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Human pose recognition is considered a well-known process for estimating the

human body pose from a single image or a series of video frames. There exist many

applications that can benefit from human pose technology e.g. activity recognition,

human tracking, 3D gaming, character animation, clinical analysis of human gait

and other HCI applications. Due to its many challenges, such as illumination,

occlusion, outdoor environment and clothing, it is considered one of the active

areas in computer vision now a days.

For the last 15 years, human pose recognition problem significantly gained in-

terest of many researchers and therefore, many techniques were proposed in order

to address the challenges of human pose recognition. So far most of the human

pose recognition work is done on Western clothes where human body parts are not

xvi



covered completely in a single piece fabric. However, the recognition of human

body parts in western clothes is comparably easier than draped based fabric where

all the body parts are covered in single piece of fabric.

Therefore in this thesis we primarily targeted the draped based clothes espe-

cially Arabic dress. The significance of Arabic dress that it is covered in a single

piece of fabric. We developed a framework for recognizing human pose in draped

based clothes. In this framework we adopted learning based technique in Pixel

and Patch based methods for recognizing human pose. In each method we applied

depth and computer vision feature extraction techniques. These features give us

a little information about a human body part. In order to get full information or

prediction about each body part, the classification is performed on these features.

We also used two new depth features for estimating human pose in depth images.

Results show that our draped clothes framework figure it out that in pixel based

approach the SIFT technique outclass other feature techniques leading with 64%

accuracy. While in patch based method we found that local feature is very useful

for predicting the correct body parts with almost 65% accuracy.
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 ملخص الرسالة
 الاسم الكامل: فيصل سجاد 

 .التعرف على الانسان المكتسي ثوب يغطي كامل الجسم باستخدام الصور العميقةعنوان الرسالة: 

 التخصص: علوم حاسوب.
 م2018: مارس تاريخ الدرجة العلمية

مل خلال صككور   ب وذلكتعتبر عملية التعرف على شكككل مسككم الانسككان مل العمليائ الفككالعة في علم ال اسكك
أو فيديو ي توي على مجموعة مل المفكككككككا د. كما أن  ناد العديد مل التطبيقائ التي تسكككككككتخدم وتسكككككككت يد مل 

الت ليل  الألعاب ثلاثية الأبعادت تقنية التعرف على شككككل مسكككم الانسكككان ملال تتب  الانسكككانت الرسكككوم المت ركةت
التطبيقائ التي تعتمد على تقنية ت اعل الانسان وال اسوب لانسان بالإضافة للعديد مل طريقة مفي االسريري 

تعد علمية التعرف على شكككككل مسككككم الانسككككان م ا مل المجال الب لاي المتعلس  ر يا ال اسككككب  وغير ا الكلاير.
و ي مل المجالائ الب لاية النفكككطة.  ناد العديد مل الت ديائ التي توامل ال اسكككب للتعرف على شككككل مسككم 

 ضاا ت الملابست البيئة الخارمية الم يطة بجسم الانسان. الانسان ملال الإ

عفككر الماضككيةت بتتسككبة مفكككلة التعرف على شكككل مسككم الانسككان ب تمام العديد  ةعلى مدى السككنوائ الخمسكك
ائ مل قبل الباحلايل لموامهة الت ديائ التي يوامها ال اسكككككككككككككككب نيت كما تم طرح العديد مل التقمل الباحلايل

م الانسكان. حتى انن يتم بمراا معمم عمليائ التعرف على شككل مسكم الانسكان على للتعرف على شككل مسك
الأشكككككخاي الريل يرتدون الملابس الغرلية التي تقوم بكفكككككز وأوهار م ا أو أم اا مل مسكككككم الانسكككككان. وم  

مسكم على أم اا ذلك فإن التعرف على أم اا مسككم الانسككان في الملابس الغرلية  و أسككهل نسككبياع مل التعرف 
 الانسان لأشخاي يرتدون ملابس تعمي كل أم اا الجسم ملال اللاوب العرلي.

ولناااع على ذلك نهدف مل خلال  ره الأطروحة التعرف على شككل مسكم الانسكان الري يرتدي ملابس تغطي 
تامل أم اا الجسككككككم ولالأخص الأشككككككخاي الريل يرتدون اللاوب العرليت حيب يتمي  اللاوب العرلي ب نل قطعة 

حد  مل القماش تغطي كامل مسككككم الانسككككان. وللوصككككول الى  دفنا المنفككككود في  ره الأطروحة تم بسككككتخدام وا
للتعرف على شكككل مسككم الإنسككان وذلك  (Patch) والرق  (Pixel)تقنية تعتمد على التعلم تسككتند الى البكسككل 
بعض المعلومائ عل   ر يا ال اسكككككب التي سكككككاعدتنا على بتتفكككككافمل خلال تطبيس التقنيائ المسكككككتخدمة في 

أم اا مسكككم الانسكككان. ولل صكككول على معلومائ كاملة أو توقعائ حول كل م ا مل أم اا مسكككم الانسكككان تم 
بمراا التصكككككككنيز على  ره المي ائ. كما أننا قمنا بإسكككككككتخدام خاصكككككككيتيل مديدتيل للتعرف على شككككككككل مسكككككككم 

 الانسان في الصور.

حيب أوهرئ النتالج قدرئ النمام التي تم  نا ه خلال  ره الاطروحة للتعرف على شككككل مسكككم الانسكككان الري 
ت  ينما نتالج تقنية التعلم % مل خلال اسككتخدام التقنية التي تعتمد على البكسككل64يرتدي اللاوب العرلي  نسككبة 

 %.65كانة  (Patch)التي تعتمد على الرق  



CHAPTER 1

INTRODUCTION

From the last few decades, most of the computer vision problems such as object

recognition and scene recognition were solved in parts. The image or a video are

segmented into parts in order to recognize the objects. Human pose recognition

is a kind of part based computer vision problem. The body parts are recognized

from the whole body and using these recognized parts the exact human pose can

be predicted. This problem gained the significant attention from the researcher

from the beginning. Human pose recognition has an increasing number of new

range application for example 3D gaming, sign language interaction, human-robot

interaction, sports performance examination and human gait analysis. In spite of

numerous research, human poses recognition is still a tough and unsolved problem.

However, there exist some challenges in human pose recognition that were not

completely encountered by the existing methods. The challenges include human

physique, illumination, occlusions, human appearance, skeleton structure, human

pose in an outdoor environment and the most important is human wearing a
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western and draped dress.

Pose recognition in western clothes is comparatively easy as compared to

draped clothes. There is a massive amount of literature available on western

clothes pose recognition and with the announcement of Microsoft Kinect [10] this

problem become easy and gained more focused from the researchers. The re-

searchers start proposing new methods and algorithms to solve the pose recogni-

tion challenges using Kinect device. The Microsoft Kinect is a low-cost 3D motion

sensor that can be used to develop the interactive application. This low-cost sensor

solved many computer vision problems (e.g. pose estimation, human detection,

3D reconstruction etc.). However, all the methods and algorithms to date are

specifically designed for western clothes. Shotton et al, 2013 [2] from Microsoft

recognize real-time pose in parts using single Kinect depth image. The Shotton

approach was rooted on object recognition strategies. They identify the human

body parts and localize the 3D joint position. The machine learning classification

techniques called Random Forest classifier was used for training and prediction.

The Shotton approach was specifically designed and tested for western clothes

like jeans, sports trousers, casual and dress shirts and it is invariant to the body,

shape etc.

However, in draped clothes specifically Arabic thobe the Shotton [2] approach

fail to predict human pose or even fail to detect human body parts as well [3]. As

we know the Arabic thobe is covered with a single piece of fabric and it is very

difficult to locate the body parts. Ridwan [3] in his MS thesis worked first time

2



on non-western clothes based human pose estimation specifically on Arabic thobe.

He used almost the same features as used by Shotton [2] with same classification

technique. He proposed new body part for lower body section called thobe body

part. The results were not satisfactory for both upper body and lower body section

the overall accuracy he got was 43%. The pixels for left thigh were incorrectly

classified into the right thigh and same for the rest of the lower body section.

These incorrectly classified pixels decline the accuracy for the lower body parts.

Therefore, in this research, we used Ridwan et al. [3] dataset and recognized

human pose for people wearing draped clothes specifically for Arabic thobe. We

developed a framework for recognizing human pose in draped based clothes. In this

framework we adopted learning based technique in Pixel and Patch based methods

for recognizing human pose. In each method we applied depth and computer vision

feature extraction techniques. In pixel based method we applied HOG and SIFT

as computer vision feature techniques. Whereas for depth features we used two

new features called Median and LBP-decimal depth features. In Patched based

methods we used Bag of features technique which is based on computer vision

and local features as a depth. However, every feature we used in both methods

has different characteristics. Therefore, to get benefit of that we decided to fuse

these features together to further improve our results.
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1.1 Background

Human pose recognition is considered a well-known process of estimating the

human body pose from a single image or from video frames. It is one of the major

problems in the field of computer vision. Due to its complexity, this problem has

gained the focus of many researchers for over 15 years. Human pose plays an

important role in the human communication process. The human posture is used

to represents the different emotions. A recent study [11] shows that the human

body poses gives better emotion than facial expression. Birdwhistlell [12] describe

the human communication process. According to him, the words represent only

7% and non-verbal represent 55% of the communication process. Human pose

recognition is a non-verbal communication process which is used to recognize the

pose of a human. A pose can be eating, walking, sitting, discussion and waiting

etc. Human pose can be recognized by localizing joints on human body and

dividing the body joints into parts such as left head, right head, neck, left shoulder,

right shoulder, left chest, right chest, left abs, right abs, left upper arm, right upper

arm, left elbow, right elbow, left lower arm, right lower arm, left wrist, right wrist,

left hand, right hand, left thigh, right thigh, left knee, right knee, left leg, right leg,

left ankle, right ankle, left foot, and right foot. Using these segmented body parts,

the human pose can be recognized accurately. There exist many applications that

can advantage from human pose technology. For example, it is used in activity

recognition and human-computer interaction(HCI) applications. It is also used in

3D gaming, character animation and clinical analysis of human gait.
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1.1.1 Human Pose Recognition Methods

Pixel Based Method

Pixel-based methods are considered best for human pose accuracy. According to

Ramanan et al. [13] pixel based methods can have better features if a pixel details

used as input. This method can also be used collectively with other methods.

For example, Shotton et al. [2] and Hernández-Vela et al. [14] used per-pixel wise

classification method for recognizing human pose

Patched Based Method

Part based methods are different from pixel methods. In part base methods, the

human body and parts are first spotted from an image then this method is applied

to recognize the pose. This method is based on the position and appearance model.

The method can be more effective if the exact body part position is known. Many

studies [15] [16] [17] [18] [2] [19] [20] [21] [22] used this method for estimation of

human pose.

Figure 1.1 shows the examples of pixel and patch based human pose recogni-

tion. In figure 1.1a pixel-based image shows that body part labels are depicted

with different unique colors where as in figure 1.1b shows a sample image of dif-

ferent human body parts patches [23].
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(a) Pixel-Based Image [24].
(b) Patch-Based
Image[23].

Figure 1.1: Pixel and Patch based Methods

1.1.2 Human Pose Recognition in Western and Draped

Clothes

In human pose recognition, most of the research has been taken on western clothes

[2] since this problem first occurred. The structure of western clothes is very

simple. The fabric is not covering the entire body. Some of the body parts are

separated to each other for example left arm, right arm, left leg and right leg. That

is why human wearing jeans, casual and dress shirts or sports trousers it is easy

recognized upper and lower body parts using low-cost depth cameras. The low-

cost depth camera like Microsoft Kinect or Asus Xtion sensor represents human

body into Skeleton and provide joints data. Using depth sensor data provided by

the Kinect, the human pose can be easily recognized on western clothes. However,

there is no such research exists that recognized human pose on draped clothes.

The draped clothes such as Arabic Thobe and subcontinent dresses are difficult

to recognized human pose. These clothes are unlike western clothes it covers the

entire body with a single piece of fabric. Therefore, in such cases the lower body

would look like a concrete opaque square in a 2D image hiding all the spatial
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details of lower body parts left thighs, right thighs, left knees, right knees, left leg

and right leg. Even the low-cost depth cameras are failed to detect these body

parts.

1.1.3 Kinect Depth Sensors

In 2010 Microsoft launched Kinect device that gained the attention of researchers

to test their computer vision algorithms on low-cost sensing device. These depth

cameras are widely used in computer vision research and have been used in many

applications on the internet. 1.2 describes the internal structure of Kinect sensor.

The sensor consists of RGB camera which is used to detect the color components

(Red, Green, and Blue) and a depth sensor which uses both the IR emitter and

sensor for depth computation for the scene. The RGB and Depth camera have 640

x 480 resolution with 30fps. Microsoft Kinect played important role in the recog-

nition of human pose[25][26][27]. Moreover, researchers proposing new methods

and algorithms to recognize full human body and all human body physical poses

in order to evaluate the ability of Kinect since its first release. [28][29][30].

Figure 1.2: Structure of Microsoft Kinect Depth Sensor[4]
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1.2 Problem Statement

There has been a lot of work done on human pose recognition from the beginning

of this problem. All the research on human pose were specifically focused on

western clothes like jeans, sports trousers, casual and dress shirts. However, until

now nobody reported even a single published work on pose recognition in draped

clothes except one MS thesis [3]. The draped based clothes are special kind of

clothes which is very different to the western clothes. The whole human body

or lower body section are covered with a single piece of fabric like Arabic thobe,

subcontinent traditional dresses, skirt etc. Sometimes these fabrics have different

deformation and hide the human body parts underneath. In these case, it is very

hard to detect or recognize the human body parts. However, the Microsoft Kinect

depth sensor also fails to give accurate skeleton information on draped clothes and

Ridwan et al. [3] results are not very impressive for upper and lower body parts

identification.

Therefore, in this thesis our primary target is to improve the results of Ridwan

et al. [3] for both upper and lower body parts by applying computer vision and

machine learning techniques.

1.3 Contributions

The contributions of this thesis are listed below.

• Developed the framework for the different draped based clothes.

8



• Used computer vision feature extraction techniques: HOG, SIFT and Bag

of features.

• Introduced new depth features Median, LBP-Decimal and local depth fea-

tures.

• Fused features together in order to check the dominance.

1.4 Methodology Overview

We followed learning based technique for pixel and patch based methods. figure

1.3 describe the general framework of our proposed work. Given depth and ground

truth image as input. In part based method we randomly selected 800, 1000, 1200,

1400 and 2500 pixels from the depth image and apply different depth and com-

puter vision feature extraction techniques on each randomly selected pixel. The

selected features then classified using Random Forest machine learning technique

to build a training model. The test data which consist of pixels from whole body

is then passed to the training model in order to test the human body parts recog-

nition accuracy. Whereas, in patch based method we first extracted the patch for

each labeled body part in depth image. In each patch we applied Bag of feature

technique which consist of HOG, SIFT and local eigen features. Finally, we fused

all the features together to have a good comparison of different features.
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Figure 1.3: General Framework for Learning Based Human Pose Recognition[5]

1.5 Thesis Outline

The rest of the thesis is ordered as follows.

In Chapter 2 we presented related work on human pose recognition. Chap-

ter 3 we described the methodology of human pose recognition in draped based

clothes. In Chapter 4 we showed the experimental setup, parameters, datasets,

experimental results and discussion about the results. Finally in chapter 5 we

concluded our thesis work with limitation and the future direction of this thesis.
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CHAPTER 2

RELATED WORK

2.1 Sensors for Human Pose Recognition

We conducted a little survey on time of flight cameras and depth sensors avaiable

in the market. A list of other available sensors along with their classification and

capabilities including 3D and RGB resolution, and frame rate. Table 2.1 shows the

different parameters each sensor provides, which can be considered for recognizing

human pose.

2.2 Preprocessing

2.2.1 Human Body Model

Selection of a human body model is one of the major factors in recognizing the

human pose. The body model encloses information such as human texture and

shape. In the literature, we found three types of human body models, namely,
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Sensor Type
3D

Resolution
RGB

Resolution
Frame
Rate

Microsoft
Kinect 2.0

Time of flight 512x424 1920x1080 30-fps

Asus Xtion
Pro

Structured light 640x480 1280x1024 30-fps

Intel
RealSense

R200

Stereo and
pattern projector

640x480 1920x1080 60-fps

IFM Efector Time of flight 176x132 N/A 25-fps
Stereolabs

ZED
Embedded

stereo
2208x1242 2208x1242 15-fps

Carnegie
Robotics

Embedded
stereo

2048x1088 2048x1088 15-fps

Ensenso Structured light 1280x1024 1280x1024 10-fps
SICK 3visitor

-T
Time of flight 144x176 N/A 30-fps

e-Con System
Tara Stereo

Embedded
stereo

752x480 N/A 60-fps

Narian SPI FPGA Stereo 640x480 N/A 30-fps

Table 2.1: Available Sensor for Recognizing Human Pose [1]

cylindrical human model, pictorial structure human model and kinematic human

model. Human pose recognition is heavily dependent on these models whether it

is used for full body pose recognition or specifically for recognition of upper body

pose.

Cylindrical Human Model

Also called a volumetric model. It is used to represent both human pose and

human body parts. In this model the human body parts are represented as fixed

cylinders. Each cylinder consists of joints. For example, a single human arm

represents three joints and these three joints represent one cylinder. The cylinder

is further connected to other cylinders in order to form human body structure.

12



The meshes with cylindrical model can also be used to represent human body and

its parts. Ganapathi et al. [22] represent the human body via meshes. Siddiqui

et al. [31] proposed an approach that represents human body as a skeleton. The

skeleton is then mapped with cylinders with fixed width. Ling et al. [32] proposed

a similar cylindrical technique for tracking lower body parts such as the thigh, leg,

calf, and foot.

Pictorial Structure Human Model

This model is also a very famous model for recognizing human pose. The model

represents human body parts as rectangular shape. Mykhaylo et al. [33] in 2009

used pictorial structure to predict human pose. Eichner et al. [34] [35] used the

same model for human pose recognition.

Kinematic Human Model

With the announcement of depth sensor this model is frequently used nowadays.

This model represents the human body as a set of joints. The human body model

generated by the depth sensors consist of 30 to 32 joints depending on the depth

sensor used. Using the 3D coordinates of human joints, the human pose is easily

estimated. Shotton et al. [2] used Kinect sensor to compute human skeleton. Ze-

qun et al. [15] used skeleton data for human pose recognition. Youness et al. [16]

and Ishan et al. [17] also used the same model for human pose recognition.

Figure 2.1 shows the different models for recognition of human pose and human

body part detection.
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(a) Cylindrical Model [23] (b) Pictorial Model[36] (c) Kinematic Model[2]

Figure 2.1: Examples of different Human Body Model

2.2.2 Localization of Human Body, Joints, and Parts

Localization of human body, joints, and parts is one of the key steps in the pre-

processing phase. Localization is the process of locating the position of human

body, its parts and joints from a given image. Many authors [2], [15], [16], [17] use

depth sensors like Microsoft Kinect to localize the human body and joints. The

depth sensors provide the skeleton information of human. Using this information

some techniques [15] [16] find the relative distance between joints and localize

the human body parts. Localization of human body is also done through motion

sensor devices. Marta et al. [37] used Vicon motion sensor to locate human joints.

2.2.3 Segmentation of Human Body Parts and Labeling

Ganapathi et al. [22] segmented the human body model into 15 rigid parts. Shot-

ton et al. [2] divided the human body into 31 parts. These body parts are then

labeled with unique colors in order to distinguish each body from another. Zequn

et al. [15] divided the body parts into three regions, namely, body part, arm part

and leg part Similarly, Youness et al. [16] also divided the whole body into 20
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joints. Mingyuan et al. [24] divided the upper body section into 8 parts and la-

beled each part with a unique color. Ishan et al. [17] identified joints from Kinect

and then with help of these joints the author segmented the body parts for pose

estimation.

However, there are many public datasets available that use synthesized data

and label the data with unique colors in order to represent different human body

parts.

2.2.4 Background Separation

Background subtraction is another important step in the preprocessing phase. It

is used to eliminate irrelevent details from the image by removing unwanted pixels.

It was found that nearly every study found in literature [2], [38], [39], [40], [41]

uses background separation.

2.3 Feature Extraction

2.3.1 Global Descriptor Based Feature Extraction

Histogram of Oriented Gradient (HOG) is a computer vision based global feature

extraction technique. It is applied to the whole image and computes both vertical

and horizontal gradients orientation and magnitude. This technique is normally

used to detect humans in images. However, there is a vast amount of literature

available that uses this technique for recognizing human pose.
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In HOG, the image is divided into blocks, then the histogram of the gradient

is computed for each block and finally, all histograms are concatenated to form

a final feature vector. Figure 2.2 shows the HOG computation for a picture of

a human. Sanzari et al. [37] estimate human 3D pose using Pyramid Histogram

of Oriented Gradients (PHOG) visual features. They divide the human skeleton

joints into groups and generate a dictionary of idiosyncratic motion snaps for each

group. Each group contains the visual features while the groups are connected

hierarchically. The purpose of a dictionary is to evaluate the probability of the

group based on its visual features.

Wang et al. [42] used pose tree structure and applied HOG features on the

human body. Similarly, Sun et al. [21] and Yang et al. [20] also applied HOG

for features extraction. Eichner et al. [34] used pictorial structure-based model

for recognizing human pose and used Edge HOG feature techniques on it. Fathi

et al. [43] also used the same Edge HOG techniques to encounter feature vector

using Hidden Markov Model. Fathi et al. [43] recognize human pose through video

frames.

HOG is a global descriptor that is applied to the whole image instead of

individual parts of the image. However, the human pose can only be predicted

by first localizing the body parts. Therefore, this HOG technique may perform

well for detecting human but may not give good accuracies for human poses.

To solve this issue there is another technique called Deformable Part Multiscale

Model (DPM) [44]. The technique is HOG based applied to individual body parts
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Figure 2.2: Histogram of Gradient (HOG) Computation [6]

instead of the whole image.

2.3.2 Local Descriptor Based Feature Extraction

A local descriptor like SIFT (Scale Invariant Feature Transform) and LBP (Local

Binary Patterns) can be very effective for human pose recognition. These tech-

niques are applied to each body part. The SIFT is gradient-based techniques. It

calculates the orientation histogram for each cell and the resultant feature vec-

tor is the concatenation of all computed histograms.Figure 2.3 describe the SIFT

computation. Ganapathi et al. [22] used local descriptor and Holt et al. [19] used

local binary features for recognizing human pose.

2.3.3 Skeleton-based Feature Extraction

Skeleton-based features are normally calculated from depth sensors like the Mi-

crosoft Kinect sensor. The depth sensor gives the 3D coordinates of human joints.

Using the relative distance between the joints, the feature vector can be computed.
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Figure 2.3: SIFT Computation

Youness et al. [16] calculate the set of 20 features from each pose using Microsoft

Kinect skeleton data. The features are invariant with respect to position and size.

Figure 2.4 describe the chosen features from Kinect skeleton information using rel-

ative distance. Similarly, Zhang et al. [15] identify 9 features from Kinect depth

sensor. The authors calculate the features by computing the relative distances

between joint pairs. The features include left forearm, right forearm, left upper

arm, right upper arm, left thigh, right thigh, left crus, right crus and finally the

spine. In 2015 Ishan et al. [17] also calculates the feature with the help of the

Kinect sensor. The authors acquire skeleton information from the sensor and use

velocity, position, and acceleration in feature computation. Siddiqui et al. [31]

also use skeleton joints as features.

2.3.4 Depth Based Feature Extraction

Depth feature is calculated from depth images produced by the depth sensors.

Shotton et al. [2] use depth features for recognizing human pose using random

forest classifier. Contrary to analyzing the color data of an acquired image, the

method extracts features by analyzing the depth information collected in the
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Figure 2.4: Chosen Features from Skeleton

Figure 2.5: Shotton [2] Depth Feature Representation

depth image by the sensors. Figure 3.2 shows the Shotton et al. [2] feature repre-

sentation. In figure a and b the two red circles indicate offsets and a yellow cross

indicates the classified depth feature by taking the difference of two offsets. If

the offset pixel lies outside the image or lies in the background, then the depth of

the feature would have large positive constant value. Otherwise, the depth would

have smaller response value.
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2.4 Classification

Machine learning techniques are used to train classifiers for human pose recogni-

tion. The classifier is first trained with training feature dataset then test feature

set are used with the trained classifier for prediction. Table 2.2 summarizes the

work done with each classifier. Furthermore, studies exist in literature [33], [16],

[43] that used AdaBoost, K-nearest neighbor classifier, and Hidden Markov Model

respectively. Table 5 presents a comparison of classifier accuracies in human pose

recognition.

Classifier Relatedwork
Random Forest (RF) [17][2][19][42]

Support Vector Machine (SVM) [35][15][16][32][21][45]
Bayesian and Naive Bayesian (NB) [37][22][31][34][16][17]

Artificial Neural Network and Deep Learning [18][24]

Table 2.2: Classifier Related work

2.5 Post Processing

After successful classification of features, the post-processing phase defines the

classes for the human pose. A pose can be classified as eating, walking, sitting,

discussion and waiting to mention a few. Each pose mentioned belongs to a

separate class.

Youness et al. [16] recorded total 18 poses and each pose consists of 20 features.

Marta et al. [37] recorded 15 poses. Ishan et al. [17] define their own poses in order

to detect emotions of designer team member. They used, engage, frustration,
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boredom and neutral as poses. Similarly, Zequn et al. [15] recorded a total 22

different human poses. They divide these 22 pose into 3 categories. The categories

are body part, arm part, and leg part. The body part category has 7 different

poses, while the arm part has 8 different poses and finally the leg part has 7 poses.

Some of the authors recognized upper and lower body pose based on dataset they

used.

2.6 Datasets

There are many datasets available for human pose recognition. Some of the

datasets are specific to upper body parts, others are specific to lower body parts

and yet others cover the whole human body parts. Table 4.1 lists down the avail-

able dataset for human pose.
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Datasets Contents Type
HumanEva [46] 50,600 training frames, 26,400 testing frames Full
EVAL [47] 24 sequences Full
LSP [48] 1000 training images, 205 testing images Full
Parse [49] 100 training images, 276 testing images Full
SMMC-10 [22] 6 performers, 28 sequences Full
PDT [50] 26,400 testing frames, 40 sequences Full
FLIC [51] 3987 training images, 1016 testing images Full
PASCAL 12 [52] Total 20 classes, 11,530 images for training and

validation
Full

Buffy [53] 748 frames from “Buffy the vampire slayer” TV
show

Upper

MPII [54] 410 activities of different color and sizes Full
Poses in the wild [55] 30 sequences of different color and sizes Upper
Human 3.6M [56] 3.6 million images with 17 scenarios Full
CMU [57] 23 actions, 109 subjects and 2605 videos Full
MPII Cooking Activ-
ities [58]

65 actions, 12 subjects, and 44 videos Upper

UMPM [59] Multiple people with 30 subjects and 36 videos Full
TUM Kitchen [60] 4 actions, 4 subjects, and 20 videos Full
KTH Multiview
Football [61]

Total 8307 images with 2D and 3D dataset Full

Video Pose [62] Total 1289 images from 44 short clips Upper

Table 2.3: The Available Datasets
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Methods Features Classifiers Datasets Acc
Marta [37] PHOG Hierarchical

Bayesian
Human 3.6 M -NA-

Youness
[16]

20 features using
relative distance

SVM, ANN, KNN
and Näıve Bayes

Real data from
Kinect

Fig 2

Ishan [17] Velocity, accelera-
tion and position

C4.5, Random
Forest, IBK, Näıve
Bayes

Real time frames
from Kinect

98%

Zequn [15] 9 features using rel-
ative distance

SVM Real time frames
from Kinect

99.14%

Toshev [18] -NA- Deep Neural Net-
works

LSP, FLCIC and
Image Parse

69%

Jiu [24] Energy function Deep Learning CDC4CV Pose-
lets dataset

66.92%

Wang [42] HOG Tree style PARSE, LSP 62.8%
Shotton [2] Depth features Random Forest Own created

dataset
60.30%

Eichner
[35]

HOG, Shapes
Edges

SVM PASCAL 08,
Buffy

-NA-

Sapp [45] Geometry, Color
optical

SVM Video Pose 2.0 68.3%

Sun [21] HOG SVM PASCAL 07 64.2%
Yang [20] HOG SVM LSP, Image

Parse and Buffy
55.1%

Holt [19] Binary features Random Forest CDC4CV Pose-
lets

67%

Ganapathi
[22]

Local descriptors Dynamic Bayesian
Model

MOCAP from
Phase Space
System

-NA-

Siddiqui
[31]

Skeleton joints Bayesian Real time frame
from SR300 sen-
sor by MESA

0.930

Eichner
[34]

Edgelet HOG Probability based Own dataset -NA-

Mykhaylo
[33]

Shape Context AdaBoost TUD-
Pedestrians,
TUD-Upright
People

55.2%

Fathi [43] Edges HOG HMM CMU MoBo -NA-

Table 2.4: Related Work Summary
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CHAPTER 3

THESIS METHODOLOGY

3.1 Pixel-Based Approach

Pixel-based method is considered best for human pose accuracy. However, by

using this method the background can be easily separated from foreground object

based on the pixel information. Therefore, by getting the advantage of background

separation we used this method in our thesis. We used Ridwan et al. [3] dataset.

In his dataset the background pixels have already assigned a fixed constant value.

In Thobe dataset we have two types of images. These two images consists of

depth and ground-truth image. Both image have same size and resolution. The

depth images contains the depth value which basically represents a distance from

depth sensor. The range of depth value is between 0 to 4000mm. the background

has constant value which is 50000. Where as the ground-truth image is consider

as labeled RGB image which give us an information about pixel that from which

body part the pixel is belong to.
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Given a depth image we first randomly collected different number of pixels

from whole image. The different number of pixels are 800 pixels,1000 pixels,1200

pixels,1400 pixels and 2500 pixels. The reason of selecting these random numbers

of pixels over whole body is following. First, to compute whole body pixels for

training dataset is computationally expensive. Because the training dataset is too

large to evaluate every pixels. Second we analyzed the different random numbers

of pixels and as per our analysis these different random number of pixels covered

almost every body part in the whole image. We showed this analysis in chapter

4.

We applied both depth and computer vision feature extraction techniques on

every randomly extracted pixel. Lastly, we classified every feature extraction

technique into random forest classifier. We also classified the combination of two

or more feature extraction techniques together. Figure 3.1 shows our pixel based

framework.

3.1.1 Depth-Based Features Extraction

Median Depth Feature(MDF)

Shotton et al. [2] used to calculate simple depth feature by using 3 random pix-

els. In order to classify random pixel x. Given a depth image shotton et al. [2]

collects two more random pixel(u, v) from depth image called offset pixels. The

offset distance between the classified pixel and offset pixels is 198. The offset dis-

tance means that the two random pixels taken in the radius of 198 pixels around
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Figure 3.1: Framework for Pixel based technique

classified pixel x. The depth feature is calculated by following equation.

f(I,X) = d(X +
u

dx
)− d(X +

v

dx
) (3.1)

In equation 3.6 the d is the depth, dx represent depth of pixel x , (u, v) are two

offsets and X is the coordinates of classified pixel x1.

Figure 3.2 shows the Shotton et al. [2] feature representation. In figure a and

b the two red circles indicate offsets and a yellow cross indicates the classified

depth feature by taking the difference of two offsets. If the offset pixel lies outside

the image or lies in the background, then the depth of the feature would have

large positive constant value. Otherwise, the depth would have smaller response

value. Due to high computational complexity Shotton et al. [2] used two offset
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pixels (u, v) instead of region average.

Similarly, by the follwing the technique of Waldvogel [63] and Shotton et al. [2].

Ridwan et al. [3] implemented region average in his MS thesis. To classify pixel

x Ridwan et al. [3] take two random regions(R1,R2) in a depth image. In Figure

3.3, the two offsets u, v, depicted as white arrows, the two widths (w1,w2) and the

two heights (H1,H2) are selected at random. R1 and R2 are two regions centered

around u, v with dimensions (w1xH1) and (w2xH2) respectively. The response to

the query pixel depicted as a yellow cross is calculated as the difference between

the average depth of region1 and region2. The depth feature is then normalized

by dividing the difference of averages by classified pixel x.

However, by following the region averages feature technique Ridwan et al. [3]

did not care about the noise and outliers values. The outlier values can make a

big difference in feature response. For example in figure 3.3 region R1 at middle

of the figure have few background pixels. The average of region R1 is become high

because background pixel has high intensity value.

Therefore, we encounter this flaw and introduce new feature called median

depth feature. The median depth feature take care of outlier values in the regions.

We randomly take the two regions in the depth image and take the median value

of that regions. Initially, we fixed the region size to 3x3 window, 5x5 window

and 7x7 window. We calculated median depth features for all these windows

separately. However, the values of depth image is different than other type of

image. In depth image two or more parts may have same depth values because
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of having same distance from the depth sensor. Therefore, to differentiate same

depth the fixed region/window size may not work properly. Because there is a

probability that two or more classified pixel x may have spotted the same region

with same window size.

We solved this problem by taking the region height and width randomly. In

this case if two or more classified pixel x may spotted same region but have

more probability that the region height and width is different. This help us to

differentiate the same depths. The two region may different or same width and

size. The feature response of median depth feature is as follow.

f(I,X) =
median(R1)−median(R2)

d(X)
(3.2)

In equation 3.2 the median depth feature have following parameters:

• I is a depth image.

• X is a classified pixel point.

• R1 and R2 are random region.

• d(X) is a depth of pixel x and it is used in equation 3.2 for normalization.

Figure3.4 shows the steps for calculating the median depth feature. The yellow

cross in figure 3.4a indicate the random classified pixel x. To calculate the feature

at pixel x we randomly spotted two region R1 and R2 in figure 3.4b. Finally,

figure3.4c shows the median of two region using these two median we calculated

the feature of pixel x by taking the difference of these two medians.
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Figure 3.2: Shotton [2] Depth Feature Representation

Figure 3.3: Ridwan [3] Depth Feature Representation
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(a) Classified pixel x (b) Region R1 and R2 (c) Median depth feature

Figure 3.4: Median depth features representation
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Local Binary Pattern-Decimal Depth Feature(DDF)

Inspired from the work of Ojala et al. [64] we introduce a new depth feature called

local binary pattern decimal depth feature. This feature never used in depth image

before. From now we call this technique decimal depth feature. This technique

has different characteristics. Instead of taking averages or performing arithmetic

operation on region or an individual pixel. We fixed a 3x3 window at a random

position in a depth image. The centre value of 3x3 window is compared with

its neighbour. If the neighbour pixel value is less than equal to center value

we assigned that pixel value to 0 otherwise 1. By doing this we got size of 8

binary vector and then we converted this binary vector into a decimal number.

The decimal number is representing a depth feature of the center pixel x of 3x3

window. In order to differentiate same depth in decimal depth we concatenate

the pixel location as feature with decimal depth feature. Further details about

feature vector is provided in section 3.4. We applied the same procedure for other

different random pixels for a depth image. The feature response of decimal depth

feature is as follow.

f(I,X) =
K∑
i=1

g(xi,xc)2k−i (3.3)

g(xn,xc) =


1, if d(xc) 6 d(xn)

0, otherwise

(3.4)

Given an depth image I and random pixel at point X. We construct a 3x3

window around point X. The pixel xi correspond to the neighbour pixel where as
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(a) 3x3 window at X (b) Binary representation (c) Decimal depth feature

Figure 3.5: Decimal depth features representation

xc correspond to the centre pixel of 3x3 window. we used K = 8 because of 3x3

window. Figure 3.5 shows the steps for calculating the decimal depth feature.

3.1.2 Computer Vision-Based Features Extraction

Feature Detectors

Feature detectors are used to identify the features in the image. These detected

features are also called valid key points. We applied computer vision detectors

on our region of interest. It decide at every image point whether it is a valid

feature or not and provide us abstract information about region of interest. These

detected features is a subset of image domain.

Before applying feature descriptor on every pixel. We tried key points detectors

first on the depth image in order to find some valid key features from depth image

and then feed those features or key points in to the feature descriptor. We applied

following detectors:
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• FAST Feature Detector.

• HARIS Feature Detector.

• SURF Feature Detector.

• BRISK Feature Detector.

• MSER Feature Detector.

Most of the detectors are used to detect the corner points in the image. Using

depth image on these detectors we did not able to detect the valid key points.

However, the depth image is consist of depth values and doesn’t have clear edges

because of the nature of Arabic Thobe dress. Therefore, these detectors are mean-

ing less for us specifically for the depth image. We used these detectors on ground

truth image and translate valid points into depth image but this technique did not

work for us as well. Therefore, we used feature descriptor on random pixels in a

depth image. Figure 3.6 shows the results the applied detectors on a depth image.

In figure 3.6a we only able to identified two body parts head and face key points

where as the FAST detectors unable to detect rest of the features in remaining 25

body parts. Similarly, in figure 3.6b only able to detect left elbow features. These

detected features are representing Thobe dress instead of representing the body

part. The rest of the detectors are failed to detect all body parts features.
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(a) FAST detectors (b) HARIS detectors (c) BRISK detectors

(d) SURF detectors (e) MSER detectors

Figure 3.6: Results of feature detectors in a depth image
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Histogram of Oriented Gradient (HOG)

After getting no valid key points information from detectors. We decided to use

feature descriptor on randomly selected pixels in a depth image and feed that

features to the classifier. A Feature descriptor is very helpful for recognition and

detection of one or more object from an image. It is used to extract a meaningful

information from an image or patch and ignores the extraneous information. These

feature vectors are fed into classification algorithms such as Random Forest in

order to produce good recognition and detection results.

HOG is one of very well known feature descriptor introduced by Dalal and

Triggs [65] back in 2005. This descriptor works very well on human and pedestrian

detection. The HOG feature vector is calculated by help of oriented gradient

directions. These gradients occurrences are distributed using histogram which

then represent as feature vector. The whole image is divided into number of

different cells. The cell size can by 8x8, 16x16 and 32x32. In each cell the vertical

and horizontal gradient directions is calculated on pixels. This is easily done

by filtering the image using 1D kernel. All the vertical and horizontal gradients

directions are concatenated together and represent it on histograms. The other

implementation steps of HOG descriptor are as follow:

• To represent gradients into angular bins the gradients in each cell converted

to some discrete values.

• Each pixel within a cell has some weighted gradient that correspond in

angular bin. The angular bins corresponding to angles from 0 to 160.
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Figure 3.7: HOG descriptor

• The set of adjacent cell are considered as spatial connected blocks. These

blocks are then normalized in order to avoid the lightening variations.

The set of blocks are represented as feature descriptor for HOG. Figure 3.7 and

figure 2.2 shows the implementation of HOG descriptor where the image is divided

into cells. The gradients for each is represented using blue arrows. The gradient

magnitude of a cell represent a discrete numbers for a gradient direction. Figure

3.8 shows the HOG visualization in Arabic dress where the dominant gradient

directions capture the shape of person in a Arabic dress.

We used the same configurations as proposed in [65]. According to Dalal and

Triggs [65] these configurations produced better results in human detection and

pedestrian detection . Usually HOG is applied on the whole image or on patch.

However, we applied HOG at randomly selected pixels in a depth image. We
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Figure 3.8: HOG visualization

extracted different number of random pixels from depth image such as 800, 1000,

1200, 1400 and 2500 random pixels. We used HOG features in two ways. First, in

each random point we constructed a window around it. The window calculate the

oriented gradients and concatenate all gradients into one histogram. The resultant

histogram is the feature vector for a classified pixel x at point X. A second way is

to use the same window that we constructed using first way and take the average

of it. We then sum up the average value with the classified pixel x depth value and

considered it a new depth feature in order to improve the human part detection

performance using HOG and depth features together.

Sometimes, we get a random pixel on the border of the image where the

constructed window lies outside the image bounds so in that case HOG return
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(a) Depth HOG descriptor (b) Depth SIFT descriptor

Figure 3.9: Features descriptors on depth image

NULL feature vector. In this scenario we discard NULL values and consider only

valid HOG features values. Figure 3.9a shows the HOG representation on a depth

image.

Scale Invariant Feature Transform (SIFT)

SIFT is a computer vision algorithm which is used to detect object in an image.

For every key point the SIFT descriptor provides a set of features that describe the

region of interest. This algorithm introduced by Lowe et al. [66] in 1999. The al-

gorithm is very useful for human detection and object recognition. It transformed

the image into local features that is invariant to rotation, scale, translation and

works very well under illumination variations. SIFT is similar to HOG except
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that HOG describe global features where as SIFT describe local features in the

image.

The basic principle of SIFT algorithm is smoothing and resizing an image into

different scales like pyramids. The difference-of-Gaussian (DOG) [67] [68] function

is applied in 3D pixel coordinates of an image by using local extrema. The valid

local extrema are the keypoints. The local extrema are used to elimnate the noise

from an image and gives better accuracy. The SIFT algorithm consist of following

steps.

• The difference-of Gaussian pyramid(DOG) is created from an input image.

This is done by convolution of the input image with different scales of Gaus-

sian function(kernels). The DOG is calculated by taking the difference of

scaled images

• Estimate the scale and location of keypoints from an image using Taylor

series expansion. This step is called extrema detection.

• Once the local extrema are found the refinements is performed on keypoints

in order to improve the accuracy of keypoints locations. The poorly localized

keypoints are eliminated from the candidate keypoints.

• Estimate the orientation of every candidate keypoint. This is done by cre-

ating a histogram from the oriented gradients of keypoints within a region.

Figure 3.10 shows the gradient orientation assignments. The black dot on

the left side of the figure 3.10 is the candidate point. The black arrows
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Figure 3.10: Estimation of gradients orientations [7]

around candidate point are the gradient orientation which is calculated us-

ing pixel differences around candidate point. The right side of figure 3.10

represent the 36 bins histogram. The value of each bin contains the sum of

gradient magnitude for all all orientation within in a region/window.

• Estimate the features by applying the SIFT descriptor on every keypoints

within a region. Figure 3.11 shows the SIFT keypoints descriptor. The left

side of the figure 3.11 represent the gradients orientation and magnitude

within 8x8 region/window with 4x4 sub-regions. The orientation of each

sub-region is concatenated into one as we can see on the right side of the

figure 3.11. The 8x8 window is concatenated into 2x2 block. Each block

contains 8 direction which is represented by arrows. The computed 2x2

block orientations and magnitudes are then mapped into histogram that

represent the feature vector for candidate point which is at the left side of

figure 3.10.

However, the SIFT keypoints detector wasn’t able to perform well on our
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Figure 3.11: SIFT keypoints descriptor [8]

depth images. Like HOG we also applied SIFT descriptor at randomly selected

pixel points in a depth image. We used different number of random pixels from

depth image such as 800, 1000, 1200, 1400 and 2500 random pixels. In each point

the descriptor constructed a window around center pixel x at point X. When we

construct a 8x8 window at random point it become a patch which has same size

as window size.

Sometimes we get a random pixel on the border of the image where the con-

structed window lies outside the image bounds so in that case SIFT return NULL

feature vector. In this scenario we discard NULL values and only consider only

valid SIFT features values. Figure 3.9b shows the SIFT representation on a depth

image.
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Figure 3.12: Framework for Patch based technique

3.2 Patch-Based Approach

Patch or part based methods are different from pixel based methods. In part base

method, the human body and parts are first spotted from an image then this

method is applied to recognize the pose. This method is based on the position

and appearance model. The method can be more effective if the exact body part

position is known. Figure 3.12 shows our patch based framework.

3.2.1 Bag of Features

In last few years a new computer vision technique called Bag of Features [69] have

seen rising and it is used in many applications. The technique has been used

in for object detection, image classification, reboots and image retrieval. It uses

order less collection of image features and The image representation is analogous.
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In terms of performance this technique is powerful enough that it outclass other

state of the art methods in many applications.

In this technique a feature vocabulary is constructed. In order to create feature

vocabulary a discrete clustering is applied on the set of training images. Clusters

are needed so that the discrete local features vocabulary is generated from the

large number of training samples. Whereas, in testing given an image features are

extracted and assigned to the nearest cluster in discrete vocabulary. Afterwords,

a normalized histogram is generated from the testing set that represent the actual

features.

Due to its simplicity and performance we adopted this technique in our problem

domain. Instead of images we extracted the body parts from the image as patch.

We applied HOG and SIFT feature descriptor separately on each patch. Once we

have a patch features from the all the training set we clustered the data in order

to create a discrete vocabulary. We used K-Nearest Neighbour (KNN) clustering

technique. We cluster the training data up to 200 clusters.

Given a test image the patches are extracted from the image. The computer

vision techniques HOG and SIFT are applied on each patch respectively. The each

feature which is extracted from the patch is assigned to the nearest neighbour in

discrete vocabulary using minimum euclidean distance. At the end we would have

a normalized histogram that actually represent the features of each patch. Figure

3.13 shows the steps involved in bag of feature technique.
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Figure 3.13: Overview of Bag of features technique

3.2.2 Local Features

Local features are used to find out the distinct pattern or structure in a image.

This distinct pattern or structure can be recognized as image patch, edge and

point. Usually local features are allied with image patch. The image patches

differs each other from its adjacent patch by pixel intensities, pixel color and

patch texture.

We used eigen values and eigen vector to extract local features form the patch.

Figure 3.14 shows the graph that present the eigen values of the patch. In figure

3.14 the eigen values from 0 to 5 in x-axis are the most dominat eigen values and

the rest of the eigen values are 0. To get rid of 0 eigen values we decided to take

first 80% of eigen values as our local features for each patch.

We trained the random forest classifier using these local features. Given a test

image we applied the same procedure as defined above and given to random forest

classifier to predict the correct part of human body.
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Figure 3.14: Patch based local features

3.3 Fusion of Features

Every feature we used in our thesis has different characteristics. Therefore we

decided to fuse features together to check which feature is dominant. In pixel

based method we fused depth and computer vision features together. We also

fused the depth feature with SIFT and HOG as well to check dominance of depth

feature with computer vision feature techniques or vice versa.

3.4 Feature Vector

As we are dealing with depth image in our thesis. In depth image there can be

a possibility of two or more parts may have same depth values because of having
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Figure 3.15: Feature vector for pixel based method

same distance from the depth sensor. However, If we apply feature extraction

technique in one part we can have same feature for other part as well. The

classifier may not perform well under these situation.

Therefore, we decided to use classified pixel position/location and its depth

value as feature with other features. Using this we can easily differentiate the same

depth values problem. Figure 3.15 shows the representation of feature vector in

pixel based method.

3.5 Classifier

3.5.1 Decision Trees

Decision tree is a simple decision model that describe a hierarchical decisions and

their significance. This model is widely used from last few decades [70]. it is

very different from traditional tree but it produced much impressive results on

previously unseen data. This model also known as generalization[71][72].

A simple tree is organized in a hierarchical structure with the collection
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of nodes and edges. The nodes are further divided into child nodes and leaf

node(terminal node) based on the certain split mechanism. A simple trees can

be split into binary where each parent node have maximum two child nodes. It

can also be split into multiple nodes where each parent node have more than two

nodes. Figure 3.16a shows the example of binary trees where circles represents

the nodes or internal nodes and square boxes shows the leaf nodes. The leaf nodes

contains the scalar value and its normally consider a output values.

A decision tree is similar to binary trees in terms of hierarchical structure.

However, it act as different than simple binary trees. It is used for decision

making where each node is involved in decision based on some test function. The

decision function is applied on every internal node until the it gets to a terminal

node (predictor node) where the final result is stored. A decision tree is used

for the classification and regression purposes where we need to predict the final

output value of sample or instance class. Figure 3.16b shows the example of simple

decision tree where it predicts whether the picture is captured in a outdoor scene

or indoor scene. We can observe from figure 3.16b that every node is involved in

decision function.

Classification in Decision Trees

classification of decision trees can be divided into training and testing phases.

The first phase is training phase where the actual decision tree is formed. Given

a training feature set a subset of training features are selected randomly at each

node. Every node in decision tree is branch to left and right based on the decision
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Figure 3.16: Simple and Decision trees[9]

at the node. Training a decision tree is a propagating process that every parent

node passes the learned knowledge to the internal nodes. The nodes are in deci-

sion trees is represented a breadth-first order. Figure 3.17 shows the example of

training tree. Figure 3.17a shows the training feature samples of different labeled

data. Figure 3.17b shows the decision tree who’s input is the subset of train-

ing features. Each node is branch to left and right until it meets some stopping

criteria.

Once the decision tree is built from the training features or sample data. The

testing features or sample data are given to the decision trees. The testing fea-

tures are previously unseen data which is applies hierarchical in a decision tree.

Start from root node each node applies its decision function to testing features.

According to the results the test data is traverse down to left or right child until
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Figure 3.17: Training in Decision Tree[9]

it gets the final prediction which is held on the leaf node.

Impurity Measures

The nodes in the decision trees are split based on some splitting function or

criteria. The best splitting criteria is one that gives the best informative split or

improve the performance. There are many univariate splitting criterias but most

common are Gini index and information gain [73] [74].

To best split the random features the information gain scoring function gives

a quantitative measure of how much uncertainty is reduced by splitting a node

according to particular attribute. The information gain is calculated by deter-

mining the difference of the parent Shannon entropy and the weighted sum of its

children’s entropy.

Gain(D,D′) = H(D)−
∑

s∈{left,right}

|Ds|
|D|

H(D) (3.5)

Where
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Figure 3.18: Information Gain before and after split[9]

H(D) = −
∑
c∈C

ρ(c|D) log2(ρ(c|D)) (3.6)

c is a target class and H(D) is the entropy in the class distribution of a certain

node. Figure 3.18 shows the example of information on certain dataset points.

Figure 3.18a shows the data points before the splits. The class distribution is

uniform because all the class same number of data points. In figure 3.18b if we

split the data points horizontally we got 0.40 information gain. However, if we

split the same data points vertically in figure 3.18c. We got 0.69 information gain

score. The max information gain score gives the best split. Therefore, we split

the data points vertically in that case.

Stopping Criteria

The growing of the decision tree is recursively repeated until stopping condition

is met. However, there are three types of stopping condition in which the decision

tree is stop growing and stored resultant prediction at terminal or leaf node. The
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Stopping condition are following.

• The maximum depth of decision tree is achieved.

• All instances in the training set belongs to a single value.

• The low information gain score which does not meet a certain threshold.

3.5.2 Random Forest

The Random forest [75] classifier has a fruitful history in computer vision ap-

plications. It is considered an important technique in machine learning. When

it comes to performance, it outperforms most of the state-of-art machine learn-

ing classifiers especially when working with high dimensional data. It consists of

multiple decision trees and has the ability to deal with multiple class problems.

Random forest is the collection of decision trees. According to [76] [77] [78] the

testing accuracy increased if the number of decision trees increased monotonically.

Over fitting is one of the major problem in classification model. However, in

random forest model if we have enough number of decision trees the random

forest classifier take care of it and won’t over-fit the model [2]. The random

forest classifier accumulates votes from other base classifier in order to improve

the overall accuracy. The majority voting is used for the final classification.

Given a test instances to random forest model. The test instances traverses

down from root node to leaf node through each decision tree in the model. The

model produces a probabilistic prediction at the leaf node of each decision tree.
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Figure 3.19: Random Forest testing[9]

Each leaf in a decision tree yields a posterior probability of class given test in-

stances. The final output of predicted class is the average of all the decision trees

posterior probability in the forest model. Figure 3.19 is an example of random

forest testing. The model is consist of total 3 decision trees and V is the test

instances that supplied to the trained decision trees. The final prediction of the

class is calculated by:

ρ(c|v) =
1

T

T∑
t

Pr(c|v) (3.7)

Where c is the predicted class, T is the total number of decision trees in the

random forest model and v is the test instances.

Due to the randomization, fast training and testing. We used random forest

as classifier in our thesis. In pixel based approach we have a huge data around

10 million pixels for training data and 60 million pixels for testing data. Due to

this large training and testing data we restricted our random forest model with 3

decision trees. In order to increase the number of decision trees in the pixel based

random forest model required high performance system.
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However, in patch based approach where we used patches instead of pixels.

The amount of training and testing data is comparatively less than pixel based

approach. Our patch based random forest model consist upto 40 decision trees.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Datasets

There are no any datasets available online that deals with draped clothes like

Arabic thobe, sub-continent dress etc. Therefore, in the thesis we used Ridwan

[3] datasets for Arabic Thobe. Its a synthetic data and contains ground truth and

depth image of same size and resolution.

In Thobe dataset we have two types of images. These two images consists of

depth and ground-truth image. Both image have same size and resolution. The

depth images contains the depth value which basically represents a distance from

depth sensor. The range of depth value is between 0 to 4000mm. the background

has constant value which is 50000. Where as the ground-truth image is consider

as labeled RGB image which give us an information about pixel that from which

body part the pixel is belong to. Table 4.1 shows the thobe dataset parameters and

figure 4.1 shows the reprsentation of ground truth and depth of Thobe dataset.
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Table 4.1: Dataset Parametersn

Thobe Dataset Parameters

Training Data 16,000 Image
Testing Data 3,000 Images
No of Body Parts 26 Body Parts

Figure 4.1: Thobe depth and ground truth image dataset representation

4.2 Performance Metrics

Precision, Recall, and Accuracy

We used precision and recall metrics to evaluate the performance of every single

body part in a human body. However, in some cases high precision is required

whereas in some cases recall required to be high. In this thesis we used both

and combined them to have a single score. We used F1-Score Metric which is

the harmonic mean of both precision and recall. The harmonic mean in F1-Score

gives appropriate score then arithmetic mean. These metrics are calculated as

follows.

Precision(P ) =
TP

TP + FP
(4.1)
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Recall(R) =
TP

TP + FN
(4.2)

Accuracy(F1− Score) =
2PR

P +R
(4.3)

Where TP is True Positive, TN is True Negative, FP is False Positive and FN

is False Negative.

4.3 Reproduced Papers Results

4.3.1 Real-time human pose recognition in parts from sin-

gle depth images

This paper is written by Shotton et al. [2]. The Shotton approached was rooted on

object recognition strategies. They identify the human body parts and localize the

3D joint position. The machine learning classification techniques called Random

Forest classifier was used for training and prediction. The Shotton approach was

specifically designed and tested for western clothes like jeans, sports trousers,

casual and dress shirts and it is invariant to the body, shape etc.

The authors does not public their dataset and other supporting material.

Therefore, we reproduced their technique in our Thobe dataset. The nature of

both database is same because both have depth image and ground truth images

only difference is the dress. We wanted to check how Shotton et al. [2] simple

depth feature works on thobe dataset. Table 4.2 shows the Shotton et al. [2]

reproduced reults.
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Table 4.2: Shotton et al. [2] Reproduced Results

Shotton Reproduced Results

Total images 6000
Random no of features selected 2000
Depth 20
No of trees 3
Training images 80%
Testing images 20%
Accuracy: 40%

Table 4.3: Ridwan [3] Reproduced Results

Ridwan Reproduced Results

Total images 20000
Random no of features selected 800
Depth 20
Region size 3
offset distance 300
No of trees 3
Training images 16000
Testing images 3000
Accuracy: 43%

4.3.2 Pose estimation of human wearing Thobe using

depth images

Ridwan [3] done this work in his MS thesis.The approach he followed is same as

Shotton et al. [2] approach with minor changes. Instead of taking two random

offsets(u, v) points he takes two random regions and take the average of regions as

offset(u, v) in a depth image. The other difference is that he only took 800 features

whereas Shotton et al. [2] took 2000 features. Table 4.3 shows the Ridwan [3]

reproduced results.
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Table 4.4: Pixel Based Configurations

Configurations

Total images 19000
Random no of features selected 800, 1000, 1200, 1400, 2500
Depth 20
No of trees 3
Training images 16000
Testing images 3000

4.4 Pixel-Based Approach Results

In our framework we applied different feature extraction technique for recognizing

human body parts but we end up a technique which gives best results among all

other techniques. Table 4.4 shows the training and testing parameters.

4.4.1 Median Depth Features Results

We implemented this feature using three different ways.In first two cases we fixed

the windows size to 3x3, 5x5 and 7x7. However, the background pixels can be

important factor for effecting the accuracies up and down. Therefore, in first case

we included background pixels only if our fixed sized windows contains background

pixel. Whereas, in second case we avoided the background pixel by replacing the

background value with 0. In third case we used randomization technique. Instead

of fixing windows size we generated window height and width randomly. The

maximum size of window is 3x3. Table 4.5 shows the results of median depth

features.

From table 4.5 we can observed that random window size produced better

results than other fixed window size not only on 800 pixels but it is also leading
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Table 4.5: Median Depth Features Results

Background Included Background Not Included Mixed

Pixels 3x3 5x5 7x7 3x3 5x5 7x7 Random

800 42.82% 42.82% 42.81% 42.74% 42.58% 42.57% 43.08%
1000 42.98% 43.00% 42.99% 42.91% 42.92% 42.92% 43.31%
1200 43.12% 43.03% 43.20% 43.14% 43.15% 43.14% 43.37%
1400 43.17% 43.33% 43.33% 43.31% 43.29% 43.29% 43.40%
2500 43.78% 43.78% 43.79% 43.75% 43.74% 43.74% 43.60%

up to 1400 pixels. However, window with size 7x7 including background pixels

performed better on 2500 pixels. Inclusion of background pixels in a window

have a better accuracy rate as compared to the results of non background pixels.

Therefore, we can say that the background pixels have a little positive influence

on the pixel accuracies. It is also observed from table 4.5 that if we increase the

number of pixel the acuracies will also increase. We increased almost 3 times of

the pixels and we improved total 1% additional accuracy in all three cases.

Results in the table 4.5 were executed only once. However, by observing the

accuracies in table 4.5. We noticed that for 2500 pixels the results are better

as compared to other chunks of pixels. The difference of accuracies among the

window sizes for 2500 pixels are also very minimal. Therefore, we decided to

execute every single window for 2500 pixels up to 30 times and used the average

as an accuracy. The purpose of this is to calculate the margin of error using

confidence interval. The confidence interval gives us confidence that our results

lies within the lower and upper interval.

Figure 4.2 shows the average results of 30 runs for different window sizes for

2500 pixels. All the techniques (background, without background and mixed)
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Figure 4.2: MDF Average Results for 2500 pixels

produced almost same results. But random window in mixed technique leading

with 43.78% accuracy. However, if we compared these average results with single

run in table 4.5. We can observed that the accuracies of fixed windows declined

in average results.

Similarly, figure 4.3 showing the 95% confidence interval. We observed from

figure 4.3 the margin of error is very low. However, the confidence interval of fixed

windows in both techniques (background included and background not included)

is overlapping to each other. Therefore we can say that the accuracies of fixed

windows for both techniques are significantly same. Random windows in mixed

technique is the only one that significantly different from fixed window sizes. In

conclusion to median depth feature we would say that the random window size

feature is better than others fixed window size.

60



Figure 4.3: MDF 95% Confidence Interval Results

Individual Body Parts Results

The accuracies of individual body parts in pixel based approach helps to figure

out that how many pixels are correctly classified individually. We ran experiments

up to 30 times and table 4.6 indicates the average accuracies of each body part for

2500 pixels. In table 4.6 the first three fixed windows (3x3, 5x5 and 7x7) included

the background pixel. However, the other three fixed windows the background

pixels not included, The ”R” in table 4.6 represents the random window size.

Random window in table 4.6 overall produced better accuracies in majority of

the body parts when compared to fixed window sizes. Out of total 27 body parts

random window produced good results in 11 body parts. Similarly, the fixed win-

dow with background pixels included also produced better accuracies in 11 body

parts. However, when we compared the fixed windows together while having an
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involvement of background pixel. We came up that the fixed window with back-

ground pixel included producing slightly better score then the one doesn’t have

the background pixel. There are only 4 body parts where the accuracies are better

than others in the absence of background pixels in fixed windows. Therefore, we

can sum up that the background pixels have impact on the accuracies of recog-

nizing human body part. The inclusion of background pixels in the window helps

to improve the accuracy of a certain body part.

The highest accuracy we got in table 4.6 is 54.47% which is “right head”. The

lowest is 7.34% which is “right arm3”. The body parts “right arm3”, “left arm3”

and “left ankle” is rarely visible in the image. Most of the time these body parts

occluded by a human pose. Sometimes the random pixel hits is too small to hit

these body parts spots specifically. So that’s why the accuracies of these body

parts are too low. However, in the patch based results section we also compared

the accuracies of these body parts with patch based approach to differentiate which

approach is better to deal with these kinds of body parts accuracies. Figure 4.4

shows the graphical representation of each body part accuracy in median depth

technique for 2500 pixels.

Upper and Lower Body Parts Results

Figure 4.5 shows the median depth feature upper and lower body parts score for

2500 pixels. These average classes accuracies are calculated from confusion matrix

using equation 4.3. Figure 4.5a shows the upper body parts accuracy. We observed

that all the techniques whether fixed window or random window have almost same
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Figure 4.4: MDF Average Individual Body Parts Accuracies for 2500 Pixels

upper body accuracy. The difference of accuracies among all techniques is very

minimal so it is difficult to say that one technique is taking dominant lead over

others.The maximum accuracy we got in upper body is 36.38% and the lowest is

36.05%.

We have noticed the similar case in lower body parts accuracies as well. Figure

4.5b shows that all the techniques scored almost same with very minor difference

in accuracies. There is no clear winner here as well. The random window have

the maximum accuracy with 39.40% and fixed window 3x3 without background

included have the lower accuracy rate with 39.04%. All the lower body parts

scored over 43% except the “left ankle”body part. The body part “left ankle”

has lowest accuracy among all other body parts. This body part is most of time

is absent in the image. Out of every 100 to 200 images approximately this body

part appeared only once. Sometimes it never gets maximum number of random
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(a) MDF Average Upper Body Parts Accuracy for 2500 Pixels

(b) MDF Average Lower Body Parts Accuracy for 2500 Pixels

Figure 4.5: MDF Upper and Lower Body Parts Results

spots that’s why this body part has lower accuracy as compared other body part.

However, to make sure that all window based techniques in median depth fea-

ture have same upper and lower body parts score. We calculated the confidence
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interval of upper and lower body parts. Figure 4.6 shows the 95% confidence in-

terval graph for upper and lower body parts. Figure 4.6a and figure 4.6b indicates

that the mean of all the techniques are overlapping to each other in both upper

and lower body parts. Therefore, we can conclude that all techniques in median

depth features are significantly same for 2500 pixels.

4.4.2 LBP-Decimal Depth Features Results

In decimal depth feature we fixed the window size to 3x3. This 3x3 window gives

us a 8-bit decimal number and this is our feature for the classified pixel x. We

executed the experiments up to 30 times on different chunks of random pixels as

described in table 4.4 and calculated the average. Figure 4.9 shows the average of

LBP-DDF accuracies from random pixel 800 to 2500. We observed that random

pixels have a positive relation with accuracy. For example, when we increased the

number of random pixels we noticed some slight improvement in the accuracy. We

almost got 1% increase in the accuracy from 800 random pixels to 2500. However,

we improved almost 4 % accuracy as compared to median depth technique. The

highest accuracy we got in decimal depth technique is approximately 48% for 2500

chunk of random pixels.

Figure 4.8 shows the 95% confidence interval results. We noticed that all

the random chunks of pixels have very low variance. It is because of the higher

population size. In our case the population size we used is 30. We can say that we

are 95% confident that the accuracy of each chunk of random pixel lies between
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(a) MDF Upper Body Parts 95% Confidence Interval for 2500 Pixels

(b) MDF Lower Body Parts 95% Confidence Interval for 2500 Pixels

Figure 4.6: MDF Upper and Lower Body Parts Confidence Interval Results
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Figure 4.7: LBP-Decimal Depth Features Overall Results

the lower and upper confidence limit as mentioned in a figure 4.8.

However, if you look at the overlapping of ranges of different chunks of random

pixels in figure 4.8. We figure it out that none of any random chunk of pixels

intervals are overlapping. The difference of upper and lower interval limit between

1200 and 1400 chunk of random pixels is very small but they are not overlapping.

Therefore, we can say that the accuracies of all the random chunks pixels are

statistically not significant. In other words every time we run the experiments all

the chunks of random pixels will get the different accuracies.

Individual Body Parts Results

Table 4.7 represents the accuracy of 27 body parts. The results are not very

impressive for few upper body parts. The majority of body parts scored under

50%. The 800 random pixels performed worst as compared to 2500 random pixels
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Figure 4.8: LBP-Decimal Depth Features 95% Confidence Interval Results

no single body part for 800 random pixels performed better as compared to others.

However, when we increased the random number of pixels upto 2500 we no-

ticed that majority of the body parts accuracy improved. We also observed the

body part which are bigger in size have better accuracy than the smaller ones. The

“right face” body part having a highest accuracy in decimal depth technique fol-

lowed by “left head” body part with 58.36% and 57.69% respectively. The lowest

accuracy we got in decimal depth technique is the “right arm3” and “left ankle”

with 9.66% and 12.26% respectively. The reason of having low accuracy in these

both parts because of smaller in size and have less number of random pixels hits as

compared any other part in the body. Almost all the lower body parts scored over

45% and 3 of them scored over 50%. Figure 4.9 shows the graphical representation

of each body part accuracy in decimal depth technique.

When compared to median depth feature technique we improved the acuuracies
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Figure 4.9: LBP-Decimal Depth Individual Body Parts Results

of almost all the body parts. In median depth feature technique only 6 body parts

were able to score above 50%. Whereas in LBP-DDF technique we improved

further 4 body. So, total 10 body parts scored over 50% in LBP-DDF technique.

In both techniques none of the body parts scored over 60%.

Upper and Lower Body Parts Results

Figure 4.10 shows the upper and lower body parts scores for different random

number of pixels. These average classes accuracies are calculated from confusion

matrix using equation 4.3. Both upper and lower body parts scored below 50%.

We improved only 2% accuracy for upper body parts from 800 random pixels to

2500 random pixels in figure 4.10a. The reason of having below 50% score in

upper body parts is because of smaller body part e.g “left arm1”,“right arm1”,
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“left arm2”,“right arm2”, “left arm3” and “right arm3”. These body parts got

lower number of random hits as mentioned in figure 4.46 and that’s why all these

parts scored below 40%. It will be interesting to see the accuracies of these body

parts in patch based approach.

Similarly, The lower body parts also scored below 50%. Figure 4.10b shows

that for every chunks of random pixels the average lower body parts improved

only 1% than average upper body parts score. However, the average lower body

parts improved approximately 2% scored when we increased the number of random

pixels from 800 to 2500. The highest accuracy we got is 43.37% at 2500 random

pixels and lowest is 43.94% at 800 random pixels. All the lower body parts

scored over 45% except the “left ankle” body part which scored only 12.26%.

This body part is most of time is absent in the image. Out of every 100 to 200

image approximately this body part appeared only once. Sometimes it never gets

maximum number of random spots that’s why this body part has lower accuracy

as compared other body part.

We calculated the confidence interval of upper and lower body parts. Figure

4.11 shows the 95% confidence interval graph for upper and lower body parts.

Figure 4.11a and figure 4.11b indicates that the mean of all the techniques are

overlapping to each other in both upper and lower body parts. Therefore, we can

conclude that we are 95% confident that the lower and upper body parts from

800 to 2500 random pixels in LBP-DDF technique are statistically significantly.

In comparison with median depth feature technique. In LBP-DDF we im-
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(a) LBP-DDF Average Upper Body Parts Accuracies

(b) LBP-DDF Average Lower Body Parts Accuracies

Figure 4.10: LBP-DDF Upper and Lower Body Parts Results

proved both upper and lower body parts scores. We improved 6% in upper body

score and almost 4% in lower body score. Table 4.7 also indicated that we im-

proved every single body part score from median depth features.
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(a) LBP-DDF Upper Body Parts 95% Confidence Interval

(b) LBP-DDF Lower Body Parts 95% Confidence Interval

Figure 4.11: LBP-DDF Upper and Lower Body Parts Confidence Interval Results
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4.4.3 HOG Results

After evaluating depth features we used computer vision feature extraction tech-

niques to improve the results. The computer vision techniques are robust and

highly capable of capturing a minor details in the region/area of interest. We

used HOG in which the every random pixel is used to extract the features for

a particular part. We used 2x2 block and the cell size is 8x8. According Dalal

et al. [65] this is the best configurations for human detection. When a HOG win-

dow is out of bound of the image it produced null vectors. We removed all null

vectors from the feature vector. Figure 4.12 shows the results of HOG descriptor

in a depth image.

Likewise, previous techniques this one is also executed 30 times for each chunk

of random pixels.HOG descriptor performed slightly better than depth based tech-

niques. We improved 2% accuracy from LBP-DDF technique and almost 6% from

MDF technique. However, similar to other depth techniques the accuracy is also

increased when we increased the number of pixels from 800 to 2500 using HOG

technique. At 800 random Pixels we got almost 48% accuracy compared to other

previous techniques this best we got at 800 pixels. The HOG is gradient based

descriptor so it means by applying the gradients on depth based dataset giving us

a little edge over simple depth features for improving an accuracy. We improved

almost 2% accuracy from 800 to 2500 pixels. The highest accuracy we got in HOG

is 49.52% which approximately 50%.

Figure 4.13 shows the 95% confidence interval results. The population size
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we used is 30. We observed from figure 4.13 that the confidence interval of 100,

1200 and 1400 random pixels are overlapping to each other. Their mean values

are in the range of lower and upper limit of confidence interval. Therefore, we can

say that we are 95% confident that the random pixels 100, 1200, and 1400 are

statistically significant. This intuition make sense because the difference among

the accuracies of these 3 random chunks of pixels are very close to each other.

That’s why we are 95% confident that these 3 random chunks of pixels produce

same accuracy. We also noticed the confidence interval of 800 and 1000 random

pixels. Their mean values are not overlapping in the range but their intervals are

overlapping to each other. The difference is exactly 0.2% which is very minor so

therefore these 2 random chunks of pixel considered statistically significant. The

2500 random chunk of pixels is different from other random chunks of pixels. The

confidence interval of 2500 pixels is not overlapping any other random chunks

of pixels. Therefore, we are 95% confident that 2500 random chunk of pixels is

statistically not significant as compared to other random chunks of pixels.

Individual Body Parts

Table 4.8 represents the accuracy of 27 body parts using HOG technique. The

results are not very impressive for few upper body parts. There are 14 body parts

in this technique scored under 50% which is better than MDF and LBP-DDF

technique where we recorded 20 body parts scored under 50%. The 800 random

pixels performed worst as compared to 2500 random pixels no single body part

for 800 random pixels performed better as compared to others.
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Figure 4.12: HOG Overall Results

Figure 4.13: HOG 95% Confidence Interval
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In HOG individual parts accuracy we have seen much improvements in almost

every body part as compared to depth techniques in table 4.8. However, the LBP-

DDF techniques have slightly better accuracy rate for “left arm3”, “right abs”,

“right leg”, “right arm1”, “neck”, “left ankle” and “right arm3” body parts than

HOG. When we increased the number of random pixels the body parts accuracy

also increased. We observed one thing common in depth and HOG techniques

which is the “left arm3”, “left ankle” and “right arm3” body parts performed

worst. The reason of having low accuracy in these both part because of smaller

in size and have less number of random pixels hits as compared any other part

in the body. The accuracy of these both parts is under 35%. The maximum

accuracy we got is 66.21% for the “left face” body part. This is a significant

improvement as compared to depth techniques which was recorded 56.62% and

47.34% respectively. Almost all the lower body parts scored over 45% and 4 of

them scored over 50% except “left ankle”. The “left ankle” body part performing

worst in depth based features and here in this technique as well. Figure 4.14 shows

the graphical representation of each body part accuracy using HOG technique.

When compared to MDF and LBP-DDF technique we improved the acuuracies

of 20 body parts. In MDF technique only 6 body parts were able to score above

50%. Whereas in LBP-DDF technique we improved further 4 body. So, total

10 body parts scored over 50% in LBP-DDF technique. In both techniques none

of the body parts scored over 60%. However, in HOG out of 27 body parts we

noticed that total 13 body parts have over 50% accuracy in which 8 body parts
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Figure 4.14: HOG Individual Body Parts Results

have over 50% accuracy and 5 body parts have over 60% accuracy. These statistics

shows HOG produced better individual body parts results and better than depth

techniques. First time we improved accuracy over 60% using HOG technique.

Upper and Lower Body Parts Results

Figure 4.15 shows the upper and lower body parts scores for different random

number of pixels. These average classes accuracies are calculated from confusion

matrix using equation 4.3. Both upper and lower body parts also scored below

50% in HOG technique. Surprisingly, In HOG we noticed that the lower body

performed slightly less than upper body parts as compared to depth based features

techniques. However, by looking at figure 4.16a and figure 4.16b it is clear that

both upper and lower body parts are statistically significant. In others words both
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have equal accuracies.

We improved almost 3% accuracy for upper body parts from 800 random

pixels to 2500 random pixels in figure 4.15a. The reason of having below 50%

score in upper body parts is because of smaller body part e.g “left arm3” and

“right arm3”. These body parts were most of time occluded by a human pose

and got lower number of random hits as mentioned in figure 4.46. That’s why all

these parts scored below 40%.

Similarly, The lower body parts also scored below 50%. Figure 4.15b shows

that for every chunks of random pixels the average lower body parts decreased

performance by 1% than average upper body parts score. However, the average

lower body parts improved approximately 2% scored when we increased the num-

ber of random pixels from 800 to 2500. The highest accuracy we got is 44.01%

at 2500 random pixels and lowest is 42.23% at 800 random pixels. All the lower

body parts scored over 45% except the ”left ankle” body part which scored only

8.86%.

Figure 4.16 shows the 95% confidence interval graph for upper and lower body

parts. Figure 4.16a and figure 4.16b indicates that the mean of all the techniques

are overlapping to each other in both upper and lower body parts. Therefore, we

can conclude that we are 95% confident that the lower and upper body parts from

800 to 2500 random pixels in HOG technique are statistically significantly.

In comparison with depth based features technique. In HOG we improved both

upper and lower body parts scores. In MDF technique we improved 5% score in
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(a) HOG Average Upper Body Parts Accuracies

(b) HOG Average Lower Body Parts Accuracies

Figure 4.15: HOG Upper and Lower Body Parts Results

upper and lower body parts. Whereas in LBP-DDF technique we improved 2%

score in upper body and 1% in lower body parts. Table 4.8 also indicated that we

improved every single body part score from depth based features.
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(a) HOG Upper Body Parts 95% Confidence Interval

(b) HOG Lower Body Parts 95% Confidence Interval

Figure 4.16: HOG Upper and Lower Body Parts Confidence Interval Results
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4.4.4 HOG Average Results

In this technique we used HOG descriptor in a different way. We use the same

window that we constructed in actual HOG technique and take the average of

the window. We add the average value into the classified pixel x depth value and

considered it a new depth feature.

However, by looking at the results of this technique in figure 4.17. Unfortu-

nately, this technique does not performed well as expected. It performed worst

than the original HOG technique. Even it performed worse than LBP-DDF tech-

nique. In comparison with MDF technique this technique produced little better

score. The overall improvement in the accuracy is very low when we increased the

random number of pixels. We got less than 1% improvement from 800 random

pixels to 2500 random pixels.

Figure 4.18 shows the 95% confidence interval results. We noticed that all

the random chunks of pixels have very low variance. It is because of the higher

population size. In our case the population size we used is 30. We can say that we

are 95% confident that the accuracy of each chunk of random pixel lies between

the lower and upper confidence limit as mentioned in a figure 4.18.

However, if you look at the overlapping of ranges of different chunks of random

pixels in figure 4.18. We figure it out that none of any random chunk of pixels

intervals are overlapping. Therefore, we can say that the accuracies of all the

random chunks pixels are statistically not significant. In other words every time

we run the experiments all the chunks of random pixels will get the different
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Figure 4.17: HOG Average Overall Results

Figure 4.18: HOG Average 95% Confidence Interval

accuracies.
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Figure 4.19: HOG Average Individual Body Parts Results

Individual Body Parts

The accuracies of individual parts are not satisfactory as compared to HOG and

depth techniques. In table 4.9 almost all the body parts scored less than other

techniques. Out of 27 body parts only 5 body parts have scored over 50%. None of

the body part scored over 60%. The highest accuracy is 53.28% for the “right abs”

body part and lowest is 8.18% for “right arm3” body part. However, in this

technique the “right arm3” body part is also performed lowest score like other

previous techniques. Figure 4.19 shows the graphical representation of each body

part accuracy using HOG average depth technique.
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Upper and Lower Body Parts Results

Figure 4.20 shows the upper and lower body parts scores for different random

number of pixels. These average classes accuracies are calculated from confusion

matrix using equation 4.3. Both upper and lower body parts also scored below

up to 40%. In comparison with previous techniques. The HOG-AVG technique

only improved 1% from MDF techniques.The rest of the techniques have better

average upper and lower body parts accuracy than HOG-AVG.

Likewise, other previous techniques this technique also produced better aver-

age lower body parts score than upper body parts except HOG technique where

average upper body parts scored better. However, when we increased the random

number of pixels the increase in accuracy is very little. The upper body part in-

creased almost 1.5% from 800 random pixels to 2500 random pixel in 4.20a. The

lower body parts increased less than 3% from 800 random pixels to 2500 random

pixel in 4.20b.

Figure 4.21 shows the 95% confidence interval graph for upper and lower body

parts. Figure 4.21a and figure 4.21b indicates that the mean of all the techniques

are overlapping to each other in both upper and lower body parts. Therefore, we

can conclude that we are 95% confident that the lower and upper body parts from

800 to 2500 random pixels are statistically significantly.
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(a) HOG-AVG Average Upper Body Parts Accuracies

(b) HOG-AVG Average Lower Body Parts Accuracies

Figure 4.20: HOG-AVG Upper and Lower Body Parts Results
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(a) HOG-AVG Upper Body Parts 95% Confidence Interval

(b) HOG-AVG Lower Body Parts 95% Confidence Interval

Figure 4.21: HOG-AVG Upper and Lower Body Parts Confidence Interval Results
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4.4.5 SIFT Results

We used SIFT descriptor on different random pixels in depth image like HOG

descriptor. SIFT descriptor is capable of capturing the local attributes/features

of a image or an object. We used the VLFeat [79] library to implement SIFT

descriptor in our thesis. VLFeat[79] is open source cross platform that provides

bundle of popular computer vision algorithms libraries. The library for SIFT

descriptor is robust and easy to implement in Matlab[80] environment. Like HOG

in SIFT When a window is out of bound of the image it produced null vectors. We

removed the null vectors from the feature vector during the classification phase.

SIFT Results were classified only for 800 random pixels. The rest of the

different random pixels were computed but never classified. The size of the feature

vector is too large to classified and takes lot of time. However, we recorded more

than 10.6 million instances for training and more than 60 million instances for

testing. We would not have enough processing power to classify the huge feature

vector. Therefore, we were only able to classify SIFT descriptor only for 800

random pixels.

Figure 4.22 shows the average results of 30 runs for SIFT descriptor. We

got very impressive accuracy which is much better than any other pixel based

methods. We got 64.05% accuracy which is more than 18% from depth based

techniques. Out of 100% instances the SIFT descriptor is able to detect 64%

instances correctly. However, 37% of instances were incorrectly classified. The

results can further be improved if we increased the number of random pixels and
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Figure 4.22: SIFT Overall Results

Table 4.10: SIFT Average 95% Confidence Interval

SIFT 95% Confidence Interval

Mean 64.05215961
Standard Deviation (S.D) 0.952428578
Sample Size 30
Significance level (Alpha) 0.05
Lower 95% CI 63.7113343
Upper 95% CI 64.3929657

random decision trees. Table 4.10 shows the Statistical data for SIFT such as

lower and upper confidence interval limit. The confidence interval in table 4.10

shows that we are 95% confident that the accuracy of SIFT lies in an upper and

lower confidence interval limit.
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Individual Body Parts

Table 4.11 represents the accuracies of 27 body parts using SIFT features tech-

nique. Similar to other pixel based techniques in this technique we also ran ex-

periments up to 30 times and table 4.11 indicates the average accuracies of each

body part.

In SIFT individual body parts we found very interesting results as compared

all other pixel based techniques. In table 4.11 we recorded a notable accuracy

improvements in almost every body parts. The highest performance jump were

noted in “left arm1”, “left chest”, “left ankle” and “right arm1” body parts where

we gained more than 20% accuracy as compared HOG technique. The “left face”

body part is leading with highest score which is 80.66% followed by “right face”.

Similarly, like other previous techniques in SIFT the body parts “right arm3”

and “left ankle” also performed worst among all other body parts. However, the

accuracies of these body parts improved in SIFT by more than 15% as compared

to all other techniques but still scored under 40%.

Out of 27 body parts only 5 body parts scored below 50% , 5 body parts scored

over 50% and 17 body parts scored over 60% which is much better than HOG and

any other techniques. Therefore, we can say that the SIFT performed very well in

depth images specially on pixel based approach. Figure 4.23 shows the graphical

representation of each body part accuracy using SIFT technique.
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Figure 4.23: SIFT Individual body parts accuracies

Upper and Lower Body Parts Results

Figure 4.24 shows the upper and lower body parts scores for only 800 random

number of pixels. These average classes accuracies are calculated from confusion

matrix using equation 4.3. Both upper and lower body parts also scored almost

60% in SIFT technique. In SIFT we noticed that the lower body performed

slightly less than upper body parts similar to HOG features techniques. However,

by looking at figure 4.25 it is clear that both upper and lower body parts are

statistically significant. In others words both have more or less equal accuracies.

Figure 4.24 shows the average results of upper and lower body parts. One thing

we observed in all pixel based techniques that all have higher lower body parts

accuracy than upper body parts except HOG. In SIFT the situation is similar

to HOG. Table 4.11 states that all the lower body parts have more than 60%

accuracy except “left ankle” body part. The “right foot” and “left foot” scored
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over 64%. The reason of having low lower body parts accuracy than upper body

parts is because of “left ankle” body part which performed less than 40%. This

body part body parts got lower number of random hits as mentioned in figure

4.46. Whereas, the upper body parts scored almost 60%. However, there are

few parts that have less than 50% accuracies such as “left arm3”, “right arm3”,

“left hand” and “left wrist”. These body parts are very difficult to recognized

correctly because of the smaller in size and occlusion. Therefore, in conclusion

to SIFT we can say that SIFT produced better upper and lower body results as

compared to other pixel based methods.

Figure 4.25 shows the 95% confidence interval graph for upper and lower body

parts. Both upper and lower body mean values are overlapping to each other.

Therefore, we can conclude that we are 95% confident that the lower and upper

body parts from 800 random pixels in SIFT are statistically significantly.

In comparison with previous features technique. In SIFT we improved both

upper and lower body parts scores. We improved more than 17% score in both

upper and lower body parts.

4.4.6 Fusion of Features Based Results

We fused all the features together in order to check whether we can improve

the accuracy or not. We know that all features have different characteristics

that’s why we fused depth feature with other depth feature and also fused depth

with computer vision features techniques. Figure 4.26 shows the results of fusion
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Figure 4.24: SIFT Upper and Lower body parts accuracies

Figure 4.25: SIFT Upper and Lower body parts 95% Confidence Interval
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Figure 4.26: Fusion of Features Accuracies

features.

We observed from figure 4.26 that fusing features together never worked. We

noticed a slight decline in the accuracies. The decimal depth feature alone gave

almost 48% accuracy and when we combined the median depth feature with it.

We lost 2% of accuracy. Similarly, when median and decimal depth feature is

combined with HOG and SIFT the accuracy also fall down by 2% from HOG and

SIFT actual accuracy. However, when we used both median and decimal depth

features together with computer vision feature techniques(HOG and SIFT). We

also noticed a decline in the accuracies. Interestingly, when we combined both

depth feature with SIFT the accuracy is badly affected. The accuracy of the SIFT

goes down to 47.25% which is almost 15% declined.

Therefore, we can conclude that mixing of depth features with computer vision

features may not improve that accuracy.

98



Table 4.12: Patched Based Configurations

Configurations

Total images 19000
No of patches in one image 26
Depth 20
Training images 16000
Testing images 3000

4.5 Patch-Based Approach Results

In this section we represented patched based approach results. Instead of taking

random pixels from whole human body. We divided the human body into patches

or parts. In patch based approach we have total 26 body patches or parts. For

every patch or part we applied different feature extraction techniques to extract

features and then classified using Random Forest model. We used two different

techniques here. The first one is Bag of Features and second one is local fea-

tures. Table 4.12 shows the Training and Testing configuration for patched based

approach.

4.5.1 Bag of Features Results

This is one of the patch based approach. This technique has been widely used for

object detection and image classification. We used HOG and SIFT descriptor for

extracting features from the image patch or part. The reason of using HOG and

SIFT descriptor for having a good comparison between global and local features

in patch based approaches. However, we already know that the SIFT and HOG

performed better in pixel based approach. Therefore, we used these both descrip-
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tor for Bag of feature technique as well. Using HOG and SIFT descriptors we

generated discrete features vocabulary from the large number of training samples.

Whereas in testing given an image features are extracted and assigned to

the nearest cluster in discrete vocabulary. Afterwords, a normalized histogram

is generated from the testing set that represent the actual features. We used

different numbers clusters starting from 56 clusters and than increased to 100,

150 and upto 200 clusters. We classified the training and testing data using

random forest model. The random forest model consist of total 40 decision trees.

The final output is the average of 40 decision trees.

4.5.2 Bag of Features using HOG

Table 4.13 shows the HOG results under different clusters and trees. We noticed

that in each cluster when we increased the number of trees the accuracy also

improved. Total 9% accuracy gained from tree 3 to tree 40 in almost every set of

cluster except cluster 200 where we got 11% jump in accuracy. We also noticed

that at cluster 200 the performance of HOG is slightly declined or remains same.

whereas at tree 30 and tree 40 the performance is almost the same no change

recorded. The highest performance we recorded in HOG is 53% at cluster 200

and at tree 40. The lowest scored is 41% which is at cluster 200 and at tree 3.

Table 4.13 showing the results of one execution. However, we know that the

random forest model for 40 trees have maximum accuracies as compared other

random forest models. Therefore, we decided to re execute the random forest
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Table 4.13: Patch Based Approach HOG Results

Clusters Tree 3 Tree 10 Tree 20 Tree 30 Tree 40

56 42% 47% 49% 50% 51%
100 43% 49% 51% 52% 52
150 42% 48% 50% 51% 51%
200 41% 48% 50% 52% 53%

model for 40 trees up to 30 times and take the average accuracies of different

clusters. Figure 4.27 showing the average score of different clusters for random

forest model that consists of 40 trees. We noticed that by taking an average of

30 runs the acuuracies of different clusters declined by 1% or 2% as compared to

single run in table 4.13. Overall the last 3 clusters 100, 150 and 200 scored almost

same which is 51%.

The purpose of re execute the experiments up to 30 times is not only to take an

average score but also calculate the confidence interval. The reason of calculating

the confidence interval is to make sure that the different clusters are statistically

significant or not. Figure 4.28 showing the 95% confidence interval of clusters

56 to 200 for random forest model of 40 trees. We can observed from the figure

4.28 that all the clusters have very narrow range or variance and none of the

clusters are overlapping. Therefore, we can say that we are 95% confident that

from clusters 56 to 200 for random forest model of 40 trees are statistically not

significant. It means 95% of times the cluster scored within upper and lower limit

without overlapping with other clusters.
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Figure 4.27: BOF-HOG Overall Results for Trees 40

Figure 4.28: BOF-HOG Average 95% Confidence Interval for Trees 40
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Individual Body Parts Results

The accuracies of individual body parts in patch based approach helps to figure

out that how patches are correctly classified. We ran experiments up to 30 times

and table 4.14 indicates the average accuracies of each body part of different

clusters 40 trees random forest model. In table 4.14 “K” represents the number

of K-Means clusters.

In this technique we have got mixed results among the different clusters unlike

pixel based techniques. Where the highest number of random pixels chunks got

the highest individual body parts accuracy. However, in this technique increasing

the number of clusters decreased the individual body parts accuracy most of the

time as described in table 4.14. Cluster 100 in table 4.14 predicted most of the

body parts with better accuracy as compared to others cluster followed by cluster

56. The highest accuracy we got in table 4.14 is 84.03% at cluster 100 which is

“left chest”. The lowest is 31.28% at cluster 150 which is “right wrist”.

The most important thing we have noticed in this patch based technique

which is the improvements of smaller body parts accuracies like “right arm3”,

and “left arm3”. These body parts performed very worst in pixel based tech-

niques by having less than 10% accuracy. However, in this technique we improved

almost 36% accuracy in “right arm3” body part and more than 20% accuracy im-

proved in ”left arm3” body parts. The reason behind the improvements because

this technique is dealing with patches where the descriptor applied on all pixels

rather than taking random pixels. Figure 4.29 shows the graphical representation
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Figure 4.29: BOF-HOG Average Individual Body Parts Results for Trees 40

of each body part accuracy using BOF-HOG.

Upper and Lower Body Parts Results

Figure 4.30 shows the upper and lower body parts scores of different K-Means

clusters. These average classes accuracies are calculated from confusion matrix

using equation 4.3. The upper body parts scored approximately 50%. The lower

body parts scored almost 52%.

We improved almost 2% accuracy for upper body parts from cluster 56 to 200

in figure 4.30a. We noticed at cluster 150 and 200 the upper body score is same.

This is because when we increased number the clusters the performance of this

technique start decreasing or remain same see table 4.13 after cluster 100. The

lowest upper body accuracy we got at cluster 56 which is 47.25%. Similarly, The

lower body parts scored over 50%. Figure 4.30b shows that the accuracy improved
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from cluster 56 to cluster 100. However, the lower body accuracy slightly decreased

from cluster 100 to cluster 200.

Figure 4.31 shows the 95% confidence interval graph for upper and lower body

parts. Figure 4.31a and figure 4.31b indicates that the mean of all the techniques

are overlapping to each other in both upper and lower body parts. Therefore, we

can conclude that we are 95% confident that the lower and upper body parts from

cluster 56 to cluster 200 using random forest model of 40 trees are statistically

significantly. It means their is no difference among the clusters all have same

upper and lower body score. Cluster 100 and 150 have exactly same interval in

figure 4.31a and figure 4.31b.

4.5.3 Bag of Features using SIFT

Table 4.15 shows patch based SIFT results using bag of feature technique. The

results are not impressive for SIFT in patch based approach. The highest accuracy

we got is 33% and lowest is 24%. However, there are two ways to interpret the

results of BOF-SIFT in table 4.15. The first one when we increased the number of

trees in the random forest model the performance is improved very little. We got

only 1% accuracy jump from tree 3 to tree 40 which is less than BOF-HOG. As

we can see that from figure 4.15 after at 10th tree the performance is remains the

same. There is no significant change recorded. The second one when we increased

the number of clusters. It has been noticed from table 4.15 that increase in number

of clusters also increased the accuracy.
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(a) BOF-HOG Average Upper Body Parts Accuracies for Trees 40

(b) BOF-HOG Average Lower Body Parts Accuracies for Trees 40

Figure 4.30: BOF-HOG Upper and Lower Body Parts Results
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(a) BOF-HOG Upper Body Parts 95% Confidence Interval for Trees 40

(b) BOF-HOG Lower Body Parts 95% Confidence Interval for Trees 40

Figure 4.31: BOF-HOG Upper and Lower Body Parts Confidence Interval Results
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Table 4.15 showing the results of one execution. Similar to BOF-HOG we

decided to re execute the random forest model for 40 trees up to 30 times and

take the average accuracies of different clusters. Figure 4.32 showing the average

scores for different clusters using random forest model that consists of 40 trees.

We noticed that by taking an average of 30 runs the accuracies of different clusters

have similar response as in table 4.15. The accuracy increased as we increased the

number of clusters. We got almost similar accuracies for 40 trees as recorded in

table 4.15.

Figure 4.33 showing the 95% confidence interval of clusters 56 to 200 for ran-

dom forest model of 40 trees. We can observed from the figure 4.33 that all the

clusters have very narrow range or variance and none of the clusters are overlap-

ping. Therefore, we can say that we are 95% confident that from clusters 56 to

200 for random forest model of 40 trees are statistically not significant. It means

95% of times the cluster scored within upper and lower limit without overlapping

with other clusters. Every time the accuracy of each cluster is different than other

clusters.

Table 4.15: Patch Based Approach sift Results

Clusters Tree 3 Tree 10 Tree 20 Tree 30 Tree 40

56 24% 25% 25% 25% 25%
100 28% 29% 29% 29% 29%
150 30% 30% 31% 31% 31%
200 31% 31% 32% 32% 33%
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Figure 4.32: BOF-SIFT Overall Results for Trees 40

Figure 4.33: BOF-SIFT Average 95% Confidence Interval for Trees 40
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Individual Body Parts Results

In this technique we ran experiments up to 30 times and table 4.16 indicates the

average accuracies of each body part for different clusters of 40 trees random forest

model. In table 4.16 “K” represents the number of K-Means clusters.

In this technique we have also got mixed results among the different clusters

which is similar to BOF-HOG techniques. Cluster 150 in table 4.16 predicted most

of the body parts with better accuracy as compared to others clusters followed by

cluster 200. The highest accuracy we got in table 4.16 is 73.42% at cluster 200

which is ”neck”. The lowest is 14.99% at cluster 56 which is “right arm3”. The

body parts “right arm3” and “right elbow” performed worst. Their accuracy is

less than 20%.

In comparison with BOF-HOG this technique performed worst in almost every

individual body parts. Out of 26 only 2 body parts scored over 50%. Which worst

than all previous techniques including pixel based techniques. Figure 4.34 shows

the graphical representation of each body part accuracy using BOF-SIFT.

Upper and Lower Body Parts Results

Figure 4.35 shows the upper and lower body parts scores of different K-Means

clusters. These average classes accuracies are calculated from confusion matrix

using equation 4.3. Both upper and lower body parts scored less than 50%. This

techniques have lowest score than all previous techniques including pixel based

techniques. The majority of the body parts scored less than 40% and this is the
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Figure 4.34: BOF-SIFT Average Individual Body Parts Results for Trees 40

reason of having very less score in upper and lower body parts.

However, by looking at upper body parts score in figure 4.35a. We improved

almost 4% accuracy from cluster 56 to 200 in figure 4.35a. We noticed at cluster

150 and 200 the upper body scored higher than lower body. This is because the

”neck” body part scored 70% in both clusters. The other reason is the upper body

parts performed better after cluster 100. Cluster 150 and 200 improved 20 body

parts than first two clusters. The lowest upper body accuracy we got at cluster 56

which is 27.72% and the highest is 30.13% at cluster 200. The lower body parts

scored less than 30%. Figure 4.35b shows that very little accuracy improved from

cluster 56 to cluster 100. Out of 5 lower body parts only 1 body parts scored

over 40% and the rest scored less than 35%. This is worst ever lower body score

we have been noticed so far.The lowest lower body accuracy we got at cluster 56

113



which is 26.94% and the highest is 29.32% at cluster 200.

Figure 4.36 shows the 95% confidence interval graph for upper and lower body

parts. Figure 4.36a and figure 4.36b indicates that the mean of all the techniques

are overlapping to each other in both upper and lower body parts. Therefore, we

can conclude that we are 95% confident that the lower and upper body parts from

cluster 56 to cluster 100 using random forest model of 40 trees are statistically

significantly. It means their is no difference among the clusters all have same

upper and lower body score.

4.5.4 Local features Results

As discussed earlier the local features are used to find out the unique patterns or

structures in an image that can be recognized as image patch, edge and point.

Local features are used to play an important role in object detection specially

when dealing with image patches. It represent the patch content so nicely for

detection purposes. These features are very robust to noise, occlusion and change

in viewing condition.

We used this technique in depth images where we extracted all the patches

or body parts separately. By applying this on each patch we got some dominant

and impotent features. To get rid of impotent features that are considered use-

less. We used Singular Value Decomposition (SVD) method to reduce the feature

space. The SVD is robust and it use eigen values and eigen vectors to reduce the

features. If the size of patch is nxm then the length of feature vector for each
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(a) BOF-SIFT Average Upper Body Parts Accuracies for Trees 40

(b) BOF-SIFT Average Lower Body Parts Accuracies for Trees 40

Figure 4.35: BOF-SIFT Upper and Lower Body Parts Results
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(a) BOF-SIFT Upper Body Parts 95% Confidence Interval for Trees 40

(b) BOF-SIFT Lower Body Parts 95% Confidence Interval for Trees 40

Figure 4.36: BOF-SIFT Upper and Lower Body Parts Confidence Interval Results
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patch is 2m. In our domain each patch has different height and width therefore,

by taking 2m features for each patch the final feature vector become inconsistent

for classification. To encounter this problem we padded zeros at the end of each

smaller patch to make it fit and consistent for our classification model.

Figure 4.37 shows the results of local features. We used random forest model

with upto 40 decision trees as we followed same in Bag of Features technique. As

we observed from the figure 4.37 that we got 50.34% accuracy at tree 3. How-

ever, when we increased the number of decision trees the accuracy improved from

50.34% to 65.36% at tree 40. We increased 9% from tree 3 to 10. It means by

increasing the decision tree from 3 to 40 we gained almost 15% accuracy which is

better than BOF technique. The results in figure 4.37 are the average of 30 runs

for each random forest model.

Figure 4.38 showing the 95% confidence interval for each random forest model.

We can observed from the figure 4.38 that the SVD features for each random forest

model have very narrow range or variance and none of them are overlapping.

Therefore, we can say that we are 95% confident that each random forest model

statistically not significant. It means 95% of times each random forest model for

SVD features would have different overall score.

This technique is easy too implement and take less time for training and testing

in random forest model. Hence, it produced much better results without involving

clustering mechanism.
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Figure 4.37: Local Features Overall Results

Figure 4.38: Local Features Average 95% Confidence Interval
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Individual Body Parts

Table 4.17 represents the accuracies of 26 body parts using local features tech-

nique. Similar to other techniques in this technique we ran experiments up to 30

times and table 4.17 indicates the average accuracies of each body part for each

random forest model.

In individual body parts results we got best ever results as compared to bag of

features technique and as well as in pixel based techniques. Table 4.17 shows the

results of individual body parts results from tree 3 to tree 40. Almost all the body

parts scored over 50% ecxept one body part. However, in pixel based techniques

the best we got only 4 body parts which scored below 50% in SIFT. We observed

from table 4.17 that random forest model which consist of 40 trees is considered

clear winner in terms of predicting maximum body parts with better score than

other random forest models. The body parts “left arm3” and “right arm3” which

their accuracies is less than 20% in all previous techniques. In this technique these

body parts performed much better with over 50% accuracy. The highest accuracy

is 87.48% for “right head”.

To conclude this we can say that the local features produced best individual

body part accuracy as compared any other techniques. We improved upper body

score but also improved lower body parts score. All the lower body parts score

above 62% in which two lower body parts scored over 70%. Figure 4.39 shows the

graphical representation of each body part accuracy.
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Figure 4.39: Local Features Average Individual Body Parts Results

Upper and Lower Body Parts Results

Figure 4.40 shows the upper and lower body parts scores for SVD technique. These

average classes accuracies are calculated from confusion matrix using equation 4.3.

Both upper and lower body parts scored over than 60%. This techniques scored

much better than all previous techniques including pixel based techniques. Almost

all the upper and lower body parts scored above 50% except one upper body part

which is “left elbow”.

Figure 4.40a shows the average results for upper body using local features.

The major improvement has been noticed in tree 10 where upper body parts

improved almost 10% from tree 3. Similarly, from tree 10 to tree 40 we further

improved 6% accuracy. The lowest upper body parts accuracy recorded 48.74%

at tree 3 and highest is 64.15% at tree 40. In table 4.17 we observed that 9 body
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parts scored between 50% and 60%. Interestingly, all these 9 body parts belongs

to upper body. However, If we improved the accuracy of these body parts the

average upper body parts can further be improved. These body parts are mostly

small patches. The accuracy of small patches can be improved by adding some

background pixels in the patch.

Figure 4.40b depicts the average lower body score. The average lower body

scored better than upper body. This trend has been seen in almost every tech-

niques except HOG where upper body part scored better. Similar to upper body

we also noticed major improvement in lower body from tree 3 to tree 10 where

we improved almost 9%. The lowest lower body parts accuracy recorded 53.44%

at tree 3 and highest is 67.33% at tree 40. This is the best ever accuracy we got

in this technique as compared to all other previous techniques. In table 4.17 we

observed that all the lower body parts score above 60%.

Figure 4.41 shows the 95% confidence interval graph for upper and lower body

parts. Figure 4.41a shows the 95% confidence interval graph for upper body

parts. From tree 10 to tree 40 the confidence intervals are overlapping and their

means are also appearing in the intervals so therefore, we can say that we are

95% confident that last four random forest model in figure 4.41a are similar or

statistically significant. These random forest model producing almost same upper

body score. This is similar to lower body 95% confidence interval as well in figure

4.41b. However, if we look at the interval of tree 3 and tree 10 in Figure 4.41a

the interval of both random forest model are overlapping. But the mean of Tree 3
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Table 4.18: Local Features Upper body Anova Test for Tree 3 and Tree 10

Source of Variation SS df MS F P-value F crit

Between Groups 0.08952 1 0.08952 3.75693 0.05966 4.08474
Within Groups 0.95315 40 0.02382

Total 1.04268 41

is not appearing in tree 10 confidence interval. We don’t know whether they are

statistically significant or not. Therefore, we calculated the Anova test for both

random forest model. The Hypothesis for Anova test are following:

• Null Hypothesis 1

µTree3 = µTree10 (4.4)

• Alternative Hypothesis 1

µTree3 < µTree10 (4.5)

The null hypothesis in equation 4.4 depicts that the upper body score for

both random forest model are statistically significant. Whereas the alternative

hypothesis in equation 4.5 depict that the upper score for random forest model

are not statistically significant. We used 0.05 alpha value in Anova test.

Table 4.18 shows the results of Anova test for upper body. In table 4.18 we

can see that F value is less than F-crit value so therefore, we failed to reject our

null hypothesis in equation 4.4. It means that both random forest model are

statistically significant.
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Table 4.19: Local Features Lower body Anova Test for Tree 3 and Tree 10

Source of Variation SS df MS F P-value F crit

Between Groups 0.01921 1 0.01921 3.49969 0.09829 5.31765
Within Groups 0.04391 8 0.00548

Total 0.06312 9

In lower body parts we have a similar scenario like in upper body parts. The

last four random forest models are statistically significant as we can see in the

firgure 4.41b. However, in first two random forest models we are not sure that

they statistically significant or not. Therefore, we also calculated Anova test for

lower body as well. We used the same same hypothesis that we used for upper

body in equation 4.4 and equation 4.5. Table 4.19 shows the results of Anova test

for lower body. In table 4.19 we can see that F value is less than F-crit value so

therefore, we failed to reject our null hypothesis in equation 4.4. It means that

both random forest model are statistically significant with other random forest

model.

4.6 Draped Clothes Framework Overall Results

and Discussions

4.6.1 Overall Results

Figure 4.42 represents the overall results of all the techniques that we used in

draped clothes framework. We started with pixel based approach in which we
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(a) Local Features Average Upper Body Parts Accuracies

(b) Local Features Average Lower Body Parts Accuracies

Figure 4.40: Local Features Upper and Lower Body Parts Results
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(a) Local Features Upper Body Parts 95% Confidence Interval

(b) Local Features Lower Body Parts 95% Confidence Interval

Figure 4.41: Local Features Upper and Lower Body Parts Confidence Interval
Results
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used depth and computer vision based approaches. BOF-SIFT technique has

lowest score among other depth and computer vision techniques with 31% accuracy

followed by MDF depth based technique with almost 44% accuracy. We used

another depth techniques called LBP-DDF which produced better results than

MDF and BOF-SIFT. Although, LBP-DDF beat low score techniques but still

its accuracy is under 50% which is not very impressive. However, we then used

computer vision techniques to improve the accuracy rate. We used HOG and

SIFT feature descriptors. As we observed form the figure 4.42 SIFT descriptor is

taking lead from other pixel based methods with 64% accuracy. It means majority

of the instances were correctly classified. HOG scored almost 51% which is better

than depth based feature but still the 49% of pixels or instances were wrong

classified. We also used HOG-AVG technique which average the HOG window

and considered average value as a feature. We achieved 44.26% accuracy which is

similar to MDF depth based technique.

We used bag of feature and local features techniques in patch based approach.

The BOF with HOG technique produced the same results that we achieved in pixel

based approach using HOG. We got 51% of accuracy for BOF HOG. Surprisingly,

the SIFT in BOF never performed well as it performed in pixel based approach.

It produced the lowest score among all other techniques with 31% accuracy. The

reason of having low score is because, it may not able to cluster the patches

correctly and considered two or more different patches in a same cluster. However,

the local features technique outperformed not only patch based techniques but also
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outperformed pixel based techniques. We achieved 65.36% accuracy which highest

among all.

Figure 4.43 showing the 95% confidence interval for all techniques. We can

observed from the figure 4.43 that all the techniques have very low variance.

It is because of the higher population size. In our case the population size for

each technique is 30. All the techniques have different confidence interval and

no single technique is overlapping to each other. Hence, we can say that we are

95% confident that all techniques are statistically not significant to each other. It

means every time we run the experiments of any techniques we will get different

results than other techniques.

We can conclude from figure 4.42 in pixel based the SIFT produced much

better results and local features in patch based produced almost the same results

as we got in SIFT. In terms of computation and classification we advised to use

local features for the detection human body parts in Arabic clothes. Because it

is easy to implement and take very less time in execution. On the other side the

SIFT take more time to execute and also take lot of time for training. The result

of SIFT in figure 4.42 was classified only on 3 tree and with 800 random pixels.

However, by increasing the number of trees and random pixels may increase the

results of SIFT.
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Figure 4.42: Draped Clothes Framework Overall Results

Figure 4.43: Draped Clothes Framework Confidence Intervals for All Techniques
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4.6.2 Overall Individual Body Parts Results

Table 4.20 shows the individual body parts results for all pixel and patch based

techniques. The accuracies of each body part in every technique is the average of

30 runs. It is clear from the Table 4.20 that both SIFT and local features are clear

winner in terms of predicting maximum body parts. The BOF-SIFT performed

worst among all other techniques followed by HOG-Average technique. However,

we noticed huge improvement in the accuracy when we compared SIFT and Local

features individual body parts accuracies with the rest of the techniques.

The “right head” body part got highest score among all other body parts

with almost 87.48% accuracy followed by “left head” body part with accuracy of

86.17% using local features technique. The reason of high accuracies of these body

parts depends on couple of important factors. First, in our dataset the position

of these two body parts are almost fixed in every image frame which is on the

top of the image. These body parts never appeared over any body parts which

avoid the chance of resemblance between two or more body parts of having a same

feature. Second, the involvement of background pixels. It was noticed from MDF

technique that the background pixels helps body parts to increase their accuracy.

However, there are other 7 body parts including above two body parts which

scored over 50% in almost every pixel and patch based technique except BOF-

SIFT. This means that these body parts have dominant features which give us a

correct location of desired body parts more than 50% accuracy. The body parts

are “right face”, “left face”, “left head”, “right head”, “right chest”, “right abs”
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and “thobe part”.

The “left ankle” body parts performed worst in pixel based technique. This

body part was ignored in patch based techniques because of having a very small

patch size and it is rarely appeared on the image frame. We improved almost

20% accuracy in SIFT than other pixel based techniques. Similarly, the body

part “right arm3” also performed worst in pixel based techniques. The worst

we got 2% in HOG and 15% in SIFT. This similar situation observed in other

body parts as well like “left arm3”, “left wrist” and “right arm3”. The reason is

that these body parts are very small in size, sometimes are occluded by a body

pose and sometimes it appears over another body parts that made resemblance

between two body parts by a having a same features values. The other reason is

the absence of background pixels most of times specifically when these body parts

appeared over another body parts. In this case our defined offset distance unable

to cover background pixels. However, when we switch to patch based technique

from pixel based technique we observed noticeable improvement in all smaller

body parts. The huge improvement was recorded on body part “right arm3”

where we improved more than 35% accuracy in local features. All the smaller

body parts scored over 50%.

One possible solution to improve the performance these smaller body parts

by extending the offset distance. Increasing in the offset distance able to cover

background pixels while computing features. We already know the background

pixels help to improve the accuracy of body parts. The other possible solution is
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to merge two smaller parts together and considered it as an one part for example

merge“left arm2” with “left arm3”. This will increase the patch size and we would

have more random pixels hit in pixel based technique to encounter more features.

Similarly, in patch based technique the solution would worked well because we

noticed bigger patch have over 60% accuracy than smaller one. Therefore, we can

improve the accuracies of these body parts in patch based technique as well.

All the lower body parts scored over 60% except body part “left ankle”. The

“thobe part” made first appearance in the list of high accuracies of lower body

with 76.91% of accuracy followed by “left foot” body parts with 70.35% accuracy.

The one of the main purpose of this thesis to improve the accuracy performance

of lower body parts as compared to previous work [3] which we did successfully

using SIFT and local feature techniques. Out of total 27 body parts the local

feature technique topped on the table for having maximum accuracies of 16 body

parts. The SIFT technique in Pixel based approach predicted 11 body parts with

maximum accuracies.

In conclusion to individual body parts results we would say that local features

technique in patch based approach outclass other techniques for predicting max-

imum number of body parts with high accuracies followed by SIFT. Figure 4.44

shows the graphical representation of each body part accuracy.
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Figure 4.44: Individual body parts overall Accuracies

4.6.3 Overall Upper and Lower Body Parts Results

Figure 4.45 shows the accuracies of lower and upper body parts for all pixel and

patch based methods. Likewise, in Individual body parts here also the local fea-

ture and SIFT techniques are clear winners of having maximum average upper

and lower body accuracy as compared to others techniques. The local feature

technique performed well in both upper and lower body parts followed by SIFT.

We achieved maximum average lower body part score of 67% in local features.

However, the accuracy of average upper body is 64% . Although, LBP-DDF tech-

nique is better than MDF technique. But, we improved almost 20% accuracy using

SIFT and local feature technique from MDF and other pixel based techniques.

The BOF using SIFT have worst average upper and lower body score followed

by MDF technique. HOG AVG performed worst then actual HOG in both upper
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and lower body parts. However, HOG AVG technique has better lower body score

than upper body. Whereas, in HOG technique the upper body is leading. Com-

paring, HOG with BOF-HOG we figure it out by involving clustering using HOG

gave us better individual body parts score, better average upper body parts score

and better average lower body parts score. However, we found opposite case in

terms of comparing SIFT in pixel based with BOF-SIFT in patch based technique.

The BOF-SIFT performed not only worst than SIFT but also performed worst

than other technique. We figure it out that by applying clusters using SIFT the

different patches were not differentiated properly. This is the reason the BOF-

SIFT performed worst than all. One possible solution is to use a RGB dataset

instead of depth values dataset. The values in depth dataset are distance from

the camera and that’s why the same patches were clustered properly.

Total out of 8 techniques only three techniques able to produce more 50%

average upper and lower body score. In which two of the techniques are from

patch based methods. Therefore, we can conclude that the depth features are

not well enough to produced better average upper and lower body accuracy as

compared computer vision feature techniques.

4.6.4 Random Pixel Analysis

We used different number of random pixels such as 800, 1000, 1200, 1400 and

2500 pixels. We decided to analyze these pixels information and check how many

average pixel each part is taking in one image. Figure 4.46 shows the average
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Figure 4.45: Lower and Upper body parts overall Accuracies

random pixel by each part in one image.

We observed from figure 4.46 that lower body parts taking maximum number

of pixels as compared to upper body parts. We also observed that body part

”left ankle” taking very minimum number of pixels from other body part. The

reason of getting low pixels because we observed the dataset and we found this

body part is rarely visible in the image. Most of the time this body part is covered

by a thobe dress.

4.6.5 Comparison with Existing Work

Figure 4.47 stated the comparison of our work with existing work. As we can

notice from the figure 4.47 the SIFT and local feature technique outclass all other

methods. Our median depth feature and decimal depth feature performed slightly
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Figure 4.46: Average number of random pixel by each part

better than Shotton et al. [2] and Ridwan [3] feature. However, both SIFT local

feature technique improved more than 20% accuracy performance as compared

to Shotton et al. [2] and Ridwan [3]. whereas HOG improved 10%. The LBP-

DDF and fusion techniques also performed slightly better than Shotton et al. [2]

and Ridwan [3].. The BOF using SIFT performed worst than all other technique

including Shotton et al. [2] and Ridwan [3].

Therefore, we can say that computer vision feature techniques performed much

better than simple depth features.

4.6.6 Overall Body Parts Accuracy Distribution

Table 4.21 shows the body parts accuracy distribution for each pixel and

patch based technique. We sorted the accuracy distribution from worst(top) to

best(bottom) in table 4.21. The purpose is to show how we improved individ-
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Figure 4.47: Comparison with existing work

ual body parts from worst to better by applying different pixel and patch based

techniques. The BOF-SIFT has worst body parts accuracy distribution and local

features(LF) has best body parts accuracy distribution as described in table 4.21.

As we already know that BOF-SIFT technique performed worst than all and

it is clearly reflected from table 4.21. Only 2 body parts scored above 50% both

parts belongs to upper body(“left face” and “neck”). Second technique we used

was HOG-AVG. This technique taking the average of actual HOG window and

considered as a feature for random classified pixel. We improved from BOF-SIFT

however, only 5 body parts scored above 50% and all these parts lies between

50% and 60% slot. Majority of body Parts belongs to upper body. The third

and fourth techniques were related to simple depth features. However, we further

improved 1 and 4 body parts respectively from first two techniques. But still

no body parts scored above 60%. After getting no major improvements from
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simple depth features based techniques. We used HOG this technique considered

very useful in human and pedestrian detection. We improved more body parts as

compared to above techniques in table 4.21 using HOG. Now total 13 body parts

scored above 50% in which 5 body parts scored above 60% and none of the body

parts scored above 70%. Out of 13 body parts 10 body parts belongs to upper

body and rest of belongs to lower body parts.

The BOF-HOG patch based technique overall made third position for predict-

ing most body parts. The BOF-HOG is patch based technique so we have total

26 body parts instead of 27 because body part “left ankle” is ignored due to small

patch size. The BOF-HOG scored 13 body parts above 50% in which 7 body parts

scored within 50% to 60%, 3 body parts scored within 60% to 70%, 1 body parts

scored within 70% to 80% and 2 body parts scored above 80%. However, HOG

in pixel based also scored 13 body parts above 50% but BOF-HOG technique has

better accuracy distribution as mentioned in table 4.21.

The last two techniques in table 4.21 outperformed other techniques by having

a much better accuracy distribution. SIFT in pixel based technique outperformed

all other pixel based technique. Out of 27 body parts the SIFT scored only 5

body parts below 50% and rest of them scored above 50%. In which 11 body

parts scored within 60% to 70%, 4 body parts scored within 70% to 80% and 2

body parts scored above 80%. However, the local features technique performed

better than SIFT by having only 1 body part scored below 50% and the rest of the

body parts scored above 50%. Out of 26 body parts the local feature technique
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Table 4.21: Body Parts Accuracy Distribution

Below 50% 50% - 60% 60% - 70% 70% - 80% Above 80%
B SIFT 24 1 0 1 0
H AVG 22 5 0 0 0
MDF 21 6 0 0 0
DDF 17 10 0 0 0
HOG 14 8 5 0 0

B HOG 13 7 3 1 2
SIFT 5 5 11 4 2
LF 1 9 5 7 4

scored 16 body parts above 60% in which 4 body parts scored above 80%, 7 body

parts scored within 70% to 80% and 5 body parts scored with in 60% to 70%. All

the lower body parts scored above than 60% in local features technique. Whereas,

in SIFT only 4 lower body parts out of 6 scored above 60%.

In conclusion, we started with 24 body parts which scored below 50% and we

end up with only 1 body part which scored below 50% in local feature technique.

This is a significant improvements as compared to other techniques.

4.6.7 Draped Clothes Framework Final Output

As we discussed earlier in draped clothes framework we applied different feature

extraction techniques for recognizing human body parts. Our framework would

show the best technique in both pixel and patch based approach. Figure 4.48

shows our framework final output. In pixel based approach we got SIFT that

gave us 64% accuracy which is best among all other techniques we used. Where

as in Patch based approach we used different techniques such as Bag of Features

and local features. However, in patch based technique the local features technique
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Figure 4.48: Draped Framework Output

topped with 65% accuracy.

To conclude that our draped clothes based framework figure out that SIFT

and local features performed better as compared to other techniques. However,

the local features gives better individual and upper lower body parts accuracy as

compared to SIFT. The local features are easy to implement and take less time

in classification as compared to SIFT in pixel based approach.
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CHAPTER 5

CONCLUSION AND FUTURE

WORK

5.1 Conclusion

Human pose recognition is considered a well-known process of estimating the

human body pose from a single image or from video frames. It is a kind of part

based computer vision problem. The body parts are recognized from the whole

body and using these recognized parts the exact human pose can be predicted. In

human pose recognition, most of the research has been taken on western clothes

since this problem first occurred. The structure of western clothes is very simple.

The fabric is not covering the entire body. Some of the body parts are separated

to each other for example left arm, right arm, left leg and right leg. That is

why human wearing jeans, casual and dress shirts or sports trousers it is easy

recognized upper and lower body parts using low-cost depth cameras.
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However, there is no such research exists that recognized human pose on draped

clothes. The draped clothes such as Arabic Thobe and subcontinent dresses are

difficult to recognized human pose. These clothes are unlike western clothes it

covers the entire body with a single piece of fabric. Therefore, in such cases the

lower body would look like a concrete opaque square in a 2D image hiding all the

spatial details of lower body parts left thighs, right thighs, left knees, right knees,

left leg and right leg. Even the low-cost depth cameras are failed to detect these

body parts.

Therefore, in this thesis, we present a framework called draped clothes frame-

work that recognized human pose in draped based clothes. In this framework we

adopted learning based technique in Pixel and Patch based methods for recogniz-

ing human pose. In each method we applied depth and computer vision feature

extraction techniques. We used random forest classifier for the classification hu-

man body parts. After applying all the techniques in both methods. Our draped

clothes framework figure it out that in pixel based approach the SIFT technique

outclass other feature techniques leading with 64% accuracy. We improved more

than 20% of accuracy from the existing work. We also improved the lower body

part accuracy overall up to 57%. While in patch based method we used Bag of

feature technique with SIFT and HOG and local feature technique. We found

that local feature is very useful for predicting the correct body parts with almost

65% accuracy. The local feature technique have better individual body part accu-

racy rate and also have better average lower body parts accuracy with upto 67%.
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The local feature technique predicted more body parts with higher accuracy than

SIFT.

5.2 Threats to Validity

5.2.1 Construct Validity

Every research have some limitation. One of the limitation in our thesis is the

dataset. We used synthetic dataset. which is modeled by Ridwan [3] in Maya.

There is no real dataset available publicly. The real dataset is different from

synthetic dataset in so many ways. For example in real dataset the main factor

is noise in the image which the synthetic dataset lacked.

The other limitation is null feature vector at random pixel. We used SIFT and

HOG techniques which is calculate a gradients in a 8x8 window. If the windows

lies outside the image the feature at that points returned null vector. It means

that we loosed some the random pixels features. These random pixels are mostly

the border pixels. We cannot include null values in final feature vector. Because

it act as missing values in the classifier and can affect the accuracy as well. That’s

why we removed null vector during classification.

The last limitation in our thesis is related to random pixel as well. We are

using different random pixel it may be the chance that two or more pixel may

point to the same pixel. So therefore, we may have a repetition of same features.

Also the some body parts may get low number of random spot and some high.
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5.2.2 External Validity

In our thesis all the patch and pixel based implementation is done on Matlab 2017

[80] that can restrict our result to Matlab only. We also use KNIME analytics

tool [81] for the classification purposes. Errors in KNIME analytics tool can make

difference in our results.

5.3 Future Work

In future, we would like to do following.

• We will extend our work to further improve the human body part detection

accuracy.

• We will create new dataset which consist of real thobe images.

• We will also test our methods with other draped clothes dataset.

• In thesis we restricted our self to he recognition of human body parts in

Arabic thobe. But we will also work to recognize the human pose and

action as well.

• We will also overcome the limitation of our current research work.
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