

©Jawad Javed Akbar Baig
2017

iii

Dedication
To my parents for their love and continues support.

iv

ACKNOWLEDGMENTS

In the name of Allah, the Most Gracious, the Most Merciful.

First and foremost, Alhamdulillah All praise to Almighty Allah, who gave me

the power to accomplish my master’s degree.

I acknowledge King Fahd University of Petroleum & Minerals for supporting this

research.

All appreciation to my advisor; Dr. Sajjad Mahmood, who helped me and

encouraged me during my thesis journey; he was a teacher and a friend. I wish

to thank my dissertation committee members, Dr. Mohammad Alshayeb and

Dr. Mahmood Niazi, for their help and support.

Finally, I wish to express my gratitude to my family members for their continues

support, patience and prayers. I would like to thank all my KFUPM colleagues,

who provided me the encouragement dealing with difficult times during my

thesis journey.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT v

LIST OF TABLES ix

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

ABSTRACT (ENGLISH) xiii

ABSTRACT (ARABIC) xv

CHAPTER 1 INTRODUCTION 1

1.1 Overview . 1

1.2 Research Problem . 2

1.3 Motivation . 3

1.4 Research Statement . 4

1.5 Research Methodology . 5

1.6 Thesis Contribution . 7

1.7 Thesis Outline . 8

CHAPTER 2 RELATED WORK 10

2.1 System Stability . 10

2.2 Class Stability . 13

2.3 Architecture Stability . 15

vi

2.4 Need for a New Package Stability Metrics 17

CHAPTER 3 PACKAGE STABILITY METRIC DEFINITION 22

3.1 Package Stability Properties . 22

3.2 The Package Stability Metrics Definition 27

3.3 Package Stability Metrics Measurement for Point of Sales System -

An Example . 35

CHAPTER 4 THEORETICAL AND EMPIRICAL VALIDATION 41

4.1 Theoretical Validation . 41

4.1.1 Kitchenham et al. [1] Framework 42

4.1.2 Hassan [2] Framework . 43

4.2 Empirical Validation . 48

4.2.1 Software Systems and Metrics 48

4.2.2 Software Stability Metric Tool 55

4.2.3 Correlation with Maintenance Effort 58

4.2.4 Comparison with existing stability metric 61

4.2.5 Principal Component Analysis 63

4.2.6 Regression Analysis . 67

CHAPTER 5 COMPARISON OF REGRESSION AND CLASSI-

FICATION TO PREDICT PACKAGE MAINTAINABILITY 72

5.1 Data Collection . 73

5.2 Metric Selection . 74

5.3 Metric Tool . 76

5.4 Software Tool . 77

5.5 Correlation Analysis . 77

5.6 Principal Component Analysis . 78

5.7 Prediction using Regression . 82

5.8 Prediction using Classification . 87

vii

CHAPTER 6 CONCLUSION AND FUTURE WORK 91

6.1 Discussion . 91

6.2 Thread to Validity . 95

6.2.1 Construct Validity . 95

6.2.2 External Validity . 95

6.3 Conclusion . 96

6.4 Future Work . 97

REFERENCES 98

VITAE 109

viii

LIST OF TABLES

2.1 System Stability Literature Review 13

2.2 Class Stability Literature Review 15

2.3 Architecture Stability Literature Review 21

3.1 Package Content Stability Factors 23

3.2 Package internal/external Connections Stability Factors 25

3.3 Package Contents Type of Change 27

3.4 Package internal/external Connections Type of Change 28

3.5 Package Content Maximum Possible Change value 29

3.6 Package internal/external Connections Maximum Possible Change

value . 30

3.7 Calculation of Package Aspects and Overall Stability 36

3.8 Calculation of example Package Content Stability Factors 38

3.9 Calculation of Intra-Package Connections Stability Factors 39

3.10 Calculation of Inter-Package Connections Stability Factors 40

4.1 Selected Open Source Software 50

4.2 Selected Open Source Software size statistics 51

4.3 Descriptive statistics of stability metrics and maintenance effort. . 54

4.4 Correlation Analysis with Maintenance Effort. P Value less that

0.00005 is replace with 0 . 61

4.5 Correlation Analysis (Comparison with existing stability metrics).

Note: R is Spearman Rank Order Coefficient and P less than 0.0005

is replaced with 0 . 64

ix

4.6 Principal Component Analyses Results. 67

4.7 Summary of the linear regression using content based stability met-

rics as independent variable. 69

4.8 Summary of the linear regression using package interactions based

stability metrics as independent variable. 69

4.9 Summary of the linear regression using best combinations. 70

4.10 Regression model of best possible combination. 71

5.1 26 Selected Open Source Software size statistics 75

5.2 Descriptive statistics of stability, cohesion, coupling and mainte-

nance effort metrics. 76

5.3 Correlation analysis of package stability, cohesion, coupling and

maintenance effort (Part 1). Note: P values less than 0.00001 are

replaced by 0. 79

5.4 Correlation analysis of package stability, cohesion, coupling and

maintenance effort (Part 2). Note: P values less than 0.00001 are

replaced by 0. 80

5.5 Principal component analysis with coupling and cohesion metrics. 83

5.6 Principal component analysis without coupling and cohesion metrics. 84

5.7 Maintenance Effort Prediction using Regression. Table contain ad-

justed R-squared values. 85

5.8 Future Maintenance Effort Prediction using Regression. Table con-

tain adjusted R-squared values. 86

5.9 Summary of the prediction analysis in the form of accuracy using

Naive Bayes Classifier. 88

5.10 Summary of the prediction analysis in the form of accuracy using

Six Classifier. 89

x

LIST OF FIGURES

2.1 Example version i . 18

2.2 Example version i + 1 . 18

3.1 Example of package stability calculation Version i 36

3.2 Example of package stability calculation Version i + 1 37

4.1 High Level Class Diagram of developed Software Stability Tool . . 56

4.2 Activity Diagram of developed Software Stability Tool 58

4.3 Correlation Analysis with Maintenance Effort. 61

5.1 Prediction of maintenance effort and future maintenance effort us-

ing regression. 86

5.2 Prediction of maintenance effort and future maintenance effort us-

ing regression. 90

xi

LIST OF ABBREVIATIONS

PSM Package Stability Metrics

PCS Package Content Stability

IPIS Intra-Package Interaction Stability

EPIS Inter-Package Interaction Stability

LOC Line of Code

IPIS Intra-Package Interaction Stability

CSM Class Stability Metric

CII Class Implementation Instability

SII System Implementation Instability

SDI System Design Instability

CDI Core Design Instability

CCI Core Call Instability

ASM Architecture Stability Metric

RBSM Relationship Based Similarity Metric

PCA Principal Component Analysis

SVM Support Vector Machine

xii

THESIS ABSTRACT

NAME: JAWAD JAVED AKBAR BAIG

TITLE OF STUDY: MEASURING STABILITY OF OBJECT-ORIENTED

SOFTWARE PACKAGES

MAJOR FIELD: SOFTWARE ENGINEERING

DATE OF DEGREE: December 2017

Software stability is an important object oriented design characteristic that con-

tributes towards maintainability quality attribute. Software stability quantifies the

sensitivity to change of a given system between different versions. Stable software

tends to reduce the maintenance effort. Assessing software stability during the ob-

ject oriented design phase is one of the measures to obtain maintainable software.

To determine software stability, there are several metrics at the system and class

levels, but at the package level, such metrics rarely exist. In this thesis, we propose

a new Package Stability Metrics (PSM) based on the notion of changes between

package contents, intra-package connections and inter-package connections. We

validate the PSM theoretically and empirically. The theoretical validation is based

on study of the mathematical properties of the metrics. The empirical validation

xiii

is carried out using four versions of five open source softwares and we also present

a comparison with six comparable existing stability metrics. For empirical valida-

tion we present four analysis: (1) first analysis explores the correlation between

package stability metrics and maintenance effort; (2) second analysis explores the

correlations among six existing stability metrics and proposed package stability

metrics; (3) third analysis applies principal component analysis to provide evi-

dence that the new metrics captures new dimension of package stability; and (4)

forth analysis applies linear regression analysis for maintenance effort prediction.

The results show that PSM metrics suite provides better indication of package sta-

bility than existing stability metrics and is negatively correlated with maintenance

effort. The analysis also proves that PSM metrics suite cover new dimension of

package stability and increase the prediction accuracy of maintenance effort. We

also presents the performance of different regression algorithms and classification

algorithms to predict package maintainability.

xiv

xiii

 ملخص الرسالة

 کیاکبر ب دیجواد جاو :الاسم الكامل

 قیاس استقرار حزم البرامج الموجه الهدف :عنوان الرسالة

 هندسة برمجیات التخصص:

 2017دیسمبر :تاریخ الدرجة العلمیة

تصميم الكائن الذي يساهم في صفة جودة الصيانة. وموجهة نحوإن استقرار البرمجيات هو سمة مهمة

البرمجيات يحدد حساسية تغيير نظام معين بين الإصدارات المختلفة .تميل البرامج الثابتة إلى استقرار

تقليل جهد الصيانة .إن تقييم استقرار البرمجيات خلال مرحلة التصميم الموجه الكائن هو واحد من

البرنامج، هناك عدة مقاييس على جيات القابلة للصيانة .ولتحديد استقرارالتدابير للحصول على البرم

توجد هذه المقاييس .في هذه مستوى النظام ومستوى الصف، ولكن على مستوى الحزمة، نادرا ما

استنادا إلى فكرة التغييرات بين محتويات PSM الأطروحة، نقترح مقاييس استقرار الحزمة الجديدة

نظريا PSM لات داخل الحزمة والاتصالات بين الحزمة. قمنا بالتحقق من صحةالحزمة، والاتصا

وتجريبيا. ويستند التحقق النظري إلى دراسة الخصائص الرياضية للمقاييس. يتم التحقق التجريبي

باستخدام أربعة إصدارات من خمسة برامج مفتوحة المصدر، كما نقدم مقارنة مع ستة مقاييس استقرار

ً للمقارنة .ومن أجل التحقق التجريبي، نقدم أربعة عمليات تحليل:)موجودة مس (التحليل الأول 1بقا

(التحليل الثاني يستكشف الارتباطات 2يستكشف العلاقة بين مقاييس استقرارالحزمة وجهود الصيانة؛)

ثالث يطبق (التحليل ال3بين ستة مقاييس الاستقرارالحالية والمقاييس المقترحة لاستقرارالحزمة؛)

(4المكون الرئيسي لتقديم أدلة على أن المقاييس الجديدة تلتقط بعدا جديدا في استقرارالحزمة؛ و)

يوفر PSM تحليل يطبق تحليلا للانحدار الخطي للتنبؤ بجهد الصيانة. وتظهرالنتائج أن نجاح مقاييس

سلبا بجهدالصيانة. ويثبت مؤشرا أفضل لاستقرار الحزمة من مقاييس الاستقرار الحالية ويرتبط

تغطي بعدا جديدا لاستقرار الحزمة وتزيد من دقة التنبؤ PSM التحليل أيضا أن مجموعة مقاييس

بجهود الصيانة. كما نقدم أداء خوارزميات الانحدار المختلفة وخوارزميات التصنيف للتنبؤ بصيانة

 .الحزمة

CHAPTER 1

INTRODUCTION

1.1 Overview

The widespread use of software has placed expectations on the industry to develop

techniques and tools to promote quality software that is stable and easy to main-

tain [3, 4]. During the development life cycle, practitioners use metrics to assess

and improve software quality. A number of metrics have been proposed to measure

different characteristics for software products such as functionality, reliability and

maintainability. Maintainability is one important property of design as software

evolve to adapt changes in user requirements and operational environments [5].

Software stability contributes towards maintainability quality attribute and is one

of the measures to obtain maintainable software. Stable software tends to min-

imize changes, improve maintainability and as a result help reduce maintenance

effort [6, 7, 8].

Software stability generally falls into three main views [2, 5]. According to

1

the first definition, stability is the property to resist any change in the system. It

means that entity of software will be called stable if it remains same between two

versions of the software. The definition used by Martin [9] and Soong [10] is similar

to this concept. The second definition says that due to addition or modification if

an entity of the software avoids ripple effects then it is stable. So object-oriented

entities (e.g. classes and packages) which does not cause ripple effects in result of

the modifications will be classified as stable. This definition is used by Yau and

Collofello [11], Elish and Rine [12] and Fayads [13] [14] [8]. According to the third

definition, the entity has maximum stability if existing contents remain same.

An entity remains stable if the addition of new contents does not affect existing

contents. The definition used by Grosser et al. [15] resembles this view. In this

thesis, we adopt the third definition which allows the addition of new contents

while keeping the existing ones intact [5]. This implies that making any changes

in the existing content may lead to an unstable artifact, while adding new features

will not affect stability.

1.2 Research Problem

Researchers have developed a number of metrics to evaluate the stability quality

of object-oriented applications from system, architecture and class viewpoints.

System and architecture view based metrics measure stability for an application

as one unit. System level stability metrics take into account changes in the number

of classes and line of code, without paying attention to internal relationships and

2

external connections ([16, 17, 18]). On the other hand, architecture level stability

metrics do take into account the change in calls between classes [19, 20, 21],

however, they measure stability as a number for a whole system. However, it

has been argued that internal organization of a class needs to be considered to

have informative assessment of system stability [17]. Class level stability metrics

focus on measuring stability of individual classes across versions and take into

account line of code [16], percentage of changed and added methods [5], number

of methods [22] and different class properties [5]. [23, 22, 17, 24].

In object-oriented paradigm, a package is used as the unit of organization to

group relevant classes that are related through similar functionality [25, 26]. In

order to facilitate maintenance, each package should be stable in a well designed

object-oriented system. Package stability indicates the extend to which an indi-

vidual package can tolerate evolutionary changes. This implies that any changes

in the existing package may lead to an instability while adding new classes will

not affect stability [5]. It is believed that a package with higher stability tend to

require lower maintenance effort than the one with lower stability. In this con-

text, if we can measure package stability, it will help designers to identify the

packages with potential maintainability concerns and later take remedy measures

to enhance their quality.

1.3 Motivation

There exist very few studies on software metrics to determine stability at the

3

package level and those studies do not cover all aspects of package stability. For

example, Martin [27] presented package level instability metric as a ratio of ef-

ferent coupling to total coupling for package of a single version and does not

compare two version of the software to compute package stability. Li et al. [16]

calculate package level stability without considering calls between packages and

classes. Some key features of object-oriented systems, such as changes in package

content, intra-package and inter-package connections are not considered in pack-

age stability metrics proposed to date. Existing package stability metrics have not

been validated in terms of their mathematical properties. Furthermore, research

in the area of package stability metrics need empirical studies that correlation

among proposed metrics and explore the relationship between package stability

and software quality attributes.

1.4 Research Statement

Purpose of this research is to study package stability metrics. First, we will study

existing metrics and their gaps. Then we will propose stability metrics to cover

gaps of existing metrics. After proposing metrics, we will validate metrics the-

oretically and empirically. After validating metrics, I will perform maintenance

prediction analysis using package stability metrics. Below are some research ques-

tions of this research:

� RQ1 What are the existing package stability metric?

� RQ2 What are the gaps in existing stability metric?

4

� RQ3 What is the relationship between proposed metrics and package main-

tenance?

� RQ4 What is the relationship between proposed metrics and existing sta-

bility metrics?

� RQ5 Does proposed metrics capture new dimension by measuring missing

properties?

� RQ6 Can we use package stability metrics to predict package maintenance?

� RQ7 Which regression technique perform better in prediction of package

maintenance?

� RQ8 Which classification technique perform better in prediction of package

maintenance?

1.5 Research Methodology

In order to answer our research question we have divided our research in phases.

Below are the phases of our research:

� Phase 1: Literature Review In this phase, we will conduct a literature

review to extract stability metric that exists in the literature. This will help

to identify gaps.

� Phase 2: Stability Metric Definition After identifying gaps, we will

propose new package stability metrics to fill the gaps. In this, we will iden-

5

tify properties that should be measured in new metric and mathematical

formulas for calculations.

� Phase 3: Theoretical Validation In this phase, we will theoretically vali-

date proposed metrics against some mathematical properties and theoretical

properties using theoretical framework.

� Phase 4: Metric Tool Development In this phase, we will develop new

metrics tool from scratch to measure new proposed metrics and existing

stability metrics.

� Phase 5: Empirical Validation: In this phase, we will collect famous

open source projects. Then we will extract data by measure their stability

metric values. Then we will use three set of experiments to validate proposed

metrics. In first experiments, we will perform correlation analysis. In the

second experiment, we will perform PCA analysis to identify that proposed

metrics are capturing new dimension or not. In the third experiment we will

study that can we use stability metric for maintenance prediction.

� Phase 6: Maintenance Prediction using Regression In this phase, we

will study different regression techniques and their performance in prediction

of maintenance.

� Phase 7: Maintenancen Regression using Classification In this

phase, we will study different classification techniques and their performance

in prediction of maintenance.

6

1.6 Thesis Contribution

In this thesis some of our contributions are given below:

� We present a new Package Stability Metrics (PSM) that accounts for changes

in internal package contents, intra-package connections and inter-package

connections. We use the notion of package content stability to measure

the changes in the content of package classes and interfaces. Intra-package

contents stability measures the change in internal connections of a pack-

age. Inter-package stability measures the change in a package’s external

connections.

� We develop custom metric tool for calculation of stability metrics values of

open source projects.

� We study the validity of PSM both theoretically and empirically. The theo-

retical validation involves analyzing the compliance of PSM with the prop-

erties proposed by Kitchenham et al. [1].The empirical validation involves

analyzing the correlation between PSM and maintenance effort.

� We also present a comparison with three existing package stability metrics.

Furthermore, we also develop maintenance effort prediction model to gather

empirical evidence that proposed metrics better relates to package stability

quality than other comparable metrics.

The data for the empirical validation is collected from five open source soft-

ware involving desktop budgeting application, graphical tool, online game, data

7

integration tool and a scheduling system. For each open source software, we have

used four different versions with at least one year difference between their respec-

tive release date. The results show that PSM provides better indication of package

stability than the existing alternatives as it considers package’s functional, internal

behavioral and structural properties. The PSM points out the unstable packages

that may need to be refactored.

In particular, these results could improve the understanding of the value of

client usage context in package cohesion, guide the development of better fault-

proneness prediction models in practice, and also help developers to identify the

packages with higher defect density.

1.7 Thesis Outline

The remainder of this thesis is organized as follows. Section 2 summarizes the

related work. In Section 3, we define the PSM metrics, and in Section 4, we

validate PSM metrics theoretically and empirically. For empirical validation we

have performed four analysis: (1) first analysis explores the correlation between

package stability metrics and maintenance effort; (2) second analysis explores the

correlations among six existing stability metrics and proposed package stability

metrics; (3) third analysis applies principal component analysis to provide evi-

dence that the new metrics captures new dimension of package stability; and (4)

forth analysis applies linear regression analysis for maintenance effort prediction..

In section 6 we discusses the threats to the validity of our study. In section 5 we

8

compare the performance of regression and classification algorithm, by predicting

maintenance effort using six existing metric, PSM metrics suite, two package co-

hesion metrics, and two package coupling metrics. Section 6 concludes the thesis

and outlines the directions for future works.

9

CHAPTER 2

RELATED WORK

In this section, we review existing stability metrics for object-oriented systems at

system, architecture, class and package levels.

2.1 System Stability

Soong [10] used program information to quantify program stability and reliability.

According to them, stability is the property of program with good information

structure which helps it to resist changes. They quantify information structure

of programs in order to measure their stability using techniques like connectiv-

ity matrix and random Markovian process. According to Yau and Collofello [11]

stability is the resistance to potential ripple effects due to changes in program.

They presented metric for program stability, which calculates logical ripple ef-

fect of changes to a program. They also provided an algorithm for calculation

of program stability and also for normalization. Garland et al. [28] identified

factors which reduce the stability of the software and make it unstable. They also

10

proposed techniques to make the system more stable.

Li et al. [16] shared that stability tells us that how mature the implementation

and design of a software is and it can be used as an indication of project progress.

They proposed System Implementation Instability (SII) metric, which calculates

the percentage of change in LOC of the whole system between two version in

order to calculate changes in the implementation of the object-oriented system.

They also presented System Design Instability (SDI) metric, which calculates the

percentage of added classes, deleted classes, and classes with changed names. SDI

measures the changes in the design of the object-oriented system. They empirically

validated their metrics by conducting correlation analysis with C&K [29] metrics.

Alshayeb and Li [17] updated SDI metric by adding a new factor, change

in the inheritance hierarchy of classes, in calculations. They validated SDI by

conducting an empirical study on two object-oriented system developed by using

agile methods (XP). They concluded that SDI has a correlation with XP activities

and it can be used for estimation and re-planing of software project developed

by agile methods. Olague et al. [24] also improved SDI metric and proposed

entropy-based SDI metric (SDIe) to remove the spikes in measurements and make

calculations easy. They replaced ”percentage of classes with changed names”

factor with new two factors; percentage of changed classes and unchanged classes.

Because the change in name of classes is not easy to track. Change in class means,

change in the class features for perfection in its design and unchanged class means,

perfectly designed class that contributes to the stability of the system. They

11

validated new metric using maintenance data of commercial software which was

developed by agile methods.

Raemaekers et al. [30] studied the stability of third-party libraries. They

proposed new metric suite to cover four different aspects of third-party libraries.

To assess interface stability they measured the number of removed methods with

weights (WRM). To calculate volatility of library they measure the amount of

change in existing methods (CEM). For determining that library is in maintenance

phase or in active development phase, they took the ratio between the amount of

change in new methods and amount of change in old methods (RCNO). To cal-

culate expansion rate of the library they measure the percentage of new methods

(PNM). Abu Hassan and Alshayeb [18] studied stability at the model level. They

proposed new stability metrics for three different UML diagrams view; structural

view, behavioral view, and functional view. In order to cover structural view,

they studied ten properties of class diagram and identified eight properties that

actually impact class diagram stability. Those eight properties cover change in

classifier (class) type and relationships. To cover functional view, they studied

eight properties of use case diagram and constructed its stability definition based

on the change in use case type, use case relationships and actor relationships. For

the behavioral view, they investigated sequence diagram by identifying nine prop-

erties that can affect its stability. Their sequence diagram stability definition is

based on changes in message receiver, message caller, message types and message

order. Table 2.1 provides the summary of system level stability metrics.

12

Table 2.1: System Stability Literature Review

Reference Level Artifact Validation Stability Metric Detail

Soong [10] System Code -
Calculates system stability using
information structure of program.

Yau and
Collofello
[11]

System Code
Case Study
and
Theoretically

System stability is calculated from
changes in logical ripple effect of
programs.

Li et al. [16] System Code
Theoretically
and
Experiments

Measures percentage of change in
LOC between two version in order to
calculate System Implementation
Instability (SII) metric.

Li et al. [16] System Code
Theoretically
and
Experiments

Measures change (addition, deletion
and updation) in name to classes to
calculate system level instability
(SDI).

Alshayeb
and Li [17]

System Code
Theoretically
and
Experiments

Updating previous study of Li et al.
[16] by including change in inheritance
factor in calculation of system
instability.

Olague et al.
[24]

System Code
Theoretically
and
Experiments

This study improved SDI metric [16]
and proposed entropy-based metric
that removes spikes.

Raemaekers
et al. [30]

System Code Experiments
Proposed stability metrics for
third-party libraries.

Abu Hassan
and
Alshayeb [18]

Model UML
Theoretically
and Case
Study

Proposed new stability metrics for
class diagram, use case diagram, and
sequence diagram.

2.2 Class Stability

Li et al. [16] presented three metrics for instability; System Implementation Insta-

bility (SII), System Design Instability (SDI) and Class Implementation Instability

(CII). SII and SDI are system level metrics and are discussed earlier. Class Imple-

mentation Instability (CII) calculates instability of classes by measuring the per-

centage of line of code that are changed between two version of software. Grosser

et al. [15] studied the class stability and presented new metric using Case-Based

13

Reasoning (CBR) which calculates structural similarities between classes. They

also evaluated their metric performance for finding quality challenges using other

metrics for inheritance, complexity, coupling and cohesion. They validated their

metric prediction quality by comparing its results with a classical learning method

TDIDT, using 10-fold cross-validation and leave-one-out validation. Grosser et

al. [23] improved their metric by adding new stress factor in calculations. Due to

change in requirements, the responsibilities of some classes increased in the new

version of software. This is called stress factor on classes and authors included

it in improved class stability metric. They calculated stress factor by measuring

four modifications; new class methods, change in class ancestors, change in class

descendants and change in classes on which a class is dependent.

Rapu et al. [22] presented class level stability metrics by using a number

of methods. According to him if the number of functions of a class between

different versions remains same then the class has maximum stability. They also

proposed a technique to detect flawed classes like god classes and data classes.

For validation, they applied their technique and metric on three case studies.

Alshayeb et al. [5] proposed new Class Stability Metric (CSM). They identified

eight properties of classes to calculate class stability. Those properties include

class properties (class name, access level, class interface name and inherited class

name), class variable properties (class variable name and access type), and class

method properties (method signature and body). Change in these properties

between versions will reduce the stability of class but newly added properties will

14

have no impact. If there is no change in these properties then class is stable.

Alshayeb et al. [31] conducted study to compare performance of artificial neural

network and support vector machine for prediction of class stability using different

software design measurements. They shared that the proposed prediction models

give good prediction for class stability. Table 2.2 provides the summary of system

level stability metrics.

Table 2.2: Class Stability Literature Review

Reference Level Artifact Validation Stability Metric Detail

Li et al. [16] Class Code
Theoretically
and
Experiments

Measures class implementation
instability (CII) by measuring the
percentage of change in line of code.

Grosser et
al. [15] [23]

Class Code Experiments

Presented new class stability metric
based on case-based reasoning using
other metrics for inheritance,
complexity, coupling and cohesion.

Rapu et al.
[22]

Class Code Case Study
Counts change in number of methods
of a class to calculate its stability.

Alshayeb et
al. [5]

Class Code
Theoretically
and
Experiments

Proposed class stability metric (CSM),
which calculates changes in eight
properties of classes to measure its
stability.

2.3 Architecture Stability

Ahmed et al. [19] used similarity metrics to calculate the architectural stabil-

ity of an object-oriented system. For similarity calculation, they compared the

architectures of different version to the base version. A low value shows that ar-

chitecture is not stable whereas high value identifies stable architecture. Sethi et

al. [32] proposed measurements for software architecture modularity and stability

15

using aspect-oriented concept. According to their metric environment conditions

can affect the architecture stability. They shared that good modularity can in-

crease the stability of architecture. Bansiya [33] proposed new methodology to

assess the stability of architecture using object oriented structural characteristics.

Those structural characteristics include the number of classes, different class hi-

erarchy metrics, the number of parents, the number of functions and coupling of

class. They shared that most of the changes in structural characteristics are due

to newly added classes, reassignment of responsibilities to classes and change in

collaboration between classes.

Aversano et al. [20] proposed two architectural stability metrics Core Design

Instability (CDI) and Core Call Instability (CCI). CDI calculates changes in a

number of packages and CCI calculates the change in calls between packages. In

their metrics, smaller values mean fewer modifications and the architecture is sta-

ble. They did not normalize their metric, so for comparison threshold values are

required. Ebad and Ahmed [21] proposed new metrics for Architecture Stability

Metric (ASM) of object-oriented software by calculating inter-package calls instead

of inter-package relationships. According to them change in cross-component

(inter-package) calls is costly and must be reduced to improve stability. They

also validated ASM metric using two open source software by comparing ASM

with lines of code changes. Alenezi [34] studied the factors that affect software

architecture stability and understandability by doing detailed literature review.

He also discussed that why theoretical and empirical validations are important

16

and how researchers have done it. Handani and Rochimah [35] investigated the

relationship between features volatility and architecture stability. They calcu-

lated architecture stability by using Aversano et al. [20] and Constantinou and

Stamelos [36] metric definition which calculate changes in external and internal

elements of architecture. They measures features volatility by counting changes

in features. To find the relationship they conducted Pearson correlation analysis.

Alenezi and Khellah [37] proposed a simple technique to measure architecture sta-

bility by aggregating the package level stability using Martin’s package instability

metric. Table 2.3 provides the summary of system level stability metrics.

2.4 Need for a New Package Stability Metrics

A number of software stability metrics have been presented in literature at system,

architecture and class levels, but at the package level, very few studies exist, as

shown in Tables 2.2, 2.1 and 2.3. There is only one package level stability metrics

[27] presented in literature. Martin [27] presents package level instability metric

based on efferent coupling properties of a single version of software. Martin’s

package instability metric does not compare two version of the software to compute

package stability. Architecture stability metrics can be used to measure package

stability metric. But existing architecture stability metrics does not cover all

aspect of package stability. Existing class and system level stability metric cannot

be used to measure package stability.

Some researchers have used interactions between classes to calculate stability

17

Figure 2.1: Example version i

Figure 2.2: Example version i + 1

at class and architecture level. For example, Alshayeb et al [5] calculates stability

of a class in terms of change in content (e.g class name, class variable, method sig-

nature etc.) and it’s inheritance relationship with other classes. This metrics does

not cover other possible interactions between classes such as association, aggre-

gation and dependency relationships. Similarly, Ebad and Ahmed [21] presented

architecture stability metrics in terms of inter packages method calls. However,

method call do not represent other possible interactions between classes such as

inheritance and association relationships; and they do not consider intra-package

interactions.

Hence, the existing architecture level stability metrics can not be used to

measure package level stability as do they not holistically consider changes in

contents of packages, changes in intra-package interactions and changes in inter-

package interactions. For example, we have a software with two packages, namely

package A and package B. Figure 2.1 shows version i of the system while Figure

18

2.2 shows version i+1 of the system. The content and structure of package A

have changed due to deletion of class C; and merger of class D and E. On the

other hand, contents of package B have not changed but package B’s structure

has changed due to introduction of inheritance relationship between classes G and

F. The existing stability metrics do not the measure the changes in both content

and structure of packages. Measuring package stability only based on package’s

content will not be able to identify the structural changes in package B.

Furthermore, in version i, class D in package A has an association relationship

with class F in package B, however, in version i+1, only class E has an association

relationship with class G; class D is merged in class E; and class G also extends

class F. This indicates that behavior of both packages A and B have changed due

the modifications in calling order between classes of same package as well as across

packages. These changes will result in behavioral instability of both packages A

and B. So in order to measure behavioral stability, we have to consider changes

in relationships between entities of same package as well as across packages. The

existing stability metrics fail to identify behavioral changes both in packages and

across packages.

Hence, there is a need to include both intra-package and inter-package method

calls to measure behavioral stability of a package. For inter-package method calls,

we should not consider the direct connection between packages and ignore method

calls between entities (i.e. classes, interfaces) of different packages. As shown in

Figure 2.1 and Figure 2.2, if we only calculate direct package connection between

19

package A and B, then both packages are stability. However, the number of

method calls between entities of package A and B have changed (version i has two

method calls while version i+1 has one method call).

In a nutshell, the package metrics proposed to date have one or more of the

following limitations: (1) they do not consider functional, structural and behav-

ioral aspects of an object oriented system; (2) they lack theoretical validation; and

(3) they have not been empirically validated in terms of their relationship with

quality attributes such as maintenance effort.

20

Table 2.3: Architecture Stability Literature Review

Reference Level Artifact Validation Stability Metric Detail

Ahmed et
al. [19]

Archi-
tecture

UML Case Study
Used similarity metrics to calculate
stability of object-oriented system’s
architecure.

Bansiya
[33]

Archi-
tecture

UML Case Study
Proposed new methodology to assess the
stability of architecture using 9 object
oriented metrics.

Aversano
et al. [20]

Archi-
tecture

UML -
Measure architecure instability using the
change in number of packages and calls
between packages.

Ebad and
Ahmed
[21]

Archi-
tecture

UML
Theoretically
and Case
Study

Proposed architecture stability metric
(ASM) which uses change in inter-packages
calls.

Alenezi
and
Khellah
[37]

Archi-
tecture

Code -

Proposed a technique to measure
architecture stability by aggregating the
package level stability using Martin’s
package instability metric.

Martin
[27]

Pack-
age

Code -
Calculates packages instability by taking
ratio of efferent coupling (Ce) and total
coupling (Ce+Ca).

Proposed
Metrics

Pack-
age/
Archi-
tecture

Code
Theoretically
and
Empirically

Calculates packages content stability
(PCS) by measuring unchanged count of
eight different package content properties.

Proposed
Metrics

Pack-
age/
Archi-
tecture

Code
Theoretically
and
Empirically

Calculates inter-packages interactions
stability (EPIS) by measuring unchanged
count of ten different inter-package
interactions.

Proposed
Metrics

Pack-
age/
Archi-
tecture

Code
Theoretically
and
Empirically

Calculates internal package interactions
stability (IPIS) by measuring unchanged
count of ten different interactions.

21

CHAPTER 3

PACKAGE STABILITY

METRIC DEFINITION

In this chapter we presents definition of our proposed package stability metrics.

The package stability metrics introduced in this thesis considers changes in pack-

age contents, intra-package interactions and inter-package interactions. First, we

identify the properties that affect package stability and present new package sta-

bility metrics that uses the identified properties to measure package stability.

3.1 Package Stability Properties

In order to identify properties for three package stability aspects; content, inter-

nal interaction and external interaction, we analyzed UML metamodel. Benefit

of UML metamodel is that it is independent of programing language syntax and

it cover all possible properties of a standard object oriented softwares.

Package Content Stability Properties: The package content stability prop-

22

ertiess model the changes in contents of classes and interfaces. We consider eight

properties namely, class access level, class name, class variables declaration, class

functions declaration, class body, interface access level, interface name and inter-

face functions to measure package content stability for the version with respect to

the base version. A property is considered unchanged if it has not been changed

between the base version i and version i+1. Table 3.1 shows details about the

eight different properties that affect package content stability.

Table 3.1: Package Content Stability Factors

Properties Description

1
Class Access
Level

Class access level can be public to private and it
restrict the access scope a class in software.

2 Class Name
If class is used by many other entities in software then
changing its name will effect those entities too.

3
Class
Variables
Declaration

In this property, we will calculate change in class
variable name, access level and data type.

4
Class
Functions
Declaration

In this property, we will measure modification in class
function name, access level, return type, parameters
name, parameters data type and number of parameters.

5 Class Body
In this property, we will check the change in line of
code of whole class.

6
Interface
Access Level

Interface access level can be public to private and it
restrict the access scope an interface in software.

7
Interface
Name

Change in interface name effect other entities too
which depends on it.

8
Interface
Functions

In this property, we will measure modification in
interface function name, access level, return type,
parameters name, parameters data type and number of
parameters.

Intra-Package Stability (IPIS) Properties: The intra-package stability

properties model the changes in direct interactions between classes and inter-

faces of a single package. The intra-package interactions are classified into three

23

main categories, namely, interactions between classes, interaction between inter-

faces and interaction between classes and interfaces. The interactions between

classes are modeled using inheritance, aggregation, composition, dependency and

association relationships. The interactions between interfaces are modeled us-

ing inheritance and dependency relationship. Similarly, the interactions between

classes and interfaces are modeled using inheritance, aggregation, composition,

dependency and association relationship.

Inter-Package Stability (EPIS) Properties: The inter-package stability

properties model the changes in direct interactions between packages at classes and

interfaces level of respective packages in system. The inter-package interactions

are classified into three main categories, namely, interactions between classes, in-

teraction between interfaces and interaction between classes and interfaces across

different packages. The interactions between classes of different packages are mod-

eled using inheritance, aggregation, composition, dependency and association re-

lationships. The interactions between interfaces of different packages are modeled

using inheritance and dependency relationship. Similarly, the interactions be-

tween classes and interfaces of different packages are modeled using inheritance,

aggregation, composition, dependency and association relationship.

Table 3.2 shows details about the different interactions properties that affect

both intra-package and inter-package stability.

Type of Changes: There are four types of changes [21] that can occur on

package properties when two versions of the same package are compared. The

24

T
ab

le
3.

2:
P

ac
ka

ge
in

te
rn

al
/e

x
te

rn
al

C
on

n
ec

ti
on

s
S
ta

b
il
it

y
F

ac
to

rs

F
ac

to
r

R
el

at
io

n
-

sh
ip

D
es

cr
ip

ti
on

F
ig

u
re

1
B

et
w

ee
n

cl
as

se
s

In
h
er

i-
ta

n
ce

If
cl

as
s

a
in

h
er

it
cl

as
s

b
th

en
cl

as
s

a
h
as

in
h
er

it
an

ce
re

la
ti

on
sh

ip
w

it
h

cl
as

s
b
.

2

A
gg

re
ga

-
ti

on
an

d
C

om
p

os
i-

ti
on

If
cl

as
s

a
h
as

cl
as

s
va

ri
ab

le
ty

p
e

of
cl

as
s

b
th

en
cl

as
s

b
h
av

e
ag

gr
eg

at
io

n
re

la
ti

on
sh

ip
w

it
h

cl
as

s
a.

W
e

h
av

e
co

m
b
in

ed
b

ot
h

co
m

p
os

it
io

n
an

d
ag

gr
eg

at
io

n
re

la
ti

on
sh

ip
in

th
is

p
ro

p
er

ty
.

3
D

ep
en

-
d
en

cy
If

fu
n
ct

io
n

of
cl

as
s

a
h
av

e
cl

as
s

b
as

on
e

of
th

e
p
ar

am
et

er
s

th
en

cl
as

s
a

h
as

d
ep

en
d
en

cy
re

la
ti

on
sh

ip
w

it
h

cl
as

s
b
.

4
A

ss
o
ci

a-
ti

on
If

cl
as

s
a

cr
ea

te
in

st
an

ce
of

cl
as

s
b

in
fu

n
ct

io
n

b
o
d
y

th
en

b
ot

h
cl

as
se

s
h
av

e
as

so
ci

at
io

n
re

la
ti

on
sh

ip
.

5
B

et
w

ee
n

in
te

rf
ac

es
in

te
ra

ct
io

n

In
h
er

i-
ta

n
ce

If
in

te
rf

ac
e

a
im

p
le

m
en

t
in

te
rf

ac
e

b
th

en
in

te
rf

ac
e

a
h
as

in
h
er

it
an

ce
re

la
ti

on
sh

ip
w

it
h

in
te

rf
ac

e
b
.

6
D

ep
en

-
d
en

cy

If
fu

n
ct

io
n

d
ec

el
er

at
io

n
of

in
te

rf
ac

e
a

h
av

e
in

te
rf

ac
e

b
as

on
e

of
th

e
p
ar

am
et

er
s

th
en

in
te

rf
ac

e
a

h
as

d
ep

en
d
en

cy
re

la
ti

on
sh

ip
w

it
h

in
te

rf
ac

e
b
.

7
B

et
w

ee
n

cl
as

se
s

an
d

in
te

rf
ac

es

In
h
er

i-
ta

n
ce

If
cl

as
s

a
im

p
le

m
en

t
in

te
rf

ac
e

b
th

en
cl

as
s

a
h
as

in
h
er

it
an

ce
re

la
ti

on
sh

ip
w

it
h

in
te

rf
ac

e
b
.

8

A
gg

re
ga

-
ti

on
an

d
C

om
p

os
i-

ti
on

If
cl

as
s

a
h
as

cl
as

s
va

ri
ab

le
ty

p
e

of
in

te
rf

ac
e

b
th

en
in

te
rf

ac
e

b
h
av

e
ag

gr
eg

at
io

n
re

la
ti

on
sh

ip
w

it
h

cl
as

s
a.

9
D

ep
en

-
d
en

cy
If

fu
n
ct

io
n

si
gn

at
u
re

of
cl

as
s

a
h
av

e
in

te
rf

ac
e

b
as

on
e

of
th

e
p
ar

am
et

er
s

th
en

cl
as

s
a

h
as

d
ep

en
d
en

cy
re

la
ti

on
sh

ip
w

it
h

in
te

rf
ac

e
b

an
d

v
ic

e
ve

rs
a.

10
A

ss
o
ci

a-
ti

on
If

cl
as

s
a

cr
ea

te
in

st
an

ce
of

ty
p

e
of

in
te

rf
ac

e
b

in
fu

n
ct

io
n

b
o
d
y

th
en

b
ot

h
h
av

e
as

so
ci

at
io

n
re

la
ti

on
sh

ip
.

25

different types of changes are as follows:

� Addition: An entity that does not exist in version i and added in version i

+ 1 then it will fall in addition property.

� Deletion: An entity that exist in version i and removed from version i + 1.

� Modification: An entity that exist in version i and modified in version i +

1.

� Unchanged: An entity that exist in version i and remains same in version i

+ 1.

We consider version i+1 of a package completely stable if none of its properties

have changed. On the other hand, we consider version i+1 of a package to be com-

pletely instable if all of its properties have changed. Hence, we measure package

stability by counting the unchanged properties between version i and version i+1.

Table 3.3 and 3.4 summaries the considered package properties and how each

property is counted.

Maximum Possible Change: To measure the package stability, we assume

that each of the identified package property has the same weight. Therefore, we

calculate the stability of each property and take a sum of stability values of all

applicable properties to compute package stability. Furthermore, to normalize

measurements of each package property, we use the concept of maximum possible

change [38] that can happen to each property with respect to version i. Table

26

3.5 and 3.6 presents the maximum possible change for each property used to

calculate package stability of an object oriented system.

Table 3.3: Package Contents Type of Change

Metric Action Description Count

1
Class Access
Level

un-
changed

if class access level is not deleted or
modified from version i to version i +
1.

+1

2 Class Name
un-
changed

if class name is not deleted or modified
from version i to version i + 1.

+1

3
Class
Variables
Declaration

un-
changed

if class name is not deleted or modified
from version i to version i + 1.

+1

4
Class
Functions
Declaration

un-
changed

if class function name, access level,
return type, parameters name,
parameters data type and number of
parameters are not deleted or modified
from version i to version i + 1.

+1

5 Class Body
un-
changed

In this property, if number of line of
whole class are not deleted or modified
from version i to version i + 1.

+1

6
Interface
Access Level

un-
changed

if interface access level is not deleted
or modified from version i to version i
+ 1.

+1

7
Interface
Name

un-
changed

if interface name is not deleted or
modified from version i to version i +
1.

+1

8
Interface
Functions

un-
changed

if interface function name, access level,
return type, parameters name,
parameters data type and number of
parameters are not deleted or modified
from version i to version i + 1.

+1

3.2 The Package Stability Metrics Definition

The package properties identified in Section 3.1 are used to calculate package

stability that compares the target package (version i+1) with its previous version

27

T
ab

le
3.

4:
P

ac
ka

ge
in

te
rn

al
/e

x
te

rn
al

C
on

n
ec

ti
on

s
T

y
p

e
of

C
h
an

ge

M
et

ri
c

R
el

at
io

n
sh

ip
A

ct
io

n
D

es
cr

ip
ti

on
C

ou
n
t

1
B

et
w

ee
n

cl
as

se
s

In
h
er

it
an

ce
u
n
ch

an
ge

d
if

cl
as

s
a

in
h
er

it
s

cl
as

s
b

in
ve

rs
io

n
i

an
d

th
is

co
n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

cl
as

s
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

2
A

gg
re

ga
ti

on
an

d
C

om
p

os
it

io
n

u
n
ch

an
ge

d
if

cl
as

s
a

h
as

a
cl

as
s

va
ri

ab
le

of
ty

p
e

cl
as

s
b

in
ve

rs
io

n
i

an
d

th
is

co
n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

cl
as

s
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

3
D

ep
en

d
en

cy
u
n
ch

an
ge

d
if

th
e

fu
n
ct

io
n

of
cl

as
s

a
h
as

a
p
ar

am
et

er
of

ty
p

e
cl

as
s

b
in

ve
rs

io
n

i
an

d
th

is
co

n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

cl
as

s
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

4
A

ss
o
ci

at
io

n
u
n
ch

an
ge

d
if

th
e

fu
n
ct

io
n

of
cl

as
s

a
cr

ea
te

s
an

in
st

an
ce

of
cl

as
s

b
in

ve
rs

io
n

i
an

d
th

is
co

n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

cl
as

s
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

5
B

et
w

ee
n

in
te

rf
ac

es
In

h
er

it
an

ce
u
n
ch

an
ge

d
if

in
te

rf
ac

e
a

in
h
er

it
s

in
te

rf
ac

e
b

in
ve

rs
io

n
i

an
d

th
is

co
n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

in
te

rf
ac

e
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

6
D

ep
en

d
en

cy
u
n
ch

an
ge

d
if

th
e

fu
n
ct

io
n

d
ec

le
ra

ti
on

of
in

te
rf

ac
e

a
h
as

a
p
ar

am
et

er
of

ty
p

e
in

te
rf

ac
e

b
in

ve
rs

io
n

i
an

d
th

is
co

n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

in
te

rf
ac

e
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

7
B

et
w

ee
n

cl
as

se
s

an
d

in
te

rf
ac

es
In

h
er

it
an

ce
u
n
ch

an
ge

d
if

cl
as

s
a

im
p
le

m
en

ts
in

te
rf

ac
e

b
in

ve
rs

io
n

i
an

d
th

is
co

n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

cl
as

s
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

8
A

gg
re

ga
ti

on
an

d
C

om
p

os
it

io
n

u
n
ch

an
ge

d
if

cl
as

s
a

h
as

a
cl

as
s

va
ri

ab
le

of
ty

p
e

in
te

rf
ac

e
b

in
ve

rs
io

n
i

an
d

th
is

co
n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

cl
as

s
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

9
D

ep
en

d
en

cy
u
n
ch

an
ge

d
if

th
e

fu
n
ct

io
n

of
cl

as
s

a
h
as

a
p
ar

am
et

er
of

ty
p

e
in

te
rf

ac
e

b
in

ve
rs

io
n

i
an

d
th

is
co

n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

cl
as

s
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
an

d
v
is

e
ve

rs
a.

+
1

10
A

ss
o
ci

at
io

n
u
n
ch

an
ge

d
if

th
e

fu
n
ct

io
n

of
cl

as
s

a
cr

ea
te

s
an

in
st

an
ce

of
in

te
rf

ac
e

b
in

ve
rs

io
n

i
an

d
th

is
co

n
n
ec

ti
on

re
m

ai
n
s

u
n
ch

an
ge

d
in

ve
rs

io
n

i
+

1
th

en
th

e
st

ab
il
it

y
of

cl
as

s
a’

s
p
ac

ka
ge

w
il
l

b
e

in
cr

ea
se

d
.

+
1

28

Table 3.5: Package Content Maximum Possible Change value

Metric Maximum Possible value When it occur

1
Class Access
Level

total class count of the
package in version i

if the access levels of all classes of the
package are modified in version i + 1

2 Class Name
total class count of the
package in version i

if the names of all classes of the
package are modified in version i + 1

3
Class
Variables
Declaration

sum of all classes’ variables
count of the package in
version i

if any property from access levels,
names or data type of all classes’
variables of the package are modified
in version i + 1

4
Class
Functions
Declaration

sum of all classes’ functions
count of the package in
version i

if any property from names, access
levels, return types, parameters
names, number of parameters or
parameters data type of all classes’
functions of the package are modified
in version i + 1

5 Class Body
total class count of the
package in version i

if number of line of all class of the
package are modified in version i + 1

6
Interface
Access Level

total interface count of the
package in version i

if the access levels of all interfaces of
the package are modified in version i
+ 1

7
Interface
Name

total interface count of the
package in version i

if the names of all interfaces of the
package are modified in version i + 1

8
Interface
Functions

sum of all interfaces’
functions count of the
package in version i

if any property from names, access
levels, return types, parameters
names, number of parameters or
parameters data type of all interfaces’
functions of the package are modified
in version i + 1

29

T
ab

le
3.

6:
P

ac
ka

ge
in

te
rn

al
/e

x
te

rn
al

C
on

n
ec

ti
on

s
M

ax
im

u
m

P
os

si
b
le

C
h
an

ge
va

lu
e

M
et

ri
c

R
el

at
io

n
sh

ip
M

ax
im

u
m

P
os

si
b
le

C
h
an

ge
va

lu
e

W
h
en

it
o
cc

u
r

1
B

et
w

ee
n

cl
as

se
s

In
h
er

it
an

ce
to

ta
l

n
u
m

b
er

of
cl

as
se

s
of

a
p
ac

ka
ge

th
at

h
as

in
h
er

it
an

ce
re

la
ti

on
sh

ip
w

it
h

ot
h
er

cl
as

se
s

in
ve

rs
io

n
i.

if
al

l
cl

as
se

s’
in

h
er

it
cl

as
s

n
am

es
of

a
p
ac

ka
ge

fr
om

ve
rs

io
n

i
ar

e
m

o
d
ifi

ed
in

ve
rs

io
n

i
+

1

2
A

gg
re

ga
ti

on
an

d
C

om
p

os
it

io
n

to
ta

l
n
u
m

b
er

of
cl

as
se

s
of

a
p
ac

ka
ge

th
at

h
as

ag
gr

eg
at

io
n

re
la

ti
on

sh
ip

w
it

h
ot

h
er

cl
as

se
s

in
ve

rs
io

n
i.

if
al

l
su

ch
cl

as
s

va
ri

ab
le

s
of

al
l

cl
as

se
s

of
a

p
ac

ka
ge

w
h
ic

h
h
av

e
d
at

a
ty

p
e

as
of

ot
h
er

cl
as

se
s

fr
om

ve
rs

io
n

i
ar

e
m

o
d
ifi

ed
in

ve
rs

io
n

i
+

1

3
D

ep
en

d
en

cy
to

ta
l

n
u
m

b
er

of
cl

as
se

s
of

a
p
ac

ka
ge

th
at

h
as

d
ep

en
d
en

cy
re

la
ti

on
sh

ip
w

it
h

ot
h
er

cl
as

se
s

in
ve

rs
io

n
i.

if
al

l
su

ch
fu

n
ct

io
n

p
ar

am
et

er
s

of
al

l
cl

as
se

s
of

a
p
ac

ka
ge

w
h
ic

h
h
av

e
d
at

a
ty

p
e

as
of

ot
h
er

cl
as

se
s

fr
om

ve
rs

io
n

i
ar

e
m

o
d
ifi

ed
in

ve
rs

io
n

i
+

1

4
A

ss
o
ci

at
io

n
to

ta
l

n
u
m

b
er

of
cl

as
se

s
of

a
p
ac

ka
ge

th
at

h
as

as
so

ci
at

io
n

re
la

ti
on

sh
ip

w
it

h
ot

h
er

cl
as

se
s

in
ve

rs
io

n
i.

if
al

l
su

ch
va

ri
ab

le
in

fu
n
ct

io
n
s

of
al

l
cl

as
se

s
of

a
p
ac

ka
ge

w
h
ic

h
h
av

e
d
at

a
ty

p
e

as
of

ot
h
er

cl
as

se
s

fr
om

ve
rs

io
n

i
ar

e
m

o
d
ifi

ed
in

ve
rs

io
n

i
+

1

5
B

et
w

ee
n

in
te

rf
ac

es
In

h
er

it
an

ce
to

ta
l

n
u
m

b
er

of
in

te
rf

ac
es

of
a

p
ac

ka
ge

th
at

h
as

in
h
er

it
an

ce
re

la
ti

on
sh

ip
w

it
h

ot
h
er

in
te

rf
ac

es
in

ve
rs

io
n

i.

if
al

l
in

te
rf

ac
es

’
in

h
er

it
in

te
rf

ac
es

n
am

es
of

a
p
ac

ka
ge

fr
om

ve
rs

io
n

i
ar

e
m

o
d
ifi

ed
in

ve
rs

io
n

i
+

1

6
D

ep
en

d
en

cy
to

ta
l

n
u
m

b
er

of
in

te
rf

ac
es

of
a

p
ac

ka
ge

th
at

h
as

d
ep

en
d
en

cy
re

la
ti

on
sh

ip
w

it
h

ot
h
er

in
te

rf
ac

es
in

ve
rs

io
n

i.

if
al

l
su

ch
fu

n
ct

io
n

p
ar

am
et

er
s

of
al

l
in

te
rf

ac
es

of
a

p
ac

ka
ge

w
h
ic

h
h
av

e
d
at

a
ty

p
e

as
of

ot
h
er

in
te

rf
ac

es
fr

om
ve

rs
io

n
i

ar
e

m
o
d
ifi

ed
in

ve
rs

io
n

i
+

1

7
B

et
w

ee
n

cl
as

se
s

an
d

in
te

rf
ac

es
In

h
er

it
an

ce
to

ta
l

n
u
m

b
er

of
cl

as
se

s
of

a
p
ac

ka
ge

th
at

h
as

im
p
le

m
en

t
re

la
ti

on
sh

ip
w

it
h

ot
h
er

in
te

rf
ac

es
in

ve
rs

io
n

i.

if
al

l
cl

as
se

s’
in

te
rf

ac
e

n
am

es
of

a
p
ac

ka
ge

fr
om

ve
rs

io
n

i
ar

e
m

o
d
ifi

ed
in

ve
rs

io
n

i
+

1

8
A

gg
re

ga
ti

on
an

d
C

om
p

os
it

io
n

to
ta

l
n
u
m

b
er

of
cl

as
se

s
of

a
p
ac

ka
ge

th
at

h
as

ag
gr

eg
at

io
n

re
la

ti
on

sh
ip

w
it

h
ot

h
er

in
te

rf
ac

es
in

ve
rs

io
n

i.

if
al

l
su

ch
cl

as
s

va
ri

ab
le

s
of

al
l

cl
as

se
s

of
a

p
ac

ka
ge

w
h
ic

h
h
av

e
d
at

a
ty

p
e

as
of

ot
h
er

in
te

rf
ac

es
fr

om
ve

rs
io

n
i

ar
e

m
o
d
ifi

ed
in

ve
rs

io
n

i
+

1

9
D

ep
en

d
en

cy
to

ta
l

n
u
m

b
er

of
cl

as
se

s
of

a
p
ac

ka
ge

th
at

h
as

d
ep

en
d
en

cy
re

la
ti

on
sh

ip
w

it
h

ot
h
er

in
te

rf
ac

es
an

d
v
ic

e
ve

rs
a

in
ve

rs
io

n
i.

if
al

l
su

ch
fu

n
ct

io
n

p
ar

am
et

er
s

of
al

l
cl

as
se

s
of

a
p
ac

ka
ge

w
h
ic

h
h
av

e
d
at

a
ty

p
e

as
of

ot
h
er

in
te

rf
ac

es
fr

om
ve

rs
io

n
i

ar
e

m
o
d
ifi

ed
in

ve
rs

io
n

i
+

1
an

d
v
ic

e
ve

rs
a

10
A

ss
o
ci

at
io

n
to

ta
l

n
u
m

b
er

of
cl

as
se

s
of

a
p
ac

ka
ge

th
at

h
as

as
so

ci
at

io
n

re
la

ti
on

sh
ip

w
it

h
ot

h
er

in
te

rf
ac

es
in

ve
rs

io
n

i.

if
al

l
su

ch
va

ri
ab

le
in

fu
n
ct

io
n
s

of
al

l
cl

as
se

s
of

a
p
ac

ka
ge

w
h
ic

h
h
av

e
d
at

a
ty

p
e

as
of

ot
h
er

in
te

rf
ac

es
fr

om
ve

rs
io

n
i

ar
e

m
o
d
ifi

ed
in

ve
rs

io
n

i
+

1

30

(version i). First step in defining package stability metric is to calculate the

stability value for each package property.

� Package Property Stability: The package property stability is ratio of

number of unchanged properties divided by maximum possible changes of

that property. The package property stability is formally defined as follows:

StProperty =
NOUProperty

MPCProperty

(3.1)

where (NOUProperty) is the number of unchanged items of the property and

(MPCProperty) is the maximum possible changes for the property. Table 3.3

and 3.4 shows the details for calculation of a number of unchanged counts

for different package properties. Table 3.5 and 3.6 presents details for

maximum possible changes for different package properties.

Next, the package stability property values are used to calculate package

content stability, intra-package interaction stability and inter-package inter-

action stability as follows:

Package Content Stability (PCS): Package content stability is the aver-

age of all package content properties. Formally, the package content stability

of a package is defined as follows:

PCS =
Sumof8Packagecontentproperties

PropertiesCount
(3.2)

Sum of Eight Package Content properties = StclassAL + StclassName + StclassVar

31

+ StclassFunc + StclassBody + StintAL + StintName + StintFunc

where PCS is package content stability; StclassAL is the stability of package’s

class access level property ; StclassName is the stability of package’s class name

property ; StclassVar is the stability of package’s class variables declaration

property ; StclassFunc is the stability of package’s class functions declaration

property ; StclassBody is the stability of package’s class body property ; StintAL

is the stability of package’s interface access level property ; StintName is the

stability of package’s interface name property and StintFunc is the stability of

package’s interface functions property. Properties Count is the total count

of properly defined properties.

Table 3.1 presents details about the eight different properties that affect

package content stability. Furthermore, it is important to note that if a

property does not exit in version i of a package, then it is excluded from the

package content stability measurements.

Intra-package Interaction Stability (IPIS): Intra-package interaction

stability is the average of all intra-package stability properties. Formally,

the intra-package stability is defined as follows:

IPIS =
SumofTenIntraPackageInteractionproperties

PropertiesCount
(3.3)

Sum of Ten Intra Package Interaction properties = StIbcInh + StIbcAgg +

StIbcDep + StIbcAss + StIbiInh + StIbiDep + StIbciInh + StIbciAgg + StIbciDep +

32

StIbciAss

where IPIS is intra-package connections stability; StIbcInh is internal pack-

age between classes inheritance connections stability; StIbcAgg is internal

package between classes aggregation and composition connections stability;

StIbcDep is internal package between classes inheritance connections stability;

StIbcAss is internal package between classes association connections stability;

StIbiInh is internal package between interfaces inheritance connections sta-

bility; StIbiDep is internal package between interfaces dependency connection

stability; StIbciInh is internal package between class and interface inheritance

connections stability; StIbciAgg is internal package between class and inter-

face aggregation and composition connection stability; StIbciDep is internal

package between class and interface dependency connections stability and

StIbciAss is internal package between class and interface association connec-

tions stability. Properties Count is the total count of properly defined prop-

erties.

Table 3.2 presents details about the ten different properties that affect intra-

package stability. Furthermore, it is important to note that if a property

does not exit in version i of a package, then it is excluded from the intra-

package interaction stability measurements.

Inter-package Interaction Stability (EPIS): Inter-package interaction

stability is the average of all inter-package stability properties. Formally,

33

the inter-package stability is defined as follows:

EPIS =
SumofTenInterPackageInteractionsproperties

PropertiesCount
(3.4)

Sum of Ten Inter Package Interactions properties = StEbcInh + StEbcAgg +

StEbcDep + StEbcAss + StEbiInh + StEbiDep + StEbciInh + StEbciAgg + StEbciDep

+ StEbciAss

where EPIS is inter-package connections stability; StEbcInh is external pack-

age between classes inheritance connections stability; StEbcAgg is external

package between classes aggregation and composition connections stability;

StEbcDep is external package between classes inheritance connections sta-

bility; StEbcAss is external package between classes association connections

stability; StEbiInh is external package between interfaces inheritance connec-

tions stability; StEbiDep is external package between interfaces dependency

connection stability; StEbciInh is external package between class and interface

inheritance connections stability; StEbciAgg is external package between class

and interface aggregation and composition connection stability; StEbciDep is

external package between class and interface dependency connections stabil-

ity; and StEbciAss is external package between class and interface association

connections stability. Properties Count is the total count of properly defined

properties.

Table 3.3 resents details about the ten different properties that affect inter-

package stability. Furthermore, it is important to note that if a property

34

does not exit in version i of a package, then it is excluded from the inter-

package interaction stability measurements.

� Package Stability Metrics (PSM): Finally, package stability metrics is

the average of package content stability, intra-pacakge stability and inter-

package stability. Formally, the package stability metrics is defined as fol-

lows:

PSM = StabilityPackage =
PCS + IPIS + EPIS

AspectCount
(3.5)

where ‘Aspect Count’ is the total count of aspects which are applicable for

package.

3.3 Package Stability Metrics Measurement for

Point of Sales System - An Example

In this section, we have selected one example of point of sales system’s class

diagram with two version i and i + 1 for calculations of PCS, IPIS and EPIS.

Figure 3.1 is the class diagram for version i class diagram and figure 3.2 is the

class diagram for version i + 1 class diagram.

As first step, we will calculate the stability of properties. In table 3.8, we have

calculated package content properties stability. In table 3.9, calculations of intra-

package connections stability are presented and in table 3.10, measurements of

inter-package connections stability are done.

After calculation of properties stability, we need to take averages to calculate

35

Figure 3.1: Example of package stability calculation Version i

Table 3.7: Calculation of Package Aspects and Overall Stability
Aspect PersonDATA SalesDATA

1 PCS 0.298844538 0.738461538
2 IPIS 0.2 0.75
3 EPIS 0.5 not applicable

4
Overall
Stability

0.332948179 0.744230769

PCS, IPIS and EPIS. Table 3.7 contains the calculation details. As package

SalesData had no external connections, so EPIS is not applicable and we have

considered only PCS and IPIS for overall stability calculation. So from overall

package stability package PersonDATA is 33.3%stable and package SalesDATA is

74.4% stable.

36

Figure 3.2: Example of package stability calculation Version i + 1

37

T
ab

le
3.

8:
C

al
cu

la
ti

on
of

ex
am

p
le

P
ac

ka
ge

C
on

te
n
t

S
ta

b
il
it

y
F

ac
to

rs

P
ro

p
er

ty

P
ac

ka
ge

P
er

-
so

n
D

A
T

A
’s

u
n
ch

an
ge

d
co

u
n
t

P
ac

ka
ge

’s
P

er
so

n
D

A
T

A
M

O
V

P
er

so
n
-

D
A

T
A

’s
S
ta

b
il
it

y

P
ac

ka
ge

S
al

es
D

A
T

A
’s

u
n
ch

an
ge

d
co

u
n
t

P
ac

ka
ge

S
al

es
D

A
T

A
’s

M
O

V

P
er

so
n
-

D
A

T
A

’s
S
ta

b
il
it

y

1
C

la
ss

A
cc

es
s

L
ev

el
4

7
0.

57
14

28
57

1
3

5
0.

6

2
C

la
ss

N
am

e
5

7
0.

71
42

85
71

4
4

5
0.

8

3
C

la
ss

V
ar

ia
b
le

s
D

ec
la

ra
ti

on
3

17
0.

17
64

70
58

8
9

13
0.

69
23

07
69

2

4
C

la
ss

F
u
n
ct

io
n
s

D
ec

la
ra

ti
on

6
12

0.
5

5
5

1

5
C

la
ss

B
o
d
y

3
7

0.
42

85
71

42
9

3
5

0.
6

6
In

te
rf

ac
e

A
cc

es
s

L
ev

el
0

1
0

0
0

n
ot

ap
p
li
ca

b
le

7
In

te
rf

ac
e

N
am

e
0

1
0

0
0

n
ot

ap
p
li
ca

b
le

8
In

te
rf

ac
e

F
u
n
ct

io
n
s

0
1

0
0

0
n
ot

ap
p
li
ca

b
le

38

T
ab

le
3.

9:
C

al
cu

la
ti

on
of

In
tr

a-
P

ac
ka

ge
C

on
n
ec

ti
on

s
S
ta

b
il
it

y
F

ac
to

rs

P
ro

p
er

ty
R

el
at

io
n
-

sh
ip

P
ac

ka
ge

P
er

so
n
-

D
A

T
A

’s
u
n
ch

an
ge

d
co

u
n
t

P
ac

ka
ge

’s
P

er
so

n
-

D
A

T
A

M
O

V

P
er

so
n
-

D
A

T
A

’s
S
ta

b
il
it

y

P
ac

ka
ge

S
al

es
-

D
A

T
A

’s
u
n
ch

an
ge

d
co

u
n
t

P
ac

ka
ge

S
al

es
-

D
A

T
A

’s
M

O
V

P
er

so
n
-

D
A

T
A

’s
S
ta

b
il
it

y

1
B

et
w

ee
n

cl
as

se
s

In
h
er

i-
ta

n
ce

2
2

1
0

0
n
ot

ap
p
li
ca

b
le

2

A
gg

re
ga

-
ti

on
an

d
C

om
p

os
i-

ti
on

0
4

0
3

4
0.

75

3
D

ep
en

-
d
en

cy
0

1
0

0
0

n
ot

ap
p
li
ca

b
le

4
A

ss
o
ci

a-
ti

on
0

1
0

0
0

n
ot

ap
p
li
ca

b
le

5
B

et
w

ee
n

in
te

rf
ac

es
In

h
er

i-
ta

n
ce

0
0

n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

6
D

ep
en

-
d
en

cy
0

0
n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

7
B

et
w

ee
n

cl
as

se
s

an
d

in
te

rf
ac

es

In
h
er

i-
ta

n
ce

0
2

0
0

0
n
ot

ap
p
li
ca

b
le

8

A
gg

re
ga

-
ti

on
an

d
C

om
p

os
i-

ti
on

0
0

n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

9
D

ep
en

-
d
en

cy
0

0
n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

10
A

ss
o
ci

a-
ti

on
0

0
n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

39

T
ab

le
3.

10
:

C
al

cu
la

ti
on

of
In

te
r-

P
ac

ka
ge

C
on

n
ec

ti
on

s
S
ta

b
il
it

y
F

ac
to

rs

P
ro

p
er

ty
R

el
at

io
n
-

sh
ip

P
ac

ka
ge

P
er

so
n
-

D
A

T
A

’s
u
n
ch

an
ge

d
co

u
n
t

P
ac

ka
ge

’s
P

er
so

n
-

D
A

T
A

M
O

V

P
er

so
n
-

D
A

T
A

’s
S
ta

b
il
it

y

P
ac

ka
ge

S
al

es
-

D
A

T
A

’s
u
n
ch

an
ge

d
co

u
n
t

P
ac

ka
ge

S
al

es
-

D
A

T
A

’s
M

O
V

P
er

so
n
-

D
A

T
A

’s
S
ta

b
il
it

y

1
B

et
w

ee
n

cl
as

se
s

In
h
er

i-
ta

n
ce

0
0

n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

2

A
gg

re
ga

-
ti

on
an

d
C

om
p

os
i-

ti
on

1
2

0.
5

0
0

n
ot

ap
p
li
ca

b
le

3
D

ep
en

-
d
en

cy
0

3
0

0
0

n
ot

ap
p
li
ca

b
le

4
A

ss
o
ci

a-
ti

on
1

1
1

0
0

n
ot

ap
p
li
ca

b
le

5
B

et
w

ee
n

in
te

rf
ac

es
In

h
er

i-
ta

n
ce

0
0

n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

6
D

ep
en

-
d
en

cy
0

0
n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

7
B

et
w

ee
n

cl
as

se
s

an
d

in
te

rf
ac

es

In
h
er

i-
ta

n
ce

0
0

n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

8

A
gg

re
ga

-
ti

on
an

d
C

om
p

os
i-

ti
on

0
0

n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

9
D

ep
en

-
d
en

cy
0

0
n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

10
A

ss
o
ci

a-
ti

on
0

0
n
ot

ap
p
li
ca

b
le

0
0

n
ot

ap
p
li
ca

b
le

40

CHAPTER 4

THEORETICAL AND

EMPIRICAL VALIDATION

In this chapter, we validate our proposed PSM metrics suite theoretically and em-

pirical. For Theoretical validation we have used two frameworks; (1) Kitchenham

et al. [1] and (2) Hassan [2]. For empirical validation, we have used correlation

analysis, principal component analysis [39, 40] and linear regression [41].

4.1 Theoretical Validation

For theoretical validation, we need to evaluate a metric against some properties

proposed by researchers. We have validated our metrics by using two frameworks

proposed by Kitchenham et al. [1] and Hassan [2].

41

4.1.1 Kitchenham et al. [1] Framework

Kitchenham et al. framework has four mathematical properties which can be used

to validate any software metric. Evaluation of our metrics (PCS, IPIS, EPIS and

PSM) against these four properties are below.

� Property 1: A metric must distinguish between different entities.

Let P1 and P2 be two packages with two releases each, P1i, P1j, P2i and

P2j, respectively, where i < j. Assume package P1 has maximum possible

values of the properties or aspects a1, a2,...,an in release P1i and unchanged

count b1, b2,...,bn in release P1j. Assume P2 has maximum possible values

of the properties or aspects c1, c2,...,cn in release P2i and unchanged count

d1, d2,...,dn in release P2j. If (b1/a1 + b2/a2 + ... + bn/an)/count 6= (d1/c1

+ d2/c2 + ... + dn/cn)/count, where count is property count or aspect count

then StabilityP1 6= StabilityP2.

� Property 2: A metric must preserve Representation Condition.

Let P1 and P2 be two packages with two releases each, P1i, P1j, P2i and

P2j, respectively, where i < j. Assume package P1 has maximum possible

values of the properties or aspects a1, a2,...,an in release P1i and unchanged

count b1, b2,...,bn in release P1j. Assume package P2 has maximum possible

values of the properties or aspects c1, c2,...,cn in release P2i and unchanged

count d1, d2,...,dn in release P2j. If (b1/a1 + b2/a2 + ... + bn/an)/count

> (d1/c1 + d2/c2 + ... + dn/cn)/count, where count is property count or

aspect count then StabilityP1 > StabilityP2.

42

� Property 3: Contribution of each unit of an entity’s attribute

must be same. Let P1 and P2 be two packages with two releases each,

P1i, P1j, P2i and P2j, respectively, where i < j. Assume package P1 has

maximum possible values of the properties or aspects a1, a2,...,an in release

P1i and unchanged count b1, b2,...,bn in release P1j. Assume package P2 has

maximum possible values of the properties or aspects a1, a2,...,an in release

P2i and unchanged count b1, b2,...,bn + 1 in release P2j, then StabilityP2 =

StabilityP1 + 1/((a1 + a2 + ... + an) × count).

� Property 4: Measurement of different entities can be same. Let

P1 and P2 be two packages with two releases each, P1i, P1j, P2i and P2j,

respectively, where i < j. Assume package P1 has maximum possible values

of the properties or aspects a1, a2,...,an in release P1i and unchanged count

b1, b2,...,bn in release P1j. Assume pacakge P2 that it has maximum possible

values of the properties or aspects a1, a2,...,an in release P2i and unchanged

count b1, b2,...,bn in release P2j, then StabilityP1 = StabilityP2.

The proposed package level stability metrics satisfy all four properties of Kitchen-

ham et al. framework [1] and hence these metrics are theoretically valid.

4.1.2 Hassan [2] Framework

Hassan [2] proposed seven mathematical properties for architecture stability. We

can apply same properties to validate package stability because package also rep-

43

resent architecture upto some extent. Below is the evaluation of our metrics using

these properties.

� Property 1 Non-negativity: According to this property the stability

should be greater than or equal to zero. In proposed metrics, calculation

requires operations like ratio, sum and average using unchanged counts and

maximum possible change counts. Value of count is always greater than or

equal to zero, so result of proposed metrics cannot be negative.

� Property 2 Normalization: Normalization property requires value of sta-

bility between a bounded interval. In our metrics we have selected interval

[0 , 1], where value ’1’ means that package is completely stable and value

’0’ means that package is completely unstable. We are taking ratios be-

tween unchanged count and maximum possible change count. As we know

unchanged count is always less than or equal to maximum possible change

count, so stability of package using our metrics will always be between in-

terval [0 , 1].

� Property 3 Null Value: Null value property says that architecture sta-

bility is null if all the inter package connections are changed. In our case

null value means that package stability should be null if all properties and

connections explained in section 4 are changed. In calculations for PCS,

IPIS and EPIS, the numerator is the unchanged count. So if unchanged

count of all properties and connections is zero then package stability will be

zero or in other words null. Suppose we have a packages P with two releases

44

Pi and Pj, where i < j. Assume package P has maximum possible values

of the properties or aspects a1, a2,...,an in release Pi and unchanged count

b1=0, b2=0,...,bn=0 in release Pj, then StabilityP = (b1/a1 + b2/a2 + ... +

bn/an)/count = 0, where count is property count or aspect count.

� Property 4 Maximum Value: This property says that stability will have

maximum value if there are only additions but no modification or deletion.

In our metrics, unchanged count will be equal to maximum possible change

count if there is no modification or deletion between two versions. This

will result stability of each property to 1, so stability of package will have

maximum value ’1’. Suppose we have a packages P with two releases Pi

and Pj, where i < j. Assume package P has maximum possible values of

the properties or aspects a1, a2,...,an in release Pi and unchanged count a1,

a2,...,an in release Pj, then StabilityP = (a1/a1 + a2/a2 + ... + an/an)/count

= 1, where count is property count or aspect count.

� Property 5 Transitivity: According to this property consider we have

three entities X,Y and Z. If StabilityX < StabilityY and StabilityY <

StabilityZ then StabilityX < StabilityZ. To prove this suppose we have

three packages P1, P2 and P3 with two releases each, P1i, P1j, P2i, P2j,

P3i and P3j where i < j. Assume package P1 has maximum possible val-

ues of the properties or aspects a1, a2,...,an in release P1i and unchanged

count b1, b2,...,bn in release P1j. Assume same for P2 that it has maximum

possible values of the properties or aspects c1, c2,...,cn in release P2i and

45

unchanged count d1, d2,...,dn in release P2j. For P3 also assume that it has

maximum possible values of the properties or aspects e1, e2,...,en in release

P3i and unchanged count f1, f2,...,fn in release P3j. If (b1/a1 + b2/a2 + ...

+ bn/an)/count < (d1/c1 + d2/c2 + ... + dn/cn)/count and (d1/c1 + d2/c2

+ ... + dn/cn)/count < (f1/e1 + f2/e2 + ... + fn/en)/count then (b1/a1 +

b2/a2 + ... + bn/an)/count < (f1/e1 + f2/e2 + ... + fn/en)/count, where

count is property count or aspect count. So it means using our metrics if

StabilityP1 < StabilityP2 and StabilityP2 < StabilityP3 then StabilityP1 <

StabilityP3.

� Property 6 Change Impact: This property states that suppose we have

an entity ’X’ and if its unchanged count in version j with respect to version

i is less than its unchanged count in version k with respect to version j

than entity ’X’ stability in version j with respect to version i is less then its

stability in version k with respect to version j, provided that its maximum

change count from version i to version j is not less than its maximum change

count from version j to version k. To prove that our metrics hold this

property, suppose we have a package P with three releases, Pi, Pj and Pk,

where i < j < k. Assume package P has maximum possible values of the

properties or aspects a1, a2,...,an in release P1i and unchanged count b1,

b2,...,bn in release P1j. Also assume that package P has maximum possible

values of the properties or aspects c1, c2,...,cn in release P2j and unchanged

count d1, d2,...,dn in release P2j. If b1 < d1, b2 < d2, ... , bn < dn, provided

46

a1 ≮ c1, a2 ≮ c2, ... , an ≮ cn then (b1/a1 + b2/a2 + ... + bn/an)/count

< (d1/c1 + d2/c2 + ... + dn/cn)/count, where count is property count or

aspect count. So stabilityP in version j with respect to i will be less than

stabilityP in version k with respect to j.

� Property 7 Package Cohesion Impact: According to this property,

suppose we have an entity ’X’ and if its unchanged count in version j with

respect to version i is greater than its unchanged count in version k with

respect to version j then entity ’X’ stability in version j with respect to

version i is greater than its stability in version k with respect to version j,

provided that its maximum change count from version i to version j is not

greater than its maximum change count from version j to version k. Author

proposed this only for architecture stability so it was focused only on intra-

package connections (package cohesion), but we will validate our all metrics

against this property. To prove that our metrics hold this property, suppose

we have a package P with three releases, Pi, Pj and Pk, where i < j < k.

Assume package P has maximum possible values of the properties or aspects

a1, a2,...,an in release P1i and unchanged count b1, b2,...,bn in release P1j.

Also assume that package P has maximum possible values of the properties

or aspects c1, c2,...,cn in release P2j and unchanged count d1, d2,...,dn in

release P2j. If b1 > d1, b2 > d2, ... , bn > dn, provided a1 ≯ c1, a2 ≯ c2, ... ,

an ≯ cn then (b1/a1 + b2/a2 + ... + bn/an)/count > (d1/c1 + d2/c2 + ... +

dn/cn)/count, where count is property count or aspect count. So stabilityP

47

in version j with respect to i will be greater than stabilityP in version k with

respect to j.

So our proposed metrics (PSM, PCS, IPIS and EPIS) are also valid according

to the properties of Hassan [1] framework.

4.2 Empirical Validation

To empirically validate package stability metrics, we present four analysis: (1)

first analysis explores the correlation between package stability metrics and main-

tenance effort; (2) second analysis explores the correlations among five existing

stability metrics and three proposed package stability metrics; (3) third analysis

applies principal component analysis [39] to explore the orthogonal dimensions

within the set of stability metrics to confirm that our package level stability met-

rics indeed contribute new information and provide evidence that the new metrics

better captures package level stability; and (4) forth analysis applies linear regres-

sion analysis for prediction of maintenance effort to evaluate performance of five

existing stability metrics and four proposed package stability metrics.

4.2.1 Software Systems and Metrics

� Data collection: To collect open source projects as data for our analysis,

we applied following guidelines:

– Software type should be generic. By software type we mean domain

for which software is developed for. Software types from which we

48

collected our data are desktop applications, game, development tool

(ETL tool), graphical designing tool and enterprise solution. From

table 4.1 provide details about type of open source softwares.

– Software should be of different sizes. From table 4.2 provide details

about the size of open source softwares.

– Selected softwares should be popular among practitioners and contin-

uously updated.

– Selected software should be part of empirical studies from literature.

We have selected five open source software systems from different domains:

Buddi - a small desktop application [42], JHotDraw - a graphical tool for

technical drawing [43], KolMafia - an online adventure game [44], Talend -

Extract, Transform, Load (ETL) tool for database systems [45] and Univer-

sity Timetabling System - an enterprise software [46]. Table 4.1 presents

an overview of five open source software systems. We have used four differ-

ent versions of each open source software; where there is at least one year

difference between release dates of individual versions. As a result, we have

collected three stability measurements for each package of five open source

software systems.

Table 4.2 presents descriptive statistics of five open source systems in term

of number of packages, classes and lines of code. Values of mean, minimum,

maximum and standard deviation show that packages used in our experi-

ments are dynamic in terms of size (number of classes and lines of code).

49

‘Buddi’ system consists of 27,28,28 and 29 packages across four differnet

versions of the system. Four different versions of ‘JHotDraw’ consists of 39,

47, 63 and 66 packages, respectively. ‘KolMafia’ consists of 114, 114, 116

and 116 packages across four different versions of the game. Similarly, four

different versions of the ‘Talend’ system consists of 108, 109, 107 and 109

packages, respectively. Finally, ‘Unitime’ consists of 64, 72, 106 and 124

packages across four different versions of the system. In total, our empirical

validation experiments contain input of 1586 packages with 23935 classes

and 10871597 lines of code.

Table 4.1: Selected Open Source Software

Name Type Detail

1 Buddi[42]
Small desktop
budgeting
application

Buddi is a simple budgeting program
targeted for users with little or no financial
background. It is a small desktop
application.

2
JHotDraw[43]

Graphical Tool
JHotDraw is a Java GUI framework for
technical and structured Graphics.

3 KolMafia[44] Game
KoLmafia is a cross-platform desktop tool,
which interfaces with the online adventure
game, Kingdom of Loathing.

4 Talend[45] ETL Tool
Talend is data integration tool which makes
ETL easy from any data source to almost
any analytics or operational tools.

5 UniTime[46]
University
Timetabling
System

UniTime is a comprehensive educational
scheduling system that supports developing
course and exam timetables, managing
changes to these timetables, sharing rooms
with other events, and scheduling students
to individual classes.

� Metric Selection: In empirical validation, we adopt Li and Henry’s main-

tenance effort measurement definition [47]: ‘Maintenance effort metrics cal-

50

T
ab

le
4.

2:
S
el

ec
te

d
O

p
en

S
ou

rc
e

S
of

tw
ar

e
si

ze
st

at
is

ti
cs

P
ac

ka
ge

v
is

e
C

la
ss

C
ou

n
t

S
ta

ti
st

ic
s

P
ac

ka
ge

v
is

e
L

in
e

of
C

o
d
e

S
ta

ti
st

ic
s

P
ro

je
ct

N
am

e
P

ac
k
-

ag
e

C
ou

n
t

C
la

ss
C

ou
n
t

M
ea

n
M

in
M

ax
S
ta

n
d
ar

d
D

ev
ia

ti
on

L
in

e
O

f
C

o
d
e

M
ea

n
M

in
M

ax
S
ta

n
d
ar

d
D

ev
ia

ti
on

B
u
d
d
i

3.
2.

2.
6

27
21

3
7.

89
1

43
8.

64
25

31
4

93
7.

56
22

36
72

79
3.

14
B

u
d
d
i

3.
4.

0.
0

28
23

9
8.

54
1

46
9.

52
28

59
4

10
21

.2
1

23
42

02
88

3.
84

B
u
d
d
i

3.
4.

1.
1

28
24

1
8.

61
1

46
9.

51
29

20
1

10
42

.8
9

23
42

52
89

3.
45

B
u
d
d
i

3.
4.

1.
14

29
24

5
8.

45
1

46
9.

42
29

88
7

10
30

.5
9

23
43

39
90

3.
54

J
H

ot
D

ra
w

7.
1

39
44

1
11

.3
1

1
14

4
23

.4
7

93
22

4
23

90
.3

6
68

25
96

0
43

05
.4

7
J
H

ot
D

ra
w

7.
2

47
57

6
12

.2
6

1
15

4
23

.5
8

12
33

33
26

24
.1

1
27

30
80

6
47

04
.5

4
J
H

ot
D

ra
w

7.
4.

1
63

58
4

9.
27

1
45

9.
54

12
48

88
19

82
.3

5
27

14
87

1
25

62
.9

0
J
H

ot
D

ra
w

7.
6

66
61

4
9.

30
1

45
9.

87
13

47
59

20
41

.8
0

45
15

34
7

26
21

.3
0

K
oL

m
afi

a
16

.5
11

4
21

56
19

.0
8

1
20

2
30

.4
8

66
13

51
58

01
.3

2
51

82
83

2
10

82
3.

01
K

oL
m

afi
a

16
.9

11
4

21
74

19
.2

4
1

20
3

31
.0

0
67

38
48

59
10

.9
5

51
85

75
4

11
15

8.
58

K
oL

m
afi

a
17

.2
11

6
23

08
20

.0
7

1
20

9
34

.0
1

71
35

70
61

51
.4

7
51

89
65

2
11

61
7.

86
K

oL
m

afi
a

17
.4

11
6

23
31

20
.2

7
1

21
3

34
.8

8
72

81
62

62
77

.2
6

51
94

61
9

12
10

0.
68

T
al

en
d

5.
6.

0
10

8
13

71
12

.8
1

1
58

11
.3

5
14

49
85

2
13

42
4.

56
41

63
60

4
16

97
8.

57
T

al
en

d
5.

6.
2

10
9

13
94

12
.9

1
1

58
11

.3
5

14
95

50
8

13
72

0.
26

41
64

88
8

17
39

1.
61

T
al

en
d

6.
1.

1
10

7
14

09
13

.2
9

1
64

11
.6

3
15

91
13

6
14

87
0.

43
41

67
35

3
18

51
0.

15
T

al
en

d
6.

2.
1

10
9

14
06

13
.0

2
1

63
11

.4
6

15
96

92
7

14
65

0.
71

41
67

55
6

18
72

1.
51

U
n
it

im
e

32
64

13
38

21
.2

4
1

27
9

46
.0

2
27

59
86

43
12

.2
8

78
47

60
8

79
99

.0
6

U
n
it

im
e

33
72

14
09

19
.8

5
1

28
1

43
.8

8
31

65
11

43
95

.9
9

78
48

51
1

78
42

.2
6

U
n
it

im
e

34
10

6
16

51
15

.7
2

1
30

7
38

.9
1

36
92

46
34

83
.4

5
42

46
16

6
64

63
.8

1
U

n
it

im
e

35
12

4
18

35
14

.9
2

1
31

7
37

.3
3

41
03

00
33

08
.8

7
41

46
28

4
62

85
.9

3

51

culates effort in term of total added, deleted or modified line of code’. We use

the Li and Henry’s [47] maintenance effort metrics to explore the correlation

between proposed metrics and maintenance effort. We select Martin’s pack-

age instability metric [27], package stability metrics based on system design

instability (SDI) [16] metric definition, package stability metrics based on

relationship based similarity metric (RBMS) [19] definition, package stabil-

ity metrics based on core calls instability (CCI) [20] definition and package

stability metrics based on architecture stability metric (ASM) [21] metric

definition to analyze the correlations among five existing stability metrics

and proposed metrics. Furthermore, we use these five existing metrics along

with proposed metrics to apply principal component analysis [39] in order to

explore orthogonal dimensions within this set of stability metrics. Finally

we performed prediction analysis using linear regression by using Li and

Henry’s [47] maintenance effort metrics as dependent variable and, five ex-

isting stability metrics and three proposed metrics as independent variables.

Below are list of existing metrics that we used in our empirical validation:

– Maintenance effort[47]: It calculates the total count of added,

deleted and updated lines of codes to measure maintenance effort.

– Martin’s package instability metric [27]: It measure the ratio

between efferent coupling and sum of efferent + afferent coupling, in

order to calculate package instability.

– System Design Instability (SDI) [16]: It measures the number of

52

changes in the name classes and take ratio with total number of classes

to measure system instability.

– Relationship Based Similarity Metric (RBMS)[19]: It measure

the change in inheritance relationship and take ratio with total inheri-

tance relationships to measure architecture stability.

– Core Calls Instability (CCI) [20]: It measures the change in calls

between packages (external calls) and inside package (internal calls)

and take ratio with total calls.

– Architecture Stability Metric (ASM) [21]: It measure the un-

changed inter-packages calls and take ratio with total external calls.

Table 4.3 contains descriptive statistics of total eight stability metrics and

maintenance effort. Standard variation, mean, minimum and maximum val-

ues shows that data is dynamic and spread across different ranges. Whereas

skewness values show that all metrics do not follow a normal distribution

and have non-parametric nature. Our all four proposed metrics (PCS, IPIS

and EPIS) have negative skew distribution because most of the contents

and interactions of packages remain same. Hence proposed metrics does

not follow a normal distribution and has non-parametric nature. Existing

stability metrics ASM and RBSM have negative skew distribution because

most of the packages are stable. Hence ASM and RBSM does not follow a

normal distribution and has non-parametric nature. While existing instabil-

ity metrics SDI and CCI have positive skew distribution because most of the

53

packages retain their original form. Hence SDI and CCI has non-parametric

nature and does not follow a normal distribution. Whereas maintenance

effort follows a positive skew distribution, hence it also does not follow a

normal distribution and does not share non-parametric nature. Package in-

stability follows a weak negative skew distribution, hence we can say that it

does not follow a normal distribution and has non-parametric nature.

Table 4.3: Descriptive statistics of stability metrics and maintenance effort.

Metric Min Max Mean
Std.
Devia-
tion

Skew-
ness

1 PCS 0.07 1 0.91 0.12 -2.12
2 IPIS 0 1 0.98 0.10 -7.30
3 EPIS 0 1 0.97 0.11 -6.01
4 PSM 0.03 1 0.94 0.10 -4.11
5 SDI 0 1 0.05 0.15 4.28
6 ASM 0 1 0.97 0.13 -5.38
7 RBSM 0 1 0.94 0.19 -3.69
8 CCI 0 9.50 0.05 0.40 18

9
Martin’s
Instability

0 1 0.39 0.43 0.42

10 Maintenance 0
30620 948.34

2397.94 4.89

� Software Tools: In our empirical validation, we used three software tools

Eclipse, Matlab, and Knime [48]. Eclipse is used to develop our custom

Java tool to automate metrics measurements. Matlab is used for correlation

analysis, principal component analysis, and regression analysis. Whereas we

used Knime for the statistical analysis reported in table 4.3 for identification

of data nature and distribution.

54

4.2.2 Software Stability Metric Tool

In our empirical validation, we developed a new Java tool to automate package

stability measurement for our proposed metrics, five existing stability metrics and

maintenance effort using JavaParser[49] library to parse source code of selected

open source. Our tool analyzes Java source code of different versions of open

source software, extract the required information to calculate proposed package

level stability metrics.

High Level Class Diagram

High level class diagram of our custom developed software stability metric tool

is available in Figure 4.1. Two classes ”Parser” and ”Java Parcer Library” are

backbone of our tool. Purpose of ”Parser” class is to provide bridge between java

parser and classes that contain logic for metric calculation. While ”Java Parser

Library” is actual java parser library with list of parser classes. Main logic to

calculate metric is implemented in ”Project”, ”Package”, ”Class” and ”Interface”

classes. While ”Variable”, ”Function” and ”Connections” classes are used as data

classes. Tool takes the directory path of two projects as input and first parse

both project in two instances of project class with whole hierarchy of packages,

classes, interfaces, variables, function and connections. After parsing, metric tool

compare properties of two projects and calculate different metric values according

to their definitions.

55

Figure 4.1: High Level Class Diagram of developed Software Stability Tool

Activity Diagram

Activity diagram of our custom developed software stability metric tool is available

in Figure 4.2. Our custom developed metric tool performs below task in order to

calculate stability metrics.

� Traverse Project Directory: As input tool require paths of two version

of a software. As first stage, our tool parses the whole directory of both

projects. It parses all the packages and files in those packages with extension

”.java”. It creates a list of packages objects with file lists in them.

� Parse Java Files: In second step, tool parses each file contents and ex-

tracts list of classes and interfaces. After that it creates list of objects of

56

parsed classes and interfaces, and then initialized the package object class

and interface list property. Then tool parses each class and interface and

extracts their variables, functions and connections.

� Set Properties: This step is called pre-processing. In this step our tool

refine the data by defining and setting information for variables, functions

and connections. For variable, it sets properties like access level, data type

and name. For function it sets properties like return type, access level,

function name and function’s parameters properties. For connections, it sets

properties like connection type, name of the class or interface the object is

connected to. In last step, tool removes the duplicate connections.

� Metric Measurement: In this step, tool compares the list packages of

both projects, then it compares the classes/interfaces, then it compares vari-

ables, functions and connections. As a result a comparison tool calculates

the values of unchanged properties count, deleted properties count, added

properties count and total maximum possible change count. At the end tool

uses counts to calculate different metrics according to definitions.

� Export Data:In final step tool exports the calculated metric values with

list of packages.

57

Figure 4.2: Activity Diagram of developed Software Stability Tool

4.2.3 Correlation with Maintenance Effort

Maintainability is one important property of design as software evolve to adapt

changes in user requirements and operational environments [5]. Software stability

contributes towards maintainability quality attribute and is one of the measures

to obtain maintainable software. Stable software tends to minimize changes,

improve maintainability and as a result help reduce maintenance effort [6, 7, 8].

We used correlation to analyze relationship between proposed package stability

metrics with maintenance effort. We decided to use Spearman rank order

correlation coefficient over Pearsons correlation coefficient [50] because data has

58

non-parametric nature and does not follow normal distribution as explained in

section 4.3.1 using skewness values from table 4.2. We hypothesis the relationship

between proposed package stability metrics and maintenance effort [47] as follows:

Null hypothesis: There is no significant association between the PCS metrics

with maintenance effort.

Package content stability (PCS) has spearman rank order coefficient -0.83

and the p-value less than 0.5, as shown in Table 4.4. Hence, we reject the null

hypothesis and conclude that PCS metric has a strong negative correlation with

maintenance effort. Hence, we conclude that an increase in PCS will reduce

maintenance effort.

Null hypothesis: There is no significant association between the IPIS metrics

with maintenance effort.

The Spearman rank order is -0.29 and the p-value for intra-package interaction

stability (IPIS) is less than 0.05, as shown in Table 4.4. Hence, we reject the

null hypothesis and conclude that IPIS metric has a weak negative correlation

with maintenance effort. Hence, we conclude that an increase in IPIS will reduce

maintenance effort. Association is weak because IPIS considers changes in only

those lines of code, which contribute towards intra-package interactions.

Null hypothesis: There is no significant association between the EPIS met-

59

rics with maintenance effort.

The Spearman rank order is -0.38 and the p-value for inter-package interaction

stability (EPIS) is less than 0.05, as shown in Table 4.4. Hence, we reject the null

hypothesis and conclude that EPIS metric has a moderate negative correlation

with maintenance effort. Hence, we conclude that an increase in EPIS will reduce

maintenance effort. Association is not strong because IPIS considers changes in

only those lines of code, which contribute towards inter-package interactions.

Maintenance effort association with existing stability metric: We also

performed correlation analysis between maintenance effort and package stability

based on five exiting stability metric as shown in Table 4.4 and Figure 4.3. Pack-

age Content Stability (PCS) has stronger association with maintenance effort as

compare to other stability all metrics. Inter-Package Interaction Stability (EPIS)

has better association with maintenance effort as compared to any inter-package

interaction based stability metric (ASM, RBSM, CCI and Martin Instability).

Intra-Package Interaction Stability (IPIS) has weak association with maintenance

effort, but it is the only stability metric available which covers all intra-package

interactions. Hence our proposed stability metrics has better relationship with

maintenance effort as compared to existing stability metrics.

60

Table 4.4: Correlation Analysis with Maintenance Effort. P Value less that
0.00005 is replace with 0

Stability Metric
Spearman Rank
Cofficient

P Value

1 PCS -0.83 0
2 IPIS -0.29 0
3 EPIS -0.38 0
4 SDI 0.45 0
5 ASM -0.35 0
6 RBSM -0.35 0
7 CCI 0.36 0

8
Martin
Instability

-0.04 0.20

Figure 4.3: Correlation Analysis with Maintenance Effort.

4.2.4 Comparison with existing stability metric

In this section, we explore the correlations between proposed metrics suite and

five existing stability metrics, namely, Martin’s package instability metric [27],

package stability metrics based on system design instability (SDI) [16] metric

definition, package stability metrics based on relationship based similarity metric

(RBMS) [19] definition, package stability metrics based on core calls instability

61

(CCI) [20] definition and package stability metrics based on architecture stability

metric (ASM) [21] metric definition. We use Spearman rank order correlation

method. Table 4.5 shows the results of correlation analysis between proposed

metric suite and existing stability metrics.

� Package Stability Based on SDI [16] SDI also calculates the stability

of a package contents by measuring changes in name of classes only and

ignore other content aspects. Hence it has a weak correlation with PCS.

Interestingly SDI has a better correlation with IPIS and EPIS as compared

to PCS. The reason behind is that changes like the addition of new classes

and deletion of existing classes, increase changes in class name and which

affect the interactions between classes.

� Package Stability Based on ASM [21] ASM has a moderate correlation

with EPIS because EPIS is also inter-package interactions based stability

metric. The difference is that EPIS considers all ten types of inter-package

interactions as explained in table 4.2. ASM has a weak correlation with

PCS and IPIS because these metrics measure changes in contents and intra-

package interactions respectively.

� Package Stability Based on RBSM [19] RBSM has a moderate cor-

relation with EPIS because EPIS is also inter-package interactions based

stability metric. The difference is that EPIS considers all ten types of inter-

package interactions as explained in table 4.2. RBSM has a weak correlation

62

with PCS and IPIS because these metrics measure changes in contents and

intra-package interactions respectively.

� Package Stability Based on CCI [20] CCI has a moderate correlation

with EPIS because EPIS is also inter-package interactions based stability

metric. The difference is that EPIS considers all ten types of inter-package

interactions as explained in table 4.2. CCI has a weak correlation with

PCS and IPIS because these metrics measure changes in contents and intra-

package interactions respectively.

� Package Instability [27] Package instability metric has no correlation with

PCS and IPIS because pValue is very high and Spearman rank order coef-

ficient value is very low. Whereas Package instability metric has very weak

negative correlation with EPIS and other existing stability metrics (ASM

and RBSM). Whereas it has very weak positive correlation with instability

metrics (SDI and CCI). Hence package instability has either no association

with proposed metrics PCS and IPIS. Whereas packages instability has very

weak correlation with metric that calculates inter-package interaction. The

relationship is weak because package instability does not measure changes.

4.2.5 Principal Component Analysis

Principal Component Analysis (PCA) [39, 40] is a statistical tool that uses orthog-

onal transformation to identify and analyze underline relations and dimensions of

the input parameters. Here it is used to understand the underlying orthogonal

63

T
ab

le
4.

5:
C

or
re

la
ti

on
A

n
al

y
si

s
(C

om
p
ar

is
on

w
it

h
ex

is
ti

n
g

st
ab

il
it

y
m

et
ri

cs
).

N
ot

e:
R

is
S
p

ea
rm

an
R

an
k

O
rd

er
C

o
effi

ci
en

t
an

d
P

le
ss

th
an

0.
00

05
is

re
p
la

ce
d

w
it

h
0

S
ta

b
il
it

y
M

et
ri

cs
P

C
S

IP
IS

E
P

IS
S
D

I
A

S
M

R
B

S
M

C
C

I

IP
IS

R
=

0.
26

,
P

=
0

E
P

IS
R

=
0.

36
,

P
=

0
R

=
0.

46
,

P
=

0

S
D

I
R

=
-0

.3
1,

P
=

0
R

=
-0

.4
2,

P
=

0
R

=
-0

.4
7,

P
=

0

A
S
M

R
=

0.
31

,
P

=
0

R
=

0.
3,

P
=

0
R

=
0.

65
,

P
=

0
R

=
-0

.3
4,

P
=

0

R
B

S
M

R
=

0.
31

,
P

=
0

R
=

0.
35

,
P

=
0

R
=

0.
59

,
P

=
0

R
=

-0
.3

3,
P

=
0

R
=

0.
86

,
P

=
0

C
C

I
R

=
-0

.3
2,

P
=

0
R

=
-0

.3
5,

P
=

0
R

=
-0

.6
4,

P
=

0
R

=
0.

37
,

P
=

0
R

=
-0

.9
8,

P
=

0
R

=
-0

.8
5,

P
=

0
M

ar
ti

n
In

st
ab

il
it

y
R

=
-0

.0
1,

P
=

0.
67

R
=

-0
.0

6,
P

=
0.

04
R

=
-0

.2
9,

P
=

0
R

=
0.

19
,

P
=

0
R

=
-0

.3
3,

P
=

0
R

=
-0

.3
2,

P
=

0
R

=
0.

33
,

P
=

0

64

dimensions and the relationship of five existing stability metrics and proposed

metrics. In addition, PCA also demonstrates that the proposed package stabil-

ity metric captures new measurement dimensions. Our experiment shows that

outliers do not affect final PCA results.

To perform principal component analyses, we used singular value decomposi-

tion (SVD) [51] algorithm. Table 4.6 shows the results of PCA with all eight PCs

(Principal Component). It also shows the eigenvalues, their percentages, and the

cumulative percentage. For every eight PCs, coefficients of five existing stability

metrics, PCS, IPIS and EPIS are also presented in Table 4.6. Coefficients indicate

which are the influential metrics contributing to the captured dimension. Based

of recommendations from literature and close coefficient values of PC 6 and PC 4,

We decided to apply 0.45 cut on coefficients. We have removed PSM from PCA

analysis because our major target was to study new dimensions of PCS, IPIS, and

EPIS, and PSM is derived from them, hence it can affect their results. For each

PC (principal component) analysis based on coefficients are follows:

� PC 1: Package instability metric is the only influential metric for this PC

with coefficient value 0.97. It calculates instability of package by using the

afferent coupling and efferent coupling. It does not measure changes between

two versions of package. Hence it is unique from all other stability metric

and captures different dimension.

� PC 2: RBSM is major influential metrics for this PC with coefficient values

-0.57. Whereas CCI, SDI and ASM also have weak influence on this PC.

65

� PC 3: RBSM and SDI are major influential metrics for this PC with coef-

ficient value 0.49 and 0.61 respectively.

� PC 4: ASM, RBSM and CCI are major influential metrics for this PC with

coefficient values 0.52, 0.61 and 0.47 respectively.

� PC 5: PCS and SDI are major influential metrics for this PC with coefficient

values 0.73 and 0.63 respectively.

� PC 6: PCS, IPIS and EPIS are major influential metrics for this PC with

coefficient values -0.48, 0.52 and 0.59 respectively.

� PC 7: IPIS and EPIS are major influential metrics for this PC with coeffi-

cient values 0.73 and -0.62 respectively.

� PC 8: ASM and CCI are major influential metrics for this PC with coeffi-

cient values 0.72 and 0.66 respectively.

The PCA results show that our proposed Package Content Stability (PCS) met-

ric covers a new dimension as it is major significant factor in PC 5 and 6. This

proves that PCS captures new functional (package content) stability aspects. IPIS

and EPIS metrics also captures new measurement dimension as they are major

significant factors in PC 6 and PC 7. This proves that both metrics covers new

dimension of intra and inter package interactions (structural and behavioral) sta-

bility.

66

Table 4.6: Principal Component Analyses Results.
PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8

Eigen Values 0.19 0.06 0.03 0.01 0.01 0.01 0 0
Percentage 60.26 19.40 8.93 3.84 3.14 2.51 1.30 0.61
Cum.
Percentage

60.26 79.66 88.59 92.44 95.58 98.09 99.39 100

PCS 0 0.27 -0.36 0.17 0.73 -0.48 -0.05 0.01
IPIS -0.01 0.21 -0.34 0.02 0.14 0.52 0.73 0.14
EPIS -0.04 0.27 -0.25 -0.26 0.19 0.59 -0.62 -0.16
SDI 0.03 -0.35 0.61 -0.19 0.63 0.24 0.09 -0.01
ASM -0.09 0.38 0.18 -0.52 -0.05 -0.16 -0.04 0.72
RBSM -0.18 0.57 0.49 0.61 -0.02 0.15 -0.06 0.02
CCI 0.10 -0.42 -0.19 0.47 0.06 0.21 -0.27 0.66
Martin
Instability

0.97 0.21 0.09 0.01 -0.02 0.01 -0.01 0

4.2.6 Regression Analysis

To evaluate and compare the ability of five existing stability metric and newly

proposed metrics to predict package maintenance effort, we used linear regression

[41]. This method is widely applied by many studies [52, 53] for prediction in

software engineering. Almugrin et al. [53] used linear regression to predict package

maintainability and testability. In linear regression, we use independent variables

to explain and predict the dependent variable. In our analysis five existing stability

metric and newly proposed metrics are independent variables and maintenance

effort is a dependent variable. Data from four different version of five systems

as explained in table 4.1 were collected and then combined into one file for

analysis. Linear regression assumes that the relationship between independent

variables and the dependent variable is approximately linear. Linear regression

also requires data to follow a normal distribution and we know that our data

67

does not follow a normal distribution. There exist transformation to make data

normally distributed such as logarithmic, square roots and inverse transforms. We

applied square root function onto the data of five existing stability metrics, PSM

metric suite, and maintenance effort to make is normally distributed.

To analyze the prediction ability of package stability metrics three regression

analysis were performed, (1) first analysis explores the performance of content-

based stability metric to predict maintenance effort individually; (2) second anal-

ysis presents the performance of package interaction based stability metric to pre-

dict maintenance effort individually; and (3) third analysis find the best possible

combination of stability metric to maximize prediction results with less number

of dependent variables. Tables 4.7, 4.8 and 4.9 presents the results of analysis

(1), (2) and (3) respectively. In these tables R-Squared value is the accuracy of

prediction, the Adjusted R-Squared value is the actual accuracy of prediction,

pValue shows the significance of experiment and F-statistic shows the significance

of the relationship between independent and dependent variable.

� Content based stability metrics: In this analysis, we used only contents

based stability metrics individually and perform the linear regression to

predict maintenance effort. PCS and SDI are content-based package stability

metrics. Table 4.7 presents the results of this analysis. In comparison with

SDI, PCS is producing good accuracy with adjusted R-squared value 0.378.

� Interaction based stability metrics: In this analysis, we used only in-

68

Table 4.7: Summary of the linear regression using content based stability metrics
as independent variable.

Stability
Metrics

R-Squared
Adj.
R-Squared

pValue F-statistic

1 PCS 0.378 0.378 <0.00001 646
2 SDI 0.127 0.126 <0.00001 154

teractions based stability metrics individually as the independent variables

and perform the linear regression to predict maintenance effort. IPIS, EPIS,

Package Instability, ASM, RBSM and CCI calculates package stability using

interactions. Table 4.8 presents the results of this analysis. In comparison

with other interaction-based stability metrics, IPIS and EPIS are produc-

ing good results. Adjusted R-squared value of IPIS is 0.0367 whereas the

adjusted R-squared value of EPIS is 0.0325. As compared to content-based

stability metrics these values are low because most of the packages remain

stable from the interaction point of view but the maintenance effort mea-

sures change in each line of code whether it contributes toward interaction

or not.

Table 4.8: Summary of the linear regression using package interactions based
stability metrics as independent variable.

Stability
Metrics

R-Squared
Adj.
R-Squared

pValue F-statistic

1 IPIS 0.0376 0.0367 <0.00001 39.1
2 EPIS 0.0335 0.0325 <0.00001 34.6
3 ASM 0.026 0.0251 <0.00001 28.4
4 RBSM 0.0282 0.0273 <0.00001 30.8
5 CCI 0.0213 0.0204 <0.00001 30.1

6
Package
Instability

0.0182 0.0173 <0.00001 19.7

69

� Best combination of stability metrics: In this analysis, we presents the

best possible combinations of stability metric that can produce good results.

Table 4.9 presents the results of this analysis.

– Combination 1: In row 1 by using proposed metric as independent

variable we get 0.399 accuracy.

– Combination 2: While in row 2 by using all existing stability metrics as

independent variable, accuracy to predict maintenance effort is 0.178

accuracy.

– Combination 3: If we use all five existing stability metrics with pro-

posed metric as independent variable, accuracy to predict maintenance

effort accuracy improves to 0.437.

– Combination 4: We tried different possible combination and come up

with the best combination of five independent variable: PCS, IPIS,

EPIS, SDI and Package Instability. This combination predicts mainte-

nance effort with accuracy of 0.43.

Table 4.9: Summary of the linear regression using best combinations.

Description Dependent Variables R-Sq.
Adj.
R-Sq.

pValue F-stat

1
Proposed
Metrics

PCS, IPIS and EPIS 0.401 0.399 <0.00001 236

2
Five Existing
Metrics

SDI, ASM, RBSM,
CCI and Instability

0.181 0.178 <0.00001 58.6

3 Combined All 0.44 0.437 <0.00001 119

4
Proposed
Combination

PCS, IPIS, EPIS,
SDI,and Instability

0.432 0.43 <0.00001 161

70

The linear regression results show that our proposed metrics improved the pre-

diction accuracy of maintenance effort. In table 4.9, we can see that in row 2 using

all existing metric the maintenance effort prediction accuracy is 0.178. But when

we introduce proposed metric suite in row 3 the accuracy is improved to 0.437.

But using all stability metrics will be very costly so we proposed a combination of

five stability metrics that include PCS, IPIS, EPIS, SDI and Package Instability

which produce an acceptable accuracy of 0.43. Finally, we present the Linear

regression model using these five metrics in table 4.10. In the model estimate

is the corresponding coefficient, the standard error is expected error in estimate

value and, tStat and pValue show the significance.

Table 4.10: Regression model of best possible combination.

Estimate
Standard
Error

tStat pValue

(Intercept) 268.36 20.833 12.881 <0.00001
PCS -125.62 14.337 -8.762 <0.00001
IPIS 18.887 9.9634 1.8956 0.058304
EPIS 23.252 10.693 2.1746 0.029895
SDI 27.573 4.0368 6.8305 <0.00001
Package
Instability

-180.27 22.819 -7.8999 <0.00001

71

CHAPTER 5

COMPARISON OF

REGRESSION AND

CLASSIFICATION TO

PREDICT PACKAGE

MAINTAINABILITY

In this chapter we presents initial results of comparison analysis between regres-

sion algorithm and classification algorithm to predict package maintainability. We

conducted four set of analysis for this comparison; (1) first analysis explores the

correlation between five existing stability metrics, PSM metric suite, two pack-

age cohesion metrics, two package coupling metric, maintenance effort and future

(next version) maintenance effort; (2) second analysis applies principal compo-

72

nent analysis to explore which metrics covers different directions and are unique

from others; (3) third analysis applies three to predict package current maintain-

ability and future (next version) maintainability; and (4) forth analysis applies

six classification algorithms to predict package current maintainability and future

(next version) maintainability. Bellow are the differences between analysis in this

chapter and analysis in chapter 4.

� Analysis in this chapter are based on 26 open source softwares. We collected

four version of each 26 open software to measure stability and maintenance.

� Analysis in this also contain input of two package cohesion and two package

coupling metrics.

� This chapter also present prediction analysis of future maintenance effort.

� Major contribution of this is the comparison analysis between regression and

classification algorithms.

5.1 Data Collection

We have selected 26 open source software systems from different domains for

analysis in this chapter. We have used four different versions of each open source

software; where there is at least one year difference between release dates of in-

dividual versions. As a result, we have collected three stability measurements,

three maintenance effort measurements and two future maintenance effort mea-

surements. Table 5.1 presents descriptive statistics of 4th version of each 26 open

73

source systems in term of number of packages, classes and lines of code. Values

of mean, minimum, maximum and standard deviation show that packages used

in our experiments are dynamic in terms of size (number of classes and lines of

code). In total, experiments in this chapter contain input of 20954 packages with

169020 classes and 35270848 lines of code.

5.2 Metric Selection

In this chapter, we adopt Li and Henry’s maintenance effort measurement defi-

nition [47]: ‘Maintenance effort metrics calculates effort in term of total added,

deleted or modified line of code’ to predict package maintenance. We ignored

Martin’s package instability metric [27] because it did not generate good result

in chapter 4. We select package stability metrics based on Li’s class implemen-

tation instability (CII) [16] metric definition (PCII), package stability metrics

based on system design instability (SDI) [16] metric definition (PSDI), package

stability metrics based on class number of method stability [22] metric definition

(PNomStab), package stability metrics based on class stability metric (CSM) [5]

definition (PCSM) and package stability metrics based on architecture stability

metric (ASM) [21] metric definition (PASM) to analyze the correlations among

six existing stability metrics and PSM. We also used two package cohesion metric;

Martin’s Cohesion [27] and Component Cohesion of Vernazza et. al. [54]. We also

used tow package coupling metrics; afferent coupling and efferent coupling [27].

Table 5.2 contains descriptive statistics of total nine stability metrics, two

74

T
ab

le
5.

1:
26

S
el

ec
te

d
O

p
en

S
ou

rc
e

S
of

tw
ar

e
si

ze
st

at
is

ti
cs

P
ac

ka
ge

v
is

e
C

la
ss

C
ou

n
t

S
ta

ti
st

ic
s

P
ac

ka
ge

v
is

e
L

in
e

of
C

o
d
e

S
ta

ti
st

ic
s

S
of

tw
ar

e
V

er
si

on
P

ac
ka

ge
C

ou
n
t

C
la

ss
C

ou
n
t

M
in

M
ax

M
ea

n
S
td

.
D

ev
L

in
e

O
f

C
o
d
e

M
in

M
ax

M
ea

n
S
td

.
D

ev

B
u
d
d
i

3.
4.

1.
14

30
21

2
1

46
7.

07
9.

16
29

88
7

23
43

39
99

6.
23

90
3.

54
J
H

ot
D

ra
w

7.
6

66
55

3
1

39
8.

38
8.

77
13

47
59

45
15

34
7

20
41

.8
0

26
21

.3
0

K
ol

M
afi

a
17

.4
11

5
21

60
1

21
3

18
.7

8
34

.3
9

72
81

62
51

94
61

9
63

31
.8

4
12

10
0.

68
T

al
en

d
6.

2.
1

10
8

13
92

1
58

12
.8

9
11

.3
4

15
96

92
7

41
67

55
6

14
78

6.
36

18
72

1.
51

U
n
iT

im
e

B
u
n
d
le

35
12

3
17

25
1

31
7

14
.0

2
37

.3
6

41
03

00
41

46
28

4
33

35
.7

7
62

85
.9

3
A

p
ac

h
e

C
am

el
2.

18
.1

16
02

13
04

4
1

61
5

8.
14

24
.0

7
13

57
68

0
25

50
47

1
84

7.
49

21
44

.6
0

A
p
ac

h
e

T
om

ca
t

9.
0.

0.
M

17
16

8
11

62
0

54
6.

92
8.

72
27

58
42

23
21

67
3

16
41

.9
2

26
27

.8
5

J
E

d
it

5.
3.

0
42

51
4

1
81

12
.2

4
17

.3
7

18
70

41
65

30
28

4
44

53
.3

6
73

19
.9

1
M

u
le

3.
7.

5
10

15
59

10
1

64
5.

82
7.

89
66

43
65

12
13

67
7

65
4.

55
10

57
.3

9
H

ad
o
op

2.
7.

3
74

2
54

08
1

13
9

7.
29

12
.6

2
13

67
21

3
33

57
58

0
18

42
.6

1
43

10
.5

1
S
y
n
ap

se
3.

0.
0

21
5

11
52

1
12

3
5.

36
9.

97
17

51
51

48
16

10
2

81
4.

66
15

40
.2

7
A

p
ac

h
e

A
n
t

1.
10

.0
48

36
5

1
86

7.
60

14
.1

8
60

79
7

25
14

02
2

12
66

.6
0

24
57

.9
4

E
ss

en
ce

0.
75

26
12

4
1

17
4.

77
4.

81
22

19
6

15
45

82
85

3.
69

10
10

.7
5

G
ri

d
si

m
5.

2
60

27
4

1
34

4.
57

5.
54

99
48

8
14

8
20

18
4

16
58

.1
3

28
84

.2
8

J
av

aG
ro

u
p
s

3.
6.

5
13

11
7

0
27

9.
00

8.
56

32
58

3
10

8
10

89
5

25
06

.3
8

33
27

.3
4

P
re

va
y
le

r
2.

02
.0

06
39

15
6

1
14

4.
00

2.
79

11
18

0
35

96
9

28
6.

67
20

2.
84

S
u
p

er
(A

ce
le

t
S
ch

ed
u
le

r)
3

10
24

3
1

81
24

.3
0

25
.7

6
39

99
7

67
13

43
9

39
99

.7
0

39
98

.3
7

D
B

U
n
it

2.
4.

9
30

27
2

1
34

9.
07

7.
73

47
30

1
11

5
59

82
15

76
.7

0
14

78
.9

0
B

C
E

L
6.

0
12

37
6

1
20

5
31

.3
3

57
.4

1
55

80
2

26
0

24
36

2
46

50
.1

7
71

37
.4

6
C

o
d
e

G
en

er
at

io
n

L
ib

ra
ry

3.
1

18
15

9
2

26
8.

83
7.

70
20

35
7

8
48

78
11

30
.9

4
12

36
.4

9

S
p
ri

n
g

4.
3.

6
82

2
52

48
1

71
6.

38
7.

61
97

99
93

24
17

96
1

11
92

.2
1

17
88

.3
2

J
av

a
X

11
L

ib
ra

ry
0.

3
16

24
4

1
47

15
.2

5
13

.5
1

42
22

8
6

11
47

8
26

39
.2

5
32

39
.1

7
D

rJ
av

a
r4

66
8

28
48

9
1

68
17

.4
6

18
.2

9
14

35
86

52
33

03
8

51
28

.0
7

70
74

.8
9

F
in

d
b
u
gs

3.
0.

0
77

97
5

1
18

6
12

.6
6

28
.3

2
20

85
78

34
42

13
0

27
08

.8
1

70
47

.5
5

J
as

p
er

re
p

or
ts

6.
2.

0
12

4
19

92
1

19
5

16
.0

6
26

.2
9

45
56

11
62

59
18

0
36

74
.2

8
79

78
.4

7
J
u
n
it

4.
9

28
12

1
1

11
4.

32
3.

13
11

54
5

31
14

39
41

2.
32

39
9.

31

75

package cohesion metrics, two package coupling metric, maintenance effort and

future maintenance effort. Standard variation, mean, minimum and maximum

values shows that data is dynamic and spread across different ranges. Whereas

skewness values show that all metrics except two cohesion metrics, do not follow

a normal distribution and have non-parametric nature. Only package cohesion

metric; martin cohesion and component cohesion follows normal distribution.

Table 5.2: Descriptive statistics of stability, cohesion, coupling and maintenance
effort metrics.

Metric Min Max Mean Std. Dev Skewness

1 PCS 0 1 0.955 0.098 -3.981
2 IPIS 0 1 0.990 0.080 -10.176
3 EPIS 0 1 0.949 0.175 -3.989
4 PSM 0 1 0.955 0.109 -4.119
5 PCII 0 1 0.040 0.115 4.923
6 PSDI 0 1 0.031 0.118 5.323
7 PNomStab 0 1 0.962 0.123 -4.986
8 PCSM 0.375 1 0.976 0.058 -4.051
9 PASM 0 1 0.944 0.197 -3.905
10 Martin Cohesion 0.003 3.875 0.657 0.382 0.619
11 Component Cohesion 0 1 0.443 0.442 0.352
12 Afferent Coupling 0 4274 11.338 97.237 26.115
13 Efferent Coupling 0 299 7.985 15.347 7.537
14 Maintenance 0 34123 170.742 873.310 14.963
15 Future Maintenance 0 34123 172.232 942.157 15.758

5.3 Metric Tool

I developed custom software stability metric tool for my experiments. Details of

software stability metric tool are provided in section 4.3.2.

76

5.4 Software Tool

As explained in section 4.3.1, we used three software tools Eclipse, Matlab, and

Knime [48]. Eclipse is used to develop our custom Java tool to automate met-

rics measurements. Matlab is used for correlation analysis, principal component

analysis, regression analysis and clustering. Whereas we used Knime for the clas-

sification algorithms.

5.5 Correlation Analysis

We performed correlation analysis between 15 different metrics. These metrics are

maintenance effort [47], future maintenance effort, PSM metric suite, PCII [16],

PSDI [16], PNomStab [22], PCSM [5], PASM [21], Martin’s Cohesion [27], Compo-

nent Cohesion [54], afferent coupling and efferent coupling [27]. We used pearson

rank correlation analysis because most of our data nature is non-parametric and

does not follow normal distribution. Correlation analysis results are available in

tables 5.3 and 5.4. Some analysis are listed below:

� Proposed metrics has better correlation with maintenance effort as compared

to other stability metric.

� Proposed metrics has better correlation with future maintenance effort as

compared to other stability metric.

� Most of stability metrics including Proposed metrics has weak negative cor-

relation with afferent and efferent coupling. Where as instability metric has

77

weak positive correlation with afferent and efferent coupling.

� Most of stability metrics including Proposed metrics has weak positive cor-

relation with martin cohesion and component cohesion. Where as instability

metric has weak negative correlation with martin cohesion and component

cohesion.

� Maintenance effort and future maintenance has weak positive correlation

with afferent and efferent coupling.

� Maintenance effort and future maintenance has weak negative correlation

with martin cohesion and component cohesion.

5.6 Principal Component Analysis

Principal Component Analysis (PCA) [39, 40] is a statistical tool that uses orthog-

onal transformation to identify and analyze underline relations and dimensions of

the input parameters. Here it is used to understand the underlying orthogonal

dimensions and the relationship between 13 different metrics; PSM metric suite,

PCII [16], PSDI [16], PNomStab [22], PCSM [5], PASM [21], Martin’s Cohesion

[27], Component Cohesion [54], afferent coupling and efferent coupling [27]. We

also performed PCA analysis for dimension reduction. We performed two PCA

analyis; one with all 13 metrics and second with only stability metrics. Due to

recommendation from literature and close coefficient values of PC 6, we applied

coefficient cut at 0.45.

78

T
ab

le
5.

3:
C

or
re

la
ti

on
an

al
y
si

s
of

p
ac

ka
ge

st
ab

il
it

y,
co

h
es

io
n
,

co
u
p
li
n
g

an
d

m
ai

n
te

n
an

ce
eff

or
t

(P
ar

t
1)

.
N

ot
e:

P
va

lu
es

le
ss

th
an

0.
00

00
1

ar
e

re
p
la

ce
d

b
y

0.
P

C
S

IP
IS

E
P

IS
P

S
M

P
C

II
P

S
D

I
P

N
om

S
ta

b
P

C
S
M

1
P

C
S

R
=

1,
P

=
1

R
=

0.
26

7,
P

=
0

R
=

0.
26

2,
P

=
0

R
=

0.
84

8,
P

=
0

R
=

-0
.8

24
,

P
=

0
R

=
-0

.3
85

,
P

=
0

R
=

0.
65

4,
P

=
0

R
=

0.
82

8,
P

=
0

2
IP

IS
R

=
0.

26
7,

P
=

0
R

=
1,

P
=

1
R

=
0.

26
7,

P
=

0
R

=
0.

26
6,

P
=

0
R

=
-0

.2
46

,
P

=
0

R
=

-0
.3

61
,

P
=

0
R

=
0.

29
1,

P
=

0
R

=
0.

22
8,

P
=

0

3
E

P
IS

R
=

0.
26

2,
P

=
0

R
=

0.
26

7,
P

=
0

R
=

1,
P

=
1

R
=

0.
61

2,
P

=
0

R
=

-0
.2

41
,

P
=

0
R

=
-0

.2
93

,
P

=
0

R
=

0.
28

7,
P

=
0

R
=

0.
34

5,
P

=
0

4
P

S
M

R
=

0.
84

8,
P

=
0

R
=

0.
26

6,
P

=
0

R
=

0.
61

2,
P

=
0

R
=

1,
P

=
1

R
=

-0
.7

02
,

P
=

0
R

=
-0

.3
53

,
P

=
0

R
=

0.
56

8,
P

=
0

R
=

0.
8,

P
=

0

5
P

C
II

R
=

-0
.8

24
,

P
=

0
R

=
-0

.2
46

,
P

=
0

R
=

-0
.2

41
,

P
=

0
R

=
-0

.7
02

,
P

=
0

R
=

1,
P

=
1

R
=

0.
57

6,
P

=
0

R
=

-0
.7

75
,

P
=

0
R

=
-0

.7
13

,
P

=
0

6
P

S
D

I
R

=
-0

.3
85

,
P

=
0

R
=

-0
.3

61
,

P
=

0
R

=
-0

.2
93

,
P

=
0

R
=

-0
.3

53
,

P
=

0
R

=
0.

57
6,

P
=

0
R

=
1,

P
=

1
R

=
-0

.6
54

,
P

=
0

R
=

-0
.3

11
,

P
=

0

7
P

N
om

S
ta

b
R

=
0.

65
4,

P
=

0
R

=
0.

29
1,

P
=

0
R

=
0.

28
7,

P
=

0
R

=
0.

56
8,

P
=

0
R

=
-0

.7
75

,
P

=
0

R
=

-0
.6

54
,

P
=

0
R

=
1,

P
=

1
R

=
0.

59
8,

P
=

0

8
P

C
S
M

R
=

0.
82

8,
P

=
0

R
=

0.
22

8,
P

=
0

R
=

0.
34

5,
P

=
0

R
=

0.
8,

P
=

0
R

=
-0

.7
13

,
P

=
0

R
=

-0
.3

11
,

P
=

0
R

=
0.

59
8,

P
=

0
R

=
1,

P
=

1

9
P

A
S
M

R
=

0.
31

3,
P

=
0

R
=

0.
22

3,
P

=
0

R
=

0.
61

7,
P

=
0

R
=

0.
50

8,
P

=
0

R
=

-0
.3

11
,

P
=

0
R

=
-0

.2
45

,
P

=
0

R
=

0.
35

2,
P

=
0

R
=

0.
37

,
P

=
0

10
M

ar
ti

n
C

oh
es

io
n

R
=

0.
10

8,
P

=
0

R
=

-0
.0

36
,

P
=

0
R

=
0.

06
6,

P
=

0
R

=
0.

12
6,

P
=

0
R

=
-0

.1
55

,
P

=
0

R
=

-0
.1

59
,

P
=

0
R

=
0.

13
6,

P
=

0
R

=
0.

11
1,

P
=

0

11
C

om
p

on
en

t
C

oh
es

io
n

R
=

0.
20

3,
P

=
0

R
=

0.
07

,
P

=
0

R
=

0.
11

9,
P

=
0

R
=

0.
19

9,
P

=
0

R
=

-0
.2

5,
P

=
0

R
=

-0
.2

24
,

P
=

0
R

=
0.

23
6,

P
=

0
R

=
0.

21
4,

P
=

0

12
A

ff
er

en
t

C
ou

p
li
n
g

R
=

-0
.1

91
,

P
=

0
R

=
-0

.1
68

,
P

=
0

R
=

-0
.0

64
,

P
=

0
R

=
-0

.1
39

,
P

=
0

R
=

0.
20

5,
P

=
0

R
=

0.
14

4,
P

=
0

R
=

-0
.1

9,
P

=
0

R
=

-0
.1

79
,

P
=

0

13
E

ff
er

en
t

C
ou

p
li
n
g

R
=

-0
.2

86
,

P
=

0
R

=
-0

.1
36

,
P

=
0

R
=

-0
.2

51
,

P
=

0
R

=
-0

.2
88

,
P

=
0

R
=

0.
30

6,
P

=
0

R
=

0.
20

8,
P

=
0

R
=

-0
.3

34
,

P
=

0
R

=
-0

.3
08

,
P

=
0

14
M

ai
n
te

n
an

ce
R

=
-0

.8
34

,
P

=
0

R
=

-0
.2

84
,

P
=

0
R

=
-0

.2
69

,
P

=
0

R
=

-0
.7

1,
P

=
0

R
=

0.
90

6,
P

=
0

R
=

0.
56

,
P

=
0

R
=

-0
.7

25
,

P
=

0
R

=
-0

.7
79

,
P

=
0

15
F

u
tu

re
M

ai
n
te

n
an

ce
R

=
-0

.4
5,

P
=

0
R

=
-0

.1
88

,
P

=
0

R
=

-0
.1

22
,

P
=

0
R

=
-0

.3
51

,
P

=
0

R
=

0.
45

1,
P

=
0

R
=

0.
29

3,
P

=
0

R
=

-0
.3

83
,

P
=

0
R

=
-0

.4
17

,
P

=
0

79

T
ab

le
5.

4:
C

or
re

la
ti

on
an

al
y
si

s
of

p
ac

ka
ge

st
ab

il
it

y,
co

h
es

io
n
,

co
u
p
li
n
g

an
d

m
ai

n
te

n
an

ce
eff

or
t

(P
ar

t
2)

.
N

ot
e:

P
va

lu
es

le
ss

th
an

0.
00

00
1

ar
e

re
p
la

ce
d

b
y

0.

P
A

S
M

M
ar

ti
n

C
oh

es
io

n
C

om
p

on
en

t
C

oh
es

io
n

A
ff

er
en

t
C

ou
p
li
n
g

E
ff

er
en

t
C

ou
p
li
n
g

M
ai

n
te

-
n
an

ce

F
u
tu

re
M

ai
n
te

-
n
an

ce

1
P

C
S

R
=

0.
31

3,
P

=
0

R
=

0.
10

8,
P

=
0

R
=

0.
20

3,
P

=
0

R
=

-0
.1

91
,

P
=

0
R

=
-0

.2
86

,
P

=
0

R
=

-0
.8

34
,

P
=

0
R

=
-0

.4
5,

P
=

0

2
IP

IS
R

=
0.

22
3,

P
=

0
R

=
-0

.0
36

,
P

=
0

R
=

0.
07

,
P

=
0

R
=

-0
.1

68
,

P
=

0
R

=
-0

.1
36

,
P

=
0

R
=

-0
.2

84
,

P
=

0
R

=
-0

.1
88

,
P

=
0

3
E

P
IS

R
=

0.
61

7,
P

=
0

R
=

0.
06

6,
P

=
0

R
=

0.
11

9,
P

=
0

R
=

-0
.0

64
,

P
=

0
R

=
-0

.2
51

,
P

=
0

R
=

-0
.2

69
,

P
=

0
R

=
-0

.1
22

,
P

=
0

4
P

S
M

R
=

0.
50

8,
P

=
0

R
=

0.
12

6,
P

=
0

R
=

0.
19

9,
P

=
0

R
=

-0
.1

39
,

P
=

0
R

=
-0

.2
88

,
P

=
0

R
=

-0
.7

1,
P

=
0

R
=

-0
.3

51
,

P
=

0

5
P

C
II

R
=

-0
.3

11
,

P
=

0
R

=
-0

.1
55

,
P

=
0

R
=

-0
.2

5,
P

=
0

R
=

0.
20

5,
P

=
0

R
=

0.
30

6,
P

=
0

R
=

0.
90

6,
P

=
0

R
=

0.
45

1,
P

=
0

6
P

S
D

I
R

=
-0

.2
45

,
P

=
0

R
=

-0
.1

59
,

P
=

0
R

=
-0

.2
24

,
P

=
0

R
=

0.
14

4,
P

=
0

R
=

0.
20

8,
P

=
0

R
=

0.
56

,
P

=
0

R
=

0.
29

3,
P

=
0

7
P

N
om

S
ta

b
R

=
0.

35
2,

P
=

0
R

=
0.

13
6,

P
=

0
R

=
0.

23
6,

P
=

0
R

=
-0

.1
9,

P
=

0
R

=
-0

.3
34

,
P

=
0

R
=

-0
.7

25
,

P
=

0
R

=
-0

.3
83

,
P

=
0

8
P

C
S
M

R
=

0.
37

,
P

=
0

R
=

0.
11

1,
P

=
0

R
=

0.
21

4,
P

=
0

R
=

-0
.1

79
,

P
=

0
R

=
-0

.3
08

,
P

=
0

R
=

-0
.7

79
,

P
=

0
R

=
-0

.4
17

,
P

=
0

9
P

A
S
M

R
=

1,
P

=
1

R
=

0.
07

2,
P

=
0

R
=

0.
15

2,
P

=
0

R
=

-0
.1

09
,

P
=

0
R

=
-0

.3
43

,
P

=
0

R
=

-0
.3

36
,

P
=

0
R

=
-0

.2
02

,
P

=
0

10
M

ar
ti

n
C

oh
es

io
n

R
=

0.
07

2,
P

=
0

R
=

1,
P

=
1

R
=

0.
74

6,
P

=
0

R
=

0.
05

7,
P

=
0

R
=

-0
.1

79
,

P
=

0
R

=
-0

.1
83

,
P

=
0

R
=

-0
.1

63
,

P
=

0

11
C

om
p

on
en

t
C

oh
es

io
n

R
=

0.
15

2,
P

=
0

R
=

0.
74

6,
P

=
0

R
=

1,
P

=
1

R
=

-0
.1

32
,

P
=

0
R

=
-0

.3
6,

P
=

0
R

=
-0

.3
2,

P
=

0
R

=
-0

.3
05

,
P

=
0

12
A

ff
er

en
t

C
ou

p
li
n
g

R
=

-0
.1

09
,

P
=

0
R

=
0.

05
7,

P
=

0
R

=
-0

.1
32

,
P

=
0

R
=

1,
P

=
1

R
=

0.
20

6,
P

=
0

R
=

0.
26

9,
P

=
0

R
=

0.
27

9,
P

=
0

13
E

ff
er

en
t

C
ou

p
li
n
g

R
=

-0
.3

43
,

P
=

0
R

=
-0

.1
79

,
P

=
0

R
=

-0
.3

6,
P

=
0

R
=

0.
20

6,
P

=
0

R
=

1,
P

=
1

R
=

0.
36

,
P

=
0

R
=

0.
35

4,
P

=
0

14
M

ai
n
te

n
an

ce
R

=
-0

.3
36

,
P

=
0

R
=

-0
.1

83
,

P
=

0
R

=
-0

.3
2,

P
=

0
R

=
0.

26
9,

P
=

0
R

=
0.

36
,

P
=

0
R

=
1,

P
=

1
R

=
0.

54
9,

P
=

0

15
F

u
tu

re
M

ai
n
te

n
an

ce
R

=
-0

.2
02

,
P

=
0

R
=

-0
.1

63
,

P
=

0
R

=
-0

.3
05

,
P

=
0

R
=

0.
27

9,
P

=
0

R
=

0.
35

4,
P

=
0

R
=

0.
54

9,
P

=
0

R
=

1,
P

=
1

80

Table 5.5 presents PCA analysis results of 13 different stability, coupling and

cohesion metrics. Some analysis are as follows:

� PC 1: Afferent coupling has total influence on this principal component.

Hence Afferent coupling measure totally different dimension.

� PC 2: Efferent coupling has total influence on this principal component.

Hence Efferent coupling measure totally different dimension.

� PC 3 and 4: Martin cohesion and component cohesion share total influence

on these two principal component. Hence martin cohesion and component

cohesion measure same dimension but different from other metrics.

� Remaining Principal Components: We know that results of PCA are affected

if one metric has high variance and we know from table 5.2 that variance

of coupling metrics is too high and variance of cohesion metrics is also high

as compare to stability metrics. So for stability metrics we have performed

separate PCA analysis.

Table 5.5 presents our second PCA analysis results of that consist of only

stability metrics. Some analysis are as follow:

� PC 1 and 3: PASM and EPIS both are inter-package interaction stability

metric and share same dimension. Both have influence on PC 1 and 3.

� PC 2: This principal component is influence by four existing metrics PCII,

PSI, PNomStab and PASM.

81

� PC 4: This principal component is influence by two metric of proposed met-

rics; PCS and IPIS. This proves that proposed metrics cover new dimension

of package stability.

� PC 5, 6, 7 and 8: Remaining principal components are covered by more

than on stability metrics. In PC 5, 6 and 8, proposed metrics (PCS and

IPIS) share influence with existing stability metrics. This means that PCS

and IPIS also has relation with existing stability metrics.

5.7 Prediction using Regression

To evaluate and compare the ability of 13 different package stability, cohesion and

coupling metric to predict package maintenance effort and future maintenance

effort we have perform regression analysis. We used linear regression [55] [56] ,

quadratic regression [57] and polynomial regression (degree 3 and 4) [57]. Linear

regression assume lenear relationship between dependent and independent vari-

able and we know that we data is not linear. In order to make our data linear,

we have used square root function. Table 5.3 presents the results of mainte-

nance effort prediction in the form of Adj. R-squared values. Whereas table 5.4

presents the results of future maintenance effort prediction in the form of Adj.

R-squared values. Figure 5.1 provides details for both prdictions. Some analysis

of maintenance effort prediction are as follow:

� Polynomial regression with degree 4 produce best results.

82

T
ab

le
5.

5:
P

ri
n
ci

p
al

co
m

p
on

en
t

an
al

y
si

s
w

it
h

co
u
p
li
n
g

an
d

co
h
es

io
n

m
et

ri
cs

.
P

C
A

1
P

C
A

2
P

C
A

3
P

C
A

4
P

C
A

5
P

C
A

6
P

C
A

7
P

C
A

8
P

C
A

9
P

C
A

10

E
ig

en
V

al
u
es

94
58

.9
26

23
1.

58
6

0.
25

9
0.

06
8

0.
06

2
0.

03
6

0.
01

3
0.

00
7

0.
00

5
0.

00
4

P
er

ce
n
ta

ge
97

.6
06

2.
39

0
0.

00
3

0.
00

1
0.

00
1

0
0

0
0

0
C

u
m

.
P

er
ce

n
ta

ge
97

.6
06

99
.9

95
99

.9
98

99
.9

99
99

.9
99

10
0

10
0

10
0

10
0

10
0

P
C

S
0

0
0.

00
7

0.
00

7
0.

19
1

0.
28

2
0.

01
8

0.
70

2
-0

.3
51

-0
.2

26
IP

IS
0

0
0.

00
6

-0
.0

04
0.

10
9

0.
13

5
0.

05
5

0.
45

9
0.

68
6

0.
52

7
E

P
IS

0
0

0.
01

2
0.

01
9

0.
57

9
-0

.2
12

0.
77

4
-0

.1
24

-0
.0

61
0.

04
1

P
C

II
0

0
-0

.0
23

-0
.0

12
-0

.2
46

-0
.4

55
0.

12
9

0.
27

4
0.

13
2

-0
.1

50
P

S
D

I
0

0
-0

.0
26

-0
.0

10
-0

.2
42

-0
.4

43
-0

.0
08

0.
07

0
-0

.4
37

0.
67

7
P

N
om

S
ta

b
0

0
0.

02
5

0.
01

1
0.

26
6

0.
47

9
-0

.1
50

-0
.2

99
-0

.1
69

0.
41

4
P

C
S
M

0
0

0.
00

3
0

0.
09

7
0.

08
0

-0
.0

13
0.

33
3

-0
.4

02
0.

12
3

P
A

S
M

0
-0

.0
01

0.
03

1
-0

.0
16

0.
64

4
-0

.4
68

-0
.5

98
0.

03
0

0.
05

9
-0

.0
52

M
ar

ti
n

C
oh

es
io

n
0

0
0.

63
8

0.
76

8
-0

.0
38

-0
.0

28
-0

.0
06

0.
01

0
0.

00
1

0.
00

3

C
om

p
on

en
t

C
oh

es
io

n
0

-0
.0

08
0.

76
8

-0
.6

39
-0

.0
31

-0
.0

02
0.

02
5

0.
00

1
-0

.0
09

0.
00

1

A
ff

er
en

t
C

ou
p
li
n
g

1
-0

.0
21

0
0

0
0

0
0

0
0

E
ff

er
en

t
C

ou
p
li
n
g

0.
02

1
1

0.
00

6
-0

.0
05

0.
00

1
0

0
0

0
0

83

T
ab

le
5.

6:
P

ri
n
ci

p
al

co
m

p
on

en
t

an
al

y
si

s
w

it
h
ou

t
co

u
p
li
n
g

an
d

co
h
es

io
n

m
et

ri
cs

.
P

C
A

1
P

C
A

2
P

C
A

3
P

C
A

4
P

C
A

5
P

C
A

6
P

C
A

7
P

C
A

8

E
ig

en
V

al
u
es

0.
06

3
0.

03
7

0.
01

3
0.

00
7

0.
00

5
0.

00
4

0.
00

1
0.

00
1

P
er

ce
n
ta

ge
47

.8
38

27
.9

57
10

.3
12

5.
06

0
3.

90
0

2.
95

7
1.

01
5

0.
96

2
C

u
m

.
P

er
ce

n
ta

ge
47

.8
38

75
.7

95
86

.1
07

91
.1

67
95

.0
67

98
.0

23
99

.0
38

10
0

P
C

S
0.

19
3

0.
27

9
0.

02
1

0.
70

4
-0

.3
48

-0
.2

27
0.

00
8

-0
.4

65
IP

IS
0.

11
0

0.
13

4
0.

05
4

0.
45

7
0.

68
7

0.
52

8
-0

.0
74

0.
04

6
E

P
IS

0.
57

3
-0

.2
20

0.
77

6
-0

.1
22

-0
.0

59
0.

04
1

-0
.0

06
-0

.0
21

P
C

II
-0

.2
51

-0
.4

53
0.

12
5

0.
27

3
0.

13
5

-0
.1

51
0.

77
4

0.
02

8
P

S
D

I
-0

.2
48

-0
.4

41
-0

.0
07

0.
07

2
-0

.4
39

0.
67

5
-0

.1
45

-0
.2

63
P

N
om

S
ta

b
0.

27
2

0.
47

7
-0

.1
46

-0
.2

97
-0

.1
72

0.
41

4
0.

61
1

-0
.1

21
P

C
S
M

0.
09

8
0.

07
9

-0
.0

12
0.

33
5

-0
.4

00
0.

12
2

0.
02

5
0.

83
5

P
A

S
M

0.
64

3
-0

.4
72

-0
.5

97
0.

02
9

0.
05

6
-0

.0
51

0
-0

.0
16

84

� Accuracy of coupling metrics for maintenance effort prediction is very low.

� Accuracy of cohesion metrics for maintenance effort prediction is very low.

� Prediction accuracy of PSM stability metric is less as compared to accuracy

of combined five existing stability metric. Still when combine with other

stability metrics, PSM metric suite increase the accuracy with a good value.

Some analysis of future maintenance effort prediction are as follow:

� Polynomial regression with degree 4 produce best results.

� Coupling and cohesion metrics also produce good results in comparison.

� Although accuracy of PSM metric suite is low but when we add it to other

metrics, it improves the accuracy. Hence PSM metric suite is covering new

dimension and helping to increase accuracy.

Table 5.7: Maintenance Effort Prediction using Regression. Table contain ad-
justed R-squared values.

Linear
Regression

Quadratic
Regression

Polynomial
Regression with
degree 3

Polynomial
Regression with
degree 4

All Metrics 0.499 0.61 0.64 0.652
Coupling Metrics 0.117 0.142 0.16 0.17
Cohesion Metrics 0.0833 0.15 0.181 0.192
All Stability Metric 0.435 0.526 0.535 0.549
PSM Metrics Suite 0.256 0.368 0.384 0.41
All Five Stability
Metrics Other than
PSM

0.409 0.479 0.5 0.51

85

Table 5.8: Future Maintenance Effort Prediction using Regression. Table contain
adjusted R-squared values.

Linear
Regression

Quadratic
Regression

Polynomial
Regression with
degree 3

Polynomial
Regression with
degree 4

All Metrics 0.265 0.305 0.331 0.343
Coupling Metrics 0.186 0.1533 0.1619 0.1703
Cohesion Metrics 0.121 0.1278 0.1724 0.1841
All Stability Metric 0.17 0.1575 0.1851 0.207
PSM Metrics Suite 0.0946 0.1026 0.1207 0.1306
All Five Stability
Metrics Other than
PSM

0.156 0.1379 0.1677 0.1876

Figure 5.1: Prediction of maintenance effort and future maintenance effort using

regression.

86

5.8 Prediction using Classification

Classification is use to predict discrete or categorical data. In our case we have

continues data (maintenance effort and future maintenance effort). To convert our

data into discrete data, we have use k-Mean clustering. We created 10 clusters

using k-Mean clustering [58] and treated each cluster as separate class. Then we

used basic classifies, Nave Bayes classifier [59] to analyze which stability metric

produce better results. Table 5.9 presents the results of prediction in the form

of accuracy percentages. After basic analysis and finding best combination, we

used six classification technique and analyze there performance. Analysis of Nave

Bayes classifier are bellow:

� Accuracy of Proposed metric suite is almost equal to accuracies of other

stability metrics in prediction of maintenance effort.

� Accuracy of Proposed metric suite is better that the accuracies of other

stability metrics in prediction of future maintenance effort.

� Interestingly when we combine different metrics, our accuracy reduces.

� K-mean cluster data using distances and does not make sure same size of

clusters. Means K-means combine all data points that are near and merge

them in one cluster. Our data we know does not follow normal distribution

and has non-parametric nature. So based of data nature, different clustering

should be used. Discretization using K-means is affecting the performance

of stability metrics and producing strange results.

87

Table 5.9: Summary of the prediction analysis in the form of accuracy using Naive
Bayes Classifier.

Maintenance Effort
Prediction

Future Maintenance
Effort Prediction

All Stability Metric 67.984% 73.164%
PSM Metrics Suite 67.513% 78.543%
All Five Stability
Metrics Other than
PSM

69.942% 78.22%

From above analysis of prediction using Nave Bayes classifier, we can say that

proposed metrics (PCS, IPIS and EPIS) are producing better results. So in our

next analysis we use proposed metrics to predict maintenance effort and future

maintenance effort using basic setup of six different classifier. Table 5.10 and

figure 5.2 provide details of six classification techniques accuracy for prediction

of maintenance effort and future maintenance effort. Results of those six classifier

are given below:

� Nave Bayes [59]:For prediction of maintenance effort nave bayes produce

69.513% accuracy. Whereas for prediction of future maintenance effort it

produce 78.543% accuracy.

� Decision Tree [60]:For prediction of maintenance effort decision tree pro-

duce 71.465% accuracy. Whereas for prediction of future maintenance effort

it produce 81.203% accuracy.

� Fuzzy Rules [61]:For prediction of maintenance effort fuzzy rules produce

72.981% accuracy. Whereas for prediction of future maintenance effort it

produce 81.59% accuracy.

88

� Random Forest [62]:For prediction of maintenance effort random produce

71.719% accuracy. Whereas for prediction of future maintenance effort it

produce 83.51% accuracy.

� Neural Network [63]:For prediction of maintenance effort neural network

produce 71.646% accuracy. Whereas for prediction of future maintenance

effort it produce 84.095% accuracy.

� Support Vector Machine (SVM)[64]:For prediction of maintenance ef-

fort SVM produce 74.148% accuracy. Whereas for prediction of future main-

tenance effort it produce 84.268% accuracy.

So from above results we can easily say tha SVM out perform all other classifier

in prediction of maintenance effort and future maintenance effort.

Table 5.10: Summary of the prediction analysis in the form of accuracy using Six
Classifier.

Maintenance Effort
Future Maintenance
Effort

Nave Bayes 69.513 78.543
Decision Tree 71.465 81.203
Fuzzy Rules 72.981 81.59
Random Forest 71.719 83.51
Neural Network 71.646 84.095
SVM 74.148 84.268

89

Figure 5.2: Prediction of maintenance effort and future maintenance effort using

regression.

90

CHAPTER 6

CONCLUSION AND FUTURE

WORK

6.1 Discussion

In this study, new PSM metric suite for package stability is proposed. It mea-

sures different stability aspects of a package. PCS calculates the change in the

contents of a package. In the calculation, it measures the change in the contents

of classes and interfaces. This metric mainly helps to understand the change in

functionality of a package. IPIS calculates the change in the connections of same

package contents (classes and interfaces). It can be used to judge the change in

the cohesion of a package. Low IPIS means that a lot of package connections

are change and testing of the package is required. EPIS measures the change in

external connections of package contents (classes and interfaces) with contents

(classes and interfaces) of other packages. It helps to understand the change in

91

overall architecture of the system and also the coupling of the package. Low EPIS

means that a lot of external connections are removed, so testing of the package

is required. PSM Metric suite is valid to measure according to Kitchenham et al.

[1] framework. Kitchenham framework validates that it holds the representation

condition and it can easily be used for stability comparison between packages.

We have used unchanged count, because our target was to calculate stability.

Using our defined properties and formula instability of a package can also be

calculated by counting changed properties instead of unchanged. In order to

avoid calculation use below formula to calculate instability.

Instability = 1− Stability

In empirical validation, correlation analysis with maintenance effort is per-

formed. Maintenance effort counts line of codes that are modified, deleted or

added in new version. Analysis shows that PSM metric suite has good negative

correlation with maintenance effort. Results also shows that PCS has the best cor-

relation with maintenance effort among all content based stabilities, while EPIS

has the best correlation with maintenance effort among all interactions based sta-

bilities. Hence we can say that PSM metric suite is a valid package stability metric

suite.

We also performed correlation analysis with existing stability metrics. Pur-

pose of this analysis was to identify relationship between PSM stability metric

and six existing stability metrics. Martin’s package instability metric uses dif-

92

ferent definition of stability. It just measure the dependency of other packages

on a package using coupling measurements only and does not compare two ver-

sions of software. Analyses shows that only PSM metric suite has no correlation

with Package stability. Our propose package content stability (PCS) has good

correlation relationship with two content-based stabilities PCSM and PCII, while

PCS has weak correlation with other two content-based stabilities PNomStab and

PSDI. Reason is that PNomStab and PSDI consider changes only in number of

methods and name of classes respectively.

Our proposed inter-package interaction based stability metric, EPIS has mod-

erate correlation with another inter-package interaction based stability metric

PASM. This relationship is not strong because PASM considers only association

interaction between classes while EPIS considers interaction based on inheritance,

aggregation, association, and dependency. EPIS also has weak correlation rela-

tion with PSDI and PNomStab. Reason for this relationship is that PNomStab

considers changes in the number of methods, while PSDI considers changes in

name of classes. Changes in methods and name of classes affect the inter-package

interactions.

Our proposed intra-package interaction based stability metric, IPIS does not

has strong or moderate correlation with any existing metric because no existing

metric measure changes in intra-package interactions. Whereas IPIS also has weak

correlation relation with PSDI and PNomStab. Reason for this relationship is that

PNomStab considers changes in the number of methods, while PSDI considers

93

changes in name of classes. Changes in methods and name of classes affect the

intra-package interactions.

Principal component analysis is used to determine that whether PSM metric

suite cover new dimension and aspect of package stability or not. PCA results

shows that PCS covers a new dimension in content-based stability of package.

Whereas EPIS and IPIS also present new dimension of interaction-based stability

metric. Finally prediction analysis of maintenance effort using linear regression

shows that PSM metric suite improve the prediction accuracy. It also shows that

from content point of view PCS best predict maintenance effort whereas from

interaction point of view EPIS best predict maintenance effort. We also perform

experiments to analyze the prediction performance of regression and classifica-

tion techniques. From regression techniques we used linear regression, quadratic

regression, polynomial regression with degree 3 and polynomial regression with

degree 4. Polynomial regression with degree 4 produces best result as compared

to other regression technique. From classification techniques we used Nave Bayes

, decision tree, fuzzy rule, random forest, neural network and support vector ma-

chine. We found that SVM out perform other classification technique in prediction

of maintenance effort and future maintenance effort.

94

6.2 Thread to Validity

6.2.1 Construct Validity

Construct validity means the experiment design decision can effect our results.

Below are some of the construct validity threads.

� We ignored addition changes in proposed metrics, so we may have lost some

useful information because of it.

� According to recommendation of different researchers and popularity of

maintenance effort, we have used it as indicator of maintainability. This

metric is validated by multiple researchers in different studies using differ-

ent techniques. But still this is purely limited to change in line of code and

different line of code may have different effect.

6.2.2 External Validity

Thread that are not in our control and can be caused by external factors. Below

are some external validity threads.

� A large number of packages of software remains stable. This would have

influence our analysis.

� Our experiments are limited to Java projects only. This can restrict our

result and its implications to Java only.

� In our experiments we have used open source software. But we make sure

95

that they are widely used, famous, continuously evolving and belong to

different domains.

� We have used Knime tool for classification and regression analysis which is

very famous, easy to use and have a lot of good implemented techniques.

Errors in Knime can effect our results.

6.3 Conclusion

Stable software architect reduces maintenance effort and cost. Packages are the

intermediate level entities in object oriented design and help alot to make sys-

tem architecture simple and understandable. So packages with good stability will

increase the overall stability of system and reduce maintenance effort and cost.

In our study, we have proposed metric suite to calculate package stability by

different aspects. These aspects includes package contents, internal package con-

nections and external package connections. Our metric suite cover more aspects

and factors, so it will provide better identification of stability.

We have studied and proposed package stability metric for three aspects con-

tents, internal package connections and external package connections. For calcula-

tion of package content stability we have studied and included eight class/interface

properties/factors that can affect the stability of package. These factors repre-

sents structure of package elements so change in this structure will effect package

stability. For calculations of package internal and external connections stability

we have identified four type of possible relations between classes, two type of pos-

96

sible relations interfaces and four type of relations between classes and packages.

These relations include inheritance, aggregation, composition, dependency and

association. Change in these relations will effect the overall design of system and

in result will effect the stability and maintenance.

We have validated our PSM metric suite theoretically using two different

frameworks. For empirical validation of our PSM metric we have used five open

source java software from diverse domain. We have found negative correlation of

our metric with maintenance effort. We have also found positive correlation with

existing package stability metric which are based on changes in line of code and

class names.

6.4 Future Work

Future work of our research are mentioned below:

� Study can be conducted to investigate relationship of proposed stability

metrics with other software characteristics like understandability, testability

and software faults.

� Prediction of testability and software faults using proposed metrics can be

done.

� We have assigned same weight to all properties, so study to find the affect

of different weights can also be conducted.

� Study to define thresholds for proposed metric can be conducted.

97

REFERENCES

[1] B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Towards a framework for soft-

ware measurement validation,” IEEE Transactions on Software Engineering,

vol. 21, no. 12, pp. 929–944, Dec 1995.

[2] Y. S. Hassan, Measuring software architectural stability using retrospective

analysis. ProQuest, 2007.

[3] J. A. Dallal and L. C. Briand, “An object-oriented high-level

design-based class cohesion metric,” Information and Software Tech-

nology, vol. 52, no. 12, pp. 1346 – 1361, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0950584910001552

[4] N. Fenton and J. Bieman, Software metrics: a rigorous and practical ap-

proach. CRC Press, 2014.

[5] M. Alshayeb, M. Naji, M. O. Elish, and J. Al-Ghamdi, “Towards measuring

object-oriented class stability,” IET software, vol. 5, no. 4, pp. 415–424, 2011.

[6] J.-C. Chen and S.-J. Huang, “An empirical analysis of the impact of software

development problem factors on software maintainability,” Journal of

98

Systems and Software, vol. 82, no. 6, pp. 981 – 992, 2009. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0164121208002793

[7] M. Alshayeb, “On the relationship of class stability and maintainability,”

IET Software, vol. 7, no. 6, pp. 339–347, December 2013.

[8] M. E. Fayad and A. Altman, “Thinking objectively: An introduction to

software stability,” Commun. ACM, vol. 44, no. 9, pp. 95–, Sep. 2001.

[Online]. Available: http://doi.acm.org/10.1145/383694.383713

[9] R. Martin, “Stability–c++ report,” Tech. rep, Tech. Rep., 1997.

[10] N. L. Soong, “A program stability measure,” in Proceedings of the 1977

Annual Conference, ser. ACM ’77. New York, NY, USA: ACM, 1977, pp.

163–173. [Online]. Available: http://doi.acm.org/10.1145/800179.810197

[11] S. S. Yau and J. S. Collofello, “Some stability measures for software main-

tenance,” IEEE Transactions on Software Engineering, vol. SE-6, no. 6, pp.

545–552, Nov 1980.

[12] M. O. Elish and D. Rine, “Investigation of metrics for object-oriented design

logical stability,” in Software Maintenance and Reengineering, 2003. Proceed-

ings. Seventh European Conference on, March 2003, pp. 193–200.

[13] M. Fayad, “Accomplishing software stability,” Commun. ACM,

vol. 45, no. 1, pp. 111–115, Jan. 2002. [Online]. Available:

http://doi.acm.org/10.1145/502269.502308

99

[14] M. E. Fayad, “How to deal with software stability,” Commun.

ACM, vol. 45, no. 4, pp. 109–112, Apr. 2002. [Online]. Available:

http://doi.acm.org/10.1145/505248.505278

[15] D. Grosser, H. A. Sahraoui, and P. Valtchev, “Predicting software stabil-

ity using case-based reasoning,” in Automated Software Engineering, 2002.

Proceedings. ASE 2002. 17th IEEE International Conference on, 2002, pp.

295–298.

[16] W. Li, L. Etzkorn, C. Davis, and J. Talburt, “An empirical

study of object-oriented system evolution,” Information and Software

Technology, vol. 42, no. 6, pp. 373 – 381, 2000. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0950584999000889

[17] M. Alshayeb and W. Li, “An empirical study of system design instability

metric and design evolution in an agile software process,” Journal of Systems

and Software, vol. 74, no. 3, pp. 269 – 274, 2005. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S016412120400007X

[18] A. AbuHassan and M. Alshayeb, “A metrics suite for uml model

stability,” Software & Systems Modeling, pp. 1–27, 2016. [Online]. Available:

http://dx.doi.org/10.1007/s10270-016-0573-6

[19] M. Ahmed, R. Rufai, J. AlGhamdi, and S. Khan, “Measuring architectural

stability in object oriented software,” Stable Analysis Patterns: A True Prob-

lem Understanding with UML, p. 21, 2004.

100

[20] L. Aversano, M. Molfetta, and M. Tortorella, “Evaluating architecture sta-

bility of software projects,” in 2013 20th Working Conference on Reverse

Engineering (WCRE). IEEE, 2013, pp. 417–424.

[21] S. A. Ebad and M. A. Ahmed, “Measuring stability of object-oriented soft-

ware architectures,” IET Software, vol. 9, no. 3, pp. 76–82, 2015.

[22] D. Rapu, S. Ducasse, T. Girba, and R. Marinescu, “Using history information

to improve design flaws detection,” in Software Maintenance and Reengineer-

ing, 2004. CSMR 2004. Proceedings. Eighth European Conference on, March

2004, pp. 223–232.

[23] D. Grosser, H. A. Sahraoui, and P. Valtchev, “An analogy-based approach for

predicting design stability of java classes,” in Software Metrics Symposium,

2003. Proceedings. Ninth International, Sept 2003, pp. 252–262.

[24] H. M. Olague, L. H. Etzkorn, W. Li, and G. Cox, “Assessing design

instability in iterative (agile) object-oriented projects,” Journal of Software

Maintenance and Evolution: Research and Practice, vol. 18, no. 4, pp.

237–266, 2006. [Online]. Available: http://dx.doi.org/10.1002/smr.332

[25] Y. Zhao, Y. Yang, H. Lu, J. Liu, H. Leung, Y. Wu, Y. Zhou, and

B. Xu, “Understanding the value of considering client usage context

in package cohesion for fault-proneness prediction,” Automated Software

Engineering, vol. 24, no. 2, pp. 393–453, Jun 2017. [Online]. Available:

https://doi.org/10.1007/s10515-016-0198-6

101

[26] A. Tripathi and D. S. Kushwaha, “A metric for package level coupling,”

CSI Transactions on ICT, vol. 2, no. 4, pp. 217–233, Jan 2015. [Online].

Available: https://doi.org/10.1007/s40012-015-0061-0

[27] R. C. Martin, Agile Software Development: Principles, Patterns, and Prac-

tices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[28] J. Garland, R. Anthony, and B. Lawrence, “Accomplishing software stabil-

ity,” in Workshop on Accomplishing Software Stability OOPSLA, 1999.

[29] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476–

493, Jun 1994.

[30] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software library

stability through historical version analysis,” in 2012 28th IEEE International

Conference on Software Maintenance (ICSM), Sept 2012, pp. 378–387.

[31] M. Alshayeb, Y. Eisa, and M. A. Ahmed, “Object-oriented class stability

prediction: A comparison between artificial neural network and support

vector machine,” Arabian Journal for Science and Engineering, vol. 39, no. 11,

pp. 7865–7876, 2014. [Online]. Available: http://dx.doi.org/10.1007/s13369-

014-1372-4

[32] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna, “From retrospect

to prospect: Assessing modularity and stability from software architecture,”

102

in 2009 Joint Working IEEE/IFIP Conference on Software Architecture Eu-

ropean Conference on Software Architecture, Sept 2009, pp. 269–272.

[33] J. Bansiya, “Evaluating framework architecture structural stability,”

ACM Comput. Surv., vol. 32, no. 1es, Mar. 2000. [Online]. Available:

http://doi.acm.org/10.1145/351936.351954

[34] M. Alenezi, “Software architecture quality measurement stability and un-

derstandability,” INTERNATIONAL JOURNAL OF ADVANCED COM-

PUTER SCIENCE AND APPLICATIONS, vol. 7, no. 7, pp. 550–559, 2016.

[35] F. Handani and S. Rochimah, “Relationship between features volatility and

software architecture design stability in object-oriented software: Prelimi-

nary analysis,” in 2015 International Conference on Information Technology

Systems and Innovation (ICITSI), Nov 2015, pp. 1–5.

[36] E. Constantinou and I. Stamelos, “Architectural stability and evo-

lution measurement for software reuse,” in Proceedings of the 30th

Annual ACM Symposium on Applied Computing, ser. SAC ’15. New

York, NY, USA: ACM, 2015, pp. 1580–1585. [Online]. Available:

http://doi.acm.org/10.1145/2695664.2695895

[37] M. Alenezi and F. Khellah, “Evolution impact on architecture stability in

open-source projects,” International Journal of Cloud Applications and Com-

puting (IJCAC), vol. 5, no. 4, pp. 24–35, 2015.

103

[38] M. Mattsson and J. Bosch, “Stability assessment of evolving industrial object-

oriented frameworks,” Journal of Software Maintenance: Research and Prac-

tice, vol. 12, no. 2, pp. 79–102, 2000.

[39] S. Wold, K. Esbensen, and P. Geladi, “Principal component anal-

ysis,” Chemometrics and Intelligent Laboratory Systems, vol. 2,

no. 1, pp. 37 – 52, 1987, proceedings of the Multivariate Statis-

tical Workshop for Geologists and Geochemists. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0169743987800849

[40] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley

Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp.

433–459, 2010. [Online]. Available: http://dx.doi.org/10.1002/wics.101

[41] K. H. Zou, K. Tuncali, and S. G. Silverman, “Correlation and simple linear

regression,” Radiology, vol. 227, no. 3, pp. 617–628, 2003, pMID: 12773666.

[42] “Buddi - https://sourceforge.net/projects/buddi/.” [Online]. Available:

https://sourceforge.net/projects/buddi/

[43] “Jhotdraw - https://sourceforge.net/projects/jhotdraw/.” [Online]. Avail-

able: https://sourceforge.net/projects/jhotdraw/

[44] “Kolmafia - https://sourceforge.net/projects/kolmafia/.” [Online]. Available:

https://sourceforge.net/projects/kolmafia/

[45] “Talend - https://www.talend.com/.” [Online]. Available:

https://www.talend.com/

104

[46] “Unitime - http://www.unitime.org/.” [Online]. Available:

http://www.unitime.org/

[47] W. Li and S. Henry, “Object-oriented metrics that pre-

dict maintainability,” Journal of Systems and Software,

vol. 23, no. 2, pp. 111 – 122, 1993. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/016412129390077B

[48] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,

P. Ohl, K. Thiel, and B. Wiswedel, “Knime - the konstanz information miner:

Version 2.0 and beyond,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 26–31,

Nov. 2009. [Online]. Available: http://doi.acm.org/10.1145/1656274.1656280

[49] “Javaparser - https://github.com/javaparser/javaparser.” [Online]. Avail-

able: https://github.com/javaparser/javaparser

[50] J. Hauke and T. Kossowski, “Comparison of values of pearson’s and

spearman’s correlation coefficients on the same sets of data,” Quaestiones

Geographicae, vol. 30, no. 2, p. 87, 06 2011, copyright - Copyright

Versita Jun 2011; Last updated - 2016-10-08. [Online]. Available:

https://search.proquest.com/docview/1323984192?accountid=27795

[51] V. Klema and A. Laub, “The singular value decomposition: Its computation

and some applications,” IEEE Transactions on Automatic Control, vol. 25,

no. 2, pp. 164–176, Apr 1980.

105

[52] A. B. Nassif, D. Ho, and L. F. Capretz, “Towards an early software estimation

using log-linear regression and a multilayer perceptron model,” Journal of

Systems and Software, vol. 86, no. 1, pp. 144 – 160, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0164121212002221

[53] S. Almugrin, W. Albattah, and A. Melton, “Using indirect coupling

metrics to predict package maintainability and testability,” Journal of

Systems and Software, vol. 121, pp. 298 – 310, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S016412121600056X

[54] G. G. S. G. B. L. . M. M. Vernazza, T., “Defining metrics for software compo-

nents.” Proceedings of the World Multiconference on Systemics, Cybernetics

and Informatics. [Online]. Available: http://www.jsoftware.us/vol11/166-

CS006.pdf

[55] X. Yan and X. G. Su, Linear Regression Analysis: Theory and Computing.

River Edge, NJ, USA: World Scientific Publishing Co., Inc., 2009.

[56] S. Chatterjee and A. S. Hadi, “Influential observations, high leverage points,

and outliers in linear regression,” Statistical Science, vol. 1, no. 3, pp.

379–393, 1986. [Online]. Available: http://www.jstor.org/stable/2245477

[57] R. M. Heiberger and E. Neuwirth, Polynomial Regression. New York, NY:

Springer New York, 2009.

106

[58] A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed numeric

and categorical data,” Data and Knowledge Engineering, vol. 63, no. 2, pp.

503 – 527, 2007.

[59] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,”

Machine Learning, vol. 29, no. 2, pp. 131–163, Nov 1997. [Online]. Available:

https://doi.org/10.1023/A:1007465528199

[60] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier method-

ology,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3,

pp. 660–674, May 1991.

[61] P. P. Angelov and X. Zhou, “Evolving fuzzy-rule-based classifiers from data

streams,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 1462–1475,

Dec 2008.

[62] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P.

Feuston, “Random forest: a classification and regression tool for compound

classification and qsar modeling,” Journal of Chemical Information and Com-

puter Sciences, vol. 43, no. 6, pp. 1947–1958, 2003, pMID: 14632445.

[63] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face de-

tection,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 20, no. 1, pp. 23–38, Jan 1998.

107

[64] J. Suykens and J. Vandewalle, “Least squares support vector machine

classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, Jun 1999.

[Online]. Available: https://doi.org/10.1023/A:1018628609742

108

Vitae

� Name: Jawad Javed Akbar Baig

� Nationality: Pakistani

� Date of Birth: 25/07/1990

� Email: jawadjavedbaig@gmail.com

� Permenant Address: 108 Atta Turk Block, Garden Town, Lahore, Pakistan

� Academic Background: Jawad Javed Akbar Baig completed his Bachelor

degree in Software Engineering from University of the Punjab in July 2012.

He worked in industry as Software Engineer at Techlogix for two year and

as Senior ERP Consultant at Confiz for one year. In August 2015, he joined

King Fahd University of Petroleum and Minerals.

109

