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ABSTRACT 

 

Full Name : [Babar Murtaza] 

Thesis Title : [Application of Active Filters for Power Quality Improvements in AC 

Distribution Networks] 

Major Field : [Electrical Engineering] 

Date of Degree : [October 2017] 

 

Due to the large integration of semiconductor loads, power quality has become the most 

persistent issue in electrical system studies. Both utility and the end user have their own 

criteria to evaluate the power quality standards. Power quality is becoming incessant 

concern equally for end users and the utility also. As for as the concerned utility, power 

quality is not more than reliability of the supply whereas, the end user is more concerned 

about the continuous operation of even sensitive loads. Traditional power quality 

compensation methodologies have their own disadvantages like resonance, bulkiness and 

fixed compensation. Therefore, the researchers need to focus this issue and to develop static 

power compensators. 

Shunt active power filter with synchronous frame of reference (d-q) control theory is 

proposed in this work to eliminate the harmonic and to address the reactive power issues. 

Shunt active power filter connected to AC distribution network in the presence of different 

shares of power electronic loads is investigated. Using Matlab/Simulink tool, many 

simulations are carried out to examine and verify that shunt active filter can eliminate the 

harmonics even in the presence of unbalanced and distorted distribution system network 

voltages to acceptable limits specified by IEEE 519. Model is tested for actual residential, 

commercial and industrial linear & non-linear loads and harmonics data.  
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The results indicate the effectiveness of active filters for balanced as well as unbalanced 

system. Harmonics in source currents are reduced from 16.65, 5.32, 11.15 to 4.23, 3.44, 

3.12 for residential, commercial and industrial loads respectively. Reactive power 

demanded by the non-linear loads is also compensated by the active filters which otherwise 

must be supplied from the source system. Proposed active filter is also tested for large 

industrial loads and results are found satisfactory. 
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 ملخص الرسالة

 

 مرتضى بابر :الاسم الكامل

 استعمال الفلاتر النشطة لتحسينات جودة الطاقة في شبكات التوزيع الكهربائية عنوان الرسالة:

 الهندسة الكهربائية التخصص:

 ٢٠١٧أكتوبر  :تاريخ الدرجة العلمية

الدمج الكبير لأحمال أشباه الموصلات، أصبحت جودة الطاقة القضية الأكثر إلحاحاً في دراسات النظام الكهربائي.  بسبب

الشركة و المستخدم النهائي معاييرهم الخاصة لتقييم مقاييس جودة الطاقة. جودة الطاقة أصبحت ذات لدى كلٍ من من 

اهتمامٍ متواصل لكل من المستخدمين النهائيين و الشركة الموزعة أيضاً. فيما يتعلق بالشركة الموزعة، فجودة الطاقة 

مهتمٌ أكثر بالتشغيل المستمر للأحمال الحساسة. الطرق ليست أكثر من موثوقية التزويد، في حين أن المستخدم النهائي 

التقليدية لتعويض جودة الطاقة لديها عيوبها مثل الرنين، و الضخامة، و التعويض الثابت. لذلك، يحتاج الباحثون إلى 

 التركيز على هذه المسألة و تطوير معوضات الطاقة الساكنة.

نظرية التحكم من أجل القضاء على  (q-d)مع إطار متزامن لمرجع يعرض هذا العمل فلتر الطاقة النشط المتوازي 

التوافقيات، و لمعالجة مشاكل الطاقة غير الفعالة. سيتم بحث فلتر الطاقة النشط المتوازي و المتصل بشبكة توزيع 

رنامج ماتلاب في ب Simulinkكهربائية في وجود نسبٍ مختلفةٍ من أحمال إلكترونيات الطاقة. باستخدام أداة المحاكي 

(Matlab سيتم إجراء العديد من المحاكاة للاختبار و التحقق من أن الفلتر النشط المتوازي قادرٌ على إزالة التوافقيات ،)

. IEEE 519بالرغم من وجود جهود أنظمة التوزيع غير المتوازنةٍ و المشوهةٍ للشبكة في حدودٍ مقبولةٍ يحددها نظام 

 خدام أحمالٍ حقيقيةٍ سكنيةٍ، و تجاريةٍ، و صناعيةٍ، خطيةٍ و غير خطيةٍ، و بياناتٍ توافقيةٍ.سيتم اختبار النموذج باست

تشير النتائج إلى فعالية الفلاتر النشطة للأنظمة المتوازنة و غر المتوازنة. تم تقليل التوافقيات في تيارات المصدر من 

للأحمال السكنية و التجارية و الصناعية على التوالي. كما تم  3.12 و 3.44و  4.23إلى  11.15و  5.32و  16.65

تعويض الطاقة غير الفعالة، التي تتطلبها الأحمال غير الخطية، عن طريق الفلاتر النشطة، و لولا ذلك لوجب تزويدها 

ضيةً.من مصدر النظام. كما تم اختبار الفلتر النشط على أحمالٍ صناعيةٍ كبيرةٍ، و أعطى نتائج مر
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1 CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

With the passage of time, the demand for electricity is increasing extensively day by day 

which leads to complex power systems that are more multidimensional than ever before. 

To deal with the high demand of electricity, renewable and non-conventional distributed 

energy sources are becoming more important which made the system controls more 

complex and intricate [1][2]. With the advancement of power electronics, power system 

control is more efficient, reliable and user friendly. But at the same time, the widespread 

use of semiconductor diode and electronic devises creating serious power quality issues 

and is a major concern that need to be addressed for utility, customer and for the 

manufacturers. Harmonic pollution in the power system can be identified and measured by 

total harmonic distortion or THD. High harmonic contents in the power supply can cause 

increased operating temperature and excessive heat in electrical equipment resulting the 

early failures [3]. THD can be measured with reference to the fundamental voltages.  

Utilities are incessantly pressurized to improve the quality and reliability of power supply 

with the integration of large number of electronic devices. The semi electronic based loads 

include printers, electronic ballasts, LED lighting, UPS, faxes, adjustable speed drive 

system and computers. These loads cause distortion in distribution network through 
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inducing harmonics. All these loads are collectively categorized as non-linear loads 

comprising the converters and bridge rectifiers [4]. 

Major reason of harmonics generation by non-linear loads is drawing the current from 

source in an abrupt manner. The harmonics generated by nonlinear loads cause overheating 

and exceeding operating temperature of static and rotating machines leading to winding 

insulation failure and finally flash over may occur resulting in permanent damage of 

electrical equipment and loss of generation that causes huge blackouts which are highly 

undesirable. 

In the competitive electricity market customers have great flexibility in selection of the 

serving utility, putting more pressure to deal with the disturbances to reduce financial and 

economical negative impacts. Power quality issues and objectives are much significant in 

the new electricity market which draw great attention to the application of shunt active 

filters as an essential part of the distribution network. 

Performance and effectiveness of the active filter for power quality applications is largely 

dependent upon the current control technique that is the nucleus of filter. The reference 

current of the varying load is extracted to compensate harmonics distortion in load current. 

Therefor active filter controller plays a key role in the achievement of desired results by 

calculating the reference current demanded by the non-linear loads. 
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1.2 Thesis Motivation 

Filters are the major technologies to mitigate the harmonic problems in distribution 

networks. Any reduction in the harmonic output of the converter in addition to reactive 

power compensation are normally achieved and accomplished by harmonic filters. There 

are two types of filters used in the market for harmonic elimination which are passive filters 

and active filters. Both have their own advantages and disadvantages. Passive filters offer 

low impedance path acting as harmonic isolator for the specific order of the harmonics and 

are used because of low cost and simplicity in implementation and operation. 

In modern world, active filters are used as an alternative to the passive filters because of 

high operational speed and absence of resonance problem. Earlier, active filters were using 

GTOs which have low response time in high switching applications. But with the 

advancement in technology, IGBTs, due to lower voltage drop and better power handling 

capability, are proposed and implemented in this work. 

The basic principle of the active filters is to introduce compensation currents with the help 

of converters to cancel the harmonic component of the load currents. Active filters are 

classified with respect to the converter type used like voltage source Inverter (VSI) and 

current source Inverter (CSI) or with respect to number of phases as single phase and three 

phases inverters. The performance of the active filters is mainly dependent upon the control 

topology used. Based on the method of extraction of reference harmonic current from load 

current, many techniques have been evolved like open loop, closed loop, time domain and 

frequency domain for the active filters. In contrast to the closed loop system, which 

required injected compensation currents are derived, an open loop system involves only 
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the load currents measurements used for the extraction of reference currents.  Time domain 

methodology is normally implemented for three phase systems.  

The application of the active filters utilizes many theories for the extraction of the harmonic 

current for the non-linear load that are instantaneous reactive power theory (p-q) and 

synchronous frame of reference theory (d-q). The majority of the research uses two theories 

because of simplicity and accurate results. But there is major drawback of these existing 

techniques as they are applicable only for the ideal system conditions. The ideal conditions 

are balanced supply voltage and balanced loads. However, in practical distribution 

networks, one must always face with varying and distorted loads with un-balanced and 

non-sinusoidal source voltages. This needs to address properly and pay more attention for 

prolific application of the active filters. 

The main motivation behind this work is to develop a new model of shunt active filters 

with modified control strategy of synchronous frame of reference (d-q) based theory, The 

filter should be capable of mitigating the harmonics to acceptable level of international 

standards of power quality like IEEE-519.  The filter must be tested under adverse 

distribution networks conditions of non-sinusoidal, distorted, un-balanced voltages supply 

and non-linear, un-balanced, distorted continuously varying load conditions. 
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1.3 Thesis Objective 

The main aim of this thesis work is to investigate the harmonics at point of common 

coupling (PCC) and design a filter which can mitigate the harmonics and improve reactive 

power compensation. Following are the main objectives of the thesis work, 

1. To have a dynamic and versatile solution in the form of Active Power Filters that 

solves the power quality problems. 

2. To implement the synchronous frame of reference theory (d-q) to extract reference 

currents for shunt active power filters. 

3. To develop a new model of Active Power Filters with modified control theory that 

enables the filter to mitigate the harmonics even in presence of non-sinusoidal and 

distorted supply with varying non-linear loads. 

4. To test the proposed active filter model in a network with different operating 

modes. 

5. To analyze the impact of active filter parameters on the system performance. 

6. Use the real-time residential, industrial and commercial loading and harmonic data 

to test and verify the proposed active filter model.  

7. Compare the results of proposed active filter with published research work. 
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1.4 Thesis Outlines  

The thesis is organized as follows: Chapter 2 covers details about different control theories 

used for extraction of harmonic currents injected by shunt active filters. Chapter 3 explains 

the problem formulation, mathematical modeling and algorithms. In chapter 4, the d-q 

theory and system network modeling along with the proposed model of shunt active filter 

is presented.  In chapter 5, the simulation procedure for different operating modes of shunt 

active filters and its results are discussed. The conclusions and future works are presented 

in chapter 6.   
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2 CHAPTER 2 

LITERATURE REVIEW 

2.1 Control Theory for Filters  

 

Electrical power quality has important factor in electrical power system. Generally for the 

power conversion from AC to AC or from AC to DC or otherwise and for voltage 

regulations or for controlling of induction motors, electronic based devices are always 

preferred on transformer based devices because of smaller sizes, fast operation and low 

cost [5], regardless of the fact that these electronic  based devices are the main source of 

unwanted harmonics which causes equipment severe heating problems, insulations 

deterioration, shortening life of the electrical equipment, capacitor failure, communication 

interference, transformer failure, harmonic resonance, malfunctioning of protection 

devices, distortion of supply voltages and  unwanted shutdowns. Wide Applications of 

different filters like passive and shunt active filters are commonly observed on industrial 

and commercial scale. But shunt active filters are always preferred because of their small 

size and absence of resonance problem and fixed compensations [6]. 

Paper [7] describes active power filters with two different control techniques, harmonic 

extraction and current modulator to mitigate the harmonics. Many theories have been 

evolved such as instantaneous power theory (p-q), d-q theory, frieze controller, fuzzy logic 

controller technique, neural networks to generate the reference currents for successful 

harmonics extractions. However, researches show that p-q and d-q theories comprises 
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about 70% of the research work because of its simplicity and good results. Gate pulse is 

provided to the active filters with PWM technique. 

With the advancement in modern electronics, harmonics comes as the by-product of them. 

Mostly, the harmonics are observed in the network with large number of computers, UPS 

variable AC to DC speed drives or any other electronics solid state power switching devices 

to convert AC supplies to DC quantities [8]. Harmonics are produced by non-linear loads 

because these draw current in abrupt and short pulse manner instead of smooth manner. 

Paper [9] & [10] classified the filters in three different types depending upon their 

distinctive capabilities of eliminating harmonics. These are passive, shunt active and hybrid 

filters. Application of each filter mainly depends upon nature of the problem and economic 

factor associated with their implementation. Harmonic part of the distorted load current is 

efficiently replaced by the injection of negative harmonics provided by shunt active filters 

using IGBT transistors. Effectiveness of shunt active filters for non- linear loads is shown 

and simulated for the two-bus network in paper [11]. 

Another paper [12] discuss and describes two different aspects of the shunt active filters 

with respect to their performance analysis which are quantitative and qualitative. In 

qualitative analysis, the device is evaluated for technical merits like semiconductor 

characteristics, power conversion methodology, type of diode devices, GTOs and 

MOSFET. Quantitative analysis is carried out with different linear and non-linear loads for 

distribution systems. Filter effectiveness and capacity are the two indexes to measure THD 

of currents with & without application of the active filters as per international standards 

like IEEE 519 & EN 61000-3. 
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Distribution static compensator (D-Statcom) is a voltage controller device comprises on 

filter, a suitable voltage source converter, storage device for the DC energy and coupling 

transformer connected in parallel to the distribution network. Paper [13] discuss in detail 

the role of D-Statcom for elimination of source side voltage sags and interruptions. 

Voltage sag in electrical power system is defined as the reduction of the voltage magnitude 

from 10% to 90% last from 0.5 to couple of seconds [14]. The main reasons of voltage sags 

are faults, fault clearing process itself, temporary disconnection of power supply and 

appearance of large currents associated with switching processes. Two main power quality 

disturbances which are voltage sag and harmonic distortions are discussed in detail in this 

paper. Power quality issues in the power system leading to the interruption of power 

supply, causes huge business losses which are un-desirable. 

Synchronous frame of reference or d-q theory is presented in paper [15] [16] to calculate 

the desired reference currents for VSC of the active filter. The controlled performance of 

shunt active filters greatly depends upon the proportional Integral (PI) controller to get the 

desired reference signal for PWM using synchronous frame transformation from three 

coordinates a-b-c systems to two coordinate d-q system.  

There are many publications which exclusively describes different types of filters and 

discuss in details different control strategies for extraction of reference currents for 

eliminating harmonics. Also, there are numerous papers which explains different indices 

for the performance evaluation of filters like THD, inverter efficiency, cost of the filter and 

discuss about their advantages and disadvantages either in time domain or in frequency 

domain [17]. It can be easily noticed that if there exist a small error in estimating any 
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performance attributes, overall performance of the filter could be seriously degraded and 

even a refined control algorithm could not be able to get the desired results. Therefor there 

is a great debate among the scientist that which area like detection accuracy, speed, filter 

stability or cost should be focused. 

Similarly, papers [18] [19] [20] [21] evaluate different control strategies for active filters. 

These are p-q, d-q and I-C (indirect control) strategy. The results show that The p-q strategy 

can achieve reduction in THD up to 2.85%, the d-q strategy can achieve THD reduction 

for each phase respectively 1.91% on phase a, 2.19% on phase b and 2.60% on phase c. 

Similarly, indirect current control strategy also can achieve THD reduction for each phase 

respectively 2.67% for phase a, 2.97% for phase b and 3.22% for phase c, which are within 

international standard limits. 

Paper [22] discuss and propose three different control techniques for shunt active power 

filters which are hysteresis, fuzzy logic and PI controller. The comparative analysis of three 

techniques clearly depicts that uncertain system conditions are dealt with fuzzy logic 

technique while in hysteresis control technique, reference currents are generated using 

Fourier transform to compensate harmonic contents of the load currents and third one PI 

controller compensate the harmonics in the source current and regulates the capacitor 

voltages based on reference voltages. Analysis shows that fuzzy logic technique [23] [24] 

[25] is the best one among three because it does not require mathematical modeling and 

reduces THD in an efficient way. 

 Paper [26] describes the advantages and disadvantages of using different types of filters 

for harmonic compensations. Passive Filters and Active Power Filters have some 
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advantage and disadvantages, but hybrid active power filters contain their advantages but 

not the disadvantages. Passive filter has been traditionally used in industrial power systems 

to reduce the distortion and harmonic content but has the limited applications because of 

their generic drawbacks like resonance, larger size, system impedance dependency and 

harmonic propagation in power system due to absorption of non- linear load harmonic 

currents. Active power filters (APF) generate either harmonic currents or voltages in a 

manner such that the grid current or voltage waves conserve the sinusoidal form. The APFs 

can be connected to the grid in series (Series APF) or shunt (SAPF)  to compensate voltage 

harmonics or current harmonics respectively. Or can be associated with passive filters to 

construct the hybrid active power filters (HAPF). 

Three different control techniques for shunt active filters were discussed and analyzed in 

detail in paper [27] with respect to their applications for power quality problem in addition 

to the conservative power theory presented by Tenti which discuss different form of the 

power, energy and loads. According to the comparative studies, p-q theory with persistent 

power approach is not a good solution for asymmetrical and sinusoidal voltage 

circumstances and similar is the case for CPT and d-q theories. Similarly, in case of 

symmetrical and non-sinusoidal conditions p-q and CPT control techniques may result in 

voltage distortions. 

Another paper [28] shows the application of shunt active filters for harmonics reduction 

from 38.90% to 9.65%. In shunt active filters, harmonic current is compensated by 

injecting current equal in magnitude but in opposite direction and phase shift of 180-degree 

with the help of pulse width modulated VSI which act as current source in shunt active 

filters. 
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Reactive power and load current harmonics are compensated by active filters by injecting 

current waveform with the help of PI controller [29]. Successful operation of the shunt 

active filters depends upon the DC capacitor as energy storage device to maintain constant 

DC link voltages whereas PI controller is used to reduce the error. Performance of shunt 

active power filter mainly depends upon the reference current extraction technique and the 

way it is injected to the line for harmonic compensation. From the analysis of the shunt 

active filter circuit it is seen that the THD before compensation 23.27% is reduced to 4.72% 

after compensation which is within IEEE standards limits thereby enhance power quality 

improvement. 

Due to multi-voltage level application of cascaded VSI [30] for low switching losses and 

high harmonic compensation, multi-level VSI based active filter is implemented in 

MATLAB/Simulink for extraction of three phase reference currents with the help of real 

power loss calculations. 

Harmonic current compensation and power factor improvement at point of common 

coupling (PCC) [31] [32] is achieved by the application of active power line conditioners 

using pulse width current controlled VSI.  

Proposed current control technique can compensate harmonics current with non-linear 

varying loads. Several symptoms of power quality issues like flickers, communication 

interference, blackouts, overheating and malfunctioning of sensitive equipment are 

discussed and highlighted in paper [33]. 

Another paper [34] propose the matrix converter technique in shunt active filters for 

harmonic current compensation instead of using conventional reference current extraction 



13 

 

technique for power quality improvements. MATLAB/Simulink analysis is carried out 

before and after the application of shunt active filters and results shows that proposed 

technique reduces the harmonics effectively up to 30%.  

 

2.2 Pulse Width Modulation and PI Controller  

 

Three different types of voltage source inverters PWM, single phase and square wave are 

discussed and described in paper [35] which have wide power applications in conversion 

of fixed DC voltage to controlled AC output. PWM technique is most commonly used 

because of less harmonic distortion generation in the output voltages within AC phase load 

[36]. 

DC link voltage balancing is one of the main problem in using multilevel inverters drives 

which badly effects its performance due to the uncharacteristic harmonic generation in the 

output voltages and presence of over voltages across the semiconductor switches. Paper 

[37] propose the solution of this problem by using neutral point clamped structure. Power 

flow control in electrical power transmission system is achieved in complex and most 

advance manner by using unified power flow controller (UPFC) [38] which is based on d-

q axis theory in which three phase currents are transformed into two coordinate system 

currents and the local bus voltage is regulated by controlling real and reactive power 

individually. 

At the point of common coupling PCC [39], system owners or operators should limit 

current harmonics and International regulations now require that all electronic equipment 

meets these strict limits for harmonic currents for individual and total harmonics. 
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Paper [40] discuss different types of flickers in power system which causes noticeable 

illumination changes in lighting equipment and the it provides specifications for acceptable 

levels for two different powers system parameters 120 V ,60Hz and 230 V, 50Hz system. 

Application of the shunt active filters is shown in another paper [41] by simulation in 

MATLAB/Simulink and the results are shown before and after the compensation. It was 

clearly shown that before active filter compensation the THD was 10.87%,21.31%,13.87% 

in three phases a, b and c respectively whereas after the compensation these THD of the 

line currents reduces to 2.14%,1.85% and 1.85% respectively. 

Paper [42] discuss about the optimization of filter sizing and placement as per needed 

applications because these factors have direct economic impact and must be considered 

with other performance evaluation factors. Economical costs are of the great importance 

because still passive filters, having worse characteristics in eliminating higher harmonics 

and higher costs are being used instead of active filters. 17-Bus system consisting linear 

and non-linear motor loads were considered for harmonic evaluation. Main strategy used 

for optimal sizing and placement is minimization of THDI coefficient in busses to which 

active filters are connected. 

Driving problems, influencing factors and solution of harmonics in MV and LV 

distribution network is presented in paper [43]. Capacitor banks, which are installed in 

distribution networks for power factor improvements are the main source of resonance near 

5th harmonics and two case studies are presented to solve resonance issues. 5th harmonics 

are monitored on MV and LV buses for the period of three months and concluded that 

capacitor banks are the major source of resonance in distribution system. Rescheduling of 
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capacitor bank switching and reducing capacitor bank power are the proposed solution for 

harmonics resonance in distribution system. 

Paper [44] discuss about the history of battel between AC and DC sources which ends in 

taking over the AC sources but evolution of converters used for the application of DC 

drives and these converts act as noon linear loads and are the main source of harmonics in 

distribution system. 

Harmonics distortion effects in commercial buildings are investigated in paper [45]. 

Current drawn by nonlinear loads in in abrupt and non-linear manner are the source of 

harmonics in power supply which can affect the other customers connected to the same 

feeder. 

Efficiency, reliability and flexibility improvement of rotating machines with reduced cost 

is being achieved with advanced power electronic excitation control and conversion 

devises. All these steps can easily be eroded if resulting harmonics are not considered in 

the design of these machines. Finite element formulation method is used in [46] to analyze 

the performance parameters of rotating machines. 

Application and performance analysis of the combination of two filters, shunt active and 

passive filters was analyzed in paper [47]. Simulation results shows that this hybrid 

technique work efficiently to reduce the THD in source current in less than two cycles. 

In paper [48], linear and non-linear industrial loads were analyzed for harmonic distortion 

level and time varying character of the loads. Petrochemical, pharmaceutical, 

telecommunication, educational and financial industrial loads were studied and simulations 
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carried out to show the effectiveness of switching compensation devices like active and 

passive filters to reduce the distortion level in source supply and eliminating harmonics. 

Sliding mode controller for DC bus voltage converter is proposed for power quality 

improvement and harmonics compensation in AC networks. Experimental results prove 

that self-tuning filter is successfully compensate the harmonic currents in source supply 

[49]. 

New strategy of active power filters for compensation of reactive power and eliminating 

harmonics without considering DC bus voltage regulation of voltage source converter is 

presented in paper [50]. Simulation results shows that filter is still capable to generate 

reference currents even in the absence of DC voltage in control algorithm but these kinds 

of filters are used in low power application only due to reduced reliability and accuracy. 

Effect of harmonics and voltage distortion in hydro power plant of Cotopaxi electric utility 

company Ecuador, caused by industrial customers are discussed and analyzed in paper [51] 

[58] [62]. All calculations related to state variable and nonlinear load currents are carried 

out using MATLAB simulated load flow analysis. 

Locating and sensing the source of harmonics is also of major concern in well-developed 

and large power systems. State estimating technique is used in Paper [52] to sense and 

locate the source of harmonics. Simulation Results shows that 6 number of sensor can 

locate two sources of harmonics in 50 bus network power system. 

In paper [53], impact of distributed generation, typically photovoltaic and car charging 

stations, on power quality is analyzed. These distributed loads, in addition to other non-

linear load that are already present in the network, causes immense distortion in source 
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supply voltages. A case study was carried out in isolated, actual MV/LV distributed grid, 

supplying energy to the residents of an Italian island. The author explains the reason of 

using network connected system that in network connected to infinite bus, harmonics 

effects are damped. 

Active power filters are first option to cater the harmonic distortion problem in distribution 

network and compensation of reactive power but high cost makes can make this application 

non-productive if not properly de-rated for the bus voltage distortion. Number of active 

filters were reduced from 6 to one after derating gradually and still the voltage and currents 

harmonic distortion levels are within IEEE-519 standard which result in huge cost saving 

[54]. 

In recent years, harmonic distortion is being observed more in residential sector as 

compared to industrial and commercial areas and therefore of the great importance to 

address this issue in residential sector. Extensive field measurements were taken in 7 

residential homes, 8 station service transformers, feeding from 10 feeders of different 

substations and found that residential feeders are dominate with 3rd and 5th harmonics 

more than the others [55].  

Curve fitting technique is used in paper [56] to develop the mathematical relationship with 

harmonics. Group of commercial personal computers were monitored for harmonics 

generation that can circulate to the supply feeder and hence causing overall system power 

factor low and reduced efficiency. 

Switching frequency and power handling capability of the converter are inversely related 

to each other as limiting switching frequency of the device, enhance power handling 
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capability of the converter. Induction motors operating at high power and currents have 

large switching losses and therefor for reliable operation of the induction motor, switching 

frequency should be limited.  Detailed investigation is carried out in [57] on optimal pulse 

width modulation to minimize THD in line currents. 

Active filters show excellent results in harmonics elimination for power quality and power 

factor improvements for low voltage applications.  It does not apply stress to input 

converter switches as it does in passive filters. Power factor also remains constant with 

time varying loading conditions in active filters. Comparative study of active and passive 

filters for medium voltage PWM current source rectifier [59] [66] [67] shows that passive 

filters have high performance at increased loading conditions. 

Performance of shunt active filters greatly depend upon the precision and accuracy of 

voltage source converter. Multi-level voltage source converters [60] [63] [65] are best in 

performance for application of shunt active filters. 

Detection and precise measurement of harmonic pollution in distribution network is also 

an important aspect of the power quality in power system networks. Inclusion of Large 

number of sensors for power quality monitoring may increase overall cost of the project 

which is highly undesirable. Therefore, optimal allocation of monitoring equipment is 

required which is achieved through vertex-coloring approach [61] [64]. Number of 

monitors are concluded based on percentage of non-linear loads on the bus. 

Paper [68] describe the application of the shunt passive filters for harmonics elimination 

and power factor improving in distribution systems. Performance analysis for single tuned 

and second order high pass filters is carried out for industrial systems. Single tuned filter 
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is connected in shunt to the main distribution system and is tuned for the specific frequency 

to offer the low impedance path. 

Selection of the proper capacitor size is the most important in filter sizing because of the 

relationship between reactive power and capacitor reactance. 

Resonance will be observed in passive filters when the capacitive reactance is equal to 

inductive reactance. Quality factor Q of the passive filter is selected in range of 20 to 100 

to set the resistance value for filter. 

Single tuned and second ordered high pass filters are tuned individually for specific 

frequencies to mitigate the harmonics within prescribed limits as per IEEE-519 standard. 

It is evident from the results that THD in source currents is reduced from 20.77% to 4.32% 

and the source currents became sinusoidal and in phase with the supply voltages after the 

application of passive filters. 

There comes some conclusion when the passive filters are compared with the proposed 

active filters in term of cost, reliability, power losses and selectivity. 

A slight upward shift in the frequency can detuned the filter from the target frequency for 

which the filter is tuned which is highly undesirable making the selection of passive filter 

questionable. Capacitor blowing is very common in passive filters which result in raising 

the frequency by reducing the total capacitance. 

Lower and higher order frequencies up to 20th order is of the most concern in power quality 

analysis because higher order harmonics are either very low or negligible. 
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Installation of many single tuned and high pass tuned filters for individual frequencies 

increase passive filters cost more than double as compared to active filters. 

Large number of passive filters are required to install to reduce the specific harmonic order 

current which is achieved with single shunt active filters in which current magnitude of the 

induvial harmonic are reduced in addition to lowering the THD within prescribed limits. 

Current magnitude is reduced from 2A, 18A, 8A, 2A, 4A, 3A, 1A, 3A, 2A to 0.3A, 5A,1A, 

0.5A, 0.7A ,1A, 0.5A, 1A, 1A for 3rd, 5th, 7th 9th, 11th, 13th, 15th, 17th and 19th harmonics 

respectively in passive filters. 

Whereas in case of shunt active filters where we are using only one filters instead of many 

passive filters tuned for the induvial frequencies, the reduction in current magnitude for the 

specific harmonic is as from 2A, 22A, 10A, 2A, 9A, 7A, 3A, 5A, 4A to 0.2A, 0.5A, 0.1A, 

0.1A, 0.3A, 0.2A, 0.1A, 0.4A, 0.1A for 3rd, 5th, 7th 9th, 11th, 13th, 15th, 17th and 19th 

harmonics respectively. Overall THD for the source current are reduced from 27.35% to 

4.59%. 

Active Power filters don’t have all mentioned issues making it reliable, cost effective and 

selective. 
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3 CHAPTER 3 

SYNCHRONOUS FRAME OF REFERNCE THEORY: 

PRINCIPLE AND IMPLEMENTATION 

3.1 Problem Formulation  

 

The control strategy for reference current extraction in active filters is the heart of the 

operation. Many theories for the control of active power filters have been developed and 

implemented for the power quality improvements. These include instantaneous power 

theory (p-q theory), synchronous frame of reference theory (d-q theory), hysteresis current 

control theory and fuzzy logic. 

In this thesis work, synchronous frame of reference theory(d-q) is used for the power 

quality improvements in AC distribution networks. The theory is valid only for the 

sinusoidal voltage supply. Therefore, for non-sinusoidal supply voltages, standard d-q 

theory needs to be implemented with modified control strategy. 

3.2 Mathematical Model  

 

3.2.1 Synchronous Frame of Reference Theory 

The synchronous frame of transformation refers to transformation from three phase 

stationary co-ordinates a-b-c to two d-q rotating axes. 
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3.2.2 Park Transformation 

 

Direct–quadrature or d-q transformation is a simpler form of mathematical transformation 

that rotates the three-phase reference frame systems to make simpler the analysis of 3-

Phase circuits. This is very like the Park’s transformation that was first presented by Robert 

H. Park in 1929 [70].   d-q transform reduces three AC quantities to 2 DC quantities to 

make calculation and simulation simpler and easy and at the end again 3-phase quantities 

are retrieved in a balance three phase system. Harmonic contents are separated from the 

fundamental currents using park transformation in which load currents from three phase 

frame of reference a-b-c are transformed to two d-q synchronous frame of reference. 

Three phase currents ia, ib & ic are transformed to two axis Id, Iq as follow: 
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(3.1) 

Whereas: 

Id, Iq and ia, ib & ic are the currents in the synchronous d-q frame of reference with 

respect to a-b-c-frame of reference and θ is the reference angle.  

Park transformation of three phase voltages is given by: 
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 (3.2) 

 

Whereas: 

Vd, Vq and va, vb & vc are the voltages in synchronous d-q frame of reference with 

respect to a-b-c-frame of reference and θ is the reference angle. 

3.2.3 Inverse Park Transformation 

 

To recover the three-phase currents, Inverse park transformation [70] is used to find the 

active power filter currents as follow: 
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Similarly, the voltage equations for inverse park transformation can be written by replacing 

the currents with voltage notations as given by: 
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 (3.4) 

 

3.2.4 Calculation of Reference Harmonic Current 

 

A simple high pass filter is used to extract the harmonic reference currents from the load 

currents as follow: 

 

 

Three phase source currents are transformed from three coordinates a-b-c to two 

coordinates d-q as shown in the fig 3.1. Currents in the synchronous frame of reference are 

decomposed into two quantities using following equations [35]: 

 

I I Iid id id

I I Iiq iq iq







 (3.5) 

Figure 3.1 Extraction of Load Currents [12]  
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High pass RC filter is used to segregate the average and oscillating part of the currents. A 

high-pass filter allows the signals to pass away with a frequency higher than a certain cutoff 

frequency and block the signals with frequencies lower than the cutoff frequency.  Typical 

high pass filter is shown in Figure 3.2. 

If the frequency is higher than cut-off frequency, ω >>1/RC, capacitor will act as a short 

circuit and output gain will be 1 and signal will be passed. 

1 1i

V R sCR

V sCR
R

sC

 



 

(3.6) 

2 21 1 1 ( )i

V sCR j CR CR

V sCR j CR CR

 

 
  

  
 (3.7) 

 

If the frequency is lower than cut-off frequency, ω <<1/RC, capacitor will act as an open 

circuit and output gain will be zero and signal will be blocked. 

At the end, we will get only the alternating terms in the output that are associated with the 

harmonic contents. Required reference active power filters currents that need to inject in 

the system can be found using following equation. 

Figure 3.2 High Pass RC Filter Circuit [71] 
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(3.8) 

 

These currents calculated with synchronous frame of reference theory are the harmonic 

part of the currents and injected to the system with the help of pulse width modulation. 

 

3.2.5 Power Calculations 

 

Three phase instantaneous active power of the system can be written as: 

a a b b c c
p v i v i v i    (3.9) 

If a-b-c variables are replaced by the equivalent d-q variables 

 

p v i v i
d d q q

   (3.10) 

Real and reactive powers are defined with the voltages and line currents in synchronous 

frame of reference theory as in the following equation 3.11 

d

q
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q vq vd I

    
    

       
 

(3.11) 

 

From equation 3.11, the instantaneous imaginary power can be written as follow: 
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q v i v i
d d q q

   (3.12) 

 

In three phase system va, vb, and vc are the phase voltages and ia, ib, & ic are instantaneous 

values of line currents. Real and reactive powers as per d-q theory can be written as follow: 

p p p

q q q

 

   
(3.13) 

 

Real and reactive powers p, q is decomposed into average and oscillating part (3.13) with 

the help of high pass filters. All powers are explained as follow, 

“p” is the total active power and is the energy which is exchanged per second 

between load and source. 

“q” is the total imaginary power and is exchanged within the phase of power system 

and does not add energy transfer between load and the source. 

“p ̃” this is the harmonic component of the power and must be compensated as it 

does not add the transfer of energy between load and the source. 

“q ̃” this part of energy is also due to the harmonic current and is unwanted and 

therefore must be compensated as it does not involve in the energy transfer between 

the load and the source.  
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These powers are explained in Fig.3.3 

 

Shunt active filters should be installed near to non-linear loads and oscillating part of the 

real power of load should be compensated. Reactive power supplied by compensator 

q q
c
   (3.14) 

 

And active power supplied by compensator will be 

p p
c
   (3.15) 

 

 

 

 

 

Source 

Power 
Load

s 

a 

b 

c 

𝑝ҧ 𝑝෤ 𝑞 

Figure 3.3 Exchange of Powers in Distribution Network System [13] 
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3.2.6 Phase Lock Loop and Positive Sequence Voltage Detector 

 

Phase locked loop is a complete control system which produce a signal related to the input 

phase signal. Phase locked loop is widely used in telecommunication networks, power 

system control and electronic applications. Their application involves recovering a stable 

frequency from multiple unstable frequencies. Phase detector is used to compare the output 

signal to input phase signal to match the different phases. Feedback loop is used to bring 

the output signal back to input signal for comparison, forming a complete loop. Positive 

sequence voltage detector is an essential part of the phase locked loop and is used to 

compare the difference between the two phases. 

Inputs to the active filter controller are the load currents and source voltages and the power 

is calculated based on these voltage and currents. Controller determine the reference 

currents for the active filter, demanded by non-linear loads with the application of 

synchronous frame of reference theory. If the filter is designed to mitigate the currents 

harmonic, then it is assumed that source voltages are perfectly balanced and harmonics are 

present only due to non-linear loads. But if the source voltages are unbalanced and distorted 

with harmonics then the algorithm shown below cannot be able to generate accurate 

reference currents for the active filter and its performance will be not ideal. This situation 

Figure 3.4 PLL Model [72] 
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gives arise the need of fundamental positive sequence voltage detector. Algorithm for 

reference current calculation is shown in fig 3.5 

 

Figure 3.5 Algorithm for Reference Current Calculation 
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Positive sequence voltage detector shown in fig3.6 derive the fundamental positive signal 

from the unbalanced phase voltages. Positive sequence voltage at the 
 

Figure 3.6 Fundamental Positive Sequence Voltage Detector 
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fundamental frequency of highly distorted and unbalanced voltage are tracked by phase 

locked loop which is the important part of positive sequence voltage detector. 

3.2.7 Voltage Source Converter 

Power conversion from DC to AC is achieved through electronic converters. DC source is 

normally a battery or the output of the rectifier. Output voltage of the converter are 

controlled by pulse width modulations techniques and such converters are called PWM 

converters. 

Inverters are mainly classified into two types as current source inverters and voltage source 

inverters. Both controller have their own different design but having the same technique to 

force the converter to behave like current controller device. 

VSC are preferred over CSC due to many reasons like smaller physical size, high efficiency 

and low initial cost. 

In the recent years, due to the improved voltage and current ratings of semiconductor 

devices, 2 level converters are used to feed the required current calculated by any control 

theory. Their applications range from motor drive units to reactive power compensations. 
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For perfect function of the inverter, it should be able to generate perfectly sinusoidal output 

voltages which is possible only if it does not contain low harmonic frequencies. 

2-Level converter is used in this work which can produce the required harmonic current 

calculated by synchronous frame of refence theory demanded by load from the source to 

eliminate the harmonics and compensate reactive power. 

 

3.2.8 Pulse Width Modulation and Current Controller 

 

Pulse width modulation technique is used to encode message into pulsing signal but its 

main area of application is to control the power supplies to electrical equipment, especially 

motors and filters. Feeding of voltage and current to load is controlled by continuous 

switching between load and source at a very fast rate. As the switching on time is more 

Figure 3.7 Two level Voltage Source Converter [73] 
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than off time, more total power will be supplied to the load. Switching frequency vary 

greatly from few Hz’s to tens of KHz, depending upon the load applications. 

Biggest advantage of PWM is the minimum power loss in switching devices. There is no 

current flowing when the device is off and no voltage drop when the device is ON. So 

practically there is no power loss. 

Active filter performance is greatly depended on current controller and the method 

employed to generate the gating signal for Voltage source converters. There are many 

strategies implemented for current modulation but triangular carrier control PWM 

technique is being used for this work as shown in the Figure 3.8. 

 

Active filter reference currents calculated by synchronous frame of reference theory and 

actual filter currents are compared at the input to produce error. PI controller is used here 

to make the error steady and then this error is compared with the triangular wave with fixed 

carrier frequency.  

Figure 3.8 Triangular Carrier PWM Current Controller [74] 
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4 CHAPTER 4 

NETWORK SIMMULATION MODELING 

4.1 Preliminary Simulation  

 

Work on the thesis objectives started with some preliminary simulations. The results of the 

simulation are shown in the proceeding sections. 

In order to develop the complete Simulink modeling of the network, it requires to model 

each part of the network separately. Modeling of individual sections of the network are 

shown below and the results are briefly explained here.  

 

4.2 System Network Modeling  

 

The simulation parameters for system network used for the shunt active power filters are 

shown in Table 4.1. These are the general parameters used for the standard model and will 

be modified with respect to each simulation accordingly. 

Table 4.1 Typical Distribution System Network Parameters 

Parameters Symbols Values 

Distribution supply voltages Vabc 390 V 

System frequency f 60 Hz 

Supply side commutation 

inductance 
Ls 2 μH 
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Supply side resistance Rs 0.0091 Ω 

Filter side inductance LF 2 mH 

Filter side resistance RF 0.0001 Ω 

DC Link voltage of the shunt 

inverter 
Vdc 800 V 

Switching frequency fs 10 kHz 

Load side commutation 

inductance 
Ld 2 mH 

Load side resistance Rd 0.0091 Ω 

Load: Diode bridge loads at 

PCC 
R-L Load 65Ω + 65 mH 

 

Non-Linear load of different ratings is added and connected to the system in steps at 

different time intervals to check the validity and effectiveness of the shunt active filters 

with varying loading conditions because in the actual distribution systems the loads are not 

constant all the time. SLD of active filters is shown in fig.4.1 

Figure 4.1 Single Line Diagram of Shunt Active Filters [15] 
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Simulation model of the system network is shown in Figure 4.2 

 

Source supply is connected to the left side of the model and it can be ideal, non-ideal and 

distorted under different conditions of the simulations. Next to the source supply is the 

inductance of the system that may be a line or transformer. To the right side of the model 

is the non-linear load that can also be balanced, un-balanced and distorted under different 

conditions of the simulations and will be connected to the system at different time instants. 

In the middle of the system is Active Filters with complete control algorithm and it will be 

connected in parallel to the system to provide the compensating current to mitigate the 

harmonics. 

 

 

Figure 4.2 Network Modeling of the System Network 
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4.3 Simulation Modeling of d-q Theory  

 

The d-q theory is modeled and simulated as shown in Figure 4.3 Inputs to the controller 

are three phase non-linear load currents and source voltages which are fundamental and are 

extracted from the fundamental positive sequence extractor. This enables the operation of 

standard d-q theory for the non-sinusoidal and distorted source supply voltages also. In d-

q block voltages and currents are transformed from three coordinates a-b-c to d-q 

coordinates using park transformation to make the calculations simpler and 

straightforward. In next step d-q currents are compared with compensator currents to 

reduce the error. The steady state output is fed to inverse d-q block to retrieve the original 

currents in a-b-c coordinates. These reference currents are the required currents that needs 

to compensate and are injected to the system by voltage source converters with the help of 

pulse width modulation. 

Figure 4.3 Modeling of d-q Theory 
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4.4 Simulation Modeling of Source Supply  

 

Distribution supply can be considered and simulated as an ideal source or as an unbalanced, 

highly distorted according to the condition of simulations as shown in Figure 4.4 and 4.5 

respectively. 

Three phase voltages Va, Vb and Vc are balanced and sinusoidal. Phase-b voltages are 120 

Degree displaced from phase-a voltage, whereas phase c voltages are 120 degrees displaced 

from phase-b voltages. 

 

Figure 4.4 Simulation Model of Balanced Source Supply Voltages, phase-a 

Figure 4.5 Un-Balanced & Distorted Source Supply Voltages, phase-a 
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Figure 4.6 Simulation Model of Non-Ideal Source Supply Voltages, phase-b 

Figure 4.7 Simulation Model of Non-Ideal source Supply Voltages, phase-c 
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Fig.4.5 shows the simulation of unbalanced and highly distorted source supply. 

Unbalanced is created by adding 10 volts’ magnitude and displacing the phase -b 120ͦ with 

phase-a and displacing phase-c -120ͦ form phase-a. This makes the source supply highly 

unbalanced. Distortion is created by adding 3rd, 5th and 7th harmonics of 13, 9 and 7 

magnitudes respectively. 

Similarly, phase-b and c of the non-ideal source supply are simulated as shown in Figure 

4.6 and 4.7. 

Fig 4.8 shows the output of the modeled 3-phase non-ideal source supply. 

 

4.5 Non-Linear Load Modeling  

 

Effectiveness of the electricity consumption for useful work is measured by power factor. 

For non-linear loads, power factor remains the ratio of KW to KVA but additional 

harmonic component HkVAR  is added to the basic KVA. Therefore, the True power factor 

becomes the combination of displacement power factor and distortion power factor. The 

displacement power factor is near unity for non-linear loads but true power factor is very 

low because of the distortion factor. The mathematical relationship is shown in equations 

4.1 to 4.4. 

Figure 4.8 Waveform of Non-Ideal 3-phase Source Supply 
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Cos
P

pf
S

   (4.1) 

 

2 2 2S P Q H    (4.2) 

 

2 2 2

HkVA kW kVAR kVAR    (4.3) 

 

True Power Factor = Displacement pf x Distortion pf (4.4) 

 

In presence of harmonic component in nonlinear loads, the apparent power is the 

combination of P, Q and H, as shown in equation number 4.2 

Thyristor bridge Non-Linear load with R & L is modeled as shown in Figure 4.9 and 

connected to the network to check the filter dynamics in presence of non-linear loads. 

 

 

Figure 4.9 Thyristor Bridge Non-Linear Load 
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Three inputs of the load are connected to supply phases a, b and c whereas the fourth input 

G is for control signal of the load which specify the system frequency and firing angle. The 

current waveforms of non-linear load for three phases is shown in Figure 4.10 

Three phase RLC load-3 is connected to the network. Load1 and load 3 are constant loads 

whereas load 2 is connected to the system at time 4 second to create varying load condition 

for the system network. Also, any phase of the load can be switched off to create the 

unbalanced loading condition for the simulation. 

Figure 4.10 shows the variations of the load currents in different phases. Non-linear load 

draws current from the source supply in abrupt and discrete manner causing the system 

voltages non-sinusoidal and distorted. 

 

4.6 Active Filter Design  

 

Control theory is the heart of active filters. The existing d-q theory and active filter model 

deal with ideal system conditions of sinusoidal and balanced source supply voltage and 

balanced loads. In practical distribution networks, one must always face with varying and 

Figure 4.10 Current of Non-Linear Load, 3-phase 
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distorted loads with un-balanced and non-sinusoidal source voltages which needs to 

address properly and pay more attention for prolific application of the active filters.  

The performance and effectiveness of the active filter for power quality applications is 

largely dependent upon the current control technique which is the nucleus of filter in which 

reference current of the varying load is extracted to compensate harmonics distortion in 

load current. Therefor active filter controller plays a key role in the achievement of desired 

results from active filters. Fig.4.11 shows the typical schematic for active filters. 

In this work, new control strategy is developed which enables active filter to perform in 

unbalanced, distorted source supply and varying loads. 

The controller of the shunt active filter is designed to cater with adverse system conditions. 

Unbalanced supply voltages are neutralized with positive sequence voltage detector and 

fed to d-q theory for reference current calculations. The reference currents are supplied to 

Figure 4.11 Shunt Active Power Filter Configuration [15] 
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the system with help of PWM. Positive sequence voltage detector is modeled as shown in 

fig. 4.12. 

 

The selected parameters of phase locked loop and pulse width modulations are given 

below, 

Kp=180 

Ki=3200 

Kd=1 

Damping factor(zeta)=1 

Cut-off frequency= 60Hz 

Converter Level= 2 

 

 

Carrier Frequency(Hz)= 10000 

 

Figure 4.12 Positive Sequence Voltage Detector 
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By adjusting these parameters to suitable values given above, the phase locked loop (PLL) 

can extract the fundamental voltages from the unbalanced supply and fed to d-q theory to 

calculate the reference currents for system demanded by the nonlinear loads.  

4.7  Sensitivity Analysis for Filter Parameters 

 

Unbalanced supply voltages are fed to Phase locked loop PLL where the fundamental 

voltages are extracted with the help of fundamental positive sequence detector making it 

possible for shunt active filters to mitigate the harmonics in adverse power system 

conditions. Optimal operation of active filters mainly depends upon the proper selection of 

the parameters for phase locked loop.  Sensitivity analysis is carried out to observe the 

effect of input variables to the output. 

Kp is the proportional gain and have significant impact to proportionally increase the 

control signal for the same value of error. Another effect of increasing the Kp gain is to 

reduce but not eliminate the error. 

Similarly, Ki integral gain tend to eliminate the error but at the same time it makes the 

system unstable and causes oscillation. 

Kd, the derivative gain has no effect on error but it makes the system stable. 

Summary of all these parameters are shown in table 4.2 
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Table 4.2 Summary of Filter Parameters 

Parameters Rise Time Overshoot Settling Time Error 

Kp Decrease Increase Small Change Decrease 

Ki Decrease Increase Increase Decrease 

Kd Small Change Decrease Decrease No Change 

 

 

Individual effect of these parameter to THD is graphically shown below, 

 

It is clear from the fig 4.13 that proportional gain constant is more sensitive to the total 

harmonic distortion THD in range betwee160 to 200. Optimal value of Kp is 185. 
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Figure 4.13 Proportional Gain Constant 
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Integral gain constant in fig.4.14 is more sensitive to the THD in the range of 2600 to 3400. 

Optimal value of the integral constant is 3050. 
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Figure 4.14 Integral Gain Constant 
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Figure 4.15 Derivative Gain Constant 
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Derivative constant is more sensitive to the range of 0.25 to 1.4. Optimal value of Kd is 1. 

However, when we see the accumulative effect of these constants to the variation of THD 

output of the active filter, we observe that minimal THD 4.6 is obtained at different values 

other than the optimal values of these parameters as shown in table 4.4 

In view of the sensitive analysis of active filter parameters, an optimal range of these 

parameter can be set as shown in the table 4.3 

Table 4.3 Range of Filter Parameters 

Parameters Minimal Range Maximum Range 

Kp 160 200 

Ki 2600 3400 

Kd 0.25 1.4 

Summary of the effect of active filter parameters to the performance of the filter in term of 

THD is shown in detail in table 4.4 

Table 4.4 Optimal Selection of Filter Parameters 

Kp THD % Ki THD % Kd THD % Overall THD % 

100 12.26 2500 14.76 0  0 12 

110 11.75 2600 10.34 0  0 11 

120 11.19 2700 8.98 0  0 10.34 

130 11 2800 7.45 0  0 9 

140 10.15 2850 6.78 0  0 8.34 

150 9.45 2900 5.97 0 0  7.47 

155 8.25 2950 5.34 0.1 13 6.87 

160 6.75 3000 4.78 0.2 9.84 6.45 

165 5.98 3050 4.15 0.4 7.25 5.99 

170 5.13 3100 4.24 0.6 6.25 5.34 

175 4.75 3150 4.98 0.8 5.98 4.75 

180 4.6 3200 5.36 1 5.17 4.67 

185 4.52 3250 6.78 1.2 6.29 4.85 

190 4.7 3300 7.87 1.4 7.93 5 

195 5.34 3350 8 1.6 8 6.45 

200 6.35 3400 8.35 2 10 7.45 
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210 7.24 3450 9.67 2.4 11 8.24 

220 9.76 3500 12 2.8 13 10.23 

230 10 3550 13 3.2 15 11.23 

240 12 3600 16 3.6 15.13 13 

 

Performance of the active filter is greatly depending upon the control strategy of the active 

filters and is called the heart of the filter. Initially the optimal parameter were determined 

by hit and trial method and then sensitivity analysis is used to determine the effect of these 

parameter to the performance of the filters and optimal range is concluded for these 

parameters. 
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5 CHAPTER 5 

SIMULATIONS AND RESULT DISCUSSIONS 

5.1 Different System Conditions of AC Distribution Networks 

 

A number of simulations are carried out to test the performance and validity of shunt active 

filters with number of non-linear, distorted & varying loads and un-balanced, distorted 

source supply voltages. Proposed shunt active filter will be able to compensate harmonic 

currents and address reactive power issues even under worst system network conditions. 

Application of the shunt active filter will be analyzed possibly for the following system 

conditions. 

5.2 Balance Supply Voltages with Balance Load 

 

In this case, the system will be considered perfectly ideal with balance supply voltages 

and balance loads. IEEE-519 also recommends considering ideal conditions for sake of 

computer analysis of the system. All the system parameters are listed in table 4.1. 

The system equations will be like as follow: 

sin( )

230 sin( 120 )

sin( 120 )

tva

v t
b

tvc







 



   
   
   

     

 
(5.1) 
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5.2.1  Simulation Results & Discussion 

All the system parameters are listed in Table 4.1. Source supply voltages and currents are 

shown in Figure 5.1.  

Three phase Voltage waveforms are perfectly sinusoidal and equally spaced from each 

other as for the case under discussion the source supply is considered balanced and free 

from distortion. Source currents are initially distorted and non-sinusoidal because of the 

non-linear load but it became sinusoidal at the instant when the active filters are connected 

to the system by injecting compensating currents calculated by synchronous frame of 

reference theory. 

Figure 5.2 clearly shows active filter voltages and currents. Voltages are present across the 

active filter even before connecting to the system because active filters are connected to 

the constant voltage supply. Currents are zero across the filter as AF is not supplying any 

Figure 5.1 Source Supply Voltages and Currents 
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compensating current to the system but it starts supplying compensating currents to the 

system after connecting to the system making source supply perfectly sinusoidal. 

Figure 5.3 shows the input reference currents of the active filter and actual reference 

currents compensated by the shunt active filters for phase-a. 

Figure 5.2 Active Filter Voltages and Actual Currents 

Figure 5.3 Active Filter Reference Currents-Phase a 
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The instant when the active filter is connected to the system, it starts following reference 

currents in less than a cycle making sure successful compensation of the harmonic currents 

demanded by the non-linear loads from the distribution system.    

Figure 5.4 shows the input reference currents of the active filter and actual reference 

currents compensated by the shunt active filters for phase-b. 

Figure 5.5 shows the input reference currents of the active filter and actual reference 

currents compensated by the shunt active filters for phase-c. 

Figure 5.4 Active Filter Reference Currents- Phase b 
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Figure 5.6 shows the voltages and currents of the non-linear load. It draws non-sinusoidal 

currents from the source in an abrupt manner causing harmonics in the system network. 

Figure 5.6 Non-Linear Load Voltages and Currents 

Figure 5.5 Active Filter Reference Currents- Phase c 
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Shunt active filters successfully manages the power factor of the system and bring it close 

to unity as the source voltages are exactly in phase with the source currents shown in Figure 

5.7, 5.8, 5.9 for phase a, b and phase c respectively. 

 

Figure 5.7 Source Voltages and Currents of phase-a 

Figure 5.8 Source Voltages and Currents of phase-b 
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Figure 5.10 show the THD in the three-phase source current before the operation of shunt 

active filters and the harmonics level is 27.35% which is very high and violating acceptable 

limits defined by international standards.  

Figure 5.10 Iabc Source current THD Before Active Filtering 

Figure 5.9 Source Voltages and Currents of phase-c 
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Whereas Figure 5.11 shows THD level after the working of active filters which is 4.59 % 

and is within acceptable range of limits defined by the international standards. 

5.3 Un-Balanced and Distorted Supply Voltages with Un-Balanced 

and Distorted Load 

 

In this case, simple d-q theory is not valid one because it deals only with balanced system 

conditions. Therefor it required some modifications to deal with abnormal conditions when 

the supply voltages are un-balanced and non-sinusoidal. 

This is the worst case in the power system as the source supply is heavily unbalanced and 

distorted which have severe effect on the controllability of the load connected to the supply. 

Shunt active filter must work efficiently in presence of unbalanced and polluted supply 

voltages and must compensate the reactive power of the system.  

Figure 5.11 Iabc Source Current THD After Active Filtering 
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Fundamental voltages are extracted from positive sequence voltage extractor and fed to the 

controller which makes the d-q theory applicable for non-ideal source supply. 

Load is also considered as unbalanced nonlinear load. Load 1 and 3 are constant three phase 

loads and are connected to the system from the start of the simulation whereas load 2 is 

step nonlinear load which is connected at 4 seconds after the start of the simulation. Step 

load 3 is connected between the phase a and c thus making the source supply heavily 

unbalanced. 

Supply voltage equations are as follow: 

uda ua ua uah daf ua uah

udb ub ub ubh dbf ub ubh

udc uc uc uch dcf uc uch

v v v v v v v

v v v v v v v

v v v v v v v

  

  

  

            
            

                 
                        

 

(5.2) 

 

Whereas Vuda are the unbalanced and distorted supply voltage. Vua+ is positive 

sequence voltage, Vua- is the negative sequence voltage, Vdaf is the fundamental voltage 

and Vuah is the harmonic distorted voltage. Unbalanced and distorted supply voltages 

will be written as, 
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(5.3) 

5.3.1 Simulation Results & Discussion 

All the system parameters are listed in Table 4.1. Unbalanced and distorted distribution 

supply voltages are simulated to test and validate the performance of the shunt active filters 

for harmonics elimination and reactive power compensation. As we aware about the fact 

that synchronous frame of reference theory is valid only for balanced source supply. 

Therefor to deal with unbalanced and distorted supply voltage, there is a need of extraction 

of fundamental positive sequence voltages. 

Figure 5.12 shows the unbalanced and distorted supply voltages.  

Figure 5.12 Source Supply Voltages and Currents 



61 

 

Source currents are becoming perfectly sinusoidal and harmonics free at the instant when 

active filters are connected to the system. 

Active filter voltage and currents are shown in fig.5.13 

Active filter reference currents are shown in fig.5.14. 

Figure 5.13 Active Filter Voltages and Actual Currents 

Figure 5.14 Active Filter Reference Currents 
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Whereas non-linear load voltages and currents are shown in fig.5.15 

Figure 5.16 & 5.17 shows the active and reactive power of the system before and after 

active filtering.  

Figure 5.16 Active and Reactive Power-Before Active Filter 

Figure 5.15 Non-Linear Load Voltages and Currents 
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It can be observed from the graph that very large amount of reactive power is demanded 

by the nonlinear electronic load from the supply system which result in very low power 

factor and excessive power loss and is highly undesirable in the modern power system.  

Figure 5.18 shows that voltage and current of the source supply are exactly in phase making 

the power factor approaching to unity and compensation reactive power successfully 

demanded by the nonlinear load from the source. 

Figure 5.17 Active and Reactive Power-After Active Filter 

Figure 5.18 Source Voltages and Currents of phase-a 
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THD level of the source supply before active filtering is 12.02% exceeding the limits as 

shown in Figure 5.19 

Whereas Figure 5.20 shows the THD level after active filtering is 4.67 % which is well 

within the acceptable harmonics limits.  

Figure 5.20 Iabc Source Current THD After Active Filtering 

Figure 5.19 Iabc Source current THD Before Active Filtering 
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It is evident from the above discussion that synchronous frame of reference d-q theory is 

not only applicable in balanced conditions but also works efficiently to eliminate 

harmonics and compensate reactive power in case of unbalanced and distorted conditions. 

 

5.4 Case Study: Small vs Large Distribution System 

 

A practical problem of harmonics in industrial, commercial and residential distribution 

feeders is considered here. Nonlinear loads in distribution network are the main source of 

harmonics and justify the need of power conditioners to improve the power quality. Current 

harmonics are the major concern for utilities causing voltage distortion at distribution level. 

Utilities frequently face problems caused by harmonics such as higher transformer and 

transmission line losses, neutral overcurrent, derating of distribution equipment, reactive 

power issue, resonance, system stability and reduced safe operating margins. 

Harmonic propagation is the main issue in using tradition capacitor bank compensation 

and passive filters. Many topologies have been proposed for power quality improvements 

in ac distribution networks. Purpose of the study case is to test the new shunt active filter 

model in real power system conditions. Shunt active filters for industrial, Commercial and 

residential feeders are investigated in this work for harmonic elimination and reactive 

power compensation. 

The Dranetz Power Guide 4400, a three-phase power quality analyzer is used for 

measurement of harmonics and other loading parameter required for harmonic studies [75]. 
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5.4.1 Residential Distribution System Loading  

Continuous monitoring of typical residential apartment for 24 hours was made. The 

schematic diagram of the residential distribution system under study is shown in fig 5.21 

linear and non-linear load including, lighting, air conditioning, microwave oven, vacuum 

cleaner, hair dryer, television and washing machine, are connected to the main supply. 

System was observed for 24 hours with actual and routine loadings. System Parameters 

observed with power quality analyzer are as follow Table 5.1 

Table 5.1 Residential System Network Parameters 

Parameters Symbols Values 

Nominal voltages Vabc 390 V 

System frequency f 60 Hz 

Voltage-rms Vab ,Vbc, Vca 404.23, 404.77, 406.55 

Current-rms Irms, Ia,Ib,Ic 19.6A, 18.6A,20A 

Power Demand-Active (Peak) kW 12.71 

Power Demand-Reactive kVAR 5.04 

Harmonics-Current THD-I 18.32 % 

Power Factor pf 0.96 

Figure 5.21 Schematic Diagram of Residential Distribution System 
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All these actual system parameters that are observed in a typical residential apartment are 

simulated in MATLAB Simulink. Shunt active filters are connected in parallel to this 

system to eliminate the harmonics and compensate the reactive power in addition to 

improve the power factor of the system network. Simulation results are shown and 

discussed below: 

5.4.1.1 Simulation Results & Discussion 

In this case, active filters are connected in parallel to the source and load in distribution 

network. Harmonics currents demanded by nonlinear load from the system are calculated 

by synchronous frame of reference theory and injected to the system by voltage source 

converter with the help of pulse width modulation.  

When we compare the measured and simulated data for the residential loads, we observed 

there is a slight difference between actual and measured values. However, proposed active 

filter is successfully eliminating the harmonics in all system conditions. Summary of the 

measured and simulated parameters is shown in table- 5.2 

Table 5.2 Comparison of  Measured and Simulated Parameters 

Parameters Symbols 
Measured 

Values 

Simulated 

Values 

Voltage-rms Vab ,Vbc, Vca 404.23, 404.77, 406.55 401, 400, 402 

Current-rms Irms, Ia,Ib,Ic 19.6A, 18.6A,20A 22.0A, 21.2A, 22.1A 

Power Demand-Active kW 12.71 12.59 

Power Demand-Reactive kVAR 5.04 5.81 

Harmonics-Current THD-I 18.32 % 16.13% 

Power Factor pf 0.96 0.96 
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Figure 5.21 shows the unbalanced and distorted supply voltages.  

whereas Figure 5.22 shows the active filter currents which are exactly following the 

reference currents calculated with d-q theory.  

 

Figure 5.22 Active Filter Reference Currents 

Figure 5.21 Source Supply Voltages and Currents 
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Source currents are becoming perfectly sinusoidal with voltage and are harmonics free as 

shown in the graph of Figure 5.23.  

The voltages and currents of the source supply are exactly in phase making the power factor 

approaching to unity and compensation reactive power successfully demanded by the 

nonlinear load from the source. 

Figure 5.23 Source Voltages and Currents of phase-a 

Figure 5.24 Active and Reactive Power-Before Active Filter 
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Figure.5.24 shows the active and reactive power of the system before active filtering. It is 

observed that very large amount of reactive power is demanded by the nonlinear load from 

the supply system which is highly undesirable in the modern power system. Figure 5.25 

shows the reactive power compensation by active filters.  

 

Figure 5.25 Active and Reactive Power-After Active Filter 

Figure 5.26 Iabc Source Current THD Before Active Filtering 
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THD level of the source supply before active filtering is 16.13% exceeding the limits as 

shown in Figure. 5.26  

Figure 5.27 shows the THD level after active filtering is 4.23 % which is well within the 

acceptable international harmonic standards. 

 

It is evident from the above discussion that synchronous frame of reference d-q theory is 

not only applicable in balanced conditions but also works efficiently to eliminate 

harmonics and compensate reactive power in unbalanced and distorted conditions. 

 

 

Figure 5.27 Iabc Source Current THD After Active Filtering 
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5.4.2 Commercial Distribution Network System Loading  

 

Continuous monitoring of typical commercial facility for 6 hours was made.  

linear and non-linear load including, lighting, air conditioning, CCTV, computers and LCD 

are connected to the main supply. System was observed for 6 hours with actual and routine 

loadings. System Parameters observed with power quality analyzer are as follow Table 5.3. 

 

Table 5.3 Commercial Network System Parameters 

Parameters Symbols Values 

Distribution supply voltages  Vabc 220 V 

System frequency  f 60 Hz 

Voltage-rms Vab ,Vbc, Vca 224.13, 222.64, 221.51 

Current-rms Irms, Ia,Ib,Ic 31A, 33A, 34A 

Power Demand-Active (Peak) kW 11.3 

Power Demand-Reactive kVAR 5.54 

Harmonics-Current  THD-I 5.32 % 

Power Factor  pf 0.74 

 

All these actual system parameters that are observed in a typical commercial office facility, 

are simulated in MATLAB Simulink. Shunt active filters are connected in parallel to this 

system to eliminate the harmonics and compensate the reactive power in addition to 

improve the power factor of the system network. Simulation results are shown and 

discussed below 



73 

 

5.4.2.1 Simulation Results & Discussions 

Figure 5.28 shows the unbalanced and distorted supply voltages.  

Whereas Figure 5.29 shows the active filter currents which are exactly following the 

reference currents calculated with d-q theory.  

Figure 5.28 Source Supply Voltages and Currents 

Figure 5.29 Active Filter Reference Currents 
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Source currents are becoming perfectly sinusoidal with voltage and are harmonics free as 

shown in the graph of Figure 5.30 

Figure 5.31 shows the reactive power compensation by active filters.  

 

Figure 5.30 Source Voltages and Currents of phase-a 

Figure 5.31 Active and Reactive Power-After Active Filter 
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Figure 5.32 shows the THD level before active filtering is 5.76 %  

 

Figure 5.33 shows the THD level after active filtering is 3.44 % 

Figure 5.32 Iabc Source Current THD Before Active Filtering 

Figure 5.33 Iabc Source Current THD After Active Filtering 



76 

 

Results shows that shunt active filter is working well for commercial loads also. Its 

eliminating the harmonics from source supply and compensating the reactive power 

demand of the system. THD of the source current is improved from 5.76%, an unacceptable 

limit to 3.44% an acceptable limit as per international standard. Load current and voltages 

are also in phase with improved power factor. Active filter current is also following the d-

q current requirements. 

 

5.4.3 Industrial Distribution Network System Loading  

Continuous monitoring of typical industrial facility for 6 hours was made.  

Linear and non-linear load including, lighting, air conditioning, motors and welding plant, 

are connected to the main supply. System was observed for 6 hours with actual and routine 

loadings. System Parameters observed with power quality analyzer are as follow Table 5.4. 

Table 5.4 Industrial System Network Parameters 

Parameters Symbols Values 

Distribution supply voltages  Vabc 380 V 

System frequency  f 60 Hz 

Voltage-rms Vab ,Vbc, Vca 401.2, 403.2, 402.6 

Current-rms Irms, Ia,Ib,Ic 22A, 27A,25A 

Power Demand-Active (Peak) kW 5.72 

Power Demand-Reactive kVAR 4.87 

Harmonics-Current  THD-I 10.15 % 

Power Factor  Pf 0.68 
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All these actual system parameters that are observed in a typical industrial facility, are 

simulated in MATLAB Simulink. Shunt active filters are connected in parallel to this 

system to eliminate the harmonics and compensate the reactive power in addition to 

improve the power factor of the system network. Simulation results are shown and 

discussed in proceeding section. 

5.4.3.1 Simulation Results & Discussions 

 

Figure 5.34 shows the unbalanced and distorted supply voltages. 

 

Figure 5.34 shows the source supply voltages and currents. Initially the currents were non-

sinusoidal and distorted. But when the active filters are connected to the system at 0.04 

second, these currents became sinusoidal. 

Figure 5.34 Source Supply Voltages and Currents 
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Figure 5.35 shows the active filter currents are exactly following the required reference 

currents.  

Figure 5.36 shows the reactive power after compensation. 

 

Figure 5.35 Active Filter Reference Currents 

Figure 5.36 Active and Reactive Power-After Active Filter 
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Perfectly in phase source voltage and currents are shown in figure 5.37 

Figure 5.38 shows THD before active filtering. 

 

 

Figure 5.38 Source Current THD Before Active Filtering 

Figure 5.37 Source Voltages and Currents of phase-a 
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Successful compensating of THD after active filtering is shown in figure 5.39  

Results shows that shunt active filter is working well for Industrial loads also. Its 

eliminating the harmonics from source supply and compensating the reactive power 

demand of the system. THD of the source current is improved from 11.41 an unacceptable 

limit to 3.12% an acceptable limit as per international standard. Load current and voltages 

are also in phase with improved power factor. Active filter current is also following the d-

q current requirements 

5.5 Industrial Distribution System with Larger Loads 

 

The proposed system is tested on a large industrial network [69]. 

Figure 5.39 Source Current THD After Active Filtering 
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Normally the shunt active filters are installed near the loads at the PCC point of common 

coupling to eliminate the harmonics and to supply the required harmonic current to the 

system which is normally demanded by the nonlinear loads from the source supply. Active 

filters are not installed in the substations to the entire distribution feeders but to the specific 

loads which are highly sensitive to the harmonic distortion and malfunctioning to these 

loads have serious security and economic impact. These are called special loads like data 

centers, microprocessor based loads and harmonic presence above allowable limits are 

highly undesirable for these kinds of loads. 

 

Single line diagram of the system under study is shown in fig.5.40 

A distribution transformer 11/0.380kV, Z-4% is connected to the utility, and is supplying 

power to industrial and domestic loads. Major industrial load considered for the system is 

Figure 5.40 Distribution System Under Study [69] 
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the resistance spot welder. Accumulative load considered is 110kW.The Resistance spot 

welding machine comprises the front-end diode rectifier for power conversion, IGBTs and 

medium frequency transformer which makes the input supply highly polluted with low 

order harmonics which have undesirable impacts on the power system. 

System network parameters are shown in table 5.5 

Table 5.5 Large Industrial System Network Parameters 

Parameters Symbols Values 

Distribution supply voltages  Vabc 380 V 

System frequency  f 60 Hz 

Current  Ia,Ib,Ic 250A, 272A,256A 

Power Demand-Active kW 110 

Power Demand-Reactive kVAR 45 

Harmonics-Current  THD-I 89.02% 

Power Factor  Pf 0.85 

5.6 Simulation Results & Discussion 

Source supply voltages and currents are shown in figure 5.41. 

Figure 5.41 Source Supply Voltages and Currents 
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Figure 5.42 shows the active filter actual voltage and currents 

 

Active filter reference currents are shown in the figure 5.43. 

Figure 5.42 Active Filter Voltages and Actual Currents 

Figure 5.43 Active Filter and Reference Currents 
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Source voltage and current are shown in figure 5.44 

Active and Reactive powers before active filtering are shown in figure 5.45 

 

Figure 5.44 Source Voltages and Currents of phase-a 

Figure 5.45 Active and Reactive Power-Before Active Filter 
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Figure 5.46 shows the reactive power compensation after active filtering. 

THD of source current before filtering is shown in figure 5.47  

 

Figure 5.46 Active and Reactive Power-After Active Filter 

Figure 5.47 Source Current THD Before Active Filtering 
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Source current THD after active filtering are shown in figure 5.48 

 

Results shows that shunt active filter is working well even for large Industrial loads also. 

Its eliminating the harmonics from source supply and compensating the reactive power 

demand of the system. THD of the source current is improved from 89.02% an 

unacceptable limit to 4.79% an acceptable limit as per international standard. Load current 

and voltages are also in phase with improved power factor. Active filter current is also 

following the d-q current requirements. Only thing we notice when we compare the results 

of active filtering for larger loads with those of smaller loads is that the settlement time is 

increasing with respect to the load. As the load is increasing, time required to make the 

current waveform sinusoidal, reference current following he d-q currents and power factor 

improvement time is increasing which is not alarming. It will not affect the system 

performance as still the filter is capable to eliminate the harmonics from the source supply 

well with in the international acceptable limits. 

Figure 5.48 Source Current THD After Active Filtering 
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5.7 Conclusion 

 

Results and discussion in 5.4 & 5.7 shows that proposed shunt active filters working 

efficiently in actual network conditions for not only commercial, residential and industrial 

loadings but also for larger industrial loads and are able to eliminate harmonics and 

successfully compensate the reactive power demand of the load from source. Shunt active 

filters not only reduce the THD level to acceptable limits but also reduce the individual 

harmonic magnitude. Also, reactive power of the system demanded by the load from the 

source is compensated. 

5.8 Summary of Results 

 

Results for application of shunt active filters for Residential, commercial and industrial 

sectors are shown and discussed in detail. Here is the summary of results shown in 

table.5.6. The proposed active filter is capable to reduce the THD from high percentage 

89.02 % to an acceptable limit of 4.79%. Power factor is also improved approaching to 

unity. 

Table 5.6 Result Summary 

Parameters 
Residential Feeder Commercial Feeder Industrial Feeder 

Before After Before After Before After 

THD-I 16.65% 4.23% 5.32% 3.44% 89.02% 4.79% 

Power 

Factor 
0.96 0.97 0.74 0.96 0.85 0.97 

Load-kW 12.7 11.3 110 



88 

 

 

6 CHAPTER 6 

CONCLUSION 

6.1 Conclusions  

 

Due to the extensive use of power electronics, harmonics are commonly observed which 

increased deterioration of general power systems voltage and current waveform and 

voltages at the point of common coupling PCC are no more sinusoidal. Ideally no system 

has balance and normal supply voltages with balance and clean load. Shunt active filters 

are implemented with synchronous frame of reference control theory to improve the power 

quality and mitigate harmonics from source supply. Improved active filter design with 

modified control theory is capable to mitigate harmonics even in the presence of distorted, 

unbalanced source supply and varying loads. Proposed active filters are tested with 

different system conditions and found working efficiently. 

Practical field study in domestic, commercial and industrial sectors was conducted to 

estimate the harmonics in actual working environment. Then shunt active filter model was 

tested with actual data and the results show that new active filter design is capable to 

perform in adverse system conditions. 
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6.2 Future Work 

 

Proposed active filter model shall be implemented in lab and tested with the actual power 

quality parameters. 

Also, KWH reduction should be monitored with the application of shunt active filters. If it 

does so, active filter can play a vital role in energy reservation. 
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