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Testing is a crucial phase of software development life cycle.  It is meant to improve the 

confidence in the quality of the software. One of the essences of testing is to uncover faults 

using test cases. Test cases that satisfy a given criterion are created to uncover faults.  Various 

criteria have been proposed in the literature to ascertain adequate coverage of the different 

software behavior.  Mutation coverage criterion is one of such criteria where analysis is 

performed to find tests that distinguish a program from its mutants.  The criterion has only 

one requirement; that is to kill a mutant.  

After three decades of research, mutation testing is still yet to be fully adopted by industries 

due to its high cost. The cost is due to the high number of mutants to be considered as well as 

the equivalent mutants generated unknowingly. Many researches have focused on solving one 

or more problems associated with the hesitation of adopting mutation testing by industries. 

Apart from developing effective tests, we also ensure non-trivial mutants are generated to 

excellently produce quality test cases. 

The major contribution of this thesis is the development of a mutation-based novel game-like 

testing technique using Genetic Algorithms to allow development of meaningful program 

mutants on one side and generate tests cases that kill such mutants on the other side.  In this 

research, we developed an approach to generating both mutants and test cases by two 
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competing players. The approach was modelled as a non-cooperative game between a mutant 

generation player and a test generation player where both players use Genetic Algorithms in 

playing the game. The two players – mutantGA (mGA) and testGA (tGA) respectively 

generate hard-to-kill mutants and effective test cases to kill those mutants. The technique is 

validated experimentally by considering five case-study MATLAB programs.  Results show 

that the technique is promising in, on one hand, generating strong and hard-to-kill mutants; 

and on the other hand, generating effective test data generated to kill most of those mutants. 

We also compared the performance of the GA-based players to the performance of random 

players; the GA-based players’ performance was shown to outperform that of the random 

players.  
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 حياة اللهي بولاجي أدييمو :الاسم الكامل
 

  ينيةالج الخوارزمية باستخدام الألعاب طريقة:  التبديل باستخدام الاختبار لبيانات الآلي الانشاء :عنوان الرسالة

 

 هندسة البرمجيات التخصص:

 

 2018 مايو :تاريخ الدرجة العلمية

حد من أساسيات ة تطوير البرمجيات. يهدف إلى تحسين الثقة في جودة البرنامج. واالاختبار هو مرحلة حاسمة من دورة حيا

لكشف عن الأعطال. لالاختبار هو كشف الأخطاء باستخدام حالات الاختبار. يتم إنشاء حالات الاختبار التي تفي بمعيار معين 

غطية للطفرات هو أحد سلوكيات البرامج. معيار التتم اقتراح معايير مختلفة في الأدبيات للتأكد من التغطية الكافية لمختلف 

ه شرط واحد فقط ؛ لهذه المعايير حيث يتم إجراء التحليل للعثور على الاختبارات التي تميز البرنامج عن المسوخ. المعيار 

 هذا هو قتل متحولة.

فته المرتفعة. ترجع الصناعات بسبب تكلبعد ثلاثة عقود من البحث ، لا يزال اختبار الطفرات لا يزال يعتمد بالكامل من قبل 

دة بدون علم. وقد ركزت التكلفة إلى العدد الكبير من المسوخ الذي يجب أن ينُظر إليه بالإضافة إلى المتحولات المكافئة المول

ناعات. قبل الص العديد من الأبحاث على حل مشكلة واحدة أو أكثر من المشاكل المرتبطة بتردد اعتماد اختبار الطفرات من

ختبار الجودة وبصرف النظر عن تطوير اختبارات فعالة ، فإننا نضمن أيضًا توليد الطفرات غير الطفيفة لإنتاج حالات ا

 بشكل ممتاز.

استخدام وتتمثل المساهمة الرئيسية لهذه الأطروحة في تطوير تقنية اختبار تشبه الألعاب المبنية على الطفرات ب

قتل مثل هذه بتطوير طفرات برنامجية ذات مغزى على جانب واحد وتوليد حالات اختبارات ت الخوارزميات الجينية للسماح

ن قبل لاعبين المسوخات على الجانب الآخر. في هذا البحث ، قمنا بتطوير نهج لتوليد كل من المسوخ وحالات الاختبار م

يث يستخدم كلا ل متحور ومولد توليد اختبار حمتنافسين. تم تصميم هذا النموذج على أنه لعبة غير متعاونة بين لاعب جي

على التوالي  testGA (tGA)و  utantGA (mGA)m -اللاعبين الخوارزميات الجينية في لعب اللعبة. يقوم اللاعبان 

بيا من خلال بتوليد مسوخ يصعب قتله وحالات اختبار فعالة لقتل تلك المسوخات. يتم التحقق من صحة هذه التقنية تجري

خ قوية دراسة حالة. تظهر النتائج أن التقنية واعدة في ، من ناحية ، توليد المسو MATLABفي خمس برامج  النظر

ة أداء اللاعبين ويصعب قتل. ومن ناحية أخرى ، توليد بيانات اختبار فعالة ولدت لقتل معظم هذه المسوخ. نحن أيضا مقارن

 العشوائيين. بتفوق أداء اللاعبين GAء اللاعبين المعتمدين على لأداء لاعبين عشوائية. تم عرض أدا GAالمستندة إلى 
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CHAPTER 1 

INTRODUCTION 

Achieving user satisfaction is a major concern in software development. If the software 

cannot satisfy its intended users, the aim of developing it, in the first place, is defeated. 

Therefore, a high quality software is the one that does what the customers want it to do. 

Software quality, in this regard, is the conformance to explicitly stated requirements and 

standards. Software testing is an instrument to ascertain the software quality. Testing is the 

process of evaluating a component of a system or the whole system by manually or 

automatically verifying whether the system satisfies the specified requirements.  The 

process is meant to uncover discrepancies between actual results and expected ones. 

Testing can be classified according to its level of granularity (e.g., unit, module, 

integration, and system), its characteristic (e.g., white-box and black-box), and its objective 

(e.g., reliability, robustness, security, performance, and user-friendliness) [1].  

Functional software testing is a technical term used to refer to the process of validating 

software system in order to guarantee technical and requirement needs. Software testing is 

believed to be an expensive and time consuming task as it consumes roughly 50% of the 

development assets [1]. Taking into consideration the cost of carrying out testing, it is 

desirable to give it adequate attention so that the cost is reduced as well as the effort to be 

expended. One of the ways to reduce cost is to identify bugs in the early stage because any 

bugs identified later can cost more to fix as it may affect other earlier stages (e.g., design, 

implementation, etc.) of the development. As software complexity keeps increasing, there 
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is an urgent need to generate effective test data to carry out the testing process in a cost-

effective manner [2]. Software testing therefore helps in providing stakeholders with valid 

empirical reports about the quality of a software system, product, or service. 

Mutation testing involves imitating competent programmer’s mistake by injecting an error 

into a program to produce a mutant and investigate if the test cases can detect the injected 

error by observing if the outputs of the original program and the outputs of mutant are the 

same. If they are different, the error is detected otherwise it is not detected. Mutation testing 

is recognized as an effective type of testing software system [3]. However, it is not adopted 

in industry. The failure to adopt it is nothing but because of its cost [4]. This cost is incurred 

from creating mutants and executing them. It is prohibitively expensive to decide to 

execute all the possible mutants of a program even for an averagely big-sized program. The 

efforts expended in identifying equivalent mutants also contributes to the high cost of 

mutation testing. It can be concluded that mutation testing has two major problems: the 

problem of detecting equivalent mutants and the problem of the large number of mutants 

to be produced and executed. Mutation score of a test suite is the ratio of the mutants killed 

by the test suite to the total number of non-equivalent mutants involved in the execution. 

A mutation score of 1.00 signifies that all the mutants are killed and the test cases are 

mutation-adequate [4]. 

1.1 Problem Statement  

It is generally established that software testing is one of the most integral parts of software 

development and costs up to half of the total budget [1]. High mutation score means the 

test cases are effective. But the value can at times be misleading if the mutants are trivial. 

A trivial mutant can be killed by any test case. In order to make mutation score more 
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reliable, there is need to ensure non-trivial mutants are involved and this will give 

confidence in the test cases that will kill the mutants. We intend to target the problem of 

developing non-trivial mutants and developing effective test cases to kill them. This will 

help in demonstrating and mimicking the mutant creation by a competent programmer so 

as to have confidence on the test cases that can kill those non-trivial mutants. Also, 

measuring the effectiveness of whole test suite can be improved if the contribution of each 

test case in obtaining the score can be known. Also, as far as our knowledge of the 

researches in mutation-based test generation is concerned, no work has focused on 

generating both test cases and mutants automatically. Most of the researches show 

automatic generation of one of test cases and mutants and manual generation of the other. 

This research would automate the generation of high quality mutants and effective test 

cases using GAs to address the aforementioned problems above. 

1.2 Major Contributions 

The major contributions of this thesis can be enumerated as follows: 

1. Developing a framework and features to compare the existing GA-based test data 

generation techniques; 

2. Proposing a GA-based test data generation technique; 

3. Incorporating and implementing the test generation technique with mutants’ 

generator establishing a non-cooperative game between them so that effective test 

cases and non-trivial mutants are generated competitively; 

4. Validating the effectiveness of the implemented approach using 5 different 

MATLAB subject programs. 
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1.3 Organization of the Thesis 

The remainder of this thesis is organized as follows. Chapter 2  introduces the concept and 

detailed background of software testing, genetic algorithms and test data generation 

mentioning and explaining the different categories and types of software testing. In Chapter 

3, related literature on genetic algorithms and mutation-based test data generation were 

identified. Also, research questions and research hypotheses are discussed. Chapter 4 

introduces the proposed approach used in this research work. Chapter 5 presents and 

discusses the experiment and the results obtained. The research questions were also 

answered and the hypotheses were tested. Chapter 6 concludes the report of the thesis. It 

also presents some limitations to the study, threats to validity and future work.  
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CHAPTER 2 

BACKGROUND 

This chapter introduces software testing explaining different testing techniques used in 

verifying and validating software artifact against some quality attributes. It explains the 

testing theory and its importance in developing quality products. It also gives background 

on mutation testing as an important testing technique explaining its pros and cons. It also 

describes the rubrics of Genetic Algorithm (GA) and presents background knowledge on 

test data generation. 

2.1 Software Testing 

Software testing is an important phase in general software development. It comprises of 

test input generation, test execution and test output inspection. It involves running a 

program with the aim of uncovering errors in its source code. An estimate shows that more 

than 50% of the software development effort goes to testing [1]. The use of automated 

testing techniques would assist in curbing this cost significantly. 

A programmer, as a fallible being, can make slight/small programming mistakes that can 

have negative impact on the productivity and scientific insight of the code. The 

consequence is more serious in safety software products where the smallest mistake can 

have an enormous effect on the products. 

Testing involves selecting a finite subset of inputs that can help in measuring quality of the 

product. Testing can identify discrepancies between actual results and expected behavior 

or demonstrate functions are working or not according to the documented specification or 
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provide a hint of correctness, safety, performance, reliability, security, fault tolerance, 

usability, etc. [5]. 

Testing, in the context of software, is “the process of operating a system or component 

under specified conditions, observing or recording the results, and making an evaluation 

of some aspect of the system or component” [6]. It is also “the process of analyzing a 

software item to detect the differences between existing and required conditions (that is, 

bugs) and to evaluate the features of the software items” [7]. It is “an activity in which a 

system or component is executed under specified conditions, the results are observed or 

recorded, and an evaluation is made of some aspect of the system or component [7].”  It 

can also comprise of any verification process to assess and improve software quality. 

For deterministic software system, software testing involves defining known output for 

every input. The actual result is compared with the expected one after entering values, 

making some selections and navigating the application. We make a nod if they match 

otherwise we probably have a bug.  

Software testing involves an essential combination of software verification and validation 

as frequently used by practitioners. Software verification is to find any present 

discrepancies between what a program is intended to do and what it does. It is the “process 

of evaluating a system or component during or at the end of the development phase to 

determine whether it satisfies specified requirements” [7]. In this case, the product at the 

end of the phase can be intermediate product, such as requirement specification, design 

specification, code, user manual, or even the final product. On the other hand, software 

validation is the act of checking the program behavior and its specifications with respect 

to the expectation of the users.  
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The importance of software testing cannot be overemphasized. Software testing helps in 

ensuring the entire specified functionalities are put into implementation while 

demonstrating that there are no faults in the implementation. Errors and mistakes in 

software is real and ignoring them till after deployment is foolhardy. Error detection and 

removal are achieved through software testing. Also, the level of reliability of the software 

under test is determined thereby ensuring confidence in the software.  

Broadly speaking, software quality can be investigated using techniques that are 

categorized into two main groups: static analysis and dynamic testing. Static analysis 

comprises of team of reviewers who read the code line by line correlating it with the logic 

of the specification. It is composed of inspection, walkthroughs and reviews. On the other 

hand, dynamic testing is a testing approach whereby the program code under test is 

executed with inputs and its behavior is observed. Due to human unwillingness to discover 

errors in their own work, testing is commonly performed by a separate group of people 

who are not part of the development team. 

The following are some objectives of testing software [8],[1]: 

 Ensuring the software under development is delivered error-free  

 Ensuring the conformity of the software development to the requirements. 

 Uncovering errors (if any/found) 

 Attempting to have confidence that the end-product carries out the entire 

functionalities proposed. 

A software can fail if there are wrong or missing requirements. Faulty design, faulty code 

and improper implementation of design can also cause software failure. Generally, 
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software testing helps in identifying faults, correcting/removing faults and preventing 

future faults. 

2.2 Mutation Testing 

In the 1970s, mutation analysis was first introduced as a technique used to evaluate the 

effectiveness of a test suite [9]. A test suite is said to be effective if it is powerful enough 

to detect faults injected (intentionally or accidentally) into a software artifact, although the 

intent of mutation testing is to intentionally seed artificial faults which represent the real 

errors usually created by typical programmers. The software artifact could be a program 

code, specification, use cases and so on. This helps in giving some insight on how to 

improve the effectiveness of the test suite if there is need to do so. The same set of test 

cases in the test suite are executed on the mutated version called mutant. A mutant is a 

version of the original program with a simple syntactic change. This syntactic change is 

applied through mutation operators. The different changes made to the original program 

are known as mutation operators1 while a mutant is obtained when a mutation operator is 

applied to a code [1]. Mutation Score = Number of killed mutants/Total non-equivalent 

mutants * 100 

                                                           
1 The term has been used differently. It is also known as mutant operators, mutagens, mutagenic 
operators, mutation rules, mutation transformations. 
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Figure 1: Mutation Testing Process Flow chart (from [10]) 

Testing of a program using mutation is considered as secondary level testing because 

mutation testing cannot be conducted unless unit testing is successfully carried out. The 

main inspiration behind invention of mutation testing is not too complex. A number of 

simple errors are introduced to the original program based on the mutation operator 

selected, generating test cases to differentiate these mutants gives a tendency of detecting 

the real faults.  This is similar to coupling effect that states that a test data set that catches 

all simple faults in a program is so sensitive that it will also catch more complex faults. It 

is a powerful testing technique, however it has very low applicability in industries. A 

number of drawbacks have restricted its practical impact. A high number of mutants 

generated from the standard set of mutation operators makes it too expensive to implement 

in practice. This problem is minimized by selecting few appropriate mutation operators.  
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Steps in Performing Mutation Testing 

Given an original program P0 and a set of test cases T, traditional mutation testing can be 

elucidated as a series of steps to evaluate set of tests as follows: 

1. Apply every member of a set of mutation operators to P0 to produce a set of mutants 

PM. 

2. Execute the test set T on P0 and each mutant pm in PM (pm  PM). 

3. Carry out the comparison between output of pm(t) and P0(t) for all t in T. If the 

outputs are equal, then mutant pm is killed; otherwise pm is alive: no test output has 

been affected by pm’s mutation. 

4. Analyze the live mutants to determine the equivalence of any of them; equivalent 

mutants are discarded as they are syntactically identical to the original program. 

5. An attempt to kill the nonequivalent mutants by adding new test(s) to the test set. 

Repeat steps 2-5 until results are satisfactory. 

A test suite is passed to both original program and its mutant, if the output differs the mutant 

is said to be killed otherwise it is alive. The test suite is therefore incrementally augmented 

with more effective test cases to further detect the unexposed mutants until the alive 

mutants are killed or considered to be semantically equivalent to the original program. 

Some mutants cannot be killed by any test case – these are called equivalent mutants. A 

mutant of a program is said to be an equivalent mutant if it is functionally and/or 

semantically the same as the original program, else it is called a non-equivalent mutant. 

One of the main properties of an equivalent mutant is that it cannot be killed at all. But for 

non-equivalent mutants, some can be killed while some may not be killed depending on 
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the effectiveness of the test cases. If the test cases are effective enough, the non-equivalent 

mutant(s) would be killed otherwise there will be need for additional test cases or effective 

ones.  

For very small program, there may be a numerous number of mutants that can be generated. 

Example of such mutants is shown in Figure 2. The figure shows how even small-sized 

programs can generate many mutants.  

  

Figure 2: Examples of mutants 
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Five different operators are applied to the original program to produce the five mutants 

shown in Figure 2. The variable P in line 5 (Δ if(Q>maxVal)) is replaced by maxVal to 

produce the first mutant. A variable P replaced the variable Q in line 7 (Δ maxVal=P) to 

generate the second mutant. The third mutant is also obtained by changing the variable P 

in line 4 to Q (Δ maxVal=Q). The relation operator in line 5 (if(Q>P)) is substituted by < 

and >= to produce mutant 4 and mutant 5 respectively. 

For very large program, the number of mutants generated can be too much to handle and 

as such the cost of carrying out mutation testing would be prohibitively expensive. 

Traditional Mutation Testing has been applied by software engineers/testers for more than 

4 decades not only to detect faults in software artifacts but also to evaluate their tests. 

Mutation Testing guarantees a promising and effective approach to generate adequate test 

data out of which real faults are found. It is almost impossible to generate all possible 

mutants because the number of such potential faults for any given program is prohibitively 

huge. This is the reason why the traditional mutation testing focuses on those faults that 

are close to the correct version, which are only a subset of the faults with the likelihood 

that they will be enough to simulate the whole faults. This principle is explained by two 

hypotheses: The Competent Programmer Hypothesis and the Coupling Effect. 

The Coupling Effect and Competent Programmer Hypothesis were postulated by DeMillo 

et al. [11] in 1978. While Competent Programmer Hypothesis affects the programmer’s 

behavior, the Coupling Effect involves the type of faults applied in mutation analysis. 

Coupling Effect states that “test data that distinguishes all programs differing from a correct 
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one by only simple errors is so sensitive that it also implicitly distinguishes more complex 

errors” [8]. 

Andrew et al. [12] showed that real faults are easier to detect than hand-seeded faults but 

the authors argued that no matter how much research is conducted on testing using 

mutation, some questions still remain unanswered, such as "Do mutation operators provide 

sufficient coverage of all possible fault types?" and "Are mutation operators a better means 

of creating faulty code than hand-seeding?". 

There are three necessary criteria to ensure that a mutant is killed. They are Reachability, 

Infection and Propagation. They are represented in a model known as RIP model. Each of 

the conditions subsumes its predecessor. It should be noted that mutated statement must be 

executed in order to detect a mutant. 

a. Reachability (R): This is the first condition required for mutation to take place. The 

program must be executed by a test case ensuring that the statement that is mutated is 

“reachable”. The statement should not contain dead code – which is unreachable. 

b. Infection (I): The faulty statement results in an incorrect state by the test. The state of 

the mutated program must be different from that of the original program after the 

execution of the test case on the mutant, i.e. the state of the mutant must be infected. 

This condition is achieved by both weak and strong killing of mutants. The last 

condition would distinguish strong killing from weak killing. 

c. Propagation (P): This causes the incorrect state to propagate into incorrect output(s). 

Any test case that achieves this condition (propagation) is said to ‘strongly kill’ the 

mutants. In this case, weak killing of mutants does not achieve propagation. This 

means weakly killing satisfies only reachability and infection, but not propagation. 
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The incorrect state has been corrected or does not have effect on the final output of 

the program. 

Strong Mutation Testing: Strong mutation testing is believed to be the traditional mutation 

testing. And the idea is to make a number of small changes, one at a time for non-higher 

order mutation, to a particular program. Then an attempt is made to generate test data that 

would expose the mutation by distinguishing it from the original program. Any mutation 

that satisfies the three conditions (discussed above i.e. Reachability, Infection, and 

Propagation) is referred to as a strong mutation. 

Weak Mutation Testing: A weak mutation testing is the one that satisfies only reachability 

and infection but not propagation unlike the strong mutation testing. One of the main 

disadvantages of strong mutation testing is its cost of computation, which is caused as a 

result of the large number of possible mutants and also the requirement of executing each 

test case to completion. The introduction of weak mutation was to defeat the implicit cost 

of strong mutation testing. Different test execution is not necessarily required for each 

mutation in weak mutation. However, the main disadvantage of weak mutation is that 

several different components of a particular program can generate different results from 

the original program following different executions but can combine to assign the overall 

accurate outcome to the statement concerned or indeed to the entire program execution 

[13].  

Mutation testing requires the code structure knowledge. Possible faults that could occur in 

a software component is considered in order to generate test data and carry out effective 

evaluation of testing.  
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However, among the advantages of mutation testing are the following: (1) it guides to 

produce reliable software product, (2) it helps in uncovering ambiguities in program code, 

and (3) it makes the testing process to be more comprehensive. 

2.2.1 Mutation Operators 

Mutation operators can be classified into major groups: replacement, deletion, insertion, 

etc. 

A subset from the set of mutation operators can be selected from the following list: 

 Arithmetic Operator Replacement, 

 Comparable Array Replacement, 

 Comparable Constant Replacement, 

 Comparable Variable Replacement, 

 Logical Operator Replacement, 

 Relational Operator Replacement, 

 Unary Operator removal/insertion. 

 

Deletion Mutation Operators: 

The deletion group of mutation operators comprises and not limited to the following: 

 Statement deletion operator 

 Operator deletion operator 

 Variable deletion operator 

 Constant deletion operator 
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According to researches [14]–[17], statement deletion mutation operator has been applied 

to improve the cost-effectiveness of mutation testing. Although, the statement deletion 

mutation generates relatively few mutants not more than the number of statements in a 

code under test, effective tests are yielded because only few equivalent mutants are 

generated as a result. The concept of applying a single but powerful mutation operator has 

led to generation of effective test set with a low cost in a process known as One-Operator 

or Single-Operator mutation. Statement Deletion (SDL) is an example of operators that 

employ such one-operator mutation.  

The reason why statement deletion mutation is said to generate relatively few equivalent 

mutant is SDL mutants can only be equivalent to the original program if the statement 

deleted is, in the first place, unnecessary.  

Although there is a connection between mutation operators across different programming 

languages, they must be selected specifically for each language because the language 

feature affects the operators. Naturally, passing all the possible error a programmer can 

commit to create mutated programs would be sufficient to ensure the effectiveness of the 

test cases. But, however, ascertaining that it is feasible to construct all possible potential 

errors is unrealistic with a few exceptions. In lieu of this, a subset of the entire possible 

mutants is selected. This has caught a number of researchers’ attention to a concept known 

as “Selective mutation operators” – which reduces the number of potentially generated 

mutants through decreasing the number of mutant operators. For more information on 

selective mutation, the reader can refer to [18]–[25]. 
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Table 1: Java Class-level mutation operators 

MUTATION 

OPERATORS 

DESCRIPTIONS 

AMC 

IHD 

IHI 

IOD 

IOP 

IOR 

ISI 

ISD 

IPC 

JTI 

JTD 

JSI 

JSD 

JID 

JDC 

Access modifier change 

Hiding variable deletion 

Hiding variable insertion 

Overriding method deletion 

Overridden method calling position change 

Overridden method rename 

super keyword insertion 

super keyword deletion 

Explicit call of a parent’s constructor deletion 

this keyword insertion 

this keyword deletion 

static modifier insertion 

static modifier deletion 

Member variable initialization deletion 

Java-supported default constructor deletion 
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EOA 

EOC 

EAM 

EMM 

PNC 

PMD 

PPD 

PCI 

PCC 

PCD 

PRV 

OMR 

OMD 

OAC 

Reference assignment and content assignment replacement 

Reference comparison and content comparison replacement 

Accessor method change 

Modifier method change 

new Method call with child class type 

Member variable declaration with parent class type     

Parameter variable declaration with child class type 

Type case operator insertion 

Cast type change 

Type cast operator deletion 

Reference assignment with other comparable variable 

Overloading method contents replace 

Overloading method deletion 

Arguments of overloading method call change 

The table above shows the class-level mutation operators for Java. 

2.2.2 Problems of Mutation Testing 

Despite the growing interest received by mutation testing in academia, it is hardly applied 

in industries because of two main reasons among others: cost of generating mutants (and/or 

test cases to kill those mutants) and ability to identify equivalent mutants. As a result of 
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this, it is almost impossible to achieve a mutation score of 100%. Mutation score is the 

percentage of mutants killed. 

Equivalent mutants result because some programs are only syntactically different but 

semantically the same and/or some fragments of the code may not be executed because 

they are not reachable, which is a concept referred to as dead code.  

However, the difficulty experienced in identifying and killing equivalent mutants remains 

one of the limitations and disadvantages of mutation testing. Also, it is time-consuming 

unless it is automated. 

2.3 Genetic Algorithms 

This section presents the biological background of Genetic Algorithms (GA). It also 

discusses some details of GA.  

2.3.1 Biological Background of Genetic Algorithms 

Genetic Algorithm is a computational counterpart of biological genetics. Genetics is the 

study of genes. It deals with the description of genes, what they perform and how they 

perform their work. It studies how features or traits are transferred from parents to children. 

The study of genetics helps in answering questions like “Why do offspring look like their 

parents?” and “How can different diseases transmit in families?” An informal study of 

genetics has been in existence since time immemorial but its study as a study as a set of 

analytical procedures and principles did not start until 1860s, when Gregor Mendel, an 

Augustinian monk, conducted a set of investigations that indicated the existence of 

biological materials now known as genes [26]. A living organism is composed of cells. A 

cell can be described as a unit of life i.e. unit of living organisms. The cell is the 
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fundamental functional and biological unit of all living organisms. It is usually referred to 

as the “building block of life”. The field of biology dedicated to the study of cell is known 

as cell biology. A cell could be a plant cell or an animal cell, they have many common 

features and few differences. Each cell has its lifespan and can easily be replaced. One of 

the prominent and common features of cells of advanced organisms (Eukaryotes) is the 

nucleus. There is usually only one nucleus in a cell. The nucleus operates to process cell 

information. It performs this by storing the cell’s hereditary material (DNA) and 

coordinates the cell’s activities, such as growth, protein synthesis, and reproduction. Cell 

reproduction is otherwise called cell division. DNA is composed of four nucleotides, each 

comprising of deoxyribose sugar, phosphate, and one of these four nitrogen bases: Adenine 

(A), Thymine (T), Guanine (G), and Cytosine (C). They are encoded as ACGT. DNA has 

two nucleotide chains arranged in an antiparallel direction to each other and held firmly 

together by pairing A with T and G with C. The nitrogen bases are grouped into two 

namely: purines and pyrimidines. Adenine and guanine are purines while cytosine and 

thymine are pyrimidines. The DNA encodes information needed by a cell to express certain 

genes. Genes are the determinants of the inherent properties of species of organisms. 

Biologically, the gene of an organism is decided by both or one of the parents depending 

whether the organism is replicated through asexual or sexual reproduction respectively. 

For example, a bacterium is obtained from one parent cell dividing into two cells and 

comprised of the same genes as its parent cell. On the other hand, human being has a pair 

copy of each gene – a set from the father and the other one from the mother. Therefore, 

individual’s physical feature like skin color is usually defined by the mixture of multiple 
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genes. Although the individual’s environment is also an important factor that impacts the 

expression of genes. 

Biologically, every living organism is made up of different cells. Each cell has a set of 

chromosome, which are DNA (DeoxyriboNucleic Acid) strings which is the main 

composition of an organism. A chromosome is a specialized structure made from many 

tightly packed strands of DNA and proteins known as histones. Different strands of DNA 

are wrapped around the histone proteins to form a long worm-shaped configuration known 

as “chromatids”. Two of the chromatids join together to form a chromosome. 

Chromosomes are created in the nucleus of a cell when the cell is dividing in a process 

called cell division. The number of chromosomes varies among different species. Some 

species have more chromosomes than 100 while others have as few as two but humans 

have 46 chromosomes [27]. 

GA was invented by John Holland and can be used to schedule tasks, design computer 

algorithms and to solve optimization problems. The genetic algorithm is exterminated by 

two factors: when the optimal value/solution is obtained or when the number of generation 

is exhausted [27]. 

2.3.2 Details of Genetic Algorithms 

Genetic Algorithms are optimization techniques used to solve non-linear or non-

differentiable optimization problems. They are named as such because they are instigated 

by the principles of natural selection and genetics. They are regarded as optimization 

algorithms because they are applied to determine the optimal solution by obtaining the 

minimum and maximum of a function. They apply concepts from evolutionary biology to 
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search for a global minimum to an optimization problem. The principle of the “survival of 

the fittest” proposed by Charles Darwin was followed to implement them. The GA was 

invented by John Holland at the University of Michigan in the 1970s. It repeats fitness 

evaluation, selection and crossover, and population reassembly. A sufficient number of 

children are created from few parents. Each time, two parents are copied, crossed over and 

mutated. This results into two children every time two parents are copied. One of the 

reasons why it is becoming more popular than the conventional AI is due to its robustness. 

Also, minor change in the input does not easily break GA. It also proposes substantial 

advantage over typical search optimization techniques (such as breath-first, depth-first, 

heuristic, and linear programming) especially in searching a very large space, n-

dimensional surface, and multi-modal search space. The name was adopted due to the fact 

that they are mimicking the evolutionary biology techniques. They are implemented as a 

computer simulation in which a population of abstract representations of candidate 

solutions to an optimization problem evolves toward better solution. The solutions are 

traditionally represented in binary as strings of 0s and 1s, but other encodings are also 

possible. GA works by initial generating of candidate solutions that are tested against the 

objective (fitness) function. In each generation, the fitness of every individual in the 

population is evaluated, multiple individuals are selected from the current population 

(based on their fitness), and modified (recombined and possibly mutated) to form a new 

population. Subsequent generations are obtained from the first one through some genetic 

operators: selection, crossover and mutation. Usually, the algorithm terminates when either 

a satisfactory fitness level has been reached for the population or a maximum number of 

generations has been produced. Although, if it terminates due to a maximum number of 
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generations reached, a satisfactory solution may or may not have been obtained.  A typical 

GA needs to be defined by two things namely: genetic representation of the solution 

domain and a fitness function to evaluate the solution domain. The basic Genetic algorithm 

is shown Figure 3. 

 

Figure 3: Basic Genetic Algorithm 

Genetic/Chromosome Representation: 

The performance of any GA-based function optimizer depends on the representation of the 

chromosomes. Different problems have different methods of representing their 

chromosomes in GA such as binary, gray, integer or floating data types. The bit (binary 

digit) format is the most common type. In this case, the variable values are the combination 

of zeros and ones {0,1}. 

Although, arrays of other types and structures are used essentially the same way, but array 

of bits is the standard representation of the solution. These genetic representations are easy 

due to GA’s nature and convenient to implement because they have fixed size and can 

easily be aligned to facilitate simple crossover operation. A certain level of complexity is 

involved in variable length representations. Usually, the composition of the binary digits 

makes up a chromosome which is a potential solution to a problem which can in turn consist 
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of a set of variables. For instance, if the problem has only three input variables P, Q, R, 

then the representation of the chromosome can be the concatenation of the binary 

equivalence of each of P, Q, and R as shown in Table 2. 

Table 2: Chromosome representation and interpretation 

CHROMOSOME  

P Q R  

0 0 0 0 0 0 0 1 1 0 0 1 P = 0, Q = 1, R = 9 

0 1 0 1 1 1 0 0  0 0 1 0 P = 5, Q = 12, R = 2 

0 1 0 0 1 1 1 1 1 0 1 1 P = 4, Q = 15, R = 11 

Each of P, Q, and R can be used to denote the size of a triangle or the coefficient of a 

quadratic equation. It should be noted that it is not necessary that the binary encoding of 

each of P, Q, and R be of the same length but has to be consistent across different 

chromosomes.  

Elitism is a slightly modified version of the traditional GA. It injects the fittest individual 

or individuals into the next population from the previous population. The fittest individuals 

are otherwise known as elites. The highly-fit parents compete with their children and 

results in an exploitative behavior. Since the elites are added into the next population, 

crossover needs to be carried out by subtracting the number of elites and divide by two in 

order to maintain the population size. The default value of elite count – which is the number 

of individuals that are guaranteed to survive to the next generation because of their good 

fitness value – is usually 2. High value of elite count drives the GA towards more 

exploitation, which as a result can make the search less effective. 
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The algorithm in pseudocode is shown in Figure 4. 

 

Figure 4: The Genetic Algorithm with Elitism (from [28]) 

Fitness Function: 

A fitness function “is a type of objective functions which summarizes the goodness of a 

solution with a single figure of merit” [29]. This is used to compute how good the solution 

represented by a chromosome is in relation to the global optimum [if known]. Each 

chromosome in each population has its fitness computed by the fitness function. This 

creates a factor to compare the different individuals and to rank them. The individual with 

the highest fitness denotes the nearest to the optimum solution. The GA can get feedback 

from the problem through the fitness value.  

For instance, if we are to optimize a function f(X) = 2𝑥2 given 𝑥  [0,1,3,5], then the 

fitness function would be represented as follows: 
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 fitness = 2𝑥2  

The following are the characteristics of a fitness function: 

* Measurement: The fitness function must be quantitatively measurable as this will tell if 

candidate solution is fit and/or how fit it is. 

* Fast: This is because fitness function accepts the candidate solution and assess it to know 

how fit/good it is. This is done repeatedly, hence the reason why it should be sufficiently 

fast so as not to delay the entire processes.  

In GA, the initial chromosomes (population) are generated randomly. 

There are three main GA operators namely: 

Selection:  

From the generation of chromosomes, selection operator chooses two individuals to be 

used for recombination. The selection can be randomly or based on some heuristics such 

as the fitness value. This means that if the selection is randomly, each of the individuals 

has equal chance of being selected while chromosomes with higher fitness value have 

higher chance of being selected if they are selected with regards to their fitness values.  

Selection implies retaining the best performing chromosomes. There exist a number of 

different strategies to select the individuals to be copied over into the next generation. For 

a binary problem (i.e. problem with binary representation), selection means to preserve the 

bit strings that has better performance from a generation to the next generation. In other 

words, it determines among the population which individuals survive to the next 

generation. This is carried out in each iteration (generation) to create the new population 
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from the old ones after evaluating them. Roulette-wheel, Elitist, Fitness-proportionate, 

scaling and rank selection are different methods of selection [28]. 

Crossover:  

This is one of the binary operators that work with two operands. The operands are the two 

selected chromosomes (parents). It works by interchanging substrings to produce two 

offspring that are included in the next generation. In some cases, the offspring are included 

into the next generation without establishing whether they are eligible to be in the 

population. In other words, they represent invalid chromosomes. In this case, they are 

assigned poor fitness that makes them to be excluded in the subsequent generations. This 

can be illustrated in knapsack problem. A chromosome that represents total available 

objects in the knapsack to be greater than the capacity of the knapsack is considered an 

invalid chromosome. It is either not included in the first place or included and assigned a 

very poor fitness. It should be noted that in such case, crossover of two valid chromosomes 

can result into one or two invalid chromosomes. The objective of crossover is to create a 

better (fitter) individuals over time. It takes place according to a crossover probability Pc.  

Mutation: 

Before explaining what mutation operator does, let us consider the following population 

0 0 1 1 0 0 1 1 

0 1 1 0 0 1 1 0 

0 1 0 1 1 0 1 0 

0 1 1 0 1 1 0 1 
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0 0 1 0 1 0 1 1 

There is no amount of reproduction/crossover that can change the first bit to 1. So if the 

optimum candidate must have its first bit to be 1, then the optimum would be missed 

definitely. Therefore, changing the first bit from 0 to 1 can help. Changing bits from 0 to 1 

(or 1 to 0) with a probability of Pm is called mutation in the context of genetic algorithm. 

It should be noted that the value of Pm should be very small. 

Mutation is a random process whereby a gene of a chromosome is replaced by a new one 

generating a new genetic structure. It is randomly applied with low probability. Its role can 

be depicted as a protection or safety to recover good genetic material that may be lost 

through implementation of selection and crossover operators. 

2.4 Test Data Generation 

As it is known that testing is a major task in software development, test case generation is 

most crucial to software testing. In fact, it is one of the most complicated tasks in software 

testing process. It is aimed at generating sets of test cases that can detect as many faults as 

possible in a software artifact. Ability to generate an effective and efficient test cases 

enhances the achievement of testing objectives. Test cases are not only obtained from 

source code but also in other design artifacts. Generating test cases from design documents 

enables the availability of the test cases prior to the testing phase and thereby speeds up the 

process and allows more effective planning of test cases. It is worth noted to know that any 

bugs or inconsistencies detected early saves the development time. This means if the test 

cases are generated earlier enough, the ambiguities in the specification and design can be 

get rid of and allowing them to be improved even before writing the program.  
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Although, test data is more pronounced for code-based testing, it is also applicable to 

specification-based and model-based testing. Here, more emphasis is given to code-based 

testing. Generating test data is not a trivial task as each product of software development 

phase generates a huge information. Therefore, in order to generate effective tests at the 

same time lowering the cost, test designers should analyze the input and output domain. 

Not all values in an input domain of a program have the same meaning and importance but 

some values have special meanings; i.e. some are more important than others. This can be 

illustrated, for instance, by studying the factorial function. The factorial of a nonnegative 

integer n is calculated as follows: 

Given: factorial (0) = 1; and factorial (1) = 1; 

Factorial(n) = n * factorial(n-1). 

A programmer may carelessly and wrongly implement the factorial function as: 

factorial (n) = 1 * 2 * 3 * … * n; 

The above implementation may seem correct as it will produce correct results for all 

positive values of n but will fail if n = 0. As it can be seen that 1 is an output for two 

different factorials (i.e. 0 and 1). 

To sum it up, not only input and output domain should be considered when designing test 

case but specification, source code should also be considered. Considering information 

from several sources will assist in providing complementary information required to design 

test cases. 
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Test data can be generated either by black box approach or white box approach. Below is 

the brief overview of the two methods. 

2.4.1 Test Case Design for Black Box Testing 

A number of industries have adopted the black box test design techniques as their best 

practice. This helps them in saving lots of testing time and obtaining good test coverage. 

One good feature of black box test design techniques is that the knowledge of the internal 

structure of the artifact under test is not necessary. Test cases are derived from the 

requirement specification document and based on the expertise of the testers using the 

following test design techniques [30]: 

 Boundary Value Analysis: This is used to find errors in a program at boundaries of 

the input domain as opposed to using inputs in the center of the domain. 

 Decision Table: It is used whenever a complicated logic is to be modeled. It is used 

to detect any missing combination of conditions in the logic. 

 Equivalence Partitioning: This involves dividing the test conditions into groups. 

From each group, only one condition is tested with the assumption that each 

member of the same group behave similarly. 

 Exploratory Testing: This involves continuous optimization of the quality of testing 

by simultaneously treating test design and test execution in parallel throughout the 

process. 

 Error Guessing:  Bugs are discovered in a software based on tester’s previous 

experience. For example, entering invalid values like entering alphabets in the 

numeric field, and submitting a form without entering values. 
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 State Transition Testing: Design of tests to execute both valid and invalid state 

transition to investigate the behavior of the system under test. 

2.4.2 Test Case Design for White Box Testing 

Most systems such as mission critical systems and components adopt white box testing 

techniques because of the attention to detail these techniques can offer. It is a well-known 

fact that an exhaustive (complete) testing is impossible and that testing cannot guarantee 

the absence of faults. As such, there is need to select a subset of test cases from all possible 

test cases that has the highest likelihood to detect as much faults as possible. This leads to 

test case design strategies. Each strategy depends on the scenario and the domain 

knowledge. Test case design can be obtained from the requirements of the program under 

test (i.e. its specification), informal description, set of scenarios (use cases), set of sequence 

diagrams, and state machine. It can also be obtained from the program itself, set of selection 

criteria, heuristics and experience. Program code is tested and executed (i.e. covered) using 

one of the following kinds of coverage: statement, path, (multiple-) condition, 

decision/branch, loop and definition –use (def-use) coverage. 

2.4.3 Test Data Generation Using Genetic Algorithms 

Over the years, a number of researches have been conducted to generate test cases. The 

trend of research is now deflected towards generating automatic test data. This is an attempt 

to reduce the high cost of testing software manually and also to increase the reliability of 

the software artifact under test. This leads to the evolution of different approaches ranging 

from generating test cases from requirements, use cases, models or source codes applying 

different test objectives such as coverage criteria, with several different techniques and 
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algorithms depending on the problem domain. Most of the researches are considered white-

box approaches in which there is no need for any specifications, although the existence of 

specification can aid test case generation [31]. 

Over time, the process of generating test cases had been automatically carried out. This can 

be broadly divided into three different categories: random, static and dynamic. 

Although, random test data generation process is not difficult to automate, it stands the 

chance of creating too much number of test data or may fail to find test data that is capable 

of satisfying a test requirement. This is as a result the necessary information concerning 

the test requirement not incorporated into the process of generation. 

Static generation cannot be automated because it does not require the program execution. 

A typical example of static technique is the symbolic execution. It is done by navigating a 

Control Flow Graph (CFG) of a program and in terms of the input variables, which 

constructs the internal variables for the desired path. A number of constraints are 

established by the branches in the code. Solving these constraints results to the required 

test data. Dynamic generation of test data is different from static techniques in the sense 

that it requires the execution of the program which leads to a directed search for test. 

Many researchers applied optimization techniques to automate and generate test data. This 

is facilitated not only by the fact that a substantial number of testing problems can be 

formulated as search problem, but also because they can be formulated as optimization 

problems. 

Applying metaheuristic techniques like Genetic Algorithms to generate test data in 

software testing, the inputs are optimized based on certain criteria. In that regard, software 
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testing is seen as an optimization problem. Before achieving the conversion of software 

testing into optimization problem, software metrics that are to be optimized should be 

defined or chosen. The metrics should have direct or indirect measurability from the 

software. In white box testing, possible metrics can be test coverage metric: code, 

condition, or path coverage. But in black-box testing, the metrics to be optimized could be 

error based; for example, amount of warnings, calculation or rounding errors, leakage of 

memory, etc., or temporal based e.g. best or worst execution times or response times 

(B/WCET) [32].  

In black-box testing, it is not the tester’s problem to detect what causes the unexpected 

output because the tester is to test the given software as well as possible and report as 

clearly as possible what has been obtained to the programmer. It is now the responsibility 

of software developers to search, inspect and fix the erroneous code lines.  
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CHAPTER 3 

LITERATURE REVIEW 

A number of researches have been conducted to address the test case generation problem. 

Test cases are being generated using different approaches. Some researches focus on 

applying mutation analysis, some use genetic algorithm to generate tests while few utilized 

the combination of both mutation analysis and genetic algorithm, among others. Below is 

the review of some of the related works that are considered important in respect of the test 

cases generation techniques using genetic algorithm, mutation testing and search-based 

mutation testing. In this chapter, a comparison framework is presented to identify the 

strengths and drawbacks of the several different test data generation techniques 

with/without mutation testing after presenting the summarized discussion on some of the 

existing works in the field. Most of the search based techniques were applied to mutation 

analysis in order to optimize either mutants or test cases or both. Mutants optimization can 

be reduction of the number of mutants, which can be a good representative of the entire 

mutants or identifying and eliminating equivalent mutants. Test cases can be optimized by 

reducing the number of test cases or increasing the effectiveness of the test cases as a 

whole. A list of M.Sc. and PhD theses is also documented to identify available work and 

detect some of the research gaps in the field of mutation-based evolutionary test data 

generation.  

3.1 Genetic Algorithms Based Test Case Generation 

A number of techniques have been used to generate test cases while carrying out mutation 

testing. 
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In recent years, researchers have been exploring researches in Genetic Algorithm (GA) 

theory and applications. It is used in solving many problems while efforts have been made 

to improve the performance of GAs especially in applications to solve optimization 

problems. In order to apply a GA to solve a particular problem, some factors are 

exceptionally crucial to be considered; such as identification of the object(s), problem 

representation, design of a GA and interpretation of the search results to the solution [33]. 

Each GA is designed taking into consideration the nature of the problem.  This makes the 

GA to have different input values, input formats and even data structures. A quite number 

of researches have focused on applying GA to generate test cases for testing software 

artifacts. Some of them are as follows: 

DeMillo and Offutt [34] proposed a fault-based technique that applies algebraic constraints 

to describe test case to uncover fault categories. They implemented their technique in a tool 

called Godzilla, which generates constraints and solve them automatically. The tool is used 

to carry out both unit and module testing. It is integrated with the Mothra testing system. 

Lin and Yeh [35] developed test data creation technique for path testing using GAs. An 

iterative sequence of operators was executed to generate test cases to test paths coverage 

in a program using GA. A metric was formulated to determine which test case survives to 

the next generation and fitness function was designed based on the formulated metric. 

Hamming Distance [36] was modified to calculate the fitness function as Normalized 

Extended Hamming Distance (NEHD). 

Doungsa-ard et al. [37] proposed a framework for generating test data from software 

specifications. The test data generated is a sequence of actions from the software 

specification and the UML state machine diagram. They measured the quality of the test 
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data by the number of transitions which is fired by the input. GAs are used to optimize the 

sequence of triggers to find the best one to cover the most transitions. 

Michael et al. [38] presented a technique on generation of test cases by function 

minimization using genetic search. Test data were generated using branch coverage 

criteria. They implemented the technique in a tool known as Genetic Algorithm Data 

GEneration Tool (GADGET). 

Ghiduk et al. [39] proposed an automatic test data generation technique using definition-

use path coverage satisfying data-flow coverage criteria using GA. They developed a new 

multi-objective fitness function to evaluate the generated test data using the concept of 

dominance relations between nodes. Control flow graph of the program was used to 

generate dominance tree. They stated that the reduction in the size of test suites and the 

total number of iterations to satisfy the data-flow criteria prove the effectiveness of their 

approach in relative to random testing. The inputs for the technique were the set of test 

requirements, a version of the program under test, dominance tree and the usual GA 

parameters. 

Ahmed and Hermadi [40] proposed and presented a method to improve the efficiency of 

using GA to generate test data by designing an automatic GA-based test data generator for 

white box testing covering multiple target paths. The results obtained are promising as they 

show better performance than other existing approaches used in comparison. 

Srivastava and Kim [41] presented a testing approach using GA to find the most critical 

paths in a software construct. This was achieved by creating variable length GA that does 

not only optimize but also select the software path clusters that are weighted according to 
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the criticality of the path. This makes the most critical paths to be tested first, since an 

exhaustive test is rarely practical, which in turn can increase the efficiency of the testing 

process. In their technique, each edge of the control flow graph was assigned weights and 

the sum of the weights of the entire edges in a specific path forms the fitness function. The 

criticality of the path is proportional to the fitness values. 

Domínguez-Jiménez et al. [42] designed their fitness function by penalizing groups of 

mutants which are killed by the same set of test cases, without regarding the location, the 

mutation operator applied or the number of mutants in the group. Harman [46] presented a 

keynote talk by summarizing the existing work, the analysis of performance of several 

search algorithm used in test data generation and techniques to minimize search spaces. 

A number of outstanding and comprehensive surveys of the test data generation using 

search-based software testing approach have been presented [43],[44],[45].  

3.2 Mutation-Based Test Case Generation 

Killing mutants is a better way of testing the tests. A number of researches have been 

recorded in mutation testing. Some concentrate on defining new mutation operators, while 

others develop mutation system. Research in mutation testing can also be to invent 

innovative ways to reduce the cost of mutation testing [42]. This research is focused on 

developing cost-effective mutation system. As earlier stated, mutation testing suffers a 

number of shortcomings, which minimize its adoption in industry. Despite the little survey 

work in the literature on mutation testing, there has been a number of research work 

presenting different types of techniques in an attempt to transform mutation testing into a 

realistic and practical testing paradigm. A research conducted by DeMillo [47] was the first 
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of its kind to summarize the research achievements and background of Mutation Testing 

at the preliminary stage of its development.  

Fraser et al. [31] presented TEST, an approach to generate test data for object-oriented 

classes based on mutation analysis automatically. Apart from the test cases, mutant-based 

oracles are also generated which allow the tester to check whether the expected behavior 

is reflected by the assertions generated. The assertions were generated by matching the test 

case execution on a program and its mutants in order to distinguish between them. The test 

cases generated are mutant-based and impact-driven aimed to minimize test cases and 

assessment effort. This is achieved by optimizing test cases and oracles towards detecting 

mutation with maximal impact. 

Yao et al. [48] investigated on the causes and prevalence of equivalent mutants and how 

they are related to stubborn mutants. They manually analyzed 1230 mutants obtained from 

18 different programs, the result shows a highly uneven distribution of mutants’ 

stubbornness and equivalence. This means the selection of mutation operators should be 

carefully done because their results show that previous test effectiveness of fault seeding 

could be skewed. The findings of the work show that there is a contradiction to the popular 

assumption that equivalence is an extreme case of stubbornness. This is because it was 

found that equivalence is correlated with program size and the total mutants generated 

while stubbornness is not. Also, the findings showed that ABS (Absolute Value Insertion) 

operators should be discarded or at least applied with care because they generate few 

stubborn and many equivalent mutants. On the other hand, some operator classes like LCR 

(Logical Connector Replacement) are useful as they generate relatively more stubborn and 

fewer equivalent mutants. 
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Offutt et al. [25] performed a statistical regression analysis of actual programs, showing 

that the number of lines did not contribute to the number of mutants. Applying only the 

SDL (Statement Deletion) operator is a do-fewer approach known as SDL-mutation. The 

SDL operator was implemented for Java and its benefit was evaluated in terms of how well 

were the SDL mutants killed by tests generated when run on all of muJava’s method-level 

mutants. They started by defining SDL on single statements, then extended the definition 

to other control structures. SDL was implemented by Mothra by replacing each statement 

with CONTINUE because FORTRAN has a CONTINUE statement, which only provides 

a placeholder. On the other hand, Java implemented SDL by commenting out each 

statement. It does not make sense to apply SDL to variable declaration because the mutants 

would not compile, to start with. 

Also, applying SDL to control structures that include block(s) of statements (such as “if”, 

“for”, and “while”) necessitates deleting the entire block. They generated the test cases to 

kill the entire SDL mutants by hand (i.e. manually). They sanitized the tests by iteratively 

generating them while discarding those that did not kill additional mutants strongly. The 

mutants that are not killed were concluded to be equivalent. This leads to the conclusion 

that the deleted statement has no effect on the program. They finally evaluated the SDL-

adequate test set against the whole muJava’s mutation operators. Other mutation operators 

can be discarded if the SDL-adequate test set can kill all mutants. A mutation score of 92, 

with 80% fewer mutants were formed. Also, 41% fewer equivalent SDL mutants were 

discovered. 

Harman and Jia presented a detailed survey and analysis of trends and results on mutation 

testing. The survey comprises of works on empirical studies, optimization techniques, 
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mutation tools, and equivalent mutation detection. The results of the survey show that 

mutation testing is achieving popularity as its transition from academic to industrial 

application is rising gradually [9]. Papadakis et al. [49] describes a systematic mapping 

carried out to collect techniques and approaches for test data generation in mutation testing. 

In 2017, Jatana et al. [50] published a systematic literature review on application of search 

based techniques on mutation testing. The result of the study shows that within two 

decades, the following techniques have been harnessed to mutation testing namely: Hill 

Climbing, Ant Colony Optimization, Genetic Algorithm, Bacteriological Algorithm, and 

Immune Inspired Algorithm. 

As shown previously that some researches are mutation-based while some are GA-based, 

another trend of research is the application of mutation and GA in synergy to solve some 

problems encountered in test data generation. Below are few works that concentrate on the 

combination. 

Bottaci was considered the first researcher to apply genetic algorithm to mutation testing 

[51], [52].  

S. Selevakuma and N. Ramaraj [53] proposed an idea for generating a minimized test suite 

in test case generation using the combination of mutation and Genetic Algorithm. The idea 

was to resolve the problem of too many test cases to kill huge number of mutants generated 

by Mutation Testing. The approach models a test case as a predator while a mutant program 

is considered as a prey. The idea is to generate test cases to kill as many mutants as possible. 

The approach, mutant gene algorithm, was modeled into a tool for generating and 

minimizing test suites. 
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Sharma et al. [54] used adequacy-based testing criteria to generate test data. Mutation 

analysis was applied to check the adequacy of the test cases. The approach used did not 

follow the traditional way of applying mutation which is after the test data generation, but 

rather applied mutation analysis only at the period of generating test data. The approach 

ensures that the best data generated are adequate and the time taken is minimized because 

only the time taken to generate test data is included but the time to examine the adequacy 

is excluded. The authors applied GA to generate the test cases while validating the 

technique using ten real time C programs [55][56]. R.A. Silver et al. [57] presented a 

comprehensive systematic review on search based mutation testing. They identified five 

meta-heuristic techniques used to optimize test data generation, mutant generation and 

selection of effective mutation operators. For more details on the techniques, reader can 

consult their work [57].  

Jatana et al. [50] presented a systematic literature review on search-based mutation testing, 

where they identified Ant Colony Optimization, Genetic Algorithm, to be the popularly 

adopted search-based techniques in optimizing mutation testing. They concluded that the 

techniques are used to generate test data, select, minimize and optimize generation of 

mutants 

Analyzing the above-mentioned related literatures, a framework is identified for the 

classification of the research carried out in the area and the test criteria. It can be deduced 

that a substantial amount of work has been done on white box testing while only few work 

has been done on black box testing. 
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Table 3: Summary of Mutation-based Test Case Generation 

Author Techniques Results Performance 

Evaluation 

Mutant 

Generation 

Test 

Generation 

Language Average 

Perf 

DeMillo 

and Offut 

[34] (1991) 

Test data 

generation 

based on 

constraint 

Test data 

generation 

based on 

constraint 

Mutation 

score 

Manual Automatic Fortran 98% 

Offut et al. 

[58] (1999) 

Dynamic 

Domain 

Reduction 

Generation 

of test cases 

NA Manual Automatic Fortran NA 

Baudry et 

al. [59] 

(2005) 

Genetic 

Algorithms 

Optimization 

of test data 

generation to 

kill mutants 

Mutation 

score 

Manual Automatic C# 85% 

Ayari et al. 

[60] (2007) 

Ant Colony 

Optimization 

+ Mutation 

score 

Test data 

generation 

techniques 

Mutation 

score 

Manual Automatic Java 88% 

Papadakis 

et al. [61] 

(2009) 

Enhanced 

Control 

Flow Graph 

Generation 

of mutation 

adequate test 

data 

Path 

coverage 

Manual Automatic Java 90.2% 

Zhang et 

al.[62] 

(2010) 

Dynamic 

Symbolic 

Execution 

Automatic 

generation of 

test inputs to 

kill mutants 

Mutation 

score 

Manual Automatic C# 90% 
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Papadakis 

et al. [63] 

(2010) 

Dynamic 

Symbolic 

Execution 

Generation 

of effective 

test data 

Mutation 

score 

Manual Automatic C 63% 

Harman et 

al. [64] 

(2011) 

Execution 

and search-

based testing 

Generation 

of strongly 

adequate test 

data to kill 

first and 

higher order 

mutants 

Mutation 

score 

Manual Automatic C 71% 

Malhotra 

et al. [55] 

(2011) 

GA & 

mutation 

testing 

Test data 

generation 

based on 

adequacy-

based testing 

criteria 

Path 

coverage, 

mutation 

score and 

generating 

time 

Manual Automatic C NA 

Hanh et al. 

[65] (2014) 

Genetic 

Algorithm 

 5 Simulink 

models 

Manual Automatic Simulink 85.7% 

Mohi-

aldeen et 

al. (2016) 

Negative 

Selective 

Algorithm 

Generation 

and 

reduction of 

test cases 

Path 

Coverage 

Manual  Automatic Java & 

C++ 

NA 

Sharifipour 

et al. 

(2017) 

Memtic Ant 

Colony 

Optimization 

and 

Evolution 

Strategy 

Test data 

generation 

Branch 

coverage and 

convergence 

speed 

Manual Automatic MATLAB NA 
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3.3 Research Questions  

From our literature review, we could not find from the existing studies ones that handle 

both mutant generation and killing at the same time.  This study focuses on the development 

of an approach using GA to generate mutants and kill them while optimizing both processes 

competitively.  The mutator tries to generate non-trivial mutants that would be difficult to 

kill, while tester makes effort to generate effective test cases to kill the generated mutants. 

This is in form of a non-cooperative game between the tester and the mutator. The 

experiments carried out in this study were planned to empirically answer the following 

Research Questions (RQs): 

RQ 1: What is the effectiveness of the generated test cases in killing the generated 

mutants?  

This would investigate on how effective the test cases generated by the approach 

are. The effectiveness measure gives an insight as to how good the test cases are 

performing. The more mutants killed by a set of test cases, the more effective the 

test cases. 

RQ 2: How strong are the mutants generated?  

To ensure that the generated test cases are effective, there is need to ascertain that 

the generated mutants are non-trivial. A strong mutant is the one that is difficult to 

kill. 

RQ 3: Is the GA-based approach better than random generation of both test data and 

mutants? 
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This question inspects the effect of the GA on the generation of test cases and 

mutants. It shows the role played by GA in the presented game-like approach. 

RQ 4: What set of GA parameters gives the best performance with regards to our search-

based mutation testing? 

Answering this research question ensures the avoidance of using GA parameters 

by mere guessing. This is because each problem has its unique set of optimized 

parameters that would give the best performance. 
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CHAPTER 4 

PROPOSED APPROACH 

This chapter presents our proposed approach to generate test data and hard-to-kill mutants 

applying mutation testing and search-based techniques. It also explains the fitness 

functions applied and how the problem was formulated. The approach was developed in 

an attempt to bridge the gap found in the survey of the literature carried out. The detail of 

the critical survey is presented in the literature review chapter earlier. In this research, 

Mutation Testing does not only produce faulty programs for the Genetic Algorithms to 

optimize, but also sorts the transitional test cases with respect to the number of mutants 

they killed. Also, it is employed to measure the fitness values of our tests, leading to 

reduction in redundancy. 

4.1 Methodology/Approach 

The problem of generating test cases to kill the mutants is presented as an optimization 

problem. Consequently, an objective function also known as fitness function is designed 

to leverage the power of meta-heuristic techniques, like Genetic Algorithm, in generating 

test case data. 

We harnessed the power of Genetic Algorithm to automate the procedure. We have two 

different contrasting GAs competing against each other. The first GA (tester) known as 

test-GA(tGA) creates test cases to use in the testing process while the second GA (mutator) 

called mutant-GA (mGA) generates mutants (i.e. faulty programs which are valid variants 

of the original program each with single syntactic difference). 
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Since GA is a general method to solve combinatorial problems, therefore the problems to 

be solved differ from one to another. The domain knowledge is to be considered. Before 

designing the GA or any metaheuristic method, there should be a designated representation 

scheme for the problem. In other words, designation of how the individuals would be 

represented in the population of GA. Below is the description of the candidate solution 

representation, and fitness formulation & calculation. 

In this research, we propose an approach of generating test cases implementing it using 

Genetic Algorithms. This implementation presents an innovative way to use GAs to 

generate mutants in sync with test case generation. In other words, GAs are used to generate 

mutants of an original program and create test cases consecutively.  Each player makes 

effort to win its opponent. The mGA generates mutants that are difficult to kill by test cases 

while tGA creates test cases that try to kill any mutant generated by mGA. The approach 

generates a subset of all the possible mutants, selecting them with mGA. This is continued 

consecutively until a stopping criteria or certain number of iteration is reached. 

The benefit of this technique is estimated by applying it on program codes implemented in 

MATLAB. In order to maximize the capability of GA, its fitness function must be designed 

accurately and efficiently.  

The steps to follow in generating mutants and analyzing their strength is represented by the 

flowchart depicted in Figure 5. 
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Figure 5: Flowchart of mutant generation and analysis 

The original program is read to know the number of lines in the program. The number of 

lines in the program is used by mGA to generate mutant chromosomes that are based on 

the number of lines in the original program. The chromosomes are taken by the converter 

and transformed into the real mutant program, which is in turn executed against the test 

cases generated by the tGA. The original program is also executed against the same set of 

test cases. The result of executing original program is compared with that of the mutant, if 

the results are different, the mutant is killed otherwise it is not killed. Then, it has to be re-
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executed with different sets of test cases as this can be taken to mean the test cases are not 

effective initially. If the mutants are killed, there is a check to know if the end of generation 

is reached, in order to terminate the process. If the end of the generation is not reached, 

then the mGA is re-executed. 

The converter in Figure 5 is converting the mutant chromosomes from the mGA to real 

mutant program. The flowchart for the mutant conversion by the converter is shown in 

Figure 6 . 

 

Figure 6: Flowchart for mutants conversion 

A copy of the original program and the chromosomes generated by mGA are passed to the 

converter module. The program is read and the chromosomes are decoded to extract the 

category of operator, location and the exact mutation operator represented by the 

chromosomes. There is a check to verify if the mutant to be generated is valid by validating 

the existence of the mutation category at the specified location in the program code. If the 

operator is present, the mutation is applied and the new variant of the original program is 

generated, otherwise the chromosome is regenerated. This is done to prevent invalid mutant 
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from being produced and reduce the computational cost involved in testing the validity of 

the mutant later in the process. 

The individual for TESTER (tGA) is the test case to be generated and the fitness is 

computed on the programs; while MUTATOR (mGA) generates programs as its 

individuals and compute the fitness values on the test cases generated by TESTER. 

In this research, we designed the fitness function using Reward-Penalty approach to 

evaluate the population chromosome of the mGA. This means reward is assigned to good 

chromosomes while a penalty is tasked against the poor chromosomes. Since the function 

of mutation GA is to generate mutants, which are valid variants of the original program, 

after applying a particular mutation operator at a specific location. This means two things 

are involved in generating mutants, i.e. mutation operator and the location. In addition to 

mutation operator and the location, the actual operator is also of paramount importance. 

Each mutant is evaluated by computing fitness function on it. Due to the fact that this is a 

black-box approach, we need to execute the mutant against the test suite. The outcome of 

the execution can be represented in an execution matrix. If the number of mutants in the 

population is M and the number of tests cases in the test suites is T, then the dimension of 

the execution matrix would be M  T as shown below. The approach was first applied by 

Domínguez-Jiménez et al. [42].  

 

 

(1) 



51 
 

 

 mij is 1 or 0 when the mutant i is executed by test j is killed or alive respectively. 

Where 0 denotes mutants that are alive while 1 denotes killed mutants.  

The fitness function comprises of the number of test cases that are able to kill a mutant and 

the number of mutants killed by the particular tests. In this case, the fitness of a particular 

mutant (let’s say  with the collection of test sets T) is given by: 

 Fitness (, T) = M  T – ∑ (𝑚𝑗   ∑ 𝑚𝑖𝑗
𝑀
𝑖=1 )𝑇

𝑗=1  (2) 

 where   ∑ 𝑚𝑖𝑗   ∈ {0. … . 𝑇}𝑇
𝑗=1 , for all i and 

  ∑ 𝑚𝑖𝑗   ∈ {0. … . 𝑀}𝑀
𝑖=1  

Therefore the value of the fitness will continuously be within [0, MT]. 

The significance of this fitness function is that it penalizes every group of mutants that are 

killed by the same set of test cases without taking into consideration the mutation operator, 

location of mutation, or the total number of mutants in the group. 

4.2 Mutant Fitness Function 

The evaluation of mutants is carried out as follows: 

Each mutation operator is evaluated such that higher fitness is assigned to operators whose 

mutants are potentially strong and difficult to kill given a test suite. 

Each operator OPi is assigned a constant probability (say C), such that each operator has 

50% chance of being picked as shown in the Table 4. 
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Table 4: Initial Probability of operators 

Operators Probability 

OP1 

OP2 

OP3 

… 

OPN 

C1 

C2 

C3 

… 

CN 

 

After the selection of the operators and the corresponding mutants are generated, the 

number of mutants for each operator is computed and the respective probabilities score of 

each operator are updated with new probability (say P) which is later normalized. This is 

shown in the Table 5: 

Table 5: Updated Probability of operators 

Operators Probability 

OP1 

OP2 

OP3 

… 

OPN 

P1 

P2 

P3 

… 

PN 
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To compute the updated probability of each mutation operator, there is need to know the 

number of mutants by the operator and the number of mutants that are difficult to kill. For 

example: 

In each iteration i, 

 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 2 ∗
𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝 − 𝑛𝐾𝑖𝑙𝑙𝑒𝑑

𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝
− 1   ∈ [−1.1] (3) 

Where  nMutSamp = Number of mutants generated by OPi at iteration i 

 nKilled = Number of killed mutants generated from OPi 

If no mutant is killed, 

Then     
𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝−𝑛𝐾𝑖𝑙𝑙𝑒𝑑

𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝
= 1 (4) 

 

 increment = (2 * 1) – 1 = 1 [Maximum value] 

But if all the mutants are killed, 

Then      
𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝−𝑛𝐾𝑖𝑙𝑙𝑒𝑑

𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝
= 0 (5) 

 increment = (2 * 0) – 1 = -1 [Minimum value] 

This means that any value of increment would be [-1,1].  

                 Probability Score = {
𝐶.  ⋕ 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1

𝑃.  ⋕ 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 1
 (6) 

So if the number of iteration/generation is 1, i.e. MaxIt=1 
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 𝑃 = 𝐶 + 
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙𝑀𝑢𝑡𝑎𝑛𝑡
 (7) 

 

But if the number of iteration, MaxIt=2, 

 𝑃 = 𝐶 + 
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

2 ∗ 𝑡𝑜𝑡𝑎𝑙𝑀𝑢𝑡𝑎𝑛𝑡
 (8) 

 

Generally,   𝑃𝑖 = 𝑃𝑖−1 +  
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

𝑀𝑎𝑥𝐼𝑡 ∗ 𝑡𝑜𝑡𝑎𝑙𝑀𝑢𝑡𝑎𝑛𝑡
 (9) 

 

This would force the final probability of the mutation operator, Pop  [0,1]. 

If more than half of the mutant sample are killed, increment would be negative thereby 

decreasing the value of the next probability. In other hand, if less than half of the mutant 

sample are killed, increment would be positive thereby increasing the value of the next 

probability of the same mutation operator. This can be represented mathematically below: 

 0 < 𝑛𝐾𝑖𝑙𝑙𝑒𝑑 < 𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝/2 (10) 

 𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝𝑙𝑒/2 < 𝑛𝐾𝑖𝑙𝑙𝑒𝑑 ≤ 𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝 (11) 

If the two equations above are evaluated to TRUE, they would cause the values of 

increment to be positive and negative respectively. 

In other words, we would ensure the 0 ≤ Pop ≤ 1 

The probability score is summed and normalized to 1. 
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 i.e.
1

𝑐𝑜𝑛𝑠𝑡
∑ 𝑃𝑖

𝑛𝑂𝑝
𝑖=1 = 1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑛𝑜𝑟𝑚 =

𝑃𝑖

∑ 𝑃𝑖
𝑛𝑂𝑝
𝑖=1

 (12) 

The proportion of each operator is used to give precedence to the generated mutants 

together with the line of the program in the next generation. 

Similarly, we have probability of killing programs mutated at a particular line of code. We 

also update the probability of not killing a program mutated at certain line number just like 

we did for the mutation operator. 

Table 6: Probability of program line number 

Line Number Probability 

1 

2 

⋮ 

L 

P1 

P2 

⋮ 

PL 

Where L is the number of line of the program under test. Since no deletion nor insertion of 

statement operator is used, the number of line of the original program is the same as the 

number of line of each mutant. 

The probability of line number is also normalized as follows: 

  Pline = 
𝑝𝑗

∑ 𝑝𝑗
𝑛
𝑗=1

 (13) 

Where j = 1,2,…,n, pj is the probability of line j and n is the number of line of the program. 
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The final fitness of the mutant in question is the combination of its mutation operator’s 

probability score and its line number probability score. But in order to keep the fitness 

normalized to 1, the summation is averaged to give a single number between zero and one. 

 i.e.  Final Fitness = ½(Pop + Pline) (14) 

The fitness described above is the fitness of a mutant. The overall fitness of the set of 

mutants can be obtained by computing the average of the entire mutants’ fitness. 

Therefore, a mutant is rated by the mutation operator it has and the position of the mutation 

in the original program. 

4.3 Test Fitness Function 

The fitness function of the test cases is derived from the test execution matrix, which is 

obtained after executing the entire mutants with the whole test cases. In other word, each 

mutant is executed against every test case. The fitness of a test case is dependent on the 

competition with the rest of the test cases. This means the fitness of a test case can affect 

the fitness of others. The approach is explained as follows. Table 7 shows the sample of 

the execution matrix as shown below: 

Table 7: Test Execution Matrix 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

M1 0 0 0 1 0 1 0 0 1 0 

M2 0 0 1 0 0 1 0 1 0 0 

M3 0 0 1 0 0 1 0 0 1 1 

M4 1 0 0 0 1 1 1 1 0 0 

M5 0 1 0 0 0 1 0 0 1 0 

M6 1 1 1 1 1 1 1 1 1 1 
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M7 0 0 1 0 0 1 1 1 0 1 

M7 1 1 0 0 0 1 0 1 1 0 

M9 0 0 0 0 0 0 0 0 0 0 

M10 1 0 0 0 1 1 0 1 0 1 

The value in each cell of the matrix can be [0,1]. If it is ZERO, it means the mutant was 

not killed by the test case represented by the intersecting column of the matrix. In other 

word, the value is ONE if it is killed by the test case. Therefore, the initial values are [0,1]. 

The values are then updated by looking into how many test cases kill a mutant and how 

many mutants are killed by a particular test case. 

Using the example above, the table would be modified and updated resulting in the values 

shown in Table 8 : 

Table 8: Updated test execution matrix 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

M1 0 0 0 0.333 0 0.333 0 0 0.333 0 

M2 0 0 0.333 0 0 0.333 0 0.333 0 0 

M3 0 0 0.25 0 0 0.25 0 0 0.25 0.25 

M4 0.2 0 0 0 0.2 0.2 0.2 0.2 0 0 

M5 0 0.333 0 0 0 0.333 0 0 0.333 0 

M6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

M7 0 0 0.2 0 0 0.2 0.2 0.2 0 0.2 

M7 0.2 0.2 0 0 0 0.2 0 0.2 0.2 0 

M9 0 0 0 0 0 0 0 0 0 0 

M10 0.2 0 0 0 0.2 0.2 0 0.2 0 0.2 

 

Each test cases is evaluated from the values in Table 8. This is because, for example, mutant 

M1 was killed by three test cases (T4, T6, and T9). Therefore, they share the point among 

each test cases. It should be noted that killing a mutant is rewarded one point (1 point). 
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Since three of the test cases killed the mutants, they share it equally and each test case gets 

1/3 (0.3333). More so, for mutant M3, four of the test cases killed the mutants; therefore, 

each test gets reward of 0.25 (1/4). Also, all the ten test cases killed mutant M6; resulting 

to a reward of 0.1 (1/10) for each test case. So the aggregate point of each test case is 

computed by adding up the total point by the test against each mutant and assigned to each 

test as shown in Table 9 : 

Table 9: Score of test cases 

 Test T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

 Point 0.7 0.633 0.883 0.433 0.5 2.15 0.5 1.233 1.217 0.75 

 

The test cases are now sorted based on their computed power of killing the mutants. 

The fitness of each test case in Table 9 can be sorted to result in the sequence shown in 

Table 10 . 

Table 10: Sorted test cases with respect to their killing power 

 Test T6 T8 T9 T3 T10 T1 T2 T5 T7 T4 

 Point 2.15 1.233 1.217 0.883 0.75 0.7 0.633 0.5 0.5 0.433 

 

T(j)fit = Fitness point of test case j 

Test suite Fitness = sum of the fitness points as shown in equation (15)  

 ∑ 𝑇(𝑗)𝑓𝑖𝑡

𝑛

𝑗=1

 (15) 
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The total point of the test suite was 8.999, therefore the overall fitness of the test suite is 

9. The actual point was less than 9 because of the several rounding made in the process 

of computing the fitness. This can be verified by cross-examining the test execution matrix 

in Table 7. It can be seen that only mutant M9 was not killed by any test case in the test 

suite. In this case, out of 10 mutants, only 9 mutants were killed. Since the minimum and 

maximum values for the test suite fitness value are 0 and 10. In general, the range of values 

the fitness can have is [0, m] where m is the total number of mutants.  

This fitness computation of test suite is similar to mutation score. Dividing by the total 

number of mutants, the fitness becomes mutation score. This is because the mutation score 

of the test suite is 0.9 which signifies 90% of the mutants being killed. This is accurate 

because only 9 out of 10 were killed which is exactly 90% of the total mutants. However, 

this fitness is better than mutation score because mutation score computes only the overall 

effectiveness of the test suite without knowing which of the test cases performs better than 

the other. Our fitness computation helps in differentiating between the test cases in the test 

suite. The test cases that kill more alive mutants and difficult-to-kill mutants get more 

fitness. This made it easy to apply GA to prioritize the test cases based on their fitness so 

that they can be propagated to the next generation expecting to have more mutants being 

killed by those effective set of test cases. 
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4.4 Mutants Generation 

As mentioned above, the GAs utilize binary digits to represent their chromosomes. Before 

mutation2 can take place, there is need to define the mutation operators and the location 

where the mutation is to take place. 

In this work, mutation analysis is performed using an approach called evolutionary 

mutation testing [42]. A Genetic Algorithm is used to generate encoded mutants used in 

generating possible mutants for carrying out the analysis – mutants’ generator. The number 

of live mutants generated is reduced gradually as they are killed by test cases by favoring 

the strong mutants, which can be a useful tool to improve the quality of the test suite 

initially created using test case generator. Mutants are encoded as individuals of the 

algorithm, which implies the encoded mutants are generated and their fitness values are 

used to select those that would transit to the next generation. Since this testing technique 

is a black-box oriented, the encoded mutants have to be decoded and executed against the 

set of test cases generated initially. Subsequent generation of the mutants is instigated and 

affected by the quality of test suites. Before carrying out the mutation testing, an original 

program is obtained and the correctness of the program is ascertained. Also, the list of 

mutation operators to be applied should be identified. The generation of mutants of the 

original program is encoded using three fields (as shown in Figure 7) so as to be acceptable 

by the genetic algorithm.  

Operator Line Number Choice 

Figure 7: Representation of mutant chromosome 

                                                           
2 Note that the mutation here is not the one in genetic algorithm. 
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An identifier of the mutation operator to be applied is represented by Operator. Line 

Number signifies the line number of the original program where the mutation operator is 

applied while Choice specifies the particular replacement to be performed where there are 

multiple options (e.g. +, -, *, /, etc). 

So as to make the mutants generation guided, each encoded mutant is formed after 

computing the values a field can take in the specified program. The actual mutants are then 

produced by a converter from the encoded fields from the table above. The mutant 

generator takes the encoded mutant chromosomes and encoded test cases from mGA and 

tGA respectively together with the original source code under test. From the encoded 

mutants, mutation operators and line number of mutation are extracted. The Mutant 

Generator creates the mutants using the mutation operators and the result of this Generator 

is mutant in form of MATLAB m-file containing only one fault in each mutant. Each 

mutant is produced after randomly generating individuals at the initial stage. Crossover and 

mutation operators are applied to the randomly generated mutants to form children 

individuals. The generated individuals are then evaluated and the more fit ones are made 

to transit to the next generation. The crossover operator ensures exchange of content of one 

field of an individual with the other in a systematic way. The operator is designed to evade 

invalid individual generation. The following are the valid mutant chromosomes for 

QuadraticSolver Program: 

Table 11: Valid mutants for QuadraticSolver program 

0001100 0001101 0001110 0001111 

0010000 0010001 0010010 0010011 

0011000 0011001 0011010 0011011 
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0100000 0100001 0100010 0100011 

0101100 0101101 0101110 0101111 

0110000 0110001 0110010 0110011 

 

4.5 Mutant Program Generation 

After mutant GA generates the chromosomes representing the genotype of the typical 

mutant program, there is need to have the phenotypical depiction of the program. A 

converter program was created that takes the binary representation of the mutant as shown 

above. The chromosome (binary representation) encodes the operator, line number and the 

choice of operator in each category. The converter takes the chromosome and the original 

program and decodes the chromosome based on the original program. This generates a 

mutant program, which is used in the actual execution. Figure 6 shows the concept in high 

level. The converter decodes the mutant chromosome, extracting the operator (for example, 

Arithmetic Operator Replacement-AOR), the location where the mutation operator is to be 

applied and the actual operator to be applied (for example, addition [+]). These are all 

extracted from the encoded mutant. The converter reads the original file and gets a copy of 

it. After obtaining the mutation operator category, location and the exact operator, the 

converter applies them to the copy of the original program. This is done by locating the 

line number of the program copy using the mutation location encoded in the chromosome 

and applying the exact operator (which belongs to the category specified by the 

chromosome) and replaces the original operator by the encoded one. This results in a new 

valid program similar to the original program except the replaced operator. This makes it 

become a first order mutant of the original program. Both mutant and the original program 
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can then be executed using the same test case to investigate if the test case can kill the 

mutant. The same sequence of events is repeated for every chromosome in the population. 

In order to prevent wastage of memory, no two mutants exist at the same time. In other 

words, only one mutant is available at any particular time during the execution process. 

The creation of the subsequent mutants is carried out and the file is saved as the previous 

mutant file name. This makes the execution a bit easier and the memory wastage is avoided. 

For example, take QuadraticSolver program in Appendix B to illustrate the procedure of 

how the real mutant is generated. Given a mutant chromosome, which has been decoded 

to give the mutation operator category as AOR, location as 3 and the actual operator as ‘+’. 

This makes the line 3 of the original program to be read. 

 
d = sqrt(b^2-4*a*c); 

(16) 

And one of the arithmetic operators (say ‘-‘) in the program line is replaced with the 

encoded operator, the program statement becomes 

 
d = sqrt(b^2+4*a*c); 

(17) 

This single modification makes the program to be different from the original one. The 

mutant GA that generates the mutant has been guided so that it generates only valid 

chromosomes considering the original program. This means a mutation operator and a 

location are joined in a single chromosome if only the operator category exists in the line 

code number represented by the location extracted from the encoded mutant chromosome. 

For the sake of simplicity, consider the following running example. Given a program to 

compute roots of a quadratic equation (see Appendix B), the program has 14 LOC. 

Arithmetic Operator Replacement (AOR) can be applied to lines 3, 5, 6, 8, 11, and 12. 

While Relational Operator Replacement (ROR) can be applied to lines 4 and 7. The total 
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number of lines in the program is encoded into binary as 1110. This means four bits are 

sufficient to encode the line number. AOR and ROR are encoded as 0 and 1 respectively. 

Changing addition (+) into subtraction (-), multiplication (*), division (/) and exp (^) can 

be encoded as 00, 01, 10, and 11 respectively. Also, replacing (>) into (<), (<=), (>=), and 

(!=) are encoded as 00, 01, 10, and 11 respectively. The leading '0' of a mutant chromosome 

represented by “0010110” would imply selecting AOR as the category of the operator to 

be performed. Then 0101 means line number 5 would be mutated and 10 means the addition 

(+) operator would be replaced by division (/) operator. This would change the statement 

[x(1) = (0-b + d)/(2*a)] into [x(1) = (0-b / d)/(2*a)]. 

[x(1) = (0-b + d)/(2*a)]  Δ [x(1) = (0-b / d)/(2*a)] 

It should be noted that the mutation is done based on the actual mutation operator, but not 

the category. 

4.6 Test Case Generation 

One of the GAs, tGA, is responsible for the generation of test cases and each chromosome 

in the population is representing a test case to be used in this experiment, i.e. the execution 

of programs (original and its mutants). As usual with GA, an initial set of population is 

generated randomly taking into consideration the format of the individual representation, 

which is a sequence of binary strings in our case. In subsequent generations, the test cases 

are guided so that more effective test cases evolve to next generation by selecting the more 

fit individuals based on the fitness function of the test cases. Therefore, each individual 

denotes an element in the set of test cases in which its fitness depends on its effectiveness. 

Test cases need to have high efficiency as well. This is the ratio of the number of mutants 
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killed to the total number of test cases. The individual chromosome is made up of strings 

of binary digits which is the concatenation of different substrings in which each substring 

represents the input of the program under test. For example, 1010100001001100101 is a 

sample of a test case to be generated. If the test case is a combination of three input values, 

the test case can then be represented as follows: 

 

 

This means each input value is a string of binary digits, so joining them together forms the 

chromosome. After generating the individual chromosomes, they are analyzed by decoding 

them in order to obtain the values of each input. The chromosome represented above can 

be decoded as 101010  0001001  100101 so that 101010 is the input 1 while 0001001 is 

the input 2 and 100101 is the input 3. The first bit of each input is the sign of the input 

while the remaining bits are used to form natural numbers. The input value is positive if 

the first bit is 1 and negative if it is zero (0). The above input can be decoded as follows: 

Input 1:  101010    1 01010    +11 

Input 2: 0001001   0 001001   -10 

Input 3: 100101   1 00101    +6 

The test case represented by the chromosome above is depicted as (11, -10, 6). 

4.7 Selecting The GA Parameters 

Every experiment on GA conducted is by selecting parameters of the GA to optimize its 

performance. Some are trial and error while others are chosen based on user-experience. 

Input 1     Input 2     Input 3 

Figure 8: Representation of test chromosome 
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Most of the researches are reported with the parameters without explaining the reason why 

and how they are chosen. In such situation, the performance of the GA cannot be 

maximized. The parameters of the GA depend on the specific problem. A combination of 

such parameters may be useful for a problem and not for another problem. We looked at 

the different combination of parameters and observed the effects on the results. The values 

of the parameters can be maximized using an approach based on Taguchi Experimental 

Design for the parameter tuning. GA parameters are divided into two categories namely: 

structural and numerical parameters. 

Structural parameters: it is challenging and difficult to deal with these set of parameters in 

any GA application. They dictate the structure of GA, as the name implies. The coding 

pattern of GA demands substantial modification if any of these parameters are changed. 

Examples of these parameters include coding scheme representation, types of operator and 

stopping criterion. For example, the one-point crossover can be applied to knapsack 

problem but cannot be applied to sequence representation. 

On the other hand, numerical parameters involve changing the values of some factors 

affecting the performance of the GA. Example of the main factors considered as numerical 

parameters are population size, maximum iteration (generation), type of initial population, 

mutation and crossover probabilities. Altering these parameters does not involve recoding 

of the GA, it only results in changes in GA performance. 

The choice of mutation probability depends on the desired outcome. For instance, if the 

application desires all members to have very high fitness, a lower mutation rate is suggested 

so as to have a less likelihood of disrupting good solutions. But if simply one or two highly 

fit individuals are required, a higher mutation rate may be chosen especially if ensuring 
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good coverage of the search space is given preference over the cost of disrupting copies of 

good candidate solutions. In this case, we decided to make mutation rate low because we 

need to have several highly fit individuals (difficult-to-kill mutants). 

In this research, a set of structural parameters is selected because of its suitability to the 

problem under investigation. Each of the GAs has certain degree of overlapping on 

numerical parameters with the other as shown in Table 12 and Table 13. 

Table 12: Tester GA Parameters and Levels 

Parameter Code Level 

1 2 3 4 

Selection Function A Roulette 

wheel 

Tournament  - - 

Crossover function B Single point Two point - - 

Crossover 

probability 

C 0.75 0.8 0.9 - 

Mutation 

Probability 

D 0.35 0.3 0.25 - 

Population size E 20 30 40 45 

 

Table 13: Mutation GA Parameters and Levels 

Parameter Code Level 

1 2 3 4 

Selection Function A Roulette 

wheel 

Tournament - - 

Crossover 

probability 

B 0.75 0.8 0.9 - 

Mutation 

Probability 

C 0.1 0.08 0.06 - 

Population size D 35 40 45 50 
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We identified five (5) parameters which need to be tuned to know the optimal values of 

each one of them. The parameters are: selection function, crossover function, crossover 

probability, mutation probability, and population size. For mGA, not every single point 

crossover nor every two-point crossover generates valid chromosomes, so we decided to 

remove crossover function from the set of parameters to be optimized because we applied 

a customized crossover function. Therefore, four (4) parameters were optimized in the case 

of mGA as shown in Table 13 above. 

Based on the number of parameters considered and number of parameter levels identified, 

the detail of the experimental design and levels for the tGA is shown in the Table 14 : 

Table 14: Experimental Design for Tester GA Parameter Selection 

Experiment Parameter of GA 

A B C D E 

1 1 1 1 1 1 

2 1 1 1 1 2 

3 1 1 1 2 3 

4 1 1 2 2 4 

5 1 2 2 3 1 

6 1 2 2 3 2 

7 1 2 3 1 3 

8 1 2 3 1 4 

9 2 1 1 2 1 

10 2 1 1 2 2 

11 2 1 1 3 3 

12 2 1 2 3 4 

13 2 2 2 1 1 

14 2 2 2 1 2 
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15 2 2 3 2 3 

16 2 2 3 2 4 

 

The fitness is the overall fitness of the test suite. The computation of the overall fitness has 

been discussed. 

Similarly, Table 15 shows the number of parameters considered alongside the number of 

parameter levels for mGA.  

Table 15: Experimental Design for Mutator GA Parameter Selection 

Experiment Parameter of GA 

A B C D 

1 1 1 1 1 

2 1 1 1 2 

3 1 1 2 3 

4 1 1 2 4 

5 1 2 3 1 

6 1 2 3 2 

7 1 2 1 3 

8 1 2 1 4 

9 2 1 2 1 

10 2 1 2 2 

11 2 1 3 3 

12 2 1 3 4 

13 2 2 1 1 

14 2 2 1 2 

15 2 2 2 3 

16 2 2 2 4 
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The fitness here is also the overall fitness of the mutants generated. And this should not be 

taken as the fitness of a single mutant. The computation has been discussed in the 

subchapter 4.2. 
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CHAPTER 5 

EXPERIMENTS, RESULTS AND DISCUSSION 

This chapter explains the experiments carried out to implement the approach presented in 

the previous chapter explaining the design of the experiment. It also presents how the GA-

based test data generator is implemented, not only the design but also the setup and the 

implementation. The power of the operators and parameter settings are investigated by 

carrying out several experiments with various settings. The results obtained from the 

experiment were presented, discussed and analyzed. This section explains the experimental 

setup and the evaluation of the results. The experiments were implemented and executed 

on a PC with intel® CORE™ i5-4200U CPU @ 1.60GHz processor, 6GB RAM and 64-

bit Operating System, x64-based processor running Windows 10 Operating System. The 

MATLAB version used was R2015a (8.5.0.197613). MATLAB is one of the versatile high-

level languages and easy to handle. Its advanced data analysis, visualization and toolboxes 

provide user with the necessary means to present and discuss their experimental results. In 

this section, the results are discussed in details. 

5.1 Experiment Design 

It is well acknowledged that obtaining good values of parameters for good GA performance 

is essential as it is one of the challenges of GA. However, little work has been recorded on 

investigating how GA parameters affect the performance and how they are tuned. Most of 

the practitioners select default values that are chosen by conventions; for example, low 

mutation rate. Mostly, GA parameters are selected through user-experience and trial-and-

error as mentioned earlier. It is imperative to investigate the effect of combining different 
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crossover rates and mutation rates. This is because different problems have dissimilar 

properties and for this reason, distinct parameter sets are required. This section focuses on 

parameter tuning. We investigated 5 different parameters that can influence the 

performance of the GA as follows: selection function, crossover function, crossover 

probability, mutation probability and population size.  

In this research, 5 different experiments were conducted using MATLAB programming 

environment. We selected five (5) MATLAB program codes as experimental subjects of 

different purposes, sizes and complexity. Most of them were taken from textbooks and 

research papers and adapted to MATLAB format while others were written from scratch. 

5.2 Description of Programs Under Test 

The programs used for the experiment are described as shown in Table 16 . Each program 

is described by its inputs and outputs and what it does. 

 

Table 16: Description of Programs under Test 

Name of 

Program 

Description Number 

of Line 

Inputs Outputs 

QuadraticSolver To find the roots of 

equation ax2+bx+c=0 

by analyzing its 

parameters/coefficients 

14 Three 

coefficients: a, 

b, c 

Two different 

solution, One 

solution (two 

identical 
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solutions), No 

real solution 

TriType To determine the 

triangle type by 

evaluating all its three 

sides. The relationship 

between the sides gives 

the type of triangle they 

represent 

14 Three sides: a, 

b, c 

Scalene, 

Equilateral, 

Isosceles, Right-

angled, Non-

triangular 

MID Find the middle number 

from the list of three 

numbers 

20 Three numbers 

x,y,z 

The mid number 

Line-Rectangle 

Classifier 

To determine relative 

positions relationship 

between a line and a 

rectangle 

36 Line 

coordinates: 

(xl1,xl2,yl1,yl2), 

Rectangle 

coordinates: 

(xr1,xr2,yr1,yr2) 

Error, Line 

wholly outside 

rectangle, Line 

wholly inside 

rectangle, Line 

partially inside 

rectangle 

Point-Circle 

Classifier 

To establish the 

relationship of the circle 

and a given point based 

12 Center 

coordinates: 

(x,y) Radius: r, 

Inside the circle, 

On the 

circumference of 



74 
 

on their position by 

taking into 

consideration the 

coordinates of the given 

point, center 

coordinates and radius 

of the circle 

Point 

coordinates: a,b 

the circle, 

Outside the 

circle 

For this experiment, FIVE test programs were chosen as Program Under Tests (PUTs) as 

shown above. The subject programs were implemented in MATLAB and PUTs were used 

for the experiment. 

5.3 Results and Discussion 

This section discusses processes followed to select the parameters used in the experiment. 

The results are discussed and the optimal set of parameters were selected. The experimental 

results of the test cases generation to kill generated mutants were presented for each 

program under test. This comprises of the results of executing the test cases generated by 

tGA against the mutants generated by mGA. Randomly generated test cases were also 

executed against optimized mutants and optimized test cases were on the other hand 

executed against randomly generated mutants. 

5.4 Parameter Selections for the GAs 

The design of the experiment to select the suitable and optimal GA set of parameters is 

shown in Table 14 and Table 15. QuadraticSolver program is used in the parameter 

selection experiment. The results of the experiments are the fitness of the test suite, which 
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is similar to mutation score. The fitness of test suite becomes the mutation score as soon as 

it is divided by the number of mutants. Each experiment is carried out ten times in order to 

calculate the confidence interval of each result. The results of the ten-time running of the 

experiment is shown in Appendix C. 

The confidence interval of each of the experiment is calculated using mean with 95% 

confidence intervals. The plot for the confidence interval is shown in Figure 9 : 

 

Figure 9: Plot of Tester GA Confidence Interval for parameters selection 

 

By studying the plot above, it can easily be seen that the eleventh experiment is 

better than any of the other experiments. Although, it can be seen that most of the 

experiments were centered around 35, which means 35 out of 40 mutants were 

killed by the test cases. Details of how the value is obtained is in Section 4.3. This 
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is due to the fact that it has the highest mean fitness and lowest error interval or less 

deviation. This resulted in selecting the parameter set of experiment 11 for the tester 

GA. The corresponding parameter set for the experiment is shown in Table 17. 

 

 

Table 17: Selected parameters for tester GA 

Selection function = Roulette wheel 

Crossover function = Single point 

Crossover Probability = 0.75 

Mutation Probability = 0.25 

Population size = 40 

 

Similarly, experiments were carried out to investigate the best set of parameters for 

mGA. The results of the experiments run ten times are shown in Table 18 . Each of 

the results shows the highest. 

Table 18: Results of experiment to select the best parameter set for mGA 

Par/Run 1 2 3 4 5 6 7 8 9 10 

1 0.8044 0.9444 0.9583 0.5 0.7593 0.4615 0.4217 0.8333 0.8788 0.8152 

2 0.9333 0.8462 0.9091 0.8947 1 0.8947 0.7647 0.8077 0.7692 0.5522 

3 0.8444 0.9474 0.8 1 0.9333 0.9412 0.8621 0.8235 0.875 0.8524 

4 0.9444 0.9474 0.75 0.8846 0.9286 0.7143 0.7931 1 0.7143 0.9412 

5 0.8824 0.7368 0.7778 0.6098 0.8 0.7273 0.5085 0.7143 0.9375 0.9286 

6 0.8235 0.7838 0.8333 0.9 0.85 0.9286 0.9444 0.8462 0.875 0.8947 

7 0.8667 0.9235 0.8764 0.9824 0.8867 0.9087 0.9129 0.7659 0.8739 0.8255 

8 1 0.72 0.7647 0.8824 0.8824 1 0.9375 0.8966 0.8766 0.9167 
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9 0.5 0.7391 0.7188 0.7273 0.5556 0.7727 0.7619 0.6829 0.6667 0.963 

10 0.9091 0.9231 0.8824 0.9375 0.8824 0.9333 0.8 0.6667 0.9167 0.8125 

11 0.8889 1 0.8235 0.8182 0.8333 0.8762 0.8939 0.8884 0.9963 0.8698 

12 0.8977 0.7898 0.8235 0.9918 0.9538 0.8759 0.8538 0.7965 0.7997 0.9418 

13 0.8929 0.8462 0.8462 0.9063 0.7879 0.3636 0.9091 0.7333 0.7692 0.7282 

14 0.9598 0.8754 0.9915 0.7899 0.8459 0.9985 0.8545 0.8762 0.9105 0.8965 

15 0.8987 0.9476 0.8798 0.7895 0.8545 0.9512 0.7789 0.7548 0.7985 0.9055 

16 0.7744 0.9611 0.7016 0.8659 0.8873 0.8346 0.9113 0.8674 0.8468 0.9861 

 

The results shown in Table 18 is plotted to find the confidence intervals of each of 

the experiments using mean with 95% confidence intervals. The plot for the 

confidence interval is shown in Figure 10. 

 

Figure 10: Plot of mGA  Confidence Interval for parameters selection 

Following the results shown in Figure 10, it can be seen that experiment 14 has the 

highest mean and relatively small length of error bars. The confidence interval for 

experiment 14 is the best among them as it shows the highest mean fitness of 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

Mean with 95% Confidence Intervals



78 
 

0.8999. Experiments 7, 8, 3 and 11 have mean fitness of 0.8823, 0.8877, 0.8879 

and 0.8889 respectively. Therefore, the best parameter combination for mGA is 

considered to be the parameters corresponding to experiment 14. These parameters 

are shown in Table 19. 

Table 19: Selected parameters for mutant GA 

Selection function = Tournament 

Crossover probability = 0.75 

Mutation probability = 0.1 

Population size = 40 

 

5.5 Discussion of the results of Experiment 

In this section, the results of the experiment are discussed. Each program under test is used 

separately to carry out the experiment and the individual results are shown and discussed 

as follows. 

5.5.1. QuadraticSolver 

This program has 14 LOC with three branches. The GAs run for 100 generations and the 

result is shown in Figure 11. 
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Figure 11: Total and Killed mutants for QuadraticSolver using 100 generations 

By studying the result above, one can easily conclude that the GAs need more generations 

as the result for the number of killed mutants is yet to converge and looks promising (i.e. 

if more generation/time is allowed, more mutants would be killed). The percentage of the 

killed mutants and the number of unique tested mutants are shown in Figure 12. 

 

Figure 12:Killed mutants and unique mutants for QuadraticSolver (100 Generations) 

The experiment was repeated 32 times and the best result was plotted in all the experiments. 

The percentage of the average number of killed mutants shown in Figure 12 also demands 

for increase in the number of generation. The number of generations was then increased to 
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150 expecting the number of unique tested mutants to increase over time. The result is 

shown in Figure 13 : 

 

Figure 13: Killed mutants and unique mutants for QuadraticSolver (150 Generations) 

The result in Figure 13 shows that the total (cumulative) unique mutants generated, on 

average, keep increasing until after 75 generations, then there was no new mutant 

generated. In other words, the mutants generated after 75 generations were already 

generated mutants. (This is shown by the upper curve of the left graph). The lower curve 

shows the number of total mutants killed across the generations. With increase in the 

number of generation, more mutants are being killed; this shows that the effectiveness of 

the test suite is improving in every next generation until when the generation reached 125, 

when no more mutants were killed. The graph on the right of Figure 13 shows the 

proportion of the uniquely killed mutants out of the total generated mutants in each 

generation. The plot shown in Figure 14 is another way to show the upper curve of the left 

graph in Figure 13. It shows the number of unique mutants generated in each generation 

(not total).  
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Figure 14: Number of unique tested mutants for QuadraticSolver (150 Generations) 

As the number of generation reaches 75, no new mutant was generated.  

The number of generation was further increased from 150 to 200. The result is shown in 

Figure 15. 

 

Figure 15: Killed mutants and unique mutants for QuadraticSolver (200 Generations) 

The left graph of Figure 15 shows the cumulative mutants generated and the one killed. 

Initially, the majority of the mutants were killed. The graph on the right of the figure depicts 

the proportion of killed mutants. It shows that the proportion of mutants being killed 

fluctuates along the different generations until it reaches 180 – when it seems to be stable. 
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Figure 16: Number of unique tested mutants for QuadraticSolver (200 Generations) 

The graph plot in Figure 16 shows the number of unique mutants tested in the experiment 

during each generation when the number of generation is increased to 200. At almost 178th 

generation, no new mutants were tested. This means the mutants generated are already 

generated in the previous generations. 

Finally, the number of generation was further increased to 250 so as to be more confident 

about the results. The experiment was run and the results are shown in Figure 17. 

 

Figure 17: Killed mutants and unique mutants for QuadraticSolver (250 Generations tGA-mGA) 

Having run the experiment for 250 generations, the results show that no more mutants are 

killed as the cumulative killed mutants remains unimproved for about 50 more generations. 
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Out of 88 mutants generated, only 80 were killed. This resulted in killing 90.9% of the 

mutants generated. The overall performance of the test cases was recorded to be 35.564. 

The same experiment was repeated but with randomly generated mutants with the test cases 

generated by the GA. The results are shown in Figure 18 . 

 

Figure 18: Killed mutants and unique mutants with randomly generated mutants for QuadraticSolver (250 Generations) 

The results in the graphs show that less mutants (24 out of 87) were generated because they 

were not guided by any heuristic rather than random generation. In other words, 27.6% of 

the total mutants generated by GA was generated by random generator. What is clear is 

that most of the already generated mutants were repeatedly generated and the total unique 

mutants generated are only 24, (23 were killed) which is too small compare to the number 

when GA is used to generate them as shown in Figure 17. In that case, 96% of the randomly 

generated mutants were killed in less than 10 generations. Figure 19 shows the number of 

unique mutants generated in each generation. The random generator could not generate any 

new mutants before reaching the 10th generation. 
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Figure 19: Number of unique tested mutants (randomly generated) for QuadraticSolver (250 Generations) 

Conversely, randomly created test cases were executed against mutants generated by GA. 

This result is shown in Figure 20 . 

 

Figure 20: Killed mutants and unique mutants with randomly generated tests for QuadraticSolver (250 Generations) 

Figure 20 shows the number and percentage (on average) of killed mutants and number of 

generated mutants. The mGA was able to generate 87 unique mutants until the 74th 

generation. Similarly, the random test was able to kill 38 unique mutants cumulatively at 

92nd generation and no more mutants were killed. This shows that only 43.7% of the 

generated distinct mutants were killed by the randomly generated test cases. 
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In order to compare the results of applying GAs to generate both mutants and test cases, an 

experiment was conducted by executing randomly generated mutants with randomly 

generated test cases. The results are shown in Figure 21 : 

 

Figure 21: Killed mutants and unique mutants with random mutants and tests for QuadraticSolver (250 Generations) 

The plots in the figure above displays the number of mutants generated and killed as 21 

and 15 respectively resulting into killing 71.4% of the mutants generated arbitrarily. 

 

5.5.2. TriangleType 

This program has 14 LOC with three branches. It accepts three inputs which correspond to 

the three sides of a triangle. The output of the program is the type of triangle represented 

by the three sides as inputs. The GAs run for 250 generations and the result is shown in 

Figure 22 . 
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Figure 22: Killed mutants and unique mutants for TriangleType (250 Generations tGA-mGA) 

The average number of unique mutants generated increases as the GA executes through the 

generations up to the 50th generation when no more mutants were generated by the mGA. 

The tGA generated and complemented test cases in every generation ensuring that 

maximum number of mutants were killed. At generation 195, the test suite has succeeded 

in killing 79 mutants out of the 88 generated mutants. This means 89.8% of the mutants 

were killed. The plot at the right of Figure 22 shows the proportion of mutants being killed 

and how it fluctuates from one generation to next generation. The overall fitness of the test 

cases was 34.95. 

The same experiment was repeated but with randomly generated mutants but with the test 

cases generated by the GA. The results are displayed in Figure 23 . 
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Figure 23: Number of unique tested mutants (randomly generated) for Triangle (300 Generations) 

The results shown in the graphs in Figure 23 shows that only 24 mutants were generated 

on average and all the mutants were killed by the GA-guided test cases. The results also 

show that all the mutants were killed after 50 generations. This shows that the test cases 

generated by the GA are effective. And the reason for quick convergence of the plot is the 

fact that the mutants were randomly generated while the test cases were guided by GA. In 

other words, the mutants generated were easier to kill than their counterparts generated by 

mGA. 

The same experiment was repeated but with randomly generated test cases against the 

optimized mutants generated by mGA. The results are shown in Figure 24 .  
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Figure 24: Number of unique tested mutants with randomly generated tests for Triangle (250 Generations) 

In this case, the mutation generation is guided by mGA and as a result, a high number of 

unique mutants (87 to be precise) were created and only 44 were killed out of 97 resulting 

in killing 50.6% of the generated mutants. This is because the test cases are generated 

randomly, rendering the killing of the mutants not as effective as killing the mutants with 

test cases generated by tGA. 

To show that GA is doing a great job in generating optimized mutants and test cases, an 

experiment is carried out by considering executing randomly generated mutants against 

randomly generated test cases. The plots in Figure 25  show the results of the experiment. 

 

Figure 25: Killed mutants and unique mutants with random mutants and tests for TriangleType (250 Generations) 
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Out of 23 random mutants generated, only 69.9% were killed which equals to 16 killed 

mutants. As the generation of the execution reaches 135, no more mutants were killed nor 

generated. 

5.5.3. MID 

This program has 20 LOC and finds the middle number from list of three numbers as inputs. 

The GAs run for 250 generations and the following are the results obtained. 

 

Figure 26: Killed mutants and unique mutants for MID  (250 Generations tGA-mGA) 

The graphs in Figure 26 explains the total average number of generated mutants and the 

number of those killed by the test generated by tGA. The total number of distinct mutants 

generated was 57 and all were killed. This means 100% of the generated mutants were 

killed by the test suite and the test suite is effective. The overall fitness value of the test 

suite is 40. 

A set of random mutants of MID program was also generated and executed on the test 

cases generated by the tGA. The results are shown below: 
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Figure 27: Number of unique tested mutants (randomly generated) for MID (250 Generations) 

Figure 27 shows how all the randomly generated mutants were killed by test suites in less 

than 20 generations due to the fact that the mutants were just randomly generated, which 

leads to generating easy to kill mutants. This makes the optimized test cases kill the mutants 

in such a short time (generation).  

Conversely, mGA was allowed to generate optimized mutants and executed against 

randomly generated test cases. The results are shown in Figure 28 : 

 

Figure 28: Killed mutants and unique mutants with randomly generated tests for MID (250 Generations) 
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The figure above shows that only 50 mutants were generated and 23 were killed by the 

randomly created test cases. This makes the proportion of the killed mutants to be 46% of 

the total generated mutants guided by mGA. 

In order to validate and justify the effectiveness of using GA to generate mutants and test 

cases, another experiment was carried out by executing mutants that were generated 

randomly while taking randomly generated test cases as inputs. The results of the execution 

are shown in below: 

 

Figure 29: Killed mutants and unique mutants with random mutants and tests for MID (250 Generations) 

The plots in the left graph of Figure 29 shows the total number of mutants generated and 

killed as 16 and 13 respectively causing the percentage of the killed mutants to be 81.3%. 

5.5.4. LineRectangleClassifier 

This program takes eight inputs (four inputs corresponding to the coordinates of a line and 

four inputs representing the coordinates of a rectangle). It determines the location of the 

line with respect to the rectangle. The line can be completely inside the rectangle or 

completely outside the rectangle. It can also be partly inside and partly outside the 

rectangle. Those that are found completely outside the rectangle can be at the top, bottom, 
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left or right side of the rectangle. The GAs ran for 250 generations and the following are 

the results obtained. 

 

Figure 30: Killed mutants and unique mutants for LineRectangleClassifier  (250 Generations tGA-mGA) 

On average, a total number of 99 mutants were produced and only 74 were killed. This 

results in killing 74.74% of the total mutants generated. The plot on the right side of Figure 

30 shows the percentage of the killed mutants in each generation. The overall fitness of the 

test suite was 33.98. 

On the other hand, set of random mutants were generated and test cases generated by GA 

were executed against the mutants. The results of the execution are shown below. 

 

Figure 31: Number of unique tested mutants (randomly generated) for LineRectangleClassifier (250 Generations) 
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A total number of 30 mutants were randomly generated and 100% of the mutants were 

killed. This is because test cases were generated by tGA and as a result the effective test 

cases killed the entire mutants. 

Randomly generated test cases were executed against mutants generated by mGA. The 

result of the execution is shown in Figure 32 : 

 

Figure 32: Killed mutants and unique mutants with randomly generated tests for LineRectangleClassifier (250 
Generations) 

The results shown in Figure 32 depict the total number of mutants of 

LineRectangleClassifier program generated by mGA and the number of mutants killed. It 

can be seen that 81 mutants were generated in total while only 51.9% equivalent to 42 

mutants were successfully killed by the randomly generated test cases. 

Another experiment was carried out by executing randomly generated mutants against 

randomly generated test cases. 
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Figure 33: Killed mutants and unique mutants with random mutants and tests for LineRectangleClassifier (250 

Generations) 

The graphs show that only 20 mutants were killed out of 28 randomly generated mutants. 

And the percentage of the killed mutants in each generation is shown to be 71.4%. 

5.5.5. PointCircleClassifier 

The program PointCircleClassifier takes the coordinates of a circle, its radius and a 

coordinates of a point as inputs and detect if the point is inside the circle, outside the circle 

or on the circumference of the circle. It has 12 LOC. The GAs run for 250 generations and 

the following are the results obtained. 

 

Figure 34: Killed mutants and unique mutants for PointCircleClassifier  (250 Generations tGA-mGA) 
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The plot on the left side of Figure 34 shows the total average number of mutants generated 

by mGA and the number of killed ones. It shows that 85 out of 86 mutants were killed. The 

overall fitness evaluation of the test suite was 35.73. This means 98.8% of the total mutants 

were killed by the optimized test cases. The plot on the right is the graph showing the 

percentage of killed mutants in each generation. Another variant of the experiment was 

conducted by generating mutants randomly and executing them against the optimized test 

cases. The result of the execution is shown in Figure 35 . 

 

Figure 35: Number of unique tested mutants (randomly generated) for PointCircleClassifier (250 Generations) 

The result shows that only 20 unique mutants were generated. This is because the mutants 

were generated randomly. In other words, the generation of mutants is not guided by any 

heuristic but only random generation. The result also depicts that 19 out of 20 mutants were 

killed, which is equivalent to 95% of the mutants being killed.  

On the other hand, optimized mutants (i.e. difficult-to-kill mutants) are executed against 

randomly generated test cases. The result of the execution is shown in Figure 36 . 
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Figure 36: Killed mutants and unique mutants with randomly generated tests for PointCircleClassifier (250 

Generations) 

Similarly, the total number of mutants generated by mGA for PointCircleClassifier is 84 

and only 44% of the mutants were killed corresponding to 37 mutants. The percentage of 

killed mutants is low because the test cases were just randomly generated while the 

mutants’ generation is guided by mGA. This is why the gap between the total mutants and 

killed mutants is wide. 

The result was also investigated by generating random mutants and random test cases. 

These test cases were evaluated by executing the mutants against the test cases. The results 

are shown below: 
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Figure 37: Killed mutants and unique mutants with random mutants and tests for PointCircleClassifier (250 

Generations) 

The result shows that 12 out of 18 generated mutants were killed in less than 150 

generations, making the proportion of killed mutant to be 66.7%. 

5.6 Confidence Interval 

In order to find the confidence interval of data whose population standard deviation is 

known using the standard deviation and sample mean, the data has to be from a normal 

distribution. If there is no certainty with regards to the data being from a normal 

distribution, the number of data has to be large enough (at least 30) in order to apply the 

Central Limit Theorem which allows the usage of Z-values in the formula. In lieu of this, 

the experiment was repeated for each subject program for 32 times. Experiments are often 

repeated in order to give the following insights [66]: 

 A large amount of results may make it easier to spot anomalies. 

 Repetition reduces the likelihood of errors or anomalous results. 

 Scientist repeat others’ experiments to verify the accuracy of the findings. 

 Repeating an experiment allows a person to refine the results or simplify the 

methodology. 
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 Experiments are often repeated in order to study why they brings about the results 

they do. 

The results of the repetition are shown in Table 20 : 

Table 20: Fitness of tGA of each subject program over 32 runs 

 

The values shown in Table 20 are the values of the fitness of tGA for each subject program 

executed 32 times. Each of the values of the subject programs are analyzed and the 

descriptive statistical values are obtained. The values are plotted to show the mean with 

95% confidence interval as shown in Figure 38. 
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Figure 38: Confidence Intervals for 32 runs of the experiment on the subject programs 

 

5.7 Answering Research Questions 

There are four research questions as stated in CHAPTER 3. This section would answer the 

research questions. 

RQ 1: What is the effectiveness of the generated test cases in killing the generated 

mutants? 

GAs were used to generate both test cases and mutants. The mutants were made to execute 

against the test cases to measure the effectiveness of the test cases. The experiment was 

carried out on five subject programs. Figure 17, Figure 22, Figure 26, Figure 30, and Figure 

34 respectively show the result of executing optimized test cases against optimized 

mutants. The results on the figures show 90.9%, 89.8%, 100%, 74.7% and 98.8% of 

mutants were respectively killed by the optimized test cases. These values show the 

effectiveness of the generated test cases. 
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RQ 2: How strong are the mutants generated? 

Figure 17, Figure 22, Figure 26, Figure 30, and Figure 34 show that the number of mutants 

killed were increasing gradually, showing that most of the mutants were resisting killing 

by the test cases. Some of the mutants were only killed when the test cases were more 

optimized in the later generations. The mutation scores were only obtained when the 

mutants were attempted to be killed for about 200 generations. If the mutants were killed 

just in 10 – 50 generations, we would have concluded that the mutants are not strong. 

RQ 3: Is the game-like approach better than random generation of both test data and 

mutants? 

Experiments were carried out to investigate if the game-like approach presented in this 

study performs better than random generation. To verify this, another set of experiments 

were carried out generating random test cases but generating mutants using mGA. Also, 

randomly generated mutants were executed against optimized test cases generated by tGA. 

Figure 18 and Figure 20 show the results of the experiments for QuadraticSolver. The 

former shows that only few percentage of the possible mutants were generated because the 

mutants were generated randomly and almost all the mutants were killed because the test 

cases are optimized. While the latter shows result of randomly generated test cases against 

optimized mutants, the number of mutants generated is maximized but only very small 

percentage of the mutants were killed. This is because the test suite to kill the mutants is 

randomly generated. Similar results are shown for other subject program. The Table 21  

shows the subject programs and the figures showing their results. 
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Table 21: Results of RQ3 

Subject Programs Results shown in 

QuadraticSolver Figure 18 and Figure 20 

TriangleType Figure 23 and Figure 24 

MID Figure 27 and Figure 28 

LineRectangleClassifier Figure 31 and Figure 32 

PointCircleClassifier Figure 35 and Figure 36 

 

RQ 4: Both GAs were executed across different set of parameters and the set of parameters 

with the highest performance (i.e. yielding the highest score for each GA) is selected. The 

set of GA parameters used in the experiment for tester GA and mutant GA are shown in 

Table 17 and Table 19 respectively. 

5.8 Hard to Kill Mutants 

The hard-to-kill mutants generated from the experiment when both test cases and mutants 

respectively generated by tGA and mGA are executed in isolation without mixing with any 

other killed mutants to see if the test cases can kill them. The mutants were executed against 

the optimized test cases expecting some of the mutants to be killed. This was applied for 

each of the subject programs. The results obtained show that none of them were killed. We 

investigated why they were not killed using manual method by cross-checking the code of 

the hard-to-kill mutants. What we observed was that the mutated statement is not reachable. 

The reason why these statements were not reached is that the statements are part of the 

body of a conditional statement of which this conditional statement is testing equality of 
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some combination of the program input with other different combinations. This is 

illustrated as follows: 

For example, in QuadraticSolver, line 7 (‘elseif (d==0)’) is the condition to get lines 8 and 

9 executed. If the mutation is applied on the program statement in line 8 or line 9, the 

program code would be unreachable unless the condition is satisfied. Again, for d (which 

is the determinant ‘b2-4ac’) to be zero, the likelihood is very small. This problem can 

properly be addressed using white box testing or changing the fitness in such a way that 

the objective would be to get values that would be equal to zero or close. So that they can 

be guided to become zero in the long run of the execution. This would have changed our 

aim of presenting a black-box approach to kill as many mutants as possible. In fact, if a 

program does not have such condition, then the approach would be inappropriate for such 

program. The same challenge was recorded for the remaining subject programs except for 

the MID program, which has no such condition. This is a strong reason why test cases 

generated to kill the mutants of MID program were able to get 100% mutation score. In 

other word, there is a record of killing the entire mutants of MID program. 
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CHAPTER 6 

1 CONCLUSION AND FUTURE WORK 

This chapter discusses the summary of the study, limitations of the study and some threats 

to validity of the results obtained.  

6.1 Main Contributions of the Study 

The following are the main contributions of this study: 

1. We compared the existing GA-based test data generation techniques using a 

framework of features we developed; 

2. We proposed a GA-based test data generation technique using mutation analysis; 

3. We presented mutant generation using GA considering arithmetic and relational 

operator replacement as the mutation operators; 

4. We developed mutant converter, which takes mutant chromosomes and converts 

them to real mutant programs; 

5. We presented the mutants and test case generation in a form of a non-cooperative 

game; 

6. We validated the approach using different subject programs and the results show 

that the approach is effective. 

6.2 Limitations of the Study 

This study suffers from the following limitations: 



104 
 

1. Our study did not include any technique to detect equivalent mutants. We did not check 

for any semantic similarity between the original programs and the mutants generated. 

In that regard, we are not sure if there are equivalent mutants in the generated mutants. 

The accuracy of our result would be affected by the presence of equivalent mutant (if 

any). We carried out the experiment under the assumption that there are no equivalent 

mutants as we have tried to minimize the likelihood of having equivalent mutants. 

2. The study is limited to only two classes of mutation operators namely: Arithmetic 

Operator Replacement and Relational Operator Replacement. Applying the approach 

using more mutation operators can help in generalizing the results obtained. 

3. All the program subjects used in the study are small-sized. This may limit the extent to 

which we can generalize the results obtained. 

6.3 Threats to Validity 

Despite the fact the experiments were cautiously designed to ensure fairness, a number of 

threats are posed to the validity of the results obtained. The threats are as follows: how the 

mutation operators are selected and the choice of test cases. 

The huge number of mutants generated in mutation increases the cost of mutation testing. 

In order to reduce this cost, we employed selective mutation – where a particular set of 

mutation operators are selected from the whole set of the operators. The inability to 

carryout exhaustive application of the mutation operators may pose a threat to the validity 

of the results. The relational operator was therefore selected alongside arithmetic 

replacement operators because it alters the control flow in the mutant; thereby increasing 

the coverage of the program under test. This threat can be reduced in future by adding more 

operators to the list of operators.  
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6.4 Future Work 

We have implemented a game-like approach to generating mutants and test cases to kill 

the mutants without being bothered by the number of generated mutants and test cases. 

In future work, we would look into how we can apply GA to reduce the number of mutants 

generated while maintaining the efficiency and accuracy of the analysis using our game-

like approach. 

The need for a test oracle of program under test makes it mandatory to execute every 

program, thereby results in slowing down the testing process (i.e. the act of comparing the 

expected output with the real output under a set of inputs makes the testing a time-

consuming process). Therefore, applying Machine Learning Techniques would get rid of 

the need to know the expected output prior the beginning of the testing activities. Some 

features of mutants and tests are taken to predict if the mutants represented by those 

features can be killed by the corresponding test cases without executing the mutants. A 

deeper research could be conducted to further reduce the cost of mutation testing using 

predictive mutation testing and metaheuristics whereby some features of mutants and tests 

are collected to forecast if a mutant would be killed or not without going through the stress 

of executing the whole mutants generated. Apart from identifying invalid mutants in this 

research, we will distinguish any redundant mutant from others in our future research. 

It is considered a promising direction to future research to optimize the effectiveness of the 

fitness function by testing varieties of fitness functions. The afore-mentioned 

recommendations could be complemented by minimizing the number of test cases. 
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Another direction for future research is generating mutants for covering equality relational 

operators.  

Applying other metaheuristic techniques like Ant Colony Optimization, Particle Swarm 

Optimization, and Artificial Bee Colony on this technique is a recommended future 

research.  

Implementing the approach in other language than MATLAB as well as exploring more 

mutation operators can be considered as another direction to future work. 
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Appendix A 

Experimental Data 

We described the 5 subject programs used in the experiment. Although, they have been 

briefly explained in Chapter 6 but here, we give a more elaborate description of the codes.  

QuadraticSolver: The QuadraticSolver program is used to get the roots of a quadratic 

equation. A quadratic equation is an algebraic equation with the degree of two and the form 

ax2+bx+c where a, b, c are the coefficients of the equation and x is the unknown. The 

degree of a polynomial is the highest degree of its monomial (i.e. each term) with non-zero 

coefficients. The coefficients can be uniquely identified as the quadratic coefficient, linear 

coefficient, and constant (free term) respectively with a ≠ 0. If a = 0, then the equation is 

no more a quadratic but rather a linear equation. The values of b and c can be zero, it does 

not change the characteristics of the equation being quadratic. The program takes three 

parameters as input and returns two roots as outputs. The outputs can be two distinct real 

roots or two equal real roots. It can also be two complex numbers. 

 

Figure 39: Roots of quadratic equation 

TriangleType: The TriangleType program takes three inputs as the sides of a triangle and 

decides what type of triangle is represented by the three sides. All the three sides of triangle 
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have non-zero values. Any triangle with a side having a zero value, is an invalid triangle. 

The output can be equilateral, isosceles, scalene or invalid triangle. Also, length of a side 

should not be greater or equal to the sum of two other sides. 

 

MID: This is a program that takes three input values and return the middle one. 

LineRectangleClassifier: This program determines the position of a line with respect to the 

position of a rectangle. In other words, it determines the relative positions relationship 

between a line and a rectangle. It takes eight input variables, four out of them 

(xr1,xr2,yr1,yr2) denote the coordinates of a rectangle and the remaining four variables 

(xl1,xl2,yl1,yl2) denote the coordinates of a line. It returns one of the following four 

outputs: 

 The line is wholly inside rectangle, 

 The line is partially inside rectangle, 

 The line is wholly outside rectangle, and  

 Invalid line or rectangle coordinates. 

 

PointCircleClassifier: This program investigates the position of a given point with respect 

to a given circle by examining the center coordinates of the circle, its radius and the 

coordinates of the point. It returns one of three outputs as follows: point is outside, point is 

inside and point on the circumference of the circle. 
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Appendix B 

Codes of Programs under Test 

The program code is presented here: 

QuadraticSolver.m 

 

TriangleType.m 
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MID.m 

 

 

PointCircleClassifier.m 
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Appendix C 

Theses/Dissertations on Mutation Testing 

 

Summary of Master's and PhD theses on mutation testing 

Author Thesis Title MSc/ 

PhD 

University Year of 

Pub 

Acree [67] 

 

On Mutation 

 

PhD Georgia Institute of 

Technology 

1980 

Hanks [68] Testing COBOL Programs by 

Mutation 

PhD Georgia Institute of 

Technology 

1980 

Budd [69] Mutation Analysis of Program Test 

Data 

PhD Yale University 1980 

Tanaka [70] Equivalence Testing for FORTRAN 

Mutation System Using Data Flow 

Analysis 

PhD Georgia Institute of 

Technology 

1981 

     

Offutt [71] Automatic Test Data Generation PhD Georgia Institute of 

Technology 

1988 

Craft [72] Detecting Equivalent Mutants Using 

Compiler Optimization Techniques 

Master Clemson University 1989 
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Choi [73] Software Testing Using High-

Performance Computers  

PhD Purdue University 1991 

Krauser [74] Compiler-Integrated Software Testing PhD Purdue University 1991 

Fichter [75] Parallelizing Mutation on a Hypercube Master Clemson University 1991 

Lee [76] Weak vs. Strong: An Empirical 

Comparison of Mutation Variants 

Master Clemson University  1991 

Zapf [77] A Distributed Interpreter for the 

Mothra Mutation Testing System 

PhD Clemson University 1993 

Delamaro [78] Proteum – A Mutation Analysis Based 

Testing Environment 

PhD University of Sao 

Paulo 

1993 

Wong [79] On Mutation and Data Flow PhD Purdue University 1993 

Pan [80] Using Constraints to Detect 

Equivalent Mutants 

Master George Mason 

University 

1994 

Fleyshgakker 

[81] 

Techniques to improve the 

performance of mutation analysis 

PhD The City University 

of New York 

1994 

Untch [82] Schema-based Mutation Analysis: A 

New Test Data Adequacy Assessment 

Method 

PhD Clemson University 1995 

Ghosh [83] Testing Component-Based Distributed 

Applications 

PhD Purdue University 2000 
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Ding [84] Using Mutation to Generate Tests 

from Specifications 

Master George Mason 

University 

2000 

Okun [85] Specification Mutation for Test 

Generation and Analysis 

PhD University of 

Maryland Baltimore 

2004 

Ma [86] Object-Oriented Mutation Testing for 

Java 

PhD KAIST University 

in Korea 

2005 

May [87] Test Data Generation: Two 

Evolutionary Approaches to Mutation 

Testing 

PhD University of Kent 2007 

Bradbury [88] Using Program Mutation for the 

Empirical Assessment of Fault 

Detection Techniques: A Comparison 

of Concurrency Testing and Model 

Checking 

PhD Queen’s University 

Kingston 

2007 

Hussain [89] Mutation Clustering Master King’s College 

London 

2008 

Adamopoulos 

[90] 

Search Based Test Selection and 

Tailored Mutation 

Master King’s College 

London 

2009 

Hook [91] Using Code Mutation to Study Code 

Faults in Scientific Software 

Master Queen’s University, 

Ontario 

2009 
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Kaminski [92] Applications of Logic Coverage 

Criteria and Logic Mutation to 

Software Testing 

PhD George Mason 

University 

2010 

Debroy [93] Towards the Automation of Program 

Debugging 

PhD The University of 

Texas 

2011 

Zhou [94] Mutation Testing for Java Database 

Applications 

PhD Polytechnic Institute 

of New York 

University 

2012 

Sarkar [95] Testing database applications using 

coverage analysis and mutation 

analysis 

PhD IOWA State 

University 

2013 

Hays [96] A fault-based model of Fault 

Localization Techniques 

PhD University of 

Kentucky 

2014 

Movva [97] Automatic Test Suite Generation 

for Scientific MATLAB Code 

Master University of 

Minnesota 

2015 

Li [98] The Use of Software Faults in 

Software Reliability Assessment and 

Software Mutation Testing 

PhD The Ohio State 

University 

2015 
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Prapha-

montripong 

[99] 

Testing Web Applications with 

Mutation Analysis 

PhD George Mason 

University 

2017 

 

 

 

 BEST FITNESS VALUES 

Experiment 

No Run 1 Run 2 Run 3 Run 4 Run 5  Run 6 Run 7 Run 8 Run 9  Run 10 

1 33.7740 32.1602 37.9041 39.4930 33.2757 36.7126 34.3864 38.3350 37.6885 31.6725 

2 38.5071 35.6056 39.2961 36.9667 35.8279 38.1540 38.7901 39.8891 30.0052 38.6544 

3 39.9037 33.0026 34.9158 37.4098 35.0061 38.9077 34.3358 33.0678 37.3812 33.6207 

4 39.1398 34.9611 28.2038 29.4503 38.3525 33.8116 38.1383 30.5129 34.6275 35.5586 

5 34.1624 33.6677 36.5198 37.1225 35.3362 33.6478 39.5835 32.6566 32.8457 33.1363 

6 32.4155 36.6058 38.7388 35.9978 35.5122 33.1925 32.2262 38.0534 38.3688 34.3484 

7 32.9217 35.0007 38.6311 38.7342 37.3219 39.6811 39.5449 32.9016 37.1863 35.8464 

8 38.1256 37.2233 35.0519 34.4001 34.7211 39.3514 35.6501 35.5400 35.6335 39.5623 

9 33.7530 39.0592 32.1590 34.7341 38.1282 34.7424 36.9505 35.6242 32.0813 36.7926 

10 36.8125 37.1953 34.7418 35.9464 37.6142 39.1024 32.4405 32.7869 37.1983 38.1126 

11 36.9673 38.3572 38.7063 37.6003 36.7386 35.7500 38.9305 36.3107 37.2223 38.7747 

12 38.9481 38.0093 35.3550 32.0018 33.1957 34.1907 38.9794 36.8100 34.5695 34.2743 

13 35.4825 39.2301 39.4008 36.0423 37.0207 37.7541 32.1913 36.5995 32.3723 35.3803 

14 35.7419 32.1810 32.5206 39.3917 36.2731 34.9344 34.9116 33.2110 33.1969 34.8064 

15 34.6877 38.2722 35.8939 35.7184 33.0500 39.0911 37.3965 38.6813 37.2519 39.8713 

16 39.8383 34.0012 36.9966 37.8259 35.9854 38.7986 33.5273 32.9932 32.0223 33.2236 

Figure 40: Results of experiment to select the best parameter set for tGA 
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