

iii

© Hayatullahi Bolaji Adeyemo

2018

iv

I dedicate this thesis to my parents and my late maternal grandmother

v

ACKNOWLEDGMENTS

All praise which is abundant, excellent and blessed is due to Allah (SWT), The Most

Compassionate, The Most Merciful. To Him belongs all praise and thanks in its entirety. I

thank Allah for everything.

Then I thank my parents for their love, moral, emotional and financial support.

I also thoughtfully thank my advisor, Dr. Moataz Ahmed, whom under his guidance,

constructive criticisms, and gentle pushes I am able to complete this research work. I thank

him for his inspiration, advice and encouragement. His jokes on concepts like ‘No pain, no

gain’, ‘No free lunch’ had really kept me striving to proceed in this research, when solving

some problems in this research seems like unachievable. I also show my sincere recognition

to my thesis committee members Dr. Jameleddine Hassine and Dr. Sajjad Mahmood who

taught me some of the foundational courses upon which this research was built.

I will not forget the effort of my wonderful life-companion, soul mate and consort for her

affection, understanding, encouragement, support and prayers. She is indeed a friend in need.

My acknowledgment would be incomplete if I fail to recognize the effort of Dr. Muhammad

Sulayman of Graduate Studies, King Fahd University of Petroleum and Minerals, Kingdom

of Saudi Arabia. I am also indebted to the Nigerian Community at KFUPM for making this

environment a home abroad for me. I thank my friends and those who have assisted in one

way or the other. To you all, I say Jazaakumullaahu khayran.

Lastly, all praise and perfection is due to Allah, The Most Gracious, The Most Merciful.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... v

TABLE OF CONTENTS.. vi

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS ... xi

ABSTRACT .. xii

 xiv ... ملخص الرسالة

CHAPTER 1 INTRODUCTION .. 1

1.1 Problem Statement ... 2

1.2 Major Contributions ... 3

1.3 Organization of the Thesis ... 4

CHAPTER 2 BACKGROUND .. 5

2.1 Software Testing .. 5

2.2 Mutation Testing .. 8

2.2.1 Mutation Operators ... 15

2.2.2 Problems of Mutation Testing .. 18

2.3 Genetic Algorithms .. 19

2.3.1 Biological Background of Genetic Algorithms .. 19

2.3.2 Details of Genetic Algorithms .. 21

2.4 Test Data Generation ... 28

2.4.1 Test Case Design for Black Box Testing .. 30

2.4.2 Test Case Design for White Box Testing.. 31

2.4.3 Test Data Generation Using Genetic Algorithms ... 31

CHAPTER 3 LITERATURE REVIEW ... 34

3.1 Genetic Algorithms Based Test Case Generation .. 34

3.2 Mutation-Based Test Case Generation .. 37

3.3 Research Questions .. 44

CHAPTER 4 PROPOSED APPROACH ... 46

4.1 Methodology/Approach ... 46

4.2 Mutant Fitness Function .. 51

4.3 Test Fitness Function ... 56

4.4 Mutants Generation .. 60

vii

4.5 Mutant Program Generation .. 62

4.6 Test Case Generation ... 64

4.7 Selecting The GA Parameters .. 65

CHAPTER 5 EXPERIMENTS, RESULTS AND DISCUSSION ... 71

5.1 Experiment Design .. 71

5.2 Description of Programs Under Test ... 72

5.3 Results and Discussion .. 74

5.4 Parameter Selections for the GAs .. 74

5.5 Discussion of the results of Experiment .. 78

5.5.1. QuadraticSolver .. 78

5.5.2. TriangleType ... 85

5.5.3. MID ... 89

5.5.4. LineRectangleClassifier .. 91

5.5.5. PointCircleClassifier ... 94

5.6 Confidence Interval .. 97

5.7 Answering Research Questions ... 99

5.8 Hard to Kill Mutants .. 101

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 103

6.1 Main Contributions of the Study.. 103

6.2 Limitations of the Study .. 103

6.3 Threats to Validity ... 104

6.4 Future Work ... 105

REFERENCES .. 107

Appendix A Experimental Data .. 118

Appendix B Codes of Programs under Test ... 120

Appendix C Theses/Dissertations on Mutation Testing ... 122

Vitae ... 127

viii

LIST OF TABLES

Table 1: Java Class-level mutation operators ... 17

Table 2: Chromosome representation and interpretation .. 24

Table 3: Summary of Mutation-based Test Case Generation ... 42

Table 4: Initial Probability of operators .. 52

Table 5: Updated Probability of operators .. 52

Table 6: Probability of program line number ... 55

Table 7: Test Execution Matrix .. 56

Table 8: Updated test execution matrix .. 57

Table 9: Score of test cases ... 58

Table 10: Sorted test cases with respect to their killing power ... 58

Table 11: Valid mutants for QuadraticSolver program .. 61

Table 12: Tester GA Parameters and Levels .. 67

Table 13: Mutation GA Parameters and Levels .. 67

Table 14: Experimental Design for Tester GA Parameter Selection .. 68

Table 15: Experimental Design for Mutator GA Parameter Selection ... 69

Table 16: Description of Programs under Test ... 72

Table 17: Selected parameters for tester GA .. 76

Table 18: Results of experiment to select the best parameter set for mGA .. 76

Table 19: Selected parameters for mutant GA .. 78

Table 20: Fitness of tGA of each subject program over 32 runs .. 98

Table 21: Results of RQ3.. 101

Table 22: Summary of Master's and PhD theses on mutation testing ... 122

ix

LIST OF FIGURES

Figure 1: Mutation Testing Process Flow chart (from [10]) ... 9

Figure 2: Examples of mutants ... 11

Figure 3: Basic Genetic Algorithm ... 23

Figure 4: The Genetic Algorithm with Elitism (from [28]) .. 25

Figure 5: Flowchart of mutant generation and analysis ... 48

Figure 6: Flowchart for mutants conversion... 49

Figure 7: Representation of mutant chromosome ... 60

Figure 8: Representation of test chromosome .. 65

Figure 9: Plot of Tester GA Confidence Interval for parameters selection .. 75

Figure 10: Plot of mGA Confidence Interval for parameters selection ... 77

Figure 11: Total and Killed mutants for QuadraticSolver using 100 generations 79

Figure 12:Killed mutants and unique mutants for QuadraticSolver (100 Generations) 79

Figure 13: Killed mutants and unique mutants for QuadraticSolver (150 Generations) 80

Figure 14: Number of unique tested mutants for QuadraticSolver (150 Generations) 81

Figure 15: Killed mutants and unique mutants for QuadraticSolver (200 Generations) 81

Figure 16: Number of unique tested mutants for QuadraticSolver (200 Generations) 82

Figure 17: Killed mutants and unique mutants for QuadraticSolver (250 Generations tGA-mGA) .. 82
Figure 18: Killed mutants and unique mutants with randomly generated mutants for QuadraticSolver

(250 Generations) ... 83
Figure 19: Number of unique tested mutants (randomly generated) for QuadraticSolver (250

Generations) .. 84

Figure 20: Killed mutants and unique mutants with randomly generated tests for QuadraticSolver

(250 Generations) ... 84

Figure 21: Killed mutants and unique mutants with random mutants and tests for QuadraticSolver

(250 Generations) ... 85

Figure 22: Killed mutants and unique mutants for TriangleType (250 Generations tGA-mGA) 86

Figure 23: Number of unique tested mutants (randomly generated) for Triangle (300 Generations) 87
Figure 24: Number of unique tested mutants with randomly generated tests for Triangle (250

Generations) .. 88

Figure 25: Killed mutants and unique mutants with random mutants and tests for TriangleType (250

Generations) .. 88

Figure 26: Killed mutants and unique mutants for MID (250 Generations tGA-mGA) 89

Figure 27: Number of unique tested mutants (randomly generated) for MID (250 Generations) 90

Figure 28: Killed mutants and unique mutants with randomly generated tests for MID (250

Generations) .. 90
Figure 29: Killed mutants and unique mutants with random mutants and tests for MID (250

Generations) .. 91

Figure 30: Killed mutants and unique mutants for LineRectangleClassifier (250 Generations tGA-

mGA) .. 92

Figure 31: Number of unique tested mutants (randomly generated) for LineRectangleClassifier (250

Generations) .. 92
Figure 32: Killed mutants and unique mutants with randomly generated tests for

LineRectangleClassifier (250 Generations) .. 93

file:///C:/Users/hayatu4islam/Documents/COURSES/Fourth%20Semester/Thesis/Full%20Thesis%20Papers/My%20thesis/Latest/My%20%20Thesis%2008%20on%2008.07%20(%20mz%2010.20).docx%23_Toc527977013

x

Figure 33: Killed mutants and unique mutants with random mutants and tests for

LineRectangleClassifier (250 Generations) .. 94

Figure 34: Killed mutants and unique mutants for PointCircleClassifier (250 Generations tGA-

mGA) .. 94

Figure 35: Number of unique tested mutants (randomly generated) for PointCircleClassifier (250

Generations) .. 95
Figure 36: Killed mutants and unique mutants with randomly generated tests for

PointCircleClassifier (250 Generations) ... 96
Figure 37: Killed mutants and unique mutants with random mutants and tests for

PointCircleClassifier (250 Generations) ... 97

Figure 38: Confidence Intervals for 32 runs of the experiment on the subject programs 99

Figure 39: Roots of quadratic equation .. 118

Figure 40: Results of experiment to select the best parameter set for tGA 126

xi

LIST OF ABBREVIATIONS

GA Genetic Algorithm

mGA mutator Genetic Algorithm

tGA tester Genetic Algorithm

AOR Arithmetic Operator Replacement

ROR Relational Operator Replacement

GUI Graphical User Interface

RQs Research Questions

MATLAB MATrix LABoratory

IEEE Institute of Electrical and Electronics Engineers

API Application Programing Interface

RIP Reachability Infection Propagation

SDL Statement DeLetion

MST Mutation Sensitivity Testing

DNA Deoxyribonucleic Acid

ACGT Adenine Cytosine Guanine Thymine

CFG Control Flow Graph

NEHD Normalized Extended Hamming Distance

GADGET Genetic Algorithm Data Generation Tool

ABS Absolute Value Insertion

LCR Logical Connector Replacement

COBOL Common Business Oriented Language

FORTRAN Formular Translator

CPU Central Processing System

PUT Program Under Test

xii

ABSTRACT

Full Name : Hayatullahi Bolaji Adeyemo

Thesis Title : Automated Mutation-based Test Data Generation: Genetic Algorithm

Game-Like Approach

Major Field : [Software Engineering]

Date of Degree : [May 2018]

Testing is a crucial phase of software development life cycle. It is meant to improve the

confidence in the quality of the software. One of the essences of testing is to uncover faults

using test cases. Test cases that satisfy a given criterion are created to uncover faults. Various

criteria have been proposed in the literature to ascertain adequate coverage of the different

software behavior. Mutation coverage criterion is one of such criteria where analysis is

performed to find tests that distinguish a program from its mutants. The criterion has only

one requirement; that is to kill a mutant.

After three decades of research, mutation testing is still yet to be fully adopted by industries

due to its high cost. The cost is due to the high number of mutants to be considered as well as

the equivalent mutants generated unknowingly. Many researches have focused on solving one

or more problems associated with the hesitation of adopting mutation testing by industries.

Apart from developing effective tests, we also ensure non-trivial mutants are generated to

excellently produce quality test cases.

The major contribution of this thesis is the development of a mutation-based novel game-like

testing technique using Genetic Algorithms to allow development of meaningful program

mutants on one side and generate tests cases that kill such mutants on the other side. In this

research, we developed an approach to generating both mutants and test cases by two

xiii

competing players. The approach was modelled as a non-cooperative game between a mutant

generation player and a test generation player where both players use Genetic Algorithms in

playing the game. The two players – mutantGA (mGA) and testGA (tGA) respectively

generate hard-to-kill mutants and effective test cases to kill those mutants. The technique is

validated experimentally by considering five case-study MATLAB programs. Results show

that the technique is promising in, on one hand, generating strong and hard-to-kill mutants;

and on the other hand, generating effective test data generated to kill most of those mutants.

We also compared the performance of the GA-based players to the performance of random

players; the GA-based players’ performance was shown to outperform that of the random

players.

xiv

 ملخص الرسالة

 حياة اللهي بولاجي أدييمو :الاسم الكامل

 ينيةالج الخوارزمية باستخدام الألعاب طريقة: التبديل باستخدام الاختبار لبيانات الآلي الانشاء :عنوان الرسالة

 هندسة البرمجيات التخصص:

 2018 مايو :تاريخ الدرجة العلمية

حد من أساسيات ة تطوير البرمجيات. يهدف إلى تحسين الثقة في جودة البرنامج. واالاختبار هو مرحلة حاسمة من دورة حيا

لكشف عن الأعطال. لالاختبار هو كشف الأخطاء باستخدام حالات الاختبار. يتم إنشاء حالات الاختبار التي تفي بمعيار معين

غطية للطفرات هو أحد سلوكيات البرامج. معيار التتم اقتراح معايير مختلفة في الأدبيات للتأكد من التغطية الكافية لمختلف

ه شرط واحد فقط ؛ لهذه المعايير حيث يتم إجراء التحليل للعثور على الاختبارات التي تميز البرنامج عن المسوخ. المعيار

 هذا هو قتل متحولة.

فته المرتفعة. ترجع الصناعات بسبب تكلبعد ثلاثة عقود من البحث ، لا يزال اختبار الطفرات لا يزال يعتمد بالكامل من قبل

دة بدون علم. وقد ركزت التكلفة إلى العدد الكبير من المسوخ الذي يجب أن ينُظر إليه بالإضافة إلى المتحولات المكافئة المول

ناعات. قبل الص العديد من الأبحاث على حل مشكلة واحدة أو أكثر من المشاكل المرتبطة بتردد اعتماد اختبار الطفرات من

ختبار الجودة وبصرف النظر عن تطوير اختبارات فعالة ، فإننا نضمن أيضًا توليد الطفرات غير الطفيفة لإنتاج حالات ا

 بشكل ممتاز.

استخدام وتتمثل المساهمة الرئيسية لهذه الأطروحة في تطوير تقنية اختبار تشبه الألعاب المبنية على الطفرات ب

قتل مثل هذه بتطوير طفرات برنامجية ذات مغزى على جانب واحد وتوليد حالات اختبارات ت الخوارزميات الجينية للسماح

ن قبل لاعبين المسوخات على الجانب الآخر. في هذا البحث ، قمنا بتطوير نهج لتوليد كل من المسوخ وحالات الاختبار م

يث يستخدم كلا ل متحور ومولد توليد اختبار حمتنافسين. تم تصميم هذا النموذج على أنه لعبة غير متعاونة بين لاعب جي

على التوالي testGA (tGA)و utantGA (mGA)m -اللاعبين الخوارزميات الجينية في لعب اللعبة. يقوم اللاعبان

بيا من خلال بتوليد مسوخ يصعب قتله وحالات اختبار فعالة لقتل تلك المسوخات. يتم التحقق من صحة هذه التقنية تجري

خ قوية دراسة حالة. تظهر النتائج أن التقنية واعدة في ، من ناحية ، توليد المسو MATLABفي خمس برامج النظر

ة أداء اللاعبين ويصعب قتل. ومن ناحية أخرى ، توليد بيانات اختبار فعالة ولدت لقتل معظم هذه المسوخ. نحن أيضا مقارن

 العشوائيين. بتفوق أداء اللاعبين GAء اللاعبين المعتمدين على لأداء لاعبين عشوائية. تم عرض أدا GAالمستندة إلى

1

CHAPTER 1

INTRODUCTION

Achieving user satisfaction is a major concern in software development. If the software

cannot satisfy its intended users, the aim of developing it, in the first place, is defeated.

Therefore, a high quality software is the one that does what the customers want it to do.

Software quality, in this regard, is the conformance to explicitly stated requirements and

standards. Software testing is an instrument to ascertain the software quality. Testing is the

process of evaluating a component of a system or the whole system by manually or

automatically verifying whether the system satisfies the specified requirements. The

process is meant to uncover discrepancies between actual results and expected ones.

Testing can be classified according to its level of granularity (e.g., unit, module,

integration, and system), its characteristic (e.g., white-box and black-box), and its objective

(e.g., reliability, robustness, security, performance, and user-friendliness) [1].

Functional software testing is a technical term used to refer to the process of validating

software system in order to guarantee technical and requirement needs. Software testing is

believed to be an expensive and time consuming task as it consumes roughly 50% of the

development assets [1]. Taking into consideration the cost of carrying out testing, it is

desirable to give it adequate attention so that the cost is reduced as well as the effort to be

expended. One of the ways to reduce cost is to identify bugs in the early stage because any

bugs identified later can cost more to fix as it may affect other earlier stages (e.g., design,

implementation, etc.) of the development. As software complexity keeps increasing, there

2

is an urgent need to generate effective test data to carry out the testing process in a cost-

effective manner [2]. Software testing therefore helps in providing stakeholders with valid

empirical reports about the quality of a software system, product, or service.

Mutation testing involves imitating competent programmer’s mistake by injecting an error

into a program to produce a mutant and investigate if the test cases can detect the injected

error by observing if the outputs of the original program and the outputs of mutant are the

same. If they are different, the error is detected otherwise it is not detected. Mutation testing

is recognized as an effective type of testing software system [3]. However, it is not adopted

in industry. The failure to adopt it is nothing but because of its cost [4]. This cost is incurred

from creating mutants and executing them. It is prohibitively expensive to decide to

execute all the possible mutants of a program even for an averagely big-sized program. The

efforts expended in identifying equivalent mutants also contributes to the high cost of

mutation testing. It can be concluded that mutation testing has two major problems: the

problem of detecting equivalent mutants and the problem of the large number of mutants

to be produced and executed. Mutation score of a test suite is the ratio of the mutants killed

by the test suite to the total number of non-equivalent mutants involved in the execution.

A mutation score of 1.00 signifies that all the mutants are killed and the test cases are

mutation-adequate [4].

1.1 Problem Statement

It is generally established that software testing is one of the most integral parts of software

development and costs up to half of the total budget [1]. High mutation score means the

test cases are effective. But the value can at times be misleading if the mutants are trivial.

A trivial mutant can be killed by any test case. In order to make mutation score more

3

reliable, there is need to ensure non-trivial mutants are involved and this will give

confidence in the test cases that will kill the mutants. We intend to target the problem of

developing non-trivial mutants and developing effective test cases to kill them. This will

help in demonstrating and mimicking the mutant creation by a competent programmer so

as to have confidence on the test cases that can kill those non-trivial mutants. Also,

measuring the effectiveness of whole test suite can be improved if the contribution of each

test case in obtaining the score can be known. Also, as far as our knowledge of the

researches in mutation-based test generation is concerned, no work has focused on

generating both test cases and mutants automatically. Most of the researches show

automatic generation of one of test cases and mutants and manual generation of the other.

This research would automate the generation of high quality mutants and effective test

cases using GAs to address the aforementioned problems above.

1.2 Major Contributions

The major contributions of this thesis can be enumerated as follows:

1. Developing a framework and features to compare the existing GA-based test data

generation techniques;

2. Proposing a GA-based test data generation technique;

3. Incorporating and implementing the test generation technique with mutants’

generator establishing a non-cooperative game between them so that effective test

cases and non-trivial mutants are generated competitively;

4. Validating the effectiveness of the implemented approach using 5 different

MATLAB subject programs.

4

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces the concept and

detailed background of software testing, genetic algorithms and test data generation

mentioning and explaining the different categories and types of software testing. In Chapter

3, related literature on genetic algorithms and mutation-based test data generation were

identified. Also, research questions and research hypotheses are discussed. Chapter 4

introduces the proposed approach used in this research work. Chapter 5 presents and

discusses the experiment and the results obtained. The research questions were also

answered and the hypotheses were tested. Chapter 6 concludes the report of the thesis. It

also presents some limitations to the study, threats to validity and future work.

5

CHAPTER 2

BACKGROUND

This chapter introduces software testing explaining different testing techniques used in

verifying and validating software artifact against some quality attributes. It explains the

testing theory and its importance in developing quality products. It also gives background

on mutation testing as an important testing technique explaining its pros and cons. It also

describes the rubrics of Genetic Algorithm (GA) and presents background knowledge on

test data generation.

2.1 Software Testing

Software testing is an important phase in general software development. It comprises of

test input generation, test execution and test output inspection. It involves running a

program with the aim of uncovering errors in its source code. An estimate shows that more

than 50% of the software development effort goes to testing [1]. The use of automated

testing techniques would assist in curbing this cost significantly.

A programmer, as a fallible being, can make slight/small programming mistakes that can

have negative impact on the productivity and scientific insight of the code. The

consequence is more serious in safety software products where the smallest mistake can

have an enormous effect on the products.

Testing involves selecting a finite subset of inputs that can help in measuring quality of the

product. Testing can identify discrepancies between actual results and expected behavior

or demonstrate functions are working or not according to the documented specification or

6

provide a hint of correctness, safety, performance, reliability, security, fault tolerance,

usability, etc. [5].

Testing, in the context of software, is “the process of operating a system or component

under specified conditions, observing or recording the results, and making an evaluation

of some aspect of the system or component” [6]. It is also “the process of analyzing a

software item to detect the differences between existing and required conditions (that is,

bugs) and to evaluate the features of the software items” [7]. It is “an activity in which a

system or component is executed under specified conditions, the results are observed or

recorded, and an evaluation is made of some aspect of the system or component [7].” It

can also comprise of any verification process to assess and improve software quality.

For deterministic software system, software testing involves defining known output for

every input. The actual result is compared with the expected one after entering values,

making some selections and navigating the application. We make a nod if they match

otherwise we probably have a bug.

Software testing involves an essential combination of software verification and validation

as frequently used by practitioners. Software verification is to find any present

discrepancies between what a program is intended to do and what it does. It is the “process

of evaluating a system or component during or at the end of the development phase to

determine whether it satisfies specified requirements” [7]. In this case, the product at the

end of the phase can be intermediate product, such as requirement specification, design

specification, code, user manual, or even the final product. On the other hand, software

validation is the act of checking the program behavior and its specifications with respect

to the expectation of the users.

7

The importance of software testing cannot be overemphasized. Software testing helps in

ensuring the entire specified functionalities are put into implementation while

demonstrating that there are no faults in the implementation. Errors and mistakes in

software is real and ignoring them till after deployment is foolhardy. Error detection and

removal are achieved through software testing. Also, the level of reliability of the software

under test is determined thereby ensuring confidence in the software.

Broadly speaking, software quality can be investigated using techniques that are

categorized into two main groups: static analysis and dynamic testing. Static analysis

comprises of team of reviewers who read the code line by line correlating it with the logic

of the specification. It is composed of inspection, walkthroughs and reviews. On the other

hand, dynamic testing is a testing approach whereby the program code under test is

executed with inputs and its behavior is observed. Due to human unwillingness to discover

errors in their own work, testing is commonly performed by a separate group of people

who are not part of the development team.

The following are some objectives of testing software [8],[1]:

 Ensuring the software under development is delivered error-free

 Ensuring the conformity of the software development to the requirements.

 Uncovering errors (if any/found)

 Attempting to have confidence that the end-product carries out the entire

functionalities proposed.

A software can fail if there are wrong or missing requirements. Faulty design, faulty code

and improper implementation of design can also cause software failure. Generally,

8

software testing helps in identifying faults, correcting/removing faults and preventing

future faults.

2.2 Mutation Testing

In the 1970s, mutation analysis was first introduced as a technique used to evaluate the

effectiveness of a test suite [9]. A test suite is said to be effective if it is powerful enough

to detect faults injected (intentionally or accidentally) into a software artifact, although the

intent of mutation testing is to intentionally seed artificial faults which represent the real

errors usually created by typical programmers. The software artifact could be a program

code, specification, use cases and so on. This helps in giving some insight on how to

improve the effectiveness of the test suite if there is need to do so. The same set of test

cases in the test suite are executed on the mutated version called mutant. A mutant is a

version of the original program with a simple syntactic change. This syntactic change is

applied through mutation operators. The different changes made to the original program

are known as mutation operators1 while a mutant is obtained when a mutation operator is

applied to a code [1]. Mutation Score = Number of killed mutants/Total non-equivalent

mutants * 100

1 The term has been used differently. It is also known as mutant operators, mutagens, mutagenic
operators, mutation rules, mutation transformations.

9

Figure 1: Mutation Testing Process Flow chart (from [10])

Testing of a program using mutation is considered as secondary level testing because

mutation testing cannot be conducted unless unit testing is successfully carried out. The

main inspiration behind invention of mutation testing is not too complex. A number of

simple errors are introduced to the original program based on the mutation operator

selected, generating test cases to differentiate these mutants gives a tendency of detecting

the real faults. This is similar to coupling effect that states that a test data set that catches

all simple faults in a program is so sensitive that it will also catch more complex faults. It

is a powerful testing technique, however it has very low applicability in industries. A

number of drawbacks have restricted its practical impact. A high number of mutants

generated from the standard set of mutation operators makes it too expensive to implement

in practice. This problem is minimized by selecting few appropriate mutation operators.

10

Steps in Performing Mutation Testing

Given an original program P0 and a set of test cases T, traditional mutation testing can be

elucidated as a series of steps to evaluate set of tests as follows:

1. Apply every member of a set of mutation operators to P0 to produce a set of mutants

PM.

2. Execute the test set T on P0 and each mutant pm in PM (pm  PM).

3. Carry out the comparison between output of pm(t) and P0(t) for all t in T. If the

outputs are equal, then mutant pm is killed; otherwise pm is alive: no test output has

been affected by pm’s mutation.

4. Analyze the live mutants to determine the equivalence of any of them; equivalent

mutants are discarded as they are syntactically identical to the original program.

5. An attempt to kill the nonequivalent mutants by adding new test(s) to the test set.

Repeat steps 2-5 until results are satisfactory.

A test suite is passed to both original program and its mutant, if the output differs the mutant

is said to be killed otherwise it is alive. The test suite is therefore incrementally augmented

with more effective test cases to further detect the unexposed mutants until the alive

mutants are killed or considered to be semantically equivalent to the original program.

Some mutants cannot be killed by any test case – these are called equivalent mutants. A

mutant of a program is said to be an equivalent mutant if it is functionally and/or

semantically the same as the original program, else it is called a non-equivalent mutant.

One of the main properties of an equivalent mutant is that it cannot be killed at all. But for

non-equivalent mutants, some can be killed while some may not be killed depending on

11

the effectiveness of the test cases. If the test cases are effective enough, the non-equivalent

mutant(s) would be killed otherwise there will be need for additional test cases or effective

ones.

For very small program, there may be a numerous number of mutants that can be generated.

Example of such mutants is shown in Figure 2. The figure shows how even small-sized

programs can generate many mutants.

Figure 2: Examples of mutants

12

Five different operators are applied to the original program to produce the five mutants

shown in Figure 2. The variable P in line 5 (Δ if(Q>maxVal)) is replaced by maxVal to

produce the first mutant. A variable P replaced the variable Q in line 7 (Δ maxVal=P) to

generate the second mutant. The third mutant is also obtained by changing the variable P

in line 4 to Q (Δ maxVal=Q). The relation operator in line 5 (if(Q>P)) is substituted by <

and >= to produce mutant 4 and mutant 5 respectively.

For very large program, the number of mutants generated can be too much to handle and

as such the cost of carrying out mutation testing would be prohibitively expensive.

Traditional Mutation Testing has been applied by software engineers/testers for more than

4 decades not only to detect faults in software artifacts but also to evaluate their tests.

Mutation Testing guarantees a promising and effective approach to generate adequate test

data out of which real faults are found. It is almost impossible to generate all possible

mutants because the number of such potential faults for any given program is prohibitively

huge. This is the reason why the traditional mutation testing focuses on those faults that

are close to the correct version, which are only a subset of the faults with the likelihood

that they will be enough to simulate the whole faults. This principle is explained by two

hypotheses: The Competent Programmer Hypothesis and the Coupling Effect.

The Coupling Effect and Competent Programmer Hypothesis were postulated by DeMillo

et al. [11] in 1978. While Competent Programmer Hypothesis affects the programmer’s

behavior, the Coupling Effect involves the type of faults applied in mutation analysis.

Coupling Effect states that “test data that distinguishes all programs differing from a correct

13

one by only simple errors is so sensitive that it also implicitly distinguishes more complex

errors” [8].

Andrew et al. [12] showed that real faults are easier to detect than hand-seeded faults but

the authors argued that no matter how much research is conducted on testing using

mutation, some questions still remain unanswered, such as "Do mutation operators provide

sufficient coverage of all possible fault types?" and "Are mutation operators a better means

of creating faulty code than hand-seeding?".

There are three necessary criteria to ensure that a mutant is killed. They are Reachability,

Infection and Propagation. They are represented in a model known as RIP model. Each of

the conditions subsumes its predecessor. It should be noted that mutated statement must be

executed in order to detect a mutant.

a. Reachability (R): This is the first condition required for mutation to take place. The

program must be executed by a test case ensuring that the statement that is mutated is

“reachable”. The statement should not contain dead code – which is unreachable.

b. Infection (I): The faulty statement results in an incorrect state by the test. The state of

the mutated program must be different from that of the original program after the

execution of the test case on the mutant, i.e. the state of the mutant must be infected.

This condition is achieved by both weak and strong killing of mutants. The last

condition would distinguish strong killing from weak killing.

c. Propagation (P): This causes the incorrect state to propagate into incorrect output(s).

Any test case that achieves this condition (propagation) is said to ‘strongly kill’ the

mutants. In this case, weak killing of mutants does not achieve propagation. This

means weakly killing satisfies only reachability and infection, but not propagation.

14

The incorrect state has been corrected or does not have effect on the final output of

the program.

Strong Mutation Testing: Strong mutation testing is believed to be the traditional mutation

testing. And the idea is to make a number of small changes, one at a time for non-higher

order mutation, to a particular program. Then an attempt is made to generate test data that

would expose the mutation by distinguishing it from the original program. Any mutation

that satisfies the three conditions (discussed above i.e. Reachability, Infection, and

Propagation) is referred to as a strong mutation.

Weak Mutation Testing: A weak mutation testing is the one that satisfies only reachability

and infection but not propagation unlike the strong mutation testing. One of the main

disadvantages of strong mutation testing is its cost of computation, which is caused as a

result of the large number of possible mutants and also the requirement of executing each

test case to completion. The introduction of weak mutation was to defeat the implicit cost

of strong mutation testing. Different test execution is not necessarily required for each

mutation in weak mutation. However, the main disadvantage of weak mutation is that

several different components of a particular program can generate different results from

the original program following different executions but can combine to assign the overall

accurate outcome to the statement concerned or indeed to the entire program execution

[13].

Mutation testing requires the code structure knowledge. Possible faults that could occur in

a software component is considered in order to generate test data and carry out effective

evaluation of testing.

15

However, among the advantages of mutation testing are the following: (1) it guides to

produce reliable software product, (2) it helps in uncovering ambiguities in program code,

and (3) it makes the testing process to be more comprehensive.

2.2.1 Mutation Operators

Mutation operators can be classified into major groups: replacement, deletion, insertion,

etc.

A subset from the set of mutation operators can be selected from the following list:

 Arithmetic Operator Replacement,

 Comparable Array Replacement,

 Comparable Constant Replacement,

 Comparable Variable Replacement,

 Logical Operator Replacement,

 Relational Operator Replacement,

 Unary Operator removal/insertion.

Deletion Mutation Operators:

The deletion group of mutation operators comprises and not limited to the following:

 Statement deletion operator

 Operator deletion operator

 Variable deletion operator

 Constant deletion operator

16

According to researches [14]–[17], statement deletion mutation operator has been applied

to improve the cost-effectiveness of mutation testing. Although, the statement deletion

mutation generates relatively few mutants not more than the number of statements in a

code under test, effective tests are yielded because only few equivalent mutants are

generated as a result. The concept of applying a single but powerful mutation operator has

led to generation of effective test set with a low cost in a process known as One-Operator

or Single-Operator mutation. Statement Deletion (SDL) is an example of operators that

employ such one-operator mutation.

The reason why statement deletion mutation is said to generate relatively few equivalent

mutant is SDL mutants can only be equivalent to the original program if the statement

deleted is, in the first place, unnecessary.

Although there is a connection between mutation operators across different programming

languages, they must be selected specifically for each language because the language

feature affects the operators. Naturally, passing all the possible error a programmer can

commit to create mutated programs would be sufficient to ensure the effectiveness of the

test cases. But, however, ascertaining that it is feasible to construct all possible potential

errors is unrealistic with a few exceptions. In lieu of this, a subset of the entire possible

mutants is selected. This has caught a number of researchers’ attention to a concept known

as “Selective mutation operators” – which reduces the number of potentially generated

mutants through decreasing the number of mutant operators. For more information on

selective mutation, the reader can refer to [18]–[25].

17

Table 1: Java Class-level mutation operators

MUTATION

OPERATORS

DESCRIPTIONS

AMC

IHD

IHI

IOD

IOP

IOR

ISI

ISD

IPC

JTI

JTD

JSI

JSD

JID

JDC

Access modifier change

Hiding variable deletion

Hiding variable insertion

Overriding method deletion

Overridden method calling position change

Overridden method rename

super keyword insertion

super keyword deletion

Explicit call of a parent’s constructor deletion

this keyword insertion

this keyword deletion

static modifier insertion

static modifier deletion

Member variable initialization deletion

Java-supported default constructor deletion

18

EOA

EOC

EAM

EMM

PNC

PMD

PPD

PCI

PCC

PCD

PRV

OMR

OMD

OAC

Reference assignment and content assignment replacement

Reference comparison and content comparison replacement

Accessor method change

Modifier method change

new Method call with child class type

Member variable declaration with parent class type

Parameter variable declaration with child class type

Type case operator insertion

Cast type change

Type cast operator deletion

Reference assignment with other comparable variable

Overloading method contents replace

Overloading method deletion

Arguments of overloading method call change

The table above shows the class-level mutation operators for Java.

2.2.2 Problems of Mutation Testing

Despite the growing interest received by mutation testing in academia, it is hardly applied

in industries because of two main reasons among others: cost of generating mutants (and/or

test cases to kill those mutants) and ability to identify equivalent mutants. As a result of

19

this, it is almost impossible to achieve a mutation score of 100%. Mutation score is the

percentage of mutants killed.

Equivalent mutants result because some programs are only syntactically different but

semantically the same and/or some fragments of the code may not be executed because

they are not reachable, which is a concept referred to as dead code.

However, the difficulty experienced in identifying and killing equivalent mutants remains

one of the limitations and disadvantages of mutation testing. Also, it is time-consuming

unless it is automated.

2.3 Genetic Algorithms

This section presents the biological background of Genetic Algorithms (GA). It also

discusses some details of GA.

2.3.1 Biological Background of Genetic Algorithms

Genetic Algorithm is a computational counterpart of biological genetics. Genetics is the

study of genes. It deals with the description of genes, what they perform and how they

perform their work. It studies how features or traits are transferred from parents to children.

The study of genetics helps in answering questions like “Why do offspring look like their

parents?” and “How can different diseases transmit in families?” An informal study of

genetics has been in existence since time immemorial but its study as a study as a set of

analytical procedures and principles did not start until 1860s, when Gregor Mendel, an

Augustinian monk, conducted a set of investigations that indicated the existence of

biological materials now known as genes [26]. A living organism is composed of cells. A

cell can be described as a unit of life i.e. unit of living organisms. The cell is the

20

fundamental functional and biological unit of all living organisms. It is usually referred to

as the “building block of life”. The field of biology dedicated to the study of cell is known

as cell biology. A cell could be a plant cell or an animal cell, they have many common

features and few differences. Each cell has its lifespan and can easily be replaced. One of

the prominent and common features of cells of advanced organisms (Eukaryotes) is the

nucleus. There is usually only one nucleus in a cell. The nucleus operates to process cell

information. It performs this by storing the cell’s hereditary material (DNA) and

coordinates the cell’s activities, such as growth, protein synthesis, and reproduction. Cell

reproduction is otherwise called cell division. DNA is composed of four nucleotides, each

comprising of deoxyribose sugar, phosphate, and one of these four nitrogen bases: Adenine

(A), Thymine (T), Guanine (G), and Cytosine (C). They are encoded as ACGT. DNA has

two nucleotide chains arranged in an antiparallel direction to each other and held firmly

together by pairing A with T and G with C. The nitrogen bases are grouped into two

namely: purines and pyrimidines. Adenine and guanine are purines while cytosine and

thymine are pyrimidines. The DNA encodes information needed by a cell to express certain

genes. Genes are the determinants of the inherent properties of species of organisms.

Biologically, the gene of an organism is decided by both or one of the parents depending

whether the organism is replicated through asexual or sexual reproduction respectively.

For example, a bacterium is obtained from one parent cell dividing into two cells and

comprised of the same genes as its parent cell. On the other hand, human being has a pair

copy of each gene – a set from the father and the other one from the mother. Therefore,

individual’s physical feature like skin color is usually defined by the mixture of multiple

21

genes. Although the individual’s environment is also an important factor that impacts the

expression of genes.

Biologically, every living organism is made up of different cells. Each cell has a set of

chromosome, which are DNA (DeoxyriboNucleic Acid) strings which is the main

composition of an organism. A chromosome is a specialized structure made from many

tightly packed strands of DNA and proteins known as histones. Different strands of DNA

are wrapped around the histone proteins to form a long worm-shaped configuration known

as “chromatids”. Two of the chromatids join together to form a chromosome.

Chromosomes are created in the nucleus of a cell when the cell is dividing in a process

called cell division. The number of chromosomes varies among different species. Some

species have more chromosomes than 100 while others have as few as two but humans

have 46 chromosomes [27].

GA was invented by John Holland and can be used to schedule tasks, design computer

algorithms and to solve optimization problems. The genetic algorithm is exterminated by

two factors: when the optimal value/solution is obtained or when the number of generation

is exhausted [27].

2.3.2 Details of Genetic Algorithms

Genetic Algorithms are optimization techniques used to solve non-linear or non-

differentiable optimization problems. They are named as such because they are instigated

by the principles of natural selection and genetics. They are regarded as optimization

algorithms because they are applied to determine the optimal solution by obtaining the

minimum and maximum of a function. They apply concepts from evolutionary biology to

22

search for a global minimum to an optimization problem. The principle of the “survival of

the fittest” proposed by Charles Darwin was followed to implement them. The GA was

invented by John Holland at the University of Michigan in the 1970s. It repeats fitness

evaluation, selection and crossover, and population reassembly. A sufficient number of

children are created from few parents. Each time, two parents are copied, crossed over and

mutated. This results into two children every time two parents are copied. One of the

reasons why it is becoming more popular than the conventional AI is due to its robustness.

Also, minor change in the input does not easily break GA. It also proposes substantial

advantage over typical search optimization techniques (such as breath-first, depth-first,

heuristic, and linear programming) especially in searching a very large space, n-

dimensional surface, and multi-modal search space. The name was adopted due to the fact

that they are mimicking the evolutionary biology techniques. They are implemented as a

computer simulation in which a population of abstract representations of candidate

solutions to an optimization problem evolves toward better solution. The solutions are

traditionally represented in binary as strings of 0s and 1s, but other encodings are also

possible. GA works by initial generating of candidate solutions that are tested against the

objective (fitness) function. In each generation, the fitness of every individual in the

population is evaluated, multiple individuals are selected from the current population

(based on their fitness), and modified (recombined and possibly mutated) to form a new

population. Subsequent generations are obtained from the first one through some genetic

operators: selection, crossover and mutation. Usually, the algorithm terminates when either

a satisfactory fitness level has been reached for the population or a maximum number of

generations has been produced. Although, if it terminates due to a maximum number of

23

generations reached, a satisfactory solution may or may not have been obtained. A typical

GA needs to be defined by two things namely: genetic representation of the solution

domain and a fitness function to evaluate the solution domain. The basic Genetic algorithm

is shown Figure 3.

Figure 3: Basic Genetic Algorithm

Genetic/Chromosome Representation:

The performance of any GA-based function optimizer depends on the representation of the

chromosomes. Different problems have different methods of representing their

chromosomes in GA such as binary, gray, integer or floating data types. The bit (binary

digit) format is the most common type. In this case, the variable values are the combination

of zeros and ones {0,1}.

Although, arrays of other types and structures are used essentially the same way, but array

of bits is the standard representation of the solution. These genetic representations are easy

due to GA’s nature and convenient to implement because they have fixed size and can

easily be aligned to facilitate simple crossover operation. A certain level of complexity is

involved in variable length representations. Usually, the composition of the binary digits

makes up a chromosome which is a potential solution to a problem which can in turn consist

24

of a set of variables. For instance, if the problem has only three input variables P, Q, R,

then the representation of the chromosome can be the concatenation of the binary

equivalence of each of P, Q, and R as shown in Table 2.

Table 2: Chromosome representation and interpretation

CHROMOSOME

P Q R

0 0 0 0 0 0 0 1 1 0 0 1 P = 0, Q = 1, R = 9

0 1 0 1 1 1 0 0 0 0 1 0 P = 5, Q = 12, R = 2

0 1 0 0 1 1 1 1 1 0 1 1 P = 4, Q = 15, R = 11

Each of P, Q, and R can be used to denote the size of a triangle or the coefficient of a

quadratic equation. It should be noted that it is not necessary that the binary encoding of

each of P, Q, and R be of the same length but has to be consistent across different

chromosomes.

Elitism is a slightly modified version of the traditional GA. It injects the fittest individual

or individuals into the next population from the previous population. The fittest individuals

are otherwise known as elites. The highly-fit parents compete with their children and

results in an exploitative behavior. Since the elites are added into the next population,

crossover needs to be carried out by subtracting the number of elites and divide by two in

order to maintain the population size. The default value of elite count – which is the number

of individuals that are guaranteed to survive to the next generation because of their good

fitness value – is usually 2. High value of elite count drives the GA towards more

exploitation, which as a result can make the search less effective.

25

The algorithm in pseudocode is shown in Figure 4.

Figure 4: The Genetic Algorithm with Elitism (from [28])

Fitness Function:

A fitness function “is a type of objective functions which summarizes the goodness of a

solution with a single figure of merit” [29]. This is used to compute how good the solution

represented by a chromosome is in relation to the global optimum [if known]. Each

chromosome in each population has its fitness computed by the fitness function. This

creates a factor to compare the different individuals and to rank them. The individual with

the highest fitness denotes the nearest to the optimum solution. The GA can get feedback

from the problem through the fitness value.

For instance, if we are to optimize a function f(X) = 2𝑥2 given 𝑥  [0,1,3,5], then the

fitness function would be represented as follows:

26

 fitness = 2𝑥2

The following are the characteristics of a fitness function:

* Measurement: The fitness function must be quantitatively measurable as this will tell if

candidate solution is fit and/or how fit it is.

* Fast: This is because fitness function accepts the candidate solution and assess it to know

how fit/good it is. This is done repeatedly, hence the reason why it should be sufficiently

fast so as not to delay the entire processes.

In GA, the initial chromosomes (population) are generated randomly.

There are three main GA operators namely:

Selection:

From the generation of chromosomes, selection operator chooses two individuals to be

used for recombination. The selection can be randomly or based on some heuristics such

as the fitness value. This means that if the selection is randomly, each of the individuals

has equal chance of being selected while chromosomes with higher fitness value have

higher chance of being selected if they are selected with regards to their fitness values.

Selection implies retaining the best performing chromosomes. There exist a number of

different strategies to select the individuals to be copied over into the next generation. For

a binary problem (i.e. problem with binary representation), selection means to preserve the

bit strings that has better performance from a generation to the next generation. In other

words, it determines among the population which individuals survive to the next

generation. This is carried out in each iteration (generation) to create the new population

27

from the old ones after evaluating them. Roulette-wheel, Elitist, Fitness-proportionate,

scaling and rank selection are different methods of selection [28].

Crossover:

This is one of the binary operators that work with two operands. The operands are the two

selected chromosomes (parents). It works by interchanging substrings to produce two

offspring that are included in the next generation. In some cases, the offspring are included

into the next generation without establishing whether they are eligible to be in the

population. In other words, they represent invalid chromosomes. In this case, they are

assigned poor fitness that makes them to be excluded in the subsequent generations. This

can be illustrated in knapsack problem. A chromosome that represents total available

objects in the knapsack to be greater than the capacity of the knapsack is considered an

invalid chromosome. It is either not included in the first place or included and assigned a

very poor fitness. It should be noted that in such case, crossover of two valid chromosomes

can result into one or two invalid chromosomes. The objective of crossover is to create a

better (fitter) individuals over time. It takes place according to a crossover probability Pc.

Mutation:

Before explaining what mutation operator does, let us consider the following population

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 1 1 0 1 1 0 1

28

0 0 1 0 1 0 1 1

There is no amount of reproduction/crossover that can change the first bit to 1. So if the

optimum candidate must have its first bit to be 1, then the optimum would be missed

definitely. Therefore, changing the first bit from 0 to 1 can help. Changing bits from 0 to 1

(or 1 to 0) with a probability of Pm is called mutation in the context of genetic algorithm.

It should be noted that the value of Pm should be very small.

Mutation is a random process whereby a gene of a chromosome is replaced by a new one

generating a new genetic structure. It is randomly applied with low probability. Its role can

be depicted as a protection or safety to recover good genetic material that may be lost

through implementation of selection and crossover operators.

2.4 Test Data Generation

As it is known that testing is a major task in software development, test case generation is

most crucial to software testing. In fact, it is one of the most complicated tasks in software

testing process. It is aimed at generating sets of test cases that can detect as many faults as

possible in a software artifact. Ability to generate an effective and efficient test cases

enhances the achievement of testing objectives. Test cases are not only obtained from

source code but also in other design artifacts. Generating test cases from design documents

enables the availability of the test cases prior to the testing phase and thereby speeds up the

process and allows more effective planning of test cases. It is worth noted to know that any

bugs or inconsistencies detected early saves the development time. This means if the test

cases are generated earlier enough, the ambiguities in the specification and design can be

get rid of and allowing them to be improved even before writing the program.

29

Although, test data is more pronounced for code-based testing, it is also applicable to

specification-based and model-based testing. Here, more emphasis is given to code-based

testing. Generating test data is not a trivial task as each product of software development

phase generates a huge information. Therefore, in order to generate effective tests at the

same time lowering the cost, test designers should analyze the input and output domain.

Not all values in an input domain of a program have the same meaning and importance but

some values have special meanings; i.e. some are more important than others. This can be

illustrated, for instance, by studying the factorial function. The factorial of a nonnegative

integer n is calculated as follows:

Given: factorial (0) = 1; and factorial (1) = 1;

Factorial(n) = n * factorial(n-1).

A programmer may carelessly and wrongly implement the factorial function as:

factorial (n) = 1 * 2 * 3 * … * n;

The above implementation may seem correct as it will produce correct results for all

positive values of n but will fail if n = 0. As it can be seen that 1 is an output for two

different factorials (i.e. 0 and 1).

To sum it up, not only input and output domain should be considered when designing test

case but specification, source code should also be considered. Considering information

from several sources will assist in providing complementary information required to design

test cases.

30

Test data can be generated either by black box approach or white box approach. Below is

the brief overview of the two methods.

2.4.1 Test Case Design for Black Box Testing

A number of industries have adopted the black box test design techniques as their best

practice. This helps them in saving lots of testing time and obtaining good test coverage.

One good feature of black box test design techniques is that the knowledge of the internal

structure of the artifact under test is not necessary. Test cases are derived from the

requirement specification document and based on the expertise of the testers using the

following test design techniques [30]:

 Boundary Value Analysis: This is used to find errors in a program at boundaries of

the input domain as opposed to using inputs in the center of the domain.

 Decision Table: It is used whenever a complicated logic is to be modeled. It is used

to detect any missing combination of conditions in the logic.

 Equivalence Partitioning: This involves dividing the test conditions into groups.

From each group, only one condition is tested with the assumption that each

member of the same group behave similarly.

 Exploratory Testing: This involves continuous optimization of the quality of testing

by simultaneously treating test design and test execution in parallel throughout the

process.

 Error Guessing: Bugs are discovered in a software based on tester’s previous

experience. For example, entering invalid values like entering alphabets in the

numeric field, and submitting a form without entering values.

31

 State Transition Testing: Design of tests to execute both valid and invalid state

transition to investigate the behavior of the system under test.

2.4.2 Test Case Design for White Box Testing

Most systems such as mission critical systems and components adopt white box testing

techniques because of the attention to detail these techniques can offer. It is a well-known

fact that an exhaustive (complete) testing is impossible and that testing cannot guarantee

the absence of faults. As such, there is need to select a subset of test cases from all possible

test cases that has the highest likelihood to detect as much faults as possible. This leads to

test case design strategies. Each strategy depends on the scenario and the domain

knowledge. Test case design can be obtained from the requirements of the program under

test (i.e. its specification), informal description, set of scenarios (use cases), set of sequence

diagrams, and state machine. It can also be obtained from the program itself, set of selection

criteria, heuristics and experience. Program code is tested and executed (i.e. covered) using

one of the following kinds of coverage: statement, path, (multiple-) condition,

decision/branch, loop and definition –use (def-use) coverage.

2.4.3 Test Data Generation Using Genetic Algorithms

Over the years, a number of researches have been conducted to generate test cases. The

trend of research is now deflected towards generating automatic test data. This is an attempt

to reduce the high cost of testing software manually and also to increase the reliability of

the software artifact under test. This leads to the evolution of different approaches ranging

from generating test cases from requirements, use cases, models or source codes applying

different test objectives such as coverage criteria, with several different techniques and

32

algorithms depending on the problem domain. Most of the researches are considered white-

box approaches in which there is no need for any specifications, although the existence of

specification can aid test case generation [31].

Over time, the process of generating test cases had been automatically carried out. This can

be broadly divided into three different categories: random, static and dynamic.

Although, random test data generation process is not difficult to automate, it stands the

chance of creating too much number of test data or may fail to find test data that is capable

of satisfying a test requirement. This is as a result the necessary information concerning

the test requirement not incorporated into the process of generation.

Static generation cannot be automated because it does not require the program execution.

A typical example of static technique is the symbolic execution. It is done by navigating a

Control Flow Graph (CFG) of a program and in terms of the input variables, which

constructs the internal variables for the desired path. A number of constraints are

established by the branches in the code. Solving these constraints results to the required

test data. Dynamic generation of test data is different from static techniques in the sense

that it requires the execution of the program which leads to a directed search for test.

Many researchers applied optimization techniques to automate and generate test data. This

is facilitated not only by the fact that a substantial number of testing problems can be

formulated as search problem, but also because they can be formulated as optimization

problems.

Applying metaheuristic techniques like Genetic Algorithms to generate test data in

software testing, the inputs are optimized based on certain criteria. In that regard, software

33

testing is seen as an optimization problem. Before achieving the conversion of software

testing into optimization problem, software metrics that are to be optimized should be

defined or chosen. The metrics should have direct or indirect measurability from the

software. In white box testing, possible metrics can be test coverage metric: code,

condition, or path coverage. But in black-box testing, the metrics to be optimized could be

error based; for example, amount of warnings, calculation or rounding errors, leakage of

memory, etc., or temporal based e.g. best or worst execution times or response times

(B/WCET) [32].

In black-box testing, it is not the tester’s problem to detect what causes the unexpected

output because the tester is to test the given software as well as possible and report as

clearly as possible what has been obtained to the programmer. It is now the responsibility

of software developers to search, inspect and fix the erroneous code lines.

34

CHAPTER 3

LITERATURE REVIEW

A number of researches have been conducted to address the test case generation problem.

Test cases are being generated using different approaches. Some researches focus on

applying mutation analysis, some use genetic algorithm to generate tests while few utilized

the combination of both mutation analysis and genetic algorithm, among others. Below is

the review of some of the related works that are considered important in respect of the test

cases generation techniques using genetic algorithm, mutation testing and search-based

mutation testing. In this chapter, a comparison framework is presented to identify the

strengths and drawbacks of the several different test data generation techniques

with/without mutation testing after presenting the summarized discussion on some of the

existing works in the field. Most of the search based techniques were applied to mutation

analysis in order to optimize either mutants or test cases or both. Mutants optimization can

be reduction of the number of mutants, which can be a good representative of the entire

mutants or identifying and eliminating equivalent mutants. Test cases can be optimized by

reducing the number of test cases or increasing the effectiveness of the test cases as a

whole. A list of M.Sc. and PhD theses is also documented to identify available work and

detect some of the research gaps in the field of mutation-based evolutionary test data

generation.

3.1 Genetic Algorithms Based Test Case Generation

A number of techniques have been used to generate test cases while carrying out mutation

testing.

35

In recent years, researchers have been exploring researches in Genetic Algorithm (GA)

theory and applications. It is used in solving many problems while efforts have been made

to improve the performance of GAs especially in applications to solve optimization

problems. In order to apply a GA to solve a particular problem, some factors are

exceptionally crucial to be considered; such as identification of the object(s), problem

representation, design of a GA and interpretation of the search results to the solution [33].

Each GA is designed taking into consideration the nature of the problem. This makes the

GA to have different input values, input formats and even data structures. A quite number

of researches have focused on applying GA to generate test cases for testing software

artifacts. Some of them are as follows:

DeMillo and Offutt [34] proposed a fault-based technique that applies algebraic constraints

to describe test case to uncover fault categories. They implemented their technique in a tool

called Godzilla, which generates constraints and solve them automatically. The tool is used

to carry out both unit and module testing. It is integrated with the Mothra testing system.

Lin and Yeh [35] developed test data creation technique for path testing using GAs. An

iterative sequence of operators was executed to generate test cases to test paths coverage

in a program using GA. A metric was formulated to determine which test case survives to

the next generation and fitness function was designed based on the formulated metric.

Hamming Distance [36] was modified to calculate the fitness function as Normalized

Extended Hamming Distance (NEHD).

Doungsa-ard et al. [37] proposed a framework for generating test data from software

specifications. The test data generated is a sequence of actions from the software

specification and the UML state machine diagram. They measured the quality of the test

36

data by the number of transitions which is fired by the input. GAs are used to optimize the

sequence of triggers to find the best one to cover the most transitions.

Michael et al. [38] presented a technique on generation of test cases by function

minimization using genetic search. Test data were generated using branch coverage

criteria. They implemented the technique in a tool known as Genetic Algorithm Data

GEneration Tool (GADGET).

Ghiduk et al. [39] proposed an automatic test data generation technique using definition-

use path coverage satisfying data-flow coverage criteria using GA. They developed a new

multi-objective fitness function to evaluate the generated test data using the concept of

dominance relations between nodes. Control flow graph of the program was used to

generate dominance tree. They stated that the reduction in the size of test suites and the

total number of iterations to satisfy the data-flow criteria prove the effectiveness of their

approach in relative to random testing. The inputs for the technique were the set of test

requirements, a version of the program under test, dominance tree and the usual GA

parameters.

Ahmed and Hermadi [40] proposed and presented a method to improve the efficiency of

using GA to generate test data by designing an automatic GA-based test data generator for

white box testing covering multiple target paths. The results obtained are promising as they

show better performance than other existing approaches used in comparison.

Srivastava and Kim [41] presented a testing approach using GA to find the most critical

paths in a software construct. This was achieved by creating variable length GA that does

not only optimize but also select the software path clusters that are weighted according to

37

the criticality of the path. This makes the most critical paths to be tested first, since an

exhaustive test is rarely practical, which in turn can increase the efficiency of the testing

process. In their technique, each edge of the control flow graph was assigned weights and

the sum of the weights of the entire edges in a specific path forms the fitness function. The

criticality of the path is proportional to the fitness values.

Domínguez-Jiménez et al. [42] designed their fitness function by penalizing groups of

mutants which are killed by the same set of test cases, without regarding the location, the

mutation operator applied or the number of mutants in the group. Harman [46] presented a

keynote talk by summarizing the existing work, the analysis of performance of several

search algorithm used in test data generation and techniques to minimize search spaces.

A number of outstanding and comprehensive surveys of the test data generation using

search-based software testing approach have been presented [43],[44],[45].

3.2 Mutation-Based Test Case Generation

Killing mutants is a better way of testing the tests. A number of researches have been

recorded in mutation testing. Some concentrate on defining new mutation operators, while

others develop mutation system. Research in mutation testing can also be to invent

innovative ways to reduce the cost of mutation testing [42]. This research is focused on

developing cost-effective mutation system. As earlier stated, mutation testing suffers a

number of shortcomings, which minimize its adoption in industry. Despite the little survey

work in the literature on mutation testing, there has been a number of research work

presenting different types of techniques in an attempt to transform mutation testing into a

realistic and practical testing paradigm. A research conducted by DeMillo [47] was the first

38

of its kind to summarize the research achievements and background of Mutation Testing

at the preliminary stage of its development.

Fraser et al. [31] presented TEST, an approach to generate test data for object-oriented

classes based on mutation analysis automatically. Apart from the test cases, mutant-based

oracles are also generated which allow the tester to check whether the expected behavior

is reflected by the assertions generated. The assertions were generated by matching the test

case execution on a program and its mutants in order to distinguish between them. The test

cases generated are mutant-based and impact-driven aimed to minimize test cases and

assessment effort. This is achieved by optimizing test cases and oracles towards detecting

mutation with maximal impact.

Yao et al. [48] investigated on the causes and prevalence of equivalent mutants and how

they are related to stubborn mutants. They manually analyzed 1230 mutants obtained from

18 different programs, the result shows a highly uneven distribution of mutants’

stubbornness and equivalence. This means the selection of mutation operators should be

carefully done because their results show that previous test effectiveness of fault seeding

could be skewed. The findings of the work show that there is a contradiction to the popular

assumption that equivalence is an extreme case of stubbornness. This is because it was

found that equivalence is correlated with program size and the total mutants generated

while stubbornness is not. Also, the findings showed that ABS (Absolute Value Insertion)

operators should be discarded or at least applied with care because they generate few

stubborn and many equivalent mutants. On the other hand, some operator classes like LCR

(Logical Connector Replacement) are useful as they generate relatively more stubborn and

fewer equivalent mutants.

39

Offutt et al. [25] performed a statistical regression analysis of actual programs, showing

that the number of lines did not contribute to the number of mutants. Applying only the

SDL (Statement Deletion) operator is a do-fewer approach known as SDL-mutation. The

SDL operator was implemented for Java and its benefit was evaluated in terms of how well

were the SDL mutants killed by tests generated when run on all of muJava’s method-level

mutants. They started by defining SDL on single statements, then extended the definition

to other control structures. SDL was implemented by Mothra by replacing each statement

with CONTINUE because FORTRAN has a CONTINUE statement, which only provides

a placeholder. On the other hand, Java implemented SDL by commenting out each

statement. It does not make sense to apply SDL to variable declaration because the mutants

would not compile, to start with.

Also, applying SDL to control structures that include block(s) of statements (such as “if”,

“for”, and “while”) necessitates deleting the entire block. They generated the test cases to

kill the entire SDL mutants by hand (i.e. manually). They sanitized the tests by iteratively

generating them while discarding those that did not kill additional mutants strongly. The

mutants that are not killed were concluded to be equivalent. This leads to the conclusion

that the deleted statement has no effect on the program. They finally evaluated the SDL-

adequate test set against the whole muJava’s mutation operators. Other mutation operators

can be discarded if the SDL-adequate test set can kill all mutants. A mutation score of 92,

with 80% fewer mutants were formed. Also, 41% fewer equivalent SDL mutants were

discovered.

Harman and Jia presented a detailed survey and analysis of trends and results on mutation

testing. The survey comprises of works on empirical studies, optimization techniques,

40

mutation tools, and equivalent mutation detection. The results of the survey show that

mutation testing is achieving popularity as its transition from academic to industrial

application is rising gradually [9]. Papadakis et al. [49] describes a systematic mapping

carried out to collect techniques and approaches for test data generation in mutation testing.

In 2017, Jatana et al. [50] published a systematic literature review on application of search

based techniques on mutation testing. The result of the study shows that within two

decades, the following techniques have been harnessed to mutation testing namely: Hill

Climbing, Ant Colony Optimization, Genetic Algorithm, Bacteriological Algorithm, and

Immune Inspired Algorithm.

As shown previously that some researches are mutation-based while some are GA-based,

another trend of research is the application of mutation and GA in synergy to solve some

problems encountered in test data generation. Below are few works that concentrate on the

combination.

Bottaci was considered the first researcher to apply genetic algorithm to mutation testing

[51], [52].

S. Selevakuma and N. Ramaraj [53] proposed an idea for generating a minimized test suite

in test case generation using the combination of mutation and Genetic Algorithm. The idea

was to resolve the problem of too many test cases to kill huge number of mutants generated

by Mutation Testing. The approach models a test case as a predator while a mutant program

is considered as a prey. The idea is to generate test cases to kill as many mutants as possible.

The approach, mutant gene algorithm, was modeled into a tool for generating and

minimizing test suites.

41

Sharma et al. [54] used adequacy-based testing criteria to generate test data. Mutation

analysis was applied to check the adequacy of the test cases. The approach used did not

follow the traditional way of applying mutation which is after the test data generation, but

rather applied mutation analysis only at the period of generating test data. The approach

ensures that the best data generated are adequate and the time taken is minimized because

only the time taken to generate test data is included but the time to examine the adequacy

is excluded. The authors applied GA to generate the test cases while validating the

technique using ten real time C programs [55][56]. R.A. Silver et al. [57] presented a

comprehensive systematic review on search based mutation testing. They identified five

meta-heuristic techniques used to optimize test data generation, mutant generation and

selection of effective mutation operators. For more details on the techniques, reader can

consult their work [57].

Jatana et al. [50] presented a systematic literature review on search-based mutation testing,

where they identified Ant Colony Optimization, Genetic Algorithm, to be the popularly

adopted search-based techniques in optimizing mutation testing. They concluded that the

techniques are used to generate test data, select, minimize and optimize generation of

mutants

Analyzing the above-mentioned related literatures, a framework is identified for the

classification of the research carried out in the area and the test criteria. It can be deduced

that a substantial amount of work has been done on white box testing while only few work

has been done on black box testing.

42

Table 3: Summary of Mutation-based Test Case Generation

Author Techniques Results Performance

Evaluation

Mutant

Generation

Test

Generation

Language Average

Perf

DeMillo

and Offut

[34] (1991)

Test data

generation

based on

constraint

Test data

generation

based on

constraint

Mutation

score

Manual Automatic Fortran 98%

Offut et al.

[58] (1999)

Dynamic

Domain

Reduction

Generation

of test cases

NA Manual Automatic Fortran NA

Baudry et

al. [59]

(2005)

Genetic

Algorithms

Optimization

of test data

generation to

kill mutants

Mutation

score

Manual Automatic C# 85%

Ayari et al.

[60] (2007)

Ant Colony

Optimization

+ Mutation

score

Test data

generation

techniques

Mutation

score

Manual Automatic Java 88%

Papadakis

et al. [61]

(2009)

Enhanced

Control

Flow Graph

Generation

of mutation

adequate test

data

Path

coverage

Manual Automatic Java 90.2%

Zhang et

al.[62]

(2010)

Dynamic

Symbolic

Execution

Automatic

generation of

test inputs to

kill mutants

Mutation

score

Manual Automatic C# 90%

43

Papadakis

et al. [63]

(2010)

Dynamic

Symbolic

Execution

Generation

of effective

test data

Mutation

score

Manual Automatic C 63%

Harman et

al. [64]

(2011)

Execution

and search-

based testing

Generation

of strongly

adequate test

data to kill

first and

higher order

mutants

Mutation

score

Manual Automatic C 71%

Malhotra

et al. [55]

(2011)

GA &

mutation

testing

Test data

generation

based on

adequacy-

based testing

criteria

Path

coverage,

mutation

score and

generating

time

Manual Automatic C NA

Hanh et al.

[65] (2014)

Genetic

Algorithm

 5 Simulink

models

Manual Automatic Simulink 85.7%

Mohi-

aldeen et

al. (2016)

Negative

Selective

Algorithm

Generation

and

reduction of

test cases

Path

Coverage

Manual Automatic Java &

C++

NA

Sharifipour

et al.

(2017)

Memtic Ant

Colony

Optimization

and

Evolution

Strategy

Test data

generation

Branch

coverage and

convergence

speed

Manual Automatic MATLAB NA

44

3.3 Research Questions

From our literature review, we could not find from the existing studies ones that handle

both mutant generation and killing at the same time. This study focuses on the development

of an approach using GA to generate mutants and kill them while optimizing both processes

competitively. The mutator tries to generate non-trivial mutants that would be difficult to

kill, while tester makes effort to generate effective test cases to kill the generated mutants.

This is in form of a non-cooperative game between the tester and the mutator. The

experiments carried out in this study were planned to empirically answer the following

Research Questions (RQs):

RQ 1: What is the effectiveness of the generated test cases in killing the generated

mutants?

This would investigate on how effective the test cases generated by the approach

are. The effectiveness measure gives an insight as to how good the test cases are

performing. The more mutants killed by a set of test cases, the more effective the

test cases.

RQ 2: How strong are the mutants generated?

To ensure that the generated test cases are effective, there is need to ascertain that

the generated mutants are non-trivial. A strong mutant is the one that is difficult to

kill.

RQ 3: Is the GA-based approach better than random generation of both test data and

mutants?

45

This question inspects the effect of the GA on the generation of test cases and

mutants. It shows the role played by GA in the presented game-like approach.

RQ 4: What set of GA parameters gives the best performance with regards to our search-

based mutation testing?

Answering this research question ensures the avoidance of using GA parameters

by mere guessing. This is because each problem has its unique set of optimized

parameters that would give the best performance.

46

CHAPTER 4

PROPOSED APPROACH

This chapter presents our proposed approach to generate test data and hard-to-kill mutants

applying mutation testing and search-based techniques. It also explains the fitness

functions applied and how the problem was formulated. The approach was developed in

an attempt to bridge the gap found in the survey of the literature carried out. The detail of

the critical survey is presented in the literature review chapter earlier. In this research,

Mutation Testing does not only produce faulty programs for the Genetic Algorithms to

optimize, but also sorts the transitional test cases with respect to the number of mutants

they killed. Also, it is employed to measure the fitness values of our tests, leading to

reduction in redundancy.

4.1 Methodology/Approach

The problem of generating test cases to kill the mutants is presented as an optimization

problem. Consequently, an objective function also known as fitness function is designed

to leverage the power of meta-heuristic techniques, like Genetic Algorithm, in generating

test case data.

We harnessed the power of Genetic Algorithm to automate the procedure. We have two

different contrasting GAs competing against each other. The first GA (tester) known as

test-GA(tGA) creates test cases to use in the testing process while the second GA (mutator)

called mutant-GA (mGA) generates mutants (i.e. faulty programs which are valid variants

of the original program each with single syntactic difference).

47

Since GA is a general method to solve combinatorial problems, therefore the problems to

be solved differ from one to another. The domain knowledge is to be considered. Before

designing the GA or any metaheuristic method, there should be a designated representation

scheme for the problem. In other words, designation of how the individuals would be

represented in the population of GA. Below is the description of the candidate solution

representation, and fitness formulation & calculation.

In this research, we propose an approach of generating test cases implementing it using

Genetic Algorithms. This implementation presents an innovative way to use GAs to

generate mutants in sync with test case generation. In other words, GAs are used to generate

mutants of an original program and create test cases consecutively. Each player makes

effort to win its opponent. The mGA generates mutants that are difficult to kill by test cases

while tGA creates test cases that try to kill any mutant generated by mGA. The approach

generates a subset of all the possible mutants, selecting them with mGA. This is continued

consecutively until a stopping criteria or certain number of iteration is reached.

The benefit of this technique is estimated by applying it on program codes implemented in

MATLAB. In order to maximize the capability of GA, its fitness function must be designed

accurately and efficiently.

The steps to follow in generating mutants and analyzing their strength is represented by the

flowchart depicted in Figure 5.

48

Figure 5: Flowchart of mutant generation and analysis

The original program is read to know the number of lines in the program. The number of

lines in the program is used by mGA to generate mutant chromosomes that are based on

the number of lines in the original program. The chromosomes are taken by the converter

and transformed into the real mutant program, which is in turn executed against the test

cases generated by the tGA. The original program is also executed against the same set of

test cases. The result of executing original program is compared with that of the mutant, if

the results are different, the mutant is killed otherwise it is not killed. Then, it has to be re-

49

executed with different sets of test cases as this can be taken to mean the test cases are not

effective initially. If the mutants are killed, there is a check to know if the end of generation

is reached, in order to terminate the process. If the end of the generation is not reached,

then the mGA is re-executed.

The converter in Figure 5 is converting the mutant chromosomes from the mGA to real

mutant program. The flowchart for the mutant conversion by the converter is shown in

Figure 6 .

Figure 6: Flowchart for mutants conversion

A copy of the original program and the chromosomes generated by mGA are passed to the

converter module. The program is read and the chromosomes are decoded to extract the

category of operator, location and the exact mutation operator represented by the

chromosomes. There is a check to verify if the mutant to be generated is valid by validating

the existence of the mutation category at the specified location in the program code. If the

operator is present, the mutation is applied and the new variant of the original program is

generated, otherwise the chromosome is regenerated. This is done to prevent invalid mutant

50

from being produced and reduce the computational cost involved in testing the validity of

the mutant later in the process.

The individual for TESTER (tGA) is the test case to be generated and the fitness is

computed on the programs; while MUTATOR (mGA) generates programs as its

individuals and compute the fitness values on the test cases generated by TESTER.

In this research, we designed the fitness function using Reward-Penalty approach to

evaluate the population chromosome of the mGA. This means reward is assigned to good

chromosomes while a penalty is tasked against the poor chromosomes. Since the function

of mutation GA is to generate mutants, which are valid variants of the original program,

after applying a particular mutation operator at a specific location. This means two things

are involved in generating mutants, i.e. mutation operator and the location. In addition to

mutation operator and the location, the actual operator is also of paramount importance.

Each mutant is evaluated by computing fitness function on it. Due to the fact that this is a

black-box approach, we need to execute the mutant against the test suite. The outcome of

the execution can be represented in an execution matrix. If the number of mutants in the

population is M and the number of tests cases in the test suites is T, then the dimension of

the execution matrix would be M  T as shown below. The approach was first applied by

Domínguez-Jiménez et al. [42].

(1)

51

 mij is 1 or 0 when the mutant i is executed by test j is killed or alive respectively.

Where 0 denotes mutants that are alive while 1 denotes killed mutants.

The fitness function comprises of the number of test cases that are able to kill a mutant and

the number of mutants killed by the particular tests. In this case, the fitness of a particular

mutant (let’s say  with the collection of test sets T) is given by:

 Fitness (, T) = M  T – ∑ (𝑚𝑗  ∑ 𝑚𝑖𝑗
𝑀
𝑖=1)𝑇

𝑗=1 (2)

 where ∑ 𝑚𝑖𝑗 ∈ {0. … . 𝑇}𝑇
𝑗=1 , for all i and

 ∑ 𝑚𝑖𝑗 ∈ {0. … . 𝑀}𝑀
𝑖=1

Therefore the value of the fitness will continuously be within [0, MT].

The significance of this fitness function is that it penalizes every group of mutants that are

killed by the same set of test cases without taking into consideration the mutation operator,

location of mutation, or the total number of mutants in the group.

4.2 Mutant Fitness Function

The evaluation of mutants is carried out as follows:

Each mutation operator is evaluated such that higher fitness is assigned to operators whose

mutants are potentially strong and difficult to kill given a test suite.

Each operator OPi is assigned a constant probability (say C), such that each operator has

50% chance of being picked as shown in the Table 4.

52

Table 4: Initial Probability of operators

Operators Probability

OP1

OP2

OP3

…

OPN

C1

C2

C3

…

CN

After the selection of the operators and the corresponding mutants are generated, the

number of mutants for each operator is computed and the respective probabilities score of

each operator are updated with new probability (say P) which is later normalized. This is

shown in the Table 5:

Table 5: Updated Probability of operators

Operators Probability

OP1

OP2

OP3

…

OPN

P1

P2

P3

…

PN

53

To compute the updated probability of each mutation operator, there is need to know the

number of mutants by the operator and the number of mutants that are difficult to kill. For

example:

In each iteration i,

 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 2 ∗
𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝 − 𝑛𝐾𝑖𝑙𝑙𝑒𝑑

𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝
− 1 ∈ [−1.1] (3)

Where nMutSamp = Number of mutants generated by OPi at iteration i

 nKilled = Number of killed mutants generated from OPi

If no mutant is killed,

Then
𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝−𝑛𝐾𝑖𝑙𝑙𝑒𝑑

𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝
= 1 (4)

 increment = (2 * 1) – 1 = 1 [Maximum value]

But if all the mutants are killed,

Then
𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝−𝑛𝐾𝑖𝑙𝑙𝑒𝑑

𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝
= 0 (5)

 increment = (2 * 0) – 1 = -1 [Minimum value]

This means that any value of increment would be [-1,1].

 Probability Score = {
𝐶. ⋕ 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1

𝑃. ⋕ 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 1
 (6)

So if the number of iteration/generation is 1, i.e. MaxIt=1

54

 𝑃 = 𝐶 +
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙𝑀𝑢𝑡𝑎𝑛𝑡
 (7)

But if the number of iteration, MaxIt=2,

 𝑃 = 𝐶 +
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

2 ∗ 𝑡𝑜𝑡𝑎𝑙𝑀𝑢𝑡𝑎𝑛𝑡
 (8)

Generally, 𝑃𝑖 = 𝑃𝑖−1 +
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

𝑀𝑎𝑥𝐼𝑡 ∗ 𝑡𝑜𝑡𝑎𝑙𝑀𝑢𝑡𝑎𝑛𝑡
 (9)

This would force the final probability of the mutation operator, Pop  [0,1].

If more than half of the mutant sample are killed, increment would be negative thereby

decreasing the value of the next probability. In other hand, if less than half of the mutant

sample are killed, increment would be positive thereby increasing the value of the next

probability of the same mutation operator. This can be represented mathematically below:

 0 < 𝑛𝐾𝑖𝑙𝑙𝑒𝑑 < 𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝/2 (10)

 𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝𝑙𝑒/2 < 𝑛𝐾𝑖𝑙𝑙𝑒𝑑 ≤ 𝑛𝑀𝑢𝑡𝑆𝑎𝑚𝑝 (11)

If the two equations above are evaluated to TRUE, they would cause the values of

increment to be positive and negative respectively.

In other words, we would ensure the 0 ≤ Pop ≤ 1

The probability score is summed and normalized to 1.

55

 i.e.
1

𝑐𝑜𝑛𝑠𝑡
∑ 𝑃𝑖

𝑛𝑂𝑝
𝑖=1 = 1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑛𝑜𝑟𝑚 =

𝑃𝑖

∑ 𝑃𝑖
𝑛𝑂𝑝
𝑖=1

 (12)

The proportion of each operator is used to give precedence to the generated mutants

together with the line of the program in the next generation.

Similarly, we have probability of killing programs mutated at a particular line of code. We

also update the probability of not killing a program mutated at certain line number just like

we did for the mutation operator.

Table 6: Probability of program line number

Line Number Probability

1

2

⋮

L

P1

P2

⋮

PL

Where L is the number of line of the program under test. Since no deletion nor insertion of

statement operator is used, the number of line of the original program is the same as the

number of line of each mutant.

The probability of line number is also normalized as follows:

 Pline =
𝑝𝑗

∑ 𝑝𝑗
𝑛
𝑗=1

 (13)

Where j = 1,2,…,n, pj is the probability of line j and n is the number of line of the program.

56

The final fitness of the mutant in question is the combination of its mutation operator’s

probability score and its line number probability score. But in order to keep the fitness

normalized to 1, the summation is averaged to give a single number between zero and one.

 i.e. Final Fitness = ½(Pop + Pline) (14)

The fitness described above is the fitness of a mutant. The overall fitness of the set of

mutants can be obtained by computing the average of the entire mutants’ fitness.

Therefore, a mutant is rated by the mutation operator it has and the position of the mutation

in the original program.

4.3 Test Fitness Function

The fitness function of the test cases is derived from the test execution matrix, which is

obtained after executing the entire mutants with the whole test cases. In other word, each

mutant is executed against every test case. The fitness of a test case is dependent on the

competition with the rest of the test cases. This means the fitness of a test case can affect

the fitness of others. The approach is explained as follows. Table 7 shows the sample of

the execution matrix as shown below:

Table 7: Test Execution Matrix

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

M1 0 0 0 1 0 1 0 0 1 0

M2 0 0 1 0 0 1 0 1 0 0

M3 0 0 1 0 0 1 0 0 1 1

M4 1 0 0 0 1 1 1 1 0 0

M5 0 1 0 0 0 1 0 0 1 0

M6 1 1 1 1 1 1 1 1 1 1

57

M7 0 0 1 0 0 1 1 1 0 1

M7 1 1 0 0 0 1 0 1 1 0

M9 0 0 0 0 0 0 0 0 0 0

M10 1 0 0 0 1 1 0 1 0 1

The value in each cell of the matrix can be [0,1]. If it is ZERO, it means the mutant was

not killed by the test case represented by the intersecting column of the matrix. In other

word, the value is ONE if it is killed by the test case. Therefore, the initial values are [0,1].

The values are then updated by looking into how many test cases kill a mutant and how

many mutants are killed by a particular test case.

Using the example above, the table would be modified and updated resulting in the values

shown in Table 8 :

Table 8: Updated test execution matrix

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

M1 0 0 0 0.333 0 0.333 0 0 0.333 0

M2 0 0 0.333 0 0 0.333 0 0.333 0 0

M3 0 0 0.25 0 0 0.25 0 0 0.25 0.25

M4 0.2 0 0 0 0.2 0.2 0.2 0.2 0 0

M5 0 0.333 0 0 0 0.333 0 0 0.333 0

M6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

M7 0 0 0.2 0 0 0.2 0.2 0.2 0 0.2

M7 0.2 0.2 0 0 0 0.2 0 0.2 0.2 0

M9 0 0 0 0 0 0 0 0 0 0

M10 0.2 0 0 0 0.2 0.2 0 0.2 0 0.2

Each test cases is evaluated from the values in Table 8. This is because, for example, mutant

M1 was killed by three test cases (T4, T6, and T9). Therefore, they share the point among

each test cases. It should be noted that killing a mutant is rewarded one point (1 point).

58

Since three of the test cases killed the mutants, they share it equally and each test case gets

1/3 (0.3333). More so, for mutant M3, four of the test cases killed the mutants; therefore,

each test gets reward of 0.25 (1/4). Also, all the ten test cases killed mutant M6; resulting

to a reward of 0.1 (1/10) for each test case. So the aggregate point of each test case is

computed by adding up the total point by the test against each mutant and assigned to each

test as shown in Table 9 :

Table 9: Score of test cases

 Test T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

 Point 0.7 0.633 0.883 0.433 0.5 2.15 0.5 1.233 1.217 0.75

The test cases are now sorted based on their computed power of killing the mutants.

The fitness of each test case in Table 9 can be sorted to result in the sequence shown in

Table 10 .

Table 10: Sorted test cases with respect to their killing power

 Test T6 T8 T9 T3 T10 T1 T2 T5 T7 T4

 Point 2.15 1.233 1.217 0.883 0.75 0.7 0.633 0.5 0.5 0.433

T(j)fit = Fitness point of test case j

Test suite Fitness = sum of the fitness points as shown in equation (15)

 ∑ 𝑇(𝑗)𝑓𝑖𝑡

𝑛

𝑗=1

 (15)

59

The total point of the test suite was 8.999, therefore the overall fitness of the test suite is

9. The actual point was less than 9 because of the several rounding made in the process

of computing the fitness. This can be verified by cross-examining the test execution matrix

in Table 7. It can be seen that only mutant M9 was not killed by any test case in the test

suite. In this case, out of 10 mutants, only 9 mutants were killed. Since the minimum and

maximum values for the test suite fitness value are 0 and 10. In general, the range of values

the fitness can have is [0, m] where m is the total number of mutants.

This fitness computation of test suite is similar to mutation score. Dividing by the total

number of mutants, the fitness becomes mutation score. This is because the mutation score

of the test suite is 0.9 which signifies 90% of the mutants being killed. This is accurate

because only 9 out of 10 were killed which is exactly 90% of the total mutants. However,

this fitness is better than mutation score because mutation score computes only the overall

effectiveness of the test suite without knowing which of the test cases performs better than

the other. Our fitness computation helps in differentiating between the test cases in the test

suite. The test cases that kill more alive mutants and difficult-to-kill mutants get more

fitness. This made it easy to apply GA to prioritize the test cases based on their fitness so

that they can be propagated to the next generation expecting to have more mutants being

killed by those effective set of test cases.

60

4.4 Mutants Generation

As mentioned above, the GAs utilize binary digits to represent their chromosomes. Before

mutation2 can take place, there is need to define the mutation operators and the location

where the mutation is to take place.

In this work, mutation analysis is performed using an approach called evolutionary

mutation testing [42]. A Genetic Algorithm is used to generate encoded mutants used in

generating possible mutants for carrying out the analysis – mutants’ generator. The number

of live mutants generated is reduced gradually as they are killed by test cases by favoring

the strong mutants, which can be a useful tool to improve the quality of the test suite

initially created using test case generator. Mutants are encoded as individuals of the

algorithm, which implies the encoded mutants are generated and their fitness values are

used to select those that would transit to the next generation. Since this testing technique

is a black-box oriented, the encoded mutants have to be decoded and executed against the

set of test cases generated initially. Subsequent generation of the mutants is instigated and

affected by the quality of test suites. Before carrying out the mutation testing, an original

program is obtained and the correctness of the program is ascertained. Also, the list of

mutation operators to be applied should be identified. The generation of mutants of the

original program is encoded using three fields (as shown in Figure 7) so as to be acceptable

by the genetic algorithm.

Operator Line Number Choice

Figure 7: Representation of mutant chromosome

2 Note that the mutation here is not the one in genetic algorithm.

61

An identifier of the mutation operator to be applied is represented by Operator. Line

Number signifies the line number of the original program where the mutation operator is

applied while Choice specifies the particular replacement to be performed where there are

multiple options (e.g. +, -, *, /, etc).

So as to make the mutants generation guided, each encoded mutant is formed after

computing the values a field can take in the specified program. The actual mutants are then

produced by a converter from the encoded fields from the table above. The mutant

generator takes the encoded mutant chromosomes and encoded test cases from mGA and

tGA respectively together with the original source code under test. From the encoded

mutants, mutation operators and line number of mutation are extracted. The Mutant

Generator creates the mutants using the mutation operators and the result of this Generator

is mutant in form of MATLAB m-file containing only one fault in each mutant. Each

mutant is produced after randomly generating individuals at the initial stage. Crossover and

mutation operators are applied to the randomly generated mutants to form children

individuals. The generated individuals are then evaluated and the more fit ones are made

to transit to the next generation. The crossover operator ensures exchange of content of one

field of an individual with the other in a systematic way. The operator is designed to evade

invalid individual generation. The following are the valid mutant chromosomes for

QuadraticSolver Program:

Table 11: Valid mutants for QuadraticSolver program

0001100 0001101 0001110 0001111

0010000 0010001 0010010 0010011

0011000 0011001 0011010 0011011

62

0100000 0100001 0100010 0100011

0101100 0101101 0101110 0101111

0110000 0110001 0110010 0110011

4.5 Mutant Program Generation

After mutant GA generates the chromosomes representing the genotype of the typical

mutant program, there is need to have the phenotypical depiction of the program. A

converter program was created that takes the binary representation of the mutant as shown

above. The chromosome (binary representation) encodes the operator, line number and the

choice of operator in each category. The converter takes the chromosome and the original

program and decodes the chromosome based on the original program. This generates a

mutant program, which is used in the actual execution. Figure 6 shows the concept in high

level. The converter decodes the mutant chromosome, extracting the operator (for example,

Arithmetic Operator Replacement-AOR), the location where the mutation operator is to be

applied and the actual operator to be applied (for example, addition [+]). These are all

extracted from the encoded mutant. The converter reads the original file and gets a copy of

it. After obtaining the mutation operator category, location and the exact operator, the

converter applies them to the copy of the original program. This is done by locating the

line number of the program copy using the mutation location encoded in the chromosome

and applying the exact operator (which belongs to the category specified by the

chromosome) and replaces the original operator by the encoded one. This results in a new

valid program similar to the original program except the replaced operator. This makes it

become a first order mutant of the original program. Both mutant and the original program

63

can then be executed using the same test case to investigate if the test case can kill the

mutant. The same sequence of events is repeated for every chromosome in the population.

In order to prevent wastage of memory, no two mutants exist at the same time. In other

words, only one mutant is available at any particular time during the execution process.

The creation of the subsequent mutants is carried out and the file is saved as the previous

mutant file name. This makes the execution a bit easier and the memory wastage is avoided.

For example, take QuadraticSolver program in Appendix B to illustrate the procedure of

how the real mutant is generated. Given a mutant chromosome, which has been decoded

to give the mutation operator category as AOR, location as 3 and the actual operator as ‘+’.

This makes the line 3 of the original program to be read.

d = sqrt(b^2-4*a*c);

(16)

And one of the arithmetic operators (say ‘-‘) in the program line is replaced with the

encoded operator, the program statement becomes

d = sqrt(b^2+4*a*c);

(17)

This single modification makes the program to be different from the original one. The

mutant GA that generates the mutant has been guided so that it generates only valid

chromosomes considering the original program. This means a mutation operator and a

location are joined in a single chromosome if only the operator category exists in the line

code number represented by the location extracted from the encoded mutant chromosome.

For the sake of simplicity, consider the following running example. Given a program to

compute roots of a quadratic equation (see Appendix B), the program has 14 LOC.

Arithmetic Operator Replacement (AOR) can be applied to lines 3, 5, 6, 8, 11, and 12.

While Relational Operator Replacement (ROR) can be applied to lines 4 and 7. The total

64

number of lines in the program is encoded into binary as 1110. This means four bits are

sufficient to encode the line number. AOR and ROR are encoded as 0 and 1 respectively.

Changing addition (+) into subtraction (-), multiplication (*), division (/) and exp (^) can

be encoded as 00, 01, 10, and 11 respectively. Also, replacing (>) into (<), (<=), (>=), and

(!=) are encoded as 00, 01, 10, and 11 respectively. The leading '0' of a mutant chromosome

represented by “0010110” would imply selecting AOR as the category of the operator to

be performed. Then 0101 means line number 5 would be mutated and 10 means the addition

(+) operator would be replaced by division (/) operator. This would change the statement

[x(1) = (0-b + d)/(2*a)] into [x(1) = (0-b / d)/(2*a)].

[x(1) = (0-b + d)/(2*a)] Δ [x(1) = (0-b / d)/(2*a)]

It should be noted that the mutation is done based on the actual mutation operator, but not

the category.

4.6 Test Case Generation

One of the GAs, tGA, is responsible for the generation of test cases and each chromosome

in the population is representing a test case to be used in this experiment, i.e. the execution

of programs (original and its mutants). As usual with GA, an initial set of population is

generated randomly taking into consideration the format of the individual representation,

which is a sequence of binary strings in our case. In subsequent generations, the test cases

are guided so that more effective test cases evolve to next generation by selecting the more

fit individuals based on the fitness function of the test cases. Therefore, each individual

denotes an element in the set of test cases in which its fitness depends on its effectiveness.

Test cases need to have high efficiency as well. This is the ratio of the number of mutants

65

killed to the total number of test cases. The individual chromosome is made up of strings

of binary digits which is the concatenation of different substrings in which each substring

represents the input of the program under test. For example, 1010100001001100101 is a

sample of a test case to be generated. If the test case is a combination of three input values,

the test case can then be represented as follows:

This means each input value is a string of binary digits, so joining them together forms the

chromosome. After generating the individual chromosomes, they are analyzed by decoding

them in order to obtain the values of each input. The chromosome represented above can

be decoded as 101010 0001001 100101 so that 101010 is the input 1 while 0001001 is

the input 2 and 100101 is the input 3. The first bit of each input is the sign of the input

while the remaining bits are used to form natural numbers. The input value is positive if

the first bit is 1 and negative if it is zero (0). The above input can be decoded as follows:

Input 1: 101010  1 01010  +11

Input 2: 0001001  0 001001  -10

Input 3: 100101  1 00101  +6

The test case represented by the chromosome above is depicted as (11, -10, 6).

4.7 Selecting The GA Parameters

Every experiment on GA conducted is by selecting parameters of the GA to optimize its

performance. Some are trial and error while others are chosen based on user-experience.

Input 1 Input 2 Input 3

Figure 8: Representation of test chromosome

66

Most of the researches are reported with the parameters without explaining the reason why

and how they are chosen. In such situation, the performance of the GA cannot be

maximized. The parameters of the GA depend on the specific problem. A combination of

such parameters may be useful for a problem and not for another problem. We looked at

the different combination of parameters and observed the effects on the results. The values

of the parameters can be maximized using an approach based on Taguchi Experimental

Design for the parameter tuning. GA parameters are divided into two categories namely:

structural and numerical parameters.

Structural parameters: it is challenging and difficult to deal with these set of parameters in

any GA application. They dictate the structure of GA, as the name implies. The coding

pattern of GA demands substantial modification if any of these parameters are changed.

Examples of these parameters include coding scheme representation, types of operator and

stopping criterion. For example, the one-point crossover can be applied to knapsack

problem but cannot be applied to sequence representation.

On the other hand, numerical parameters involve changing the values of some factors

affecting the performance of the GA. Example of the main factors considered as numerical

parameters are population size, maximum iteration (generation), type of initial population,

mutation and crossover probabilities. Altering these parameters does not involve recoding

of the GA, it only results in changes in GA performance.

The choice of mutation probability depends on the desired outcome. For instance, if the

application desires all members to have very high fitness, a lower mutation rate is suggested

so as to have a less likelihood of disrupting good solutions. But if simply one or two highly

fit individuals are required, a higher mutation rate may be chosen especially if ensuring

67

good coverage of the search space is given preference over the cost of disrupting copies of

good candidate solutions. In this case, we decided to make mutation rate low because we

need to have several highly fit individuals (difficult-to-kill mutants).

In this research, a set of structural parameters is selected because of its suitability to the

problem under investigation. Each of the GAs has certain degree of overlapping on

numerical parameters with the other as shown in Table 12 and Table 13.

Table 12: Tester GA Parameters and Levels

Parameter Code Level

1 2 3 4

Selection Function A Roulette

wheel

Tournament - -

Crossover function B Single point Two point - -

Crossover

probability

C 0.75 0.8 0.9 -

Mutation

Probability

D 0.35 0.3 0.25 -

Population size E 20 30 40 45

Table 13: Mutation GA Parameters and Levels

Parameter Code Level

1 2 3 4

Selection Function A Roulette

wheel

Tournament - -

Crossover

probability

B 0.75 0.8 0.9 -

Mutation

Probability

C 0.1 0.08 0.06 -

Population size D 35 40 45 50

68

We identified five (5) parameters which need to be tuned to know the optimal values of

each one of them. The parameters are: selection function, crossover function, crossover

probability, mutation probability, and population size. For mGA, not every single point

crossover nor every two-point crossover generates valid chromosomes, so we decided to

remove crossover function from the set of parameters to be optimized because we applied

a customized crossover function. Therefore, four (4) parameters were optimized in the case

of mGA as shown in Table 13 above.

Based on the number of parameters considered and number of parameter levels identified,

the detail of the experimental design and levels for the tGA is shown in the Table 14 :

Table 14: Experimental Design for Tester GA Parameter Selection

Experiment Parameter of GA

A B C D E

1 1 1 1 1 1

2 1 1 1 1 2

3 1 1 1 2 3

4 1 1 2 2 4

5 1 2 2 3 1

6 1 2 2 3 2

7 1 2 3 1 3

8 1 2 3 1 4

9 2 1 1 2 1

10 2 1 1 2 2

11 2 1 1 3 3

12 2 1 2 3 4

13 2 2 2 1 1

14 2 2 2 1 2

69

15 2 2 3 2 3

16 2 2 3 2 4

The fitness is the overall fitness of the test suite. The computation of the overall fitness has

been discussed.

Similarly, Table 15 shows the number of parameters considered alongside the number of

parameter levels for mGA.

Table 15: Experimental Design for Mutator GA Parameter Selection

Experiment Parameter of GA

A B C D

1 1 1 1 1

2 1 1 1 2

3 1 1 2 3

4 1 1 2 4

5 1 2 3 1

6 1 2 3 2

7 1 2 1 3

8 1 2 1 4

9 2 1 2 1

10 2 1 2 2

11 2 1 3 3

12 2 1 3 4

13 2 2 1 1

14 2 2 1 2

15 2 2 2 3

16 2 2 2 4

70

The fitness here is also the overall fitness of the mutants generated. And this should not be

taken as the fitness of a single mutant. The computation has been discussed in the

subchapter 4.2.

71

CHAPTER 5

EXPERIMENTS, RESULTS AND DISCUSSION

This chapter explains the experiments carried out to implement the approach presented in

the previous chapter explaining the design of the experiment. It also presents how the GA-

based test data generator is implemented, not only the design but also the setup and the

implementation. The power of the operators and parameter settings are investigated by

carrying out several experiments with various settings. The results obtained from the

experiment were presented, discussed and analyzed. This section explains the experimental

setup and the evaluation of the results. The experiments were implemented and executed

on a PC with intel® CORE™ i5-4200U CPU @ 1.60GHz processor, 6GB RAM and 64-

bit Operating System, x64-based processor running Windows 10 Operating System. The

MATLAB version used was R2015a (8.5.0.197613). MATLAB is one of the versatile high-

level languages and easy to handle. Its advanced data analysis, visualization and toolboxes

provide user with the necessary means to present and discuss their experimental results. In

this section, the results are discussed in details.

5.1 Experiment Design

It is well acknowledged that obtaining good values of parameters for good GA performance

is essential as it is one of the challenges of GA. However, little work has been recorded on

investigating how GA parameters affect the performance and how they are tuned. Most of

the practitioners select default values that are chosen by conventions; for example, low

mutation rate. Mostly, GA parameters are selected through user-experience and trial-and-

error as mentioned earlier. It is imperative to investigate the effect of combining different

72

crossover rates and mutation rates. This is because different problems have dissimilar

properties and for this reason, distinct parameter sets are required. This section focuses on

parameter tuning. We investigated 5 different parameters that can influence the

performance of the GA as follows: selection function, crossover function, crossover

probability, mutation probability and population size.

In this research, 5 different experiments were conducted using MATLAB programming

environment. We selected five (5) MATLAB program codes as experimental subjects of

different purposes, sizes and complexity. Most of them were taken from textbooks and

research papers and adapted to MATLAB format while others were written from scratch.

5.2 Description of Programs Under Test

The programs used for the experiment are described as shown in Table 16 . Each program

is described by its inputs and outputs and what it does.

Table 16: Description of Programs under Test

Name of

Program

Description Number

of Line

Inputs Outputs

QuadraticSolver To find the roots of

equation ax2+bx+c=0

by analyzing its

parameters/coefficients

14 Three

coefficients: a,

b, c

Two different

solution, One

solution (two

identical

73

solutions), No

real solution

TriType To determine the

triangle type by

evaluating all its three

sides. The relationship

between the sides gives

the type of triangle they

represent

14 Three sides: a,

b, c

Scalene,

Equilateral,

Isosceles, Right-

angled, Non-

triangular

MID Find the middle number

from the list of three

numbers

20 Three numbers

x,y,z

The mid number

Line-Rectangle

Classifier

To determine relative

positions relationship

between a line and a

rectangle

36 Line

coordinates:

(xl1,xl2,yl1,yl2),

Rectangle

coordinates:

(xr1,xr2,yr1,yr2)

Error, Line

wholly outside

rectangle, Line

wholly inside

rectangle, Line

partially inside

rectangle

Point-Circle

Classifier

To establish the

relationship of the circle

and a given point based

12 Center

coordinates:

(x,y) Radius: r,

Inside the circle,

On the

circumference of

74

on their position by

taking into

consideration the

coordinates of the given

point, center

coordinates and radius

of the circle

Point

coordinates: a,b

the circle,

Outside the

circle

For this experiment, FIVE test programs were chosen as Program Under Tests (PUTs) as

shown above. The subject programs were implemented in MATLAB and PUTs were used

for the experiment.

5.3 Results and Discussion

This section discusses processes followed to select the parameters used in the experiment.

The results are discussed and the optimal set of parameters were selected. The experimental

results of the test cases generation to kill generated mutants were presented for each

program under test. This comprises of the results of executing the test cases generated by

tGA against the mutants generated by mGA. Randomly generated test cases were also

executed against optimized mutants and optimized test cases were on the other hand

executed against randomly generated mutants.

5.4 Parameter Selections for the GAs

The design of the experiment to select the suitable and optimal GA set of parameters is

shown in Table 14 and Table 15. QuadraticSolver program is used in the parameter

selection experiment. The results of the experiments are the fitness of the test suite, which

75

is similar to mutation score. The fitness of test suite becomes the mutation score as soon as

it is divided by the number of mutants. Each experiment is carried out ten times in order to

calculate the confidence interval of each result. The results of the ten-time running of the

experiment is shown in Appendix C.

The confidence interval of each of the experiment is calculated using mean with 95%

confidence intervals. The plot for the confidence interval is shown in Figure 9 :

Figure 9: Plot of Tester GA Confidence Interval for parameters selection

By studying the plot above, it can easily be seen that the eleventh experiment is

better than any of the other experiments. Although, it can be seen that most of the

experiments were centered around 35, which means 35 out of 40 mutants were

killed by the test cases. Details of how the value is obtained is in Section 4.3. This

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18

Te
st

er
 F

it
n

es
s

Experiment number

Mean with 95% Confidence Intervals

76

is due to the fact that it has the highest mean fitness and lowest error interval or less

deviation. This resulted in selecting the parameter set of experiment 11 for the tester

GA. The corresponding parameter set for the experiment is shown in Table 17.

Table 17: Selected parameters for tester GA

Selection function = Roulette wheel

Crossover function = Single point

Crossover Probability = 0.75

Mutation Probability = 0.25

Population size = 40

Similarly, experiments were carried out to investigate the best set of parameters for

mGA. The results of the experiments run ten times are shown in Table 18 . Each of

the results shows the highest.

Table 18: Results of experiment to select the best parameter set for mGA

Par/Run 1 2 3 4 5 6 7 8 9 10

1 0.8044 0.9444 0.9583 0.5 0.7593 0.4615 0.4217 0.8333 0.8788 0.8152

2 0.9333 0.8462 0.9091 0.8947 1 0.8947 0.7647 0.8077 0.7692 0.5522

3 0.8444 0.9474 0.8 1 0.9333 0.9412 0.8621 0.8235 0.875 0.8524

4 0.9444 0.9474 0.75 0.8846 0.9286 0.7143 0.7931 1 0.7143 0.9412

5 0.8824 0.7368 0.7778 0.6098 0.8 0.7273 0.5085 0.7143 0.9375 0.9286

6 0.8235 0.7838 0.8333 0.9 0.85 0.9286 0.9444 0.8462 0.875 0.8947

7 0.8667 0.9235 0.8764 0.9824 0.8867 0.9087 0.9129 0.7659 0.8739 0.8255

8 1 0.72 0.7647 0.8824 0.8824 1 0.9375 0.8966 0.8766 0.9167

77

9 0.5 0.7391 0.7188 0.7273 0.5556 0.7727 0.7619 0.6829 0.6667 0.963

10 0.9091 0.9231 0.8824 0.9375 0.8824 0.9333 0.8 0.6667 0.9167 0.8125

11 0.8889 1 0.8235 0.8182 0.8333 0.8762 0.8939 0.8884 0.9963 0.8698

12 0.8977 0.7898 0.8235 0.9918 0.9538 0.8759 0.8538 0.7965 0.7997 0.9418

13 0.8929 0.8462 0.8462 0.9063 0.7879 0.3636 0.9091 0.7333 0.7692 0.7282

14 0.9598 0.8754 0.9915 0.7899 0.8459 0.9985 0.8545 0.8762 0.9105 0.8965

15 0.8987 0.9476 0.8798 0.7895 0.8545 0.9512 0.7789 0.7548 0.7985 0.9055

16 0.7744 0.9611 0.7016 0.8659 0.8873 0.8346 0.9113 0.8674 0.8468 0.9861

The results shown in Table 18 is plotted to find the confidence intervals of each of

the experiments using mean with 95% confidence intervals. The plot for the

confidence interval is shown in Figure 10.

Figure 10: Plot of mGA Confidence Interval for parameters selection

Following the results shown in Figure 10, it can be seen that experiment 14 has the

highest mean and relatively small length of error bars. The confidence interval for

experiment 14 is the best among them as it shows the highest mean fitness of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

Mean with 95% Confidence Intervals

78

0.8999. Experiments 7, 8, 3 and 11 have mean fitness of 0.8823, 0.8877, 0.8879

and 0.8889 respectively. Therefore, the best parameter combination for mGA is

considered to be the parameters corresponding to experiment 14. These parameters

are shown in Table 19.

Table 19: Selected parameters for mutant GA

Selection function = Tournament

Crossover probability = 0.75

Mutation probability = 0.1

Population size = 40

5.5 Discussion of the results of Experiment

In this section, the results of the experiment are discussed. Each program under test is used

separately to carry out the experiment and the individual results are shown and discussed

as follows.

5.5.1. QuadraticSolver

This program has 14 LOC with three branches. The GAs run for 100 generations and the

result is shown in Figure 11.

79

Figure 11: Total and Killed mutants for QuadraticSolver using 100 generations

By studying the result above, one can easily conclude that the GAs need more generations

as the result for the number of killed mutants is yet to converge and looks promising (i.e.

if more generation/time is allowed, more mutants would be killed). The percentage of the

killed mutants and the number of unique tested mutants are shown in Figure 12.

Figure 12:Killed mutants and unique mutants for QuadraticSolver (100 Generations)

The experiment was repeated 32 times and the best result was plotted in all the experiments.

The percentage of the average number of killed mutants shown in Figure 12 also demands

for increase in the number of generation. The number of generations was then increased to

80

150 expecting the number of unique tested mutants to increase over time. The result is

shown in Figure 13 :

Figure 13: Killed mutants and unique mutants for QuadraticSolver (150 Generations)

The result in Figure 13 shows that the total (cumulative) unique mutants generated, on

average, keep increasing until after 75 generations, then there was no new mutant

generated. In other words, the mutants generated after 75 generations were already

generated mutants. (This is shown by the upper curve of the left graph). The lower curve

shows the number of total mutants killed across the generations. With increase in the

number of generation, more mutants are being killed; this shows that the effectiveness of

the test suite is improving in every next generation until when the generation reached 125,

when no more mutants were killed. The graph on the right of Figure 13 shows the

proportion of the uniquely killed mutants out of the total generated mutants in each

generation. The plot shown in Figure 14 is another way to show the upper curve of the left

graph in Figure 13. It shows the number of unique mutants generated in each generation

(not total).

81

Figure 14: Number of unique tested mutants for QuadraticSolver (150 Generations)

As the number of generation reaches 75, no new mutant was generated.

The number of generation was further increased from 150 to 200. The result is shown in

Figure 15.

Figure 15: Killed mutants and unique mutants for QuadraticSolver (200 Generations)

The left graph of Figure 15 shows the cumulative mutants generated and the one killed.

Initially, the majority of the mutants were killed. The graph on the right of the figure depicts

the proportion of killed mutants. It shows that the proportion of mutants being killed

fluctuates along the different generations until it reaches 180 – when it seems to be stable.

82

Figure 16: Number of unique tested mutants for QuadraticSolver (200 Generations)

The graph plot in Figure 16 shows the number of unique mutants tested in the experiment

during each generation when the number of generation is increased to 200. At almost 178th

generation, no new mutants were tested. This means the mutants generated are already

generated in the previous generations.

Finally, the number of generation was further increased to 250 so as to be more confident

about the results. The experiment was run and the results are shown in Figure 17.

Figure 17: Killed mutants and unique mutants for QuadraticSolver (250 Generations tGA-mGA)

Having run the experiment for 250 generations, the results show that no more mutants are

killed as the cumulative killed mutants remains unimproved for about 50 more generations.

83

Out of 88 mutants generated, only 80 were killed. This resulted in killing 90.9% of the

mutants generated. The overall performance of the test cases was recorded to be 35.564.

The same experiment was repeated but with randomly generated mutants with the test cases

generated by the GA. The results are shown in Figure 18 .

Figure 18: Killed mutants and unique mutants with randomly generated mutants for QuadraticSolver (250 Generations)

The results in the graphs show that less mutants (24 out of 87) were generated because they

were not guided by any heuristic rather than random generation. In other words, 27.6% of

the total mutants generated by GA was generated by random generator. What is clear is

that most of the already generated mutants were repeatedly generated and the total unique

mutants generated are only 24, (23 were killed) which is too small compare to the number

when GA is used to generate them as shown in Figure 17. In that case, 96% of the randomly

generated mutants were killed in less than 10 generations. Figure 19 shows the number of

unique mutants generated in each generation. The random generator could not generate any

new mutants before reaching the 10th generation.

84

Figure 19: Number of unique tested mutants (randomly generated) for QuadraticSolver (250 Generations)

Conversely, randomly created test cases were executed against mutants generated by GA.

This result is shown in Figure 20 .

Figure 20: Killed mutants and unique mutants with randomly generated tests for QuadraticSolver (250 Generations)

Figure 20 shows the number and percentage (on average) of killed mutants and number of

generated mutants. The mGA was able to generate 87 unique mutants until the 74th

generation. Similarly, the random test was able to kill 38 unique mutants cumulatively at

92nd generation and no more mutants were killed. This shows that only 43.7% of the

generated distinct mutants were killed by the randomly generated test cases.

85

In order to compare the results of applying GAs to generate both mutants and test cases, an

experiment was conducted by executing randomly generated mutants with randomly

generated test cases. The results are shown in Figure 21 :

Figure 21: Killed mutants and unique mutants with random mutants and tests for QuadraticSolver (250 Generations)

The plots in the figure above displays the number of mutants generated and killed as 21

and 15 respectively resulting into killing 71.4% of the mutants generated arbitrarily.

5.5.2. TriangleType

This program has 14 LOC with three branches. It accepts three inputs which correspond to

the three sides of a triangle. The output of the program is the type of triangle represented

by the three sides as inputs. The GAs run for 250 generations and the result is shown in

Figure 22 .

86

Figure 22: Killed mutants and unique mutants for TriangleType (250 Generations tGA-mGA)

The average number of unique mutants generated increases as the GA executes through the

generations up to the 50th generation when no more mutants were generated by the mGA.

The tGA generated and complemented test cases in every generation ensuring that

maximum number of mutants were killed. At generation 195, the test suite has succeeded

in killing 79 mutants out of the 88 generated mutants. This means 89.8% of the mutants

were killed. The plot at the right of Figure 22 shows the proportion of mutants being killed

and how it fluctuates from one generation to next generation. The overall fitness of the test

cases was 34.95.

The same experiment was repeated but with randomly generated mutants but with the test

cases generated by the GA. The results are displayed in Figure 23 .

87

Figure 23: Number of unique tested mutants (randomly generated) for Triangle (300 Generations)

The results shown in the graphs in Figure 23 shows that only 24 mutants were generated

on average and all the mutants were killed by the GA-guided test cases. The results also

show that all the mutants were killed after 50 generations. This shows that the test cases

generated by the GA are effective. And the reason for quick convergence of the plot is the

fact that the mutants were randomly generated while the test cases were guided by GA. In

other words, the mutants generated were easier to kill than their counterparts generated by

mGA.

The same experiment was repeated but with randomly generated test cases against the

optimized mutants generated by mGA. The results are shown in Figure 24 .

88

Figure 24: Number of unique tested mutants with randomly generated tests for Triangle (250 Generations)

In this case, the mutation generation is guided by mGA and as a result, a high number of

unique mutants (87 to be precise) were created and only 44 were killed out of 97 resulting

in killing 50.6% of the generated mutants. This is because the test cases are generated

randomly, rendering the killing of the mutants not as effective as killing the mutants with

test cases generated by tGA.

To show that GA is doing a great job in generating optimized mutants and test cases, an

experiment is carried out by considering executing randomly generated mutants against

randomly generated test cases. The plots in Figure 25 show the results of the experiment.

Figure 25: Killed mutants and unique mutants with random mutants and tests for TriangleType (250 Generations)

89

Out of 23 random mutants generated, only 69.9% were killed which equals to 16 killed

mutants. As the generation of the execution reaches 135, no more mutants were killed nor

generated.

5.5.3. MID

This program has 20 LOC and finds the middle number from list of three numbers as inputs.

The GAs run for 250 generations and the following are the results obtained.

Figure 26: Killed mutants and unique mutants for MID (250 Generations tGA-mGA)

The graphs in Figure 26 explains the total average number of generated mutants and the

number of those killed by the test generated by tGA. The total number of distinct mutants

generated was 57 and all were killed. This means 100% of the generated mutants were

killed by the test suite and the test suite is effective. The overall fitness value of the test

suite is 40.

A set of random mutants of MID program was also generated and executed on the test

cases generated by the tGA. The results are shown below:

90

Figure 27: Number of unique tested mutants (randomly generated) for MID (250 Generations)

Figure 27 shows how all the randomly generated mutants were killed by test suites in less

than 20 generations due to the fact that the mutants were just randomly generated, which

leads to generating easy to kill mutants. This makes the optimized test cases kill the mutants

in such a short time (generation).

Conversely, mGA was allowed to generate optimized mutants and executed against

randomly generated test cases. The results are shown in Figure 28 :

Figure 28: Killed mutants and unique mutants with randomly generated tests for MID (250 Generations)

91

The figure above shows that only 50 mutants were generated and 23 were killed by the

randomly created test cases. This makes the proportion of the killed mutants to be 46% of

the total generated mutants guided by mGA.

In order to validate and justify the effectiveness of using GA to generate mutants and test

cases, another experiment was carried out by executing mutants that were generated

randomly while taking randomly generated test cases as inputs. The results of the execution

are shown in below:

Figure 29: Killed mutants and unique mutants with random mutants and tests for MID (250 Generations)

The plots in the left graph of Figure 29 shows the total number of mutants generated and

killed as 16 and 13 respectively causing the percentage of the killed mutants to be 81.3%.

5.5.4. LineRectangleClassifier

This program takes eight inputs (four inputs corresponding to the coordinates of a line and

four inputs representing the coordinates of a rectangle). It determines the location of the

line with respect to the rectangle. The line can be completely inside the rectangle or

completely outside the rectangle. It can also be partly inside and partly outside the

rectangle. Those that are found completely outside the rectangle can be at the top, bottom,

92

left or right side of the rectangle. The GAs ran for 250 generations and the following are

the results obtained.

Figure 30: Killed mutants and unique mutants for LineRectangleClassifier (250 Generations tGA-mGA)

On average, a total number of 99 mutants were produced and only 74 were killed. This

results in killing 74.74% of the total mutants generated. The plot on the right side of Figure

30 shows the percentage of the killed mutants in each generation. The overall fitness of the

test suite was 33.98.

On the other hand, set of random mutants were generated and test cases generated by GA

were executed against the mutants. The results of the execution are shown below.

Figure 31: Number of unique tested mutants (randomly generated) for LineRectangleClassifier (250 Generations)

93

A total number of 30 mutants were randomly generated and 100% of the mutants were

killed. This is because test cases were generated by tGA and as a result the effective test

cases killed the entire mutants.

Randomly generated test cases were executed against mutants generated by mGA. The

result of the execution is shown in Figure 32 :

Figure 32: Killed mutants and unique mutants with randomly generated tests for LineRectangleClassifier (250
Generations)

The results shown in Figure 32 depict the total number of mutants of

LineRectangleClassifier program generated by mGA and the number of mutants killed. It

can be seen that 81 mutants were generated in total while only 51.9% equivalent to 42

mutants were successfully killed by the randomly generated test cases.

Another experiment was carried out by executing randomly generated mutants against

randomly generated test cases.

94

Figure 33: Killed mutants and unique mutants with random mutants and tests for LineRectangleClassifier (250

Generations)

The graphs show that only 20 mutants were killed out of 28 randomly generated mutants.

And the percentage of the killed mutants in each generation is shown to be 71.4%.

5.5.5. PointCircleClassifier

The program PointCircleClassifier takes the coordinates of a circle, its radius and a

coordinates of a point as inputs and detect if the point is inside the circle, outside the circle

or on the circumference of the circle. It has 12 LOC. The GAs run for 250 generations and

the following are the results obtained.

Figure 34: Killed mutants and unique mutants for PointCircleClassifier (250 Generations tGA-mGA)

95

The plot on the left side of Figure 34 shows the total average number of mutants generated

by mGA and the number of killed ones. It shows that 85 out of 86 mutants were killed. The

overall fitness evaluation of the test suite was 35.73. This means 98.8% of the total mutants

were killed by the optimized test cases. The plot on the right is the graph showing the

percentage of killed mutants in each generation. Another variant of the experiment was

conducted by generating mutants randomly and executing them against the optimized test

cases. The result of the execution is shown in Figure 35 .

Figure 35: Number of unique tested mutants (randomly generated) for PointCircleClassifier (250 Generations)

The result shows that only 20 unique mutants were generated. This is because the mutants

were generated randomly. In other words, the generation of mutants is not guided by any

heuristic but only random generation. The result also depicts that 19 out of 20 mutants were

killed, which is equivalent to 95% of the mutants being killed.

On the other hand, optimized mutants (i.e. difficult-to-kill mutants) are executed against

randomly generated test cases. The result of the execution is shown in Figure 36 .

96

Figure 36: Killed mutants and unique mutants with randomly generated tests for PointCircleClassifier (250

Generations)

Similarly, the total number of mutants generated by mGA for PointCircleClassifier is 84

and only 44% of the mutants were killed corresponding to 37 mutants. The percentage of

killed mutants is low because the test cases were just randomly generated while the

mutants’ generation is guided by mGA. This is why the gap between the total mutants and

killed mutants is wide.

The result was also investigated by generating random mutants and random test cases.

These test cases were evaluated by executing the mutants against the test cases. The results

are shown below:

97

Figure 37: Killed mutants and unique mutants with random mutants and tests for PointCircleClassifier (250

Generations)

The result shows that 12 out of 18 generated mutants were killed in less than 150

generations, making the proportion of killed mutant to be 66.7%.

5.6 Confidence Interval

In order to find the confidence interval of data whose population standard deviation is

known using the standard deviation and sample mean, the data has to be from a normal

distribution. If there is no certainty with regards to the data being from a normal

distribution, the number of data has to be large enough (at least 30) in order to apply the

Central Limit Theorem which allows the usage of Z-values in the formula. In lieu of this,

the experiment was repeated for each subject program for 32 times. Experiments are often

repeated in order to give the following insights [66]:

 A large amount of results may make it easier to spot anomalies.

 Repetition reduces the likelihood of errors or anomalous results.

 Scientist repeat others’ experiments to verify the accuracy of the findings.

 Repeating an experiment allows a person to refine the results or simplify the

methodology.

98

 Experiments are often repeated in order to study why they brings about the results

they do.

The results of the repetition are shown in Table 20 :

Table 20: Fitness of tGA of each subject program over 32 runs

The values shown in Table 20 are the values of the fitness of tGA for each subject program

executed 32 times. Each of the values of the subject programs are analyzed and the

descriptive statistical values are obtained. The values are plotted to show the mean with

95% confidence interval as shown in Figure 38.

99

Figure 38: Confidence Intervals for 32 runs of the experiment on the subject programs

5.7 Answering Research Questions

There are four research questions as stated in CHAPTER 3. This section would answer the

research questions.

RQ 1: What is the effectiveness of the generated test cases in killing the generated

mutants?

GAs were used to generate both test cases and mutants. The mutants were made to execute

against the test cases to measure the effectiveness of the test cases. The experiment was

carried out on five subject programs. Figure 17, Figure 22, Figure 26, Figure 30, and Figure

34 respectively show the result of executing optimized test cases against optimized

mutants. The results on the figures show 90.9%, 89.8%, 100%, 74.7% and 98.8% of

mutants were respectively killed by the optimized test cases. These values show the

effectiveness of the generated test cases.

0

5

10

15

20

25

30

35

40

45

Quad Triangle MID LineRect PointCircle

Fi
tn

es
s

o
f

th
e

te
st

er

Subject Programs

Mean with 95% Confidence Intervals

100

RQ 2: How strong are the mutants generated?

Figure 17, Figure 22, Figure 26, Figure 30, and Figure 34 show that the number of mutants

killed were increasing gradually, showing that most of the mutants were resisting killing

by the test cases. Some of the mutants were only killed when the test cases were more

optimized in the later generations. The mutation scores were only obtained when the

mutants were attempted to be killed for about 200 generations. If the mutants were killed

just in 10 – 50 generations, we would have concluded that the mutants are not strong.

RQ 3: Is the game-like approach better than random generation of both test data and

mutants?

Experiments were carried out to investigate if the game-like approach presented in this

study performs better than random generation. To verify this, another set of experiments

were carried out generating random test cases but generating mutants using mGA. Also,

randomly generated mutants were executed against optimized test cases generated by tGA.

Figure 18 and Figure 20 show the results of the experiments for QuadraticSolver. The

former shows that only few percentage of the possible mutants were generated because the

mutants were generated randomly and almost all the mutants were killed because the test

cases are optimized. While the latter shows result of randomly generated test cases against

optimized mutants, the number of mutants generated is maximized but only very small

percentage of the mutants were killed. This is because the test suite to kill the mutants is

randomly generated. Similar results are shown for other subject program. The Table 21

shows the subject programs and the figures showing their results.

101

Table 21: Results of RQ3

Subject Programs Results shown in

QuadraticSolver Figure 18 and Figure 20

TriangleType Figure 23 and Figure 24

MID Figure 27 and Figure 28

LineRectangleClassifier Figure 31 and Figure 32

PointCircleClassifier Figure 35 and Figure 36

RQ 4: Both GAs were executed across different set of parameters and the set of parameters

with the highest performance (i.e. yielding the highest score for each GA) is selected. The

set of GA parameters used in the experiment for tester GA and mutant GA are shown in

Table 17 and Table 19 respectively.

5.8 Hard to Kill Mutants

The hard-to-kill mutants generated from the experiment when both test cases and mutants

respectively generated by tGA and mGA are executed in isolation without mixing with any

other killed mutants to see if the test cases can kill them. The mutants were executed against

the optimized test cases expecting some of the mutants to be killed. This was applied for

each of the subject programs. The results obtained show that none of them were killed. We

investigated why they were not killed using manual method by cross-checking the code of

the hard-to-kill mutants. What we observed was that the mutated statement is not reachable.

The reason why these statements were not reached is that the statements are part of the

body of a conditional statement of which this conditional statement is testing equality of

102

some combination of the program input with other different combinations. This is

illustrated as follows:

For example, in QuadraticSolver, line 7 (‘elseif (d==0)’) is the condition to get lines 8 and

9 executed. If the mutation is applied on the program statement in line 8 or line 9, the

program code would be unreachable unless the condition is satisfied. Again, for d (which

is the determinant ‘b2-4ac’) to be zero, the likelihood is very small. This problem can

properly be addressed using white box testing or changing the fitness in such a way that

the objective would be to get values that would be equal to zero or close. So that they can

be guided to become zero in the long run of the execution. This would have changed our

aim of presenting a black-box approach to kill as many mutants as possible. In fact, if a

program does not have such condition, then the approach would be inappropriate for such

program. The same challenge was recorded for the remaining subject programs except for

the MID program, which has no such condition. This is a strong reason why test cases

generated to kill the mutants of MID program were able to get 100% mutation score. In

other word, there is a record of killing the entire mutants of MID program.

103

CHAPTER 6

1 CONCLUSION AND FUTURE WORK

This chapter discusses the summary of the study, limitations of the study and some threats

to validity of the results obtained.

6.1 Main Contributions of the Study

The following are the main contributions of this study:

1. We compared the existing GA-based test data generation techniques using a

framework of features we developed;

2. We proposed a GA-based test data generation technique using mutation analysis;

3. We presented mutant generation using GA considering arithmetic and relational

operator replacement as the mutation operators;

4. We developed mutant converter, which takes mutant chromosomes and converts

them to real mutant programs;

5. We presented the mutants and test case generation in a form of a non-cooperative

game;

6. We validated the approach using different subject programs and the results show

that the approach is effective.

6.2 Limitations of the Study

This study suffers from the following limitations:

104

1. Our study did not include any technique to detect equivalent mutants. We did not check

for any semantic similarity between the original programs and the mutants generated.

In that regard, we are not sure if there are equivalent mutants in the generated mutants.

The accuracy of our result would be affected by the presence of equivalent mutant (if

any). We carried out the experiment under the assumption that there are no equivalent

mutants as we have tried to minimize the likelihood of having equivalent mutants.

2. The study is limited to only two classes of mutation operators namely: Arithmetic

Operator Replacement and Relational Operator Replacement. Applying the approach

using more mutation operators can help in generalizing the results obtained.

3. All the program subjects used in the study are small-sized. This may limit the extent to

which we can generalize the results obtained.

6.3 Threats to Validity

Despite the fact the experiments were cautiously designed to ensure fairness, a number of

threats are posed to the validity of the results obtained. The threats are as follows: how the

mutation operators are selected and the choice of test cases.

The huge number of mutants generated in mutation increases the cost of mutation testing.

In order to reduce this cost, we employed selective mutation – where a particular set of

mutation operators are selected from the whole set of the operators. The inability to

carryout exhaustive application of the mutation operators may pose a threat to the validity

of the results. The relational operator was therefore selected alongside arithmetic

replacement operators because it alters the control flow in the mutant; thereby increasing

the coverage of the program under test. This threat can be reduced in future by adding more

operators to the list of operators.

105

6.4 Future Work

We have implemented a game-like approach to generating mutants and test cases to kill

the mutants without being bothered by the number of generated mutants and test cases.

In future work, we would look into how we can apply GA to reduce the number of mutants

generated while maintaining the efficiency and accuracy of the analysis using our game-

like approach.

The need for a test oracle of program under test makes it mandatory to execute every

program, thereby results in slowing down the testing process (i.e. the act of comparing the

expected output with the real output under a set of inputs makes the testing a time-

consuming process). Therefore, applying Machine Learning Techniques would get rid of

the need to know the expected output prior the beginning of the testing activities. Some

features of mutants and tests are taken to predict if the mutants represented by those

features can be killed by the corresponding test cases without executing the mutants. A

deeper research could be conducted to further reduce the cost of mutation testing using

predictive mutation testing and metaheuristics whereby some features of mutants and tests

are collected to forecast if a mutant would be killed or not without going through the stress

of executing the whole mutants generated. Apart from identifying invalid mutants in this

research, we will distinguish any redundant mutant from others in our future research.

It is considered a promising direction to future research to optimize the effectiveness of the

fitness function by testing varieties of fitness functions. The afore-mentioned

recommendations could be complemented by minimizing the number of test cases.

106

Another direction for future research is generating mutants for covering equality relational

operators.

Applying other metaheuristic techniques like Ant Colony Optimization, Particle Swarm

Optimization, and Artificial Bee Colony on this technique is a recommended future

research.

Implementing the approach in other language than MATLAB as well as exploring more

mutation operators can be considered as another direction to future work.

107

REFERENCES

[1] P. Offutt and A. Jeff, Introduction to Software Testing. Cambridge University Press,

2014.

[2] B. . Haskins, B. . Dick, J. . Stecklein, R. . Lovell, G. . Moroney, and J. Dabney,

“Error Cost Escalation Through the Project Life Cycle,” Incose -Annual Conf. Symp.

Proceedings- Cd Rom Ed. 2004, p. 8.4.2, 2004.

[3] W. Eric and M. Aditya, “Fault Detection Effectiveness of Mutation and Data Flow

Testing,” Softw. Qual. J., vol. 4, pp. 69–83, 1995.

[4] R. Baker and I. Habli, “An Empirical Evaluation of Mutation Testing for Improving

the Test Quality of Safety-Critical Software,” IEEE Trans. Softw. Eng., vol. 39, no.

6, pp. 787–805, 2013.

[5] M. V Zelkowitz, “Software Testing Lecture Note MSWE 607,” 2000.

[6] IEEE, IEEE Standard Glossary of Software Engineering Terminology, vol. 121990,

no. 1. 1990.

[7] IEEE, Standard for Software and System Test Documentation, vol. 2008, no. July.

2008.

[8] A. P. Mathur, Foundations of Software Testing 2E. 2008.

[9] Y. Jia and M. Harman, “An Analysis and Survey of the Development of Mutation

Testing,” Softw. Eng. IEEE Trans., vol. 37, no. 5, pp. 649–678, 2011.

[10] J. Offutt and R. H. Untch, “Mutation 2000: Uniting the Orthogonal,” Proc. Mutat.

2000 Mutat. Test. Twent. Twenty First Centuries, pp. 45–55, 2000.

108

[11] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data Selection: Help

for the Practicing Programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

[12] S. Ecott, “Fault-based Testing of Web Applications,” pp. 1–3, 2008.

[13] M. Woodward, “Mutation Testing-an Evolving Technique,” Softw. Test. Crit. Syst.

IEE …, pp. 1–6, 1990.

[14] R. H. Untch, “On Reduced Neighborhood Mutation Analysis using a Single

Mutagenic Operator,” ACMSE, pp. 1–4, 2009.

[15] M. E. Delamaro, L. Deng, V. H. S. Durelli, N. Li, and J. Offutt, “Experimental

Evaluation of SDL and One-op Mutation for C,” Proc. - IEEE 7th Int. Conf. Softw.

Testing, Verif. Validation, ICST 2014, pp. 203–212, 2014.

[16] V. H. S. Durelli, N. M. De Souza, and M. E. Delamaro, “Are Deletion Mutants

Easier to Identify Manually?,” Proc. - 10th IEEE Int. Conf. Softw. Testing, Verif.

Valid. Work. ICSTW 2017, pp. 149–158, 2017.

[17] M. E. Delamaro, J. Offutt, and P. Ammann, “Designing Deletion Mutation

Operators,” Proc. - IEEE 7th Int. Conf. Softw. Testing, Verif. Validation, ICST 2014,

pp. 11–20, 2014.

[18] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, “Toward the Determination

of Sufficient Mutant Operators for C,” Softw. Test. Verif. Reliab., vol. 11, no. 2, pp.

113–136, 2001.

[19] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient Mutation Operators

for Measuring Test Effectiveness,” ICSE, pp. 351–360, 2008.

109

[20] M. Sridharan and A. S. Namin, “Prioritizing Mutation Operators Based on

Importance Sampling,” Proc. - Int. Symp. Softw. Reliab. Eng. ISSRE, no. Issre 10,

pp. 378–387, 2010.

[21] A. S. Namin and J. H. Andrews, “On Sufficiency of Mutants,” Proc. - Int. Conf.

Softw. Eng., pp. 73–74, 2007.

[22] M. E. Delamaro, L. Deng, N. Li, V. Durelli, and J. Offutt, “Growing a Reduced Set

of Mutation Operators,” 28th Brazilian Symp. Softw. Eng. SBES 2014, pp. 81–90,

2014.

[23] M. Papadakis and Y. Le Traon, “Effective Fault Localization via Mutation Analysis:

A Selective Mutation Approach,” Proc. 29th Annu. ACM Symp. Appl. Comput., pp.

1293–1300, 2014.

[24] A. A. L. de Oliveira, C. G. Camilo-Junior, and A. M. R. Vincenzi, “A

Coevolutionary Algorithm to Automatic Test Case S election and Mutant in

Mutation Testing,” 2013 IEEE Congr. Evol. Comput., pp. 829--836, 2013.

[25] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An Experimental

Determination of Sufficient Mutant Operators,” ACM Trans. Softw. Eng. Methodol.,

vol. 5, no. 2, pp. 99–118, 1996.

[26] A. Griffiths, S. Wessler, R. Lewontin, W. Gelbart, D. Suzuki, and J. Miller, “An

Introduction to Genetic Analysis,” Vasa, p. 706, 2005.

[27] J. McCall, “Genetic Algorithms for Modelling and Optimisation,” J. Comput. Appl.

Math., vol. 184, no. 1, pp. 205–222, 2005.

110

[28] S. Luke, Essentials of Metaheuristics, Second. California, USA: Lulu, 2013.

[29] B. and Nadeem, “A Fitness Function for Modular Evolutionary Testing of Object-

Oriented Programs,” Search, 2005.

[30] P. Pahwa and R. Miglani, “Test Case Design using Black Box Testing Techniques

for Data Mart,” Int. J. Comput. Appl., vol. 109, no. 3, pp. 18–22, 2015.

[31] G. Fraser and A. Zeller, “Mutation-Driven Generation of Unit Tests and Oracles,”

IEEE Trans. Softw. Eng., vol. 38, no. 2, pp. 278–292, 2012.

[32] T. Mantere, “Automatic Software Testing by Genetic Algorithms,” University of

Vaasa, Finland, 2003.

[33] C. W. Hang and Y. Cheung, “Using a GA Adaptor in Multi-Applications,” pp. 839–

848, 2003.

[34] R. A. DeMillo and A. J. J. Offutt, “Constraint-Based Automatic Test Data

Generation,” IEEE Trans. Softw. Eng., vol. 17, no. 9, pp. 900–910, 1991.

[35] J.-C. Lin and P.-L. Yeh, “Automatic Test Data Generation for Path Testing Using

GAs,” Inf. Sci. (Ny)., vol. 131, no. 1, pp. 47–64, 2001.

[36] N. Mansour and M. Salame, “Data Generation for Path Testing,” Softw. Qual. J.,

vol. 12, no. 2, pp. 121–136, 2004.

[37] C. Doungsa-ard, K. Dahal, A. Hossain, and T. Suwannasart, “Test Data Generation

from UML State Machine Diagrams using GAs,” Int. Conf. Softw. Eng. Adv. (ICSEA

2007), no. Icsea, p. 47, 2007.

[38] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating Software Test Data by

111

Evolution,” IEEE Trans. Softw. Eng., vol. 27, no. 12, pp. 1085–1110, 2001.

[39] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis, “Using Genetic Algorithms to Aid

Test-Data Generation for Data-Flow Coverage,” Proc. - Asia-Pacific Softw. Eng.

Conf. APSEC, pp. 41–48, 2007.

[40] M. A. Ahmed and I. Hermadi, “GA-based Multiple Paths Test Data Generator,”

Comput. Oper. Res., vol. 35, no. 10, pp. 3107–3124, 2008.

[41] P. R. Srivastava and T. Kim, “Application of Genetic Algorithm in Software

Testing,” Intenational J. Softw. Eng. Its Appl., vol. 3, no. 4, pp. 87–96, 2009.

[42] J. J. Domínguez-Jiménez, A. Estero-Botaro, A. García-Domínguez, and I. Medina-

Bulo, “Evolutionary Mutation Testing,” Inf. Softw. Technol., vol. 53, no. 10, pp.

1108–1123, 2011.

[43] McMinn P, “Search‐based Software Test Data Generation: A Survey,” Softw.

testing, Verif. Reliab., vol. 14, no. 2, pp. 105–156, 2004.

[44] S. Ali and L. Briand, “A Systematic Review of the Application and Empirical

Investigation of Search-based Test Case Generation,” IEEE Trans. Softw. Eng., vol.

36, no. 5, pp. 1–22, 2010.

[45] H. L. T. My, B. N. Thanh, and Tung Khuat Thanh, “Survey on Mutation-based Test

Data Generation Survey on Mutation-based Test Data Generation,” Int. J. Electr.

Comput. Eng., vol. 5, no. 5, pp. 1164–1173.

[46] M. Harman, “Automated Test Data Generation using Search Based Software

Engineering,” Second Int. Work. Autom. Softw. Test (AST ’07), vol. 30, no. 11, pp.

112

2–2, 2007.

[47] R. A. DeMillo, “Test Adequacy and Program Mutation,” ACM, pp. 355–356, 1989.

[48] X. Yao, M. Harman, and Y. Jia, “A Study of Equivalent and Stubborn Mutation

Operators Using Human Analysis of Equivalence,” Proc. 36th Int. Conf. Softw.

Eng., pp. 919–930, 2014.

[49] F. C. M. Souza, M. Papadakis, V. Durelli, and M. E. Delamaro, “Test Data

Generation Techniques for Mutation Testing: A Systematic Mapping,” Conf. Softw.

Eng., no. 17, pp. 419–432, 2014.

[50] N. Jatana, B. Suri, and S. Rani, “Systematic Literature Review on Search Based

Mutation Testing,” e-Information Softw. Eng. J., vol. 11, no. 1, pp. 59–76, 2017.

[51] L. Bottaci, “Instrumenting Programs with Flag Variables for Test Data Search by

Genetic Algorithm,” in Proceedings of the 4th Annual Conference on Genetic and

Evolutionary Computation, 2002, pp. 1337–1342.

[52] L. Bottaci, “Predicate Expression Cost Functions to Guide Evolutionary Search for

Test Data,” in Proceedings of the 2003 Conference on Genetic and Evolutionary

Computation (GECCO ’03), 2003, vol. 2724, pp. 2455–2464.

[53] S. Selvakumar and N. Ramaraj, “A Tool for Generation and Minimization of Test

Suite by Mutant Gene Algorithm,” J. Comput. Sci., vol. 7, no. 10, pp. 1581–1589,

2011.

[54] C. Sharma, S. Sabharwal, and R. Sibal, “A Survey on Software Testing Techniques

using Genetic Algorithm,” Int. J. Comput. Sci. Issues, vol. 10, no. 1, pp. 381–393,

113

2013.

[55] R. Malhotra and M. Garg, “An Adequacy Based Test Data Generation Technique

Using Genetic Algorithms,” J. Inf. Process. Syst., vol. 7, no. 2, pp. 363–384, 2011.

[56] B. P. Sharma, R. Malhotra, and M. Garg, “Empirical Validation of an Efficient Test

Data Generation Algorithm Based on Adequacy based Testing Criteria,” Softw. Eng.

An Int. J., vol. 2, no. 1, pp. 20–39, 2012.

[57] P. S. L. de S. Rodolfo Adamshuk Silva,Simone do Rocio Senger de Souza, “A

Systematic Review on Search based Mutation Testing,” J. Inf. Softw. Technol., vol.

70, no. 2, pp. 113–117, 2011.

[58] A. J. Offut, Z. Jin, and J. Pan, “The Dynamic Domain Reduction Procedure for Test

Data Generation: Design and Algorithms,” Fairfax, VA USA, 1994.

[59] B. Baudry, F. Fleurey, J.-M. Jezequel, and Y. Le Traon, “Genes and Bacteria for

Automatic Test Cases Optimization in the .NET Environment,” Proc. 13th Int.

Symp. Softw. Reliab. Eng., pp. 195–206, 2002.

[60] K. Ayari, S. Bouktif, and G. Antoniol, “Automatic Mutation Test Input Data

Generation via Ant Colony,” Proc. 9th Annu. Conf. Genet. Evol. Comput. (GECCO

’07), pp. 1074–1081, 2007.

[61] M. Papadakis and N. Malevris, “An Effective Path Selection Strategy for Mutation

Testing,” Proc. 16th Asia-Pacific Softw. Eng. Conf., pp. 422–429, 2009.

[62] L. L. Zhang, T. Xie, L. L. Zhang, N. Tillmann, J. De Halleux, and H. Mei, “Test

Generation via Dynamic Symbolic Execution for Mutation Testing,” Proc. ICSM,

114

pp. 1–10, 2010.

[63] M. Papadakis and N. Malevris, “Automatic Mutation Test Case Generation Via

Dynamic Symbolic Execution,” 2010.

[64] M. Harman, Y. Jia, and W. B. Langdon, “Strong Higher Order Mutation-Based Test

Data Generation,” Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw.

Eng., pp. 212–222, 2011.

[65] L. T. M. Hanh, K. T. Tung, and N. T. Binh, “Mutation-based Test Data Generation

for Simulink Models using Genetic Algorithm and Simulated Annealing,” Int. J.

Comput. Inf. Technol., vol. 03, no. 04, pp. 763–771, 2014.

[66] Z. Crazy, “The Student Room.” [Online]. Available:

https://www.thestudentroom.co.uk/showthread.php?t=1702327.

[67] J. Allen Troy Acree, “On Mutation,” PhD Dissertation, Georgia Institute of

Technology, 1980.

[68] H. J.M., “Testing COBOL Programs by Mutation,” PhD Dissertation, Georgia

Institute of Technology, 1980.

[69] T. A. Budd, “Mutation Analysis of Program Test Data,” PhD Dissertation, Yale

University, New Haven, Connecticut United States, 1980.

[70] A. Tanaka, “Equivalence Testing for FORTRAN Mutation System Using Data Flow

Analysis,” PhD Dissertation, Georgia Institute of Technology, 1981.

[71] A. J. Offut, “Automatic Test Data Generation,” PhD Dissertation, Georgia Institute

of Technology, 1998.

115

[72] M. W. Craft, “Detecting Equivalent Mutants using Compiler Optimization

Techniques,” Master’s Thesis, Clemson University, 1989.

[73] B. Choi, “Software Testing Using High-Performance Computers,” Doctoral

Dissertation, Purdue University, West Lafayette, United States, 1991.

[74] Edward William Krauser, “Compiler-Integrated Software Testing,” PhD

Dissertation, Purdue University, 1991.

[75] S. Fichter, “Parallelizing Mutation on a Hypercube,” Master’s Thesis, Clemson

University, 1991.

[76] S. Lee, “Weak vs. Strong: An Empirical Comparison of Mutation Variants,”

Master’s Thesis, Clemson University, Clemson SC, 1991.

[77] C. N. Zapf, “A Distributed Interpreter for the Mothra Mutation Testing System,”

Master’s Thesis, Clemson University, 1993.

[78] M. E. Delamaro, “Proteum - A Mutation Analysis Based Testing Environment,”

PhD Dissertation, University of Sao Paulo, 1993.

[79] W. E. Wong, “On Mutation and Data Flow,” PhD Dissertation, Purdue University,

1993.

[80] J. Pan, “Using Constraints to Detect Equivalent Mutants,” Master’s Thesis, George

Mason University, United States, 1994.

[81] V. N. Fleyshgakker, “TECHNIQUES TO IMPROVE THE PERFORMANCE OF

MUTATION ANALYSIS,” PhD Dissertation, The City University of New York,

1994.

116

[82] R. H. Untch, “Schema-based Mutation Analysis: A New Test Data Adequacy

Assessment Method,” PhD Dissertation, Clemson University, 1995.

[83] S. Ghosh, “Testing Component-Based Distributed Applications,” PhD Dissertation,

Purdue University, 2000.

[84] W. Ding, “Using Mutation to Generate Tests from Specification,” Master’s Thesis,

George Mason University, 2000.

[85] V. Okun, “Specification Mutation for Test Generation and Analysis,” PhD

Dissertation, University of Maryland Baltimore, 2004.

[86] Y. S. Ma, “Object-Oriented Mutation Testing for Java,” Doctoral Dissertation,

KAIST University, Korea, 2005.

[87] P. May, “Test Data Generation : Two Evolutionary Approaches to Mutation

Testing,” PhD Dissertation, The University of Kent, 2007.

[88] J. S. Bradbury, “Using Program Mutation for the Empirical Assessment of Fault

Detection Techniques: A Comparison of Concurrency Testing and Model

Checking,” PhD Dissertation, Queen’s University Kingston, Ontario, Canada, 2007.

[89] S. Hussain, “Mutation Clustering,” Master’s Thesis, King’s College London, 2008.

[90] K. Adamopoulos, “Search Based Test Selection and Tailored Mutation,” Master’s

Thesis, King’s College London, 2009.

[91] D. Hook, “Using Code Mutation to Study Code Faults in Scientific Software,” PhD

Dissertation, Queen’s University Kingston, Ontario, Canada, 2009.

[92] G. K. Kaminski, “Applications of Logic Coverage Criteria and Logic Mutation to

117

Software Testing,” PhD Dissertation, George Mason University, 2010.

[93] V. Debroy, “TOWARDS THE AUTOMATION OF PROGRAM DEBUGGING,”

PhD Dissertation, The University of Texas, Austin, Texas United States, 2011.

[94] C. Zhou, “Mutation Testing for Java Database Applications,” PhD Dissertation,

Polytechnic Institute of New York University, United States, 2012.

[95] T. Sarkar, “Testing Database Applications using Coverage Analysis and Mutation

Analysis,” PhD Dissertation, IOWA State University, United States, 2013.

[96] M. A. Hays, “A Fault-Based Model of Fault Localization Techniques,” PhD

Dissertation, University of Kentucky, United States, 2014.

[97] V. S. Movva, “Automatic Test Suite Generation for Scientific MATLAB Code,”

Master’s Thesis, University of Minnesota, 2015.

[98] X. Li, “The Use of Software Faults in Software Reliability Assessment and Software

Mutation Testing,” PhD Dissertation, The Ohio State University, United States,

2015.

[99] U. Praphamontripong, “TESTING WEB APPLICATIONS WITH MUTATION

ANALYSIS,” PhD Dissertation, George Mason University Fairfax, VA, 2017.

118

Appendix A

Experimental Data

We described the 5 subject programs used in the experiment. Although, they have been

briefly explained in Chapter 6 but here, we give a more elaborate description of the codes.

QuadraticSolver: The QuadraticSolver program is used to get the roots of a quadratic

equation. A quadratic equation is an algebraic equation with the degree of two and the form

ax2+bx+c where a, b, c are the coefficients of the equation and x is the unknown. The

degree of a polynomial is the highest degree of its monomial (i.e. each term) with non-zero

coefficients. The coefficients can be uniquely identified as the quadratic coefficient, linear

coefficient, and constant (free term) respectively with a ≠ 0. If a = 0, then the equation is

no more a quadratic but rather a linear equation. The values of b and c can be zero, it does

not change the characteristics of the equation being quadratic. The program takes three

parameters as input and returns two roots as outputs. The outputs can be two distinct real

roots or two equal real roots. It can also be two complex numbers.

Figure 39: Roots of quadratic equation

TriangleType: The TriangleType program takes three inputs as the sides of a triangle and

decides what type of triangle is represented by the three sides. All the three sides of triangle

119

have non-zero values. Any triangle with a side having a zero value, is an invalid triangle.

The output can be equilateral, isosceles, scalene or invalid triangle. Also, length of a side

should not be greater or equal to the sum of two other sides.

MID: This is a program that takes three input values and return the middle one.

LineRectangleClassifier: This program determines the position of a line with respect to the

position of a rectangle. In other words, it determines the relative positions relationship

between a line and a rectangle. It takes eight input variables, four out of them

(xr1,xr2,yr1,yr2) denote the coordinates of a rectangle and the remaining four variables

(xl1,xl2,yl1,yl2) denote the coordinates of a line. It returns one of the following four

outputs:

 The line is wholly inside rectangle,

 The line is partially inside rectangle,

 The line is wholly outside rectangle, and

 Invalid line or rectangle coordinates.

PointCircleClassifier: This program investigates the position of a given point with respect

to a given circle by examining the center coordinates of the circle, its radius and the

coordinates of the point. It returns one of three outputs as follows: point is outside, point is

inside and point on the circumference of the circle.

120

Appendix B

Codes of Programs under Test

The program code is presented here:

QuadraticSolver.m

TriangleType.m

121

MID.m

PointCircleClassifier.m

122

Appendix C

Theses/Dissertations on Mutation Testing

Summary of Master's and PhD theses on mutation testing

Author Thesis Title MSc/

PhD

University Year of

Pub

Acree [67]

On Mutation

PhD Georgia Institute of

Technology

1980

Hanks [68] Testing COBOL Programs by

Mutation

PhD Georgia Institute of

Technology

1980

Budd [69] Mutation Analysis of Program Test

Data

PhD Yale University 1980

Tanaka [70] Equivalence Testing for FORTRAN

Mutation System Using Data Flow

Analysis

PhD Georgia Institute of

Technology

1981

Offutt [71] Automatic Test Data Generation PhD Georgia Institute of

Technology

1988

Craft [72] Detecting Equivalent Mutants Using

Compiler Optimization Techniques

Master Clemson University 1989

123

Choi [73] Software Testing Using High-

Performance Computers

PhD Purdue University 1991

Krauser [74] Compiler-Integrated Software Testing PhD Purdue University 1991

Fichter [75] Parallelizing Mutation on a Hypercube Master Clemson University 1991

Lee [76] Weak vs. Strong: An Empirical

Comparison of Mutation Variants

Master Clemson University 1991

Zapf [77] A Distributed Interpreter for the

Mothra Mutation Testing System

PhD Clemson University 1993

Delamaro [78] Proteum – A Mutation Analysis Based

Testing Environment

PhD University of Sao

Paulo

1993

Wong [79] On Mutation and Data Flow PhD Purdue University 1993

Pan [80] Using Constraints to Detect

Equivalent Mutants

Master George Mason

University

1994

Fleyshgakker

[81]

Techniques to improve the

performance of mutation analysis

PhD The City University

of New York

1994

Untch [82] Schema-based Mutation Analysis: A

New Test Data Adequacy Assessment

Method

PhD Clemson University 1995

Ghosh [83] Testing Component-Based Distributed

Applications

PhD Purdue University 2000

124

Ding [84] Using Mutation to Generate Tests

from Specifications

Master George Mason

University

2000

Okun [85] Specification Mutation for Test

Generation and Analysis

PhD University of

Maryland Baltimore

2004

Ma [86] Object-Oriented Mutation Testing for

Java

PhD KAIST University

in Korea

2005

May [87] Test Data Generation: Two

Evolutionary Approaches to Mutation

Testing

PhD University of Kent 2007

Bradbury [88] Using Program Mutation for the

Empirical Assessment of Fault

Detection Techniques: A Comparison

of Concurrency Testing and Model

Checking

PhD Queen’s University

Kingston

2007

Hussain [89] Mutation Clustering Master King’s College

London

2008

Adamopoulos

[90]

Search Based Test Selection and

Tailored Mutation

Master King’s College

London

2009

Hook [91] Using Code Mutation to Study Code

Faults in Scientific Software

Master Queen’s University,

Ontario

2009

125

Kaminski [92] Applications of Logic Coverage

Criteria and Logic Mutation to

Software Testing

PhD George Mason

University

2010

Debroy [93] Towards the Automation of Program

Debugging

PhD The University of

Texas

2011

Zhou [94] Mutation Testing for Java Database

Applications

PhD Polytechnic Institute

of New York

University

2012

Sarkar [95] Testing database applications using

coverage analysis and mutation

analysis

PhD IOWA State

University

2013

Hays [96] A fault-based model of Fault

Localization Techniques

PhD University of

Kentucky

2014

Movva [97] Automatic Test Suite Generation

for Scientific MATLAB Code

Master University of

Minnesota

2015

Li [98] The Use of Software Faults in

Software Reliability Assessment and

Software Mutation Testing

PhD The Ohio State

University

2015

126

Prapha-

montripong

[99]

Testing Web Applications with

Mutation Analysis

PhD George Mason

University

2017

 BEST FITNESS VALUES

Experiment

No Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

1 33.7740 32.1602 37.9041 39.4930 33.2757 36.7126 34.3864 38.3350 37.6885 31.6725

2 38.5071 35.6056 39.2961 36.9667 35.8279 38.1540 38.7901 39.8891 30.0052 38.6544

3 39.9037 33.0026 34.9158 37.4098 35.0061 38.9077 34.3358 33.0678 37.3812 33.6207

4 39.1398 34.9611 28.2038 29.4503 38.3525 33.8116 38.1383 30.5129 34.6275 35.5586

5 34.1624 33.6677 36.5198 37.1225 35.3362 33.6478 39.5835 32.6566 32.8457 33.1363

6 32.4155 36.6058 38.7388 35.9978 35.5122 33.1925 32.2262 38.0534 38.3688 34.3484

7 32.9217 35.0007 38.6311 38.7342 37.3219 39.6811 39.5449 32.9016 37.1863 35.8464

8 38.1256 37.2233 35.0519 34.4001 34.7211 39.3514 35.6501 35.5400 35.6335 39.5623

9 33.7530 39.0592 32.1590 34.7341 38.1282 34.7424 36.9505 35.6242 32.0813 36.7926

10 36.8125 37.1953 34.7418 35.9464 37.6142 39.1024 32.4405 32.7869 37.1983 38.1126

11 36.9673 38.3572 38.7063 37.6003 36.7386 35.7500 38.9305 36.3107 37.2223 38.7747

12 38.9481 38.0093 35.3550 32.0018 33.1957 34.1907 38.9794 36.8100 34.5695 34.2743

13 35.4825 39.2301 39.4008 36.0423 37.0207 37.7541 32.1913 36.5995 32.3723 35.3803

14 35.7419 32.1810 32.5206 39.3917 36.2731 34.9344 34.9116 33.2110 33.1969 34.8064

15 34.6877 38.2722 35.8939 35.7184 33.0500 39.0911 37.3965 38.6813 37.2519 39.8713

16 39.8383 34.0012 36.9966 37.8259 35.9854 38.7986 33.5273 32.9932 32.0223 33.2236

Figure 40: Results of experiment to select the best parameter set for tGA

127

Vitae

Name :HAYATULLAHI BOLAJI ADEYEMO

Nationality : NIGERIAN

Date of Birth :12/16/1986

 Email :HAYATU4ISLAM@YAHOO.COM

Address :No 9 Olofa way, Offa Kwara State, Nigeria

Academic Background :Bachelor of Science Computer Science Usmanu Danfodiyo

University, Sokoto

