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THESIS ABSTRACT

NAME: Azzam Abdulaziz Alfarraj

TITLE OF STUDY: Edge Detection Using Discrete Wavelet Transform

MAJOR FIELD: Mathematics

DATE OF DEGREE: December 2017

The edge detection problem plays an important role in many applications. It

helps in extracting the main features of an image and specifying its constituent

parts. In the literature, this problem has been tackled using different mathemati-

cal approaches such as gradient-based detectors and minimization-based approach.

Also, the continuous wavelet transform approach is involved in many edge detec-

tion algorithms. The cornerstone in all approaches is to look for points where the

intensity of the image has a jump discontinuity. Applying the discrete wavelet

transform in two dimensions to an image will result in large detail coefficients at

the parts that have edges. The objective of this thesis is to propose a rigorously

analysed algorithm for edge detection using discrete wavelet transform in two di-

mensions. To the best of our knowledge, this algorithm has not been treated with

rigor in the literature.
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CHAPTER 1

INTRODUCTION

The edge detection problem plays an essential role in many applications. In fact,

it is a field on its own in image processing [1]. Moreover, it is the first step in

many computer vision applications, [2]. It is used mainly for feature extraction [3]

or for image segmentation [4], [5]. Edges identify the significant information in an

image, which enable the machine to separate its constituent parts. Additionally,

it reduces the amount of data stored and preserves the main structural properties

of the image for further processing [1], [6]. Other applications include medical

imaging [7], [8], face recognition, automatic control of traffic systems, obstacle

recognition, etc. [1], [2]

Before we start, it is worth noting that, mathematically speaking, an image is

a function of two variables u(x, y) defined on a rectangle. If grey-scale images are

considered, as in this work, u(x, y) is a grey-scale level that represents the intensity

of the image color at the point (x, y), rescaled to be a value in an interval [a, b]

for prespecified real numbers a and b. This rescaling process is admissible since

1



images are bounded functions [9].

The cornerstone in edge detection techniques and algorithms is to look for

points where the image intensity changes sharply. An edge is a sign for discon-

tinuity [4]. Roughly speaking, it is a segment of connected pixels separating two

different regions in the image [1], [4]. Indeed, this definition of an edge is not

mathematically rigorous and it may lead to detecting false edges as in the case of

textures [9]. This is why in the very early work on this problem, researchers only

considered homogeneous (without texture) images [10].

The main challenges in edge detection include detecting false edges, missing

edges in low contrast images, high computational time, sensitivity of noise, missing

edges of objects with small change of intensity [2]. Amazingly, some detectors face

problems in detecting edges of high-definition images. The algorithm proposed

in this thesis performs better than most of the edge detectors when applied to

high-definition images.

The discrete wavelet transform can be applied using plenty of wavelet families

such as Haar, Daubechies, Mexican hat, etc. In this thesis we will focus on the

Haar wavelet which produced the best results in detecting edges. This is because

the abrupt change in its definition matches the discontinuity represented by an

edge in an image. Furthermore, it does not mollify the image as other smoother

wavelets do.
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CHAPTER 2

LITERATURE REVIEW

2.1 Gradient-based Methods

Gradient-based methods for detecting edges were commonly used in applications

since 1960’s. Roberts [11] presented an operator in his Ph.D thesis where he used

the following two 2× 2 kernel matrices

Dx =

1 0

0 −1

 Dy =

 0 1

−1 0


to compute the spatial gradient components of the image Gx and Gy. Gx and

Gy stand for the difference in the x-direction and y-direction respectively. These

components are used to get the gradient magnitude and angle as follows:

|G| =
√
G2

x +G2
y θ = arctan(

Gx

Gy

)− 3π

4
.

3



Then some threshold T is set to mark the edge pixels wherever |G| > T . The

angle θ represents the direction perpendicular to the edge line.

For further improvements, Sobel [12] and Prewitt [13] presented two kernels

as 3× 3 matrices as follows:

Sobel kernel matrices:

Dx =


−1 0 1

−2 0 2

−1 0 1

 Dy =


1 2 1

0 0 0

−1 −2 −1



Prewitt kernel matrices:

Dx =


−1 0 1

−1 0 1

−1 0 1

 Dy =


1 1 1

0 0 0

−1 −1 −1



The gradient magnitude is computed as in Robert’s while the gradient angle is

θ = arctan(
Gx

Gy

).

Anyway, all three operators were sensitive to noise.

In 1980, Marr and Hildreth [14] introduced an operator that convolves the

image u with a Gaussian function G and then applies the Laplacian operator∇2 to

4



the convolved image. The algorithm then looks for the points where ∇2(u∗G) = 0

to identify points of local extrema of the gradient. The idea was dominating at

that time [1].

In 1986, John Canny presented an approach where edges are marked as max-

ima in gradient magnitude of a Gaussian-smoothed image [15]. The image u is

convolved with a Gaussian function G then the gradient magnitude |∇(u ∗G)| is

computed to detect edges. Bergholm [16] used Canny’s operator and he succeeded

to differentiate between shadow contours and perfect ones [17]. Due to its great

advantages, Canny edge detector is still used widely after some improvements in

nowadays image processing techniques [1].

2.2 Minimization-based Methods

Mumford and Shah introduced a different approach to image segmentation in

1989 [18]. It is based on a minimization problem. They look for a pair (u,K) that

minimizes the following functional

F (u,K) =

∫
Ω\K

(u− u0)2dx+ α

∫
Ω\K
|∇u|2dx+ β

∫
K

dσ

where Ω = [0, 1]2 , u0 the initial image, K ⊂ Ω is a set of discontinuities and α

and β are non-negative parameters. In fact, if we drop the second term and reject

5



the trivial solution, we would get the reduced Mumford and Shah functional

E(u,K) =

∫
Ω\K

(u− u0)2dx+ β

∫
K

dσ.

This particular case gained some interest and Mumford and Shah [18], Morel and

Solimini [19] [20], and Massari and Tamanini [21] devoted some work to it. Indeed,

this approach will segment the image into its constituent pieces and K will present

the edges in the image.

2.3 Wavelet Transform-based Methods

Stephane Mallat et al. [22] implemented Canny’s approach with the conjugate

of a convolution kernel θ(x, y), instead of a Gaussian function. Practically, it

was computed with two wavelets ψ1 and ψ2 that are partial derivatives of the

convolution kernel θ [9]

ψ1 = −∂θ
∂x

and ψ2 = −∂θ
∂y
.

The algorithm computes the wavelet transform components of an image and the

result is proportional to the gradient sought after. More explicitly,

Wu(x, 2j) = 2j∇(u ∗ θ̄),

6



where Wu(a, 2b) is the continuous wavelet transform of a function f at scale b and

location a.

In 2016, Monika published a paper [23] discussing image edge detection using

the discrete wavelet transform. The paper was descriptive and it was not clear

what algorithm was used. Indeed, she talked about a threshold to get the high

detail coefficients but she never specified the threshold or even the way how to

arrive at it.

In 2005, Chaganti [17] described how to use four kinds of wavelets, Haar,

Daubechies, Coifman and biorthogonal, to detect edges. His thesis was also de-

scriptive, as he was an engineering student. Moreover, he did not state a clear

algorithm.
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CHAPTER 3

PRELIMINARIES

In this chapter, we will go through many notions and results needed in this thesis.

First, we will give the definition of a wavelet. Then, we will give some results

of vector valued inner products. Also, we will go through some function spaces

needed in our work and the convergence of sequences of functions in these spaces.

After that, we will give a brief about the Haar system since our work depends

heavily on the Haar system. Finally, we will talk about the notion of multireso-

lution analysis.

3.1 Wavelet Theory

Definition 3.1 (Wavelet) A function ψ(x) is called a wavelet if it satisfies the

following: ∫
R

|ψ(t)|2dt <∞ (3.1)

8



∫
R

ψ(t)dt = 0 (3.2)

3.2 Vector Valued Inner Products

In this section we let H be a Hilbert space. We will show some definitions and

properties of inner products of vectors in H.

Now we give the definition of vector valued inner products in H.

Definition 3.2 Let F and G be two vectors of elements in H defined as follows:

F =



f1

f2

...

fn


, G =



g1

g2

...

gm


where fi, gj ∈ H for 1 6 i 6 n and 1 6 j 6 m, then

〈F,G〉 =



〈f1, g1〉 〈f1, g2〉 . . . 〈f1, gm〉

〈f2, g1〉 〈f2, g2〉 . . . 〈f2, gm〉

...
...

...
...

〈fn, g1〉 〈fn, g2〉 . . . 〈fn, gm〉


(3.3)

In fact, (3.3) is obtained by forming (formally) the matrix FG∗ and then applying

the inner product to each element of the resulting matrix.

Lemma 3.1 The vector valued inner products have the following three properties:

9



(1) 〈F + E,G〉 = 〈F,G〉+ 〈E,G〉

(2) 〈AF,BG〉 = A〈F,G〉B∗, where A and B are complex matrices and B∗ is

the conjugate transpose of B

(3) 〈F,G〉∗ = 〈G,F〉

Definition 3.3 Given a vector G = {g1, g2, ..., gn}, we call 〈G,G〉 the Grammian

of G.

Theorem 3.1 Suppose G = {g1, g2, ..., gn}T is a set of vectors in an inner product

space H. Then 〈G,G〉 is invertible iff g1, g2, ..., gn are linearly independent.

Proof. (=⇒:) Assume that 〈G,G〉 is invertible and g1, g2, ..., gn are not linearly

independent.

∴ ∃ a vector c 6= 0 such that c∗G = 0

⇒ 〈G, c∗G〉 = 0

⇒ 〈G,G〉c = 0

⇒ c = 0 which contradicts the assumption.

(⇐=:) Assume that g1, g2, ..., gn are linearly independent and 〈G,G〉 is not

invertible.

∴ ∃ a vector c 6= 0 such that 〈G,G〉c = 0

⇒ 〈gi, c∗G〉 = 0, i = 1, 2, ..., n

⇒ c∗G ⊥ span(G). On the other hand, c∗G ∈ span(G)

∴ c∗G = 0

10



Then either c∗ = 0 or G is not linearly independent, which both contradict the

assumption.

3.3 Function Spaces

In this thesis we will come across many function spaces and I will give a brief

definition of each one of them.

Definition 3.4 The space of all functions f : Ω −→ R; such that f is continuous

on Ω is denoted by C(Ω) and called the space of continuous functions.

Definition 3.5 (See [24]) For 1 6 p <∞, we define Lp(Ω) to be the collection

of all functions f for which

∫
Ω

|f(x)|pdx <∞.

Moreover, the Lp-norm of a measurable function f is defined by

‖f‖p =

(∫
Ω

|f(x)|pdx
)1/p

Definition 3.6 (See [24]) A function f is called essentially bounded if there is

some M > 0, called the essential upper bound for f , for which

|f(x)| 6M for almost all x ∈ Ω.

Definition 3.7 (See [24]) We define L∞(Ω) to be the collection of all essentially

11



bounded functions. The L∞-norm of a measurable function f(x) is defined by

‖f‖∞ = ess sup{|f(x)| : x ∈ Ω}.

The space L2(Ω) is a Hilbert space equipped with the inner product

〈f(x), g(x)〉 =

∫
Ω

f(x)g(x)dx, f, g ∈ L2(Ω)

where g(x) is the complex conjugate of g(x).

Definition 3.8 (Support of a Function) Suppose that f : Ω −→ R, then the

support of f(x), denoted by supp(f), is the closure of the set of all vectors x such

that f(x) 6= 0. i.e., supp(f) = {x ∈ Ω : f(x) 6= 0}.

Definition 3.9 (Compact Support) A function f is said to be of compact sup-

port if its support can be included in a closed and bounded domain.

Definition 3.10 A function f(x) defined on an Ω is Cn on Ω with n ∈ N if it is

n-times continuously differentiable on Ω. C0 on I if it is continuous on Ω. f(x) is

C∞ on Ω if it is Cn on Ω for all n ∈ N. A function f(x) is Cn
c on Ω if it is Cn on

Ω and compactly supported.

Theorem 3.2 (See [25]) If f ∈ L2(R) and ε > 0, then there exists a function g

and R > 0, such that
∫
R
|f − g|2dx < ε with g(x) = f(x)χ

[−R,R]
(x).

This means that most of the energy of f is in a finite interval.

12



3.4 Convergence of Sequences of Functions

Definition 3.11 (Pointwise convergence) Given a function f(x) and a se-

quence of functions {fn(x)}n∈N defined on an interval I, we say that the sequence

{fn(x)}n∈N converges pointwise to f(x) if for every x0 ∈ I the sequence {fn(x0)}n∈N

converges to f(x0). We write fn(x)→ f(x) pointwise as n →∞.

Definition 3.12 (Uniform (L∞) convergence) Given a function f(x) and a

sequence of functions {fn(x)}n∈N defined on an interval I, we say that the sequence

{fn(x)}n∈N converges uniformly to f(x) if for every ε > 0, there exists a number

N > 0 such that if n > N, then |fn(x) − f(x)| < ε for every x ∈ I. We write

fn(x)→ f(x) uniformly as n →∞.

Definition 3.13 (Mean-square (L2) convergence) Given a function f(x) and

a sequence of functions {fn(x)}n∈N defined on an interval I, we say that the se-

quence {fn(x)}n∈N converges in the mean-square to f(x) if

lim
n→∞

∫
I

|fn(x)− f(x)|2dx = 0.

We write fn(x)→ f(x) in the mean-square as n →∞.

Theorem 3.3 (See [25]) Given that I is a finite interval,

(a) L∞(I) ⊂ L2(I).

(b) if fn(x) → f(x) uniformly on I, then fn(x) → f(x) in the mean-square on

I.
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Theorem 3.4 (See [25]) Given that I is a finite interval, if fn(x) → f(x) in

L∞(I) or L2(I), then fn(x)→ f(x) pointwise on I.

3.5 The Haar System

Alfred Haar, the Hungarian mathematician, itroduced the Haar function in his

Ph.D thesis in 1910 [26]. In this section, we will discuss the Haar function and

Haar scaling function with some notions, lemmas and theorems that relate to

them. First, we will introduce the notion of dyadic intervals.

3.5.1 Dyadic Intervals

Definition 3.14 For each pair j, k ∈ Z, the interval Ij,k = [2−jk, 2−j(k + 1)] is

called a dyadic interval. The collection of such intervals is known as the collection

of dyadic sub-intervals of R. The parameter j will be referred to as the scale level

or scale parameter, or simply ”scale”.

Note that if j 6= j1 or k 6= k1 then either

(i) Ij,k ∩ Ij1,k1 = φ (3.4)

(ii) Ij,k ⊆ Ij1,k1 or Ij1,k1 ⊆ Ij,k (3.5)

Definition 3.15 Given a dyadic interval Ij,k at scale j, we write Ij,k = I lj,k ∪ Irj,k,

where I lj,k and Irj,k denote the left half and right half of the interval Ij,k and they

are dyadic intervals at scale j + 1. Indeed, I lj,k = Ij+1,2k and Irj,k = Ij+1,2k+1.
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3.5.2 The Haar Scaling Function and the Haar Wavelet

Function

The Haar scaling function is defined as

ϕH(x) := χ[0,1)(x) =


1 if 0 6 x < 1

0, otherwise.

Figure 3.1 shows the graph of the Haar scaling function.

Figure 3.1: The Haar scaling function

Definition 3.16 Let ϕH
j,k(x) = 2j/2ϕH(2jx − k) with j, k ∈ Z. The collec-

tion {ϕH
j,k(x)}j,k∈Z is called the Haar system of scaling functions. The collection

{ϕH
j,k(x)}k∈Z is called the system of Haar scaling functions at scale j.
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Figure 3.2 shows the graphs of the Haar scaling functions at level j = 2.

Figure 3.2: (a) The Haar scaling function at level j = 2 and k = 0. (b) j = 2 and

k = 1. (c) j = 2 and k = 2. (d) j = 2 and k = 2

Lemma 3.2 For all j, k ∈ Z,

‖ϕH
j,k(x)‖2 = ‖ϕH(x)‖2.

Proof.

‖ϕH
j,k(x)‖2

2 =

∞∫
−∞

|ϕH
j,k(x)|2dx =

∞∫
−∞

[2j/2ϕH(2jx− k)]2dx

Let t = 2jx− k , dt = 2jdx then

‖ϕH
j,k(x)‖2

2 =

∞∫
−∞

2j[ϕH(t)]22−jdt =

∞∫
−∞

[ϕH(t)]2dt = ‖ϕH(x)‖2
2
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The system of Haar scaling functions satisfies the following [25] [27]:

(i) ϕH
j,k(x) is supported on the interval Ij,k.

(ii) For every j, k ∈ Z,
∫
R
|ϕH

j,k(x)|2dx = 1.

(iii) For every j, k ∈ Z,
∫
R
ϕH
j,k(x)dx = 2−j/2.

Lemma 3.3 If ϕH
j,k(x) = 2j/2ϕH(2jx − k) with j, k ∈ Z, and supp(ϕH) = [a, b]

then supp(ϕH
j,k) = Ij,k = [

a+ k

2j
,
b+ k

2j
]

Proof. If supp(ϕH) = [a, b], then we will look for values of x that will make the

expression (2jx− k) fall within the interval [a,b].

2jx− k > a ⇒ x >
a+ k

2j

2jx− k 6 b ⇒ x 6
b+ k

2j
.

Then, supp(ϕH
j,k) = Ij,k = [

a+ k

2j
,
b+ k

2j
].

Moreover, |Ij,k| =
b− a

2j

We now address the question of which Haar scaling functions have support in

[0,1].

Lemma 3.4 The Haar scaling functions at scale j with support in [0, 1] are ex-

actly {ϕH
j,k(x)}2j−1

k=0 .

17



Proof. First, keep in mind that in the interval [0, 1] we have Ij,k = 2−j[k, k + 1]

2−jk > 0 ⇒ k > 0

2−j(k + 1) 6 1 ⇒ (k + 1) 6 2j ⇒ k 6 2j − 1

The Haar wavelet function (or the Haar function) is defined as

ψH(x) = χ[0,1/2)(x)− χ[1/2,1)(x) =



1 if 0 6 x < 1/2

−1 if 1/2 6 x < 1

0, otherwise.

Definition 3.17 The collection {ψH
j,k(x)}j,k∈Z is called the Haar wavelet system.

The collection {ψH
j,k(x)}k∈Z is called the system of Haar wavelet functions at scale

j.

Figure 3.3 shows the graph of the Haar wavelet function.
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Figure 3.3: The Haar wavelet function

Note that lemmas 3.2, 3.3 and 3.4 also hold for Haar wavelet functions.

The Haar wavelet system satisfies the following [25] [27]:

(i) ψH
j,k(x) is supported on the interval Ij,k.

(ii) For every j, k ∈ Z,
∫
R
|ψH

j,k(x)|2dx =
∫
Ij,k

|ψH
j,k(x)|2dx = 1.

(iii) For every j, k ∈ Z,
∫
R
ψH
j,k(x)dx =

∫
Ij,k

ψH
j,k(x)dx = 0.

(iv) ψH
j,k(x) = 2j/2(χIlj,k

(x)− χIrj,k
(x)).
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3.5.3 Orthogonality of The Haar System

Definition 3.18 (Orthogonal Basis and Orthonormal Basis) A basis

{gn(x)}∞n=1 of a Hilbert space X is orthogonal if

〈gn, gm〉 = 0 for n 6= m.

An orthogonal basis is called orthonormal if

〈gn, gm〉 = δnm,

where δnm is the kronecker δ; δnm =


1 n = m

0, n 6= m.

Theorem 3.5 The system of Haar wavelet functions(or the Haar System)

{ψH
j,k(x)}j,k∈Z is orthonormal on R.

Proof. The inner product we have is

〈ψH
j,k, ψ

H
j1,k1
〉 =

∞∫
−∞

ψH
j,k(x)ψH

j1,k1
(x)dx. (3.6)

We show the orthonormality within a scale j first. The properties of dyadic

intervals tell us that if k 6= k1 then ψH
j,kψ

H
j,k1
≡ 0, and thus

〈ψH
j,k, ψ

H
j,k1
〉 = 0.

20



If k = k1, then

〈ψH
j,k, ψ

H
j,k1
〉 =

∞∫
−∞

ψH
j,k(x)ψH

j,k1
(x)dx =

∫
Ij,k

|ψH
j,k(x)|2dx = 1

Now, we show the orthonormality in case of different scales. Without loss of

generality, say that j > j1, then the properties (3.4) and (3.5) give us the following

three possibilities:

(i) Ij,k ∩ Ij1,k1 = φ which results in

〈ψH
j,k, ψ

H
j1,k1
〉 =

∞∫
−∞

ψH
j,k(x)ψH

j1,k1
(x)dx = 0.

(ii) Ij,k ⊆ I lj1,k1 . In this case, ψH
j1,k1

(x) is identically 1 on I lj1,k1 . This results in

〈ψH
j,k, ψ

H
j1,k1
〉 =

∫
Ij,k

ψH
j,k(x)ψH

j1,k1
(x)dx =

∫
Ij,k

ψH
j,k(x)dx = 0.

(iii) Ij,k ⊆ Irj1,k1 . In this case, ψH
j1,k1

(x) is identically -1 on Irj1,k1 and on Ij,k. This

results in

〈ψH
j,k, ψ

H
j1,k1
〉 =

∫
Ij,k

ψH
j,k(x)ψH

j1,k1
(x)dx = −

∫
Ij,k

ψH
j,k(x)dx = 0.

Theorem 3.6 For any j ∈ Z, the system of Haar scaling functions at scale j is

an orthonormal system on R
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Proof. First, If k = k1 then

〈ϕH
j,k, ϕ

H
j,k〉 =

∞∫
−∞

ϕH
j,k(x)ϕH

j,k(x)dx =

∞∫
−∞

|ϕH
j,k(x)|2dx = 1.

Second, if k 6= k1 then the properties of dyadic intervals tell that ϕH
j,kϕ

H
j,k1
≡ 0,

and thus

〈ϕH
j,k, ϕ

H
j,k1
〉 =

∞∫
−∞

ϕH
j,k(x)ϕH

j,k1
(x)dx = 0.

Theorem 3.7 ([25]) For any J ∈ Z, the collection {ϕH
J,k(x), ψH

j,k(x) : j > J, k ∈

Z} is an orthonormal system on R

3.6 Multiresolution Analysis (MRA)

We saw in Section 3.5 that the collection {ψH
j,k(x)}j,k∈Z = {2j/2ψH(2jx− k)}j,k∈Z

forms an orthonormal system on R. In this section, we will see how to generalize

this construction. In particular, we will see a general framework for constructing

wavelet functions ψ(x) such that the collection

{ψj,k(x)}j,k∈Z = {2j/2ψ(2jx− k)}j,k∈Z

is an orthonormal system on R. Such collection {ψj,k(x)}j,k∈Z is called a wavelet

orthonormal basis on R.

Definition 3.19 (Uniformly stable basis) For a given scale j, the basis Φj =
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{ϕj,k(x) : k ∈ Z} is a uniformly stable basis for the space Sj if there exist two real

numbers α and β independent of j and α, β > 0 such that

α‖c‖2 6 ‖
∑
k∈Z

cj,kϕj,k‖2 6 β‖c‖2

Definition 3.20 (Multiresolution analysis MRA [28]) A multiresolution

analysis is a sequence S = {Sj}j∈Z of subspaces of L2(R) that satisfies the

following properties:

(i) The spaces are nested. i.e. Sj ⊂ Sj+1 for every j ∈ Z.

(ii) Their union is dense in L2(R). i.e.
⋃

j∈Z Sj = L2(R).

(iii) Their intersection is trivial. i.e.
⋂

j∈Z Sj = {0}.

(iv) There is a function ϕ such that each Φj = {ϕj,k(x) : k ∈ Z} is a uniformly

stable basis for Sj.

(v) The spaces arises by scaling. i.e. ϕ ∈ Sj ⇒ ϕ(2·) ∈ Sj+1.

(vi) They are shift-invariant. i.e. ϕ ∈ S0 ⇒ ϕ(· − k) ∈ S0, k ∈ Z.

Definition 3.21 ([28]) For a MRA S, any function ϕ ∈ L2(R) that satisfies

ϕ(x) =
∑
k∈Z

akϕ(2x− k) (3.7)

is called a scaling function of the MRA S. Moreover, the equation (3.7) is called
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the refinement equation and the sequence {ak}k∈Z is called the refinement coeffi-

cients (or refinement mask).
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CHAPTER 4

DISCRETE WAVELET

TRANSFORM IN ONE AND

TWO DIMENSIONS

In this chapter, we will give the definitions and properties of spaces and operators

needed in discrete wavelet transform in one dimension and then we will build

on the one-dimension case to go to the two-dimension case. We will discuss the

notions of approximation space and detail space and the operators associated with

them. Indeed, our interest is in discrete wavelet transform in two dimensions since

the images are two dimensional functions. All the work done in this chapter is

over the interval [0,1] rather than R since our scope is images which are bounded

in domain. Throughout this chapter, we will consider only the Haar system.
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4.1 Discrete Wavelet Transform in One Dimen-

sion

Let Sj = span({ϕj,k(x)}k∈Z) with ϕj,k(x) = 2j/2ϕ(2jx − k). In discrete wavelet

transform in one dimension, we project L2[0, 1] functions into the approximation

space Sj.

Pj : L2[0, 1] −→ Sj

〈Pjf, g〉 = 〈f, g〉 ∀g ∈ Sj (4.1)

We can easily show the following properties of the operator Pj

(i) Pj is linear. i.e. Pj(αf + h) = αPjf + Pjh.

(ii) Pj is an orthogonal projection. i.e. 〈g,Pjf − f〉 = 0 ∀g ∈ Sj

We will now show how to derive an explicit formula for the operator Pj.

Given that Φj = {ϕj,k(x)}k∈Z is a basis for the space Sj, we have the following

Pjf = c∗Φj

〈f,Φj〉 = 〈Pjf,Φj〉 = 〈c∗Φj,Φj〉 = c∗〈Φj,Φj〉

So, since 〈f,Φj〉 = c∗〈Φj,Φj〉

then, using Theorem 3.1 we get c∗ = 〈f,Φj〉〈Φj,Φj〉−1.

If Φj is an orthogonal basis, as in the case of Haar system, then
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〈Φj,Φj〉−1 = I and c∗ = 〈f,Φj〉.

Definition 4.1 (The approximation operator) For every j ∈ Z, the approx-

imation operator Pj of a function f ∈ L2[0, 1] is

Pjf = 〈f,Φj〉Φj Φj is orthogonal

If we write the refinement coefficients in Definition 3.21 in a matrix a with elements

defined as follows:

ak,m =
1√
2
am−2k (4.2)

we will be able to go from a finer level to a coarser level of approximation subspaces

by the relation

Φj = aΦj+1. (4.3)

In the following proposition, we will show more properties of the operator Pj.

Proposition 4.1 The operator Pj given in Definition 4.1 has the following prop-

erties:

(i) P2
j = Pj.

(ii) Pj+1Pj = PjPj+1 = Pj

(iii) 〈Pjf, g〉 = 〈f,Pjg〉 ∀f, g ∈ L2[0, 1]

Proof.
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(i)

P2
jf = PjPjf = Pj〈f,Φj〉Φj

= 〈f,Φj〉PjΦj = 〈f,Φj〉Φj

(ii)

Pj+1Pjf = Pj+1〈f,Φj〉Φj = 〈f,Φj〉Pj+1Φj

= 〈f,Φj〉〈Φj,Φj+1〉Φj+1

= 〈f,Φj〉〈aΦj+1,Φj+1〉Φj+1 using the refinement relation (4.7)

= 〈f,Φj〉a〈Φj+1,Φj+1〉Φj+1

= 〈f,Φj〉aΦj+1 = 〈f,Φj〉Φj = Pjf

PjPj+1f = Pj〈f,Φj+1〉Φj+1 = 〈f,Φj+1〉PjΦj+1

= 〈f,Φj+1〉〈Φj+1,Φj〉Φj

= 〈f,Φj+1〉〈Φj+1, aΦj+1〉Φj using the refinement relation (4.7)

= 〈f,Φj+1〉〈Φj+1,Φj+1〉a∗Φj

= 〈f,Φj+1〉a∗Φj = 〈f, aΦj+1〉Φj

= 〈f,Φj〉Φj = Pjf
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(iii)

〈Pjf, g〉 = 〈〈f,Φj〉Φj, g〉

= 〈f,Φj〉〈Φj, g〉

= 〈f, 〈g,Φj〉Φj〉

= 〈f,Pjg〉

Definition 4.2 (The detail operator) For every j ∈ Z, the detail operator Qj

is defined as

Qj = Pj+1 −Pj. (4.4)

Moreover, let Wj = Im(Qj) and it is called the detail subspace.

In the following proposition, we will show some properties of the operator Qj.

Proposition 4.2 The operator Qj given in Definition 4.2 has the following prop-

erties:

(i) Q2
j = Qj.

(ii) QjPj = PjQj = 0

(iii) 〈Qjf, g〉 = 〈f, g〉 ∀g ∈ Wj

(iv) 〈Qjf, g〉 = 〈f,Qjg〉 ∀f, g ∈ L2[0, 1]

(v) Qjg = g ∀g ∈ Wj
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Proof.

(i)

Q2
j = (Pj+1 −Pj)

2 = P2
j+1 −Pj+1Pj −PjPj+1 + P2

j

= Pj+1 −Pj −Pj + Pj using Proposition 4.1(ii)

= Pj+1 −Pj = Qj

(ii) QjPj = (Pj+1 −Pj)Pj = Pj+1Pj −P2
j = Pj −Pj = 0

using Proposition 4.1(ii)

(iii) Let g = Qjh for some h ∈ L2[0, 1], and let f ∈ L2[0, 1]

〈Qjf, g〉 = 〈Qjf,Qjh〉

= 〈(Pj+1 −Pj)f,Qjh〉

= 〈Pj+1f,Qjh〉 − 〈Pjf,Qjh〉

= 〈f,Qjh〉 − 〈f,PjQjh〉 using Proposition 4.1(iii)

= 〈f,Qjh〉 = 〈f, g〉
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(iv)

〈Qjf, g〉 = 〈(Pj+1 −Pj)f, g〉

= 〈Pj+1f, g〉 − 〈Pjf, g〉

= 〈f,Pj+1g〉 − 〈f,Pjg〉 using Proposition 4.1(iii)

= 〈f, (Pj+1 −Pj)g〉 = 〈f,Qjg〉

(v) Let f ∈ L2[0, 1]

〈Qjg, f〉 = 〈g,Qjf〉 by property (iv)

= 〈g, f〉 by property (iii)

The proposition 4.2 shows that the operator Qj shares the same the properties as

Pj.

Lemma 4.1 The approximation space Sj+1 can be decomposed as follows:

Sj+1 = Sj ⊕Wj (4.5)

Proof. First, we show that

Sj+1 = Sj +Wj.
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(⊆ :)

Let f ∈ Sj+1, then

f = Pj+1f = (Pj+1 − Pj)f + Pjf = Qj + Pjf

then Sj+1 ⊆ Sj +Wj.

(⊇ :)

Since Sj ⊂ Sj+1 and Wj ⊂ Sj+1,

then Sj +Wj ⊆ Sj+1.

So, Sj+1 = Sj +Wj.

Now, we show that Sj ⊥ Wj

〈f, g〉 = 〈Pjf, g〉 = 〈Pjf,Qjg〉 = 〈QjPjf, g〉 = 0.

Thus,

Sj+1 = Sj ⊕Wj

Now, if we keep applying the decomposition relation 4.5 to each approximation

subspace Sl, 0 6 l 6 j we get

Sj+1 = S0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj (4.6)

The key idea in discrete wavelet transform is that any function f ∈ Sj+1 can
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be decomposed into two parts in a coarser level, an approximation part in Sj

and a detail part in Wj, as in (4.5). Moreover, it can be decomposed into an

approximation part in the coarsest level S0 and details in many levels from 0 to

j as shown in (4.6). This decomposition process helps in many applications such

as denoising, compression, singularity detection, etc.

At this stage, the following question arises: Is there a function ψ such that

{ψj,k(x) : k ∈ Z} spans the detail subspace Wj? The following proposition gives

the answer.

Proposition 4.3 ([28]) Suppose that the scaling function ϕ has a finite refine-

ment mask {ak}k∈Z and generates an orthonormal MRA S. Let bk = (−1)ka1−k

then ψ(x) =
∑

k∈Z bkϕ(2x − k) is a wavelet such that {ψj,k(x) : k ∈ Z} is an or-

thonormal basis for Wj. i.e. for every j ∈ Z, the detail operator Qj on a function

f ∈ L2[0, 1] is given by

Qjf = 〈f,Ψj〉Ψj = d∗jΨj

where d∗j = 〈f,Ψj〉.

If we write the coefficients {bk : k ∈ Z} in Definition 4.3 in a matrix b with

elements defined in the same way that we did in (4.2), we get the coarse-fine

relation

Ψj = bΦj+1. (4.7)
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4.1.1 Fast Wavelet Transform in One Dimension

Now, we are going to introduce the fast wavelet transform used in the decomposi-

tion and the reconstruction of any function f ∈ L2[0, 1]. This transform uses the

refinement equations introduced previously in (4.2) and (4.7) to get the approx-

imation coefficient cj and the detail coefficient dj at the coarser levels from the

approximation coefficient cj+1 at the finer level and vice-versa.

Decomposition

Given a function f ∈ L2[0, 1], the projection of f into the space Sj can be written

as follows:

Pjf = Pj−1f + Qj−1f

〈f,Φj〉Φj = 〈f,Φj−1〉Φj−1 + 〈f,Ψj−1〉Ψj−1. See Lemma 4.1

Let cT
j = 〈f,Φj〉 and dT

j = 〈f,Ψj〉, we have:

cT
j−1 = 〈f,Φj−1〉 = 〈f, aΦj〉

= 〈f,Φj〉aT = cT
j aT

∴ cj−1 = acj (∗)
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dT
j−1 = 〈f,Ψj−1〉 = 〈f,bΦj〉

= 〈f,Φj〉bT = cT
j bT

∴ dj−1 = bcj (∗∗)

The equations (∗) and (∗∗) show how to obtain the coarser approximation and

detail coefficients from the finer one. This is a decomposition process. Repeating

the decomposition process we get the decomposition diagram shown in Figure 4.1.

Figure 4.1: The decomposition of an input vector cj.

Reconstruction

This process is the reverse of decomposition and hence we keep the same definitions

of cj and dj. Recall that

Pj+1f = Pjf + Qjf

〈f,Φj+1〉Φj+1 = 〈f,Φj〉Φj + 〈f,Ψj〉Ψj
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Then

cT
j+1Φj+1 = cT

j Φj + dT
j Ψj

=⇒ cT
j+1Φj+1 = cT

j aΦj+1 + dT
j bΦj+1

=⇒ cT
j+1Φj+1 = (cT

j a + dT
j b)Φj+1

=⇒ cT
j+1 = cT

j a + dT
j b

=⇒ cj+1 = aTcj + bTdj.

The last equation shows how to reconstruct cj+1 from cj and dj. We can start from

the coarsest level of approximation and details c0,d0,d1, ...,dj and recursively

reconstruct the approximation coefficient cj+1 as depicted in Figure 4.2.

Figure 4.2: The reconstruction of a vector cj+1.

The reconstruction process is also known as the inverse discrete wavelet trans-

form.

Operation Count

In this section, we will calculate the number of operations needed to perform

the fast wavelet transform and compare it to the fast Fourier transform (FFT).
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Assume that the input vector cj is of length N . To get the vector cj−1 using the

refinement equation (4.2) we need (l2 − l1 + 1)
N

2
multiplication operations and

(l2− l1 + 1)
N

2
−1 addition operations. In total, the calculations needed for cj−1 is

(l2 − l1 + 1)N − 1. The same number of operations is needed for dj−1. So, to get

the approximation and detail coefficients at level j− 1 we need 2(l2− l1 + 1)N − 2

operations. Continuing by induction, we get that the total number of operations

needed is 2(l2 − l1 + 1)N(1 +
1

2
+

1

4
+ . . .+

1

2j−1
)− 2j < 4(l2 − l1 + 1)N

So, the number of operations needed is O(N). On the other hand, the (FFT)

needs O(NlogN) operations and obviously the fast wavelet transform is optimal

[28].

4.2 Discrete Wavelet Transform in Two Dimen-

sions

As we mentioned in the introduction of this thesis, images are functions of two

variables. In this section, we will extend the notions and results shown in the

previous section to the case of two dimensions. We will build scaling function

and associated wavelet functions in two dimensions. Also, we will introduce the

approximation subspace and the detail subspaces in three directions, horizontal,

vertical and diagonal. The two-dimensional space will be thought of as the tensor

product of two one-dimensional spaces.

Definition 4.3 (The tensor product) Let V and W be two subspaces of
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L2[0, 1], with bases E and F respectively. The tensor product of V and W is

defined as

V ⊗W = span{f(x)g(y) : f ∈ E, g ∈ F}. (4.8)

A typical element in V ⊗W is of the form

m∑
i=1

n∑
j=1

αijfi(x)gj(y). (4.9)

Clearly, V ⊗W ⊆ L2[0, 1]2

Theorem 4.1 Let U, V,W be subspaces of L2[0, 1], then

(U + V )⊗W = U ⊗W + V ⊗W

Proof. Let f ∈ U, g ∈ V and h, r ∈ W , then

(⊆ :)

(f(x) + g(x))h(y) = f(x)h(y) + g(x)h(y)

∴ (U + V )⊗W ⊆ U ⊗W + V ⊗W

(⊇ :)

Let F ∈ U ⊗W and G ∈ V ⊗W such that
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F =
∑m

i=1

∑n
j=1 αijfi(x)gj(y) and G =

∑r
i=1

∑s
j=1 βijhi(x)gj(y)

F =
m∑
i=1

n∑
j=1

αijfi(x)gj(y) =
m∑
i=1

n∑
j=1

αij(fi(x) + 0)gj(y) ∈ (U + V )⊗W

G =
r∑

i=1

s∑
j=1

βijhi(x)gj(y) =
r∑

i=1

s∑
j=1

βij(0 + hi(x))gj(y) ∈ (U + V )⊗W

∴ F +G ∈ (U + V )⊗W

Corollary 4.2 Let U, V,W, Y be subspaces of L2[0, 1], then

(U + V )⊗ (W + Y ) = U ⊗W + U ⊗ Y + V ⊗W + V ⊗ Y

Definition 4.4 Let Am×n and Br×s be two matrices, then

A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

...
...

am1B am2B . . . amnB


Theorem 4.3 If E is an orthonormal basis for V and F is an orthonormal basis

for W , then E ⊗ F is an orthonormal basis for V ⊗W .

Proof. Suppose that E = {ξi}i∈Z and F = {ηj}j∈Z, then E ⊗ F = {ξiηj}i,j∈Z.

First, we show that any function in V ⊗W can be represented as a linear combi-

nation of functions in E ⊗ F .
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Let G ∈ V ⊗W , then

G =
k∑

i=1

l∑
j=1

αijfigj,

such that fi =
∑
r∈Ii

βrξr and gj =
∑
s∈Ij

β′sηs

so figj =
∑

r∈Ii,s∈Ij

βrβ
′
sξrηs

=
∑

r∈Ii,s∈Ij

βrsξrηs

so G =
k∑

i=1

l∑
j=1

∑
r∈Ii,s∈Ij

αijβrsξrηs

=
∑

r∈Ii,s∈Ij

β′rsξrηs

hence G = β′(E ⊗ F ).

Now, we show the orthonormality of the elements of E ⊗ F

〈ξiηj, ξkηl〉 =

∞∫
−∞

∞∫
−∞

ξi(x)ηj(y)ξk(x)ηl(y)dxdy

=

∞∫
−∞

ξi(x)ξk(x)dx

∞∫
−∞

ηj(y)ηl(y)dy

= 〈ξiξk〉〈ηj, ηl〉

= δi,kδj,l = 1 when i = k, j = l

∴ the elements of E ⊗ F are orthonormal.
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4.2.1 MRA in L2[0, 1]2

Let ϕ generate an orthonormal MRA S = {Sj}j∈Z in L2[0, 1]. Now, we want to

build an MRA in L2[0, 1]2.

Let S2
j := Sj ⊗ Sj

= (Sj−1 ⊕Wj−1)⊗ (Sj−1 ⊕Wj−1)

= (Sj−1 ⊗ Sj−1)⊕ (Sj−1 ⊗Wj−1)⊕ (Wj−1 ⊗ Sj−1)⊕ (Wj−1 ⊗Wj−1)︸ ︷︷ ︸
W 2

j−1

=: S2
j−1 ⊕W 2

j−1,

where S2
j−1 is the approximation space at the coarser level j − 1,

Sj−1 ⊗Wj−1 is the subspace of vertical details,

Wj−1 ⊗ Sj−1 is the subspace of horizontal details and

Wj−1 ⊗Wj−1 is the subspace of diagonal details.

Orthonormal bases of these spaces are as follows: (See Theorem 4.3)

For S2
j , a basis is {ϕj,k(x)ϕj,k(y) : k, l ∈ Z} = Φj ⊗Φj = Φ2

j ,

and for Sj−1 ⊗Wj−1, a basis is {ϕj,k(x)ψj,k(y) : k, l ∈ Z} = Φj ⊗Ψj = Ψ21
j ,

and for Wj−1 ⊗ Sj−1, a basis is {ψj,k(x)ϕj,k(y) : k, l ∈ Z} = Ψj ⊗Φj = Ψ22
j ,

and for Wj−1 ⊗Wj−1, a basis is {ψj,k(x)ψj,k(y) : k, l ∈ Z} = Ψj ⊗Ψj = Ψ23
j .

Let Ψ2
j =


Ψ21

j

Ψ22
j

Ψ23
j

.
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The projections from L2[0, 1]2 to the spaces S2
j and W 2

j are defined as follows:

P2
j : L2[0, 1]2 −→ S2

j

P2
j = 〈f,Φ2

j〉Φ2
j

Q2
j : L2[0, 1]2 −→ W 2

j

Q2
j = 〈f,Ψ2

j〉Ψ2
j

= 〈f,


Ψ21

j

Ψ22
j

Ψ23
j

〉


Ψ21
j

Ψ22
j

Ψ23
j



= (〈f,Ψ21
j 〉 〈f,Ψ22

j 〉 〈f,Ψ23
j 〉)


Ψ21

j

Ψ22
j

Ψ23
j


= 〈f,Ψ21

j 〉Ψ21
j + 〈f,Ψ22

j 〉Ψ22
j + 〈f,Ψ23

j 〉Ψ23
j .

Let cT
j = 〈f,Φ2

j〉, d1T
j = 〈f,Ψ21

j 〉, d2T
j = 〈f,Ψ22

j 〉, d3T
j = 〈f,Ψ23

j 〉

and dj =


d1
j

d2
j

d3
j

.
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Refinement Equations

Recall that Φj = aΦj+1 and Ψj = bΦj+1, where a and b are given by ak,m =

1√
2
am−2k and bk,m =

1√
2
bm−2k, hence

Φ2
j = Φj ⊗Φj = aΦj+1 ⊗ aΦj+1

= (a⊗ a)(Φj+1 ⊗Φj+1)

= (a⊗ a︸ ︷︷ ︸
a2

)Φ2
j+1 =: a2Φ2

j+1 (∗)

Ψ2
j =


Ψ21

j

Ψ22
j

Ψ23
j

 =


Φj ⊗Ψj

Ψj ⊗Φj

Ψj ⊗Ψj

 =


(a⊗ b)Φ2

j+1

(b⊗ a)Φ2
j+1

(b⊗ b)Φ2
j+1



=


a⊗ b

b⊗ a

b⊗ b


︸ ︷︷ ︸

b2

Φ2
j+1

=: b2Φ2
j+1. (∗∗)

Equations (∗) and (∗∗) will play an important rule in the decomposition and

reconstruction processes.

4.2.2 Fast Wavelet Transform in Two Dimensions

After we showed the fast wavelet transform in one dimension, we will now show

the fast wavelet transform in the case of two dimensions. The derivation is the
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same.

Decomposition

For any function f ∈ L2[0, 1]2, we get the approximation coefficient in a coarser

level from the finer one as follows:

cT
j = 〈f,Φ2

j〉 = 〈f, a2Φ2
j+1〉

= 〈f,Φ2
j+1〉a2T

= cT
j+1a

2T

∴ cj = a2cj+1

and we get the detail coefficient as follows:

dT
j = 〈f,Ψ2

j〉 = 〈f,b2Φ2
j+1〉

= 〈f,Φ2
j+1〉b2T

= cT
j+1b

2T

∴ dj = b2cj+1

This is a decomposition process. Repeating the decomposition process we get the

decomposition diagram shown in Figure 4.1.
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Reconstruction

The following equation shows how to reconstruct cj+1 from cj and dj. We can start

from the coarsest level of approximation and details c0, d0, d1, ..., dj and recursively

reconstruct the approximation coefficient cj+1 as depicted in Figure 4.2.

cT
j+1Φ

2
j+1 = cT

j Φ2
j + dT

j Ψ2
j

= cT
j a2Φ2

j+1 + dT
j b2Φ2

j+1

= (cT
j a2 + dT

j b2)Φ2
j+1

∴ cj+1 = a2Tcj + b2Tdj
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CHAPTER 5

EDGE DETECTION

Discrete wavelet transform has many applications, including but not limited to

compression, denoising and singularity detection. In this chapter, we are inter-

ested in image edge detection which can be defined as the process of locating

and identifying the sharp discontinuities in an image [17]. First, we are going to

consider singularity detection in one dimension. Then, we will extend the work

to the case of discontinuities in two dimensions, i.e. discontinuities in images.

After that, we will give a brief overview of Canny edge detector and compare the

results of our algorithm to Canny’s. In both detectors, we will add noise and ob-

serve the effect of noise on edge detection. Furthermore, we will experiment with

our algorithm using Haar wavelet, Daubechies wavelets db2 and db3 to illustrate

the distinction of the Haar wavelet in edge detection. Then, we will apply our

algorithm to colored images and compare the results to Canny’s.
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5.1 Detecting Singularities of Functions in One

Dimension

Detecting singularities of functions in one dimension can be done using the discrete

wavelet transform by looking for high magnitude detail coefficients. In this work,

we are going to use the Haar wavelet because it matches well abrupt changes

in signals. Theorem 5.1 will show that the detail coefficients are small when

a function f is smooth. As we shall see, it provides the justification for using

wavelets in edge detection.

Definition 5.1 (Vanishing moment) The function f : Ω −→ R is said to have

d vanishing moments if

∫
Ω

xrf(x)dx = 0, r = 0, 1, . . . , d− 1 (5.1)

Theorem 5.1 ([25]) For n ∈ N, let the function g be Cn(R) and g(n)(x) be

L∞(R). Suppose that the function ψ(x) has compact support and n vanishing

moments and that
∫
R |ψj,k(x)|2dx = 1 for all j, k ∈ Z. Then there exists a constant

C > 0 that depends only on n and g such that

|〈g, ψj,k〉| 6 C2−jn2−j/2.

Proof. First, suppose that ψ(x) is supported in the interval I = [0, a] for some

a > 0. Recall that ψj,k(x) is supported in the interval Ij,k = [2−jk, 2−j(k + a)]
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and |Ij,k| is 2−ja. Denote the center of the interval Ij,k by xj,k and note that

xj,k = 2−(j+1)a+ 2−jk.

Since ψj,k(x) has n vanishing moments, given any polynomial p(x) of degree no

greater than n− 1 we have

∫
R
p(x)ψj,k(x)dx = 0. (5.2)

Since g(x) is Cn(R), for every j, k ∈ Z, g(x) can be expanded about the point xj,k

in a Taylor expansion as follows:

g(x) = g(xj,k)+(xj,k−xj,k)g′(xj,k)+. . .+
1

(n− 1)!
(xj,k−xj,k)n−1g(n−1)(xj,k)+rn(x),

(5.3)

where

rn(x) =
1

n!
(xj,k − xj,k)ng(n)(ξ)

for some number ξ between xj,k and xj,k.

If x ∈ Ij,k, then xj,k − xj,k 6 2−(j+1)a, which implies that

|rn(x)| 6 1

n!
2−n(j+1)an max

x∈Ij,k
|g(n)(x)|. (5.4)
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Now, we apply (5.2) to (5.3) and compute

〈g, ψj,k〉 =

∫
R
g(x)ψj,k(x)dx

=

∫
R

(
n−1∑
l=0

1

l!
(xj,k − xj,k)lg(l)(xj,k) + rn(x)

)
ψj,k(x)dx

=

(
n−1∑
l=0

1

l!
g(l)(xj,k)

∫
R
(xj,k − xj,k)lψj,k(x)dx

)

+

∫
R
rn(x)ψj,k(x)dx

=

∫
Ij,k

rn(x)ψj,k(x)dx, by (5.2).

Then we apply (5.4) and the Cauchy-Schwarz inequality to get

|〈g, ψj,k〉| =

∣∣∣∣∣
∫
Ij,k

rn(x)ψj,k(x)dx

∣∣∣∣∣
6

1

n!
2−n(j+1)an max

x∈Ij,k
|g(n)(x)|

∫
Ij,k

|ψj,k(x)|dx

6
1

n!
2−n(j+1)an max

x∈Ij,k
|g(n)(x)||Ij,k|1/2

(∫
Ij,k

|ψj,k(x)|2dx

)1/2

=
1

n!
max
x∈Ij,k

|g(n)(x)|2−n(j+1)an2−j/2a1/2

= 2−nj2−j/2

(
1

n!
2−nan+1/2 max

x∈Ij,k
|g(n)(x)|

)
= 2−nj2−j/2

(
1

n!
2−nan+1/2||g(n)||∞

)
.

with C =
1

n!
2−nan+1/2||g(n)||∞, Theorem 5.1 is satisfied.

The above theorem suggests that the magnitude of the detail coefficients that

correspond to the smooth parts of a function will be very small compared with
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the ones corresponding to the non-smooth parts of a function. This result has

a crucial implication to edge detection in images, since edges can be interpreted

as non-smooth parts of the image and hence can be detected by looking for high

detail coefficients. The following example will substantiate this statement.

Example 5.2 Consider the function f defined as follows:

f(x) =


1 if 0 6 x < 1/3

0 if 1/3 6 x < 1.

It is clear that f is continuous and continuously differentiable infinitely many

times on (0,
1

3
) and (

1

3
, 1) and it is discontinuous at x =

1

3
. Now, we will calculate

the detail coefficients at level j = 1. Then, we will give a general formula for

calculating dj,k for all values of j and k. This will show that, in the subinterval that

has the discontinuity, the detail coefficient is nonzero while, in the subintervals

that have smooth parts the detail coefficients are zero.

Recall first that ψH
j,k(x) = 2j/2ψ(2jx− k)

d1,0 = 〈f, ψH
1,0〉 =

1/4∫
0

√
2dx+

1/3∫
1/4

(−
√

2)dx+
1/2∫
1/3

0dx = (
1

4
)
√

2− (
1

12
)
√

2 + 0 =

√
2

6

d1,1 = 〈f, ψH
1,1〉 =

3/4∫
1/2

(0)
√

2dx+
1∫

3/4

(0)(−
√

2)dx = 0 + 0 = 0

Now, we are going to deduce a general formula for calculating dj,k. First, let us
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determine the dyadic subinterval Ij,k′ = [
k′

2j
,
k′ + 1

2j
] that contains the value x =

1

3
.

1

3
∈ [

k′

2j
,
k′ + 1

2j
] ⇒ 1

3
>
k′

2j
and

1

3
6
k′ + 1

2j

1

3
>
k′

2j
⇒ k′ 6

2j

3

1

3
6
k′ + 1

2j
⇒ k′ >

2j

3
− 1

∴ k′ = b2
j

3
c

So, for any value of j we have three cases for k. We will show the value of the

detail coefficients in each case.

Case I: k < b2
j

3
c

In this case, x <
1

3
which implies that f(x) = 1. So

dj,k = 〈f, ψH
j,k〉 =

∫
Ij,k

fψH
j,kdx =

∫
Ij,k

ψH
j,kdx = 0

Case II: k > b2
j

3
c

In this case, x >
1

3
which implies that f(x) = 0. So

dj,k = 〈f, ψH
j,k〉 =

∫
Ij,k

fψH
j,kdx =

∫
Ij,k

(0)ψH
j,kdx = 0

Case III: k = k′ = b2
j

3
c

In this case,
1

3
∈ Ij,k′ so we have two subcases:
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Case III(a):
1

3
∈ I lj,k′ , which gives

dj,k′ = 〈f, ψH
j,k′〉 =

∫
Ij,k′

fψH
j,k′dx =

1/3∫
k′
2j

ψH
j,k′dx

=

1/3∫
k′
2j

2j/2dx = (
1

3
− k′

2j
)(2j/2) > 0

since
1

3
>
k′

2j

Case III(b):
1

3
∈ Irj,k′ , which gives

dj,k′ = 〈f, ψH
j,k′〉 =

∫
Ij,k′

fψH
j,k′dx =

∫
Il
j,k′

ψH
j,k′dx+

1/3∫
2k′+1

2j+1

fψH
j,k′

= 0 +

1/3∫
2k′+1

2j+1

2j/2 = (
1

3
− 2k′ + 1

2j+1
)(2j/2) > 0

since
1

3
>

2k′ + 1

2j+1

Figure 5.1 shows the function f(x) and the detail coefficients for the levels

j = 1, 2, 3. You can see clearly that the coefficient of the subinterval that contains

the discontinuity is high while all other coefficients are zeros.
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Figure 5.1: (a) The function f(x), (b) The detail coefficients for j = 1, (c) The

detail coefficients for j = 2 and (d) The detail coefficients for j = 3

The proposed algorithm in one dimension

Now, we present the most important part in this section which is an algorithm to

detect singularities using discrete wavelet transform.

Suppose that we have a function f ∈ L2[0, 1], and we want to detect singular-

ities in it. The algorithm proposed is as follows:

Algorithm 5.3 (Wavelet-based singularity detection algorithm)
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1) Apply discrete wavelet transform in one dimension at scale j, chosen a priori,

which produces the approximation and detail coefficient vectors cj and dj.

2) Discard the approximation coefficient vector cj.

3) Identify the detail coefficient dj,k that has the maximum modulus in dj and

call it m.

4) Choose a threshold T . Here we take T =
m

10
.

5) Discard all the detail coefficients that are less than T in modulus.

6) The remaining coefficients specify the dyadic subintervals where the singu-

larities are located. The higher the scale j, the more precise the singularity

is bracketted since Ij,k = [2−jk, 2−jk + 1].

The reason for step 2 is that the approximation coefficient cj contains the smooth

part of the signal, since Sj contains all polynomials Pd of degree d − 1, where

d is the vanishing moment of ψ. Singularities are manifested only in the detail

coefficients since Wj is orthogonal to these polynomials. Figure 5.2 shows the flow

chart of this algorithm.
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Figure 5.2: Flow chart for wavelet-based singularity detection algorithm
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5.2 Edge Detection Using Discrete Wavelet

Transform in Two Dimensions

It is worth noting that images are functions of two variables [29]. Moreover, they

are bounded and at the same time have bounded variations [9]. Discrete wavelet

transform in two dimensions has many applications in image processing such as

compression and denoising. Most importantly for us, it enables us to detect

edges by tracking the high detail coefficients in vertical, horizontal and diagonal

directions. In this section, we will present an algorithm for image edge detection.

In fact, our algorithm is analogous to the one we proposed in the previous section.

Edge detection in the presence of noise will also be tried. Images considered in

this work, are all high-definition square images of size 2048 × 2048. Indeed, our

algorithm outperformed the Canny edge detector, which is the most popular one

used in the literature. The highest scale j that can be reached is

log2(
√

size of image)− 1 (∗)

.

The proposed algorithm in two dimensions

Suppose that we have an image u ∈ L2[0, 1]2 and we want to detect the edges in

u. The algorithm proposed is as follows:

Algorithm 5.4 (Wavelet-based edge detection algorithm)
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1) Convert the image to a black-and-white image.

2) Apply discrete wavelet transform in two dimensions at scale j according to

(∗) to produce the approximation and detail coefficient vectors cj and dj.

Recall that dj =

(
d1
j d2

j d3
j

)T

. (See 4.2.1)

3) Discard the approximation coefficient vector cj.

4) Identify the detail coefficient dlj,k that has the maximum modulus for every

l with 1 6 l 6 3 and call them m1,m2 and m3, respectively. Then choose

the maximum one among them and call it m.

5) Let the threshold be T =
m

10
.

6) Discard all the detail coefficients in the three directions that are less than

T in modulus.

7) Plot the location of detail coefficients after thresholding to get the image

edges.

It is worth noting that this algorithm is applied using MATLAB software. Figure

5.3 shows the flow chart of this algorithm.
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Figure 5.3: Flow chart for wavelet-based edge detection algorithm
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5.3 Edge Detection Using Canny edge detector

John Canny proposed his detector in 1986 [15]. In this section, we will give a short

description of Canny edge detector. His detector is dominating nowadays due to

its great advantages [1]. Given an image u, the algorithm that Canny proposed is

as follows:

Algorithm 5.5 (Canny edge detector algorithm)

1) Convert the image to a black-and-white image.

2) Convolve the image u with a Gaussian function G. This step is done to

smooth the image. i.e. w = u ∗G.

3) Take the modulus of gradient of the convolved image. i.e. Find |∇w| =

|∇(u ∗G)|

4) Threshold by looking for pixels of high modulus gradient |∇w| > T .

5) Suppress any pixel that is not maximum in its neighborhood. Indeed, here

it only compares the pixel with the two neighboring pixels that are in the

direction of the tangent θ = arctan
wy

wx

. This step is called non-maximum

suppression to thin the edges.

6) Double threshold by setting two thresholds Thigh and Tlow and mark the

pixels above Thigh as strong, pixels between Thigh and Tlow as weak and

suppress pixels below Tlow.
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7) Track the true edges by comparing the weak pixels to the 8 neighboring

pixels. If a weak pixel is connected to a strong one, then it is preserved.

Otherwise, it is considered false edge and, therefore, suppressed. Note that,

the Canny edge detector is applied to images using the MATLAB command

”edge(I,’canny’)”.
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Figure 5.4: Flow chart for Canny edge detector algorithm

Figure 5.4 shows the flow chart of this algorithm.

61



5.4 Results and Comparison of Images Without

Noise

In this section, we compare edge detection by wavelets to that with Canny. We

begin by five images without noise. Then we add noise and observe its effect. The

first image shows a Pepsi can with a blurred background (Figure 5.5). It is clear

that our algorithm outperforms Canny’s. Using our algorithm, we only miss some

circles with weak boundaries in the background. For Canny algorithm, the true

edges are not clear and it produces many false edge pixels.

Figure 5.5: Pepsi can image
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Figure 5.6: Pepsi can edges using dwt2 with Haar

Figure 5.6 shows the Pepsi can edges using Haar wavelet.
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Figure 5.7: Pepsi can edges using Canny edge detector

Figure 5.7 shows the Pepsi can edges using Canny edge detector.
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The second image that we are going to take is an image of the famous Times

Square in New York (Figure 5.8). Looking at the two edge images it is easily

seen that our algorithm outperforms Canny’s. Using our algorithm, the edges are

much clearer and the constituent parts in the image are easy to distinguish. For

example, you can easily see the edges of the cars and also read the word ”Kodak”

written vertically which is not the case with Canny’s.

Figure 5.8: Times square image
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Figure 5.9: Times square edge image using dwt2 with Haar

Figure 5.9 shows the edge image of the Times Square using Haar wavelet.
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Figure 5.10: Times square edge image using Canny edge detector

Figure 5.10 shows the edge image of the Times Square using Canny edge

detector.
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The third image is of a bird with a blurred background (Figure 5.11).

Figure 5.11: Bird image
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Figure 5.12: Bird edge image using dwt2 with Haar

Figure 5.12 shows the edge image of the bird image using Haar wavelet.
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Figure 5.13: Bird edge image using Canny edge detector

Figure 5.13 shows the edge image of the bird image using Canny edge detector.
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The fourth image is of a Dr Pepper can. (Figure 5.14).

Figure 5.14: Dr Pepper can image
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Figure 5.15: Dr Pepper can edge image using dwt2 with Haar

Figure 5.15 shows the edges of the Dr Pepper can image using Haar wavelet.
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Figure 5.16: DrPepper can edge image using Canny edge detector

Figure 5.16 shows the edges of the Dr Pepper can image using Canny edge

detector.

73



The fifth image is an image of a toys room (Figure 5.17).

Figure 5.17: Toys room image
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Figure 5.18: Toys room edge image using dwt2 with Haar

Figure 5.18 shows the edges of the toys room image using Haar wavelet.
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Figure 5.19: Toys room edge image using Canny edge detector

Figure 5.19 shows the edges of the toys room image using Canny edge detector.

5.5 Results and Comparison of Images with

Noise

Now we will see the effect of adding the salt and pepper noise to the Pepsi can

(Figure 5.20) and Times Square (Figure 5.23) images. Here we use the same
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algorithm proposed but we lower the threshold to Tnoise =
m

20
, instead of T =

m

10
.

Figure 5.20: Noised Pepsi can image
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Figure 5.21: Noised Pepsi can edge image using dwt2 with Haar

Figure 5.21 shows the edges of the Pepsi can noised image using Haar wavelet.
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Figure 5.22: Noised Pepsi can edge image using Canny edge detector

Figure 5.22 shows the edges of the Pepsi can noised image using Canny edge

detector.
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Figure 5.23: Noised Times square image
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Figure 5.24: Noised Times square edge image using dwt2 with Haar

Figure 5.24 shows the edges of the Times Square noised image using Haar

wavelet.
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Figure 5.25: Noised Times square edge image using Canny edge detector

Figure 5.25 shows the edges of the Times Square noised image using Canny

edge detector.

It is clear that our algorithm is not immune to noise but still it is better than

Canny edge detector with respect to noise.

5.6 Comparison of Haar with db2 and db3 in

edge detection

In this section, we will apply our algorithm using Haar, db2 and db3 wavelets to

the Pepsi can image and compare the edge images in all cases. This section, will
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show the distinction of the Haar wavelet in edge detection as we proposed in the

beginning of this work. This distinction is due to the better correlation of the

Haar wavelet with the characteristic edge jump discontinuity. Figure 5.26 shows

the Pepsi can image.

Figure 5.26: Pepsi can image
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Figure 5.27: Pepsi can edge image using dwt2 with Haar

Figure 5.27 shows the edges of the Pepsi can image using Haar wavelet.
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Figure 5.28: Pepsi can edge image using dwt2 with db2

Figure 5.28 shows the edges of the Pepsi can image using db2 wavelet.
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Figure 5.29: Pepsi can edge image using dwt2 with db3

Figure 5.29 shows the edges of the Pepsi can image using db3 wavelet.

It clear that the Haar wavelet is distinct in detecting edges. Moreover, the edge

image loses sharpness of edges as we go from db1(Haar) to db2 to db3 an so on.

5.7 Edge Detection In Colored Images

In this section, we will directly apply our algorithm to colored images instead

of transforming first to a black-white image. The algorithm will be applied to
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the colored Pepsi can image (Figure 5.30) and to the toys room image (Figure

5.33). Figures 5.31 and 5.32 show the edges of the colored Pepsi can image using

Haar wavelet and Canny edge detector, respectively. Figures 5.34 and 5.35 show

the edges of the toys room image using Haar wavelet and Canny edge detector,

respectively. Recall that a colored image can be thought of as a function

u : [0, 1]× [0, 1] −→ R3

where

u(x, y) =


r

g

b


and r, g, b are the red, green and blue color intensities at the point (x, y). The idea

is to apply the edge detection algorithm to each of the rgb channels representing

the color intensities at the image pixels.
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Figure 5.30: Colored Pepsi can image

Figure 5.31: Colored Pepsi can edge image using dwt2 with Haar
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Figure 5.32: Colored Pepsi can edge image using Canny edge detector

Figure 5.33: Colored toys room image
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Figure 5.34: Colored toys room edge image using dwt2 with Haar

Figure 5.35: Colored toys room edge image using Canny edge detector

Clearly, from the above images you can see that our algorithm outperforms
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the Canny edge detector when colored images are processed instead of black-white

images.

Concluding Remarks 5.6

At the end of this work, we can summarize our findings as follows:

� Our algorithm outperforms Canny edge detector when processing high-

definition images.

� Our algorithm is much more immunized than Canny edge detector when

processing noised high-definition images.

� Our algorithm is performing the best when using the Haar wavelet.

� Our algorithm outperforms Canny edge detector when colored images are

processed.

Conclusion 5.7 fsd
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