.61 1954.66 64 46

 Av e rage 56 57

20% Noise

 Dataset SVM PSVM C-SVM C-PSVM
Ratio

 (C-SVM:SVM)
Ratio

 (C-PSVM:PSVM)

SPECT 28.75 29.44 1556.43 1386.85 54 47

Breast 356.95 339.09 15240.15 2020.92 43 6

Sonar 53.99 71.84 2073.89 15073.51 38 210

Haber 33.92 36.55 1805.79 1641.14 53 45

Inosphere 42.50 44.12 2566.01 2162.56 60 49

Monks1 57.96 67.00 4097.33 2818.23 71 42

Monks2 58.91 67.75 3818.64 2861.71 65 42

Monks3 65.77 62.50 4189.74 2917.50 64 47

 Av e rage 56 61

123

Table 6: The time (average time for C-SVM and C-PSVM) taken to solve the NLP problem for once

0% Noise

 Dataset SVM PSVM
r_hinge-
SVM [16]

C-SVM C-PSVM

SPECT 2.49 2.55 2.98 3.45 2.73

Breast 54.35 52.29 45.30 5.61 10.41

Sonar 4.53 4.74 5.52 5.78 5.30

Haber 3.27 3.37 3.22 4.11 2.76

Inosphere 4.33 4.45 6.52 5.40 3.03

Monks1 6.83 8.59 8.21 9.07 3.29

Monks2 6.82 7.23 9.52 9.04 3.21

Monks3 6.98 7.31 9.77 10.20 3.20

10% Noise

 Dataset SVM PSVM
r_hinge-
SVM [16]

C-SVM C-PSVM

SPECT 3.21 2.56 3.36 3.49 3.11

Breast 53.13 52.91 44.02 5.67 10.50

Sonar 4.47 4.62 5.26 5.52 5.36

Haber 3.84 3.93 3.88 4.37 2.74

Inosphere 4.35 4.44 6.61 5.44 3.06

Monks1 6.85 6.97 8.49 9.87 3.29

Monks2 6.80 7.11 9.22 9.24 3.20

Monks3 7.12 7.19 9.03 10.49 3.17

20% Noise

Dataset SVM PSVM
r_hinge-
SVM [16]

C-SVM C-PSVM

SPECT 2.49 2.54 2.57 2.92 2.77

Breast 52.46 51.98 42.98 5.52 10.28

Sonar 4.51 4.66 5.40 5.33 5.21

Haber 4.56 5.45 5.09 3.25 2.77

Inosphere 4.41 4.68 6.41 5.64 2.81

Monks1 6.85 6.84 9.36 10.72 3.24

Monks2 7.31 7.14 10.22 8.96 3.18

Monks3 9.34 7.05 9.54 11.06 3.13

124

The C-SVM and C-PSVM scored the lowest solution time for a given 𝜎 75% of the time.

Furthermore, the main advantage of the PSVM model (solution speed) is retained after

the incorporation of the CLF. As a result, the C-PSVM generally outperformed all the

other models. This shows that the incorporation of the CLF into the proposed models

does not have a negative impact on the solution time.

It is important to note that the NLP problems are solved using the Grid & Multi-

Threading facility, which means the figures shown on the following tables are for the

longest thread. Additionally, these figures include the communication time from Matlab

to GAMS, from GAMS to SNOPT solver, and vice versa. Furthermore, all the

computations were carried out on the same equipment.

125

6 CHAPTER 6

DISCUSSION AND CONCLUSION

In this chapter, a discussion on the proposed models and their applicability in data

classification is presented, followed by thesis conclusion. Lastly, some opportunities for

future research are also proposed.

6.1 Discussion and Highlights

6.1.1 Robustness in Classification

Robustness in data analytics is defined as the insensitivity of the method w.r.t noise in the

given data set. Noise may enter into any real data set due to several reasons. For example:

noise may exist due to improper methods of gathering the data, inaccurate class labeling

of gathered data, errors during data handling, etc. Noise in data is normally uneasy to

identify by a simple procedure.

Robust classification models have become high in demand in today’s sophisticated

applications [21][22][23]. The presence of noise in the data can significantly affect the

obtained classifier, thus lead to inaccurate classification of new instances. This can be

critical in some areas of applications such as those related to high cost impact, high risk,

or human safety. However, robust classification models are typically computationally

expensive when compared to their non-robust counterparts. In this thesis, Correntropic

Loss Function (CLF) [24] based robust classification models is proposed.

126

6.1.2 The Special Effect of 𝝈

The CLF is used in the proposed models to induce robustness. The penalty that is

assigned by the CLF starts from zero and then nonlinearly increases as the

misclassification error increases until a certain error value, where it sluggishly increasing

(practically remains almost flat). The most critical parameter in CLF is 𝜎, which is a

tuning parameter that controls the shape of the function. For small values of 𝜎, the

function tends to be locally pseudo-convex, but for large values it tends to be convex.

This characteristic is exploited in the proposed solution methodology by introducing the

proposed iterative solution method. This proposed method ensures the obtained solution

across all iterations is always retained inside the valley and guarantee a local minimum.

The slower the rate of change in 𝜎 the smoother is the change in the decision boundary

and less likely to escape the valley domain.

6.1.3 The Trade-off Between Time and Robustness

For any classification problem, each performance measure has different importance or

relevance depending on the application and the user’s objective. For example, some users

require higher solution speed, but others demand higher accuracy. Similarly, some

classification models excel in delivering more accurate results, but others outperform in

solution time. An example of this was discussed in Chapter 2 when the SVM and PSVM

models were compared [7].

As shown in Chapter 5, the proposed robust models deliver more accurate results under

the existence of outliers. However, there is a cost for that improved performance, and it is

related to the solution time. The addition of the correntropic parameter 𝜎 created an

127

additional line search, which contributed to the total solution time. As explained in

Section 4.3, the finer the search set for 𝜎, the higher the probability to have the iterative

solution in the valley domain. Furthermore, the decision boundary will smoothly change

over the search set. Therefore, this behavior obtained by a finer search set is highly

preferred. However, it is a tradeoff w.r.t the solution speed.

6.2 Conclusion

In this thesis, a total of 3 robust SVM models for binary classification were developed

using the CLF. The CLF has unique characteristics, which differentiate the associated

robust models from the others. The most important characteristic is the special effect of

𝜎, which was exploited to develop an iterative solution methodology. In Section 4.3, it

was experimentally and visually illustrated that the proposed solution methodology offers

a superior performance in solving the proposed robust models when compared to non-

iterative methodology.

From Chapter 5, it can be concluded that the models are robust and less sensitive to the

outliers. Moreover, the proposed models generally produce better accuracies regardless of

the noise level. However, this admired performance compromises the solution time. Since

the proposed models contain an additional parameter (𝜎), the additional time needed to

evaluate the different values of 𝜎 is almost inevitable. The trade-off between accuracy

and solution time needs to be managed by appropriately selecting the range for 𝜎 (𝜎𝑠 and

𝜎𝑒) and the reduction parameter 𝜏.

128

6.3 Future Research

In this section, some ideas are proposed for future research which may potentially extend

or improve the work in this thesis.

6.3.1 GRT versus The Dual Formulation

From the literature, the kernelized SVM models are typically developed from the dual

formulation, as explained in Sub-sections 3.2.1 and 3.2.2. The kernelized robust models

proposed in this thesis are developed using the Generalized Representer Theorem (GRT).

The latter does not require the dual formulation as it derives the kernelized model from

the primal formulation. The kernelized dual formulation for the proposed robust models

should have a different structure. The new model structure may possess different

characteristics, which would possibly yield to smaller problem dimension, and/or higher

solution speed.

6.3.2 A Closed Form for Determining 𝝈𝒔, 𝝈𝒆, and 𝝉

In Section 4.3, it is explained that determining 𝜎𝑠, 𝜎𝑒 and 𝜏 is critical to ensure the

problem is solved efficiently and a local optimum is always obtained. The trial and error

method is typically inefficient, and if the user is solving different models for multiple

data sets, then assigning those values efficiently may become critical.

To swiftly determine 𝜎𝑠 and 𝜎𝑒, it is always safe to set 𝜎𝑠 to a very large value and 𝜎𝑒 to

be very low. The drawback of starting from a massively large 𝜎 and ending at an

extremely small value is the number of iterations the algorithm would take to evaluate all

these values of 𝜎. The interaction between the 3 values creates a trade-off between

solution optimality and solution time.

129

It was found by [27] that 𝜎𝑠 and 𝜎𝑒 in the CLF can be safely predetermined by simply

measure the maximum and minimum distance between any two points, respectively. This

rule cannot be simply applied in the proposed robust models because the loss function

was slightly modified to incorporate into the model structure. Moreover, the objective

function in the proposed models contains the regularization term ‖w‖2. Therefore, a

similar approach to predetermine 𝜎𝑠 , 𝜎𝑒 and 𝜏 is expected to be very valuable.

130

References

[1] C. M. Bishop, Pattern Recognition and Machine Learning, vol. 53, no. 9. 2013.

[2] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowledge

Discovery in Databases,” AI Mag., vol. 17, no. 3, p. 37, 1996.

[3] L. Hamel, Knowledge Discovery with Support Vector Machines. 2009.

[4] M. K. Keleş, “AN OVERVIEW : THE IMPACT OF DATA MINING

APPLICATIONS ON VARIOUS SECTORS,” vol. 6168, pp. 128–132, 2017.

[5] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification

Techniques,” Informatica, vol. 31, pp. 249–268, 2007.

[6] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, no.

3, pp. 273–297, 1995.

[7] G. Fung, O. L. Mangasarian, and W. D. Street, “Proximal Support Vector Machine

Classifiers,” pp. 77–86.

[8] J. A. K. Suykens and J. Vandewalle, “Least Squares Support Vector Machine

Classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 293–300, 1999.

[9] C. Lin and S. Wang, “Fuzzy support vector machines,” Neural Networks, IEEE

Trans., vol. 13, no. 2, pp. 464–471, 2002.

[10] Z. Meng, F. Li-hua, W. Gao-feng, and H. Ji-cheng, “Weighted Proximal Support

Vector Machines: Robust Classification,” Wuhan Univ. J. Nat. Sci., vol. 10, no. 3,

pp. 507–510, 2005.

[11] G. Heo and P. Gader, “Fuzzy SVM for noisy data: A robust membership

calculation method,” in IEEE International Conference on Fuzzy Systems, 2009,

no. 1, pp. 431–436.

[12] Y. Wang, S. Wang, and K. K. Lai, “A new fuzzy support vector machine to

evaluate credit risk,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 820–831, 2005.

[13] X. Yang, L. Han, Y. Li, and L. He, “A bilateral-truncated-loss based robust

support vector machine for classification problems,” Soft Comput., vol. 19, no. 10,

pp. 2871–2882, 2015.

[14] Y. Wu and Y. Liu, “Robust truncated hinge loss support vector machines,” J. Am.

Stat. Assoc., vol. 102, no. 479, pp. 974–983, 2007.

[15] Y. Feng, Y. Yang, X. Huang, S. Mehrkanoon, and Johan A. K. Suykens, “Robust

Support Vector Machines for Classification with Nonconvex and Smooth Losses,”

Neural Comput., vol. 28, pp. 1217–1247, 2016.

131

[16] G. Xu, Z. Cao, B. G. Hu, and J. C. Principe, “Robust support vector machines

based on the rescaled hinge loss function,” Pattern Recognit., vol. 63, no. March

2016, pp. 139–148, 2017.

[17] Y. Ma, L. Li, X. Huang, and S. Wang, “Robust Support Vector Machine using

Least Median Loss Penalty,” in IFAC Proceedings Volumes (IFAC-PapersOnline),

2011, vol. 18, no. PART 1, pp. 11208–11213.

[18] L. Wang, H. Jia, and J. Li, “Training robust support vector machine with smooth

Ramp loss in the primal space,” Neurocomputing, vol. 71, no. 13–15, pp. 3020–

3025, 2008.

[19] P. K. Shivaswamy and T. Jebara, “Relative margin machines,” Adv. Neural Inf.

Process. Syst., vol. 21, pp. 1–8, 2008.

[20] Y. Song, W. Zhu, Y. Xiao, and P. Zhong, “Robust relative margin support vector

machines,” J. Algorithms Comput. Technol., vol. 11, no. 2, pp. 186–191, 2017.

[21] A. Takeda, S. Fujiwara, and T. Kanamori, “Extended Robust Support

VectorMachine Based on Financial Risk Minimization,” Neural Comput., vol. 26,

pp. 2541–2569, 2014.

[22] X. Lu, W. Liu, C. Zhou, and M. Huang, “Probabilistic weighted support vector

machine for robust modeling with application to hydraulic actuator,” IEEE Trans.

Ind. Informatics, vol. 13, no. 4, pp. 1723–1733, 2017.

[23] Z. Gu, Z. Zhang, J. Sun, and B. Li, “Robust image recognition by L1-norm twin-

projection support vector machine,” Neurocomputing, vol. 223, no. October 2015,

pp. 1–11, 2017.

[24] A. Singh and J. C. Principe, “A loss function for classification based on a robust

similarity metric,” in The 2010 International Joint Conference on Neural Networks

(IJCNN), 2010, no. X, pp. 1–6.

[25] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.

Cambridge University Press, 2004.

[26] B. Schölkopf, R. Herbrich, and A. J. Smola, “A Generalized Representer

Theorem,” pp. 416–426, 2001.

[27] M. N. Syed, P. M. Pardalos, and J. C. Principe, “On the optimization properties of

the correntropic loss function in data analysis,” Optim. Lett., vol. 8, no. 3, pp. 823–

839, 2014.

[28] O. L. Mangasarian, “PSEUDO-CONVEX FUNCTIONS,” J.SIAM Control, vol. 3,

no. 2, pp. 281–290, 1965.

[29] Z. Slodkowski, “Pseudoconvex classes of functions. I. Pseudoconcave and

pseudoconvex sets,” Pacific J. Math., vol. 134, no. 2, pp. 343–376, 1988.

132

[30] P. Škrabánek and P. Doležel, “On Reporting Performance of Binary Classifiers,”

Sci. Pap. Univ. Pardubice. Ser. D, Fac. Econ. Adm., vol. 25, no. 41, pp. 181–192,

2017.

[31] M. N. Syed, J. C. Principe, and P. M. Pardalos, Correntropy in Data Classification

Mujahid, vol. 20. Dynamics of Information Systems: Mathematical Foundations,

2012.

[32] X. H. Cao, I. Stojkovic, and Z. Obradovic, “Open Access A robust data scaling

algorithm to improve classification accuracies in biomedical data,” pp. 1–11, 2016.

[33] D. Dua and E. Karra Taniskidou, “UCI Machine Learning Repository,” Irvine, CA:

University of California, School of Information and Computer Science, 2017.

[Online]. Available: http://archive.ics.uci.edu/ml.

133

Vitae

Name :Mohammed M. Al-Mehdhar

Nationality :Yemeni

Date of Birth :12/1/1987

 Email :almehdar@hotmail.com

Address :Dammam, Kingdom of Saudi Arabia

Academic Background :Industrial and Systems Engineering

Job Experience :Process Optimization, Project Management, and Strategic Planning

Research Interest :Data Analytics, and Deterministic Supply Chain Models

