’4

'\\

e iote e e el e 3 el e e e e o o e o e e e e e

£l3eie

¢
"

I3

{
A

MEASURING STABILITY OF
OBJECT-ORIENTED SOFTWARE
PACKAGES

BY

JAWAD JAVED AKBAR BAIG

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In
SOFTWARE ENGINEERING

DECEMBER 2017

\354/%*%%a’e‘:ff’#ﬁ%%%@e45%Iﬁé@s‘sﬁiﬁ4945@5*4@1%%4&*&‘%49‘4@%@5’%

\

h)
.%‘\\

21N

T@

I S S S SRSk SRR SE S

7
!

Y2
]

P P AR T

o

N S R O S S S S S S SR SR SE N

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA
DEANSHIP OF GRADUATE STUDIES

This thesis, written by JAWAD JAVED AKBAR BAIG under the direction
of his thesis adviser and approved by his thesis committee, has been presented

to and accepted by the Dean of Graduate Studies, in partial fulfillment of the
requirements for the degree of MASTER OF SCIENCE IN SOFTWARE
ENGINEERING.

Thesis Committee
Seyiel Mo, >

Dr. Sajjad Mahmood (Adviser)

F " A(S{WH (

Dr. Mohammad Alshayeb (Member)

M\Q\b\

Dr. Mahmood Niazi (Member)

Dr. Khalid Al-Jasser
Department Chairman

Dr. Salam A. Zummo
Dean of Graduate Studies

\S/2 /2612
Date

©Jawad Javed Akbar Baig
2017

il

Dedication

To my parents for their love and continues support.

v

ACKNOWLEDGMENTS

In the name of Allah, the Most Gracious, the Most Merciful.
First and foremost, Alhamdulillah All praise to Almighty Allah, who gave me
the power to accomplish my master’s degree.
I acknowledge King Fahd University of Petroleum & Minerals for supporting this
research.

All appreciation to my advisor; Dr. Sajjad Mahmood, who helped me and
encouraged me during my thesis journey; he was a teacher and a friend. I wish
to thank my dissertation committee members, Dr. Mohammad Alshayeb and
Dr. Mahmood Niazi, for their help and support.

Finally, I wish to express my gratitude to my family members for their continues
support, patience and prayers. I would like to thank all my KFUPM colleagues,
who provided me the encouragement dealing with difficult times during my

thesis journey.

TABLE OF CONTENTS

ACKNOWLEDGEMENT v
LIST OF TABLES ix
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xii
ABSTRACT (ENGLISH) xiil
ABSTRACT (ARABIC) XV
CHAPTER 1 INTRODUCTION 1
1.1 Overview o s, 1
1.2 Research Problem 2
1.3 Motivation, 3
1.4 Research Statement 4
1.5 Research Methodology 5
1.6 Thesis Contribution 7
1.7 Thesis Outline 8
CHAPTER 2 RELATED WORK 10
2.1 System Stability 10
2.2 Class Stability o 13
2.3 Architecture Stability o 15

vi

2.4 Need for a New Package Stability Metrics 17

CHAPTER 3 PACKAGE STABILITY METRIC DEFINITION 22
3.1 Package Stability Properties 22
3.2 The Package Stability Metrics Definition 27
3.3 Package Stability Metrics Measurement for Point of Sales System -

An Exampleo 35

CHAPTER 4 THEORETICAL AND EMPIRICAL VALIDATION 41

4.1 Theoretical Validation 41
4.1.1 Kitchenham et al. [1] Framework 42
4.1.2 Hassan [2] Framework 43

4.2 Empirical Validation 48
4.2.1 Software Systems and Metrics 48
4.2.2 Software Stability Metric Tool 95
4.2.3 Correlation with Maintenance Effort 58
4.2.4 Comparison with existing stability metric. 61
4.2.5 Principal Component Analysis 63
4.2.6 Regression Analysis L. 67

CHAPTER 5 COMPARISON OF REGRESSION AND CLASSI-
FICATION TO PREDICT PACKAGE MAINTAINABILITY 72

5.1 Data Collection 73
5.2 Metric Selection 74
5.3 Metric Tool 76
5.4 Software Tool 7
5.5 Correlation Analysis L 77
5.6 Principal Component Analysis 78
5.7 Prediction using Regression 82
5.8 Prediction using Classification 87

vil

CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 Discussion .

6.2 Thread to Validity

6.2.1 Construct Validity
6.2.2 External Validity

6.3 Conclusion .

6.4 Future Work

REFERENCES

VITAE

viil

91
91
95
95
95
96
97

98

109

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

4.5

LIST OF TABLES

System Stability Literature Review
Class Stability Literature Review
Architecture Stability Literature Review

Package Content Stability Factors
Package internal /external Connections Stability Factors
Package Contents Type of Change
Package internal /external Connections Type of Change
Package Content Maximum Possible Change value

Package internal/external Connections Maximum Possible Change

Calculation of Package Aspects and Overall Stability
Calculation of example Package Content Stability Factors
Calculation of Intra-Package Connections Stability Factors

Calculation of Inter-Package Connections Stability Factors

Selected Open Source Software
Selected Open Source Software size statistics
Descriptive statistics of stability metrics and maintenance effort. .
Correlation Analysis with Maintenance Effort. P Value less that
0.00005 is replace with O
Correlation Analysis (Comparison with existing stability metrics).
Note: R is Spearman Rank Order Coefficient and P less than 0.0005
isreplaced with O oo

X

13
15
21

23
25
27
28
29

30
36
38
39
40

o0
51
o4

61

64

4.6
4.7

4.8

4.9
4.10

0.1
5.2

2.3

5.4

2.5

2.6

5.7

2.8

2.9

5.10

Principal Component Analyses Results.
Summary of the linear regression using content based stability met-
rics as independent variable.
Summary of the linear regression using package interactions based
stability metrics as independent variable.
Summary of the linear regression using best combinations.

Regression model of best possible combination.

26 Selected Open Source Software size statistics
Descriptive statistics of stability, cohesion, coupling and mainte-
nance effort metrics. o000
Correlation analysis of package stability, cohesion, coupling and
maintenance effort (Part 1). Note: P values less than 0.00001 are
replaced by 0.
Correlation analysis of package stability, cohesion, coupling and
maintenance effort (Part 2). Note: P values less than 0.00001 are
replaced by 0.o

Principal component analysis with coupling and cohesion metrics.

69

69

70
71

1)

76

79

30
83

Principal component analysis without coupling and cohesion metrics. 84

Maintenance Effort Prediction using Regression. Table contain ad-
justed R-squared values.
Future Maintenance Effort Prediction using Regression. Table con-
tain adjusted R-squared values.
Summary of the prediction analysis in the form of accuracy using
Naive Bayes Classifier.
Summary of the prediction analysis in the form of accuracy using

Six Classifier.

85

86

88

2.1
2.2

3.1
3.2

4.1
4.2
4.3

5.1

5.2

LIST OF FIGURES

Example versioni

Example version i+ 1 oL

Example of package stability calculation Versioni

Example of package stability calculation Versioni + 1.

High Level Class Diagram of developed Software Stability Tool . .
Activity Diagram of developed Software Stability Tool

Correlation Analysis with Maintenance Effort.

Prediction of maintenance effort and future maintenance effort us-
INE TeETesSION. L e
Prediction of maintenance effort and future maintenance effort us-

INg regression.o o

xi

LIST OF ABBREVIATIONS

PSM

PCS

IPIS

EPIS

LOC

IPIS

CSM

CII

SII

SDI

CDI

CCI

ASM

RBSM

PCA

SVM

Package Stability Metrics

Package Content Stability
Intra-Package Interaction Stability
Inter-Package Interaction Stability
Line of Code

Intra-Package Interaction Stability
Class Stability Metric

Class Implementation Instability
System Implementation Instability
System Design Instability

Core Design Instability

Core Call Instability

Architecture Stability Metric
Relationship Based Similarity Metric
Principal Component Analysis

Support Vector Machine

xii

THESIS ABSTRACT

NAME: JAWAD JAVED AKBAR BAIG

TITLE OF STUDY: MEASURING STABILITY OF OBJECT-ORIENTED
SOFTWARE PACKAGES

MAJOR FIELD: SOFTWARE ENGINEERING

DATE OF DEGREE: December 2017

Software stability is an tmportant object oriented design characteristic that con-
tributes towards maintainability quality attribute. Software stability quantifies the
sensitivity to change of a given system between different versions. Stable software
tends to reduce the maintenance effort. Assessing software stability during the ob-
ject oriented design phase is one of the measures to obtain maintainable software.
To determine software stability, there are several metrics at the system and class
levels, but at the package level, such metrics rarely exist. In this thesis, we propose
a new Package Stability Metrics (PSM) based on the notion of changes between
package contents, intra-package connections and inter-package connections. We
validate the PSM theoretically and empirically. The theoretical validation is based

on study of the mathematical properties of the metrics. The empirical validation

xiii

is carried out using four versions of five open source softwares and we also present
a comparison with six comparable existing stability metrics. For empirical valida-
tion we present four analysis: (1) first analysis explores the correlation between
package stability metrics and maintenance effort; (2) second analysis explores the
correlations among siz existing stability metrics and proposed package stability
metrics; (3) third analysis applies principal component analysis to provide evi-
dence that the new metrics captures new dimension of package stability; and (4)
forth analysis applies linear regression analysis for maintenance effort prediction.
The results show that PSM metrics suite provides better indication of package sta-
bility than existing stability metrics and is negatively correlated with maintenance
effort. The analysis also proves that PSM metrics suite cover new dimension of
package stability and increase the prediction accuracy of maintenance effort. We
also presents the performance of different regression algorithms and classification

algorithms to predict package maintainability.

Xiv

Al) (adla

S 8] gls 35 1 alS pl
Cisgl) 4. 3al) gal ol a3) (b 1AL () i
Gliaa p Awdia 1awmddl)

2017 sangd rdzalall da al) gl

Adlpall 82 5a Adia (8 aabiy (Al) SN apenal o g sa 5 Aage A 58 Sl il) il ()
) A eyl o, ARl Ol jlaal) (i Gme ol it dpuloa 23ny Cilaa))il
(e 2l s QSN 4 sall apanaill Als e A Sl))il andi o), Abuall aga Jils
e Gunlia sae llia galipd)) iu) sy Alall ALEN cilmall e Jganll il
oda ‘_g cenlall 028 aa gl L 1ol e jall (s g Je (Sl ccaall (5 g (,Uam 5 _glua
Ol sine Gl) 5,88) i) PSM sl dejall) jiin) Gaplie 7 i da g kY]
Lokt PSM dana (e Giail Ll el o cVLai¥l s 4 all Jals eV lai¥l s e jal)
ol @l | Genlall Al Il paibaddl Ay) gkl @l iy s L i
D)) el A e 45 e 2083 LaS ¢ i) A gide el dsad (o Ol plaua) dry i aladiuly
Js¥) Jalaill (1) :dilad ciblee dayjf pai o ail) Giaill Jal Gas, 4 lall e 3353 50
il ;Y1 CadSing AU Qs (2) i) 3 g s da dal) il aylie (pn A8al) CoiSiny
Gl Gl Qi) (3) e daldl)Y da il Ganliall s el Sy Galie diu oy
(4) 5 Al)R 8 s laey Ll sl Guladl of o Aol apasil i 5l ()5Sl
A5 PSM Ganlie s of geiliil) jedaiy Ailpall gy 5uiill Jadl) jlasidU Sulat gulay Jalas
Sy Alpallagny Ll Ja yp Adlall 8L Galie e dejall Y Juadl 185
sl A8y e w3y Aeall HELY luas lan Jhat PSM Ganlis de gene o Loayl Julail
Ul 5uiill Caieatll eyl sa g ABHRAD laaiY) e lsa el atii LS Ailuall 3 gea

A all

Xiii

CHAPTER 1

INTRODUCTION

1.1 Overview

The widespread use of software has placed expectations on the industry to develop
techniques and tools to promote quality software that is stable and easy to main-
tain [3, 4]. During the development life cycle, practitioners use metrics to assess
and improve software quality. A number of metrics have been proposed to measure
different characteristics for software products such as functionality, reliability and
maintainability. Maintainability is one important property of design as software
evolve to adapt changes in user requirements and operational environments [5].
Software stability contributes towards maintainability quality attribute and is one
of the measures to obtain maintainable software. Stable software tends to min-
imize changes, improve maintainability and as a result help reduce maintenance
effort [6, 7, 8].

Software stability generally falls into three main views [2, 5]. According to

the first definition, stability is the property to resist any change in the system. It
means that entity of software will be called stable if it remains same between two
versions of the software. The definition used by Martin [9] and Soong [10] is similar
to this concept. The second definition says that due to addition or modification if
an entity of the software avoids ripple effects then it is stable. So object-oriented
entities (e.g. classes and packages) which does not cause ripple effects in result of
the modifications will be classified as stable. This definition is used by Yau and
Collofello [11], Elish and Rine [12] and Fayads [13] [14] [8]. According to the third
definition, the entity has maximum stability if existing contents remain same.
An entity remains stable if the addition of new contents does not affect existing
contents. The definition used by Grosser et al. [15] resembles this view. In this
thesis, we adopt the third definition which allows the addition of new contents
while keeping the existing ones intact [5]. This implies that making any changes
in the existing content may lead to an unstable artifact, while adding new features

will not affect stability.

1.2 Research Problem

Researchers have developed a number of metrics to evaluate the stability quality
of object-oriented applications from system, architecture and class viewpoints.
System and architecture view based metrics measure stability for an application
as one unit. System level stability metrics take into account changes in the number

of classes and line of code, without paying attention to internal relationships and

external connections ([16, 17, 18]). On the other hand, architecture level stability
metrics do take into account the change in calls between classes [19, 20, 21],
however, they measure stability as a number for a whole system. However, it
has been argued that internal organization of a class needs to be considered to
have informative assessment of system stability [17]. Class level stability metrics
focus on measuring stability of individual classes across versions and take into
account line of code [16], percentage of changed and added methods [5], number
of methods [22] and different class properties [5]. [23, 22, 17, 24].

In object-oriented paradigm, a package is used as the unit of organization to
group relevant classes that are related through similar functionality [25, 26]. In
order to facilitate maintenance, each package should be stable in a well designed
object-oriented system. Package stability indicates the extend to which an indi-
vidual package can tolerate evolutionary changes. This implies that any changes
in the existing package may lead to an instability while adding new classes will
not affect stability [5]. It is believed that a package with higher stability tend to
require lower maintenance effort than the one with lower stability. In this con-
text, if we can measure package stability, it will help designers to identify the
packages with potential maintainability concerns and later take remedy measures

to enhance their quality.

1.3 Motivation

There exist very few studies on software metrics to determine stability at the

package level and those studies do not cover all aspects of package stability. For
example, Martin [27] presented package level instability metric as a ratio of ef-
ferent coupling to total coupling for package of a single version and does not
compare two version of the software to compute package stability. Li et al. [16]
calculate package level stability without considering calls between packages and
classes. Some key features of object-oriented systems, such as changes in package
content, intra-package and inter-package connections are not considered in pack-
age stability metrics proposed to date. Existing package stability metrics have not
been validated in terms of their mathematical properties. Furthermore, research
in the area of package stability metrics need empirical studies that correlation
among proposed metrics and explore the relationship between package stability

and software quality attributes.

1.4 Research Statement

Purpose of this research is to study package stability metrics. First, we will study
existing metrics and their gaps. Then we will propose stability metrics to cover
gaps of existing metrics. After proposing metrics, we will validate metrics the-
oretically and empirically. After validating metrics, I will perform maintenance
prediction analysis using package stability metrics. Below are some research ques-

tions of this research:

e RQ1 What are the existing package stability metric?

e RQ2 What are the gaps in existing stability metric?

4

e RQ3 What is the relationship between proposed metrics and package main-

tenance?

e RQ4 What is the relationship between proposed metrics and existing sta-

bility metrics?

e RQ5 Does proposed metrics capture new dimension by measuring missing

properties?
e RQ6 Can we use package stability metrics to predict package maintenance?

e RQ7 Which regression technique perform better in prediction of package

maintenance?

e RQ8 Which classification technique perform better in prediction of package

maintenance?

1.5 Research Methodology

In order to answer our research question we have divided our research in phases.

Below are the phases of our research:

e Phase 1: Literature Review In this phase, we will conduct a literature
review to extract stability metric that exists in the literature. This will help

to identify gaps.

e Phase 2: Stability Metric Definition After identifying gaps, we will

propose new package stability metrics to fill the gaps. In this, we will iden-

tify properties that should be measured in new metric and mathematical

formulas for calculations.

Phase 3: Theoretical Validation In this phase, we will theoretically vali-
date proposed metrics against some mathematical properties and theoretical

properties using theoretical framework.

Phase 4: Metric Tool Development In this phase, we will develop new
metrics tool from scratch to measure new proposed metrics and existing

stability metrics.

Phase 5: Empirical Validation: In this phase, we will collect famous
open source projects. Then we will extract data by measure their stability
metric values. Then we will use three set of experiments to validate proposed
metrics. In first experiments, we will perform correlation analysis. In the
second experiment, we will perform PCA analysis to identify that proposed
metrics are capturing new dimension or not. In the third experiment we will

study that can we use stability metric for maintenance prediction.

Phase 6: Maintenance Prediction using Regression In this phase, we
will study different regression techniques and their performance in prediction

of maintenance.

Phase 7: Maintenancen Regression using Classification In this
phase, we will study different classification techniques and their performance

in prediction of maintenance.

1.6 Thesis Contribution

In this thesis some of our contributions are given below:

e We present a new Package Stability Metrics (PSM) that accounts for changes
in internal package contents, intra-package connections and inter-package
connections. We use the notion of package content stability to measure
the changes in the content of package classes and interfaces. Intra-package
contents stability measures the change in internal connections of a pack-
age. Inter-package stability measures the change in a package’s external

connections.

e We develop custom metric tool for calculation of stability metrics values of

open source projects.

e We study the validity of PSM both theoretically and empirically. The theo-
retical validation involves analyzing the compliance of PSM with the prop-
erties proposed by Kitchenham et al. [1].The empirical validation involves

analyzing the correlation between PSM and maintenance effort.

e We also present a comparison with three existing package stability metrics.
Furthermore, we also develop maintenance effort prediction model to gather
empirical evidence that proposed metrics better relates to package stability

quality than other comparable metrics.

The data for the empirical validation is collected from five open source soft-

ware involving desktop budgeting application, graphical tool, online game, data

integration tool and a scheduling system. For each open source software, we have
used four different versions with at least one year difference between their respec-
tive release date. The results show that PSM provides better indication of package
stability than the existing alternatives as it considers package’s functional, internal
behavioral and structural properties. The PSM points out the unstable packages
that may need to be refactored.

In particular, these results could improve the understanding of the value of
client usage context in package cohesion, guide the development of better fault-
proneness prediction models in practice, and also help developers to identify the

packages with higher defect density.

1.7 Thesis Outline

The remainder of this thesis is organized as follows. Section 2 summarizes the
related work. In Section 3, we define the PSM metrics, and in Section 4, we
validate PSM metrics theoretically and empirically. For empirical validation we
have performed four analysis: (1) first analysis explores the correlation between
package stability metrics and maintenance effort; (2) second analysis explores the
correlations among six existing stability metrics and proposed package stability
metrics; (3) third analysis applies principal component analysis to provide evi-
dence that the new metrics captures new dimension of package stability; and (4)
forth analysis applies linear regression analysis for maintenance effort prediction..

In section 6 we discusses the threats to the validity of our study. In section 5 we

compare the performance of regression and classification algorithm, by predicting
maintenance effort using six existing metric, PSM metrics suite, two package co-
hesion metrics, and two package coupling metrics. Section 6 concludes the thesis

and outlines the directions for future works.

CHAPTER 2

RELATED WORK

In this section, we review existing stability metrics for object-oriented systems at

system, architecture, class and package levels.

2.1 System Stability

Soong [10] used program information to quantify program stability and reliability.
According to them, stability is the property of program with good information
structure which helps it to resist changes. They quantify information structure
of programs in order to measure their stability using techniques like connectiv-
ity matrix and random Markovian process. According to Yau and Collofello [11]
stability is the resistance to potential ripple effects due to changes in program.
They presented metric for program stability, which calculates logical ripple ef-
fect of changes to a program. They also provided an algorithm for calculation
of program stability and also for normalization. Garland et al. [28] identified

factors which reduce the stability of the software and make it unstable. They also

10

proposed techniques to make the system more stable.

Li et al. [16] shared that stability tells us that how mature the implementation
and design of a software is and it can be used as an indication of project progress.
They proposed System Implementation Instability (SII) metric, which calculates
the percentage of change in LOC of the whole system between two version in
order to calculate changes in the implementation of the object-oriented system.
They also presented System Design Instability (SDI) metric, which calculates the
percentage of added classes, deleted classes, and classes with changed names. SDI
measures the changes in the design of the object-oriented system. They empirically
validated their metrics by conducting correlation analysis with C&K [29] metrics.

Alshayeb and Li [17] updated SDI metric by adding a new factor, change
in the inheritance hierarchy of classes, in calculations. They validated SDI by
conducting an empirical study on two object-oriented system developed by using
agile methods (XP). They concluded that SDI has a correlation with XP activities
and it can be used for estimation and re-planing of software project developed
by agile methods. Olague et al. [24] also improved SDI metric and proposed
entropy-based SDI metric (SDIe) to remove the spikes in measurements and make
calculations easy. They replaced ”percentage of classes with changed names”
factor with new two factors; percentage of changed classes and unchanged classes.
Because the change in name of classes is not easy to track. Change in class means,
change in the class features for perfection in its design and unchanged class means,

perfectly designed class that contributes to the stability of the system. They

11

validated new metric using maintenance data of commercial software which was
developed by agile methods.

Raemaekers et al. [30] studied the stability of third-party libraries. They
proposed new metric suite to cover four different aspects of third-party libraries.
To assess interface stability they measured the number of removed methods with
weights (WRM). To calculate volatility of library they measure the amount of
change in existing methods (CEM). For determining that library is in maintenance
phase or in active development phase, they took the ratio between the amount of
change in new methods and amount of change in old methods (RCNO). To cal-
culate expansion rate of the library they measure the percentage of new methods
(PNM). Abu Hassan and Alshayeb [18] studied stability at the model level. They
proposed new stability metrics for three different UML diagrams view; structural
view, behavioral view, and functional view. In order to cover structural view,
they studied ten properties of class diagram and identified eight properties that
actually impact class diagram stability. Those eight properties cover change in
classifier (class) type and relationships. To cover functional view, they studied
eight properties of use case diagram and constructed its stability definition based
on the change in use case type, use case relationships and actor relationships. For
the behavioral view, they investigated sequence diagram by identifying nine prop-
erties that can affect its stability. Their sequence diagram stability definition is
based on changes in message receiver, message caller, message types and message

order. Table 2.1 provides the summary of system level stability metrics.

12

Table 2.1: System Stability Literature Review

’ Reference ‘ Level Artifact | Validation Stability Metric Detail
Soong [10] System | Code i Calculatgs system stability using
information structure of program.
Yau and Case Study System stability is calculated from
Collofello System | Code and changes in logical ripple effect of
[11] Theoretically | programs.
Theoretically Measures percentage of Che.mge in
. LOC between two version in order to
Li et al. [16] | System | Code and :
Experiments calculate System Implementation
P Instability (SII) metric.
Theoretically Measures c':hang‘f,e (addition, deletion
. and updation) in name to classes to
Li et al. [16] | System | Code and . o
Exporiments calculate system level instability
P (SDI).
Theoretically Updatur}g previous study'of 'L1 et' al.
Alshayeb [16] by including change in inheritance
. System | Code and . .
and Li [17] : factor in calculation of system
Experiments | . -
instability.
Theoretically | This study improved SDI metric [16]
Olague et al. :
24] System | Code and and proposed entropy-based metric
Experiments | that removes spikes.
Raemaekers . Proposed stability metrics for
et al. [30] System | Code Experiments third-party libraries.
Abu Hassan Theoretically | Proposed new stability metrics for
and Model | UML and Case class diagram, use case diagram, and
Alshayeb [18] Study sequence diagram.

2.2 Class Stability

Li et al. [16] presented three metrics for instability; System Implementation Insta-

bility (SII), System Design Instability (SDI) and Class Implementation Instability

(CII). SII and SDI are system level metrics and are discussed earlier. Class Imple-

mentation Instability (CII) calculates instability of classes by measuring the per-

centage of line of code that are changed between two version of software. Grosser

et al. [15] studied the class stability and presented new metric using Case-Based

13

Reasoning (CBR) which calculates structural similarities between classes. They
also evaluated their metric performance for finding quality challenges using other
metrics for inheritance, complexity, coupling and cohesion. They validated their
metric prediction quality by comparing its results with a classical learning method
TDIDT, using 10-fold cross-validation and leave-one-out validation. Grosser et
al. [23] improved their metric by adding new stress factor in calculations. Due to
change in requirements, the responsibilities of some classes increased in the new
version of software. This is called stress factor on classes and authors included
it in improved class stability metric. They calculated stress factor by measuring
four modifications; new class methods, change in class ancestors, change in class
descendants and change in classes on which a class is dependent.

Rapu et al. [22] presented class level stability metrics by using a number
of methods. According to him if the number of functions of a class between
different versions remains same then the class has maximum stability. They also
proposed a technique to detect flawed classes like god classes and data classes.
For validation, they applied their technique and metric on three case studies.
Alshayeb et al. [5] proposed new Class Stability Metric (CSM). They identified
eight properties of classes to calculate class stability. Those properties include
class properties (class name, access level, class interface name and inherited class
name), class variable properties (class variable name and access type), and class
method properties (method signature and body). Change in these properties

between versions will reduce the stability of class but newly added properties will

14

have no impact. If there is no change in these properties then class is stable.

Alshayeb et al. [31] conducted study to compare performance of artificial neural

network and support vector machine for prediction of class stability using different

software design measurements. They shared that the proposed prediction models

give good prediction for class stability. Table 2.2 provides the summary of system

level stability metrics.

Table 2.2: Class Stability Literature Review

Reference ‘ Level ‘ Artifact | Validation Stability Metric Detail
Theoretically | Measures class implementation
Li et al. [16] | Class | Code and instability (CII) by measuring the
Experiments | percentage of change in line of code.
Presented new class stability metric
Grosser et : based on case-based reasoning using
al. [15] [23] Class | Code Experiments other metrics for inheritance,
complexity, coupling and cohesion.
Rapu et al. Counts change in number of methods
[22] Class | Code Case Study of a class to calculate its stability.
Theoretically Prc?posed class stability Ir}etrl'c (CSM),
Alshayeb et which calculates changes in eight
Class Code and . .
al. [5] : properties of classes to measure its
Experiments .
stability.

2.3 Architecture Stability

Ahmed et al. [19] used similarity metrics to calculate the architectural stabil-

ity of an object-oriented system. For similarity calculation, they compared the

architectures of different version to the base version. A low value shows that ar-

chitecture is not stable whereas high value identifies stable architecture. Sethi et

al. [32] proposed measurements for software architecture modularity and stability

15

using aspect-oriented concept. According to their metric environment conditions
can affect the architecture stability. They shared that good modularity can in-
crease the stability of architecture. Bansiya [33] proposed new methodology to
assess the stability of architecture using object oriented structural characteristics.
Those structural characteristics include the number of classes, different class hi-
erarchy metrics, the number of parents, the number of functions and coupling of
class. They shared that most of the changes in structural characteristics are due
to newly added classes, reassignment of responsibilities to classes and change in
collaboration between classes.

Aversano et al. [20] proposed two architectural stability metrics Core Design
Instability (CDI) and Core Call Instability (CCI). CDI calculates changes in a
number of packages and CCI calculates the change in calls between packages. In
their metrics, smaller values mean fewer modifications and the architecture is sta-
ble. They did not normalize their metric, so for comparison threshold values are
required. Ebad and Ahmed [21] proposed new metrics for Architecture Stability
Metric (ASM) of object-oriented software by calculating inter-package calls instead
of inter-package relationships. According to them change in cross-component
(inter-package) calls is costly and must be reduced to improve stability. They
also validated ASM metric using two open source software by comparing ASM
with lines of code changes. Alenezi [34] studied the factors that affect software
architecture stability and understandability by doing detailed literature review.

He also discussed that why theoretical and empirical validations are important

16

and how researchers have done it. Handani and Rochimah [35] investigated the
relationship between features volatility and architecture stability. They calcu-
lated architecture stability by using Aversano et al. [20] and Constantinou and
Stamelos [36] metric definition which calculate changes in external and internal
elements of architecture. They measures features volatility by counting changes
in features. To find the relationship they conducted Pearson correlation analysis.
Alenezi and Khellah [37] proposed a simple technique to measure architecture sta-
bility by aggregating the package level stability using Martin’s package instability

metric. Table 2.3 provides the summary of system level stability metrics.

2.4 Need for a New Package Stability Metrics

A number of software stability metrics have been presented in literature at system,
architecture and class levels, but at the package level, very few studies exist, as
shown in Tables 2.2, 2.1 and 2.3. There is only one package level stability metrics
[27] presented in literature. Martin [27] presents package level instability metric
based on efferent coupling properties of a single version of software. Martin’s
package instability metric does not compare two version of the software to compute
package stability. Architecture stability metrics can be used to measure package
stability metric. But existing architecture stability metrics does not cover all
aspect of package stability. Existing class and system level stability metric cannot
be used to measure package stability.

Some researchers have used interactions between classes to calculate stability

17

S —
Package a - Package b

[classa |[@—] classp | [* > <l pterface==

Interface a
| Classc | | Class d I Classf inl
Class e Class g

[casse | [Classy |

Figure 2.1: Example version i

S —
Package a - Package b

< »
Class a |’—| Classh | [" ==interface==
| | Interface a
Implements [
I H
Class e | Class g la?l Class T |
ENds

Figure 2.2: Example version i + 1

at class and architecture level. For example, Alshayeb et al [5] calculates stability
of a class in terms of change in content (e.g class name, class variable, method sig-
nature etc.) and it’s inheritance relationship with other classes. This metrics does
not cover other possible interactions between classes such as association, aggre-
gation and dependency relationships. Similarly, Ebad and Ahmed [21] presented
architecture stability metrics in terms of inter packages method calls. However,
method call do not represent other possible interactions between classes such as
inheritance and association relationships; and they do not consider intra-package
interactions.

Hence, the existing architecture level stability metrics can not be used to
measure package level stability as do they not holistically consider changes in
contents of packages, changes in intra-package interactions and changes in inter-
package interactions. For example, we have a software with two packages, namely

package A and package B. Figure 2.1 shows version i of the system while Figure

18

2.2 shows version i+1 of the system. The content and structure of package A
have changed due to deletion of class C; and merger of class D and E. On the
other hand, contents of package B have not changed but package B’s structure
has changed due to introduction of inheritance relationship between classes G and
F. The existing stability metrics do not the measure the changes in both content
and structure of packages. Measuring package stability only based on package’s
content will not be able to identify the structural changes in package B.

Furthermore, in version i, class D in package A has an association relationship
with class F in package B, however, in version i+1, only class E has an association
relationship with class G; class D is merged in class E; and class G also extends
class F. This indicates that behavior of both packages A and B have changed due
the modifications in calling order between classes of same package as well as across
packages. These changes will result in behavioral instability of both packages A
and B. So in order to measure behavioral stability, we have to consider changes
in relationships between entities of same package as well as across packages. The
existing stability metrics fail to identify behavioral changes both in packages and
across packages.

Hence, there is a need to include both intra-package and inter-package method
calls to measure behavioral stability of a package. For inter-package method calls,
we should not consider the direct connection between packages and ignore method
calls between entities (i.e. classes, interfaces) of different packages. As shown in

Figure 2.1 and Figure 2.2, if we only calculate direct package connection between

19

package A and B, then both packages are stability. However, the number of
method calls between entities of package A and B have changed (version i has two
method calls while version i+1 has one method call).

In a nutshell, the package metrics proposed to date have one or more of the
following limitations: (1) they do not consider functional, structural and behav-
ioral aspects of an object oriented system; (2) they lack theoretical validation; and
(3) they have not been empirically validated in terms of their relationship with

quality attributes such as maintenance effort.

20

Table 2.3: Architecture Stability Literature Review

’ Reference ‘ Level ‘ Artifact | Validation Stability Metric Detail
: Used similarity metrics to calculate
Ahmed et | Archi- UML Case Study stability of object-oriented system’s
al. [19] tecture :
architecure.

. : Proposed new methodology to assess the
Bansiya Archi- UML Case Study stability of architecture using 9 object
[33] tecture : .

oriented metrics.
: Measure architecure instability using the
Aversano Archi- .
UML - change in number of packages and calls
et al. [20] | tecture
between packages.
Ebad and Archis Theoretically | Proposed architecture stability metric
Ahmed UML and Case (ASM) which uses change in inter-packages
tecture
[21] Study calls.
Alenezi Proposed a technique to measure
and Archi- Code i architecture stability by aggregating the
Khellah tecture package level stability using Martin’s
[37] package instability metric.
Martin Pack. Cal‘culates packages 1gstab111ty by taking
271 age Code - ratio of efferent coupling (Ce) and total
coupling (Ce+Ca).
Pack- Theoretically | Calculates packages content stability
Proposed | age/ j
. : Code and (PCS) by measuring unchanged count of
Metrics Archi- . .) .
Empirically eight different package content properties.
tecture
Pack- Theoreticall Calculates inter-packages interactions
Proposed | age/ Y stability (EPIS) by measuring unchanged
. : Code and . .
Metrics Archi- . count of ten different inter-package
Empirically . .
tecture Interactions.
Proposed gae(:}{_ Theoretically | Calculates internal package interactions
P 8¢ Code and stability (IPIS) by measuring unchanged
Metrics Archi-
tecture Empirically count of ten different interactions.

21

CHAPTER 3

PACKAGE STABILITY

METRIC DEFINITION

In this chapter we presents definition of our proposed package stability metrics.
The package stability metrics introduced in this thesis considers changes in pack-
age contents, intra-package interactions and inter-package interactions. First, we
identify the properties that affect package stability and present new package sta-

bility metrics that uses the identified properties to measure package stability.

3.1 Package Stability Properties

In order to identify properties for three package stability aspects; content, inter-
nal interaction and external interaction, we analyzed UML metamodel. Benefit
of UML metamodel is that it is independent of programing language syntax and
it cover all possible properties of a standard object oriented softwares.

Package Content Stability Properties: The package content stability prop-

22

ertiess model the changes in contents of classes and interfaces. We consider eight
properties namely, class access level, class name, class variables declaration, class
functions declaration, class body, interface access level, interface name and inter-
face functions to measure package content stability for the version with respect to
the base version. A property is considered unchanged if it has not been changed
between the base version i and version i+1. Table 3.1 shows details about the

eight different properties that affect package content stability.

Table 3.1: Package Content Stability Factors
’ ‘ Properties Description

Class Access | Class access level can be public to private and it
Level restrict the access scope a class in software.

If class is used by many other entities in software then
2 Class Name
changing its name will effect those entities too.

1 . : .
C ass In this property, we will calculate change in class
3 | Variables .
. variable name, access level and data type.
Declaration
Class In this property, we will measure modification in class
4 Functions function name, access level, return type, parameters
Declaration name, parameters data type and number of parameters.

In this property, we will check the change in line of

5 | Class Body code of whole class.

6 Interface Interface access level can be public to private and it
Access Level restrict the access scope an interface in software.
- Interface Change in interface name effect other entities too
Name which depends on it.
In this property, we will measure modification in
3 Interface interface function name, access level, return type,
Functions parameters name, parameters data type and number of
parameters.

Intra-Package Stability (IPIS) Properties: The intra-package stability
properties model the changes in direct interactions between classes and inter-

faces of a single package. The intra-package interactions are classified into three

23

main categories, namely, interactions between classes, interaction between inter-
faces and interaction between classes and interfaces. The interactions between
classes are modeled using inheritance, aggregation, composition, dependency and
association relationships. The interactions between interfaces are modeled us-
ing inheritance and dependency relationship. Similarly, the interactions between
classes and interfaces are modeled using inheritance, aggregation, composition,
dependency and association relationship.

Inter-Package Stability (EPIS) Properties: The inter-package stability
properties model the changes in direct interactions between packages at classes and
interfaces level of respective packages in system. The inter-package interactions
are classified into three main categories, namely, interactions between classes, in-
teraction between interfaces and interaction between classes and interfaces across
different packages. The interactions between classes of different packages are mod-
eled using inheritance, aggregation, composition, dependency and association re-
lationships. The interactions between interfaces of different packages are modeled
using inheritance and dependency relationship. Similarly, the interactions be-
tween classes and interfaces of different packages are modeled using inheritance,
aggregation, composition, dependency and association relationship.

Table 3.2 shows details about the different interactions properties that affect
both intra-package and inter-package stability.

Type of Changes: There are four types of changes [21] that can occur on

package properties when two versions of the same package are compared. The

24

suomauny s ‘diysuorye[ol uorjRIDOSSE 9ARY [j0q uor) o
o, essep U9} ApO(UOIJOUN] UL (| 99RJIOIUL JO ddA) JO 90URISUI 9)LIID B SSBD J] -RIDOSSY
Suormuy zomen | | "@SI9A 9DTA pure ¢ dorgIojul yim drysuorjeror Aouspuadap ser e ssed uay Aouap 6
4 22epo < essep| | STOjoIRIRA O[] JO OUO SB (| 90RJIOIUL SARY[® SSR[D JO 9INJRUSIS UOIOUN] JT -uoda(
uot}
sy sy e ssep Yym drgsuone[ar uorjesarsde | -soduro)) g
DSt e ssep 9ARY (| 9ORJIIUL USY[) (| 9ORLIDIUL JO 9dA) d[qrLIRA SSR[D SRl © SSR[D J] pue uory
-e30133 Yy
SoORJIOUL
suoiouny suonpuny .Q, @U@%.H@Pgﬁ QPHB @OHH‘NP ,% uv :
L SSiaeien Cn pue sosse[o)
asepo cop| | AISTOIYR[OI 9OURYLIOYUI SR ® SSB[D U} (| 90vJIojul juotordur © sse[d I -Loyquy U00MIOE]
— SR goeprequn M dIysuorye[al Aouepuedep Sel] B 90RJISIUIT UST[) SI0 @E@%M Aouop
e S - JIOUT T ATYSUOTYR] P P seq JIOJUT TOTY S.I0% “woda(T 9
9} JO 9UO SR (| 9ORJIDIUL 9ARY ® 90RLISJUI JO UOIJRIS[OD9P UOIOUN] JT
— UOI}0RIDIUL
T ' 90eFIOUT YA dIsuoTieaT P eyt | g
st N e a%epiau) 9OURILIOYUL SBY © 90RJIOJUL USY} (90RJIOUI juoto[duil © 90RJIQJUL I -LIoquf :
: . : : : . : UM O]
sy suompuny ‘diysuorye[ol UoIyRIDOSSE dARY uory
sa|qeren sa|qeren : . ° : *
55t essep SOSSR[D 10 U} APO(Q UOIJOUN] UL (| SSB[D JO 9OURISUI 9)RIID B SSBD J] -RIDOSSY v
B ooy “q ssep Yy digsuorjepa Aouopuadop sey KAouap
Sa|qeLIeA S3|qeLIeA * N N
asen | cssep ' SSRD Ud([) sIvjowreIed S} JO 9UO Se (SSR[D 9ARY ® SSR[D JO UOI0UNy I -uoda(&
uorl
‘Ayrodoad sty ur digsuorje[ar uoryesoIsse H
suomuny suoppun; : Co : : -1soduon)
Saigion SHideien pue uoryisodurod Yloq pauIquiod d9ARY oA\ "B sse[d M digsuoryeor .w%m 1ot 14
9w =P | uorye8a133e aaey sse[D U} (SSe Jo adA} o[qrLIRA SSR[D SR © SSeD I v ww.
. M - .M <
Hﬂmﬁ ““MHN 'q ssep ooue) SOSSB[D 1
qssen e ssep Uym digsuorje[pd 90UR)LIDYUL SR B SSR[D U] (| SSe[D JLISYUL ® SSB[O][-LIOYU] UM O]
drys
9INS1 uorydrrosa(g -gosﬂmm 10908,

S1030%,] AIqRIS SUOIJDEUUO)) [RUISIX /[RUINUL dFede :g'¢ SRl

25

different types of changes are as follows:

Addition: An entity that does not exist in version i and added in version i

+ 1 then it will fall in addition property.

Deletion: An entity that exist in version i and removed from version i + 1.

Modification: An entity that exist in version i and modified in version i +

1.

Unchanged: An entity that exist in version i and remains same in version i

+ 1.

We consider version i+1 of a package completely stable if none of its properties
have changed. On the other hand, we consider version i+1 of a package to be com-
pletely instable if all of its properties have changed. Hence, we measure package
stability by counting the unchanged properties between version i and version i+1.
Table 3.3 and 3.4 summaries the considered package properties and how each
property is counted.

Maximum Possible Change: To measure the package stability, we assume
that each of the identified package property has the same weight. Therefore, we
calculate the stability of each property and take a sum of stability values of all
applicable properties to compute package stability. Furthermore, to normalize
measurements of each package property, we use the concept of maximum possible

change [38] that can happen to each property with respect to version i. Table

26

calculate package stability of an object oriented system.

Table 3.3: Package Contents Type of Change

3.5 and 3.6 presents the maximum possible change for each property used to

Metric Action Description Count
if class access level is not deleted or
Class Access | un-)
modified from version i to versioni + | +1
Level changed 1
un- if class name is not deleted or modified
Class Name .. . +1
changed | from version i to version i + 1.
Cla§s un- if class name is not deleted or modified
Variables +1
. changed | from version i to version i + 1.
Declaration
if class function name, access level,
Class return type, parameters name,
. un-
Functions chaneed parameters data type and number of +1
Declaration & parameters are not deleted or modified
from version i to version i + 1.
. In this property, if number of line of
Class Body whole class are not deleted or modified | +1
changed .. .
from version i to version i + 1.
if interface access level is not deleted
Interface un-
or modified from version i to version i | +1
Access Level | changed 4
if interface name is not deleted or
Interface un- : .. .
modified from version i to version i + | +1
Name changed 1
if interface function name, access level,
Interface e return type, parameters name,
Functions changed parameters data type and number of +1
parameters are not deleted or modified
from version i to version i + 1.

3.2 The Package Stability Metrics Definition

The package properties identified in Section 3.1 are used to calculate package
stability that compares the target package (version i+1) with its previous version

27

‘poseaIdul o [[Im ogexped s e

T+ | sse jo A)[iqe)s o) uay) | + [UOISIOA Ul PISURYIUN SUTRUISI UOIJIQUUOD SIY) | POFURYDOUN | UOI)RIDOSSY 01
PUR T UOISIOA UL (| 9ORLISIUIL JO 9OURISUI UR $9JRIID ® SSB[D JO UOIJOUN] O] JT
"RSIDA 9SIA PUR POSLAIDUL 9 [[Im d8eyped s e
T+ | ssep Jo AYIqe)s oY) oY) [+ I UOISIOA Ul PISURYOUN SUTRUWIOI UOI}00UU0D SIY} | posurypun | Aduopuado(] 6
puR 1 UOISIOA Ul (dorjIojul odA) Jo Iojowrered ® sey ® SSR[O JO UOIJOUN] o] JI
‘poseaIdUl o([[IM aFexoed uoryisoduro))
T+ | s,e sse Jo A[Iqe)s 81} UL | + [UOISIOA Ul PASURYOUN SUIRUWISI UOI}IUUO0D | PaFurydUN pue Q
SI) PUR [UOISIOA UL (| 90RIIDIUL 9dA) JO S[(RLIBA SSR[D ® SR ® SSR[D JI UO1)e39I33 Yy
"paseaIoul SOORJIOJUI
1+ 9(M oFeyoed s,e sse[d JO AJ[IqR)S 9} UL} T + T UOISIOA Ul POSURYOUN | PISURYOUN | 9OURJLIDYU] | PUR SOSSR[D)
SUTRWOI UOI)09UU0D SIY) PUR T UOISIOA UL (90RJIOIUI sjuowoidur © sse[o i uooM)og
‘poseardur o [[Im oFexored s e ooeIoUI JO A[IR)S
T4+ | oy} Uyl T + T UOISIOA Ul POSURYOUN SUTRTIDL UOI)OUUO0D ST} PUR [UOISIOA UL | pofurypun | Aouopuado(] 9
q 9oejIaul odA) Jo I9jowRIRd © SRY B 90RJISUI JO UOIIRIS[ISP UOIIOUN] Y] JI
"paseaIdul
SOORJIOJUI
I+ | 9q M o8exoed s e 9oeIIOIUL JO AYIRIS 97 USY) | + T UOISIOA Ul POSURTDUN | POSURIDUN | 9OURILIDYU] woomIag G
SUTRUIOI UOTJOOUUOD ST} PUR T UOISIOA UL (9ORJIOIUT SHLIOYUL ® 9ORJIOIUL JT
"paseaIdUl 9([[IM doFexoed
I+ | s,e sse Jo A[Iqe)s o) UdY) T + [UOISIOA Ul POSURYOUN SUTRWOI UOI}OOUUO0D | POSURYDOUN | UOIIRIDOSSY i
SIU} PUR [UOISIOA UI (SSB[D JO 90URJSUI UR S9JRIID B SSB[D JO UOIOUN] oY} JI
‘poseaIdUl o([[IM aFexoed
I+ | s,e ssed Jo AY[Iqe)s o) UL | + [UOISIOA Ul PASURYDUN SUIRWDI UOI}UU0D | pasurypun | Aduspusada(] ¢
SI[) pUe T UOISIOA UL (sse[d 9dA) Jo 19jotmered e sey e Sse[d JO uoounj o) ji
‘poseaIdul 9 uorjisoduwo))
T+ | [[m oSexoed s,e sse[o Jo AJ[IqR)S oY) USY} [+ [UOISIOA Ul POSURYPDUN SUIRWDL | POSURIOUN pue ré
UOI}D9UUO0D ST} PUR [UOISIOA UL (SSe[D 9dA) JO 9[RLIRA SSR[D ® SR ® SSR[D JI uo11e59133Y
- ‘paseaIdul o [[m ogexped s e ssed Jo AJIqe)s o) UaY) | + I UOISIDA Ul T pp— Sosse[d I
POSURYOUN SUTRWISI UOIJISUUOD SIY) PUR T UOISIDA UL (| SSB[D SILIDYUL © SSB[D JI EEIET S|
Yoo uondrosa(g uorpoy | diysuorjeoy OLIPOIN

o3uey) Jo odA], SUOIIDOUUO)) [RUIN)XS /[RILIOIUL 0FesPRe] /¢ O[qR],

28

Table 3.5: Package Content Maximum Possible Change value

‘ Metric

Maximum Possible value

When it occur

Class Access
Level

total class count of the
package in version i

if the access levels of all classes of the
package are modified in version i + 1

Class Name

total class count of the
package in version i

if the names of all classes of the
package are modified in version i + 1

if any property from access levels,

Access Level

package in version i

Class sum of all classes’ variables)
. . names or data type of all classes
Variables count of the package in . .
. . variables of the package are modified
Declaration version i . ..
in version i + 1
if any property from names, access
. level t t t
Class sum of all classes’ functions | - > Lol WDES, PATAIEers
. . names, number of parameters or
Functions count of the package in ,
. .. parameters data type of all classes
Declaration version i . .
functions of the package are modified
in version i + 1
total class count of the if number of line of all class of the
Class Body . . : . .
package in version i package are modified in version i + 1
: if th levels of all interf: f
Interface total interface count of the | L. o ACCESS IEVEIS ©F Al HILEHIACEs ©

the package are modified in version i
+1

package in version i

Interface total interface count of the | if the names of all interfaces of the
Name package in version i package are modified in version i + 1
if any property from names, access
sum of all interfaces’ levels, return types, parameters
Interface . names, number of parameters or
) functions count of the . ,
Functions parameters data type of all interfaces

functions of the package are modified
in version i 4 1

29

T + I UOISIOA UI POYIPOUW I8 T UOISIOA WOIJ

"I TOTSIOA UT S9ORJID)UT

SOORLIDIUL 19110 JO sk odA) ryep aARY YoIyMm oFexord 19730 Yy dIysuorje[ol UOIJRIDOSSR SRY | UOIIRIDOSSY 0T
® JO SOSSR[D [[B JO SUOIIOUNJ UL S[(RLIRA TONS [[® JI | 9e() aFeyoed ® JO Sasse[d JO Ioquuinu [e)0)
RSIDA
"I UOISIOA UI BSIDA 90IA PUR S9ORJIIUIL
9OIA PUR | + [UOISIOA Ul PAYIPOW dIR T UOISIOA WOIJ
oo M diysuoryepr Aouspuodop sey | Aduopuado(] 6
S9ORJIDIUIL IOJ0 JO se odA) vjep oary PIYM oFexoed
pe1) oFesprd ® JO S9SSR[O JO IoquInu [R}0)
® JO Sosse[D [[e JO smojourered uorjouny yons [re i
T + T UOISIOA UI POYIPOUI IR T UOISIOA T UOISIOA UT SooeJIoUL | morjisoduo))
WOIJ SOORLISUL IJ0 JO se odA) ryep 9ARY YOIM 1930 yym drgsuorje[ar uoresaIsse sey pue Q
odeyord ® JO S9SSRID [[B JO SO[(RLIRA SSRD Uons [[R JI | ey} oFesped © Jo sossed JO Ioquuinu [ej0) | UOI)eIoIS3Yy
T UOISIOA UT S9ORLIDIUL SOORJI)UI
T + T UOISIOA UI POYIPOU IR T UOISIOA o : : :
10130 m drgsuorjepr juowo[dul SeY | 90URJLISYU] | PUR Sossed |)
woy odesped © JO SOUIRU 9ORLIDIUL SOSSR[D [[R JI
yey) ogexprd ' JO SOSSR[D JO IoqUINU [R10) LEENETs|
T + T UOISIOA UI POYIPOU IR [UOISIOA WOIJ ‘T UOISIOA UT SOORJIOIUL IOTJ0O
SOORLIDIUL 19110 JO sk odA) ryep oaRy yYoIyMm oFexord s digsuorjeor Aouspuodop sey jey) | Aouopuado(] 9
® JO SO0RLIDIUIL [[€ JO sIiojotrered uorjouny yons e Ji o8eyord ' Jo sedRIISUIL JO IoqUINU [RI0)
T UOISIOA UT S9ORJISIUIL ISTJO
T + T UOISISA Ul POYIPOUL IR [UOISIOA WOIJ Co : : SOORJI)UI
UM dIgsuorje[ol 9dURILIDYUL SBY JRY) | 9OURILIOYU] G
oGexped ' JO SOUIRU SHORJIOJUL JLIOYUL SOORLIDIUL [[€ JT uoom)og
S : : : ogeyoed v Jo seoRIOIUL JO IoqUUNU (R0}
T + T UOISIOA Ul POYIPOU IR [UOISIOA WOIJ ‘T UOISIOA UL SOSSR[D
sasse[o 19130 Jo sk odA) eyep aary PIYM oFexoed 19730 3 dIysuorje[al UOIJRIDOSSE SRY | UOI)RIDOSSY i
® JO SOSSB[D [[® JO SUOIIDUNJ UL 9[(RLIRA UDNS [[B JT | Je() oFexord ® JO Sosse[D JO IoquInu [e10)
T + I UOISIOA Ul POYIPOUL SI€ T UOISISA WOIJ "I UOISIOA UL SOSSR[D
S9sSe[D 19130 JO sk odA) eyep aary oYM oFexoed Yo ypm digsuorjepr Aouopuadop sey | Aduspuado(] ¢
® JO Sosse[D [[e Jo sivjourered uorjouny yons (e ju | eyl ofeyped ® Jo $8sSR[D JO IoqUINU [RI0)
T + I UOISIOA Ul POYIPOUW OI€ T UOISIOA ‘T UOISIOA UI sosse[d | uonsoduo))
WOIJ SOSSR[D 19710 JO sk 9dA) vyep oARY [OIYM 10730 Yym digsuorje[ar uoresaIsse sey pue ré
odeyord ® JO S9SSRID [[B JO SO[(RLIRA SSRD Uons [[R JI | Jey) oFesped © Jo sosse[d JO Iaquinu [ej0) | UOI)eIoISSY
"I UOISIOA UL SOSSR[D
T + I UOISIOA Ul POYIPOUL SI€ T UOISIOA N : S9sse[D
197J0 Ypm dIysuorjR[ol 9dURILIOYUL SR | 9OURILISYU] 1
woy agesped € JO souwreu SSe[D JLISYUL SOSSe[D [[R JI uoom)og
pe1) ogesprd ® JO S9SSR[O JO IoquInu [R}0)
INOO0 91 UOY A\ onpeA aguey)) o[qIssod wmurxe]y | drgsuoryepyy DLIPOIN 7

onyeA o3uey)) 9[(ISS0] WNWIXR]\ SUOIIDOUUO)) [RUINIXD /[RUINUI 0FesPRe] Q'€ O[qR],

30

(version i). First step in defining package stability metric is to calculate the

stability value for each package property.

e Package Property Stability: The package property stability is ratio of
number of unchanged properties divided by maximum possible changes of

that property. The package property stability is formally defined as follows:

NO UProperty

3.1
MPOProperty ()

StProperty =

where (NOUpoperty) 1s the number of unchanged items of the property and
(MPCpyoperty) is the maximum possible changes for the property. Table 3.3
and 3.4 shows the details for calculation of a number of unchanged counts
for different package properties. Table 3.5 and 3.6 presents details for

maximum possible changes for different package properties.

Next, the package stability property values are used to calculate package
content stability, intra-package interaction stability and inter-package inter-

action stability as follows:

Package Content Stability (PCS): Package content stability is the aver-
age of all package content properties. Formally, the package content stability

of a package is defined as follows:

POS — Sumo f8 Packagecontentproperties

3.2
PropertiesCount (3:2)

Sum of Eight Package Content properties = Stijassar, + StelassName + StelassVar

31

+ Stclassl:‘unc + StclassBody + StintAL + StintName + StintFunc

where PCS is package content stability; Stqassar, is the stability of package’s
class access level property ; Steassname 1 the stability of package’s class name
property ; Staassvar 1S the stability of package’s class variables declaration
property ; SteassFunce 1S the stability of package’s class functions declaration
property ; StelassBody 15 the stability of package’s class body property ; Stincar,
is the stability of package’s interface access level property ; Stininame 1S the
stability of package’s interface name property and St punc 1S the stability of
package’s interface functions property. Properties Count is the total count

of properly defined properties.

Table 3.1 presents details about the eight different properties that affect
package content stability. Furthermore, it is important to note that if a
property does not exit in version i of a package, then it is excluded from the

package content stability measurements.

Intra-package Interaction Stability (IPIS): Intra-package interaction
stability is the average of all intra-package stability properties. Formally,

the intra-package stability is defined as follows:

Sumo fTenIntraPackagelnteractionproperties

IPIS = (3.3)

PropertiesCount

Sum of Ten Intra Package Interaction properties = Stipemn + Stibeage +

StibeDep + Stibeass + Stibimn + Stmipep + Stibeimh + Stibeiagg + Stibeibep +

32

SthciAss

where IPIS is intra-package connections stability; Stp,emn is internal pack-
age between classes inheritance connections stability; Stipcage is internal
package between classes aggregation and composition connections stability;
Stibepep 18 internal package between classes inheritance connections stability;
Stineass 1S internal package between classes association connections stability;
Stmimn 18 internal package between interfaces inheritance connections sta-
bility; Stinipep is internal package between interfaces dependency connection
stability; Sti,emn is internal package between class and interface inheritance
connections stability; Sti,ciage 15 internal package between class and inter-
face aggregation and composition connection stability; Stipcipep is internal
package between class and interface dependency connections stability and
Stineiass 18 internal package between class and interface association connec-
tions stability. Properties Count is the total count of properly defined prop-

erties.

Table 3.2 presents details about the ten different properties that affect intra-
package stability. Furthermore, it is important to note that if a property
does not exit in version i of a package, then it is excluded from the intra-

package interaction stability measurements.

Inter-package Interaction Stability (EPIS): Inter-package interaction

stability is the average of all inter-package stability properties. Formally,

33

the inter-package stability is defined as follows:

EPIS — SumofTenlInter Packagelnteractionsproperties

3.4
PropertiesCount (34)

Sum of Ten Inter Package Interactions properties = Stgpemh + StEbeage +

StEbeDep + StEbeass T StEbinh + StEbiDep T StEbeinh T StEbeidge + StEbeiDep

+ StEbciAss

where EPIS is inter-package connections stability; Stgpemn is external pack-
age between classes inheritance connections stability; Stgpeage is external
package between classes aggregation and composition connections stability;
Stebepep 1S external package between classes inheritance connections sta-
bility; Stgpeass 18 external package between classes association connections
stability; Stgpimn is external package between interfaces inheritance connec-
tions stability; Stgpipep is external package between interfaces dependency
connection stability; Stgpeimn is external package between class and interface
inheritance connections stability; Strpciage 1 external package between class
and interface aggregation and composition connection stability; Stgpcipep 1S
external package between class and interface dependency connections stabil-
ity; and Stgpeiass is external package between class and interface association
connections stability. Properties Count is the total count of properly defined

properties.

Table 3.3 resents details about the ten different properties that affect inter-
package stability. Furthermore, it is important to note that if a property

34

does not exit in version i of a package, then it is excluded from the inter-

package interaction stability measurements.

e Package Stability Metrics (PSM): Finally, package stability metrics is
the average of package content stability, intra-pacakge stability and inter-
package stability. Formally, the package stability metrics is defined as fol-

lows:

PCS+IPIS + EPIS

PSM = Stabilitypackage = AspectCount

(3.5)

where ‘Aspect Count’ is the total count of aspects which are applicable for

package.

3.3 Package Stability Metrics Measurement for

Point of Sales System - An Example

In this section, we have selected one example of point of sales system’s class
diagram with two version i and i 4+ 1 for calculations of PCS, IPIS and EPIS.
Figure 3.1 is the class diagram for version i class diagram and figure 3.2 is the
class diagram for version i + 1 class diagram.
As first step, we will calculate the stability of properties. In table 3.8, we have
calculated package content properties stability. In table 3.9, calculations of intra-
package connections stability are presented and in table 3.10, measurements of
inter-package connections stability are done.

After calculation of properties stability, we need to take averages to calculate

35

Person_DATA

- Address Loc=40
- Phone Loc=30
- City : string
- Country : string
- TownName : string
- HouseNumber : int

- CountryCode : int
- Number :int

+ getter() : ArrayList
+ setter(ArrayList AL)
: void

A

+ getter() : ArrayList
+ setter(ArrayList AL)
: void

Dependency Aggregation
|

|

| -ID:int

- address : Address
- phone : Phone

- Customer 30

+ Account Loc=100

-is_closed : bool

+ OpenDate : date
+ ClosedDate : date
+isClosed() : bool
+ CloseAccount() : void
+ Buy() :int

Association

+ Registered
Customer Loc=40

- lastShopingDate : Date
+ PlaceOrder() : void

Figure 3.1: Example of package stability calculation Version i

Table 3.7: Calculation of Package Aspects and Overall Stability

Inheritance

<<Interface>>

- Person oc=s

+ isExpat() : bool

Aggregation
Inheritance

+ Vendor Loc=80

-ID:int
- address : Address
- phone : Phone

+getID() : int

+ invoice(Product pr) : int

+ One Time

Customer Loc=110

-memberName
+Buy() : int

+ PlaceOrder() : void

Sales_DATA

+ Invoice Loc=70

-ID:int

- orderDate : Date

- itemList : Product List
- status : OrderStatus

+ invoice(Product pr) : int

Association
+ Product toc=s0
-ID:int
- price : int
Dependency R

+ getPrice() : int

+ Order Loc=80

-ID :int
- orderDate : Date
- status : OrderStatus

+ dispatch() : int

Dependency

’ \ Aspect \ PersonDATA \ SalesDATA ‘
1 | PCS 0.298844538 | 0.738461538
2 | IPIS 0.2 0.75
3 EPIS 0.5 not applicable
Overall
4 Stability 0.332948179 | 0.744230769

PCS, IPIS and EPIS. Table 3.7 contains the calculation details.

- OrderStatus

+ status : String

+ ShopingCart
LOC=60

-ID:int

- itemList : Product List
-amount : int
+add(Product pr) : int

+ remove(Product pr) : int

As package

SalesData had no external connections, so EPIS is not applicable and we have

considered only PCS and IPIS for overall stability calculation. So from overall

package stability package PersonDATA is 33.3%stable and package SalesDATA is

74.4% stable.

36

Person_DATA

Sales_DATA

+ Contactinfo
LOC=50

- City : string

- Country : string

- TownName : string
- HouseNumber : int
- CountryCode : int
- Number : int

+ getter() : ArrayList

- Person Loc=20

-ID:int

+getID() : int

- address : Address

i

+ setter(ArrayList AL)

: void

+ Customer Loc=30

+ Vendor Loc=80

Assoc

Association |

- companyName : string

+ PlaceOrder() : void

+invoice(Product pr) : int

+ Account Loc=80

- type : string

I

Inheritance

l

-is_closed : bool
- OpenDate : date
- ClosedDate : date

+isClosed() : bool
+ CloseAccount() : void

+ Registered
Customer Loc=40

+ One Time
Customer Loc=40

+Buy() : int

- lastShopingDate : Date

-memberName

+ PlaceOrder() : void

+ PlaceOrder() : void

+ Invoice Loc=70

-ID:int

+orderDate : Date

- itemList : Product List
- status : OrderStatus

+invoice(Product pr) : int

iation

- Product Loc=s0

-ID:int
- price : int

+ getPrice() : int

+ Order Loc=150

-ID:int
+orderDate : Date
- status : String

+ ShopingCart

LOC=60

-ID:int
- itemList : Product List
-amount :int

+add(Product pr) : int
+ remove(Product pr) : int

Figure 3.2: Example of package stability calculation Version i + 1

37

o[qeordde suonoun,j
jou 0 0 0 I 0 90RJIOJU]
o[qeordde oure N
jou 0 0 0 I 0 90RJIOJU]
o[qeordde [9A9T] SS900Y
jou 0 0 0 I 0 90RJIOJU]
90 g €| 6TPILS8TI 0 L ¢ | Apogd sse[D
UOTJRIR[ID(]
I g g g0 ¢l 9 suonouUn
sse[)
UOTJRIR[ID(]
669.0€¢69°0 el 6 88G0LVILT O LT e SO[qeLIBA
sse[)
80 g V| PILGSCYILO L g OWBN SSB[)
. . [0A9]
90 G € TLG8CVTILG 0 L i $5000V SSE[)
. Junoo Jo— JUnod
HIE®IS SV D\WMM\M posuryoun murﬁrm pM 1 QQMWWMM posuryoun fyedorg
S ¢ ¢
VLVA | SVLVELS 1 s vinvasores VI HYE S, VIV (Iuos
10819] ageyoeg R UOSI9J s,08eoeJ o] oFexeg

S1010R] A[IqRIG JUDJU0)) 98eyped o[dwexs Jo UOIJRINO[R)) R'¢C 9[(R],

38

orqeordde orqeordde uor)
e jou 0 0 e jou 0 0 -Eoov@mw\ 01
o[qeoridde a[qeordde £ous
[qeo1] Jou 0 0 [qeo1 o 0 0 -:@%Dw 6
uon
o[qeorydde o[qeorydde -isodwo))
jou 0 0 jou 0 0 pue uory 8
-e30183Yy
o[qeoridde ooue) MMQMMMMM
101 0 0 0 ¢ 0 “LIoyu] P [L
UooM)Og]
o[qeordde o[qeordde Adouo
[qeo1] Jou 0 0 [qeo1] o 0 0 AE%QU 9
o[qeoridde o[qeordde Qour) SooRJIoUL
jou 0 0 jou 0 0 -LIdY U] LEEIET S| 4
orqeorrdde uory
e jou 0 0 0 I 0 -@689« 4
o[qeoridde Aouap
101 0 0 0 ! 0 “wodo(€
uon
) -soduro))
GL0 4 € 0 i 0 pue uor ¢
-e30133Y
orqeordde oour) SEISS S)
jou 0 0 I ¢ ¢ -LIOYU] UooM)Og] I
oo Janoo
Ayiqesg o mwwm posSuepUN Apiqens mwwmm poSuepun drs
S VLvd ~so[eg SVLVAd SVLVd W0SIO] SVILVAd -qoﬂﬁ.@m Ay10dorg
-U0SIo] oSusow -soreqg UOSI_G | g -U0SIO]
"t ogeyoeq DIEPEd ogeyoeJ

$1010%,] A[IR)S SUOI}DUUO)) dFeIRJ-RIJU] JO UOIIRINO[R)) :6°E 9[R],

39

o[qreordde o[qeordde uory
jou 0 0 jou 0 0 -RIDOSSY 01
o[qeoridde a[qeordde £ous
[qeo1] Jou 0 0 [qeo1 o 0 0 -q@%mw 6
uon
o[qeorydde o[qeorydde -isodwo))
jou 0 0 jou 0 0 pue uory 8
-e30183Yy
SOORJIOJUI
o[qeordde 0 0 o[qeordde 0 0 - ooury) pue sossepo ’
jou jou LIoyu|
UooM)Og]
o[qeordde o[qeordde Adouo
[9e21] Jou 0 0 [qeo1] o 0 0 éw%% 9
o[qeoridde o[qeordde Qour) SooRJIoUL
jou 0 0 jou 0 0 -LIdY U] LEEIET S| 4
o[qeoridde uor)
jou 0 0 ! I I -RIDOSSY 4
o[qeoridde Aouap
0 0 0 € 0 €
j0u -uoda(
uon
o[qreoridde . -1soduo))
101 0 0 g0 4 I pue uor ¢
-e30133Y
orqeordde orqeordde oour) SEISS S)
jou 0 0 jo0u 0 0 -LIOYU] UooM)Og] I
oo Janoo
Ayiqesg o mwwm posSuepUN Apiqens mwwmm poSuepun drs
S VLVd ~so[eg SVLVAd SVLVd W0SIO] SVILVAd -qoﬂﬁwm fyrodorg
-U0SIo] oSusow -soreqg UOSI_G | g -U0SI9J
"t ogeyoeq DIEPEd ogeyoeJ
S1090% AJ[IRIS SUOI)IUUO)) 9FeyIeJ-I9)U] JO UOonR[NO[R) ()] ¢ 9[qR]L

40

CHAPTER 4

THEORETICAL AND

EMPIRICAL VALIDATION

In this chapter, we validate our proposed PSM metrics suite theoretically and em-
pirical. For Theoretical validation we have used two frameworks; (1) Kitchenham
et al. [1] and (2) Hassan [2]. For empirical validation, we have used correlation

analysis, principal component analysis [39, 40] and linear regression [41].

4.1 Theoretical Validation

For theoretical validation, we need to evaluate a metric against some properties
proposed by researchers. We have validated our metrics by using two frameworks

proposed by Kitchenham et al. [1] and Hassan [2].

41

4.1.1 Kitchenham et al. [1] Framework

Kitchenham et al. framework has four mathematical properties which can be used
to validate any software metric. Evaluation of our metrics (PCS, IPIS, EPIS and

PSM) against these four properties are below.

e Property 1: A metric must distinguish between different entities.
Let P1 and P2 be two packages with two releases each, P1;, P1;, P2; and
P2;, respectively, where i < j. Assume package P1 has maximum possible
values of the properties or aspects aq, as,...,a, in release P1; and unchanged
count by, by,...,b, in release P1;. Assume P2 has maximum possible values
of the properties or aspects ¢y, cs,...,c, in release P2; and unchanged count
dy, da,...,d, in release P2;. If (by/a; + be/ag + ... + by/a,)/count # (di /¢y
+ds/cy + ... + dy/cy)/count, where count is property count or aspect count

then Stabilityp; # Stabilityps.

e Property 2: A metric must preserve Representation Condition.
Let P1 and P2 be two packages with two releases each, P1;, P1;, P2; and
P2;, respectively, where i < j. Assume package P1 has maximum possible
values of the properties or aspects aq, as,...,a, in release P1; and unchanged
count by, by,...,by, in release P1;. Assume package P2 has maximum possible
values of the properties or aspects ¢y, cs,...,c, in release P2; and unchanged
count di, dg,...,d, in release P2;. If (by/a; + ba/as + ... + by/a,)/count
> (dy/c1 + dafca + ... + dn/ca)/count, where count is property count or
aspect count then Stabilityp; > Stabilityps.

42

e Property 3: Contribution of each unit of an entity’s attribute
must be same. Let P1 and P2 be two packages with two releases each,
P1;, P1;, P2; and P2;, respectively, where i < j. Assume package P1 has
maximum possible values of the properties or aspects aq, as,...,a, in release
P1; and unchanged count by, bs,...,b, in release P1;. Assume package P2 has
maximum possible values of the properties or aspects a;, as,...,a, in release
P2; and unchanged count by, bs,...,b, + 1 in release P2;, then Stabilityp, =

Stabilityp; + 1/((a; + ag + ... + a,) X count).

e Property 4: Measurement of different entities can be same. Let
P1 and P2 be two packages with two releases each, P1;, P1;, P2; and P2;,
respectively, where i < j. Assume package P1 has maximum possible values
of the properties or aspects aq, ag,...,a, in release P1; and unchanged count
b1, bg,....b, in release P1;. Assume pacakge P2 that it has maximum possible
values of the properties or aspects a;, as,...,a, in release P2; and unchanged

count by, bg,....b, in release P2;, then Stabilityp; = Stabilityp,.

The proposed package level stability metrics satisfy all four properties of Kitchen-

ham et al. framework [1] and hence these metrics are theoretically valid.

4.1.2 Hassan [2] Framework

Hassan [2] proposed seven mathematical properties for architecture stability. We

can apply same properties to validate package stability because package also rep-

43

resent architecture upto some extent. Below is the evaluation of our metrics using

these properties.

e Property 1 Non-negativity: According to this property the stability
should be greater than or equal to zero. In proposed metrics, calculation
requires operations like ratio, sum and average using unchanged counts and
maximum possible change counts. Value of count is always greater than or

equal to zero, so result of proposed metrics cannot be negative.

e Property 2 Normalization: Normalization property requires value of sta-
bility between a bounded interval. In our metrics we have selected interval
[0, 1], where value '1’ means that package is completely stable and value
‘0’ means that package is completely unstable. We are taking ratios be-
tween unchanged count and maximum possible change count. As we know
unchanged count is always less than or equal to maximum possible change
count, so stability of package using our metrics will always be between in-

terval [0, 1].

e Property 3 Null Value: Null value property says that architecture sta-
bility is null if all the inter package connections are changed. In our case
null value means that package stability should be null if all properties and
connections explained in section 4 are changed. In calculations for PCS,
IPIS and EPIS, the numerator is the unchanged count. So if unchanged
count of all properties and connections is zero then package stability will be
zero or in other words null. Suppose we have a packages P with two releases

44

P; and P;, where i < j. Assume package P has maximum possible values
of the properties or aspects aj, as,...,a, in release P; and unchanged count
b1=0, by=0,...,b,=0 in release P;, then Stabilityp = (by/a; + bo/ag + ... +

bn/ay,)/count = 0, where count is property count or aspect count.

Property 4 Maximum Value: This property says that stability will have
maximum value if there are only additions but no modification or deletion.
In our metrics, unchanged count will be equal to maximum possible change
count if there is no modification or deletion between two versions. This
will result stability of each property to 1, so stability of package will have
maximum value '1’. Suppose we have a packages P with two releases P;
and Pj, where i < j. Assume package P has maximum possible values of
the properties or aspects aq, as,...,a, in release P; and unchanged count ay,
ag,...,a, in release Pj, then Stabilityp = (a;/a; + as/as + ... + a,/a,)/count

= 1, where count is property count or aspect count.

Property 5 Transitivity: According to this property consider we have
three entities X,Y and Z. If Stabilityx < Stabilityy and Stabilityy <
Stabilityy then Stabilityx < Stabilityz. To prove this suppose we have
three packages P1, P2 and P3 with two releases each, P1;, P1;, P2;, P2;,
P3; and P3; where i < j. Assume package P1 has maximum possible val-
ues of the properties or aspects aj, as,...,a, in release P1; and unchanged
count by, bg,...,b, in release P1;. Assume same for P2 that it has maximum

possible values of the properties or aspects ¢y, Ca,...,c, in release P2; and

45

unchanged count d;, dg,...,d, in release P2;. For P3 also assume that it has
maximum possible values of the properties or aspects eq, es,...,e, in release
P3; and unchanged count f;, f5,....f; in release P3;. If (by/a; + be/ag + ...
+ by/ay)/count < (dy/cy + da/ca + ... + dn/cy)/count and (d;/cy + dg/co
+ ... + dy/cy)/count < (fy/e; + fa/es + ... + f,/e,)/count then (by/a; +
bs/as + ... + by/ay)/count < (fi/e; + fy/es + ... + f,/en)/count, where
count is property count or aspect count. So it means using our metrics if
Stabilityp; < Stabilityps and Stabilityps < Stabilityps then Stabilityp; <

Stablhtyp3 .

Property 6 Change Impact: This property states that suppose we have
an entity "X’ and if its unchanged count in version j with respect to version
i is less than its unchanged count in version k with respect to version j
than entity "X’ stability in version j with respect to version i is less then its
stability in version k with respect to version j, provided that its maximum
change count from version i to version j is not less than its maximum change
count from version j to version k. To prove that our metrics hold this
property, suppose we have a package P with three releases, P;, P; and Py,
where i < j < k. Assume package P has maximum possible values of the
properties or aspects a;, as,...,a, in release P1; and unchanged count by,
bs,...,b, in release P1;. Also assume that package P has maximum possible
values of the properties or aspects ci, ca,...,c in release P2; and unchanged

count dy, ds,...,dy in release P2;. If by < di, by < dy, ... , by < d,, provided

46

a; £ ¢1, ag £ Co, ... , 8y £ Cy then (by/a; + bo/ag + ... + by/ay)/count
< (dy/e; + da/ey + ... + dy/cy)/count, where count is property count or
aspect count. So stabilityp in version j with respect to i will be less than

stabilityp in version k with respect to j.

Property 7 Package Cohesion Impact: According to this property,
suppose we have an entity 'X’ and if its unchanged count in version j with
respect to version i is greater than its unchanged count in version k with
respect to version j then entity "X’ stability in version j with respect to
version i is greater than its stability in version k with respect to version j,
provided that its maximum change count from version i to version j is not
greater than its maximum change count from version j to version k. Author
proposed this only for architecture stability so it was focused only on intra-
package connections (package cohesion), but we will validate our all metrics
against this property. To prove that our metrics hold this property, suppose
we have a package P with three releases, P;, P; and Py, where i < j < k.
Assume package P has maximum possible values of the properties or aspects
a1, ag,...,an in release P1; and unchanged count by, bs,...,b, in release P1;.
Also assume that package P has maximum possible values of the properties
or aspects ci, Ca,...,cy in release P2; and unchanged count d;, ds,...,d, in
release P2;. If by > dy, by > d, ... , by > dy, provided a; # ci, ag # ¢, ... ,
an %# ¢y then (by/a; + bo/ag + ... + by/a,)/count > (dy/c; + dafca + ... +

dn/cn)/count, where count is property count or aspect count. So stabilityp

47

in version j with respect to i will be greater than stabilityp in version k with
respect to j.
So our proposed metrics (PSM, PCS, IPIS and EPIS) are also valid according

to the properties of Hassan [1] framework.

4.2 Empirical Validation

To empirically validate package stability metrics, we present four analysis: (1)
first analysis explores the correlation between package stability metrics and main-
tenance effort; (2) second analysis explores the correlations among five existing
stability metrics and three proposed package stability metrics; (3) third analysis
applies principal component analysis [39] to explore the orthogonal dimensions
within the set of stability metrics to confirm that our package level stability met-
rics indeed contribute new information and provide evidence that the new metrics
better captures package level stability; and (4) forth analysis applies linear regres-
sion analysis for prediction of maintenance effort to evaluate performance of five

existing stability metrics and four proposed package stability metrics.

4.2.1 Software Systems and Metrics

e Data collection: To collect open source projects as data for our analysis,

we applied following guidelines:

— Software type should be generic. By software type we mean domain
for which software is developed for. Software types from which we

48

collected our data are desktop applications, game, development tool
(ETL tool), graphical designing tool and enterprise solution. From

table 4.1 provide details about type of open source softwares.

— Software should be of different sizes. From table 4.2 provide details

about the size of open source softwares.

— Selected softwares should be popular among practitioners and contin-

uously updated.

— Selected software should be part of empirical studies from literature.

We have selected five open source software systems from different domains:
Buddi - a small desktop application [42], JHotDraw - a graphical tool for
technical drawing [43], KolMafia - an online adventure game [44], Talend -
Extract, Transform, Load (ETL) tool for database systems [45] and Univer-
sity Timetabling System - an enterprise software [46]. Table 4.1 presents
an overview of five open source software systems. We have used four differ-
ent versions of each open source software; where there is at least one year
difference between release dates of individual versions. As a result, we have
collected three stability measurements for each package of five open source

software systems.

Table 4.2 presents descriptive statistics of five open source systems in term
of number of packages, classes and lines of code. Values of mean, minimum,
maximum and standard deviation show that packages used in our experi-
ments are dynamic in terms of size (number of classes and lines of code).

49

‘Buddi’ system consists of 27,28,28 and 29 packages across four differnet

versions of the system. Four different versions of ‘JHotDraw’ consists of 39,

47, 63 and 66 packages, respectively. ‘KolMafia’ consists of 114, 114, 116

and 116 packages across four different versions of the game. Similarly, four

different versions of the ‘Talend’ system consists of 108, 109, 107 and 109

packages, respectively. Finally, ‘Unitime’ consists of 64, 72, 106 and 124

packages across four different versions of the system. In total, our empirical

validation experiments contain input of 1586 packages with 23935 classes

and 10871597 lines of code.

Table 4.1: Selected Open Source Software

‘ Name ‘ Type Detail
Buddi is a simple budgeting program
Buddi[42] E)umdagl;ze tcilflzktop targeted for users with little or no financial
application background. It is a small desktop
application.
Graphical Tool JHotDraw is a Java GUI framework for
JHotDraw[43] technical and structured Graphics.
KoLmafia is a cross-platform desktop tool,
KolMafia[44] | Game which interfaces with the online adventure
game, Kingdom of Loathing.
Talend is data integration tool which makes
Talend[45] ETL Tool ETL easy from any data source to almost
any analytics or operational tools.
UniTime is a comprehensive educational
University scheduling system that supports developing
UniTime[46] | Timetabling course and exam timetables, managing
System changes to these timetables, sharing rooms
with other events, and scheduling students
to individual classes.

e Metric Selection: In empirical validation, we adopt Li and Henry’s main-

tenance effort measurement definition [47]: ‘Maintenance effort metrics cal-

50

€6°48¢9 V8¢9V 44 L8°80€€ 00€0TY eeLe LTE L] ¢6FT | GEST Vel Gg swmnur)
I8°€9%9 9919% (44 ay esye 9vc69e 16°8€ L0€ L] cLer | 1991 90T p€ ownuy)
9¢'c¥8L 11487 8L 66°56EY [1491€ 88°€V 18¢ L] G861 | 60V1 GL €¢g dwnu)
90°666. 809.¥ 8L 8¢ Cley 986S.L¢ 09y 6L¢ L | #¢T¢ | 8EET 79 ¢E PWnun
TG TCLS8T 9669 44 1L°09971 L26965 T i €9 L] cO€r | 907t 60T 1'C"9 PUSTEL
GT°0TS8T €4€L9 44 eV 0L8VT 9€TI6ST €91l 79 L] 6C€T | 6071 L0T ['T'9 PUSTEL
19°16€LT 888Y9 % 9¢°0cLET 80556V 1 GeTl 84 L] 16¢l | ¥6€T1 60T ¢'9°G PUSBL
LG'8L691 709€9 |84 94 ¥evel ¢S867Y 1T Gelr 84 L] I8CI | TLET 80T 0°9°¢ PU9reL,
89°00T¢T 61976 8¢ 9¢°LLTY ¢918CL 88°F€ €lc [] L20¢ | T€EC 911 P'LT BORWIOM
98 L1911 69968 14 Ly 1419 0LGETL 10°v€ 60¢ I] 20°0¢ | 80€C 911 G L1 BYRWTOM
8G'8GTTT VGLSS 5% G6°0164 878€.L9 00°T€ €0¢ L | ¥¢6l | VLIC 4N 6°91 Bgewroy]
10°€¢80T GE8CY 8¢ ¢E 108G 19€T99 87°0€ ¢0¢] 80°6L | 941¢ 49 Q91 egrewryod
0€°129¢ LyEaT av 08°T¥0¢ 6SLYET L86 oy L] 0€6 719 99 9'L MeIJI0H[
06°¢94¢ 1L87T L3 GEC86T 888Y ¢l 746 oy L] .26 ¥8¢ €9 | Ty L MRIIOHI
S ¥0LY 9080€ LC [T7¢9¢ eeeect 86°€C 241} []9¢cl 9.L¢ Ly G L MBI(JIOH[
Ly G0€Y 0964¢ 89 9€°06€¢ 44440 Ly'€¢ 44" L] TETT vy 6€ 1°L MIIOHL
75°€06 6EEY €¢ 65°0€0T L886¢ r'6 9 L] S¥VS8 av¢ 6¢ VI Tv°€ 'Ppid
Gy e68 4444 14 68°¢¥01T 10¢6¢ 1976 9] 198 |§%4 8¢ ['Ty°€ ppnd
78°€88 ¢0cy e¢ 1¢'1¢01 7658¢ ¢5'6 9 | AR 6EC 8¢ 0°07°€ 1pPphd
P1°€6.L ¢L9¢ (44 94°LE6 ARS*r4 79'8 e] 682 €lc L3 9'¢cce ppid
UOTIRIAJ(] PO | UOIYRIAS(] Junoy) oo

DIOpEsS XRIN | UIN URSN 10 oury . XRIN | UIN | URSN . %@MM owreN j00lo1g

SO1)STIRIG OPO)) JO SUIT OSIA dFeoR]

SOTISTIRIG JUNO)) SSR[)) OSIA 9FeIe]

SOIYSTIR)S OZIS OIRMIJOG 90IN0G Uad() PajodRs 7§ S[qRL

o1

culates effort in term of total added, deleted or modified line of code’. We use
the Li and Henry’s [47] maintenance effort metrics to explore the correlation
between proposed metrics and maintenance effort. We select Martin’s pack-
age instability metric [27], package stability metrics based on system design
instability (SDI) [16] metric definition, package stability metrics based on
relationship based similarity metric (RBMS) [19] definition, package stabil-
ity metrics based on core calls instability (CCI) [20] definition and package
stability metrics based on architecture stability metric (ASM) [21] metric
definition to analyze the correlations among five existing stability metrics
and proposed metrics. Furthermore, we use these five existing metrics along
with proposed metrics to apply principal component analysis [39] in order to
explore orthogonal dimensions within this set of stability metrics. Finally
we performed prediction analysis using linear regression by using Li and
Henry’s [47] maintenance effort metrics as dependent variable and, five ex-
isting stability metrics and three proposed metrics as independent variables.

Below are list of existing metrics that we used in our empirical validation:
— Maintenance effort[47]: It calculates the total count of added,
deleted and updated lines of codes to measure maintenance effort.

— Martin’s package instability metric [27]: It measure the ratio
between efferent coupling and sum of efferent + afferent coupling, in

order to calculate package instability.

— System Design Instability (SDI) [16]: It measures the number of

52

changes in the name classes and take ratio with total number of classes

to measure system instability.

— Relationship Based Similarity Metric (RBMS)[19]: It measure
the change in inheritance relationship and take ratio with total inheri-

tance relationships to measure architecture stability.

— Core Calls Instability (CCI) [20]: It measures the change in calls
between packages (external calls) and inside package (internal calls)

and take ratio with total calls.

— Architecture Stability Metric (ASM) [21]: It measure the un-

changed inter-packages calls and take ratio with total external calls.

Table 4.3 contains descriptive statistics of total eight stability metrics and
maintenance effort. Standard variation, mean, minimum and maximum val-
ues shows that data is dynamic and spread across different ranges. Whereas
skewness values show that all metrics do not follow a normal distribution
and have non-parametric nature. Our all four proposed metrics (PCS, IPIS
and EPIS) have negative skew distribution because most of the contents
and interactions of packages remain same. Hence proposed metrics does
not follow a normal distribution and has non-parametric nature. Existing
stability metrics ASM and RBSM have negative skew distribution because
most of the packages are stable. Hence ASM and RBSM does not follow a
normal distribution and has non-parametric nature. While existing instabil-

ity metrics SDI and CCI have positive skew distribution because most of the

53

packages retain their original form. Hence SDI and CCI has non-parametric
nature and does not follow a normal distribution. Whereas maintenance
effort follows a positive skew distribution, hence it also does not follow a
normal distribution and does not share non-parametric nature. Package in-
stability follows a weak negative skew distribution, hence we can say that it

does not follow a normal distribution and has non-parametric nature.

Table 4.3: Descriptive statistics of stability metrics and maintenance effort.

Std. Skew-
Metric Min Max | Mean | Devia-
tion 1ess
1 PCS 0.07 1 0.91 0.12 -2.12
2 IPIS 0 1 0.98 0.10 -7.30
3 EPIS 0 1 0.97 0.11 -6.01
4 PSM 0.03 1 0.94 0.10 -4.11
5 SDI 0 1 0.05 0.15 4.28
6 ASM 0 1 0.97 0.13 -5.38
7 RBSM 0 1 0.94 0.19 -3.69
8 CClI 0 9.50 0.05 0.40 18
Martin’s
9 Instability 0 1 0.39 0.43 0.42
10 | Maintenance 0 20620 | 948.34 2397.94 | 4.89

e Software Tools: In our empirical validation, we used three software tools
Eclipse, Matlab, and Knime [48]. Eclipse is used to develop our custom
Java tool to automate metrics measurements. Matlab is used for correlation
analysis, principal component analysis, and regression analysis. Whereas we
used Knime for the statistical analysis reported in table 4.3 for identification

of data nature and distribution.

o4

4.2.2 Software Stability Metric Tool

In our empirical validation, we developed a new Java tool to automate package
stability measurement for our proposed metrics, five existing stability metrics and
maintenance effort using JavaParser[49] library to parse source code of selected
open source. Our tool analyzes Java source code of different versions of open
source software, extract the required information to calculate proposed package

level stability metrics.

High Level Class Diagram

High level class diagram of our custom developed software stability metric tool
is available in Figure 4.1. Two classes ”Parser” and ”Java Parcer Library” are
backbone of our tool. Purpose of ”Parser” class is to provide bridge between java
parser and classes that contain logic for metric calculation. While ” Java Parser
Library” is actual java parser library with list of parser classes. Main logic to
calculate metric is implemented in ”Project”, ” Package”, ” Class” and ” Interface”
classes. While ”Variable”, ” Function” and ”Connections” classes are used as data
classes. Tool takes the directory path of two projects as input and first parse
both project in two instances of project class with whole hierarchy of packages,
classes, interfaces, variables, function and connections. After parsing, metric tool
compare properties of two projects and calculate different metric values according

to their definitions.

55

Project

<T>n

Package Parser
'
n ‘%
-
l’ ~
Class Interface
Java Parser

%n Rn % ({n Library

Variables Functions Connections

Figure 4.1: High Level Class Diagram of developed Software Stability Tool

Activity Diagram

Activity diagram of our custom developed software stability metric tool is available
in Figure 4.2. Our custom developed metric tool performs below task in order to

calculate stability metrics.

e Traverse Project Directory: As input tool require paths of two version
of a software. As first stage, our tool parses the whole directory of both
projects. It parses all the packages and files in those packages with extension

7. java”. It creates a list of packages objects with file lists in them.

e Parse Java Files: In second step, tool parses each file contents and ex-

tracts list of classes and interfaces. After that it creates list of objects of

56

parsed classes and interfaces, and then initialized the package object class
and interface list property. Then tool parses each class and interface and

extracts their variables, functions and connections.

Set Properties: This step is called pre-processing. In this step our tool
refine the data by defining and setting information for variables, functions
and connections. For variable, it sets properties like access level, data type
and name. For function it sets properties like return type, access level,
function name and function’s parameters properties. For connections, it sets
properties like connection type, name of the class or interface the object is

connected to. In last step, tool removes the duplicate connections.

Metric Measurement: In this step, tool compares the list packages of
both projects, then it compares the classes/interfaces, then it compares vari-
ables, functions and connections. As a result a comparison tool calculates
the values of unchanged properties count, deleted properties count, added
properties count and total maximum possible change count. At the end tool

uses counts to calculate different metrics according to definitions.

Export Data:In final step tool exports the calculated metric values with

list of packages.

57

Package Stability Measurement Tool
Traverse Dictiunarﬂ Parse Java Files Set Properties Measurement Export
Parse Java
Files and Update the Compars the
r» Extract List of > Properties of > TWo versions
Classes and Variables ackages Export Data in
Interfaces packag CSY Format
Create Measure
Parse Parsed Pl;’gg:é?et;'% . Maximum
Directories of Classes and Funstions Possible
both Project Interfaces Change
Yersion
v ¥ v
Parse Classes
Update
and jnterfaces Connection Measure
or List Type and Unchanged
Connections, P‘l}f:? erties Property
h 4 Functions and P
Create Variables
Structure of v L 'L
Project Create
{Packages Parsed Rermove Measure
and Files) connections Duplicate Package
Functions Connections [Stability
and Variables

Figure 4.2: Activity Diagram of developed Software Stability Tool

4.2.3 Correlation with Maintenance Effort

Maintainability is one important property of design as software evolve to adapt
changes in user requirements and operational environments [5]. Software stability
contributes towards maintainability quality attribute and is one of the measures
to obtain maintainable software. Stable software tends to minimize changes,
improve maintainability and as a result help reduce maintenance effort [6, 7, §].
We used correlation to analyze relationship between proposed package stability
We decided to use Spearman rank order

metrics with maintenance effort.

correlation coefficient over Pearsons correlation coefficient [50] because data has

58

non-parametric nature and does not follow normal distribution as explained in
section 4.3.1 using skewness values from table 4.2. We hypothesis the relationship

between proposed package stability metrics and maintenance effort [47] as follows:

Null hypothesis: There is no significant association between the PCS metrics
with maintenance effort.

Package content stability (PCS) has spearman rank order coefficient -0.83
and the p-value less than 0.5, as shown in Table 4.4. Hence, we reject the null
hypothesis and conclude that PCS metric has a strong negative correlation with
maintenance effort. Hence, we conclude that an increase in PCS will reduce

maintenance effort.

Null hypothesis: There is no significant association between the IPIS metrics
with maintenance effort.

The Spearman rank order is -0.29 and the p-value for intra-package interaction
stability (IPIS) is less than 0.05, as shown in Table 4.4. Hence, we reject the
null hypothesis and conclude that IPIS metric has a weak negative correlation
with maintenance effort. Hence, we conclude that an increase in IPIS will reduce
maintenance effort. Association is weak because IPIS considers changes in only

those lines of code, which contribute towards intra-package interactions.

Null hypothesis: There is no significant association between the EPIS met-

59

rics with maintenance effort.

The Spearman rank order is -0.38 and the p-value for inter-package interaction
stability (EPIS) is less than 0.05, as shown in Table 4.4. Hence, we reject the null
hypothesis and conclude that EPIS metric has a moderate negative correlation
with maintenance effort. Hence, we conclude that an increase in EPIS will reduce
maintenance effort. Association is not strong because IPIS considers changes in

only those lines of code, which contribute towards inter-package interactions.

Maintenance effort association with existing stability metric: We also
performed correlation analysis between maintenance effort and package stability
based on five exiting stability metric as shown in Table 4.4 and Figure 4.3. Pack-
age Content Stability (PCS) has stronger association with maintenance effort as
compare to other stability all metrics. Inter-Package Interaction Stability (EPIS)
has better association with maintenance effort as compared to any inter-package
interaction based stability metric (ASM, RBSM, CCI and Martin Instability).
Intra-Package Interaction Stability (IPIS) has weak association with maintenance
effort, but it is the only stability metric available which covers all intra-package
interactions. Hence our proposed stability metrics has better relationship with

maintenance effort as compared to existing stability metrics.

60

Table 4.4: Correlation Analysis with Maintenance Effort. P Value less that
0.00005 is replace with 0

. . Spearman Rank
Stability Metric CI())fﬁcient P Value
1 PCS -0.83 0
2 IPIS -0.29 0
3 EPIS -0.38 0
4 SDI 0.45 0
5 ASM -0.35 0
6 RBSM -0.35 0
7 CCI 0.36 0
Martin
8 Instability -0.04 0.20
Martin
PC3 IP13 EPIS ol AL RBESM izl Instability
o.e0 0.45

0.36

0.40

0.z20 I I

0.00 T T T T T T i]
4 g-29

-0.38 -0.35 -0.35

Figure 4.3: Correlation Analysis with Maintenance Effort.

4.2.4 Comparison with existing stability metric

In this section, we explore the correlations between proposed metrics suite and
five existing stability metrics, namely, Martin’s package instability metric [27],
package stability metrics based on system design instability (SDI) [16] metric
definition, package stability metrics based on relationship based similarity metric

(RBMS) [19] definition, package stability metrics based on core calls instability

61

(CCI) [20] definition and package stability metrics based on architecture stability
metric (ASM) [21] metric definition. We use Spearman rank order correlation
method. Table 4.5 shows the results of correlation analysis between proposed

metric suite and existing stability metrics.

e Package Stability Based on SDI [16] SDI also calculates the stability
of a package contents by measuring changes in name of classes only and
ignore other content aspects. Hence it has a weak correlation with PCS.
Interestingly SDI has a better correlation with IPIS and EPIS as compared
to PCS. The reason behind is that changes like the addition of new classes
and deletion of existing classes, increase changes in class name and which

affect the interactions between classes.

e Package Stability Based on ASM [21] ASM has a moderate correlation
with EPIS because EPIS is also inter-package interactions based stability
metric. The difference is that EPIS considers all ten types of inter-package
interactions as explained in table 4.2. ASM has a weak correlation with
PCS and IPIS because these metrics measure changes in contents and intra-

package interactions respectively.

e Package Stability Based on RBSM [19] RBSM has a moderate cor-
relation with EPIS because EPIS is also inter-package interactions based
stability metric. The difference is that EPIS considers all ten types of inter-
package interactions as explained in table 4.2. RBSM has a weak correlation

62

with PCS and IPIS because these metrics measure changes in contents and

intra-package interactions respectively.

e Package Stability Based on CCI [20] CCI has a moderate correlation
with EPIS because EPIS is also inter-package interactions based stability
metric. The difference is that EPIS considers all ten types of inter-package
interactions as explained in table 4.2. CCI has a weak correlation with
PCS and IPIS because these metrics measure changes in contents and intra-

package interactions respectively.

e Package Instability [27] Package instability metric has no correlation with
PCS and IPIS because pValue is very high and Spearman rank order coef-
ficient value is very low. Whereas Package instability metric has very weak
negative correlation with EPIS and other existing stability metrics (ASM
and RBSM). Whereas it has very weak positive correlation with instability
metrics (SDI and CCI). Hence package instability has either no association
with proposed metrics PCS and IPIS. Whereas packages instability has very
weak correlation with metric that calculates inter-package interaction. The

relationship is weak because package instability does not measure changes.

4.2.5 Principal Component Analysis

Principal Component Analysis (PCA) [39, 40] is a statistical tool that uses orthog-
onal transformation to identify and analyze underline relations and dimensions of
the input parameters. Here it is used to understand the underlying orthogonal

63

0=d 0=d 0=d 0=d 0=d 70°0=d 19°0=d | Aqiqessuy
‘ee0=Y ‘7e0-=Y4 ‘ee0-=Y ‘61°0=4 ‘62°0-=4 ‘90'0-=Y ‘T0°0-=Y4 IR\
0=d 0=d 0=d 0=d 0=d 0=d 99
‘6R°0-=Y ‘°6°0-=4 28°0=Y 79°0-=Y ‘6e0-=Y 7¢°0-=Y
0=d 0=d 0=d 0=d 0=d
‘98°0=Y ‘ee0-=Y4 ‘65 0=4 ‘ce’ 0=y 1¢°0=Y4 NS
0=d 0=d 0=d 0=d
P 0-=Y4 ‘69 0=Y ‘¢ 0=y 1¢°0=Y4 NSV
0=d 0=d 0=d
LY 0-=Y 0=y 1¢°0=Y 105
0=d 0=d
‘95 0=Y ‘9e-0=s SI1dd
0=d
‘9z-0=4 SIdI
SOLI)ON
DD INSIY NSV Ias S1dd S1dI SOd e

0 I paoerdal st OO0 wet) Ssof g
puR JUOIFo0)) IopI() Jury ururreadg STy :9J0N *(SOLIJoU AYIqR)S SUNSIXS)M uosLreduIo))) SISA[RUY UOIJR[OLIO)) :G'f S[R],

64

dimensions and the relationship of five existing stability metrics and proposed
metrics. In addition, PCA also demonstrates that the proposed package stabil-
ity metric captures new measurement dimensions. Our experiment shows that
outliers do not affect final PCA results.

To perform principal component analyses, we used singular value decomposi-
tion (SVD) [51] algorithm. Table 4.6 shows the results of PCA with all eight PCs
(Principal Component). It also shows the eigenvalues, their percentages, and the
cumulative percentage. For every eight PCs, coeflicients of five existing stability
metrics, PCS, IPIS and EPIS are also presented in Table 4.6. Coefficients indicate
which are the influential metrics contributing to the captured dimension. Based
of recommendations from literature and close coefficient values of PC 6 and PC 4,
We decided to apply 0.45 cut on coefficients. We have removed PSM from PCA
analysis because our major target was to study new dimensions of PCS, IPIS, and
EPIS, and PSM is derived from them, hence it can affect their results. For each

PC (principal component) analysis based on coefficients are follows:

e PC 1: Package instability metric is the only influential metric for this PC
with coefficient value 0.97. It calculates instability of package by using the
afferent coupling and efferent coupling. It does not measure changes between
two versions of package. Hence it is unique from all other stability metric

and captures different dimension.

e PC 2: RBSM is major influential metrics for this PC with coefficient values

-0.57. Whereas CCI, SDI and ASM also have weak influence on this PC.

65

e PC 3: RBSM and SDI are major influential metrics for this PC with coef-

ficient value 0.49 and 0.61 respectively.

e PC 4: ASM, RBSM and CCI are major influential metrics for this PC with

coefficient values 0.52, 0.61 and 0.47 respectively.

e PC 5: PCS and SDI are major influential metrics for this PC with coefficient

values 0.73 and 0.63 respectively.

e PC 6: PCS, IPIS and EPIS are major influential metrics for this PC with

coefficient values -0.48, 0.52 and 0.59 respectively.

e PC 7: IPIS and EPIS are major influential metrics for this PC with coeffi-

cient values 0.73 and -0.62 respectively.

e PC 8: ASM and CCI are major influential metrics for this PC with coeffi-

cient values 0.72 and 0.66 respectively.

The PCA results show that our proposed Package Content Stability (PCS) met-
ric covers a new dimension as it is major significant factor in PC 5 and 6. This
proves that PCS captures new functional (package content) stability aspects. IPIS
and EPIS metrics also captures new measurement dimension as they are major
significant factors in PC 6 and PC 7. This proves that both metrics covers new
dimension of intra and inter package interactions (structural and behavioral) sta-

bility.

66

Table 4.6: Principal Component Analyses Results.
|PC1 [PC2 |PC3 [PC4 |[PC5 [PC6 |PCT7 [PC8 |

Eigen Values | 0.19 0.06 0.03 0.01 0.01 0.01 0 0
Percentage 60.26 | 19.40 | 8.93 3.84 3.14 2.51 1.30 0.61
Cum. 60.26 | 79.66 | 88.59 | 92.44 | 95.58 | 98.09 | 99.39 | 100
Percentage

PCS 0 0.27 -0.36 | 0.17 0.73 |-0.48 | -0.05 | 0.01
IPIS -0.01 | 0.21 -0.34 | 0.02 0.14 0.52 | 0.73 |0.14
EPIS -0.04 | 0.27 -0.25 |-0.26 | 0.19 0.59 | -0.62 | -0.16
SDI 0.03 -0.35 | 0.61 |-0.19 |0.63 |0.24 0.09 -0.01
ASM -0.09 | 0.38 0.18 -0.52 | -0.05 |-0.16 |-0.04 | 0.72
RBSM -0.18 | 0.57 |0.49 |0.61 |-0.02 |O0.15 -0.06 | 0.02
CCI 0.10 -0.42 | -0.19 | 0.47 | 0.06 0.21 -0.27 | 0.66
Martin 0.97 |0.21 |0.09 |00l [-0.02 |0.01 |-0.01 |0
Instability

4.2.6 Regression Analysis

To evaluate and compare the ability of five existing stability metric and newly
proposed metrics to predict package maintenance effort, we used linear regression
[41]. This method is widely applied by many studies [52, 53] for prediction in
software engineering. Almugrin et al. [53] used linear regression to predict package
maintainability and testability. In linear regression, we use independent variables
to explain and predict the dependent variable. In our analysis five existing stability
metric and newly proposed metrics are independent variables and maintenance
effort is a dependent variable. Data from four different version of five systems
as explained in table 4.1 were collected and then combined into one file for
analysis. Linear regression assumes that the relationship between independent
variables and the dependent variable is approximately linear. Linear regression

also requires data to follow a normal distribution and we know that our data

67

does not follow a normal distribution. There exist transformation to make data
normally distributed such as logarithmic, square roots and inverse transforms. We
applied square root function onto the data of five existing stability metrics, PSM
metric suite, and maintenance effort to make is normally distributed.

To analyze the prediction ability of package stability metrics three regression
analysis were performed, (1) first analysis explores the performance of content-
based stability metric to predict maintenance effort individually; (2) second anal-
ysis presents the performance of package interaction based stability metric to pre-
dict maintenance effort individually; and (3) third analysis find the best possible
combination of stability metric to maximize prediction results with less number
of dependent variables. Tables 4.7, 4.8 and 4.9 presents the results of analysis
(1), (2) and (3) respectively. In these tables R-Squared value is the accuracy of
prediction, the Adjusted R-Squared value is the actual accuracy of prediction,
pValue shows the significance of experiment and F-statistic shows the significance

of the relationship between independent and dependent variable.

e Content based stability metrics: In this analysis, we used only contents
based stability metrics individually and perform the linear regression to
predict maintenance effort. PCS and SDI are content-based package stability
metrics. Table 4.7 presents the results of this analysis. In comparison with

SDI, PCS is producing good accuracy with adjusted R-squared value 0.378.

e Interaction based stability metrics: In this analysis, we used only in-

68

Table 4.7: Summary of the linear regression using content based stability metrics
as independent variable.

Stability Adj. .

Metrics R-Squared R-Squared pValue F-statistic
1 PCS 0.378 0.378 <0.00001 646

SDI 0.127 0.126 <0.00001 154

teractions based stability metrics individually as the independent variables
and perform the linear regression to predict maintenance effort. IPIS, EPIS,
Package Instability, ASM, RBSM and CCI calculates package stability using
interactions. Table 4.8 presents the results of this analysis. In comparison
with other interaction-based stability metrics, IPIS and EPIS are produc-
ing good results. Adjusted R-squared value of IPIS is 0.0367 whereas the
adjusted R-squared value of EPIS is 0.0325. As compared to content-based
stability metrics these values are low because most of the packages remain
stable from the interaction point of view but the maintenance effort mea-
sures change in each line of code whether it contributes toward interaction

or not.

Table 4.8: Summary of the linear regression using package interactions based
stability metrics as independent variable.

i}:ﬁﬁgy R-Squared ?{%duare q pValue F-statistic

1 | IPIS 0.0376 0.0367 <0.00001 39.1

2 | EPIS 0.0335 0.0325 <0.00001 34.6

3 | ASM 0.026 0.0251 <0.00001 28.4

4 | RBSM 0.0282 0.0273 <0.00001 30.8

5 | CCI 0.0213 0.0204 <0.00001 30.1

6 | Packase 0189 0.0173 <0.00001 | 19.7
Instability

69

e Best combination of stability metrics: In this analysis, we presents the
best possible combinations of stability metric that can produce good results.

Table 4.9 presents the results of this analysis.

— Combination 1: In row 1 by using proposed metric as independent

variable we get 0.399 accuracy.

— Combination 2: While in row 2 by using all existing stability metrics as
independent variable, accuracy to predict maintenance effort is 0.178

accuracy.

— Combination 3: If we use all five existing stability metrics with pro-
posed metric as independent variable, accuracy to predict maintenance

effort accuracy improves to 0.437.

— Combination 4: We tried different possible combination and come up
with the best combination of five independent variable: PCS, IPIS,
EPIS, SDI and Package Instability. This combination predicts mainte-

nance effort with accuracy of 0.43.

Table 4.9: Summary of the linear regression using best combinations.

Adj.

Description Dependent Variables | R-Sq. R-Sq

pValue F-stat

Proposed PCS, TPIS and EPIS | 0.401 | 0.399 | <0.00001 | 236
Metrics

Five Bxisting | SDL ASM, RBSM, 1101 1 0 178 | <0.00001 | 58.6

Metrics CCI and Instability
Combined All 0.44 0.437 | <0.00001 | 119
Proposed PCS, IPIS, EPIS,

0.432 | 0.43 <0.00001 | 161

Combination SDI,and Instability

70

The linear regression results show that our proposed metrics improved the pre-
diction accuracy of maintenance effort. In table 4.9, we can see that in row 2 using
all existing metric the maintenance effort prediction accuracy is 0.178. But when
we introduce proposed metric suite in row 3 the accuracy is improved to 0.437.
But using all stability metrics will be very costly so we proposed a combination of
five stability metrics that include PCS, IPIS, EPIS, SDI and Package Instability
which produce an acceptable accuracy of 0.43. Finally, we present the Linear
regression model using these five metrics in table 4.10. In the model estimate
is the corresponding coefficient, the standard error is expected error in estimate

value and, tStat and pValue show the significance.

Table 4.10: Regression model of best possible combination.

Estimate Standard tStat pValue
Error

(Intercept) | 268.36 20.833 12.881 <0.00001
PCS -125.62 14.337 -8.762 <0.00001
IPIS 18.887 9.9634 1.8956 0.058304
EPIS 23.252 10.693 2.1746 0.029895
SDI 27.573 4.0368 6.8305 <0.00001
Package 1 15097 | 22819 -7.8999 | <0.00001
Instability

71

CHAPTER 5

COMPARISON OF

REGRESSION AND

CLASSIFICATION TO

PREDICT PACKAGE

MAINTAINABILITY

In this chapter we presents initial results of comparison analysis between regres-
sion algorithm and classification algorithm to predict package maintainability. We
conducted four set of analysis for this comparison; (1) first analysis explores the
correlation between five existing stability metrics, PSM metric suite, two pack-
age cohesion metrics, two package coupling metric, maintenance effort and future

(next version) maintenance effort; (2) second analysis applies principal compo-

72

nent analysis to explore which metrics covers different directions and are unique
from others; (3) third analysis applies three to predict package current maintain-
ability and future (next version) maintainability; and (4) forth analysis applies
six classification algorithms to predict package current maintainability and future
(next version) maintainability. Bellow are the differences between analysis in this

chapter and analysis in chapter 4.

e Analysis in this chapter are based on 26 open source softwares. We collected

four version of each 26 open software to measure stability and maintenance.

e Analysis in this also contain input of two package cohesion and two package

coupling metrics.

e This chapter also present prediction analysis of future maintenance effort.

e Major contribution of this is the comparison analysis between regression and

classification algorithms.

5.1 Data Collection

We have selected 26 open source software systems from different domains for
analysis in this chapter. We have used four different versions of each open source
software; where there is at least one year difference between release dates of in-
dividual versions. As a result, we have collected three stability measurements,
three maintenance effort measurements and two future maintenance effort mea-

surements. Table 5.1 presents descriptive statistics of 4th version of each 26 open

73

source systems in term of number of packages, classes and lines of code. Values
of mean, minimum, maximum and standard deviation show that packages used
in our experiments are dynamic in terms of size (number of classes and lines of
code). In total, experiments in this chapter contain input of 20954 packages with

169020 classes and 35270848 lines of code.

5.2 Metric Selection

In this chapter, we adopt Li and Henry’s maintenance effort measurement defi-
nition [47]: ‘Maintenance effort metrics calculates effort in term of total added,
deleted or modified line of code’ to predict package maintenance. We ignored
Martin’s package instability metric [27] because it did not generate good result
in chapter 4. We select package stability metrics based on Li’s class implemen-
tation instability (CII) [16] metric definition (PCII), package stability metrics
based on system design instability (SDI) [16] metric definition (PSDI), package
stability metrics based on class number of method stability [22] metric definition
(PNomStab), package stability metrics based on class stability metric (CSM) [5]
definition (PCSM) and package stability metrics based on architecture stability
metric (ASM) [21] metric definition (PASM) to analyze the correlations among
six existing stability metrics and PSM. We also used two package cohesion metric;
Martin’s Cohesion [27] and Component Cohesion of Vernazza et. al. [54]. We also
used tow package coupling metrics; afferent coupling and efferent coupling [27].

Table 5.2 contains descriptive statistics of total nine stability metrics, two

74

1€°66¢ ceTIv | 6e¥1 | 1€ | GRGIT| €1e| TeF T T 12T Te 6 jrunp
LY'SL6L | STL9S | 016G | 29| TT99CY | 6292 | 9091 | G6T T | 661 4l 09 syrodor odser
GG LV0L | TI8'80LT | 012V | ¥ | 8.680T | 2€'8T | 9921 | 981 I QL6 L) 0°0°¢ s8nq purq
68°7,0L | L0'STIG | S€0€E | TG | 98GEFT | 6381 | 9V LI 39 T 687 8% 99T eARLI(]
LT'68TE | ST6€9T | SLVIT 9| Szeey | 19°€1 | Tal Ly I e 91 ¢'0 | Areaquy 11X eaer
TE'88LT | TTT6IT | T96LT | ¥& | €666L6 | 19°L| 8¢9 1. 1| swee 78 9¢Y Sundg
67°06CT | T6OSTT | SLSY Q| 1680z | OLL| €88| 92 z 66T ST Te %ﬁ%%%%ﬂm
9V LETL | LT'0GOF | 29€ve | 097 | T08GS | T¥LG | €818 | S0T T 9.¢ 4 09 T304
06'SLFT | 0L9.GT | @86S | GIT T0eLy | €LL| L06| ¥e T TLe 0¢ 67T mngq

. . . . (1ompatps
LE'866E | 0L'666E | 6EVET | L9 | L666E | 9L°6T | 0£FE I8 T ere 01 ¢ Jopoy) todng
¥8°20¢ L9'98¢ 696 | G€| OSITI| 6.C| 00% | ¥I I 961 6 900°20°C 1o[AeAd1]
pe'LTee | 8€909T | 96801 | SOT e8cze | 998 | 006 | LT 0 LT1 1 ¢9¢ sdnoryeaer
QC788C | €1'SG9T | ¥810T | S¥I 98V66 | VGG | L9V | FE T VLG 09 z'C WISPLIY)
¢L 0101 60°€G8 | T8¢y | ¢TI 9612 | IS8T | LL¥V | L1 I 4l 9z cL0 9OTASSH
V6'LGTE | 099921 | 20T | <z | L6L09 | STFT | 09°L 98 I o Sy 00T'T juy oyoedy
LT OFCT 99718 | T0T9T | S¥ | TGICLT| L66| 9¢¢| €a1 T| zer1 1% 0°0°¢ osdeudg
IGOTEY | TOGPST | 0RGLG | €6 | €122L9¢T | 29¢1 | 6L | 6€1 T | 80¥¢ vl ¢'LT doopey
62 LS0T Cqpe9 | LL9ET | TT | G9EP99 | 68°L | @8S| ¥9 1| o168 G101 ¢l oM\
I6'6TCL | 9€°€SHY | 820 | G9 | TPOLST | L&'LT | ¥2Tl I8 I PG oy 0°¢¢ el
68,797 | T6'TIVOT | €.91¢ | €¢ | oW8Gle | Tl8| 69| ¥ 0| 2911 80T | LIIN'O'0'6 | 1eowo, otpedy
09TV 67°L¥8 | TLVOG | 6T | 089.C€T | L0WE | ¥I'8| GI9 T | #P0eT z091 1'S1°C oure)) oyoedy
€6'G829 | LL'Geee | W8TV | T¥ | 00801V | 9¢7Le | 2OFI | LI 1| <zl1 ¢zl | cg opung owL ()
TG TTL8T | 9€°98LFT | 9GGL9 | 1¥ | L2696ST | #€11 | 68°C1 3G 1| 268l 80T 129 puore],
89°00T¢T | FS'TEE9 | 619%6 | 16| TOI8TL | 6€7€ | 8L'ST | €I¢ | 091¢ Q1T ! RLYRIN[OY]
081292 | O0S'TV0T | LVEST | GV | 6GLVET | LLS| 8€8| 6¢ T e 99 9') MeIIOH[
7S €06 €966 | 68€V | €¢| 2886% | 916| L0L 9% I 4K 0€ PITYE ppng
A "PIS wed\ XRIN | UIN WO@%MM .\W@m eI\ | XeJN | UIN pwmmw @WMMMMW UOISIOA oIem1Jog

SOT)SIPR)S 9PO)) JO SUIT 9SIA FeNOR]

SOT)SIPR)S JUNO)) SSB[) 9SIA 9Feyor]

SOTISIYRY)S OZIS 2IBMIJOG 92IN0G Uad() PaIdafeg 9z 1°C 9[qel,

1)

package cohesion metrics, two package coupling metric, maintenance effort and

future maintenance effort. Standard variation, mean, minimum and maximum

values shows that data is dynamic and spread across different ranges. Whereas

skewness values show that all metrics except two cohesion metrics, do not follow

a normal distribution and have non-parametric nature. Only package cohesion

metric; martin cohesion and component cohesion follows normal distribution.

Table 5.2: Descriptive statistics of stability, cohesion, coupling and maintenance
effort_metrics.

’ \ Metric \ Min \ Max \ Mean \ Std. Dev \ Skewness
1 | PCS 0 1 0.955 0.098 -3.981
2 | IPIS 0 1 0.990 0.080 -10.176
3 | EPIS 0 1 0.949 0.175 -3.989
4 | PSM 0 1 0.955 0.109 -4.119
5 | PCIL 0 1 0.040 0.115 4.923
6 | PSDI 0 1 0.031 0.118 5.323
7 | PNomStab 0 1 0.962 0.123 -4.986
8 | PCSM 0.375 | 1 0.976 0.058 -4.051
9 | PASM 0 1 0.944 0.197 -3.905
10 | Martin Cohesion 0.003 | 3.875 | 0.657 0.382 0.619
11 | Component Cohesion | 0 1 0.443 0.442 0.352
12 | Afferent Coupling 0 4274 11.338 | 97.237 26.115
13 | Efferent Coupling 0 299 7.985 15.347 7.537
14 | Maintenance 0 34123 | 170.742 | 873.310 14.963
15 | Future Maintenance 0 34123 | 172.232 | 942.157 15.758

5.3 Metric Tool

I developed custom software stability metric tool for my experiments. Details of

software stability metric tool are provided in section 4.3.2.

76

5.4 Software Tool

As explained in section 4.3.1, we used three software tools Eclipse, Matlab, and
Knime [48]. Eclipse is used to develop our custom Java tool to automate met-
rics measurements. Matlab is used for correlation analysis, principal component
analysis, regression analysis and clustering. Whereas we used Knime for the clas-

sification algorithms.

5.5 Correlation Analysis

We performed correlation analysis between 15 different metrics. These metrics are
maintenance effort [47], future maintenance effort, PSM metric suite, PCII [16],
PSDI [16], PNomStab [22], PCSM [5], PASM [21], Martin’s Cohesion [27], Compo-
nent Cohesion [54], afferent coupling and efferent coupling [27]. We used pearson
rank correlation analysis because most of our data nature is non-parametric and
does not follow normal distribution. Correlation analysis results are available in

tables 5.3 and 5.4. Some analysis are listed below:

e Proposed metrics has better correlation with maintenance effort as compared

to other stability metric.

e Proposed metrics has better correlation with future maintenance effort as

compared to other stability metric.

e Most of stability metrics including Proposed metrics has weak negative cor-
relation with afferent and efferent coupling. Where as instability metric has

7

weak positive correlation with afferent and efferent coupling.

e Most of stability metrics including Proposed metrics has weak positive cor-
relation with martin cohesion and component cohesion. Where as instability
metric has weak negative correlation with martin cohesion and component

cohesion.

e Maintenance effort and future maintenance has weak positive correlation

with afferent and efferent coupling.

e Maintenance effort and future maintenance has weak negative correlation

with martin cohesion and component cohesion.

5.6 Principal Component Analysis

Principal Component Analysis (PCA) [39, 40] is a statistical tool that uses orthog-
onal transformation to identify and analyze underline relations and dimensions of
the input parameters. Here it is used to understand the underlying orthogonal
dimensions and the relationship between 13 different metrics; PSM metric suite,
PCII [16], PSDI [16], PNomStab [22], PCSM [5], PASM [21], Martin’s Cohesion
[27], Component Cohesion [54], afferent coupling and efferent coupling [27]. We
also performed PCA analysis for dimension reduction. We performed two PCA
analyis; one with all 13 metrics and second with only stability metrics. Due to
recommendation from literature and close coefficient values of PC 6, we applied

coefficient cut at 0.45.

78

0=d 0=d 0=d 0=d 0=d 0=d 0=d 0 =d | oouruLUIR\ or
LIP0- =Y | ‘€8¢°0- =Y | ‘€620 =Y | ‘TSV'0 =¥ | ‘TS€0- =Y | ‘Z¢1'0- =4 | ‘88T°0- =¥ | ‘S¥'0- =Y oIngN,
ﬁ 0=d n 0=d ﬁ 0=d u 0=d " 0=d ﬁ 0=d ﬁ 0=d n 0=d B —
6.L°0- =Y | ‘GgL'0- =¥ 9¢°0 =Y | ‘9060 =¥ | ‘TL0- =Y | ‘69¢°0- =¥ | ‘#8¢0- =¥ | ‘F£8°0- =4
0=d 0=d 0=d 0 =d 0=d 0=d 0=d 0=d Surgdnop) ol
‘R0€°0- =Y | FEL0- =Y | ‘8020 =¥ | ‘90£'0 =¥ | ‘88¢°0- =¥ | ‘162°0- =¥ | ‘9£T°0- =¥ | ‘98¢°0- =4 JUDISYH
0=d 0=d 0=d 0=d 0=d 0=d 0=d 0=d Surgdnop) o1
G6LT°0-=¥ | ‘61°0-=Y| FPI'0=Y | ‘G020 =¥ | ‘68T°0- =¥ | ¥90°0- =4 | ‘89T°0- =¥ | ‘161°0- =4 YUY
0=d 0=d 0=d 0=d 0=d 0=d 0=d 0=d uorsaqo) |-
FIC0 =Y | ‘9620 =Y | ¥¢C0- =4 | ‘Sg0-=¥| ‘6610 =4 | ‘6110 =Y 2000 =4 | ‘€020 =4 juouoduio))
0=d 0=d 0=d 0=d 0=d 0=d 0=d 0=d uorsaqo) |-
TITO =Y | ‘9¢T°0 =¥ | ‘6G1°0- =4 | ‘SST0-=¥ | ‘9¢T°0 =¥ | ‘990°0 =¥ | ‘9€0°0- =¥ | ‘S0T°0 =Y UrIe
n 0=d n 0=d ﬁ 0=d ﬁ 0=d n 0=d n 0=d ﬁ 0=d “ 0=d nsvd | 6
LE°0 =¥ | ‘TSC0 =M | ‘SPz0- =¥ | ‘TI€0- =¥ | ‘8050 =¥ | ‘L19°0 =4 | ‘€cc0 =¥ | ‘€1¢'0 =Y
n I n 0=d ﬁ 0=d ﬁ 0=d ﬁonm n 0=d ﬁ 0=d “ 0=d nsod | g
=d ‘T=¥| ‘8650 =¥ | ‘T1€0- =Y | ‘€1.°0- =4 80 =Y | ‘SPE0 =¥ | ‘Stc0=Y4 | ‘S¢80 =1
e ot M oTdy o 0md om0 Td 0 Td L VT qugmong | s
86C°0 =¥ | =d'T=4| ¥59°0- =¥ | ‘GLL0O- =¥ | '89¢°0 =¥ | ‘2820 =4 | ‘1620 =¥ | ‘7590 =Y
p 0=d n 0=d ﬁ T ﬁ 0=d p 0=d n 0=d ﬁ 0=d p 0=d asal o
T1€0- =¥ | $69°0- =4 | =d ‘T =¥ | ‘9L5°0 =¥ | ‘€6¢°0- =¥ | ‘€63°0- =¥ | ‘19¢°0- =¥ | ‘G68¢'0- =Y
p 0=d n 0=d n 0=d “ T ﬁ 0=d n 0=d ﬁ 0=d p 0=d moda | g
C1L0- =Y | ‘GLL0O-=¥ | 9L50=Y| =d'T=4| ‘T0L0-=¥ | ‘I¥¢°0- =4 | ‘9v2'0- =¥ | ‘7¢8°0- =4
“onm ﬁ 0=d ﬁ 0=d h 0=d ﬁ I ﬁ 0=d ﬁ 0=d ﬁ 0=d wsd | 7
80 =¥ | ‘89S0 =¥ | ‘€G¢°0- =¥ | ‘T0L0-=¥ | =d ‘T =¥ | CI90=¥| 9920 =¥ | ‘|F0 =Y
ﬁ 0=d ﬁ 0=d ﬁ 0=d h 0=d “ 0=d ﬁ I ﬁ 0=d h 0=d sraa | ¢
GPe'0 =¥ | 2L8¢0 =Y | ‘€62°0- =¥ | ‘T¥¢0- =¥ | TI190=¥ | =d ‘T=¥| ‘L920=¥| ‘29z 0 =Y
ﬁ 0=d “ 0=d ﬁ 0=d h 0=d “ 0=d “ 0=d h T h 0=d sar |z
8ZC'0 =¥ | ‘160 =Y | ‘19¢'0- =¥ | ‘OF¢’0- =¥ | 990 =¥ | 2920=¥ | =d ‘T =¥ | ‘2920 =Y
ﬁ 0=d “ 0=d ﬁ 0=d h 0=d “ 0=d “ 0=d ﬁ 0=d ﬁ I Od | 1
8780 =¥ | ‘G900 =¥ | ‘GR¢0- =¥ | ‘F¢80- =¥ | SFS0 =¥ | ‘©9z0 =¥ | L9z0 =¥ | =d ‘T =Y
| NSO | qeISWON | 1dSd | 110d | NSd | SIdd | SIdI | S0d |

"0 Aq peoerdar ore 10000 0 UeT)
sso[senfea J 230N ‘(T Med) 1I0je eouruajulew pue Suldnoo ‘uotseyoo ‘Ariqe)s adexped Jo sIsA[eur UOIJR[OLIO)) :¢'C 9[QR],

79

SS9

T 0=d 0=d 0=d 0=d 0=d 0 =d | oouruULUIR\ o1
=d‘T=¥| 6V50=4| ¥S¢0=Y| ‘6.L50=Y 'G0€°0- =Y | ‘€91°0- =Y | ‘¢0%°0- =4 oIngn,g
ﬁ 0=d ﬁ T n 0=d ﬁ 0=d h 0 ﬁ 0=d h 0=d r—
6V¢°0 =4 | =d'T=Y 9¢'0 =¥ | ‘6920 =Y | =d ‘2€0- =¥ | ‘€81°0- =4 | ‘'9¢¢°0- =Y
0=d 0=d T 0=d 0 0=d 0=d Surgdnop) or
75e°0 =4 9¢0=4| =d‘T=4] ‘90¢0 =Y | =d ‘9¢0- =¥ | ‘6L1°0- =Y | ‘€€ 0- =4 JUSISYH
0=d 0=d 0=d I 0=d 0=d 0=d Surgdnop) o1
‘6L20 =¥ | ‘6920=¥| ‘90c0=4| =d ‘T =Y ‘TET'0- =Y | ‘L50°0 =Y | ‘601°0- =4 YUY
0=d 0=d 0=d 0=d| I 0=d 0=d uomsouop |
‘G0e°0- =¥ | ‘2€0-=¥| ‘9¢°0- =Y | ‘TET0- =Y OvL0 =Y | ‘ZS10 =Y juouoduwio))
0=d 0=d 0=d 0=d 0=d I 0=d uomouop |
‘COT°0- =Y | ‘€81°0- =¥ | ‘6L1°0- =¥ | ‘L6500 =Y OpL0=4| =d‘T=¥| ‘¢L00=Y UrIe
0=d 0=d 0=d 0=d 0=d 0=d I nsvd | 6
‘202°0- =Y | '9¢¢°0- =¥ | ‘€¥€0- =¥ | ‘601°0- =4 TSTO0=4| ‘cL00=¥| =d°'T=Y
0=d 0=d 0=d 0=d 0=d 0=d 0=d nsod | g
LIV°0- =Y | '6LL°0- =¥ | ‘80€°0- =¥ | ‘6L1°0- =4 PIC0 =4 | ‘1110 =Y 2870 =4
s o | ‘zro =1 | vee0n o1 | e o | ‘oszo =i | ‘0pr0 o | ‘zepo —y | AESWONd | 2
€8¢°0- =¥ | ‘SL°0- =Y | 7€€0- =4 | ‘610-=Y 9¢z'0 =¥ | ‘98T°0 =¥ | ‘7S¢0 =M
0=d 0=d 0=d 0=d 0=d 0=d 0=d asda | 9
‘€60 =Y 960 =Y | ‘800 =¥ | F¥I0=Y T2 0- =Y | ‘681°0- =¥ | ‘S¥¢0- =4
0=d 0=d 0=d 0=d 0 0=d 0=d mod | ¢
TGP0 =Y | ‘9060 =¥ | ‘90£°0 =¥ | ‘G0Z'0 =Y | =d ‘G¢’0- =¥ | ‘GST°0- =¥ | ‘T1€°0- =4
0=d 0=d 0=d 0=d 0=d 0=d 0=d wed | 7
TGC0- =Y | ‘1L°0- =¥ | ‘88¢°0- =¥ | ‘681°0- =Y ‘6610 = | ‘921°0 =¥ | ‘050 =Y
0=d 0=d 0=d 0=d 0=d 0=d 0=d alam | ¢
TCT0- =Y | '692°0- =¥ | ‘TSC0- =Y | ‘790°0- =4 BIT0=Y| ‘9900 =¥ | ‘L19°0 =Y
0=d 0=d 0=d 0=d 0 0=d 0=d sar |z
‘RRT°0- =¥ | ‘F8'0- =¥ | ‘9ST°0- =¥ | '89T°0- =¥ | =d ‘L0°0 =¥ | '9¢0°0- =¥ | ‘€cc’0 =Y
0=d 0=d 0=d 0=d 0=d 0=d 0=d od | 1
CF0- =Y | ‘7E8°0- =Y | ‘98¢°0- =¥ | ‘161°0- =Y ‘02’0 = | ‘S0T°0 =¥ | ‘€10 =Y
otet Q0uURU surdnop surdno)) UOIS9T0)) UOISa[0))
OB - duo urjre NSvd
@::Sbh @pﬁﬁwz ﬁgopwmm pQ®H®ﬁ< juauo O [l 2

‘0 Aq pooerdar axe 100000 wey?
sonfea J 010N (g Med) 10Je souruejurew pue Surdnoo ‘uorseyoo ‘Aiqe)s oFesped Jo sISA[eUR UOIIRPLIO)) G 9[(R],

80

Table 5.5 presents PCA analysis results of 13 different stability, coupling and

cohesion metrics. Some analysis are as follows:

e PC 1: Afferent coupling has total influence on this principal component.

Hence Afferent coupling measure totally different dimension.

e PC 2: Efferent coupling has total influence on this principal component.

Hence Efferent coupling measure totally different dimension.

e PC 3 and 4: Martin cohesion and component cohesion share total influence
on these two principal component. Hence martin cohesion and component

cohesion measure same dimension but different from other metrics.

e Remaining Principal Components: We know that results of PCA are affected
if one metric has high variance and we know from table 5.2 that variance
of coupling metrics is too high and variance of cohesion metrics is also high
as compare to stability metrics. So for stability metrics we have performed

separate PCA analysis.

Table 5.5 presents our second PCA analysis results of that consist of only

stability metrics. Some analysis are as follow:

e PC 1 and 3: PASM and EPIS both are inter-package interaction stability

metric and share same dimension. Both have influence on PC 1 and 3.

e PC 2: This principal component is influence by four existing metrics PCII,

PSI, PNomStab and PASM.

81

e PC 4: This principal component is influence by two metric of proposed met-
rics; PCS and IPIS. This proves that proposed metrics cover new dimension

of package stability.

e PC 5, 6, 7 and 8 Remaining principal components are covered by more
than on stability metrics. In PC 5, 6 and 8, proposed metrics (PCS and
IPIS) share influence with existing stability metrics. This means that PCS

and IPIS also has relation with existing stability metrics.

5.7 Prediction using Regression

To evaluate and compare the ability of 13 different package stability, cohesion and
coupling metric to predict package maintenance effort and future maintenance
effort we have perform regression analysis. We used linear regression [55] [56] ,
quadratic regression [57] and polynomial regression (degree 3 and 4) [57]. Linear
regression assume lenear relationship between dependent and independent vari-
able and we know that we data is not linear. In order to make our data linear,
we have used square root function. Table 5.3 presents the results of mainte-
nance effort prediction in the form of Adj. R-squared values. Whereas table 5.4
presents the results of future maintenance effort prediction in the form of Adj.
R-squared values. Figure 5.1 provides details for both prdictions. Some analysis

of maintenance effort prediction are as follow:

e Polynomial regression with degree 4 produce best results.

82

. . . . gurdnop

0 0 0 0 0 100°0 500°0- 900°0 I 120°0 —

. surdnop)

0 0 0 0 0 0 0 0 120°0- I -

. . , woIsaT0))

100°0 600°0- 100°0 5200 200°0- 1£0°0- 6£9°0- 8920 800°0- 0| Juonodmon

. , . uoIsaT0))

€000 100°0 010°0 900°0- 820°0- 8€0°0- 8920 8€9°0 0 0 B

250°0- 6500 0£0°0 865°0- 897 °0- 7790 910°0- 1£0°0 100°0- 0 NSVd

€210 207 0- £EE0 £10°0- 0800 L60°0 0 £00°0 0 0 INSDd

P70 69T°0- 6680 0ST°0- 670 0920 110°0 5200 0 0] qeiswond

LL90 LEV0- 0L0°0 800°0- VP 0- v 0- 010°0- 920°0- 0 0 1asd

0ST°0- ZET0 720 6210 G57°0- 9¥z 0- 210°0- £20°0- 0 0 110d

170°0 190°0- YE10- 7LL0 g1z 0- 650 6100 100 0 0 SIdd

L2S 0 989°0 6570 5500 GET'0 60T°0 700°0- 900°0 0 0 SIdI

928 0- 16€°0- 200 8100 2880 161°0 L00°0 2000 0 0 SOd

o8ejuLOIg

00T 00T 00T 00T 00T | 666'66| 66666 | 86666 | G66'66| 9096 T

0 0 0 0 0 100°0 100°0 €000 0662 | 90926 | 9Sejuodmg

7000 5000 L00°0 €100 9€0°0 290°0 890°0 652°0 | 98G°T6C | 9T6'8GF6 | sonfep weSig
L otvod| 6vod| 8vod| lvod| o9vod| cvod| vvod| evod| evod| 1vDd|

"SOLIJOW UOISOY 0o pue Surdnod yim sisAeue juouoduwod redmoulld :G ¢ o[qe],

83

910°0- 0 160°0- 950°0 62070 L6G°0- oLy 0- €r9°0 INSVd
G68°0 200 e10 00¥°0- G660 210°0- 6,070 860°0 NSO
151°0- 119°0 P10 ZL1°0- 160" 9F1°0- LLY0 L0 qeISTONJ
€9%°0- GF1°0- G190 687°0- 2,070 L00°0- TF50- 12 0- 1asd
820°0 PLLO 1ST0- GeT'0 €L2°0 Sz1°0 €Y 0- 162°0- 11Dd
120°0- 900°0- 1700 650°0- a1 0- 9LL°0 062 0- €150 SIdd
9100 7L0°0- 8250 189°0 L8P0 $C0°0 FeT°0 0110 SIdI
G9¥°0- 800°0 130°0- 81 °0- F0L0 1200 6,370 86T°0 SOd
98eIUdIoJ
001 8C0°66 | €¢086 | L9066 | LOT'I6 | LOT'98 | G6LCL 6L g
296°0 G101 186G 006°€ 090G eI 0T JC6°L0 | 8e8 Ly 08eju0DI0 g
100°0 100°0 7000 5000 20070 €10°0 1£0°0 €90°0 sonfe) ULSIH
svod| Lvod| ovod| svod| wvvod| evod| evdod| 1vOd |

"SOLIJOWL UOISOy0o pue Surdnod noyim sisAeur juouoduwod redmoutl :9°¢ 9[qe],

84

e Accuracy of coupling metrics for maintenance effort prediction is very low.

e Accuracy of cohesion metrics for maintenance effort prediction is very low.

e Prediction accuracy of PSM stability metric is less as compared to accuracy
of combined five existing stability metric. Still when combine with other

stability metrics, PSM metric suite increase the accuracy with a good value.

Some analysis of future maintenance effort prediction are as follow:

e Polynomial regression with degree 4 produce best results.

e Coupling and cohesion metrics also produce good results in comparison.

e Although accuracy of PSM metric suite is low but when we add it to other

metrics, it improves the accuracy. Hence PSM metric suite is covering new

dimension and helping to increase accuracy.

Table 5.7: Maintenance Effort Prediction using Regression. Table contain ad-
justed R-squared values.

Linear Quadratic Polynorpial . Polynorpial :
Regression | Regression Regression with | Regression with
degree 3 degree 4
All Metrics 0.499 0.61 0.64 0.652
Coupling Metrics 0.117 0.142 0.16 0.17
Cohesion Metrics 0.0833 0.15 0.181 0.192
All Stability Metric 0.435 0.526 0.535 0.549
PSM Metrics Suite 0.256 0.368 0.384 0.41
All Five Stability
Metrics Other than 0.409 0.479 0.5 0.51
PSM

85

Table 5.8: Future Maintenance Effort Prediction using Regression. Table contain
adjusted R-squared values.

Linear Quadratic Polynormal . Polynorplal .
Reoression | Reeression Regression with | Regression with
& & degree 3 degree 4
All Metrics 0.265 0.305 0.331 0.343
Coupling Metrics 0.186 0.1533 0.1619 0.1703
Cohesion Metrics 0.121 0.1278 0.1724 0.1841
All Stability Metric 0.17 0.1575 0.1851 0.207
PSM Metrics Suite 0.0946 0.1026 0.1207 0.1306
All Five Stability
Metrics Other than 0.156 0.1379 0.1677 0.1876
PSM
0.7
=g ———— 0.652
0.5 - 'G-.::-:-
0.4
0ss1 0.243
03 e =SS . === Maintenance Effort
-
' m— Future Maintenance Effort
0.2
0.1
I:I T T T 1
Linear Cuadratic Polynamial Faolynomial
Regressian Regression Regression with Regression with
degree 3 degree 4

Figure 5.1: Prediction of maintenance effort and future maintenance effort using

regression.

86

5.8 Prediction using Classification

Classification is use to predict discrete or categorical data. In our case we have
continues data (maintenance effort and future maintenance effort). To convert our
data into discrete data, we have use k-Mean clustering. We created 10 clusters
using k-Mean clustering [58] and treated each cluster as separate class. Then we
used basic classifies, Nave Bayes classifier [59] to analyze which stability metric
produce better results. Table 5.9 presents the results of prediction in the form
of accuracy percentages. After basic analysis and finding best combination, we
used six classification technique and analyze there performance. Analysis of Nave

Bayes classifier are bellow:

e Accuracy of Proposed metric suite is almost equal to accuracies of other

stability metrics in prediction of maintenance effort.

e Accuracy of Proposed metric suite is better that the accuracies of other

stability metrics in prediction of future maintenance effort.
e Interestingly when we combine different metrics, our accuracy reduces.

e K-mean cluster data using distances and does not make sure same size of
clusters. Means K-means combine all data points that are near and merge
them in one cluster. Our data we know does not follow normal distribution
and has non-parametric nature. So based of data nature, different clustering
should be used. Discretization using K-means is affecting the performance

of stability metrics and producing strange results.

87

Table 5.9: Summary of the prediction analysis in the form of accuracy using Naive

Bayes Classifier.

Maintenance Effort Future Maintenance
Prediction Effort Prediction
All Stability Metric 67.984% 73.164%
PSM Metrics Suite 67.513% 78.543%
All Five Stability
Metrics Other than 69.942% 78.22%
PSM

From above analysis of prediction using Nave Bayes classifier, we can say that
proposed metrics (PCS, IPIS and EPIS) are producing better results. So in our
next analysis we use proposed metrics to predict maintenance effort and future
maintenance effort using basic setup of six different classifier. Table 5.10 and
figure 5.2 provide details of six classification techniques accuracy for prediction
of maintenance effort and future maintenance effort. Results of those six classifier

are given below:

e Nave Bayes [59]:For prediction of maintenance effort nave bayes produce
69.513% accuracy. Whereas for prediction of future maintenance effort it

produce 78.543% accuracy.

e Decision Tree [60]:For prediction of maintenance effort decision tree pro-
duce 71.465% accuracy. Whereas for prediction of future maintenance effort

it produce 81.203% accuracy.

e Fuzzy Rules [61]:For prediction of maintenance effort fuzzy rules produce
72.981% accuracy. Whereas for prediction of future maintenance effort it

produce 81.59% accuracy.

88

e Random Forest [62]:For prediction of maintenance effort random produce
71.719% accuracy. Whereas for prediction of future maintenance effort it

produce 83.51% accuracy.

e Neural Network [63]:For prediction of maintenance effort neural network
produce 71.646% accuracy. Whereas for prediction of future maintenance

effort it produce 84.095% accuracy.

e Support Vector Machine (SVM)[64]:For prediction of maintenance ef-
fort SVM produce 74.148% accuracy. Whereas for prediction of future main-

tenance effort it produce 84.268% accuracy.

So from above results we can easily say tha SVM out perform all other classifier

in prediction of maintenance effort and future maintenance effort.

Table 5.10: Summary of the prediction analysis in the form of accuracy using Six
Classifier.

Maintenance Effort Future Maintenance
Effort
Nave Bayes 69.513 78.543
Decision Tree 71.465 81.203
Fuzzy Rules 72.981 81.59
Random Forest 71.719 83.51
Neural Network 71.646 84.095
SVM 74.148 84.268

89

an
=l s = =g gos =M 54 265
J 1 pas=M-ET.50 =t
an
=43
74148
70 _ &
a0
50
i [@inte nance
an Effart
= = Future
30 Mainte nance
Effort
20
10
I:I T T T T T 1
Maive Baves Decision Fuzzy Rules Random M eural S% I

Tree Forest M etwweark

Figure 5.2: Prediction of maintenance effort and future maintenance effort using

regression.

90

CHAPTER 6

CONCLUSION AND FUTURE

WORK

6.1 Discussion

In this study, new PSM metric suite for package stability is proposed. It mea-
sures different stability aspects of a package. PCS calculates the change in the
contents of a package. In the calculation, it measures the change in the contents
of classes and interfaces. This metric mainly helps to understand the change in
functionality of a package. IPIS calculates the change in the connections of same
package contents (classes and interfaces). It can be used to judge the change in
the cohesion of a package. Low IPIS means that a lot of package connections
are change and testing of the package is required. EPIS measures the change in
external connections of package contents (classes and interfaces) with contents

(classes and interfaces) of other packages. It helps to understand the change in

91

overall architecture of the system and also the coupling of the package. Low EPIS
means that a lot of external connections are removed, so testing of the package
is required. PSM Metric suite is valid to measure according to Kitchenham et al.
[1] framework. Kitchenham framework validates that it holds the representation
condition and it can easily be used for stability comparison between packages.
We have used unchanged count, because our target was to calculate stability.
Using our defined properties and formula instability of a package can also be
calculated by counting changed properties instead of unchanged. In order to

avoid calculation use below formula to calculate instability.

Instability = 1 — Stability

In empirical validation, correlation analysis with maintenance effort is per-
formed. Maintenance effort counts line of codes that are modified, deleted or
added in new version. Analysis shows that PSM metric suite has good negative
correlation with maintenance effort. Results also shows that PCS has the best cor-
relation with maintenance effort among all content based stabilities, while EPIS
has the best correlation with maintenance effort among all interactions based sta-
bilities. Hence we can say that PSM metric suite is a valid package stability metric
suite.

We also performed correlation analysis with existing stability metrics. Pur-
pose of this analysis was to identify relationship between PSM stability metric

and six existing stability metrics. Martin’s package instability metric uses dif-

92

ferent definition of stability. It just measure the dependency of other packages
on a package using coupling measurements only and does not compare two ver-
sions of software. Analyses shows that only PSM metric suite has no correlation
with Package stability. Our propose package content stability (PCS) has good
correlation relationship with two content-based stabilities PCSM and PCII, while
PCS has weak correlation with other two content-based stabilities PNomStab and
PSDI. Reason is that PNomStab and PSDI consider changes only in number of
methods and name of classes respectively.

Our proposed inter-package interaction based stability metric, EPIS has mod-
erate correlation with another inter-package interaction based stability metric
PASM. This relationship is not strong because PASM considers only association
interaction between classes while EPIS considers interaction based on inheritance,
aggregation, association, and dependency. EPIS also has weak correlation rela-
tion with PSDI and PNomStab. Reason for this relationship is that PNomStab
considers changes in the number of methods, while PSDI considers changes in
name of classes. Changes in methods and name of classes affect the inter-package
interactions.

Our proposed intra-package interaction based stability metric, IPIS does not
has strong or moderate correlation with any existing metric because no existing
metric measure changes in intra-package interactions. Whereas IPIS also has weak
correlation relation with PSDI and PNomStab. Reason for this relationship is that

PNomStab considers changes in the number of methods, while PSDI considers

93

changes in name of classes. Changes in methods and name of classes affect the
intra-package interactions.

Principal component analysis is used to determine that whether PSM metric
suite cover new dimension and aspect of package stability or not. PCA results
shows that PCS covers a new dimension in content-based stability of package.
Whereas EPIS and IPIS also present new dimension of interaction-based stability
metric. Finally prediction analysis of maintenance effort using linear regression
shows that PSM metric suite improve the prediction accuracy. It also shows that
from content point of view PCS best predict maintenance effort whereas from
interaction point of view EPIS best predict maintenance effort. We also perform
experiments to analyze the prediction performance of regression and classifica-
tion techniques. From regression techniques we used linear regression, quadratic
regression, polynomial regression with degree 3 and polynomial regression with
degree 4. Polynomial regression with degree 4 produces best result as compared
to other regression technique. From classification techniques we used Nave Bayes
, decision tree, fuzzy rule, random forest, neural network and support vector ma-
chine. We found that SVM out perform other classification technique in prediction

of maintenance effort and future maintenance effort.

94

6.2 Thread to Validity

6.2.1 Construct Validity

Construct validity means the experiment design decision can effect our results.

Below are some of the construct validity threads.

e We ignored addition changes in proposed metrics, so we may have lost some

useful information because of it.

e According to recommendation of different researchers and popularity of
maintenance effort, we have used it as indicator of maintainability. This
metric is validated by multiple researchers in different studies using differ-
ent techniques. But still this is purely limited to change in line of code and

different line of code may have different effect.

6.2.2 External Validity

Thread that are not in our control and can be caused by external factors. Below

are some external validity threads.

e A large number of packages of software remains stable. This would have

influence our analysis.

e Our experiments are limited to Java projects only. This can restrict our

result and its implications to Java only.

e In our experiments we have used open source software. But we make sure

95

that they are widely used, famous, continuously evolving and belong to

different domains.

e We have used Knime tool for classification and regression analysis which is
very famous, easy to use and have a lot of good implemented techniques.

Errors in Knime can effect our results.

6.3 Conclusion

Stable software architect reduces maintenance effort and cost. Packages are the
intermediate level entities in object oriented design and help alot to make sys-
tem architecture simple and understandable. So packages with good stability will
increase the overall stability of system and reduce maintenance effort and cost.
In our study, we have proposed metric suite to calculate package stability by
different aspects. These aspects includes package contents, internal package con-
nections and external package connections. Our metric suite cover more aspects
and factors, so it will provide better identification of stability.

We have studied and proposed package stability metric for three aspects con-
tents, internal package connections and external package connections. For calcula-
tion of package content stability we have studied and included eight class/interface
properties/factors that can affect the stability of package. These factors repre-
sents structure of package elements so change in this structure will effect package
stability. For calculations of package internal and external connections stability

we have identified four type of possible relations between classes, two type of pos-

96

sible relations interfaces and four type of relations between classes and packages.
These relations include inheritance, aggregation, composition, dependency and
association. Change in these relations will effect the overall design of system and
in result will effect the stability and maintenance.

We have validated our PSM metric suite theoretically using two different
frameworks. For empirical validation of our PSM metric we have used five open
source java software from diverse domain. We have found negative correlation of
our metric with maintenance effort. We have also found positive correlation with
existing package stability metric which are based on changes in line of code and

class names.

6.4 Future Work

Future work of our research are mentioned below:

e Study can be conducted to investigate relationship of proposed stability
metrics with other software characteristics like understandability, testability

and software faults.

e Prediction of testability and software faults using proposed metrics can be

done.

e We have assigned same weight to all properties, so study to find the affect

of different weights can also be conducted.

e Study to define thresholds for proposed metric can be conducted.

97

1]

[5]

(6]

REFERENCES

B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Towards a framework for soft-
ware measurement validation,” IEEE Transactions on Software Engineering,

vol. 21, no. 12, pp. 929-944, Dec 1995.

Y. S. Hassan, Measuring software architectural stability using retrospective

analysis. ProQuest, 2007.

J. A. Dallal and L. C. Briand, “An object-oriented high-level
design-based class cohesion metric,” Information and Software Tech-
nology, vol. 52, no. 12, pp. 1346 — 1361, 2010. [Online]. Available:

http://www.sciencedirect.com /science/article/pii/S0950584910001552

N. Fenton and J. Bieman, Software metrics: a rigorous and practical ap-

proach. CRC Press, 2014.

M. Alshayeb, M. Naji, M. O. Elish, and J. Al-Ghamdi, “Towards measuring

object-oriented class stability,” IET software, vol. 5, no. 4, pp. 415424, 2011.

J.-C. Chen and S.-J. Huang, “An empirical analysis of the impact of software

development problem factors on software maintainability,” Journal of

98

[10]

[11]

[13]

Systems and Software, vol. 82, no. 6, pp. 981 — 992, 2009. [Online]. Available:

http://www.sciencedirect.com /science/article/pii/S0164121208002793

M. Alshayeb, “On the relationship of class stability and maintainability,”

IET Software, vol. 7, no. 6, pp. 339-347, December 2013.

M. E. Fayad and A. Altman, “Thinking objectively: An introduction to
software stability,” Commun. ACM, vol. 44, no. 9, pp. 95—, Sep. 2001.

[Online]. Available: http://doi.acm.org/10.1145/383694.383713

R. Martin, “Stability—c++ report,” Tech. rep, Tech. Rep., 1997.

N. L. Soong, “A program stability measure,” in Proceedings of the 1977
Annual Conference, ser. ACM "77. New York, NY, USA: ACM, 1977, pp.

163-173. [Online]. Available: http://doi.acm.org/10.1145/800179.810197

S. S. Yau and J. S. Collofello, “Some stability measures for software main-
tenance,” IEEFE Transactions on Software Engineering, vol. SE-6, no. 6, pp.

545-552, Nov 1980.

M. O. Elish and D. Rine, “Investigation of metrics for object-oriented design
logical stability,” in Software Maintenance and Reengineering, 2003. Proceed-

ings. Seventh European Conference on, March 2003, pp. 193-200.

M. Fayad, “Accomplishing software stability,” Commun. ACM,
vol. 45, mno. 1, pp. 111-115, Jan. 2002. [Online]. Available:

http://doi.acm.org/10.1145/502269.502308

99

[14]

[15]

[16]

[18]

M. E. Fayad, “How to deal with software stability,” Commun.
ACM, vol. 45, mno. 4, pp. 109-112, Apr. 2002. [Online]. Available:

http://doi.acm.org/10.1145/505248.505278

D. Grosser, H. A. Sahraoui, and P. Valtchev, “Predicting software stabil-
ity using case-based reasoning,” in Automated Software Engineering, 2002.
Proceedings. ASE 2002. 17th IEEE International Conference on, 2002, pp.

295-298.

W. Li, L. Etzkorn, C. Davis, and J. Talburt, “An empirical
study of object-oriented system evolution,” Information and Software
Technology, vol. 42, no. 6, pp. 373 — 381, 2000. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0950584999000889

M. Alshayeb and W. Li, “An empirical study of system design instability
metric and design evolution in an agile software process,” Journal of Systems
and Software, vol. 74, no. 3, pp. 269 — 274, 2005. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S016412120400007X

A. AbuHassan and M. Alshayeb, “A metrics suite for uml model
stability,” Software € Systems Modeling, pp. 1-27, 2016. [Online]. Available:

http://dx.doi.org/10.1007 /s10270-016-0573-6

M. Ahmed, R. Rufai, J. AlGhamdi, and S. Khan, “Measuring architectural
stability in object oriented software,” Stable Analysis Patterns: A True Prob-

lem Understanding with UML, p. 21, 2004.

100

[20]

[21]

22]

23]

[25]

L. Aversano, M. Molfetta, and M. Tortorella, “Evaluating architecture sta-
bility of software projects,” in 2013 20th Working Conference on Reverse

Engineering (WCRE). 1EEE, 2013, pp. 417-424.

S. A. Ebad and M. A. Ahmed, “Measuring stability of object-oriented soft-

ware architectures,” IET Software, vol. 9, no. 3, pp. 76-82, 2015.

D. Rapu, S. Ducasse, T. Girba, and R. Marinescu, “Using history information
to improve design flaws detection,” in Software Maintenance and Reengineer-
ing, 2004. CSMR 2004. Proceedings. Fighth European Conference on, March

2004, pp. 223-232.

D. Grosser, H. A. Sahraoui, and P. Valtchev, “An analogy-based approach for
predicting design stability of java classes,” in Software Metrics Symposium,

2003. Proceedings. Ninth International, Sept 2003, pp. 252-262.

H. M. Olague, L. H. Etzkorn, W. Li, and G. Cox, “Assessing design
instability in iterative (agile) object-oriented projects,” Journal of Software
Maintenance and FEvolution: Research and Practice, vol. 18, no. 4, pp.

237-266, 2006. [Online]. Available: http://dx.doi.org/10.1002/smr.332

Y. Zhao, Y. Yang, H. Lu, J. Liu, H. Leung, Y. Wu, Y. Zhou, and
B. Xu, “Understanding the value of considering client usage context
in package cohesion for fault-proneness prediction,” Automated Software
Engineering, vol. 24, no. 2, pp. 393-453, Jun 2017. [Online]. Available:

https://doi.org/10.1007/s10515-016-0198-6

101

[26]

[27]

28]

[29]

[32]

A. Tripathi and D. S. Kushwaha, “A metric for package level coupling,”
CSI Transactions on ICT, vol. 2, no. 4, pp. 217-233, Jan 2015. [Online].

Available: https://doi.org/10.1007/s40012-015-0061-0

R. C. Martin, Agile Software Development: Principles, Patterns, and Prac-

tices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

J. Garland, R. Anthony, and B. Lawrence, “Accomplishing software stabil-

ity,” in Workshop on Accomplishing Software Stability OOPSLA, 1999.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEFE Transactions on Software Engineering, vol. 20, no. 6, pp. 476—

493, Jun 1994.

S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software library
stability through historical version analysis,” in 2012 28th IEEE International

Conference on Software Maintenance (ICSM), Sept 2012, pp. 378-387.

M. Alshayeb, Y. Eisa, and M. A. Ahmed, “Object-oriented class stability
prediction: A comparison between artificial neural network and support
vector machine,” Arabian Journal for Science and Engineering, vol. 39, no. 11,
pp. 7865-7876, 2014. [Online]. Available: http://dx.doi.org/10.1007/s13369-

014-1372-4

K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna, “From retrospect

to prospect: Assessing modularity and stability from software architecture,”

102

[33]

[34]

[36]

[37]

in 2009 Joint Working IEEE/IFIP Conference on Software Architecture Eu-

ropean Conference on Software Architecture, Sept 2009, pp. 269-272.

J. Bansiya, “Evaluating framework architecture structural stability,”
ACM Comput. Surv., vol. 32, no. les, Mar. 2000. [Online]. Available:

http://doi.acm.org/10.1145/351936.351954

M. Alenezi, “Software architecture quality measurement stability and un-
derstandability,” INTERNATIONAL JOURNAL OF ADVANCED COM-

PUTER SCIENCE AND APPLICATIONS, vol. 7, no. 7, pp. 550-559, 2016.

F. Handani and S. Rochimah, “Relationship between features volatility and
software architecture design stability in object-oriented software: Prelimi-

)

nary analysis,” in 2015 International Conference on Information Technology

Systems and Innovation (ICITSI), Nov 2015, pp. 1-5.

E. Constantinou and I. Stamelos, “Architectural stability and evo-
lution measurement for software reuse,” in Proceedings of the 30th
Annual ACM Symposium on Applied Computing, ser. SAC ’'15. New
York, NY, USA: ACM, 2015, pp. 1580-1585. [Online]. Available:

http://doi.acm.org/10.1145/2695664.2695895

M. Alenezi and F. Khellah, “Evolution impact on architecture stability in

open-source projects,” International Journal of Cloud Applications and Com-

puting (IJCAC), vol. 5, no. 4, pp. 24-35, 2015.

103

[38] M. Mattsson and J. Bosch, “Stability assessment of evolving industrial object-
oriented frameworks,” Journal of Software Maintenance: Research and Prac-

tice, vol. 12, no. 2, pp. 79-102, 2000.

[39] S. Wold, K. Esbensen, and P. Geladi, “Principal component anal-
ysis,” Chemometrics and Intelligent Laboratory Systems, vol. 2,
no. 1, pp. 37 — 52, 1987, proceedings of the Multivariate Statis-
tical Workshop for Geologists and Geochemists. [Online]. Available:

http://www.sciencedirect.com/science/article /pii/0169743987800849

[40] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp.

433-459, 2010. [Online]. Available: http://dx.doi.org/10.1002/wics.101

[41] K. H. Zou, K. Tuncali, and S. G. Silverman, “Correlation and simple linear

regression,” Radiology, vol. 227, no. 3, pp. 617-628, 2003, pMID: 12773666.

[42] “Buddi - https://sourceforge.net/projects/buddi/.” [Online]. Available:

https://sourceforge.net /projects/buddi/

[43] “Jhotdraw - https://sourceforge.net/projects/jhotdraw/.” [Online]. Avail-

able: https://sourceforge.net/projects/jhotdraw/

[44] “Kolmafia - https://sourceforge.net/projects/kolmafia/.” [Online|. Available:

https://sourceforge.net /projects/kolmafia/

[45] “Talend - https://www.talend.com/.” [Online]. Available:
https://www.talend.com/

104

[46]

[47]

[48]

[49]

[50]

[51]

“Unitime - http://www.unitime.org/.” [Online]. Available:

http://www.unitime.org/

W. Li and S. Henry, “Object-oriented metrics that pre-
dict maintainability,” Journal of Systems and Software,
vol. 23, mno. 2, pp. 111 - 122/ 1993. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/016412129390077B

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter, T. Meinl,
P. Ohl, K. Thiel, and B. Wiswedel, “Knime - the konstanz information miner:
Version 2.0 and beyond,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 26-31,

Nov. 2009. [Online|. Available: http://doi.acm.org/10.1145/1656274.1656280

“Javaparser - https://github.com/javaparser/javaparser.” [Online]. Avail-

able: https://github.com/javaparser/javaparser

J. Hauke and T. Kossowski, “Comparison of values of pearson’s and
spearman’s correlation coefficients on the same sets of data,” Quaestiones
Geographicae, vol. 30, no. 2, p. 87, 06 2011, copyright - Copyright
Versita Jun 2011; Last updated - 2016-10-08. [Online]. Available:

https://search.proquest.com/docview/13239841927accountid=27795

V. Klema and A. Laub, “The singular value decomposition: Its computation
and some applications,” IEEFE Transactions on Automatic Control, vol. 25,

no. 2, pp. 164-176, Apr 1980.

105

[52]

[53]

[54]

[55]

[56]

[57]

A. B. Nassif, D. Ho, and L. F. Capretz, “Towards an early software estimation
using log-linear regression and a multilayer perceptron model,” Journal of
Systems and Software, vol. 86, no. 1, pp. 144 — 160, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0164121212002221

S. Almugrin, W. Albattah, and A. Melton, “Using indirect coupling
metrics to predict package maintainability and testability,” Journal of
Systems and Software, vol. 121, pp. 298 — 310, 2016. [Online]. Available:

http://www.sciencedirect.com /science/article/pii/S016412121600056X

G. G.S. G.B. L. . M. M. Vernazza, T., “Defining metrics for software compo-
nents.” Proceedings of the World Multiconference on Systemics, Cybernetics
and Informatics. [Online]. Available: http://www.jsoftware.us/volll/166-

CS006.pdf

X. Yan and X. G. Su, Linear Regression Analysis: Theory and Computing.

River Edge, NJ, USA: World Scientific Publishing Co., Inc., 2009.

S. Chatterjee and A. S. Hadi, “Influential observations, high leverage points,
and outliers in linear regression,” Statistical Science, vol. 1, no. 3, pp.

379-393, 1986. [Online]. Available: http://www.jstor.org/stable/2245477

R. M. Heiberger and E. Neuwirth, Polynomial Regression. New York, NY:

Springer New York, 20009.

106

[58]

[59]

[60]

[61]

[62]

[63]

A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed numeric
and categorical data,” Data and Knowledge Engineering, vol. 63, no. 2, pp.

503 — 527, 2007.

N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,”
Machine Learning, vol. 29, no. 2, pp. 131-163, Nov 1997. [Online]. Available:

https://doi.org/10.1023/A:1007465528199

S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier method-
ology,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3,

pp. 660-674, May 1991.

P. P. Angelov and X. Zhou, “Evolving fuzzy-rule-based classifiers from data
streams,” IEEFE Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 1462-1475,

Dec 2008.

V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P.
Feuston, “Random forest: a classification and regression tool for compound
classification and gsar modeling,” Journal of Chemical Information and Com-

puter Sciences, vol. 43, no. 6, pp. 1947-1958, 2003, pMID: 14632445.

H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face de-
tection,” IEEFE Transactions on Pattern Analysis and Machine Intelligence,

vol. 20, no. 1, pp. 23-38, Jan 1998.

107

[64] J. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293-300, Jun 1999.

[Online]. Available: https://doi.org/10.1023/A:1018628609742

108

Vitae

Name: Jawad Javed Akbar Baig

Nationality: Pakistani

Date of Birth: 25/07/1990

Email: jawadjavedbaig@gmail.com

Permenant Address: 108 Atta Turk Block, Garden Town, Lahore, Pakistan

Academic Background: Jawad Javed Akbar Baig completed his Bachelor
degree in Software Engineering from University of the Punjab in July 2012.
He worked in industry as Software Engineer at Techlogix for two year and
as Senior ERP Consultant at Confiz for one year. In August 2015, he joined

King Fahd University of Petroleum and Minerals.

109

