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As the Internet grows in size and users, many aspects of our lives start to fold around its 

center. This calls for more preventive measures that guard against malicious actors and 

threat cases. Tor strives to cover one aspect by promising its users a low-latency, 

anonymity protocol that guards against those actors. In recent years, many researches 

focused on identifying the end servers Tor users intend to reach. Among those, Website 

Fingerprinting (WF) and Traffic Analysis are considered the most effective due to ease of 

implementation, lower resources requirements, and promising results in both open and 

closed world. The efforts to thwart such attacks is solely based on increasing the active 

circuits by encouraging more users to utilize Tor, and thus increasing the level of 

multiplexing that occurs at Tor relays. However, these approaches fail dramatically when 

attackers target lowly utilized relays, or when rigid regimes focus on the sole link 

between an end user and the entry node. In this research, we aim to unearth the details of 

Tor multiplexing, and show the extent to which it aids in defending such attacks. We also 

propose to introduce randomization to Tor by displaying three algorithms to randomize 

and multiplex Tor streams, right from the initial point, i.e. Tor end-user. 
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 ملخص الرسالة
 
 

 یاسر سلیمان العقل :الاسم الكامل
 

 التحلیل الأمني لخوارزمیات التعدد والتشكیل في بروتوكول تور :عنوان الرسالة
 

 أمن المعلومات التخصص:
 

 تاریخ الدرجة العلمیة: ینایر ٢٠١٨
 

كلما تكبر شبكة الانترنت، ویزداد عدد مستخدمیھا، یزداد اعتمادنا علیھا، وتصبح محور حیاتنا الیومیة. لھذا دعت 

الحاجة إلى ابتكار وإنتاج العدید من وسائل الحمایة لمقاومة العدد المتزاید من المستخدمین الخبیثین، والتصدي لحالات 

التھدید السیبرانیة. تور (بروتوكول التوجیھ البصلي) یسعى جاھدا لسد ھذا الاحتیاج عن طریق تقدیم بروتوكول سریع 

الاستجابة، یعد مستخدمیھ بإخفاء ھویاتھم الحقیقیة خلف توجیھ متعدد لكي یحمیھم من ھؤلاء المستخدمین الخبیثین. في 

السنوات الماضیة القریبة، ركز الباحثون جھودھم لاستخلاص المواقع التي یقوم مستخدمون تور بزیارتھا بطرق 

متعددة، لیس لمساعدة المستخدمین الخبیثین، بل لابتكار طرق الدفاع أیضا. أحد أشھر ھذه الطرق، ھو "تبصیم 

المواقع"، ویعد الأكثر فعالیة نظرا لسھولة تنفیذ ھذا الھجوم، انخفاض الموارد الحاسوبیة المستخدمة لتطبیقھ، والنتائج 

الواعدة في التجارب المعملیة، وفي الحیاة الواقعیة السیبرانیة. وقد كانت أغلب الجھود ذات الفعالیة في صد ھذه 

الھجمات، تتمحور حول زیادة عدد مستخدمین ھذا البروتوكول، مما یعني زیادة في استخدام شبكة تور، وبالتالي 

مضاعفة نسبة خلط البیانات التي تمر بشبكة تور. ولكن ھذه الجھود غالبا ما تفشل، عندما یقوم المستخدمون الخبیثون 

بالتركیز على مقدمین خدمة تور ذو الاستخدام المنخفض نسبیا، وبالتالي تقلیل نسبة البیانات المختلطة، أو عندما تقوم 

بعض الحكومات ذو النظام الصارم بالتركیز على حلقة الوصل الوحیدة التي تربط بین المستخدم النھائي، وشبكة تور. 

في ھذا البحث، نھدف إلى كشف وتدقیق الطرق المستخدمة في تور لخلط بیانات المستخدمین، وتحلیل مدى فعالیتھ في 

صد الھجمات. أیضا، نقوم بعرض ثلاث خوارزمیات تقوم بتحسین عملیة خلط البیانات في تور منذ خروجھا من 

  المستخدم النھائي، وحتى وصولھا إلى الخدمة النھائیة المعنیة.
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CHAPTER 1 

INTRODUCTION 

 

As the Internet grows in size and users, many aspects of our lives start to fold around 

its center. The different services the Internet provides, and the advances in recent 

technologies, dramatically increase the potential of tasks we are able to exercise on it.  

From a simple question on a popular search engine, to industrial control systems, 

different principles of information security are being mandated on daily basis. For 

some, the assurance that their messages are received as-is without tampering, while 

others, focus solely on whether their messages were read by some third party during 

the transmission.  

 

A recent rising demand in today’s world is anonymity. No longer does a party requires 

the confidentiality of their messages only, but the assurance that the other end doesn’t 

identify them, by means of IP, geographical location, or time zone. Also, the inability 

of an observer to identify the different destinations this party is reaching out to. Hence, 

the increasing popularity of low-latency anonymity systems is being noticed nowadays 

in different fields of online-provided services, most notably Onion Routing Protocols, 

with a dominating percentage utilizing Tor [3]. Tor promises its users with the 

confidentiality and anonymity they’re seeking by introducing a multi-layer, multi 

nodes, encryption protocol that sparse your communication traffic around the web 



10 
 

before final delivery, and uses middle routing relays as encryption/decryption nodes, 

where a node is only aware of the previous or upcoming node in terms of metadata 

[IP, location, etc.], and a complete shadowing of the traffic content.  

 

The unique features Tor promises and provides for its users, derived a new field of use 

cases for different demographical sets. Users in oppressive regimes, such as China and 

Iran, can evade censorships and communicate liberally [1]. E-Commerce users can 

keep their history and shopping preferences private, against online marketing 

campaigns. Whistleblowers can freely communicate with law enforcements and the 

press without compromising their identities. Governmental agencies abroad can reach 

out to their headquarters without notifying host countries. Trade secrets can be 

securely transferred without alerting possible eavesdropping competition. Hackers and 

hacktivists can, unfortunately, conduct their destructive actions with an extra layer of 

confidence, such as the recent attack on The Hacker Group [2].  

 

Despite the promises Tor provides, and the complexity noted by its wide-spread 

infrastructure, several attacks [4, 5, 6, 7] have successfully de-anonymized some 

aspects of Tor, thus, compromising the most demanded aspect of it. These attacks 

differ in complexity, applicability in real world, and the required level of control on 

network nodes around the globe. While the most successful attacks are those relaying 

on traffic confirmation, where an adversary monitors traffic on both ends of 

communications, these attacks fail dramatically outside the environment of a lab. Even 
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larger-scale entities, such as ISPs and backbone support entities, can’t guarantee 

continuous monitoring of nodes outside their jurisdiction to preclude this kind of 

attack [8, 9]. 

 

However, attacks involving a local observer are considered more realistic and 

applicable to users of anonymity systems. A local observer is any entity that has 

control over (or can monitor) the traffic between the user and the first encrypting node 

of a Tor circuit. In a local coffee shop, this could be a script kiddie capturing all the 

wireless traffic; an intruder eavesdropping on your home router, an ISP monitoring 

your entire communication, or a system administrator with the proper tools to capture 

your traffic. Recently, attacks based on Website Fingerprinting (WF) [10] are 

considered most effective and realistic on Tor. WF is a special attack derived from 

traffic analysis that classifies and identifies websites based on certain characteristics 

these websites exert. The number of resources (files) the homepage of a popular 

website serves on an ordinary request, the sizes of these resources, the order of which 

they are served, or the timings between each response, are typical characteristics this 

class of attack utilizes to draw conclusions about the websites being visited. Recent 

WF attacks on Tor [8, 9, 11, 12, 13] have shown a surprising 57% of true positive 

detection rate in a closed-world setting, for a false positive rate below 1%. Some 

attacks claimed to reach a higher or more accurate results in an open-world 

environment as well to score an accurate detection rate of 97%.  

 



12 
 

However, WF is as accurate as the traffic its analyzing. The more noise introduced in a 

traffic, the difficult it becomes identifying a website. Furthermore, the more websites a 

user surfs, the harder it is to distinguish different streams. That is why Tor employs the 

use of algorithms which masquerades the traffic by either dividing them into a fixed 

width of 514-bytes data chunks, known as cells, or merging the data from multiple 

packets into a single cell. Additionally, Tor combines multiple TCP streams into a 

single circuit, and multiplexes those circuits into a single connection, which increases 

the level of complexity for an observer. Most of the literature work uses the ground 

truth of the data collection system to decide where to split the stream. Moreover, the 

algorithms implemented only accept as an input cell sequences that corresponds to a 

single web resource or page. 

  

In this research, we aim on exploring the internals of Tor multiplexer to truly 

understand the inner-working and conditions where the multiplexing applies, and fully 

measure the extent to which multiplexing reach. We aim to unearth a vague point of 

research that often overlooks the role of different streams composing a circuit. 

Additionally, we feel the urge to determine whether Tor accounts for streams 

randomization as it does for different circuits. Furthermore, we propose three different 

algorithms that can dramatically enhance the overall security of Tor, and provide a 

strong layer of resistance towards Websites Fingerprinting, and Traffic Analysis 

attacks in general. Specifically, our contribution is: 
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1- Analyze Tor multiplexing module, explain its interworking, and discuss its 

security implications. 

2- Identify the scenarios where Tor applies Multiplexing, or the lack of it. 

3- Identify the scenarios where Multiplexing is applied but with no additional 

security value. 

4- Introduce three different algorithms that enhances on the identified scenarios with 

lack of multiplexing or multiplexing security added value. 

5- Conduct empirical experiments that backup our findings in 2 and 3.  

6- Conduct empirical experiments that backup up our algorithms in 4. 

 

In the remaining of this section, we deliver a brief introduction on Tor, and formally 

define our problem statement, as well as providing a general overview of Traffic 

Analysis. In Section 2, we deeply explain the way Tor operates, and provide some 

technical insights on its processes. In section 3, we provide some recent related work 

on Tor’s fingerprinting in the literature. The familiar reader with the topic can skip to 

section 4. In section 4, we introduce the incentives and rationality of our proposal, 

demonstrate the mechanism of Tor circuits and multiplexing, and propose our 

improvement by presenting three different algorithms of streams multiplexing and 

randomization. In section 5, we present the empirical work and results of our proposed 

algorithms. 



14 
 

CHAPTER 2 TOR 

ANONYMITY PROTOCOL 
 

 

Tor circuit is a collection of Tor Onion Routers (OR) distributed over the Tor network 

that aim to provide an encrypted end-to-end channel between a Tor user (client) 

utilizing an Onion Proxy (OP) and an Internet service, e.g. HTTP server, Tor hidden 

service, FTP server, or even a VPN server. A circuit is established incrementally by 

the client (OP), through the use of three Onion Routers (OR), where each two ORs 

exchange information independently of the rest of the circuit, to establish a one-to-one 

secure connection between them. While a circuit is intended to be used by a single 

client (OP) to carry as much services as required by the client, two ORs will only 

establish a single (TCP) connection among them at any time and will piggyback that 

single connection with as much circuits as required from different OPs.   

 

The same behavior is also observed between a pair of OP/OR, where a single outer 

TCP connection is established. Once a full circuit is established, an Onion Proxy can 

establish as many TCP streams as required on top of that circuit to consume Internet 

services. In essence, an observer of the traffic between two Tor Onion Routers will see 

a single TCP connection, that wraps around multi Tor circuits established by many 

Onion Proxies, where each circuit transmits many TCP streams from only a single 

Onion Proxy, heading to many Internet services. The analogy used in this section will 

continue throughout the rest of this paper and is illustrated in Figure 1. 
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2.1 Introduction to Tor 
Tor is a low-latency anonymity protocol, based on Onion Routing, where a network of 

volunteers constructs a hard-to-follow route through the Internet, similar to when you 

want to throw off a tailgater [26]. There are four main components in a Tor network, 

namely Tor clients: an end user who wishes to establish TCP connections to other 

entities while keeping their identity anonymous, also referred to as Tor Proxies; Tor 

nodes: intermediate routing nodes that convey the clients traffic, also known as Tor 

Relays or Onion Routers; Tor Directory Server: similar in functionality to DNS 

servers, but uses a different mechanism; Tor Onion Services (previously hidden 

services): an Internet server that wishes to keep their identity anonymous from end 

users (Tor clients) and other entities while serving any sort of resources. 

 

Two possible use cases may occur when a Tor client wishes to establish a connection, 

depending on the end destination. If the client is aiming to reach a normal Internet 

server that doesn’t implement Tor (i.e. not an onion service), the client’s Tor software 

(Tor Onion Proxy) starts by consulting a Tor directory server. The server provides 

information about currently available Tor Relays (Onion Routers), network topology, 

and bandwidth information to the client. The client, then, chooses three nodes to build 

an encrypted circuit incrementally. That is, similar to a VPN server, the client starts by 

establishing a tunnel connection with the first node in the circuit, utilizing public key 

cryptography. It, then, uses this portion to extend the connection to the second chosen 

node, and finally, to the third. During that, the client exchanges symmetric keys with 

each node in the path (circuit) to carry on session encrypted communication. Once the 
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circuit is secured, the client can start establishing communication channels with 

different destination servers by building streams on top of the circuit.  

 

The process starts by encrypting packets in a layered approach where each packet is 

encrypted three times with the third, second, and first node’s key, in that order, 

resulting in an onion-like shape. Every node, then, peels off its respective layer of 

encryption to reveal the information about the next relay in the circuit, without 

compromising the contents of the original packets. Only the first node in the circuit 

(Guard node) knows the original sender (Tor client), where the last node in the circuit 

(exit node) can identify the final destination of the packet, and the content of the 

packet if SSL is not used by the end server. The simplest attack on Tor’s anonymity 

can be implemented by compromising both the guard and exit node, a statistically 

infeasible approach. In this research, we only focus on this use case of Tor, hence, no 

much emphasis will be given to the second scenario, and we will explain the general 

idea for the reader’s convenience.  

 

In the second use case, the Tor client wishes to connect to a Tor onion service. In this 

case, a rendezvous node is selected at random by the client. The client sends the 

selected rendezvous node through a three-relays circuit to a certain node on Tor 

network that knows how to reach the onion service. The node forwards the request to 

the onion service, which by turn establishes a three-relays circuit to that rendezvous 

point, thus, forming a six-relays Tor circuit. The client and service exchange required 

services, and the circuit is broken.   
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2.2 Keys and Authentication 
Each connection established between two Onion Routers or an Onion Proxy and an 

Onion Router must use SSLv3/TLS for link authentication and/or encryption; TLS is 

always preferred. For that purpose, a Tor Onion Router must first prove its identity by 

the use of Public Key Infrastructure, and must maintain a secure identity utilizing a 

collection of public/private key pairs. An RSA-1024 key is maintained as an identity 

key, and is used solely to sign certificates, documents, and the likes, that are issued by 

that relay. This is a long-term key that is maintained as well by the directory servers of 

Tor to reference that specific relay.  

 

An alternation of that key, is an ED25519 signing key that is used in later versions of 

Tor, and is also used to describe the identity of the node, however, is referred to as the 

master identity key, and is solely used to sign the third key. The third key is a 

medium-term ED25519 key, that is signed by the master identity key and is utilized 

for onion skin decryption (discussed below). Two other medium-term keys are used. 

While the first is an RSA-1024 TAP (onion key) that is used to decrypt onion skins, 

when accepting circuit extend attempts originating from the Onion Proxy (client); the 

second key is implanted as an EllipticCurve25519 key, that is used for the same 

purpose, and is referred to as an “ntor” (onion key). These two keys can be used 

interchangeably with the first key. Finally, a single short-term RSA-1024 key is used 

to negotiate point-to-point TLS connections, and is rotated much frequently, 

minimally once a day.  
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Furthermore, three ways are available for two Tor relays to authenticate themselves 

and establish a TLS connection between them. In the first method, namely certificates-

up-front, each relay provides its authentication certificate prior establishing a TLS 

connection, and as part of their initial TLS handshake. In the second approach, namely 

renegotiation, only the responder relay provides its authentication certificate, allowing 

the requester to authenticate immediately via a TLS renegotiation. In the third method, 

namely in-protocol, both relays utilize Tor protocol, after the initial TLS renegotiation, 

to bootstrap themselves to mutual authentication.  

 

In the first method, the initiator always starts by sending a two-certificates chain 

consisting of an X.509 certificate utilizing the short-term connection public key, and a 

second self-signed certificate announcing its identity key. The responder replies with a 

similar chain. In the second method, the initiator doesn’t send a certificate, while the 

responder provides a single connection certificate. Once the handshake is concluded, 

the parties renegotiate the handshake with each relay providing its two-certificates 

chain, as in certificates-up-front approach. In the third approach, a TLS connection is 

established in a non-conventional way where the parties exchange Tor specific data 

structures (known as cells) to establish a TLS connection, and to agree on connections 

properties beforehand, where they engage in relatively longer communication 

messages.    
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2.3 Cells 
Cells are the building blocks of Tor and the smallest unit of communication, as they 

are utilized in every aspect of Tor establishment of connections, circuits building, and 

exchange of data. Cells are considered one of the strongest defenses Tor implements 

against Traffic Analysis attacks as they employ a fixed width of 514 bytes (512 bytes 

in older versions), that are mostly triple encrypted. A typical Tor cell will have three 

fields: CircID, a 4-bytes field that identify the corresponding circuit this cell associates 

to; Command, a 1-byte field having a numeric value ranging from 0 to 127 that 

describes the purpose of the cell; and Payload, a 509-bytes field that carries the 

payload of the cell, and comes in a variety of formats and structures, depending on the 

purpose of the cell, identified by the Command field. It’s worth noting that other 

structures of Tor cells are available, however, they are neglected due to their 

irrelevancy, restricted use to backward compatibility, and far less common use.  

 

Some common examples of the Command field values are 0 (PADDING), which 

indicates that the cell is being used for padding purposes; 1 (CREATE) which instructs 

the receiving relay to create a circuit; 2 (CREATED) which is an acknowledgment cell 

confirming the creation of a circuit; and 3 (RELAY) which is the most common cell 

type of Tor that is used for end-to-end data transfers. As mentioned earlier, the 

interpretation of the payload field is dependent on the Command field. A Command 

value of 0 (PADDING) indicates that the payload is not used and should be discarded, 

while a Command value of 1 (CREATE) suggests that the payload contains the 

handshake challenge. Similarly, a Command value of 2 (CREATED) indicates that the 

Payload is the handshake response. Of most relevance, a Command value of 3 
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(RELAY) instructs the receiving relay to further interpret the payload as another data 

structure, consisting of a Relay Header and a Relay Body. We will further display the 

internal structure of a Relay cell at a later stage. 

 

2.4 Circuit Establishment 
As mentioned earlier, an Onion Proxy (OP) incrementally create a circuit using at least 

three Tor Onion Routers (OR, relays, nodes, or hops). The process by which this is 

accomplished is delegate, and requires the use of a multi-spectrum range of cell types. 

In general, OPs send a CREATE cell to the first node in the path, such that the payload 

of the cell contains the first half of the handshake challenge. Immediately, that node 

responds with a CREATED cell that encompasses the second half of the authenticated 

handshake.  

 

The handshakes mentioned here corresponds to Diffie-Hellman key exchange 

protocol, and utilizes the different sets of public/private keys illustrated earlier. To 

extend a circuit past the first relay node, the Onion Proxy sends a Relay cell (explained 

at a later stage) that has a subtype of EXTEND. This cell instructs the receiving node 

to send, yet, a freshly crafted CREATE cell to the next node in the path, which in turn 

responds with a CREATED cell. It’s worth noting the second node in the path is not 

aware of the OP’s identity at this point, and is only familiar with the previous OR in 

this path.  
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Figure 2 illustrates the process of circuit building in a formal manner, which also 

accounts for more than three nodes. The steps below are performed by the circuit 

creator (Onion Proxy). 

 

Figure 2 Formal process of circuit creation 

 

 

This process concludes the mechanism by which an Onion Proxy is able to create a 

Tor circuit that spans over three or more Onion Routers. By now, the Onion Proxy is 

maintaining a list of N routers that constitute the circuit, each of which have 

negotiated a shared key indirectly with the Onion Proxy (with the exception of the first 

router R_1), and the OP is now able to establish TCP streams to end destinations by 

crafting and routing special Relay cells across the path. 
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2.5 Relay Cells 
Relay cells are the most common cells to traverse the Tor network, that is, they are 

mainly used to transfer end data (client to server or vice versa) or participate in some 

special circuit management tasks, e.g. extending circuits beyond the first router, 

tearing down circuits, etc. Within a circuit, the Relay cell is used to communicate 

messages between the Onion Proxy and the last Onion Router in the circuit path (i.e. 

the Exit Node), in addition to being the tunnel that pipelines end servers TCP streams.  

 

Other nodes in the circuit path only route the relay cells to the next hop in the path, 

without being able derive clues about their contents, given that they are encrypted, and 

are set to fixed widths. Another observation is that while streams are only initiated by 

the OP, the exit node is able to initiate commands of its own, wrap it in a Relay cell, 

and route it towards the OP. The OP is able to perform the same as well. The payload 

of a Relay cell consists of five headers, in addition to a Data section that is interpreted 

differently based on the Relay cell headers (not to confuse this with the general cell 

header discussed earlier). 

 

“Relay Command” is the first of those headers, and is a 1-byte field having a 

numerical value ranging from 1 to 15. Values observed from 32 to 40 are reserved for 

Tor hidden services and are of slight value to this research’s scope. The second field is 

referred to as “Recognized”, and is a two-bytes field that is set to zeros in the plain 

(unencrypted) Relay cell (further discussion below). “StreamID” is a two-bytes field 

that hosts a unique end-server stream ID that is arbitrarily generated by the OP to 

differentiate cells pertaining to different TCP streams. All Relay cells having the same 
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Stream ID are considered to be belonging to the same end server TCP stream. Stream 

ID is used in congestion with Circuit ID to uniquely identify cells. Additionally, no OP 

is allowed to use a Stream ID of zero, as that ID is reserved to cells that affect the 

entire circuit rather than the single stream.  

 

“Digest”, is a four-bytes field and is computed as the first four bytes of the running 

digest of all the bytes that have been destined (or originated) from the hop this Relay 

cell is intended to (either the exit node or OP). The combination of a correct digest in 

the Digest field and the Recognized field equaling zero, annotates the respective cell 

as successfully decrypted.  The “Length” field is used to identify the length of the 

“Data” section, that is, the actual payload of the Relay cell. The remaining of the Data 

section beyond the identified length should be padded with zeros.  

 

Some common examples of Relay commands values are 1 (RELAY_BEGIN) which 

indicates the OP intend to establish a new TCP stream; 2 (RELAY_DATA) an end-to-

end TCP stream data (e.g. HTTP request/response); 3 (RELAY_END) which 

communicates the client or server intent to terminate the TCP stream. A common 

example of the use of RELAY_END cell is TCP FIN packet which can originate from 

either the client, server, or an intermediate firewall. Other important commands are 

RELAY_EXTEND (6) and RELAY_EXTENDED (7) which we’ve touched upon in 

the previous reading, and are used to indicate OP request to extend the circuit, and a 

successful extension response from the OR, respectively.  
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2.6 Streams 
A client intending to open a new anonymized TCP stream, must first choose an 

established open circuit that has an exit node that is able to connect to the final 

destination (specified by that node exit policy). The OP must then generate an 

arbitrary stream ID that is not yet utilized on that circuit, and starts off by constructing 

a Relay cell of type RELAY_BEGIN (command is set to 1). The payload of that cell 

should comply to the expected structure of a RELAY_BEGIN cell i.e. the exit node 

will want to interpret an ADDRPORT field, that is null-terminated, in addition to an 

optional flag of 4-bytes. The ADDRPORT field represents the concatenation of a DNS 

hostname and a TCP port of the end server (destination) the OP wishes to connect to 

(e.g. www.google.com:443). 

 

The optional flags are not heavily utilized by Tor at the moment, and are currently 

used to indicate the possible use of IPv6. Upon receiving that cell, the exit node will 

attempt to resolve that host name to an IP address, and established a new TCP 

connection to the desired port. It’s worth noting the Tor defends against DNS blockage 

censorship implemented by some organization and countries, in addition to 

anonymizing DNS requests/responses by relaying that task to the exit node instead of 

the Onion Proxy (client). A common use of the RELAY_END cell is when the exit 

node can’t resolve the communicated hostname, or is unable to connect to the desired 

TCP port, and issues a RELAY_END cell to the OP. Otherwise, the exit node replies 

with a RELAY_CONNECTED cell and awaits further commands from the OP. Note 

that the RELAY_CONNECTED cell holds the resolved IP address of the destination 

in its Data section for the OP to carry further verification should she wishes. Once a 
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connection is established (as indicated and communicated by the 

RELAY_CONNECTED cell) the OP and exit node start tunneling the underlying TCP 

stream by packaging them in RELAY_DATA cells.  

 

2.7 HTTP Scenario 
Regardless of the end server application protocol, and whether it implies the use of 

TLS/SSL, the OP/Exit node will treat the application data in a similar manner. For the 

sake of this writing, we will demonstrate a typical HTTP scenario. The browser starts 

by creating a typical HTTP GET request, and package it within a transport layer 

packet (TCP packet). The browser, then, forwards that packet to the Onion Proxy, 

which in turn strips the content out of the packet and package it in a Tor Relay cell of 

type RELAY_DATA. Depending on the content size of the received TCP packet, the 

OP might choose to further divide the TCP payload among multiple cells, or combine 

multiple TCP payloads into a single cell, the former being the most probable.  

 

Recalling that an OP maintains the list of the three routers (or more) in the circuit path 

with their corresponding shared keys, the OP starts encrypting the cell payload 

(including all relay cell headers and Data section) by the shared key of the exit node 

(outermost), and work its way with more encryption layers utilizing the keys of the 

previous hop in the circuit path, ending with the first Onion Router in the path 

(nearest). At this point, a packed cell of 514-bytes, triple (or more) encrypted is ready 

to be sent and routed through the circuit. The OP wraps the cell in a TCP packet, 

which is encrypted a fourth time with the established connection key between itself 
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and the first node, and send it across the wire. The fourth encryption layer is not totally 

related to Tor mechanism, but is a result of establishing an SSL/TLS channel between 

the two nodes.  

 

Upon receiving the cell, the Onion Router perform two decryption operations; the first 

utilizing the shared key between itself and the previous node as a result of using the 

shared SSL/TLS channel, while the second using the shared key that resulted from the 

CREATE/CREATED cells exchange when building the circuit. Again, this OR 

encrypts the cell with the key pertaining to the established secure channel between 

itself and the next node in the path, and send it across the wire. The receiving node 

performs two decryptions as well; the first utilizing the shared key between itself and 

the previous node, and the second with the shared key between itself and the OP.  

 

Finally, this OR encrypts the resulting cell (which is still encrypted by the exit node 

key) and pushes it to the exit node through the wire. The exit node, perform similar 

two-iteration decryption, and perform a sanity check on the resulting cell, by 

computing the digest and verifying that the “Recognized” field is all zeros. The OP, 

then, extracts the Data field content from the relay cell payload, verifies it has an open 

stream corresponding to the stream ID in the cell, packages the payload into a new 

TCP packet, and pushes it across the established connection with the end server. From 

the perspective of the end server, it’s the exit node who made that connection entirely 

without the involvement of the OP. The iterative process of encrypting/decrypting is 

what gave Tor its name, as the multi-layer encryptions resembles those layers in an 
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onion, hence the name, The Onion Routing. The HTTP scenario described in the 

previous paragraph is illustrated in Figure 3. 

 

 

Figure 3 HTTP Scenario 
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CHAPTER 3 

LITERATURE REVIEW 
 
 

The term “Website Fingerprinting” was first coined in the year 2002 by Hintz [10]. He 

founded the idea of identifying websites by means of utilizing the different resources a certain 

website serves, while he referred to those resources as objects. In his research, he assumed 

that browsers will load each individual resource in a different TCP stream, and hence, each 

stream can be identified from a local observer point of view, through a tuple of 

source/destinations IP addresses and port numbers. However, Hintz was targeting a specific 

encrypting web proxy called SafeWeb, and only experimented on 5 websites achieving a 

detection rate between 45% and 75%.  

 

Sun et al. [14], similarly, used the technique of Hintz in website fingerprinting with respect to 

object sizes. However, instead of using objects’ sizes identified by TCP stream, they adopted 

the use of packets counting between subsequent blocks of requests. Each website is identified 

by a multiset of object lengths, which is then compared to an unknown multiset obtained from 

a target traffic by applying Jaccard’s similarity. A threshold of similarity value is set, and a 

result above that threshold is considered as a match. In their work, they constructed a database 

of 2,000 websites fingerprint and tried to identify them among a test sample of 100,000 

websites. They managed to identify 75% of those, by setting a similarity threshold of 0.7, with 

a false positive rate of 1.5%.  
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Liberatore et al [15], utilized a different approach to identify visited websites. Their approach 

takes a step down in the OSI model by analyzing packet sizes and the frequencies they appear 

at. In their work, they represented the traffic flow as a vector of packets’ sizes frequencies, 

where each visit to a website will produce a histogram of packets’ sizes frequency. 

Additionally, the employed the classification techniques of Jaccard’s similarity and Naive 

Bayes to classify those vectors. In their work, they relayed on the University of 

Massachusetts’s traffic by identifying the top visited 2,000 websites and were able to achieve 

a detection rate of 73% using Jaccard based classification.   

 

As the need for anonymity systems became more demanding, more researches were focused 

on migrating the aforementioned Website Fingerprinting (WF) techniques and applying them 

to implement attacks on anonymity systems, most notably, Tor [3]. Shi et al. [16], for 

example, combined the techniques discussed in Hintz [10] and Sun et al. [14] and detailed a 

WF attack on Tor. In their work, they identified an interval as a time period occurring in a 

traffic capture without a change in flow. They, then, started tracking the number of packets in 

each interval, and representing the whole traffic trace as vector of intervals.  

 

The vector identifies a website fingerprint by specifying the number of intervals with two 

packets, the number of intervals with three packets, and so forth. Additionally, they enhance 

the fingerprint of each website by multiple visits to confirm their findings. Finally, the 

acquired profiles of fingerprints is compared to a traffic trace of unknown websites, and the 

similarity is computes using cosine similarity. In their empirical experiment, they managed to 

identify 20 of the top websites in Japan with an accuracy rate of 50%. 
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Panchenko et al. [9] generalized their detection mechanism to both Tor and JAP [17], another 

popular anonymity system. In their approach, they used support vector machines (SVMs) by 

utilizing multiple traffic trace features. The traffic trace is represented by a sequence of 

packets lengths, where each flow direction is marked with either positive or negative values. 

Moreover, and to increase the classification accuracy, they injected additional features to the 

traffic flow when certain conditions are triggered. For example, the size of the packets in each 

interval is injected whenever the traffic direction changes and is referred to as “size marker”; 

the number of packets in each interval is injected whenever an interval ends and is referred to 

as “number marker”; total transmitted bytes, etc.   

 

In their empirical work, they examined their technique in both open-world and closed-world 

settings. In the former, they used the same 775 websites that were used in [11] and were able 

to reach an accuracy rate of 30% using only the basic variant, and an accuracy of 54% when 

resorting to all features. As for the latter, they conducted the open-world experience on a set 

of 5,000 websites chosen randomly from Alexa [18] and considered amongst the top 

1,000,000 websites in the world, in addition to five censored websites. The censored websites 

were identified with an accuracy rate falling between 56% and 73%, with a false positive rate 

of less than 1%.   

 

The previous work discussed so far were all experimented under laboratory conditions. This 

resulted in more researches that aimed to pinpoint weaknesses when this work is applied in 

real world scenarios. Juarez et al. [19] work recognized significant differences in the 
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environment and users’ behavior that impose a challenge on these techniques to work in the 

wild. Specifically, they identified six assumptions that previous work made, that limits the 

chances of carrying out realistic attacks: 1) Template websites that use similar or identical 

resources. 2) Closed-world experiments never tested with websites outside the monitored 

pages. 3) Attacks are vulnerable to stale training. 4) The assumption that users browse the 

web sequentially and not in parallel. 5) The adversary knows the beginning and end of a web 

page or a resource. 6) Most work ignores background traffic (OS, session control, browser 

plugins, etc.).  

 

This led to more work that aims to eliminate these limitations in order to carry the attacks in 

the wild. For example, several researches [9, 20, 21] discussed tackled the second assumption 

and came out with an attack that can achieve a true positive rate of 85% in the open-world 

settings with no limits on web pages’ number. Wang et al. [22] also tackled assumptions 3 to 

6 by presenting a set of tools that augment current WF attacks to operate under realistic 

conditions. They defined the full traffic trace of a user as a full sequence, where each web 

page or resource is expressed as a cell sequence. To tackle the splitting problem (the process 

of converting a full sequence into cell sequences) they employed the use of two methods: 

Time-Based Splitting, and Classification-Based Splitting. In time-based splitting, a threshold, 

tgap, is defined as the optimal time gap separating two cell sequences (different web pages).  

 

That is, if two cells are separated by a time difference of tgap or more, they are considered to 

be belonging to two different cell sequences. The output of time-based splitting is, then, 

passed to the classification-based splitting to cover any case of two or more pages separated 
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by a time difference less than tgap and were mistakenly identified as one cell sequence. They 

further attempt to reduce background noise by means of classification and counting, and 

conclude that noise elimination is difficult, however, so as introducing deliberate noise in the 

traffic due to technical limitations in Tor, especially when using Tor browser. In fact, a small 

error in noise removal, could lead to a much larger one in page identification.  

 

More recently, Website Fingerprinting is becoming a hot area of research in the past few years 

[34-38]. Panchenko et al. [35] realized that website index pages, frequently change, especially 

with those popular websites on Alexa top-X lists, and due to the dynamic nature of the 

modern Internet. Hence, they built a classifier that utilized more than 50 varying non-index 

pages of a website to represent its signature. The classifier applies ten iterations of cross 

validation to determine if a monitored website was visited, and achieved a near 86% accuracy 

rate. They also employed the use of several tactics to improve on the accuracy and success 

rate of their classifier, but felt short on subsequent visits to the same website, where the 

dynamic nature and the use of sessions, dramatically deforms a collected signature.  

 

Herrmann et al. [37] conducted a thorough study of Website Fingerprinting with a wider 

scope that includes Tor, JAP, OpenVPN, Cisco IPsec-VPN, and OpenSSH. For a single hop 

system, their naïve bayes classifier outperforms Liberatore’s approach and correctly identifies 

more than 90% of the requests in a closed-world settings of the same 775 sites mentioned in 

[9]. However, the accuracy dramatically decreases to below 3% when used against multi-hop 

anonymity system, such as Tor. 
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Giovanni et al. [39] considered a different approach in circumventing Website 

Fingerprinting attacks, by implementing the defense controls at the servers’ side, 

which is more appealing to those employing Onion Services in their infrastructure, in 

addition to introducing a lightweight client side extension, that eliminates the need for 

mass deployment. They managed to demolish the long standing assumption of WF 

attack scalability, by only focusing on Onion Services, since they are 1) service size is 

trivial compared to the Web size, thus easier for an adversary to build a fingerprint 

database of all available onion services and 2) they usually contain and host more 

sensitive content where visitors may be subject to more serious consequences. 
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CHAPTER 4 

MULTIPLEXING TOR TRAFFIC 

Despite the active research field on the topic of Tor and anonymization in general, we 

find the lack of documentation with respect to the way Tor multiplexes circuits and 

queue TCP streams concerning. As described previously, Onion Proxies (OP) 

establishes circuits by randomly selecting three Onion Routers (OR) distributed across 

Tor network. The selection criteria is made based on the bandwidth of the respective 

ORs and the associated exit policy. Following, an OP will build a circuit on top of 

those selected nodes to create a path for cells to be routed. A circuit is always 

dedicated to a single OP, but can tunnel multiple TCP streams heading to different 

destinations. 

 

Additionally, each two ORs on the path will establish a single Tor connection between 

them, and if any two circuits, established by two OPs, happen to use the same two 

ORs in a row, those circuits will have to share this single Tor connection. According 

to the latest Tor statistics obtained from Tor metrics [29], the active number of Tor 

users directly connecting to Tor network peaked 2,000,000 by 2017, while the number 

of Tor Onion Routers (relays) is little over 7,000. Hence, we can safely infer that 

connections between ORs will usually be shared between multiple circuits, especially 

those ORs offering high-bandwidth capabilities, and will likely be a more preferred 

selection in a path by OPs. 
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In other words, each OR will establish simultaneous connections to multiple other 

ORs, while only maintaining a single connection to each individual OR, and 

piggybacking that connection with as many circuits as required by OPs selecting those 

ORs in their paths. Additionally, each circuit will usually tunnel multiple TCP streams 

(of end-applications using Tor) given the design aspects of modern web sites, where a 

single page is referencing many resources, e.g. HTML, CSS, JavaScript, etc. and each 

resource requiring its own TCP stream. Also, each cell has a fixed width of 514-bytes, 

and is structured with a header containing meta-data and a payload. Upon cell arrival 

to a given OR, the respective OR will decrypt a layer of the cell, and parses the 

headers to identify the appropriate circuit to route this cell to. Recall that an OR is 

participating in many circuits and requires identifying cells’ associated circuit. 

 

Upon circuit identification, the OR, maintaining a different queue for each circuit that 

was built on a path containing this OR (circuit queue), will write the cell to the queue 

corresponding to that cell. Reardon [24] identified this process of cell parsing and 

writing to the queue as negligible time, cost-wise, and hence presented our research 

with an opportunity discussed in following sections. The moment a circuit queue is 

populated with a cell, it is marked as an active circuit, and vice versa, i.e. marked 

inactive upon de-queueing of all cells. Additionally, an OR will maintain a single 

output buffer for each established connection with other individual ORs, where data 

written to that buffer is transmitted to next OR in First-In-First-Out (FIFO) order. 
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Figure 4 illustrates the relationship between circuit queues and output buffers. In this 

example, four different OPs selected OR1 as their guard node. Thereafter, two OPs 

selected OR3 as the following (middle) node, while the other two OPs selected 

different nodes (OR2 and OR4) for their paths. After circuit establishment, OR1 will 

end up with creating 4 circuit queues, each representing the different circuits that were 

built using OR1 as a node in the path. Only cells coming from circuit one, will be 

populated to the queue designated for circuit one, similarly, circuits two, three, and 

four will only populate queues designated for their own circuits. However, since OR1 

is only connected to 3 other Onion Relays, it will only create 3 output buffers, one for 

each Tor connection established between itself and the succeeding node in the path. 

 

Figure 4 Relationship between Circuit Queues and Output Buffers 
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The reader can immediately spot the correspondence between the circuits’ queues and 

output buffer. Since an OR can only sustain a single connection to the next OR, but 

still maintains multiple possible circuits with their queues that share that connection, a 

need to multiplex those queues to the output buffer arises. When the output buffer is 

available for more data to be written, the OR will choose one from the available active 

circuits, and start moving as many cells from its designated queue to the output buffer 

to fill the available room. The process by which an OR decides which active circuit to 

move cells from to the output buffer, is referred to as Tor circuit scheduling. In the 

previous figure, whenever OR3 output buffer has some room available, OR1 must 

invoke its scheduling algorithm to decide whether to move cells from circuit two or 

circuit three queue. This results in creating a multiplexed connection between nodes 

OR1 and OR3, where the single connection carries cells from both circuits. 

 

Earlier versions of Tor employed the use of Round Robin to select from active circuits 

pool. Tang et al. [25] discussed the performance overhead of utilizing Round Robin 

fashion on Tor multiplexing and argued that bulky transfers, such as those 

downloading large files, or connecting to multiple peers (such as BitTorrent) are 

always prioritized over burst connections, such as those resulting from users surfing 

the web. In their research, they showed that by employing a different scheduling and 

selection algorithm (i.e. a multiplexing algorithm), they can insure that burst 

connection are almost always privileged, and that their cells are moved to the output 

buffer before those cells in bulky transfer queues. 
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They proposed an implementation of a more judicious selection criteria based on the 

Exponentially Weighted Moving Average (EWMA) of circuits. In their approach, they 

favored those circuit queues with less sent cells over a period of time, by assigning a 

cell counter to each queue and building a metric of selection. The metric kept 

readjusting the average value of sent cells, while decaying over a set period of time. 

When selecting from active circuits, the circuit queue with the lower metric value will 

be the one to push cells from, thus increasing the overall performance of burst 

connections, while holding those with bulky transfers (or more active) queues for a 

little longer. 

 

Indeed, this approach appears to induce randomization to a certain degree, especially 

when considering the vast amount of Tor users, and the tendency to select nodes with 

higher bandwidth. However, the motivation behind their approach is purely focused 

towards performance improvement, hence it lacks the required degree of 

randomization to disperse traffic analysis attacks. First, the approach heavily relies on 

the coexistence of multiple circuits on a single connection between two ORs. This 

exposes those circuits that are relying on two consecutive low-utilized nodes, or those 

circuits that are uniquely utilizing a Tor relay.  

 

One might come to think that due to the vast amount of users, and their dependency 

over much lower number of nodes, that this probability is far from occurring. 

However, consider the link between the Onion Proxy (client) and the first node in the 

path. As discussed earlier, this link employs a single connection, and is rarely seen to 
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host more than a circuit. This is the case with every Tor user that wishes to connect to 

the anonymity network (except in cases where a pool of users share a single Onion 

Proxy). While Tang et al. approach works well against traffic analysis attacks in the 

distributed Tor relays, it ceases to provide the same level of protection when the 

relationship between the output buffer and the circuit queue becomes one-to-one. In 

fact, it’s this link that organizations and oppressive regimes have control over, rather 

than the distributed network over the globe. 

 

Another point of concern is streams. Recall that each circuit will probably be tunneling 

multiple TCP streams. Also, recall that an OR will read from the circuit queue as First-

In-First-Out. This implies that Tor will be sending out cells to the wild in the same 

order as they are received from the browser, and the only mechanism of defense would 

be the existence of multiple circuits thriving to utilize the link. In our empirical work, 

we show that this assumption is true, and that browsers behavior with respect to 

stream construction plays a major role in traffic analysis attacks. 

 

Despite that Tor multiplexing wasn't implemented as a security measure, rather an 

operating requirement, we aim to examine the potential by which it can aid to increase 

the overall security of Tor. In the following sections, we discuss a scenario where 

EWMA acts as a pipeline, and the employed scheduling algorithm ceases to work. 

Additionally, we propose our approaches to enhance this algorithm by introducing, 

yet, another multiplexing degree on the streams level and discuss its implication from 

a security perspective. 
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4.1 Single Circuit Scenario 
 

As discussed, Tor multiplexes circuits whenever two circuits or more select the same 

two consecutive nodes in their paths. This leads to a scenario, where the two circuits 

compete to utilize the same link between the two nodes, since Tor will only maintain a 

single link to the next node at a time. Tor resolves this by invoking a scheduling 

algorithm that fairly decides which circuit will have the priority to utilize that link. 

However, most Website Fingerprinting attacks are executed by a local observer who 

possess the ability to monitor the link between the OP and the guard node. 

Additionally, a typical Tor user will mostly be running a single circuit and initiating as 

many TCP streams on it, until that circuit expires. 

 

Since a single circuit exists, Tor will still invoke its multiplexing algorithm (circuit 

scheduling), however, it will only have a single circuit to choose from. Additionally, 

the cells in this circuit are ordered in the way they are received from the browser. 

Figure 5 show a typical use case of Tor, where a user browses to a certain website. The 

browser first loads the HTML pages and parses it for references to other resources 

(CSS, JS, images, etc.). The browser, then, executes a series of GET requests, each 

corresponding to a resource on the page, which yields an equivalent number of TCP 

streams to be opened. Tor arranges those stream (GET requests) in the order they are 

received from the browser, and packs them in cells. Those cells are considered 

belonging to the same circuit, and are populated into that circuit's queue. Whenever 

Tor is ready to send more cells to the guard node (i.e. output buffer of guard node has 

some space), it will invoke its scheduling algorithm to select among the active circuits. 
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Since a single active circuit exists, cells will move from the circuit queue to the output 

buffer in FIFO order, i.e. as received from the browser. 

 

 

Figure 5 OP Browsing using one circuit 

 

 

Unless the Onion Proxy (client) established more than a circuit, the previous scenario 

will always be the case. A single active circuit is available to move cells from, thus 

eliminating the randomization induced by multiplexing. Additionally, the same 

behavior will be observed when the guard node responds to client's requests (e.g. 

HTTP response). The cells packing the requested resources will come ordered as the 

web server has processed them, and as the exit node received them. The guard node 
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will have a single circuit queue resulting from the OP establishing the circuit, and a 

single output buffer corresponding to the single connection established between them. 

 

Not only will this case occur on this link. Consider a lowly utilized relay anywhere on 

the path. Due to its low utilization, there will be a minimal number of circuits built 

using that relay, and hence, a higher chance that this relay will also maintain one-to-

one relationship between the participating circuits' queues and the output buffer to 

other relays, thus eliminating randomization of circuits induced by multiplexing. 
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4.2 Approach Motivation & Proposed Algorithms 
In this section, we propose our enhancements on Tor’s algorithms for streams 

queueing. We state the approach motivation and rationale behind our proposal that 

lead us to bring about these algorithms. Finally, we describe our multi-approach 

enhancements over the currently implemented algorithms by suggesting three different 

implementations that induce additional randomization to Tor, with different 

performance overhead.  

 

 

4.2.1 Approach Motivation 
 

So far in this writing, we have deeply investigated, discussed, and displayed the most 

crucial attacks the literature has identified on Tor’s Traffic Analysis. As discussed, 

Tor differentiate itself from traditional VPN and Proxy-based approaches in general, 

by transferring TCP packets and streams from their default behavior and appearance. 

Tor packages TCP streams into fixed-width cells, and performs massive 

transformation by either dividing TCP packets contents across multiple cells, or 

merging TCP packets payload into a single cell, depending on traffic distribution. 

Yet, Tor also multiplexes circuits that are tunneling different TCP streams into a 

single connection, thus increasing the challenge for the observer. 

 

Despite that, the rich literature showed that all of those defense mechanisms suffer 

from a great shortcoming, they are systematic and predictable. If we look at Tor as a 

black box, and when we supply a certain input to that box, the result is always 
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predictable with a high certainty in both open-world and closed-world settings. A 

user browsing only amazon.com, will cause Tor to grab specific resources in a 

specific order, not only that, but an observer can predict how many cells are going to 

be exchanged in each direction. Some have gone to further lengths, and identified the 

exact splitting points that Tor follow. 

 

Additionally, we’ve discussed Tor’s multiplexing algorithms, and how they operate 

with respect to circuits established by different OPs. Also, recalling how circuits are 

built, the Onion Proxy will choose an exit node that has an exit policy that allows for 

connecting to the remote destination. Once a circuit is built, it’s very rare the case 

that an OP is faced with a situation where he has to create extra circuits or rotate his 

exit node to accommodate a new destination. The OP will keep utilizing the same 

circuit for new destinations. 

 

 Hence, from our observation, we concluded that circuits multiplexing is eliminated 

at the link connecting the OP with the first node in the circuit path (Entry/Guard 

node). The reason as stated, is the lack of circuits to multiplex. The OP and the first 

node in the path will only establish a single connection (which is the norm), but build 

a single circuit on that connection, resulting in a First-In-First-Out queue, with no 

multiplexing. 

 

This led us to determining that the only factor missing from this complete system of 

defenses is randomization. Randomization has always been a critical characteristic 
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that appeared in all security algorithms, whether in the fields of encryption, hashing, 

or even security applications. Hence, we sifted through the different design aspects 

of Tor in attempts to find the perfect venue to implement randomization. In the 

following sections, we highlight on this effort, and discuss with further details our 

attempts to introduce randomization to Tor. 
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4.2.2 Proposed Algorithms  
 

To thwart against the most successful traffic analysis attacks, we believe that stream 

randomization is the key. Recall that Reardon [24] highlighted that cell parsing and 

circuit identification from cell headers, is a time-negligible process. Also, recall that 

one of our research objectives is to introduce a randomization characteristic to Tor, 

with little overhead in performance, or none at all. Hence, we started sifting through 

the design aspects of Tor, in attempts to identify the perfect location where 

randomization can be introduced, and seamlessly integrate with Tor while maintaining 

our design goals inline. Additionally, we wanted that change to cover all possible 

scenarios of Tor usage, such as those on low utilized links between Onion Routers, 

and the observable link between an Onion Proxy and the first Onion Router.  

 

Streams were the key. By introducing a stream randomization mechanism in Tor, we 

will guarantee the alignment of our goals towards the proposed change. From the 

perspective of an OR, streams are meaningless. Recall that a cell payload is encrypted 

and is only viewable by the latest node in the circuit path (exit node). Also, recall that 

Stream ID is part of relay cell Data section, within the cell Payload section. Hence, for 

an intermediate OR, a cell will be forwarded down the path regardless of its stream. In 

our solution design, we hypothesis that intermediate relays will have no objection in 

receiving cells out of order, as ORs only require the knowledge of a Circuit ID. 

Intermediate relays are all those nodes participating in the circuit path, excluding the 

exit node, but including the entry (guard) node. 
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For the above mentioned circuit queues, Tor implements what is called a “Simple 

queue”, a representation of a basic linked list. The simple queue is only exposing 

pointers to its head and tail. Additionally, a single implementation of a queue popping 

algorithm is available, namely CELL_QUEUE_POP. The queue expects every 

element to be of type Tor cell, and offers a single pointer for each element, that is, next 

element. Additionally, the queue is only traversable by accessing the head, where an 

iterator can access the next element using the next pointer. Finally, the queue doesn’t 

allow selective access by index.  

 

As TCP packets arrive from the browser, and in the context of a Relay Data cell (e.g. 

HTTP GET, a TCP ACK, HTTP response, etc.)  Tor strips the content out of the TCP 

payload and evaluates its size. If the content can fit the boundaries of a cell payload, 

while accounting for relay cell headers, the content is not split, otherwise the content is 

split among two cells. On the other hand, if the content is small enough, Tor will 

examine the following packet in the same stream to test if the two TCP packets can be 

fit into a single cell.  It’s worth mentioning that Tor accounts for different streams, and 

respects the order they arrive at. 

 

Consequently, Tor packs the resulting payload into a new cell, and populate all 

required headers, such as Stream ID, Circuit ID, Length, etc. Then, the payload is 

triple encrypted as detailed earlier, and the new packed cell is pushed to the tail of the 

queue. At this point, it’s not possible to induce any information about the cell, as all 

cells in the queue will look similar, due to encryption, and fixed-width. Upon the 
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invocation of the multiplexing (scheduling) algorithm, and the determination of the 

active circuit to read cells off, Tor will access the head of the selected queue and 

invoke the CELL_QUEUE_POP method, in its single offered implementation. The 

pointers are then updated, and the following element becomes the new head of the 

queue. 

 

In our approach, we suggest three algorithms to manipulate the behavior by which Tor 

pops cells from the circuit queue. Two of these methods relay on modifying the 

behavior by which Tor pops cells while maintaining the structure of the queue intact, 

while the third redesigns the queue structure. Also, it’s important to note that we 

considered other approaches that depend on modifying the behavior of queueing the 

cells (as opposed to popping them), however, a quick evaluation showed the need to 

reflect this change on all Tor relays around the globe to accommodate that change. 
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4.2.2.1 First Approach  
 

This is the easiest approach to implement and induces the highest cost on performance. 

In this approach, we propose a new popping method that randomly selects from the 

available streams in the queue, instead of always popping the first element. However, 

we have to cater for in-stream order, that is, we don’t want to break the underlying 

application’s protocol, by popping later cells from the stream, before flushing earlier 

cells. We can intermix the streams as we wish, but we can’t intermix within the same 

stream. 

 

Also, recall that Tor maintains a stream ID of zero, for those cells that affect the 

entirety of the circuit. Those cells that belong to stream zero, are order-sensitive, and 

have to be popped in the exact order they are pushed to the queue. The changes 

induced by this approach only introduce a newly implemented method to pop cells in a 

random order. Basically, we are adding a new queue access method with no other 

changes in Tor. Additionally, this approach is backward compatible. Here is an 

example of normal scenario that illustrates the algorithm in work. 

 

1- When a request is made to pop a cell, we scan the whole queue and identify all 

streams that are in the queue. 

a. For the sake of this example, say we identified 5 streams. Note that to get 

this information we had to traverse (say) 100 cells currently in the queue. 

b. For each identified stream, we record a pointer to first cell of that stream 

in the queue and build an index matching each stream with the cell.  



51 
 

2- We select a random number between 1 and 5 (number of identified streams). This 

is the stream number randomly selected. 

3- By consulting with the created index mapping, we pop the first cell in that stream. 

4- Reconnect Tor Simple Queue by updating the popped cell’s previous item “next 

pointer”, and the popped cell’s next item “previous pointer”. 

 

Note that the scan and building of the mapping, is being performed every time a cell is to 

be written to the output buffer, i.e. needs to be popped. However, this approach is mess-

free, a randomly selected stream will always provide a cell to be popped. Recall that this 

approach will scale up when you have many queues (a queue for each circuit) in a Tor 

Onion Router. Also, the index mapping created above, is locally used in the newly 

created access method, and can’t be reused. This is to avoid further modification of Tor, 

and eliminate the need for mass re-deployment. 

 

Also, recall stream zero, and the need to push cells from that stream in order. A 

modification to this approach is made to accommodate for cells belonging to stream zero. 

When we perform the initial scan of the queue, we stop at the first occurrence of a stream 

zero, and select randomly from the streams available prior to stream zero. When the first 

cell of the queue is a cell belonging to stream zero, we pop it immediately without further 

scanning. Figure 6 illustrates this approach, while Figure 7 demonstrates its 

implementation. 
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Figure 7 Illustration of the first approach 

Figure 6 First approach pseudocode 
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4.2.2.2 Second Approach 
 

In the second approach, we implement a two-fold solution to enhance on the 

performance of the first approach. The first part is performed before every cell push to 

the queue, while the second part naturally occurs before popping a cell from the queue. 

On average, this approach costs logn, however, worst case scenario is same as in 

approach one, that is n. 

 

PRE PUSH: 

1- Before a cell is pushed to the queue, we note the Stream ID. We build a mapping 

of Stream IDs, and the number of cells in the queue with that stream. 

a. If this is the first time we see the stream, we append it to the mapping. 

b. Otherwise, we increment it’s counter by one.  

2- We push the cell normally to the queue. 

 

PRE POP: 

1- Select a random number between 1..n where n is the length of the created mapping 

(Stream ID/count). This is the stream number that we will pop the next cell from. 

2- We insure that the counter of that stream is > 0. If it’s equal to 0, it means no more 

cells in the queue are available from that stream. This is a mess, we select again. 

a. This mess is on the scale of our built mapping which corresponds to the 

number of streams, not the number of cells in the queue. 

b. That stream ID is removed from the mapping to avoid further mess. 

3- We start iterating Tor queue and examine the stream ID of each cell. 
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4- We pop the first cell in the queue that has a stream ID of the randomly selected 

stream and rejoin the queue. 

5- Decrement the counter in our mapping by one. 

 

This approach will not modify Tor queue, but only the accessing methods. However, it 

has the potential of scanning the full queue, e.g. we only have one cell of the selected 

stream towards the end of the queue. Moreover, it also has the potential of being much 

faster than the first approach on average. This method only adds one queue accessing 

(and popping) method, in addition to a global mapping to maintain the streams and cell 

counters. This approach is also backward compatible. Figure 8 illustrates this approach. 

 

 
Figure 8 Illustration of the Second Approach 
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4.2.2.3 Third Approach 
 

This should be the fastest, most efficient, and thus, requiring the most changes. In 

principle, we abandon Tor simple queue and create a new one with a much efficient data 

structure, such as linked list, hashmap, etc. The queue will be two dimensional, where the 

first dimension is the stream number, and the second dimension is the actual cells 

belonging to that stream. Before pushing a new cell to the queue, we examine the 

availability of the stream in our queue. If the stream is available, we append the new cell 

to that stream second dimension. Otherwise, we create a new entry for that stream in the 

first dimension, and push the cell to its second dimension. An example queue illustrating 

the idea of this approach can be seen in Figure 9. 

 

Again, when we want to pop from the queue, we select a random number between 1..n, 

such that n is the length of our first dimension. Immediately, we pop the first cell in that 

queue since they are already in order. Also, this approach involves creating a new data 

structure, pop/push methods, and other queue auxiliary methods and macros.  
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Figure 9 Third Approach Queue Example 
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CHAPTER 5 

EXPERIMENTS AND RESULTS 

5.1 Testbed  
In this section, we describe the different testbed setup we used throughout the 

experiment. In general, all machines used in the experiments and testing were virtual 

machines hosting Linux Ubuntu 16.04.2 (Xenial Xerus). Additionally, the VMs were 

allocated a single core, each, with 8 Gigabytes of memory. Moreover, we utilized a 200 

Megabits Internet connection. Finally, the Tor version installed was alpha 0.2.9.8 

 

5.1.1 First Setup 

In this setup we utilized one virtual machine to host Tor, and it was configured to connect 

directly to the internet, and consequently, to Tor network. The setup is illustrated in 

Figure 10. 

 
Figure 10 First setup illustration 
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5.1.2 Second Setup 
In this setup, we used two virtual machines to establish connections to Tor. The first 

machine is a regular end-user machine, that has a Firefox version 50 installed, alongside a 

network sniffing application, namely tcpdump. Additionally, a second virtual machine 

was setup to host Tor, and exposed its services to the local network. Further details will 

be displayed within each experiment. The setup is illustrated in Figure 11. 

 
Figure 11 Illustration of the second setup 
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5.2 Tor Multiplexing at Onion Proxy  
 

From Tor design documentation, investigating the source code of Tor, and throughout 

the literature, we know that Tor is supposed to multiplex cells. However, by invoking 

many test cases of Tor, we weren’t able to reach a concrete evidence that Tor is indeed 

multiplexing cells. Additionally, we needed to deeply understand how the 

multiplexing is performed, and to what extent. We needed to find out if Tor pushes 

streams as they are received from the browser, or does Tor perform some sort of 

multiplexing on the same circuit, i.e. multiplex streams.  

 

To achieve this, we decided to design a series of different tests, by instrumenting Tor 

to print and log certain parameters required to establish a fair comparison of circuits 

and streams. At this point, we only had an intuition about the behavior of Tor, and we 

needed to establish ground truth and develop a sense of understanding of the 

multiplexing behavior.  

 

5.2.1 First Experiment: Tor General Behavior 
 

Our first experiment was broad and aims to define the general picture of Tor while 

logging as much information as required to enrich our understanding. To accomplish 

this, we wanted to graphically interpret the relationship between different streams, and 

examine if we can detect any kind of similarity or repetition in Tor’s behavior. The 

existence of any repeated behavior would indicate that Tor is systematically 
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distributing and selecting streams to be written out the wire, while the lack of such 

pattern could indicate the opposite, among other possibilities. 

 

5.2.1.1 Scenario and Implementation 
 

To implement our first experiment, we instrumented Tor to printout two parameters 

for every cell created; i.e. Circuit ID and Stream ID, in the same order as Tor is 

creating and processing those cells, but before they are pushed to the queue. The 

output is to be directed to a collection of text files, where each file represents a circuit, 

and each line of that file documents the stream number of the respective cell, and in 

the particular order Tor created that cell. Also, recalling that the first cell of a Tor 

stream is a DNS query relayed to the exit node for resolving, we instrumented Tor to 

printout the domain name from the first cell of a stream, filtering on the previously 

explained RELAY_BEGIN command in the Relay cell headers, and utilizing the 

ADDRFIELD of its payload.  

 

This will allow us to print the destination of each stream and create a mapping 

between Stream IDs and their destination, thus enabling us to filter out those streams 

that are of irrelevance to our experiment, such as circuit control, directory servers’ 

connections, etc. and focusing on streams heading to destinations of our choosing. 

Consequently, and after each run of Tor, we expect to have multiple text files, each 

representing a circuit created by the Onion Proxy, and each file containing a variety of 

streams tunneled through that circuit. Additionally, we will able to link each stream to 

its destination by printing out the mapping of stream IDs vs their DNS query. 
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Recall that we are testing for streams multiplexing from Onion Router perspective, 

hence, we want to push as much data out from the client to observe the multiplexing 

behavior. This is as opposed to pulling data towards it which will only show the results 

of multiplexing from the entry node, i.e. first node in the circuit, as that node will be 

the one multiplexing the incoming streams into the single connection towards the 

client. Therefore, uploading relatively large files will naturally allow us to observer 

that relation in question. 

 

Moving forward, we created a custom web application that allows for a file upload in a 

single stream. The web application is implemented using NodeJS “http” module to 

build a simple webserver and an HTTP request/response component, in addition to 

utilizing “Formidable”, a known NodeJS library for parsing forms, handling file 

uploads, and allowing for single stream uploading by default. From the client side, we 

crafted a set of three pairs of files, sizing 1 Megabytes, 5 Megabytes, and 100 

Megabytes, respectively. Each file was populated with random characters to reach the 

required size using a Perl script. Finally, a simple bash script was created to simulate a 

browser upload of two files utilizing curl (a command line tool to for client-side HTTP 

protocol utilization), simultaneously, while starting the upload at the exact same time.  
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5.2.1.2 Experiment 
 

Following we launched Tor with our instrumentational logging, and initiated the 

upload of each pair of files of the same size together. In this experiment, we aimed to 

create a racing condition between the upload of the two files, thus allowing us to 

illustrate the behavior Tor will exert on the competing two streams, and hopefully 

observe a systematic behavior in the output streams ordering. For each pair of files, we 

repeated the experiment ten times and collected the output files, resulting in 30 runs, 

where each pair of files of the same size were tested together.  

 

Recalling that we organized the output to print each circuit’s streams in an individual 

file. To our surprise, each run resulted in a single output file. This is the first indication 

that Tor Onion Proxy (client) only built one circuit, and utilized it for both files 

uploads, in addition to other Tor activities (circuit building, key negotiation, etc.). By 

resorting to our created mapping of Domain Names/Stream IDs, we were able to 

cleanse the output files from all Tor inner communications, and focus solely on traffic 

heading to our website. This resulted in a data file that has only two streams that are 

alternating in the order their cells were created in Tor.    

 

To prepare the data for plotting, we used a Python script to transfer the output files 

from a listing of streams in the order they appeared in Tor, to data points 

representation to be plotted on a diagram. We set our X-Axis maximum length to 100 

(for representational purposes only), then, we start iterating through the streams, and 

we assign an incremental value for each stream, to represent its location on the X-axis, 
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starting by 0. Initially, the stream value on the Y-Axis is 0, and we don’t increment it 

yet. Whenever, we reach a 100 on the X value, we increment the Y value by 1, and 

reset the X counter. This transformation resulted in a data file where each occurrence 

of a cell belonging to either streams is given a position on the (X,Y) axis. 

 

Moreover, we used Gnuplot [28] (a command line graphing tool) to illustrate the 

intermixing of the streams. As an input, the Gnuplot script will take the Python 

processed data file, whereas it will output a diagram showing the order and 

intermixing of streams, where each stream is given a unique color. Furthermore, 

consecutive points of the same streams are represented by a line connecting them. 

Figures 12, 13, and 14 show a sample output diagram representing one run of a pair of 

files of the same size being uploaded. 

 
Figure 12 Stream intermixing of two files sized 1 MB each, simultaneously being uploaded using Tor  
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Figure 13 Streams intermixing of two files sized 5 MB each, simultaneously being uploaded using Tor 

 
 

 
Figure 14 Streams intermixing of two files sized 100 MB each, simultaneously being uploaded using Tor 
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5.2.1.3 Findings 
 

As the reader might have concluded, the three diagrams shows no relation or similarity 

among them. This was the case with all the 30 runs we have conducted, as different runs 

of the same pair of files show similar result every time, however, no similarity is 

observed across runs of different sizes. In Figure 12, where the file sizes are relatively 

small (1 MB each), we can notice that the first stream (i.e. upload operation) 

represented in blue concludes much faster than the second stream (in green). However, 

when we look at Figure 14, where the two files being uploaded are much larger (100 

MB each) we can see a pattern of alternation. Each stream is given an equal time share 

to upload a portion of its content. 

 

This observed behavior of alternation is not induced by Tor. In fact, those alternation 

and allocation of bandwidth are controlled by the OS, and specifically by the bash 

process that initiated this upload, where each process is allocated an equal share of 

resources in quantum-basis. For the first case of 1 MB files, the first file was able to 

upload most of its content in the quantum given, hence showed no intervention on 

following quantum. We will continue to show in following experiments that this 

behavior is induced by the bash process (i.e. the browser). So far, and from the figure 

illustration, and since we haven’t observed any similar pattern when two streams are 

competing to utilize the link between OP and the first OR, we are assuming that Tor 

hasn’t induced any multiplexing on the two streams before pushing the cells to the 

queue. We will continue to investigate other aspects and components of Tor further 

below. 
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5.2.2 Second Experiment: EWMA Multiplexing Behavior  

 

To further examine the possibility of streams multiplexing, we had to understand the 

effects induced by EWMA circuit multiplexing algorithm developed by Tang et al. 

[25].  

 

5.2.2.1 Scenario and Implementation 
 

We wanted to perform a comparison between the order of cells before entering the 

queue, and as they are leaving the queue (i.e. written to output buffer). We could 

easily identify cells before entering the queue, as those cells are freshly created and are 

not encrypted yet, hence their stream IDs are still exposed in plain text. However, 

recall that cells go through three rotations of encryption as they are populated to the 

queue, and unless we had access to the Exit node, we couldn’t possibly tell which ones 

were popped first. 

 

Hence, we resorted to identifying the cells through the use of hashing. Initially, we 

record the stream numbers cells correspond to, in the order we received them from the 

browser, which also corresponds to the order of cells being pushed to the queue. This 

is in a similar fashion to the first experiment, however, we don’t resort to multiple 

circuit output files, as we concluded that the OP will only create a single circuit. After 

a cell is received and its stream is recorded, we let Tor perform the three encryption 
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rotations it requires, and just before the cell is pushed to the queue, we calculate the 

hash of the entire cell in its triple-encrypted format, and append it with the respective 

stream number in the output file. Again, we utilize the first cell of the stream to 

identify the final destination of the cell, i.e. the domain name. 

 

Additionally, the mapping between each cell and its hash is stored in a hashmap data 

structure, that will be used to identify cells as they are exiting the queue. Since Tor is a 

network application and is delay sensitive, and since the need to use hashing is 

experimental and for identification purposes only, we couldn’t compromise to use an 

expensive hashing algorithm. Hence, we elected to implement a simple, yet effective, 

stream-rotational hashing algorithm that doesn’t induce collisions frequently. The 

pseudocode of the used hashing algorithm is showed in Figure 15, which is an 

implementation of the algorithm used in SDBM a public domain implementation of 

ndbm (the UNIX database), in addition to being used Berkeley DB [33]. 

 

 

Figure 15 Hashing algorithm used to identify encrypted cells 
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By the end of this process, we expect to have the order of cells as they are pushed to 

the queue, in addition to a hash for each cell representing an identification of it in a 

single output file, as well as having the same information populated to the hashmap 

data structure.  

 

Thereafter, we instrument Tor to print the order of cells being popped from the queue. 

Recall that Tor utilized a Simple Queue with a single access method, i.e. POP HEAD. 

We modified the code of the POP HEAD method to perform the reverse operation, 

that is, by invoking the same hashing algorithm on every cell being popped from the 

queue. Upon hash calculation, we consult the built hashmap to identify the stream 

number each respective cell being popped belongs to utilizing its hash as a lookup, and 

record the stream number in a dedicated output file. By the end of this process, we 

expect to have an output files listing all the stream numbers in the order the respective 

cells belonging to those streams were popped.  

 

5.2.2.2 Experiment 
 

As in the previous experiment, we prepared three files of three sizes, one, five, and ten 

Megabytes, and used Perl to populate their contents with random characters. Recall 

that in this experiment we want to confirm and compare the order of cells before and 

after the circuit queue, hence, we will only upload a single file at a time. Following, 

we launched Tor with our instrumentational logging, and initiate the upload of each 
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single file. We repeated the experiment ten time for every file, resulting in a total of 30 

runs. However, we ended up with 60 output files, each two for a single run.  

 

In the first type of output files we observed an entry for each cell processed by Tor, 

where that entry represents the stream numbers those cells belong to, in addition to the 

calculated hash of each cell. In the second type of output file, we observed an entry for 

each cell popped from the queue, represented by each cell corresponding stream 

number.  

 

5.2.2.3 Findings 
 

We are now ready to establish a comparison between the order of cells coming to Tor, 

and the order of cells leaving Tor. Similar to our first experiment, we utilized the 

Stream ID/Domain name mapping and cleansed our data files from irrelevant stream 

numbers. Needless to say we didn’t have to induce any more processing on the data 

files, or had the need to illustrate them graphically, as both output files, for each 

respective run, were identical. This is the solid proof we required to conclude that Tor 

doesn’t induce any stream multiplexing from the EWMA multiplexing algorithm and 

we are now more convinced of our initial intuition.  
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5.2.2.4 Discussion 
 

So far, we were able to observe that Tor doesn’t induce a notable systematic re-

ordering of streams by examining incoming traffic from the browser, also we were 

able to confirm that Tor EWMA multiplexing algorithm doesn’t induce any re-

ordering on cells entering and exiting the circuit queue. However, we needed a more 

comprehensive test that can illustrate the full behavior of Tor. To do this, we needed to 

record the behavior of the browser at first, then compare it to Tor behavior.  

 

Unfortunately, we are faced with the dilemma of unequal comparison. Recall that Tor 

will either split TCP packets contents into multiple cells, or will merge smaller ones 

into a single cell. However, given our test case scenarios of file uploads, we are certain 

that Tor will only perform the former (i.e. splitting) given that TCP packets will be 

fully populated with the contents of the file to be uploaded, up to the Maximum 

Transmission Unit (MTU) the environment allows for. Hence, we had to focus our 

attention on identifying those cells that correspond to a single TCP packet to be able to 

establish a fair comparison, that will allow us to illustrate TCP streams versus their 

corresponding Tor streams. 
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5.2.3 The Dictionary Experiment 

 

To achieve this, we designed an experiment dubbed “The Dictionary Experiment”, 

where we aim to explore the relationship between a single TCP packet and the 

different Tor cells that this packet splits up to.  

 

5.2.3.1 Scenario and Implementation 
 

In our scenario, we wanted to upload a single file to our developed website, capture 

both the TCP packets and Tor cells, and establish a method to compare each cell to a 

TCP packet. By the end of this experiment, we should be able to identify which cells 

correspond to a single TCP packet, and be able to conclude a factor of distribution 

between a single TCP packet and the different cells it splits up to. 

 

 To implement this, we had to expand our testbed setup to be able to capture plain text 

packets as they are leaving the browser, in addition to capturing the content of cells in 

Tor. Moreover, we can’t intercept data from the same machine having both the web 

browser and Tor Onion Proxy, since any traffic sniffing application will only intercept 

data as they are passing through the link, i.e. after Tor. 

 

To tackle this, we decided to separate the browser from the Onion Proxy, and 

implement a standalone Tor Proxy setup. By setting up two virtual machines, we 

installed and configured Tor on one of them, while allowing Tor to execute in 
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listening mode. That is, Tor will act as a SOCKS proxy, listening on the virtual 

machine for connections coming to a dedicated port (i.e. 9100). When connections are 

established to the SOCKS proxy on that port, Tor will continue to operate normally by 

tunneling those connections through Tor circuits. The client, on the other hand, will be 

utilizing another virtual machine where the browser of that machine will be configured 

to use Tor as a SOCKS proxy.  

 

On the client machine, we intercepted the network traffic coming out of the browser 

using tcpdump [30], a known command line utility for intercepting traffic on the local 

machine. We configured tcpdump to sniff and record all outgoing traffic to our Tor 

proxy server, and store the output to a PCAP file. Additionally, we instrumented Tor 

to print the contents (payload) of each and every cell in a dedicated output file, 

alongside the stream number this cell associates with. Similarly, on the client machine 

we developed a Python script utilizing a library named “python-dcap” [31] that will 

extract the payload of each TCP packet from a given PCAP, in a dedicated output file. 

The script will traverse each packet in a PCAP file, filter out any control packets, such 

as TCP SYN/ACK packets, in addition to any non-TCP traffic out of the result, and 

finally dump the text content of TCP packets to a file. After each run of the 

experiment, we expect to have: 

1- An output file on the client machine containing the payload of each TCP packet in 

a separate line. 

2- An output file on Tor Proxy server having the contents of every cell in a separate 

line. 
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To prepare for the experiment, we had to bring about a method that will make every 

TCP cell unique to avoid false-positive rates. Our file to upload, had to have non-

duplicate entries, which randomness may or may not guarantee. Hence, we decided to 

use the English dictionary. In this experiment, we build a set of 26 files, where each 

file contains words from the English dictionary that starts with a different letter from 

the English alphabet. The dictionary was obtained from a GitHub project that provides 

the English words in a text file [32]. When uploading a file to our previously designed 

website, we expect every TCP packet, and the corresponding Tor cells, to contain a 

unique payload of words that are not repeated in other packets/cells.  

 

5.2.3.2 Experiment 
 

We conducted 26 runs of the same experiment, each utilizing a different alphabetical 

file. The experiment resulted in 26 PCAP files on the client machine representing the 

traffic generated by every file upload, and 26 output file on Tor proxy server, 

representing the payload of every cell Tor created for that respective upload.  

 

Consequently, we executed our Python script on every PCAP file, which resulted in 

additional 26 files, each having the contents of every TCP packet in a separate line. In 

principal, the generated output files from the Python script, had the exact content of 

the originally uploaded files, separated by TCP boundaries represented by new lines. 

On the other hand, and on Tor Proxy Server, we had a similar output of 26 files, 
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corresponding to each uploaded file, however, since cells accommodate far less data 

than a TCP packet, we had more lines on the output file representing the boundaries of 

a Tor typical cell. 

 

Furthermore, we developed an additional python script that takes as an input two 

different files and initiates a comparison between them. Starting with the first file, the 

script iterates over every line and stores it in a buffer, and with every iteration, the 

script starts iterating over every remaining line of the second file, continuing from the 

previous iteration position. The script attempts to identify the number of lines in the 

second file that fully appear in the buffer, and exits with the first mess. We, also, 

maintain a distribution factor average variable, that stores the average number of lines 

in the second file, that fully appeared in the buffer. Additionally, we maintained two 

counters from the number of lines in each file.  

 

Finally, we executed the script with every two output files from each run as an input, 

i.e. the output file representing TCP packets content, and the output files representing 

Tor cells payloads. By the end of every run, the distribution factor average was always 

calculated to three, and the number of lines in the TCP output file, was always triple 

the number of lines in Tor cell files. Additionally, from our observation, we noticed an 

MTU of 1,500 bytes, where each TCP packet in the experiment is loaded with 1400 

bytes of data, and each Tor cell was allowed 500 bytes of data in the payload.  
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5.2.3.3 Findings 
 

This led us to a conclusion, that for every TCP packet that is fully populated under 

MTU of 1500, Tor generates exactly 3 cells, where the last cell is 80% populated, with 

20% of padding, as Tor doesn’t include other data from the next TCP packet in the last 

cell. Figure 16 shows a sample of some files that were uploaded in this experiment. 

The chart shows three data sets corresponding to the original file size, the number of 

TCP packets that generated from uploading this file, and finally the number of Tor 

cells generated from the same file upload operation. 

From the graph above, we can witness that a single TCP packets generates three Tor 

cells, and by increasing the number of TCP packets, Tor doesn’t piggyback cells with 

different TCP packets, given that the packets obey the 1500 bytes MTU, and are fully 

populated, which is typical in file upload scenarios. 

Figure 16 The correspondence between file size, TCP packets, and Tor cells 
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5.2.4 The Full Fledge Experiment 
 

Recalling that our intent is to examine the reordering and multiplexing of streams, and 

picking up where we left off before the Dictionary experiment, we wanted to observe 

the full behavior of streams, from the moment they are created in the browser, up until 

Tor sends them off the wire.  

 

5.2.4.1 Scenario and Implementation 
 

In this experiment, we wanted to upload several files at once, and record the ordering 

of TCP streams, both at the browser side, and at Tor side. Recall from the EWMA 

experiment, we already observed that Tor doesn’t change the order of packets before 

and after the circuit queue. Also, recall from the Dictionary Experiment, that Tor will 

generate 3 cells from every TCP packet. By now, we also know that those cells will 

align with every corresponding TCP packet, and that additional cell’s capacity will be 

filled with padding. 

 

Our setup in this experiment will be similar to the previous one, i.e. the client and Tor 

will be hosted on different virtual machines. We will continue to use tcpdump to 

record the traffic at the client’s machine and produce a PCAP file. However, we will 

be utilizing a mixed setup between the EWMA experiment and the Dictionary 

experiment at Tor’s side. Since we want to compare the intermixing of streams at the 
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very edges of a file upload (browser and Tor), we will record the order of streams as 

cells are being moved out from the queue to the output buffer. That is, we will utilize 

the same hashing algorithm to identify encrypted cells’ streams, and record their order 

in an output file, by emphasizing on the built hashmap from un-encrypted cells 

entering the queue. Additionally, we will also be printing the contents of every cell in 

a dedicated file alongside its associated stream. 

 

However, since we already observed the correspondence between TCP packets and 

cells, we are no longer interested in observing them again in this experiment. Also, 

recall that we are only interested in the intermixing of streams, i.e. those switching 

points when the current outgoing packet/cell belongs to a different stream than the 

previous packet/cell. Hence, and for the sake of this experiment, we will be 

normalizing the data output, by reducing all packets/cells occurrences between 

streams’ switching to a single TCP packet and the corresponding three Tor cells, i.e. 

those packets/cells appearing just before the switching. Our comparison will be based 

on two points: 

 

1- Insure that the last TCP packet captured in the client before a stream switch carries 

the same content as the last three cells before a stream switch in Tor. 

2- The streams are ordered in the client capture the same way they appear in Tor, by 

insuring that the TCP packet before switching occurs.  
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We needed to intercept data coming out from the browser, and label each TCP packet 

with a unique identifier according to its stream. This is because Tor will also label 

streams randomly during runtime (recall Stream ID), and we need to establish a 

mapping between the two labeling. For the identifier, we used TCP source port 

number, since we know that our application accepts single streaming for each file 

upload, and every TCP packet will be labeled according to its TCP source port as its 

stream identifier. 

 

From the client machine, we created a total of 10 files, each sizing to 1 Megabyte, and 

filled them using a Perl script with random characters. There was no need to use a 

dictionary approach, since the comparison is to be performed upon every switching 

and on a single TCP packet, hence, a collision is statistically infeasible. Again, we 

kept on using our developed web application to upload those files to.  

 

5.2.4.2 Experiment 
 

We conducted 9 different runs, where in the first run we uploaded two files 

simultaneously utilizing our previously developed bash script, and we added one more 

file in each consecutive run. That is, the first run had two files of 1 MB being 

uploaded at the same time, while in the second run, three files of 1 MB were uploaded 

at the same time, etc. Each run ensued a PCAP file on the client machine resulting 

from tcpdump, and a single output file on Tor proxy machine from our 

instrumentation. 
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Additionally, we developed a Python script on the client machine utilizing the same 

Python library (python-dcap) used earlier, to parse the PCAP file. We wanted to 

traverse each packet in the PCAP file, and output a unique label identifying the stream 

number each packet associates with, in the same order the browser pushed these 

packets out, while filtering out irrelevant packets. As mentioned, the label used is the 

stream source port number. Upon executing, the script will output a single file where 

each line of the file represents the unique stream identifier the respective packet 

belongs to, in the order the packet appeared in, alongside the TCP packet content 

(payload) the respective packet has.  

 

Finally, an additional Python script was developed to conduct the ultimate 

comparison. In this implementation, we pass the two output files resulting from 

processing the PCAP, and Tor cells. The script will start traversing both files at the 

same time but with a different pace, i.e. each packet iteration will also iterate three 

cells, while noting the unique label identifying each entry, the packet and cell (source 

port number versus Tor Stream ID). Upon the change of label, i.e. stream switching, 

the script will buffer the contents of the last TCP packet before the stream switch, and 

compare it to the previous three cells contents, similar to the Dictionary Experiment. If 

those match, we know that both streams are aligned at this point, and we output both 

labels identifying the packet and the cells.  
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On the other hand, if a single packet didn’t match the three cells in content, we 

immediately break and exit the application marking the two files with a discrepancy, 

and identifying a possible change of stream ordering. We continue the same 

comparison through the whole file. At the end of every run, we are presented with a 

single output that lists the order of the streams in the browser side, next to the 

corresponding cells stream from Tor’s side. 

 

5.2.4.3 Findings  
 

After executing the script on the output results from all nine runs, none of the files 

caused the script to cease its execution, in an indication that the streams are aligned. 

The nine runs all resulted in a complete output that can account for all streams’ 

switching, and insure that the switching induce by the browser, is what will continue 

through the life cycle of a corresponding Tor stream. Also, this gives us the required 

evidence that it’s the browser’s behavior (curl in these experiments) that controls the 

order by which Tor will write cells out the wire, in a First-In-First-Out approach. 

 

The following two figures, Figure 17 and 18, illustrates the behavior observed in this 

experiment. In Figure 17 we show the output produced by uploading three files 

simultaneously, and the correspondence between each TCP stream and Tor cells, in 

addition to illustrating the order those streams appeared in. Note that the chart starts at 

the top left corner and moves to the right as time progresses, while wrapping around to 

the next line, when edge of the chart is reached. Each entry labeled “TCP Packet” is a 
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summarization of all the TCP packets that continuously transferred before a stream 

switch occurs, whereas every entry labeled “Tor Cell” represents the same with 

respect to Tor. Figure 18, illustrate the same, but with the last run of 10 simultaneous 

file uploads. The figure illustrates only a sample of the output due to space constraints.  
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Figure 17 The intermixing of 3 TCP streams resulting from 3 file uploads where each stream is represented by a 
different color 
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Time 

Ti
m

e 

Figure 18 The intermixing of 10 TCP streams resulting from 10 file uploads where each stream is represented 
by a different color 
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5.3 Experiments on Proposed Algorithms  
 

In the previous section, and as the different spectrum of experiments have shown, we 

now have concrete evidence that Tor doesn’t multiplex cells from the perspective of 

an Onion Proxy (OP), but instead, Tor follows whatever order of streams the browser 

throws at it. Tor will follow a simple FIFO approach, at the client side to handle the 

order streams arrive in. Hence, we decided to further invest on the analysis of Tor 

multiplexing by attempting to introduce streams randomization on the same circuit. 

 

In section 4.2, we displayed three proposed approaches to achieve that, while 

emphasizing on the benefits of each. Recalling that the first approach was the most 

expensive in cost (time-wise), yet the simplest to implement, we decided to implement 

it first. In the following experiments, and as opposed to the previous experiments, we 

want to test the behavior of Tor multiplexing on a smaller scale, and gradually 

increase our complexity as we progress with results. Hence, we will be testing the 

multiplexing algorithms on web browsing (GET requests), instead of file uploading. 

 

5.3.1 Ground Truth 

To establish our ground truth, we wanted to start off with a controlled environment 

instead of testing our algorithms in the wild. Hence, we developed a simple website that 

will allow us to observe the behavior of cells, and record the order of streams before 

applying our algorithm. The website was developed using “NodeJS”, and utilizing on 

the aforementioned “http” module. The website only serves a simple HTML page, were 
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we initially include two external resources, a CSS and a JavaScript files. Recalling the 

default behavior of HTTP, where the browser will fetch the HTML page, parses it for 

external resource, and then initiates as many required TCP streams to fetch those 

resources. 

 

Following, we instrumented Tor to print the URL of the requested resources, in the 

order Tor received them from the browser. Additionally, and similar to our multiplexing 

experiments, we hashed the cells that corresponds to those requests and built a hashmap 

of every cell, and the URL requested by each respective cell. Finally, we modified the 

CELL_QUEUE_POP function to lookup the URL requested by every encrypted cell as 

they are leaving the queue, and instrumented Tor to print the URL as well. 

 

 We started Tor and used Firefox to connect to our developed website multiple times, and 

observed the order by which resources are requested. After ten runs, we confirmed that 

the order induced is persistent across all runs, and that the resources are being fetched 

with the same order in every run. Moreover, we started increasing the complexity of our 

scenario by including more external resources in the HTML page gradually, and again 

conducting 10 visits to the website with each resource addition by adding an additional 

picture (resource) to the HTML page, and observing the order. We kept on repeating the 

experiment until we had an HTML page with five external resources.  

 

After each run, we observed that Tor is sending out cells, in the same order as URLs are 

being requested by the browser, which is in direct alignment with our discovery in the 
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multiplexing experiments. Figure 19 shows the observed order of the streams, and 

illustrates the order requested by the browser, and the order observed from cells leaving 

Tor.   

Time 

Time 
Time 

Time 
Time 

Figure 19 Establishing ground truth by comparing the order URL requests to the order of cells leaving Tor with 
those requests 
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5.3.2 Implementation 

 

To examine and experiment with the first approach, we implemented a C function, 

namely CELL_QUEUE_POP_RANDOM, according to the algorithm listed in the first 

approach in section 4.2. The function was placed in Tor src/or/Relay.c class, which 

implements most of the queue functionality. Additionally, to make effective use of our 

function, we modified Tor function “channel_flush_from_first_active_circuit”, and 

replaced the call to CELL_QUEUE_POP function, with a call to our own implemented 

function. 

 

The function “channel_flush_from_first_active_circuit” is the only function in Tor that 

calls CELL_QUEUE_POP, hence we confirmed that every subsequent need of Tor to 

move cells from the circuit queue to the output buffer will be utilized using our new 

method. 

 

5.3.3 Experiment 

 

In this experiment, we repeated the same actions taken in the Ground Truth, by utilizing 

our developed website. Again, in each subsequent trail with a certain number of external 

resources, we repeated the experiment for ten runs to insure consistency of the results. 

Figure 20 illustrates the results induced of applying our algorithm, while only illustrating 

the result of 4 runs due to space constrains. 
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5.3.4 Findings 

As figure 19 illustrates, our algorithm succeeded in inducing a degree of randomization 

on Tor. By implementing the first approach, we managed to change the behavior of Tor 

to add an additional level of randomness to streams on the same circuit. For example, in 

the first trial, we conducted 10 runs (4 are shown), and in every run, we witness an 

alternating order of streams requesting the resources “test.css” and “test.js”. In the first 

run, we see that modified Tor sends the cell requesting the “css” file first, where in the 

Figure 20 Illustration of applying the first approach algorithm to Tor 
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second run, it’s requesting the “js” file first, similar to the 3rd run, and contrasting with 

the fourth.  

 

Also, in the third trial, where we increased the level of complexity to host five external 

resources on the HTML page, we observe that modified Tor induces a severe level of 

randomization on the cells heading out with URL requests. Modified Tor creates an 

unpredictable behavior of multiplexing, which increases with the number of streams 

composing a circuit. Hence, we can observe that the added randomization managed to 

create a non-systematic, and unpredictable behavior of fetching resources, by alternating 

the order of which streams are arranged and multiplexed inside a circuit. By doing so, we 

insured that a classifier will not observe a consistent behavior of traffic patterns to build a 

fingerprint of a website, specially when the number of resources increases to 10 or more, 

which produces a factor of magnitude of websites fingerprints.  

 

In our simple website implementation, with 4 resources (3rd trial), a classifier would 

previously build a signature for this website based on the number of cells traversed in 

each direction, and the boundaries of a cell. However, by introducing a stream-level 

randomization, we are now forcing the classifier to conduct tens of runs to obtain a total 

of 24 signatures, each representing a different order of fetching those resources. 

Furthermore, consider the home page of amazon.com. On average, loading the page fir 

the first time, results in over 250 resources being loaded to your browser. A classifier that 

previously had to collect a single signature for that website, is forced to create 3.2 x 10492 
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signatures, for it to consider all possible alternation of streams, a resource consuming 

process.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

As we witnessed from the results of our experiment, we now confirm that Tor doesn’t 

induce any multiplexing on cells from the Onion Proxy (Client), due to the single 

establishment of a circuit. Tor will only invoke its randomization (i.e. multiplexing) on 

streams in cases where a Tor node has more than a circuit. We have shown, by 

experiments, that Tor’s cells will follow the same order as the browser initiating TCP 

streams and in accordance to the TCP packets forming those streams, and that cells will 

merely be smaller data containers. 

 

Additionally, we discussed how streams multiplexing on the same circuit induces a high 

level of unpredictability, a consequence that will persuade much longer observation time 

from an attacker or a classifier to confirm a website visit. By proposing three different 

approaches of stream randomization in Tor, we implemented one algorithm and 

performed various test scenarios, that indicate Tor’s ability to multiplex streams to a 

certain extent. However, stream randomization by manipulating cells in their queue, has 

shown a limited success to four streams only, and may require more research resources to 

produce realistic results. We discuss this matter in section 6.1. 
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6.1 Threats to Validity 
Unfortunately, our implemented approach ceases to succeed beyond four streams. Once 

we increase the number of external resources in the HTML page beyond 4 resources, we 

start to observe multiple timeouts in Tor. After deeply investigating the reasons behind 

those timeouts, we noticed that the Onion Proxy (OP) starts receiving timeout requests 

from the exit node. Immediately then, the OP retransmits the requests multiple times, 

until the exit node refuses to accept further connection, as an internal defense against 

brute force attacks. 

 

The OP, then, tears down the circuit, and starts building a new one, utilizing a different 

exit node. Unfortunately, the behavior is repeated with the new exit node, and Tor fails to 

send the requests. Since we don’t have access to the exit node, we tried to investigate the 

matter from the web server perspective, utilizing some heavy, low-level, debugging 

messages. We noticed that beyond four streams, the web server enables HTTP pipelining, 

a technique recently becoming exponentially popular. In HTTP pipelining, the client 

(browser), doesn’t send consecutive HTTP requests, and wait for each response prior 

sending the next one, instead, the browser sends all requests at one, and waits for the 

responses to arrive as soon as they are ready. Figure 21 illustrates HTTP Pipelining.  
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Since the matter is closely related to HTTP pipelining, we think that further research will 

sail us away from our original objective, of implementing a stream randomization at the 

client side. We fear that investing more resources on this research, would induce changes 

that are not backward compatible, and would require a sudden upgrade of millions of Tor 

users and relays around the globe. A consequence that doesn’t outweigh the benefits 

sought by our research. 

 

OPEN 

CLOSE 

Without Pipelining 

CLIENT SERVER 

Tim
e 

OPEN 

CLOSE 

With Pipelining 

CLIENT SERVER 

Figure 21 HTTP Pipelining Illustration 
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Additionally, since the second and third approach of our proposed algorithms, are merely 

an enhancement to the performance of the first approach, and doesn’t introduce a major 

change in handling the streams, we decided to not implement them any further. 
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6.2 Future Work 
In future work, we recommend seeking other approaches to randomizing streams. One 

could think of instrumenting Tor to create more circuits at the OP, and forcing different 

streams of the same session to follow different circuits. Hence, Tor, by default, will 

multiplex the streams into the single connection linking it with the Guard node. However, 

such approach requires deep investigation of the performance overhead that might be 

induced of streams following different routes, and take into consideration the utilization 

level of intermediate nodes. Another possible approach to induce randomization, is from 

the browser side. One could think of developing a browser extension that: 

1- Disables HTTP pipelining. 

2- Buffers the outgoing requests and randomizing their forward order. 

This will cause no further modification to Tor, where the randomization algorithm will be 

moved to the browser side, and Tor will naturally process streams in the order they are 

received from the extension.  
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