Wavelet Methods For Solving Self-Adjoint Boundary Value Problems

Wavelet Methods For Solving Self-Adjoint Boundary Value Problems. PhD thesis, King Fahd University of Petroleum and Minerals.

[img]
Preview
PDF (Wavelet Methods For Solving Self-Adjoint Boundary Value Problems)
Ahmed_Ghunaim_Dissertation.pdf - Accepted Version

Download (1MB) | Preview

Arabic Abstract

درسنا استخدام المويجات لحل مسائل القيمة الحدية ذاتية القرين من رتب أعلى. تم اقتراح طريقة تقريب عددي جديدة لحل مسائل القيمة الحدية ذاتية القرين العامة. أسسنا طريقة تعتمد على تحويل المويجة المتجهي السريع بغرض تقليل رقم التكييف الخاص بنوع محدد من المعادلات التفاضلية من الرتبة الرابعة. تم تعميم طريقة المويجات إلى المعادلات التفاضلية الجزئية الناقصية من رتب أعلى. تم تطبيق تكييف المويجات المسبق من أجل أمثلة الانحدار المرافق لكسور رايلي المستخدمة في حل مسألة القيمة الذاتية المعممة ومن ثم استخدمنا هذه الفكرة لمحاكاة اكتشاف التغييرات المفاجئة على معاملات نموذج معادلة تفاضلية.

English Abstract

Wavelet methods for solving higher order self-adjoint boundary value problems were investigated. A novel method to numerically approximate solutions for general self-adjoint problems was proposed. A method based on vector valued fast wavelet transform to reduce the condition number of a specific class of fourth order differential equations was established. Wavelet methods for elliptic partial differential equations in higher dimensions were investigated. Wavelet preconditioning for the conjugate gradient optimization of the Rayleigh quotient were applied to solve the generalized eigenvalue problem Ax = lambda Mx which was used to detect sudden changes in the coefficients of a model differential equation.

Item Type: Thesis (PhD)
Subjects: Math
Department: College of Computing and Mathematics > Mathematics
Committee Advisor: El-Gebeily, Mohamed
Committee Members: Kassem, Mustapha and Fairag, Faisal and Yousuf, Muhammad and Khulief, Yehia
Depositing User: AHMED GHNEIM (g201307490)
Date Deposited: 02 Jan 2018 08:42
Last Modified: 30 Dec 2020 12:26
URI: http://eprints.kfupm.edu.sa/id/eprint/140564