

iii

© Mohammed Al-Asali

2017

iv

To

my parents

v

ACKNOWLEDGMENTS

I would like to thank King Fahd University of Petroleum and Minerals for offering me

the opportunity to pursue my graduate and undergraduate studies and for supporting this

research.

I would like to express my deep appreciation and heartfelt gratitude to my advisor Dr.

Muhammad Elrabaa for his invaluable guidance and infinite patience. He has helped me

improve my research and technical writing skills. I have learned a lot of valuable lessons

from him and I hope to continue working with him in future.

I would like to thank my committee members Dr. Marwan Abu-Amara, Prof. Sadiq Sait,

Dr. Aiman El-Maleh, and Dr. Tarek Helmy EL-Basuny for their valuable comments and

suggestions. I especially thank Dr. Marwan Abu-Amara for his valuable time and for his

reviews, support and guidance in the field of data security, and Prof. Sadiq Sait for his

comments and advices; I learnt a lot while working with him in the CCITR center.

I am thankful to my colleagues and friends: Amran Al-Aghbari, Feras Chikh Oughali,

Asim Al-Mekhlafy, Zaid alyafey, Abdullah Al-Sermy, Mohammed Yaqot and Abdullah

Alqubalee for their support and valuable information. I also thank Ken Eguro from

Microsoft research for his suggestions and comments and Jonathan Dawson for his time

in troubleshooting the Chips2.0 compiler and the Ethernet controller.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... X

LIST OF FIGURES .. XI

LIST OF ABBREVIATIONS ... XV

ABSTRACT .. XVIII

الرسالة ملخص ... XX

1 CHAPTER INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Problem Definition and Dissertation Contributions .. 2

1.3 Dissertation Outline .. 4

2 CHAPTER BACKGROUND .. 6

2.1 Overview of Cloud Architectures and Management .. 6

2.2 Overview of Attack Models and Insider Attacks in the Cloud .. 10

vii

 Cryptographic Attacks .. 10

 Network Attacks ... 12

 Physical Attacks .. 14

 Insider Attacks in the Cloud ... 16

 Cryptographic Algorithms for Cloud Computing .. 17

2.3 Trusted Computing ... 19

 Trusted Platform Module ... 20

 Intel Trusted Execution Technology ... 22

 Intel Software Guard Extensions (SGX) .. 23

2.4 Physically Unclonable Functions ... 27

2.5 Proxy Re-encryption.. 30

3 CHAPTER LITERATURE REVIEW ... 33

3.1 Protecting Users’ Data from Other Users .. 33

3.2 Protecting Users’ Data from Cloud Providers .. 36

3.3 Trusted Computing in the Cloud .. 40

 Intel Software Guard Extensions .. 43

3.4 Secure Processors ... 44

3.5 Summary and Discussion .. 46

4 CHAPTER SECURING CLIENT DATA IN THE CLOUD USING FPGAS 50

4.1 Introduction .. 51

viii

4.2 The Proposed Scheme for Securing Client Data in the Cloud ... 52

 Preliminary ... 53

 FPGA Static Logic .. 54

 The Overall Framework .. 55

 The Security Protocol ... 56

 The Masking Circuitry ... 60

 Security Analysis ... 62

4.3 Experimental Results .. 70

 Background on OpenStack ... 70

 Testbed Implementation .. 73

4.4 Client’s Circuit Intellectual Properties on the Cloud .. 92

4.5 Conclusions ... 94

5 CHAPTER SECURE DATA PROCESSING FOR CLOUD-INTEGRATED

INTERNET OF THINGS USING FPGAS ... 95

5.1 Introduction .. 96

5.2 Cloud-Integrated IoT Security Models ... 98

5.3 The Proposed Scheme ... 101

 Description of the Proposed Symmetric Proxy Re-encryption ... 104

 The Proposed Security Protocol ... 107

 Security Analysis ... 113

5.4 Results and Discussion .. 116

 FPGA Implementation .. 116

ix

 PRE Implementation ... 123

 Performance Evaluation ... 124

5.5 Conclusions ... 128

6 CHAPTER CONCLUSION AND FUTURE WORK .. 129

REFERENCES.. 131

APPENDICES .. 154

APPENDIX A: FPGA IMPLEMENTATION AND SIMULATION 154

a. Client Data Protection Scheme Components ... 154

b. IoT Scheme Implementation Related Components: .. 165

APPENDIX B: PROVERIF CODE FOR THE CLIENT SENSITIVE DATA PROTECTION

PROTOCOL ... 170

APPENDIX C: PROVERIF CODE FOR THE IOT SENSITIVE DATA PROTECTION

PROTOCOL ... 174

APPENDIX D: PYTHON SCRIPTS ... 176

VITAE ... 180

x

LIST OF TABLES

Table 1: Summery of SW approaches targeting data protection in the cloud 36

Table 2: Summery of existing secure processors .. 46

Table 3: Summery of existing approaches that can be utilized for data protection in

the cloud ... 49

Table 4: Attack types and our countermeasures ... 66

Table 5: Static Logic resource consumption. .. 84

Table 6: Boot time (in seconds) for different virtual machine sizes on the

implemented OpenStack cloud. ... 88

Table 7: The image processor resource utilization ... 89

Table 8: Performance comparison with Intel SGX ... 91

Table 9: Summery of countermeasure against most popular attacks 114

Table 10: Resource utilization of the Static Logic .. 119

Table 11: keys and hash values Examples .. 121

Table 12: FPGA resource usage by the PRE Logic. ... 123

xi

LIST OF FIGURES

Figure 1: Cloud computing architecture [191].. 7

Figure 2: Business model of cloud computing ... 8

Figure 3: Percentage of use of various encryption algorithms in the cloud...................... 18

Figure 4: Trusted platform proves to a remote data owner that it is communicating

with the right container [40] ... 23

Figure 5: Creating an enclave [41] .. 24

Figure 6: Copying enclave pages to the EPC [41] .. 25

Figure 7: Enclave instructions [41] ... 26

Figure 8: Code/data are encrypted outside the CPU package [41] 27

Figure 9: PUFs challenge response ... 28

Figure 10: Virtual TPM Architecture of [115]. ... 42

Figure 11: The abstracted architecture of the trusted extension device (TED) 42

Figure 12: The proposed FPGA structure and the components of the static logic.

Dotted lines represent outputs. ... 55

Figure 13: The proposed framework of the scheme. .. 56

Figure 14: The protocol sequence diagram. .. 59

Figure 15: A variant of the protocol. Double hashing is computed by the FPGA and

the client to avoid sending gb mod p by the TA. .. 60

Figure 16: The masking circuitry. ... 61

Figure 17: An example of producing an L-bits b from n-bits PUF-RN and M; n in

this example equals 8 and L equals 4. .. 61

Figure 18: FPGA impersonation prevention. .. 63

Figure 19: Man-in-the-middle attack prevention. ... 64

file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687738
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687749
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687749

xii

Figure 20: A masking circuitry resistant to physical attacks .. 65

Figure 21: OpenStack Architecture shows the seven main components of OpenStack

and communication between them [28] ... 72

Figure 22: Xilinx Virtex 6 XC6VLX550T board ... 75

Figure 23: The implemented OpenStack cloud. (a) OpenStack Cloud implementation

logical architecture, (b) OpenStack Cloud implementation physical

implementation. .. 77

Figure 24: Receiving packets FSM ... 79

Figure 25: Sending packets FSM ... 80

Figure 26: Main FSM.. 81

Figure 27: The expected behavior of the Static Logic. ... 85

Figure 28: Chipscope screenshots showing the various signals of the implemented

Static Logic. (a) Receiving M, ga mod p and producing the hash value, (b)

gb mod p generation, (c) Receiving the encrypted partial configuration.

The output cursor points to the beginning of the configuration

(665599AA). .. 86

Figure 29: The user C# interface showing the message exchanged during session

establishment. ... 88

Figure 30: The framework for protecting IPs in the cloud ... 93

Figure 31: Microsoft's Internet of Things security architecture [172] 100

Figure 32: The framework of the proposed scheme. .. 104

Figure 33: The proposed symmetric proxy re-encryption .. 107

Figure 34: The sequence diagram of the protocol. ... 111

Figure 35: Main FSM of the IoT scheme .. 117

Figure 36: Chipscope screenshots showing the operations of the implemented Static

Logic on the FPGA. (a) Receiving M, ga mod p, (b) Producing b and the

file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687761
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687762
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687763
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687770
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687771
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687772
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687773
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687773

xiii

hash values, (c) Producing gb mod p, gab mod p, encrypted b and

receiving the encrypted data and decrypting it. ... 122

Figure 37: Chipscope image showing the operations of the PRE 124

Figure 38: Time comparison of the PRE FPGA implementation and the SW PRE. In

the SW implementation, the data is read from the memory and SW-HDD

means that the data is read from the disk. .. 126

Figure 39: The speedup obtained by our PRE FPGA implementation over PRE SW

implementation. The data is read from the memory. 126

Figure 40: The time of the python PRE over 1000 runs. The data is read from the

memory. ... 127

Figure 41: The speedup obtained by our PRE FPGA implementation over PRE SW

implementation. The data is read from the disk. .. 127

Figure 42: The time of the python PRE over 1000 runs. The data is read from the

disk. .. 128

Figure A 1: Top module inputs/outputs ... 154

Figure A 2: Implementation of the design placed in Xilinx Virtex 6 device. 155

Figure A 3: Simulation of the top module of the design... 155

Figure A 4: Ethernet controller block ... 156

Figure A 5: Ethernet controller simulation (1) transmitting a packet (2) receiving a

packet. .. 157

Figure A 6: Main FSM module ... 158

Figure A 7: Protocol block and inputs/outputs ... 159

Figure A 8: Image processor module .. 159

Figure A 9: AES module... 160

Figure A 10: SHA3 module ... 161

Figure A 11: The operations of SHA3 .. 161

file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687773
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687773
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah_final.docx%23_Toc492687774
file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah.docx%23_Toc491994772

xiv

Figure A 12: The output of SHA3 when out_ready goes high 161

Figure A 13: The result of SHA3 .. 162

Figure A 14: Modular exponentiation module.. 162

Figure A 15: The operations of modexp, producing 3b mod p (b is exp and p is mod

in the figure) ... 163

Figure A 16: The operations of modexp, producing 3ab mod p 163

Figure A 17: Masking circuitry module.. 163

Figure A 18: The operations of the masking circuitry .. 163

Figure A 19: Simplified view of the top components ... 164

Figure A 20: Main FSM module ... 165

Figure A 21: Protocol module... 166

Figure A 22: Modular multiplication module ... 167

Figure A 23: Encrypting and decrypting data; all other values are also shown such as

M, b, etc.. 167

Figure A 24: The value of the encrypted data zoomed ... 168

Figure A 25: The value of decrypted data zoomed ... 168

Figure A 26: The operations of modexp, producing the multiplicative modular

inverse of b ... 169

Figure A 27: The operations of the modular multiplication ... 169

file:///C:/Users/asal/Dropbox/PhD_writeup/final/Asolah.docx%23_Toc491994779

xv

LIST OF ABBREVIATIONS

AES : Advanced Encryption Standard

AIK : Attestation Identity Keys

ASIC : Application-Specific Integrated Circuit

BRAM : Block RAM

CA : Certificate Authority

CLB : Configurable Logic Block

CoT : Chain of Trust

CP : Cloud Provider

DCM : Digital Clock Manager

DH : Diffie–Hellman–Merkle Key Exchange

DMA : Direct Memory Access

DSP : Digital Signal Processing

EK : Endorsement Key

EPC : Enclave page cache

EPCM : Enclave page cache metadata

FHE : Fully Homomorphic Encryption

FIPS : The Federal Information Processing Standard

FPGA : Field Programmable Gate Arrays

FV : FPGA Vendor

HDL : Hardware Description Language

HMAC : Hashed Message Authentication Code

xvi

IaaS : Infrastructure as a Service

IC : Integrated Circuit

ICAP : Internal Configuration Access Port

ICMP : Internet Control Message Protocol

IO : Input/Output

IoT : Internet of Things

IP : Intellectual Property

ITRS : International Technology Roadmap for Semiconductors

KPA : Known-Plaintext Attacks

KVM : Kernel-based Virtual Machine

DRTM : Dynamic Root of Trust Measurement

LUTs : Lookup Tables

MAC : Message Authentication Code

MI : Malicious Insider

MiM : Man-in-the-Middle

MODEXP : Modular Exponentiation Block

NVM : Non-Volatile Memory

OEM : Original Equipment Manufacturer

OTP : One-Time-Programmable

PaaS : Platform as a Service

PCR : Platform Configuration Registers

PFS : Perfect Forward Secrecy

PRE : Proxy Re-Encryption

xvii

PRM : Processor Reserved Memory

PUFs : Physically Unclonable Functions

ROT : Root of Trust

SaaS : Software as a Service

SGX : Software Guard Extensions

SHA : Secure Hash Algorithm

ACM : Authenticated Code Module

SMM : System Management Mode

SPRE : Symmetric Proxy Re-Encryption

SRK : Storage Root Key

SRTM : Static Root of Trust for Measurement

SSL : Secure Socket Layer

TA : Trusted Authority

TC : Trusted Computing

TCCP : Trusted Cloud Computing Platform

TCG : Trusted Computing Group

TED : Trusted Extension Device

TPM : Trusted Platform Module

TXT : Trusted Execution Technology

User : a person who uses the on-cloud FPGA. It is interchangeable with client,

and client application.

Verilog : a hardware description language

 VHSIC : VHSIC:Very High Speed Integrated Circuit

xviii

ABSTRACT

Full Name : Mohammed Abdulqaher Ahmed Al-Asali

Thesis Title : Hardware-Based Solutions for Securing Users’ Data in Public Clouds

Major Field : Computer Science and Engineering

Date of Degree : May 2017

Traditional software-based protection methods are insecure against cloud

operators/service providers related attacks. This is due to the fact that cloud service

providers physically own the hardware that hosts users’ data and computation. Therefore,

cloud computing is not achieving maximum growth since sensitive data are not going to

be processed in the cloud. A hardware solution is the most valid method that would

possibly tackle the problem and expand the use of cloud computing paradigm. In the

literature, protecting users’ data in the cloud has been an active research area. Significant

progress has been made in securing clients’ data in the cloud in the last few years.

However, existing research either is mostly concerned with traditional attacks that are not

targeting the new emerging threat (i.e. securing data from cloud providers and other users

in the cloud) or lacks the practicality in the multi-tenant environment or suffering from

security weaknesses and large performance overhead. In this dissertation, we propose

FPGA-based solutions for securing users’ data from cloud providers and other various

kinds of attacks. The proposed solutions are suitable for the multi-tenant nature of the

cloud and are practical in terms of cost and performance. The proposed solutions in this

xix

dissertation can target two primary areas: (1) securing sensitive data that are owned by a

client who performs the computation on his data in the cloud, (2) securing sensitive data

that are aggregated from multiple sources and processed in the cloud such as internet of

things (IoT) data that is collected from IoT devices. We propose a secure way to

aggregate and process such data in the cloud and give its software and FPGA

implementation details. The results show that the proposed solutions integrate well with

other cloud resources and can boot 15 times faster than booting a medium-size

conventional virtual machine (VM) on the same cloud and their performance is

comparable to a software processing plaintext data. For secure IoT data processing in the

cloud, the results also show that our proposed solution is efficient in terms of resources

and performance.

xx

 ملخص الرسالة

 محمد عبدالقاهر احمد العسلي :الاسم الكامل

 العامةحلول هاردوير لحماية بيانات المستخدم في الحوسبة السحابية : عنوان الرسالة

 علوم وهندسة الحاسب الآلي التخصص:

 2017 مايو :العلميةتاريخ الدرجة

طرق الحماية التقليدية القائمة على البرمجيات غير آمنة ضد مشغلي السحابة والهجمات ذات الصلة. ويرجع ذلك إلى حقيقة أن

والتي تقوم باداء العمليات عليها. ولذلك، فإن مقدمي الخدمات السحابية يمتلكون الأجهزة التي تستضيف بيانات المستخدمين

الحوسبة السحابية لا تحقق أقصى قدر من النمو حيث ان البيانات الحساسة لن يتم وضعها في السحابة الالكترونية. استخدام

ان حماية بيانات الهاردوير هو الأسلوب الأكثر فعالية والذي من المحتمل أن يعالج المشكلة ويوسع استخدام الحوسبة السحابية.

المستخدمين في السحابة مجالا بحثيا نشطا وقد أحرز تقدم كبير في تأمين بيانات العملاء في السحابة في السنوات القليلة

الماضية. ومع ذلك، فإن البحوث الحالية تتعلق في الغالب بالهجمات التقليدية التي لا تستهدف التهديد الجديد الناشئ)أي تأمين

من مشغلي الخدمات السحابية وغيرهم من المستخدمين في السحابة(أو تفتقر إلى التطبيق العملي في بيئة السحابة البيانات

 يطروحة، نقترح الحلول القائمة علالمتعددة أو تعاني من نقاط ضعف أمنية او اداء ضعيف يجعلها غير عملية. في هذه الأ

FPGA ابة وغيرها من أنواع مختلفة من الهجمات. الحلول المقترحة هي مناسبة لحماية بيانات المستخدمين من مشغلي السح

لطبيعة العمليات في السحابة وهي عملية من حيث التكلفة والأداء. يمكن للحلول المقترحة في هذه الرسالة أن تستهدف مجالين

(تأمين 2لعمليات على بياناته في السحابة،)(تأمين البيانات الحساسة التي يملكها العميل الذي يقوم بإجراء ا1رئيسيين هما:)

البيانات الحساسة التي يتم تجميعها من مصادر متعددة ومعالجتها في السحابة مثل بيانات إنترنت الأشياء التي يتم جمعها من

 فيذ الطريقة فيأجهزة مختلفة. واقترحنا طريقة آمنة لتجميع ومعالجة هذه البيانات في السحابة وفصلنا برامجها و تفاصيل تن

FPGA مرة 15وأظهرت النتائج أن الحلول المقترحة تتكامل بشكل جيد مع موارد السحابة الأخرى ويمكن أن تبدأ أسرع ب

مقارنة بالبرمجيات الافتراضية التقليدية متوسطة الحجم على نفس السحابة وأداءها يمكن مقارنته مع معالجة البيانات الغير

معالجة بيانات إنترنت الاشياء في السحابة، أظهرت النتائج أيضا أن حلنا المقترخ فعال من حيث استهلاك مشفرة. ولتحسين

 . الموارد والاداء.

1

1 CHAPTER

INTRODUCTION

1.1 Motivation

Cloud computing is an emerging paradigm that has many benefits for users and

enterprises. Reduction of capital costs, which is one of the essential benefits of cloud

computing, makes cloud computing the ultimate choice for enterprises. However, cloud

security is a major concern that makes cloud computing not appropriate for applications

with sensitive data such as financial data processing, medical data and sensitive internet

of things (IoT) data. Existing solutions either focus on protecting users' data against

external or peer attacks only or lack a more robust attack model. There is an implied

assumption that the cloud operator is a trusted entity. This leads many organizations with

sensitive data not to process such data in the cloud.

Current cloud infrastructures are not fully secured since the cloud provider has access to

users’ data on the cloud servers. According to ESG Insider Threats Survey [1], insider

attacks, which is carried by a staff in the cloud company, was ranked at third most

dangerous attacks of the cloud. Also, 66% of all organizations are very vulnerable to

insider attacks methods [1]. Furthermore, 53% of respondents of US State of Cybercrime

Survey confessed that damages caused by the insider attacks affect their business more

than outsider attacks [2]. For example, Ristenpart et al. outlines how a malicious insider

2

can extract RSA and AES keys in Amazon’s cloud by exploiting shared caches [3].

Another case occurred at Twitter when many companies documents were revealed by

Twitter administrator’s account that was hacked by a malicious insider [4]. Therefore,

there is a need for an effective solution that could build the trust between cloud service

providers and the clients so that enterprises take advantage of the cloud to reduce their

capital cost and economies of scale.

1.2 Problem Definition and Dissertation Contributions

The dissertation addresses the problem of protecting sensitive data processing in the

cloud. The challenge of the problem is that the sensitive data need to be processed in a

hardware resource owned by the cloud such that no one, even the hardware resource

owner (i.e. the cloud provider), can disclose it while processing. The client outsources the

sensitive data to be processed by hardware resources owned by the cloud, such as field-

programmable gate arrays (FPGAs), and under the cloud premises, uses software

provided by the cloud to authenticate the hardware resource, securely sends the FPGA

application that is owned (partially or totally) by the client or another party to the cloud

and securely outsource the sensitive data. Securing sensitive data processing in the cloud

is even more challenging when the data is collected from multiple sources (i.e. IoT

devices) that are deployed in locations under the premises of some party and are owned

by the client or another party.

In this dissertation, FPGAs are utilized to secure sensitive data processing in the cloud.

FPGAs can be integrated with other cloud HW resources to form flexible, scalable,

3

independent and secure compute resources within the cloud infrastructure. Therefore,

clients can safely perform the computation of their sensitive data in the cloud in a secure

manner while utilizing the benefits of the cloud and the fast and secure computation of

the FPGAs. Sensitive data can be farmed out from the untrusted cloud servers to FPGAs,

which are configured by the client’s application, for secure processing. Compared to

conventional software-based systems, the attack surface is substantially smaller and

better defined. This is because FPGA configuration does not require the involvement of

operating systems, drivers or compilers, making them suitable to build security solution

under more robust attack models and stronger security guarantees. Further, FPGAs can

build more sophisticated solutions for modern machine-to-machine communication, IoT

data processing and big data applications [5]. As utilizing FPGAs for data protection in

the cloud is either limited or unsecured in the literature, there is a substantial need for an

efficient and secure FPGA schemes to protect sensitive data in the cloud. Other CPU

based attempts to solve this problem are not fully secure, not suitable for on-cloud IoT

data protection and suffer from large overhead that make them impractical for medium

and big data secure processing.

Hence, the dissertation has the following main contributions to address the problem of

securely processing sensitive data in the cloud:

• An efficient and practical FPGA-based scheme for securing client sensitive data

processing in the cloud from various kinds of attacks (including malicious cloud

providers) which has a very little area overhead and can be efficiently integrated with

other cloud resources.

4

• A scheme for protecting third party’s intellectual properties (IPs) in the cloud. The

scheme facilitates the use of IPs from third parties in the client applications who is

not necessarily a hardware expert.

• A security scheme for securing IoT sensitive data processing in the cloud and a

symmetric proxy re-encryption scheme for IoT data on-cloud transformation. The

scheme is suitable for publish/subscribe systems. It was evaluated and a complete

FPGA prototype for the scheme and the proxy re-encryption is presented in this

dissertation.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter two presents a background in topics related to the contributions of this

dissertation including cloud computing architectures, attack models and insider attacks in

the cloud, an overview on trust in modern platforms, physically unclonable functions and

proxy re-encryption. Chapter three reviews cloud computing security directions;

including protecting users’ data from other tenants and protecting users’ data from the

cloud provider. Chapter three also provides a literature review on the current research and

products of trusted computing and secure processors. Chapter four presents an overview

of the proposed security scheme for securing client data in the cloud. It also covers the

FPGA implementation details and performance evaluation of our scheme. Chapter five

covers the proposed scheme for IoT data protection in the cloud along with a symmetric

proxy re-encryption to provide secure data transformation in the cloud environment. It

5

also describes the existing IoT business models and presents the experimental results of

our proposed cloud-integrated IoT scheme. Chapter five also discusses the performance

results of the software and hardware implementations of our symmetric proxy re-

encryption. Finally, the dissertation is concluded in chapter six.

6

2 CHAPTER

BACKGROUND

In this chapter, we give an overview of architectures and management aspects in recent

cloud platforms. We will then discuss attack models and demonstrate how a malicious

insider could utilize these architectures to carry out attacks to users’ virtual machines and

data. Further, we will provide an overview of topics that are related to this dissertation

such as trusted computing, physically unclonable functions and proxy re-encryption.

2.1 Overview of Cloud Architectures and Management

The architecture of a cloud computing can roughly be categorized into four layers: the

application layer, the platform layer, the virtualization layer and the hardware layer as

shown in Figure 1.

The application layer: this layer is at the top of the hierarchy and consists of cloud

applications. Cloud applications have the interesting characteristics of availability, lower

operating cost compared to conventional applications, and automatic-scaling feature,

which maintains applications’ availability and allows an application to scale its capacity

up and down to satisfy its needs.

The platform layer: operating systems and software framework lie in this layer. The

goal of this layer is to make the deployment of the applications into the virtual machines

7

Figure 1: Cloud computing architecture [191]

simpler. For example, Microsoft Azure works at the platform layer to provide support for

storage, and database for applications in the application layer.

The virtualization layer: Also known as the infrastructure layer, assigns computing

resources and storage to the target virtual machine by dividing the hardware resources

using virtualization technologies (called hypervisors) such as Xen [6] and KVM [7]. The

virtualization layer is an important layer in the cloud computing architecture because it

involves many recent topics related to the overall design of the cloud, such as dynamic

resource allocation. Indeed, this layer is essential in terms of security of the cloud. As it is

just above the hardware layer, any security solution would be brought down to the

hardware layer.

The hardware layer: the hardware layer is responsible for managing the hardware

resources of the cloud, such as physical servers, power, cooling systems, routers, and

switches. This layer is implemented as what is called data centers in practice. The data

center consists of thousands of servers organized in racks. These racks are interconnected

through switches and routers.

8

Cloud computing architecture is modular and every architectural layer is loosely coupled

with the layers above or below. This modularity allows layers to change separately

similar to the design of the OSI model for network protocols. Conceptually, each layer

can be seen as a client of the layer below and each layer can be implemented as a service

to the above layer. Though, clouds offer services, in practice, they are gathered into three

categories: infrastructure as a service (IaaS), platform as a service (PaaS), and software as

a service (SaaS). IaaS denotes the provisioning of resources infrastructure. PaaS is for

providing operating systems and software development frameworks. SaaS provides

applications over the Internet. Users interact with the cloud using the web interface,

which shows the SaaS. Then, the requests from the users are processed and deployed by

PaaS and IaaS [8]. The business model of cloud computing is shown in Figure 2.

Figure 2: Business model of cloud computing

End User

Service Provider (SaaS)

Infrastructure Provider (IaaS, PaaS)

Web Interface

Utility Computing

9

Mostly, the job of cloud providers is to manage the hardware resources, i.e. compute,

network and storage resources that form the infrastructure of the cloud. Management of

these resources can be classified into seven areas [9]:

• Global scheduling of virtualized resources: refers to the system-wide monitoring

of virtual resources and the underline hardware resources consistent with cloud

providers goals.

• Resource utilization estimation: This is necessary for both the cloud provider and

the client because it increases the utilization of the physical and virtualized

resources.

• Resource pricing and profit maximization: This is due to the nature of pricing

used in the cloud. As the resource consumption is decreased, the cost is also

decreased and vice versa. Hence, resource pricing needs to be managed in a

proper way.

• Local scheduling of cloud resources: This type of scheduling is similar to

operating system scheduler. It deals with one server, hosting multiple virtual

machines, and schedules requests to the physical resources of the server such as

CPU and memory.

• Application scaling and provisioning: To increase the performance of the service

for large applications.

• Workload management: This is due to the fact the cloud user might be a business

enterprise and hence the workload request from the enterprise users have to meet

certain requirements from cloud user.

• Cloud management systems: For feedback of resources to the cloud user.

10

2.2 Overview of Attack Models and Insider Attacks in the Cloud

This section discusses attack models, which are classified into cryptographic attacks,

network attacks and physical attacks, and cloud insider attacks as well as cloud

cryptographic algorithms.

 Cryptographic Attacks

Known-plaintext attack (KPA) is a type of attack which assumes that the attacker has the

ciphertext and at least a limited number of samples of the corresponding plaintext. An

example of such attack is the use of the encrypted bitstream and the unencrypted

bitstream to extract the key embedded in the Xilinx FPGAs [10].

In Chosen-plaintext attack (CPA), the attacker specifies an arbitrary input plaintext and

forces the encryption engine to produce the resulted ciphertext. Using the plaintext and

the corresponding ciphertext, the attacker can infer information about the encryption

algorithm and the key used for encryption. As an example, consider a file storage system

that uses the same key to encrypt/decrypt users’ files. The attacker can encrypt a file and

obtain the corresponding encrypted file. Using these files, the attacker can extract the key

used for encryption and use it to decrypt other users’ files.

There are two types of chosen-plaintext attack, adaptive chosen-plaintext attack and batch

chosen-plaintext attack. In the adaptive chosen-plaintext attack, the attacker can encrypt

more plaintexts and obtain the ciphertexts of these plaintexts. The attacker has the

opportunity to analyze the previous pairs before choosing a new plaintext as an input to

11

the encryption engine. In batch chosen-plaintext attack, the attacker encrypts all of the

plaintext before obtaining any ciphertext.

To differentiate between KPA and CPA, if the attacker is able to obtain a pair of plaintext

and ciphertext, but not any specific pairs, then the attack is KPA and if the attacker is

required to give input plaintext and obtain the corresponding ciphertext, then the attack is

CPA. Note that KPA is a special kind of CPA.

Ciphertext-only attack (COA) is a type of attacks in which it is assumed that the attacker

can obtain the ciphertext only and the plaintext is not accessible by the attacker. COA can

happen most likely in real life cryptanalysis. However, it is the weakest attack because

the attacker lacks information and only the ciphertext is available for him. Therefore,

COA is typically the hardest to design and at the same time the easiest to implement.

Exhaustive key search or brute force attack is an example of COA, in which all keys are

tried by the attacker until the correct key is found. The success of COA depends on the

length of the key and does not depend only on the cipher strength or the type of the cipher

being used.

Chosen-ciphertext attack (CCA) is the opposite of CPA and the attacker chooses a

ciphertext and obtains the corresponding plaintexts. This enables the attacker to

investigate different portions of the plaintext state space and may enable him to find

vulnerabilities. Types of CCA include lunchtime attack and adaptive chosen-ciphertext

attack. The attacker in lunchtime attack have access to a limited ciphertexts and plaintexts

pairs. The attacker in adaptive chosen-ciphertext attack can pick a sequence of

ciphertexts to be decrypted and obtains the ciphertexts. For further steps, he has the

chance to learn from the previous results and choose more effective next ciphertexts.

12

The open key attack model assumes that the attacker has some knowledge about the key

used for encryption/decryption. Related-key attack is an attack of such model and the

attacker uses a key that is related mathematically to the target key to encrypt the plaintext

and access the ciphertext. Known-key distinguishing attack is another type of open key

model and the attacker chooses a key and study the cipher and distinguishes between a

random data and a ciphertext.

 Network Attacks

Network attacks include wiretapping, port scan, idle scan, man-in-the-middle,

impersonation, replay, ARP poisoning, ping flood, ping of death and Smurf attacks.

Wiretapping is a clear example of network attacks and is effective when the data sent is

unencrypted. In port scan attack, the attacker sends packets to the victim machine while

varying the port in every packet in attempt to know which ports are open and to identify

the operating system and the services in the victim machine. Idle scan attack is a kind of

port scan attack on TCP ports and the attacker sends packets to TCP ports using

impersonated machines (i.e. machines with their identity stolen) to identify and learn the

services on the victim machine.

ARP (address resolution protocol) is used to identify the MAC address of the target

machine. The sender machine broadcasts a message over the network containing the IP

address of the target machine. The target machine sends a reply containing its MAC

address. ARP poisoning attack occurs when the attacker replaces the MAC address in the

reply message by his own MAC address; causing the sender machine to send the traffic

13

through the attacker machine. This attack is possible in local area networks that utilize

ARP and can be used to launch other attacks such as denial of service attacks [11].

Ping flood is a type of denial of service attack in which an attacker sends ping packets to

the victim machine as fast as possible without waiting for replies. The attack is more

effective when the bandwidth of the attacker is more than the bandwidth of the victim.

Ping of death happens when the attacker sends a ping packet that is larger than the bytes

allowed by the IP protocol. The packet gets fragmented, sent and reassembled in the

victim machine. When reassembled, buffer overflow occurs which causes system crash

and allows injection of malicious code [12].

Internet Control Message Protocol (ICMP) is part of the internet protocol suite and is

used to send control messages such as error and ping messages. The attacker in Smurf

attack spoofs the IP address of the victim machine and broadcasts large ICMP messages

to the network using this IP address. If number of machines in the network is large, the

responses from these machines will flood the victim machine; causing denial of service

[13].

14

 Physical Attacks

Physical attacks are divided into invasive, non-invasive and semi-invasive attacks [14].

Invasive attacks are hardware attacks that require manipulation of the physical properties

of the chip. Non-invasive attacks are similar to invasive attacks but do not damage the

chip package. Semi-invasive attacks are relatively new type of attacks that require

depackaging the chip, similar to invasive attacks, but do not create contacts with internal

chip lines.

Invasive attacks require expensive equipment, knowledge and time. A well-known attack

of this type is miroprobing; where a needle is attached onto the internal wires of the chip

to extract the chip secrets. Non-invasive attacks require moderate level of equipment and

knowledge to implement. Non-invasive attacks include side-channel, brute force, fault

injection and data remanence attacks [15].

Side-channel attack is any attack that use data about the encryption or decryption process

to break the system such as using the noise created by encryption engines or measuring

the time of various computations. Side channel attack includes, generally, cache, timing,

power analysis and electromagnetic attacks. Cache attack is based on monitoring cache

accesses made by the user in a shared environment such as cloud servers. Timing attack

is based on measuring the time it takes to do the operation such as measuring how many

cycles a memory access take to identify whether the access is read or write. Power

analysis attack makes use of power consumption that is varied by the hardware during

computation. Power analysis attacks is classified into simple power analysis (SPA) and

differential power analysis (DPA). SPA obtains the information directly from the power

consumption of the device (current versus time), while DPA obtains the information from

15

power variations by observing differences between traces of different operations and

statistical analysis is applied to obtain the secrets from noisy measurements that are

difficult to analyze using SPA. Electromagnetic attack is based on electromagnetic

radiation, which can provide information about plaintexts and may directly disclose the

plaintext and other information. Fault injection can be used to exploit the erroneous result

or unexpected behavior of the chip to extract its secrets. Data remanence is the sensitive

data that is read by the attacker but is supposed to be erased [15].

Semi-invasive attacks use ultraviolet (UV) light, X-rays and other light sources to disturb

chip operations and extract sensitive information. Attacks of this type include UV, optical

fault injection, and optical side-channel Attack [16].

There are a number of attacks that are targeting FPGAs such as Reverse Engineering,

Tampering, Cloning, Counterfeiting, and Crippling attacks. Reverse Engineering can

cause bypassing security measures of the configuration. An adversary can study the

configuration blocks and replace security components by his own malicious components

in order to disclose configuration secrets and sensitive data. Tampering is a special type

of reverse engineering, where the adversary modifies the configuration to gain access to

its secret keys or interrupt its functionality or disclose its data. Hardware Trojans are a

clear example of tampering [17]. Cloning attack occurs when an exact copy of the FPGA

configuration is created by an adversary. Counterfeiting attack is an extension to the

cloning attack and it occurs when all FPGAs of the same family and size are identical.

Thus, a configuration made for one device can be used with another. This can be easily

done in the cloud environment [18]. The details of the design do not need to be known by

the attacker and the configuration is just regarded as a black-box reducing the effort of

16

compromising the FPGA to insert a snooping circuitry to disclose FPGA secrets and

therefore disclose users’ data. Crippling attacks are similar to denial of service attacks on

networked servers. The attacker re-configures the FPGA with an invalid configuration to

bring the FPGA system offline [19].

 Insider Attacks in the Cloud

How a malicious insider (MI), who could be an employee in the cloud, could carry

attacks to users data of the cloud was reported by many survey publications, such as

[20][21]. An MI could utilize the system to carry out various kinds of attacks depending

on his position in the cloud. An administrator who can manage client’s virtual machines

(VMs), for instance, can do anything to the VM he is managing. Similarly, an employee

working in cloud hypervisors might inject a code to monitor all the activities of client’s

VMs on the underlying hardware [20]. Memory Dump Scanning, Templates Poisoning

and Snapshot Cracking are examples of exploiting client’s information in the cloud [21].

Dumping the memory to get sensitive information is called Memory Dump Scanning

attack; the MI can easily dump the memory to a flash or external storage. Although the

retrieved data would be large and sensitive data is concealed in hundreds of megabytes of

data, the MI usually use techniques such as social engineering, which count on human

communication and involves tricking them into breaking security measures, to extract the

critical data.

Cloud providers usually provide templates for the virtual machines images to be created

from. The default templates and virtual machines that are deployed from an infected

17

template could be downloaded and analyzed by an employee; passively revealing VM

owners’ sensitive data. This attack is relevant to many platforms and is also applicable to

OpenStack which is the top open source cloud computing technology in 2014 [22].

Cloud providers manage the users and passwords of the VMs in a normal manner,

assuming trust of their staff. Not all VMs disks are encrypted due to many difficulties

facing disk encryption such as sharing resources with other tenants [23]. If an MI is a VM

administrator, he can easily make an attack on that VM by simply reading all the required

information from the unencrypted information.

 Cryptographic Algorithms for Cloud Computing

This section reviews cryptographic algorithms used or preferred in the cloud. According

to Soofi et al. [24], most approaches are based on RSA encryption. 60% out of the 30%

RSA encryption techniques results are validated by experiments. Figure 3 below depicts

the use of encryption algorithms in the cloud. Patwal and Mittal [25] also reported that

RSA, DES and AES are widely implemented in the cloud.

18

Figure 3: Percentage of use of various encryption algorithms in the cloud

An algorithm called Diffie–Hellman–Merkle key exchange (DH) was invented by Ralph

Merkle for sharing a key between two parties over unsecured channels [26], [27]. The

secret key can then be used as a session key to encrypt/decrypt the data the two parties

want to send/receive. The algorithm works as follows:

Let the two parties be A and B.

A and B agree on a prime number p and base g (which is normally a small number such

as 2).

A chooses an integer a and sends B ga mod p.

B chooses an integer b and sends A gb mod p.

A computes K = (gb mod p)a mod p

B computes K = (ga mod p)b mod p

A and B now share the secret K.

19

All values except a and b are non-secret and can be sent between the two parties. For

example, if A and B agrees on p to be 23 and g to be 5, then A chooses a = 6 and sends B

the value 8 and B chooses b = 15 and sends A the value 19. K then will be 196 mod 23

=815 mod 23 = 2 which is the secret they now share. Ephemeral Diffie-Hellman can be

used such that every time A and B share a secret, different shared key is created enabling

what is called perfect forward secrecy, which means that even if the private keys are

compromised, past communications are still secure.

Leading cloud computing platforms use the DH such as OpenStack [28], which uses this

algorithm for key sharing between its components. The DH is one of the best protocols of

sharing keys between parties and in this dissertation, we make use of its basic principle

for key sharing between FPGAs and other parties because of its lightweight computation

which is suitable for cloud computing and IoT.

2.3 Trusted Computing

The Trusted Computing Group had developed the Trusted Computing (TC) technology.

TC is an attempt to ensure that computers will behave as expected and this behavior

would be enforced by hardware and software. The enforcement is achieved by including

a special chip integrated with computers’ hardware, which includes unique, inaccessible

by other components of the system, encryption keys. The concept of trusted computing

leads to the fact that the hardware of the system is theoretically secure from all kinds of

attacks, including its owner [29].

20

Trusted computing is implemented in practice as a hardware component attached to other

hardware components of computer assets, in addition to software drivers. Trusted

computing witnessed a remarkable success in personal computers. Unfortunately, it is in

its early stages in cloud computing because the intention of trusted computing was not

targeting virtualization [30]. The most common and most widely used hardware

component is the trusted platform module (TPM). Hence, we will consider, in the

following subsections, the TPM in our discussion and will discuss the implications of

using the TPM in the cloud paradigm.

 Trusted Platform Module

The Trusted Platform Module (TPM) is a special chip issued by the Trusted Computing

Group (TCG) to secure hardware by embedding cryptographic keys into devices. The

TPM was developed to provide device identification, authentication, measurement,

encryption, and device integrity. Software can use the TPM to authenticate hardware

devices and the TPM is capable of monitoring and reporting configuration state by using

the main bus of the computer from the point of computer power-up.

A TPM has at least 16 Platform Configuration Registers (PCR registers), which are

initialized to a known value when the machine is rebooted. The values of these registers

cannot be arbitrarily set. The values of the PCR registers can be retrieved from the TPM

by issuing the TPM Quote operation.

The TPM is mainly used to create a foundation of trust of the software installed in the

host where the device is present. A process called Static Root of Trust for Measurement

21

(SRTM) performs a chain of measurements, starting when the host platform is reset, of

the components and configuration data involved in the system boot while the Dynamic

Root of Trust Measurement (DRTM) is the process of taking the measurements while the

system is running. Each component measures the next component before passing the

control to it, forming what is called a Chain of Trust (CoT). The CoT, at least, involves

the BIOS, the boot loader and the operating system kernel. The resulting measurements

must be always the same unless the boot components are modified. The combination of

the TPM Quote operation and the SRTM process, allows the remote attestation of the

host [32]. An external attester can request a TPM Quote of the PCRs, and compare the

obtained values with a baseline of the PCR values of the system generated when it was in

a trusted state.

There are three keys produced by the TPM; Endorsement Key (EK), Storage Root Key

(SRK) and Attestation Identity Keys (AIK). The Endorsement Key is created by the TPM

manufacturer and is never released outside of the TPM. EK is used to ensure that the data

was encrypted by the TPM (the data can be trusted). A private EK which is used to

encrypt the data can be proven to be from the TPM by using it to decrypt a value that has

been encrypted with the public EK. When the TPM is initialized by the user, in the

process of taking the TPM ownership, the SRK is generated. It is used to protect TPM

keys created by applications, so that these keys cannot be used without the TPM (all the

keys the user requests are produced by the SRK). Finally, the AIK are used as an alias of

the EK for signing information produced by the TPM, e.g. the PCR register values issued

after the TPM Quote operation. The problem with the TPM, in general, is the unsecured

22

bus between it and other computer components and most of the attacks are actually

carried out from this unsecure bus [33].

 Intel Trusted Execution Technology

Intel’s Trusted Execution Technology [34] is a technology developed to provide

attestation of a platform and the operating system running in that platform and to ensure

that the OS starts in a trusted environment. TXT relies on the TPM and another chip to

provide the measurements of the platform components and the software. TXT aim is to

provide an isolated environment for VMs from untrusted software by providing the VM

control over the platform while it is active. A warm system reset is performed by the

authenticated code module (SINIT ACM) before starting the VM. The TPM measures the

hardware and updates the SRTM registers and when the VM is initialized, it updates the

DRTM registers. Therefore, the VM can start from a valid state and can execute in a

trusted environment. Similar to the TPMs, TXT is vulnerable to physical DRAM attacks

since DRAM encryption is not implemented. The System Management Mode (SMM) is

the most privileged execution mode in which all executions are suspended and only a

special software stored inside a firmware (stored in a ROM and is theoretically

inaccessible by the operating system or applications) is executed. Several attacks were

reported to the SMM such as [35]–[39], which leads to granting an attacker access to all

computer software including accessing the TXT memory.

23

 Intel Software Guard Extensions (SGX)

Intel SGX follows the approach in Figure 4 below. Data owner has the measurement of

the initial state as he computes its hash locally by creating the exact container (or

enclave) in his local machine. The attestation key (the private part of it) is used to sign

the hash M, gA and gB and it is decrypted by the data owner by the AK public key, which

is publicly available and is certified using the Endorsement Certificate (only the public

key can verify information signed with the private key). The hash is done for the initial

state only and any other code or data that will be received later will not be measured.

After successfully attesting the container and sharing K using Diffie-Hellman key

exchange, the data owner sends the code and the data encrypted to the enclave using K.

Figure 4: Trusted platform proves to a remote data owner that it is communicating with the right

container [40]

24

The Data owner creates an enclave in his local machine using ECREATE instruction,

Figure 5. ECREATE instruction will result in reserving part of the virtual address space

for the enclave, creating an isolated part in the Processor Reserved Memory (PRM) called

enclave page cache (EPC) and its Metadata (EPCM). EPCM is used to store information

about the enclave and its pages and to ensure that each EPC page belongs to exactly one

enclave.

Figure 5: Creating an enclave [41]

Data owner then executes EADD instruction, Figure 6, to copy the required pages to the

enclave area one by one. MRECNLAVE is a measurement register to store the

measurement of the hash. EEXTEND instruction updates the enclave’s measurement

Enclave

page cache

25

(MRECNLAVE) used in the software attestation process. The SGX Enclave Control

Structure (SECS) is inside the EPC and stores enclave metadata and is used by the CPU

for the enclave identity.

Figure 6: Copying enclave pages to the EPC [41]

Other instructions are shown in Figure 7. The EINIT instruction marks the enclave’s

SECS as initialized. Setting INIT to true means that EADD cannot be invoked on that

enclave anymore and MRENCLAVE will hold the final measurement. The EENTER

instruction is used to execute enclave code. The EEXIT instruction is used when the

enclave code finishes performing its task to return the execution control to the process

which invoked the enclave.

Enclave

page cache

SECS

26

Figure 7: Enclave instructions [41]

The code and data are unencrypted inside the CPU package and if the code/data leaves

the CPU package, they are encrypted using a symmetric key randomly generated on

power up (Figure 8).

Enclave page

cache

SECS

27

Figure 8: Code/data are encrypted outside the CPU package [41]

To run the enclave in a remote host, the same procedures described above are done in the

remote host. Hence, the same value of MRENCLAVE will be produce by the remote

host. Data owner can remotely attest MRENCLAVE value and compare it with his own

value. As a result of the remote attestation process (as in Figure 4), a symmetric key can

be shared and this key can be used to send encrypted data to/from the enclave.

2.4 Physically Unclonable Functions

Physically unclonable functions (PUFs) topic is one of the hottest topics in the field of

chip authentication and reconfigurable computing. PUFs are functions that make use of

the manufacturing process variations to uniquely identify devices. These variations

cannot be controlled and therefore making PUFs behavior and response unpredictable.

Figure 9 shows how a PUF can be used for device authentication. An ideal PUF, when a

28

challenge is applied, should have a response that is unique (a device response should not

match a response from another device), steady (when the same challenge is applied the

device should give the same response), random (is based on uncontrolled variations and

cannot be predicted) and tamper resistance (when the PUF is propped, it gives a different

response).

Figure 9: PUFs challenge response

PUFs can be classified into two categories; PUFs using explicitly-introduced randomness

and PUFs using intrinsic randomness. Optical PUF and Coating PUF are two different

types of PUFs using explicitly-introduced randomness. Optical PUF was one of the first

attempts in producing unique identifiers for integrated circuits (ICs) and is formed when

a transparent material is doped and when a laser beam is induced to the material at certain

angle, a unique and random pattern is formed. This pattern is very difficult to duplicate

and therefore this type of PUFs is unclonable. Optical PUF is rather laborious because it

29

requires laser setup and a complex mechanical system to position the laser beam [42]. On

the other side, Coating PUF is built when a network of wires is created on the top layer of

an IC. The space between the wires is filled with a material and doped with dielectric

particles randomly. Therefore, the capacitance between these wires would be random;

creating a unique identifier for the device [43].

PUFs using intrinsic randomness do not require modifications to the manufacturing

process and therefore are highly attractive. PUFs of this type can be divided into a delay-

based PUFs and memory-based PUFs. Delay-based PUFs include Arbiter PUF [44], Ring

oscillator PUF [45] and Glitch PUF [46] and memory-based PUFs include Butterfly PUF

[47] and SRAM PUF [48]. Arbiter PUF is based on two parallel racing paths with an

arbiter at the end of the two paths. A signal is applied simultaneously to the two paths and

the resulting analog delay difference is processed by the arbiter to get the required digital

value. Ring oscillator PUF utilize the delay characteristics of multiple ring oscillators and

a comparison of them is made to produce the digital value. SRAM PUF and Butterfly

PUF are called memory-based PUFs. SRAM PUF [49] makes use of the initial values of

the SRAM cells as these initial values are different from chip to chip due to the variations

in the manufacturing processes, in which the state of the bit at power up determines its

initial value. Butterfly PUF is an emulation of SRAM PUF in FPGAs.

PUFs in FPGAs include Arbiter PUF [44], Ring oscillator PUF [45]; enhanced by many

other publications such as [50]–[53], Anderson PUF proposed by J.H. Anderson [54],

Butterfly PUF [47], and SRAM PUF. Anderson PUF is considered as Glitch PUF and is

based on the delay of lookup tables (LUTs) in shift register mode and carry chain

multiplexers in the FPGA slices to extract the physical variations of FPGA devices.

30

SRAM PUF was made possible using recent Xilinx [55] and Altera devices [56]. In this

dissertation, we assume the use of the SRAM PUF for generating random numbers as

other PUFs are currently suffering from low stability, uniqueness, and entropy compared

to SRAM PUF [57].

Although many types of the PUFs can be implemented using most of nowadays FPGAs,

we believe that most of these PUFs are still facing many drawbacks when used in FPGAs

and we though recommend the use of SRAM PUFs as it is considered more appropriate

for FPGAs and are already available in recent FPGA devices [56].

2.5 Proxy Re-encryption

Proxy re-encryption (PRE) is a method for transforming a ciphertext c1 encrypted using a

key (K1) to another ciphertext c2, which can be decrypted using a key (K2), without

decrypting/disclosing the plaintext during the transformation. The benefit from such

transformation is that the time for transformation is less compared to decrypt-then-

encrypt and the transformation does not expose the plaintext, which means that the entity

that does the transformation (i.e. the proxy) is not necessarily trusted. PRE was first

introduced by Mambo and Okamoto [58] and later Blaze, Bleumer, and Strauss [59]

proposed the BBS scheme in which a semi-trusted proxy converts a ciphertext encrypted

by user’s A public key to another ciphertext to be decrypted by user’s B private key.

Semi-trusted in this context means that the proxy will correctly execute the code required

for the conversion and does not mean that users A and B trust it partially. The conversion

is possible when user A provides a re-encryption key to be used for the conversion. The

31

BBS was improved by Ateniese et al. [60] and many other public key based PREs were

proposed such as [61] [62] [63] [64]. These public key based PRE methods are used

when the delegator (user A) is for some reason unwilling to receive the data and want to

give delegation to another party (user B) to decrypt the data without revealing his private

key to user b or the semi-trusted proxy. For example, a manager wishes to give

delegation for his employee to check his email messages without giving him his private

key. The manager gives a re-encryption key to the email server so that the messages are

converted by the email server and his employee can decrypt the data without fully

trusting the email server or giving the employee the manger private key. Symmetric key

based PRE scheme was proposed by Syalim et al. [65]. The scheme uses the all-or-

nothing transform [66] which means that the ciphertext cannot be decrypting if any part

of it is missing. However, the scheme requires the generation of 8 keys to do the

conversion and these keys had to be shared between the two communicating parties and

the proxy; making the conversion complicated. The preferred properties of the PRE are:

1- Unidirectional: a PRE scheme is unidirectional if the proxy is able to transfer

delegator ciphertext to the delegatee ciphertext but not the opposite.

2- Non-transitive: The proxy cannot give the delegation alone to a third user C from

the re-encryption keys of users A and B. for example, user A gives re-encryption

key (rK1) to delegate the rights to user B and user B gives re-encryption key

(rK2) to delegate the rights to user C. Then the proxy cannot give the delegation

rights of user A to user C by using rK1 and rK2.

3- Collusion-resistant: if the proxy and another user collude, they cannot obtain the

private key of the other party.

32

4- Non-interactive: when the private key of the delegatee is not required to create the

re-encryption key, then the PRE is non-interactive.

5- Multi-use/Single-use: if only the original ciphertext can be re-encrypted, then the

PRE is single-use and the opposite is correct for multi-use.

6- Key-privacy: if the identity of the delegator and the delegatee cannot be identified

by the proxy from the re-encryption keys and the ciphertext, then the PRE is key-

private.

7- Transparent: a PRE is transparent if the delegatee is unable to note the existence

of the proxy between him and the delegator.

8- Key-optimal: the PRE is key-optimal if it is required to store small amount of data

(the private keys only).

9- Temporary: if the delegator can delete the decryption rights after some time, then

the PRE has the temporary property.

33

3 CHAPTER

LITERATURE REVIEW

In this chapter, we will discuss recent contributions related to securing users’ data in the

cloud. This includes surveying the techniques published in securing users’ data from both

other cloud clients and the cloud providers. We will also investigate recent advances in

trusted computing as it is a fundamental topic in outsourced data secure processing.

Finally, we explore secure processors and their implementation methods.

3.1 Protecting Users’ Data from Other Users

Protecting users’ data from other cloud users requires securing user’s virtual machines

form other virtual machines in the same cloud server. There are two lines of research

heavily investigated in the literature; securing hypervisors from being compromised and

virtual machine isolation.

Ferrie [67] described an attack scenario for identifying which hypervisor is being used to

deploy the virtual machines. Leading hypervisors (QEMU, VirtualPC, Bochs, Parallels,

Hydra and VMWare) were compromised using his scenario. The attack is based on

specific unusual instructions that leads to raising exception that are not handled by the

hypervisors. The work also provided a solution for each hypervisor by handling the

unusual instructions. Similar attacks were also reported by Joanna [68] and Tobias [69].

34

Louis and Jordan discussed some of the vulnerabilities related to granting access to users’

metadata in hypervisors [70]. Among these attacks, redirecting data flows using firewall

Ports, utilizing user application interface, hooking calls to library and hooking system

calls were illustrated in detail.

Breaking the isolation between virtual machines is also carried out on the weak parts of

the hypervisor. This attack causes Denial of Service, System halt, and memory overflow.

Attacks similar to this one were reported in many contributions in the literature such as

[71]–[73].

Fog computing and decoy methods were used intensively to protect users' data in the

cloud. Fog computing relies on making distributed cloud resources such that the cloud

parts (storage and servers) can be geographically closer to the user. Fog computing was

mentioned to be more secure because it places the data geographically close to the end

user and therefore certain policies can be applied to restrict access to cloud resources to

users in the same geographic area [74]–[77]. Decoy files/documents are trap files that are

used to trap illegitimate user. The search behavior of an illegitimate user is random to

some extent when entering the system and when the trap file is hit, it will fire an alarm. If

the alarm is a false positive, the legitimate user will be challenged with a question and his

legitimacy will be checked.

Several attempts were carried out to tackle the attacks to users’ data from other users

using Fog computing and Decoy method and these techniques are not helpful for tackling

attacks from the providers of the cloud since the architecture of the cloud itself is being

ignored as well as dumping the memory of cloud servers. Most previous studies are

theoretical and are not directly related to commercial clouds. A common factor between

35

all of the attacks discussed in this section is that attackers utilize a weakness in the

software such as the hypervisor. Therefore, these types of attacks targeting other virtual

machines in the cloud are not new and are not specific to the cloud; unlike attacks from

cloud staff. Attackers utilize vulnerabilities to attack users’ data and cloud providers

close the vulnerabilities and this process continues until the probability of finding a

vulnerability is close to zero. Many software attempts exist in the literature targeting

these kinds of externally considered attacks which obviously assumes that cloud

providers are trusted [78]–[83].

Table 1 summarizes the existing SW approaches for protecting data in the cloud. All

approaches are not secure against cloud insider attacks and completely ignore attacks that

read memory of the cloud servers such as reading the cryptographic keys of the client.

36

Table 1: Summery of SW approaches targeting data protection in the cloud

Approach Publication Year HW

Consider

cloud

insider

Secure

against

physical

attacks

Cryptographically

secure

Fog

Computing

[84][85][77]

[76]
2012-2016 -

Decoy files [74]–[76] 2014 -

Neural

networks
[86]–[88] 2013-2014

others
[32], [89]–

[92]
2013-2016

3.2 Protecting Users’ Data from Cloud Providers

Homomorphic encryption is the process of performing computation on ciphertext and the

encrypted result when decrypted matches the expected result of the computation

performed on plaintext [93]. Homomorphic encryption could be the solution to the

problem of securing clients’ data in the cloud. However, to date, no homomorphic

encryption algorithm that is computationally achievable has been developed [94]. From

the cloud perspective, scalability of the solution is a major feature in the cloud and using

homomorphic encryption systems with their computation cost would contradict this

feature [95]. Furthermore, most of the new homomorphic encryption algorithms such as

ad hoc polynomial approaches and bilinear pairing are not fully addressed and examined

37

by the cryptography community when compared to other popular algorithms such as RSA

and AES [95].

To protect circuit IPs (intellectual properties) of third parties and prevent cloning, FPGA

vendors provide a symmetric key embedded on the FPGA to secure bitstreams. Clients

use the vendor’s SW tool to encrypt their bitstreams (i.e. FPGA configuration) which

would then be decrypted inside the FPGA. Data could also be included or initialized

within the bitstream which makes it secure. After the data is processed, it can be readback

as part of the bitstream (which is encrypted by the FPGA before it is outputted). Again,

the vendor’s SW would decrypt the data for the client. There are many problems with this

approach. First, these keys are only made available by the FPGA vendors to major clients

only under very rigorous qualification requirements. Second, large data cannot be

initialized in the FPGA due to limited space resources. Third, the configuration process is

extremely slower than the FPGA’s processing speed which means that almost all of the

time would be spent on transferring data in and out of the FPGA, thus wasting the

FPGA’s processing power. Finally, and most importantly, many successful attacks

against such a method have been reported, either using Known-plaintext attack (KPA)

[10] or other types of attack [96]–[104].

Eguro and Venkatesan proposed an FPFA-based security approach for cloud computing

[95]. This approach implements the security components as Static Logic (i.e. fixed, non-

reconfigurable macros) inside the FPGA and makes use of RSA and its private key to

form a root of trust (ROT) inside the FPGA. A certificate authority (CA) would certify

the public and private keys for every FPGA. The private key is a crucial component from

the security point of view because the FPGA is within the cloud and the key could be

38

obtained by reverse engineering the Static Logic or inserting a sniffing circuitry to sniff

the private key since the RSA-based solution did not consider checking the integrity of

the Static logic.

Some researchers proposed providing trust for FPGA-based embedded systems by

implementing a full Trusted Platform Module (TPM) [105] on the FPGA [106][107]. The

use of TPMs assumes a secure channel and requires users to take ownership of the TPM

and set a chain-of-trust. This is not only impractical in a multi-tenant cloud environment

(where each user would need to take ownership of the TPM and set their own chain-of-

trust), but does not guard against Man-in-the-Middle (MiM) and replay attacks by a

malicious cloud administrator. Analysis of virtualized TPMs (vTPMs) showed that they

are less secure than physical TPMs (pTPMs) [108], even with a trusted host (i.e. the

cloud). vTPMs have the same vulnerabilities to attacks by malicious cloud administrators

as pTPMs.

In [33], researchers proposed a data security model for users data that is similar to TPMs.

They proposed augmenting the cloud’s servers with two types of chips that are paired

(cryptographically) by the manufacturer; an FPGA as a processing chip and an ASIC as

state chip that holds the state between power cycles (using non-volatile memory). The

system guarantees integrity and freshness by maintaining a Merkle tree, which is a tree of

hash values and the value of each node depends on the values of its child nodes, for

user’s data in the cloud storage. However, no implementation was provided nor a

performance evaluation. Furthermore, it is assumed that the FPGA is ‘securely’ packaged

and that there is a secure channel between the state chip and the certificate authority. In

addition, there were no key management policies for different users nor guarantees of

39

integrity of the configured circuitry. Similar to the conventional pTPMs, this model is not

suitable for the multi-tenancy nature of the cloud and have similar vulnerabilities to

attacks by malicious cloud administrators.

A framework for users’ data privacy (mainly for Map-Reduce applications) in the cloud

using the security features of current FPGAs and proxy re-encryption was proposed in

[109]. It uses public/private keys for encrypting/decrypting a symmetric key to be shared

between the user and the FPGAs in the cloud for the purpose of data

encryption/decryption. It also uses the FPGA’s embedded symmetric keys for bitstream

protection, which is not only not available for general users, but was already proven to be

insecure against KPA as stated earlier. In addition, the proposed scheme requires a CA to

certify FPGAs public keys as well as a proxy server to manage key re-encryption. The

scheme assumes full trust in the cloud user (who will get access to the FPGA’s

symmetric keys) and semi-trust in the proxy and cloud operator. This is another major

drawback of this scheme. Further, it is not clear why a proxy re-encryption was needed

since it does not seem to have a real impact on the security of this framework.

Specifically, a proxy is not needed since both the FPGA and the user have their own

public/private keys and if there is a need for scheduling more than one FPGA for the

user, the cloud provider can just send the public key of each FPGA (that is certified by

the CA) directly to the user.

40

3.3 Trusted Computing in the Cloud

This section discusses the state-of-the-art in establishing trust in the cloud and reports the

complexity of such establishment. It also describes Intel’s Software Guard Extensions

(SGX) and its role in establishing trusted computing environment in remote hosts such as

the cloud servers.

Eisenbarth et al. proposed a reconfigurable architecture with TPMs [106]. The approach

allows for scaling and updating the TPM functionalities and including it into the chain of

trust which makes it possible to bind sensitive data to the reconfigurable hardware. This

work used a fixed logic bitstream for enabling the root of trust and the FPGA boots from

this bitstream. However, the problem of using partial reconfiguration to integrate the

bitstream of the client with the fixed logic bitstream was not discussed.

Developing a mechanism for the user to attest the state of the host by remotely attesting

the TPM PCR registers was presented by Kekkonen et al. [110]. However, sharing the

TPM among applications used by different users in the same platform was not addressed.

The problem of extending trust to the cloud is an active area of research. Several

publications attempted to propose trusted models for the cloud. In the rest of this

subsection, we summarize these attempts and give our conclusions regarding trust in

cloud computing environment.

Santos et al. proposed the design of a trusted cloud computing platform (TCCP) that uses

the TPM to provide trusted hardware [111]. However, the proposed platform was based

on the TPM which is meant to be used per device and not per virtual machine. Another

attempt to use the TPM in the cloud was addressed by Neisse et al. This work relies on

41

TPM to provide trusted computing, which is not suitable for multi-tenant nature of the

cloud as stated earlier [112].

The virtualization of the TPM to bring its security properties to virtual environments is

not direct due to its design and security constraints. This issue was discussed by Cucurull

and Guasch [108] and an overview of virtualizing TPM in Xen QEMU virtualization

solutions was provided. The idea of virtual TPM in Xen is simply an emulation of the

TPM and there is a manger that control these emulations while QEMU uses the

passthrough technique to achieve virtualization of the TPM. Passthrough is a simple

method that passes all PCR registers of the TPM to the VM. Similar emulation was

proposed by Bertholon et al. [113].

The possibility of using TPM to establish trust in Cloud Computing, between the cloud

provider and the customers was also studied by Achemlal et al. [114]. Similar work was

carried out by Berger and Caceres [115] and what they have proposed for virtualizing the

TPM is shown in Figure 10. The disadvantage of this architecture is that TPM

information sent to client VMs pass through the hypervisor which exposes the

information to insider attacks. The proposed scheme by Berger and Caceres propagates

the idea of the TPM to the software level which reduces the success of such methods.

There are many similar attempts to establish trust in cloud computing including [116]–

[119].

42

Figure 10: Virtual TPM Architecture of [115].

Zic et al. [120] and Nepal et al. [116] proposed the Trusted Extension Device (TED) to

enable mobile trust. Thilakanathan et al. used it to build the root of trust in the cloud

[117] although one user was assumed for the TED to be integrated with the cloud servers,

Figure 11.

Figure 11: The abstracted architecture of the trusted extension device (TED)

TPM offers a robust way for providing trust in single machines although there are several

successful attacks reported in the literature. However, TPM is not suitable in its current

43

design for cloud computing due to the fact that TPM role has to be extended to the

software level which contradicts the goal of the TPM.

 Intel Software Guard Extensions

Recently, Intel announced the Software Guard Extensions (SGX) [121], which is a set of

instructions to extend Intel architecture. SGX instructions aim to provide security-

sensitive computation integrity and confidentiality guarantees where privileged software

such as the operating system (OS), the kernel and hypervisors are untrusted. To provide

integrity and confidentiality, SGX allows user-level code to allocate private regions of

memory, called enclaves, that is protected from other processes; including processes

running at higher privilege levels. SGX also provides software attestation, which is the

process of proving to the user that his code is running in the intended trusted hardware.

The TPM attestation covers all the software in the platform while the TXT attestation,

discussed in Section 2.3.2, covers the VM code. SGX attestation covers only the private

code and data inside an enclave. SGX does not prevent side-channel attacks such as

Cache-timing attacks, Physical attacks and Microcode attacks [122]. Successful cache

attacks were reported by many researchers including [123]–[126]. The problem of such

attacks in the cloud is that an enclave has the power to control the server and other users

in the same server would be compromised; spreading the attack to insiders and outsiders.

Moreover, Intel SGX requires modification to the application using it which is not

practical in all cases [127][40].

44

3.4 Secure Processors

In addition to Intel SGX, several secure processors were proposed in the literature. This

section summarizes secure processors that are relevant to the topic of trusted computing.

The Aegis secure processor [128] depends on a security kernel, which is a subset of the

OS kernel, to isolate containers from each other by configuring the page tables used in

address translation. The security kernel handles processes, virtual memory management,

and hardware exceptions and uses processor’s features to protect itself from other

components such as untrusted device drivers. Aegis’ security kernel is assumed to be a

trusted part of the OS and it can evict the containers pages while verifying the paging

operations correctness. This means that the OS can learn the memory access patterns of

the container. Further, cache timing attacks can be carried on Aegis.

The use of a trusted hypervisor to provide secure applications running untrusted systems

was presented in the Bastion architecture [129]. The Bastion architecture allows the

hypervisor to enforce the container to use specific memory locations by maintaining a

Module State Table that stores a page table containing each physical memory page and its

container and virtual address. The hypervisor checks that the virtual address used to map

a physical memory page matches the virtual address associated with the physical address

of this physical memory page in the Module State Table. Similar to other secure

processors, the Bastion hypervisor is vulnerable to cache timing attacks and untrusted

operating system can evict the container pages; allowing it to learn a container’s memory

accesses.

Sanctum [130] partition the DRAM into equal continuous regions to isolate the container

and each DRAM region is allocated to exactly one container. Flush on context switches is

45

performed to isolate the containers in the caches. Sanctum relies on a trusted security

monitor, similar to the SMM, to ensure that the container can only reference to a memory

inside its DRAM partition. The container manages its page table and also handle its page

faults, which means that the OS cannot learn the virtual address causing the page fault.

The Sanctum design does not protect against any physical attack and focuses on software

attacks. Also, Sanctum does not prevent fault-injection attacks and timing attacks.

The Ascend [131] and Phantom [132] secure processors make use of the oblivious RAM.

Oblivious RAM is a concept that performs the reads and writes simultaneously to hide

the operation being performed and shuffles the RAM contents from time to time to avoid

observing the patterns of accessing the memory locations. It follows that Ascend and

Phantom do not suffer from attacks that probe the DRAM address bus and other attacks

that attempts to learn memory access patterns of the containers. However, they incur

large slowdown compared to other processors. It is worthwhile to mention that unlike

SGX, which uses the Enhanced Privacy ID (EPID) [133] to preserve the privacy of the

user using the SGX in a remote host, these secure processors did not guarantee the

privacy of the user. The user can be tracked by the identity of the processor he is using.

Table 2 depicts existing secure processors and their characteristics. These processors are

not suitable for IoT data processing because they target securing the data and the code

coming from one user, which is not the case in the IoT paradigm as the data is coming

from multiple sources (i.e. IoT devices) and is processed by the code sent by the user.

46

Table 2: Summery of existing secure processors

Processor Publication Year

Secure

against

timing

attacks

Considers

privacy of the

client

Secure

against

physical

attacks

Require

modification to

the OS

SGX [121] 2015

Aegis [128] 2003

Bastion [129] 2010
modification to

the hypervisor

Sanctum [130] 2016

Ascend [131] 2012

Phantom [132] 2013

3.5 Summary and Discussion

This section summarizes the findings of surveying the existing methods for securing

users’ data in the cloud. Existing work in the literature is related to protecting users’ data

from other users in the cloud and from external attacks while only few contributions

considered protecting data from the cloud providers. In addition, most of them consider

normal software approaches towards solving the problem which are not suitable in the

absence of trusted computing in the cloud.

For protecting users’ data from other users in the cloud, all the surveyed and possibly

existing techniques are based on software approaches. The directions for these techniques

include virtual machine isolation techniques and making cloud hypervisors more secure.

In addition, Decoy and Fog computing methods were intensively published for this kind

47

of protection. Without doubts, these directions completely ignore the problem of

protecting users’ data from cloud staff such as those who engineer and manage the

hypervisors.

There are several attempts found in the literature to protect data from cloud providers.

These methods were hardware-based. However, no real implementation was reported and

the proposed methods lack many factors to be implemented, discussed in detail in

previous sections. These attempts do not consider trusted computing for their proposed

methods. Providing trust for FPGAs is necessary if the FPGA is going to be put in the

cloud. There is no relevant work proposed regarding this direction and mostly because

FPGAs are used offline by the FPGA owner. Now, with the existence of FPGAs in the

cloud for security, it will be mandatory to consider trust in the FPGAs and maintain the

integrity of client’s applications running inside them.

In traditional cryptography, encrypted data should be decrypted first to be processed.

Fully Homomorphic Encryption (FHE) is a special type of cryptography that allows

arbitrarily computation on encrypted data. This type of cryptography would allow for

arbitrary computations on the cloud and the ability to store all data encrypted and

performs computations on encrypted data. Unfortunately, as of today, FHE is not

practical and introduce serious performance issues that would eliminate the original

advantages of adopting cloud computing.

Trusted computing in cloud computing is at its early stages. Trusted computing prevents

devices owner from modifying the hardware of the devices which is exactly what the

cloud needs to protect clients’ data. The concept of the cloud gives the clients the rights

to prevent cloud providers from controlling their data in the cloud hardware. Trusted

48

computing fits well in personal devices while, up to now, it is not fitting well in the

environment that is supposed to do (i.e. the cloud). Therefore, the concept of trusted

computing should be the basis for developing new trusted models for the cloud (i.e.

hardware approach as it is for the TPM). Though, trust computing in its current form is

not be possible to emerge to the cloud because of the multi-tenant nature of the cloud. A

new approach most probably would dominate. The problem of preventing cloud

providers from disclosing users’ data had to be tackled in hardware as introduced by Intel

SGX. However, Intel SGX suffers from poor performance for medium/big data sizes and

suffers from various kinds of attacks such as side-channel attacks.

In summary, Table 3 shows, in general, different approaches that can be utilized or

proposed for securing data in the cloud. Most of these approaches are HW-based and all

of them have vulnerabilities/ weaknesses that could lead to disclosing clients’ data in the

cloud. Further, it is obvious that these approaches are not suitable for IoT data processing

in the cloud.

49

Table 3: Summery of existing approaches that can be utilized for data protection in the cloud

Approach
S

ca
la

b
le

S
u

it
e

m
u
lt

i-
te

n
an

t

H
W

C
o

n
si

d
er

 c
lo

u
d

in
si

d
er

S
ec

u
re

 a
g

ai
n

st

p
h

y
si

ca
l

at
ta

ck
s

C
ry

p
to

g
ra

p
h

ic
al

ly

se
cu

re

W
ea

k
n
es

s

SW - - -

Homomorphic expensive

TPM
Not stuitable for virtualized

environment

TXT
Cloud insider can break the

security oracle

FPGA-based [95]

Cloud insider can modify the

static logic and can

imersonate the FPGA

FPGA-based

[109]

The security infrastructure of

the static logic is not secure

SGX & other

processors

Suffer from timing attacks

and incure large overhead

50

4 CHAPTER

SECURING CLIENT DATA IN THE CLOUD USING

FPGAs

This chapter discusses our FPGA-based scheme for securing users’ data and applications

in the cloud. This includes the protocols, and all the HW and SW components required to

implement the proposed scheme. The chapter also discusses the benefits of the scheme

such as perfect forward secrecy, FPGA authentication, a secure symmetric session key

establishment between the on-cloud FPGA and the client, and user’s configuration

integrity check while running in the cloud FPGA. The details of the complete proof-of-

concept prototype along with the cloud testbed for implementing the prototype is also

provided; including resource utilization, Synopsys tool synthesis results area of about

0.0265 mm2 in a state-of-the-art 16/14 nm fabrication technology if implemented as

custom circuits on the FPGA (i.e. Hard Macros), and the boot time the FPGA take for the

client to start using his/her application.

51

4.1 Introduction

Cloud computing has proven to be of eminse benefits for individual users and enterprises.

Reduction of capital costs, which is one of the essential benefits of cloud computing,

makes cloud computing the ultimate choice for enterprises. However, protecting the

integrity and privacy of users’ data is a major concern that hinders the adoption of cloud

computing for applications with sensitive data such as financial data processing and

medical data [134]. Existing solutions focus on protecting users' data against external or

other users’ attacks only and they assume that the cloud provider is trusted. This leads

many organizations with sensitive data not to process such data in the cloud [135]

In this chapter, we discuss the proposed scheme for securing client data which has the

following features:

1. Practicality: The scheme does not use additional resources, other than the

FPGA which is already deployed in the cloud [136], nor any special activities

between the clients and the FPGA vendor.

2. Secure client data processing: the scheme provides strong protection against a

wide range of attacks including MiM attack, FPGA impersonation, replay

attacks, etc. The scheme does not consider the cloud operator as a trusted

party and it ensures the integrity of the client’ applications. It provides the

standard overall protection as outlined in [137].

3. Suits the multi-tenant nature of the cloud.

In Section 4.2, an overview of the proposed scheme is introduced including the protocol,

its security analysis, and the related framework (HW and SW components). Experimental

52

results are presented in Section 4.3. This includes the complete cloud testbed

implementation and the details of all components, their implementation details and

performance figures. It also provides performance comparisons with conventional virtual

machine boot times and other approaches such as Intel SGX. Section 4.4 demonstrates

how our scheme can be used to protect intellectual properties (IPs) in the cloud. Finally,

conclusions are presented in Section 4.5.

4.2 The Proposed Scheme for Securing Client Data in the Cloud

This dissertation presents a novel scheme that utilizes FPGAs to secure users’ data and

applications in the cloud. The proposed scheme protects against various types of attacks,

provides FPGA authentication, and ensures fixed logic and user’s application integrity,

data confidentiality and configuration integrity. Architectures for integrating FPGAs into

the cloud to implement the proposed scheme have also been developed and a complete

prototype was implemented to evaluate the performance of the proposed scheme. It

should be noted that the scope of our proposed FPGA-based secure cloud computing is

different from existing published work on integrating heterogonous resources with

OpenStack, namely the SAVI test-bed [138]. Our goal is to use FPGAs in the cloud to

secure the clients’ data while SAVI test-bed aims to make FPGAs a resource for cloud

providers to utilize. Our scheme is more closely related to the user’s side while SAVI

test-bed is more closely related to the provider’s side. Our solution is also very scalable

(paramount to any cloud-based computing), thus have great potential for secure cloud-

based computing as discussed also by other researchers [139].

53

 Preliminary

Assumptions: In this work, we assume that the on-cloud FPGA devices have the

following capabilities that most of which already exist in current FPGAs:

– Uniquely identifiable using any public identifier such as a printed serial number

or other means such as a unique device DNA, similar to that found in Xilinx

FPGAs [140]. This nonvolatile, unchangeable and permanently programmed

value can be used to authenticate FPGAs running client’s configuration. However,

device DNA alone is not suitable for device authentication as was illustrated in

[141].

– External reconfiguration and readback ports are disabled [142]. External ports

such as JTAG and SelectMAP are used to program FPGAs and to read back the

configuration in its current state inside an FPGA for debugging purposes.

– Configurable through an internal configuration access port (ICAP) such as in

Xilinx devices [142]. An ICAP receives the configuration bit stream from the

Static Logic and partially configures another portion of the FPGA. Hence, the

FPGA should also support partial reconfiguration,

– Supports readback of static configuration contents such as Look-Up-Tables,

interconnects, and I/Os only, but cannot readback dynamic data such as RAM or

Flip-Flop contents.

– Have standard high-speed communication ports such as 100 Gigabit Ethernet to

enable their in-cloud usage.

54

 FPGA Static Logic

We assume that, in the future, FPGA manufacturers would provide adequate support for

securing users’ data and applications on their FPGAs. Specifically, we assume that cloud-

based FPGAs would have the necessary static or fixed logic in the form of hard macros

(i.e. non-configurable static logic) that supports different security schemes. These macros

include a PUF and masking circuitry to generate random numbers to be used by the

modular exponentiation circuit for Key generation, modular exponentiation circuit, AES

block for Encryption/Decryption, SHA3 for hashing the b, authenticating the FPGA and

hashing the configuration readback that is used by the client to ensure that his/her

application is not modified, and a controller to coordinate the different activities. Figure

12 shows these components and the connection between them and main state control is an

FSM that controls the operation of these components. It should be noted that the

proposed scheme could be implemented using current FPGAs that do not have the

required Static Logic outlined above. The Static Logic in this case would be provided by

the board manufacturer as pre-configured circuitry on FPGAs on tamper-proof boards

and packages. Boards should be shipped with batteries and be powered constantly to

maintain the Static Logic’s configuration. Users’ circuits, are placed into specific FPGA

regions via partial reconfiguration. Only the input/output of the Encryption/Decryption

would be made available to the users. This alternative solution allows anyone to make

these boards and act as a trusted authority.

55

 The Overall Framework

Notation: PUF-RN is the on-FPGA, n-bit, PUF-generated random number that is read

once by the manufacturer and cannot be read again or altered. The session mask M, is

also an n-bit random number generated by a trusted authority. M is used to generate an L-

bit random number b from the PUF-RN. RN is a secure random number generated by the

client. Bit(client) is the partial bit stream representation of a client’s design. Config is the

actual FPGA configuration obtained through readback using ICAP. Encryption of a

message msg using a key k is denoted as MSG := Enc(msg,k) and the corresponding

decryption as msg: =Dec(MSG,k). We use E_BIT(client) to denote encrypted bit streams:

E_BIT(client) := Enc(Bit(client),k). F symbolizes an FPGA device. ID(F) is the

identifier value and is used to uniquely refer to a specific FPGA.

Involved parties: Figure 13 shows the parties involved in our proposed scheme. In

addition to the client and the Cloud Provider (CP) who is providing FPGA-based

processing as a service, the FPGA Vendor (FV) who sells FPGA devices to cloud

Figure 12: The proposed FPGA structure and the components of the static logic. Dotted lines

represent outputs.

comm
control

main
state

control

AES

SHA3
ICAP

modexp

Masking
circuitry

PUF

Reconfigurable
logic array

56

operators also acts as a trusted authority (TA). It is not necessary that the FPGA

manufacturer be the TA. Alternatively, an OEM (board) manufacturer could act as the

TA. In this case, it will get the PUF-RN from the manufacturer.

Figure 13: The proposed framework of the scheme.

 The Security Protocol

The proposed 10-steps protocol for securing users’ data on the cloud using FPGA

processing is illustrated using the sequence diagram in Figure 14:

• The client sends a request for a physical resource (i.e. the FPGA) to the CP. The

CP assigns an FPGA for the client and sends back its identifier (ID(Fi)),

• The client forwards the ID(Fi) to the TA, which has the value generated by the

PUF and stored in the PUF-RN for each FPGA. The TA responds with the

following FPGA authentication credentials; a session mask M (a random n-bit

number with exactly L number of 1s), hash of the L-bit number b concatenated

with ID(Fi), and the FPGA’s session key portion gb mod p. Note that both g and p

57

are public values with g usually being a small integer such as 2 and p being a

prime number satisfying the conditions Length(b) ≥ length(p) and gb ≥ p,

• The client forwards M and its own portion of the session key, ga mod p, to the CP

and requests FPGA authentication credentials. Similarly, ga must be ≥ p, and

Length(a) ≥ length(p). The FPGA will use M to generate b using the masking

circuitry described in Section 4.2.5. The FPGA uses b to generate its portion of

the session key, gb mod p, hash (b+ ID(Fi)), gb mod p and sends the result back to

the client. The client can now authenticate the FPGA by comparing the values of

Hash (b+ID(Fi)) and gb mod p received from the TA and CP. This prevents MiM

and FPGA impersonation attacks [26]. Both parties now share the symmetric

session key gab mod p, completing the Ephemeral Diffie–Hellman key exchange

[26]. At this point a and b are destroyed by the client and the FPGA, respectively.

In addition, the session key will be destroyed at the end of the session so as to

achieve the desirable security feature of Perfect Forward Secrecy (PFS),

• The client encrypts his/her circuit’s configuration bit stream Bit (client) using gab

mod p, and sends it to the FPGA. The fixed logic on the FPGA will then decrypt

it and use it to configure the FPGA through the ICAP,

• To protect against any circuit tampering (e.g. HW Trojans or sniffing circuitry

inserted on the FPGA), the client chooses a secure random value RN, encrypts it

with the session key gab mod p and sends it to the FPGA requesting configuration

readback. The Static Logic decrypts RN, reads back the FPGA configuration,

hashes it with RN, encrypts with the session key, and sends it back to the client.

The client can use this to validate the integrity of the FPGA. This check can be

58

repeated any number of times (with a new RN every time to prevent replay

attacks), during the operation of the client’s circuit on the FPGA.

The steps above are repeated for every session and M is never repeated. It should be

noted that this scheme also supports 3rd-party provided circuit IPs (i.e. the circuit is

provided by an IP vendor). In this case, to protect the circuit IPs, the IP vendor will

encrypt the circuit IP(s) using a different Mask and key (obtained through similar steps),

and perform the integrity checks.

59

Figure 14: The protocol sequence diagram.

A slight variation on the protocol, Figure 15, could be made so that the TA does not need

to compute gb mod p while still providing strong protection against MiM attacks. In this

case, the FPGA sends the double hash Hash(Hash(b(M) + ID(Fi)) + gb mod p) along with

gb mod p to the client. The client then computes the same double hash (using Hash(b(M)

+ ID(Fi)) received from the TA and gb mod p received from the FPGA) to authenticate

the FPGA. This version of the protocol requires slightly more cycles to compute the

double hash but relieve the TA from performing the modular exponentiation operation.

60

Figure 15: A variant of the protocol. Double hashing is computed by the FPGA and the client to

avoid sending gb mod p by the TA.

 The Masking Circuitry

The masking circuitry, as shown in Figure 16, consists of an n-bit PUF-RN and M

registers (for instance 2048 bit) and an L-bit register for the produced b. M consists of

exactly L-bit ones distributed randomly over the bit locations in the M register, as

illustrated earlier in Figure 17. The M and PUF-RN registers are shifted/rotated right and

the bit shifted from M is checked if it is equal to one or not. If the value is equal to one,

the value of the bit shifted from PUF-RN is shifted to the b register, otherwise it is

61

discarded. Therefore, after n cycles, the b register will be holding the L-bit random

number to be used in modular exponentiation for Diffie–Hellman key exchange and

SHA3. To illustrate the operation of the masking circuitry, Figure 17 shows an example

of producing a 4-bit b with n equals 8 and L equals 4. Note that since b is 4-bit, M

contains exactly 4 1s.

Figure 16: The masking circuitry.

Figure 17: An example of producing an L-bits b from n-bits PUF-RN and M; n in this example

equals 8 and L equals 4.

Bit

M (8-bits with exactly 4 1s)

PUF-RN (8-bits)

b (4-bits)

62

The TA role in this masking is just a simple shuffle of the M upon new M request. Then,

TA can send the resulting shuffle, i.e. M, to the client with the hash value of the register b

that is resulted when using such produced M in the masking circuitry. The TA also

implements its management database for preventing the repetition of Ms and tracking

them for each client. A sample implementation of the TA can be found in Appendix D.

 Security Analysis

The proposed protocol as illustrated in Figure 14 and Figure 15 provides FPGA

authentication, configuration integrity check and data confidentiality in the cloud

environment. It provides one-way authentication only; the client authenticates the FPGA

while the FPGA does not authenticate the client. The CP is responsible for authenticating

the client. It also minimizes communication between the client and the TA.

 As was explained above, the steps of the protocol are repeated for every session, the

session mask (M) is never repeated for stronger protection and b is never disclosed as a

plaintext to the client or to any other party. This enable the use of Ephemeral Diffie-

Hellman yielding Perfect Forward Secrecy (PFS). Therefore, even if the FPGA internal

PUF-RN is leaked, all previously encrypted exchanges remain secure as the session keys

cannot be re-created. Values of a and b are deleted by the Client and the FPGA,

respectively, once each side establishes the session key. Also, all session keys are deleted

at end of session. Furthermore, the width of the hash function output should be at least

twice the size of the generated session key to provide strong collision resistance [143].

63

Figure 18 illustrates how FPGA impersonation is prevented by providing the hash of the

b and the ID(Fi). Let an attacker (t) try to impersonate an FPGA with ID(Fi). The TA

sends the client the hash Hash(b(M) + ID(Fi)) which must match the hash received from

attacker t. In this case, the client receives Hash(b(M)* + ID(Fi)) and gt mod p which do

not equal Hash(b(M) + ID(Fi)) and gb mod p. Hence, Fi impersonation by the Attacker (t)

is prevented, and replaying the hash to be sent by the Fi is also prevented because M is

never repeated. Integrity checking is also secured through the use of the symmetric

session key, and replaying it is prevented through the use of a newly client-generated RN.

Figure 18: FPGA impersonation prevention.

Figure 19 illustrates how the proposed scheme prevents MiM attacks by using the

Ephemeral Diffie-Hellman. Such an attack would fail due to inability of the MiM to re-

compute the hash sent by the FPGA while providing the correct gb mod p. Exchanges

between the client and the TA (messages 3 and 4 in Figure 19) can be protected by a

64

standard Secure Socket Layer (SSL) protocol. This prevents a MiM attacker from

obtaining the hash and the gb mod p values sent by the TA to the client (message 4 in

Figure 19) which are needed to launch a successful MiM attack.

Figure 19: Man-in-the-middle attack prevention.

Invasive attacks are useless as the effort to de-package and read out stored keys during

operation from one device cannot be used with other devices due to the use of PUFs that

generates unique PUF-RNs. The invasive physical attack requires very sophisticated

capabilities that are only available to few states and major microelectronic manufacturing

companies. The same level of difficulty is true for Fault attack [144].

Non-invasive (including side-channel attacks) and Semi-invasive attacks are also

prevented since no key is used more than once and there are not enough data (traces) to

65

perform the analysis. Moreover, no plaintext version of any encrypted data is ever made

available to any party other than the one who generated it. To protect most of the physical

attacks against the masking circuitry, which is introduced in our scheme, the PUF-RN

could be inverted and stored in another register, Figure 20, such that the power traces

expose nothing more than a monotonically increasing current to the attacker. That is,

every shift to the b and its complement registers produces the same current. Also, the

values in these registers are shifted; adding the current of these shifts to the newly shifted

bit and making the current monotonically increasing.

Figure 20: A masking circuitry resistant to physical attacks

For protecting other components of the static logic such as AES from physical attacks,

several methods already exist for this purpose such as [145] [146] [147] [148]. Table 4

summarizes the attacks discussed in Section 0 and our countermeasures against them.

Most network attacks target denial of services (data confidentiality is guaranteed using

our scheme) and they can also be mitigated using cloud protection services [149].

66

Table 4: Attack types and our countermeasures

Attack category Attack type Countermeasure

Cryptographic

attacks

known-plaintext AES is resistant to this attack and the

session key is needed by the attacker.

Also, plaintext is not exposed to any

party.

chosen-plaintext AES is resistant to this attack and the

session key is needed by the attacker.

Also, plaintext is not exposed to any

party.

ciphertext-only This attack is the hardest to achieve

because the attacker has no knowledge

of anything except the ciphertext.

chosen-ciphertext AES is resistant to this attack and the

session key is needed by the attacker.

Also, plaintext is not exposed to any

party.

related-key This attack is prevented since the PUF is

random, unpredicted and unclonable

known-key distinguishing This attack is not possible as the attacker

must be a client to send to the FPGA

Network attacks

wiretapping Since the data is encrypted, this attack is

prevented

port scan This attack is not applicable to FPGAs

as the attacker gains nothing from

scanning the ports

idle scan This attack is not applicable to FPGAs

as the attacker gains nothing from

scanning the TCP ports in case TCP

67

protocol is used

Man-in-the-middle MiM attack is prevented as shown in

Figure 19

impersonation FPGA impersonation is prevented as

shown in Figure 18

replay Replay attacks are prevented since M is

never repeated and the use of client-

generated RN

ARP poisoning ARP poisoning is prevented because the

data is encrypted

ping flood This attack is not applicable to FPGAs

ping of death This attack is not applicable to FPGAs

Smurf attack This attack is not applicable to FPGAs

Physical attacks

miroprobing This attack is expensive as discussed in

this section

side-

channel

cache This attack is not applicable to FPGAs

timing This attack is not applicable to FPGAs

power analysis This attack is prevented using the

masking circuitry in Figure 20

electromagnetic This attack is prevented using the

masking circuitry in Figure 20

semi-invasive semi-invasive are prevented using the

masking circuitry in Figure 20

brute force This attack requires exponential time

and can become infeasible if key length

and hash function output are long

enough

fault injection This attack is expensive as discussed in

68

this section

data remanence This attack is not applicable to FPGAs

FPGA

Reverse

engineering

Reverse engineering is prevented since

readback is not possible

tampering The Static Logic is installed by the TA

and cannot be readback. The user

application is sent to the FPGA in the

cloud encrypted and it is decrypted

inside the FPGA by the Static Logic

after authenticating the FPGA.

Furthermore, plaintext configuration is

never obtained by any party other than

the one that created it. Even if an

attacker managed to install HW Trojans

(after the clients configure their

application), the repeated integrity

checks would expose that to the client.

cloning Our system prevents such an attack due

to the use of PUFs, which produce a

unique PUF-RN for every FPGA.

Hence, cloning a configuration to

another FPGA will result in incorrect b

and the FPGA authentication will fail, as

illustrated in Figure 19. In addition, the

user can securely perform periodic

integrity check to ensure that the FPGA

is not modified while running the

application.

counterfeiting same countermeasures of cloning attack

can be applied to prevent counterfeiting

crippling This attack is prevented in our scheme

69

as the attacker must obtain the session

key to send the invalid bitstream to the

static logic for partial reconfiguration.

Further, the static logic cannot be erased

because external configuration is

disabled.

To verify the protocol and check if there are any vulnerabilities, a formal verification was

carried. The tool used for verification is ProVerif, which is a well-known tool to verify

security protocols [150]. ProVerif can analyze security protocols automatically under the

assumption that the attacker is active; meaning that the attacker can send, receive and

modify messages. ProVerif proves the secrecy (the attacker cannot obtain the secret),

authentication and strong secrecy (the attacker cannot learn the changes made to the

secret). The protocol was written using Pi calculus that is supported by ProVerif. The

FPGA generation of the hash and gb mod p was done by the TA sending them to the

FPGA so that the comparison in the client side is correct. The communication between

the TA and the client/FPGA was secured using a shared key using DH. The output

produced by ProVerif showed that our protocol is secure. The code of our protocol along

with detailed comments can be found in appendix B.

70

4.3 Experimental Results

In this section, the details of the FPGA prototype and the OpenStack cloud infrastructure

are provided. The section introduces OpenStack and its components, integrating FPGAs

with OpenStack components and the performance evaluation of our prototype.

 Background on OpenStack

OpenStack is a group of open source projects aimed to provide comprehensive cloud

services. There are six main components of OpenStack summarized in this section

including:

1. OpenStack compute (called Nova):

Nova is the component that manages the Infrastructure as a Service (IaaS) cloud

computing platform. It includes drivers that interact with the underlying

virtualization. Informally, it is the worker that deploy virtual machines in to the

hosts by using the virtualization layer (hypervisors). Nova is the most complicated

component of OpenStack [28] because it deals with external hypervisors. The

components of nova compute are:

– Nova-api: accepts and responds to user’s compute API calls

– Nova-conductor: acts as an intermediary between the compute node and the

database node. This is to make the communication to the database from the

compute nodes more secure.

– Nova-scheduler: takes VM requests from a common queue and determine to

which host it should go.

71

– Nova-compute: creates and terminates VMs through hypervisor APIs such as

KVM and Xen.

2. OpenStack image (called Glance):

Registering, discovering and retrieving virtual machines is done by using the

glance component. This component is generally responsible for any operation

related to the virtual machine image.

3. OpenStack Networking (called Neutron):

OpenStack Neutron is the network component of OpenStack. It is scalable and

can be deployed in a separate server to scale the cloud.

4. OpenStack Dashboard (called Horizon):

OpenStack Horizon provides a graphical interface to the users and cloud

administrators to access, monitor, and automate cloud resources.

5. OpenStack identity (called Keystone):

OpenStack Keystone is the identity management component of OpenStack and it

authenticates the cloud components and cloud users.

6. OpenStack block storage (called Cinder) and OpenStack object store (called

Swift):

OpenStack Cinder and Swift provide storage to OpenStack virtual machines. The

difference between Cinder and Swift is that Swift is storing metadata related to

objects while Cinder stores user data attached to a VM as blocks.

These components are open source python codes and they communicate by using a

central database installed in the controller node and use messaging software called rabbit

to pass information between them. The relationship between the seven components is

72

complicated as illustrated in Figure 21. All components are connected to identity services

and all components are accessible using the dashboard service.

Figure 21: OpenStack Architecture shows the seven main components of OpenStack and

communication between them [28]

73

 Testbed Implementation

To evaluate the practicality and performance of the proposed scheme, a complete proof-

of-concept prototype of a cloud-based FPGA system has been implemented using

OpenStack’s Juno release [151]. OpenStack was chosen because it is an open source,

allowing it to be modified to integrate FPGAs into cloud infrastructure. It is currently

used by about 70 % of cloud operators [152] and is highly ranked by researchers [153].

Figure 23 shows both, the logical cloud infrastructure as per OpenStack guide [28], and

the implemented physical testbed. It consists of three nodes; Compute, Network, and

Controller nodes. Two Intel PowerEdge servers each with 16 cores, 32 Gb of RAM and

700GB hard disk were used for the compute and the network nodes while an i5 PC with

4Gb of RAM and 500GB hard disk was used as a controller. Two Fixed Configuration

Ethernet switches with 16 Gbps forwarding bandwidth, 32 Gbps switching bandwidth,

and 64 MB/32MB DRAM/Flash memories provided the interconnection fabric within the

cloud. SW1 is used for cloud management and SW2 is used for clients’ communications

with their VMs and FPGAs. The cloud was attached to a LAN via the Network node as

shown in Figure 23. There are two network interfaces in each of the Compute and

Network nodes to setup the private networks necessary to setup the cloud. A 3rd interface

is in the Network node for the virtual machines (VMs) to communicate externally and

only one interface is needed in the Controller node to monitor the VM instances. Optional

components are implemented in the compute node. The network and compute nodes

contain br-int and br-ext (internal and external bridges, respectively) that are used to

share the network interface to enable users to communicate with their virtual machines.

No legacy networks were used in this work nor a storage network since storage is not

74

implemented separately. This basic setup can be easily scaled up to thousands of compute

nodes and additional networking nodes as needed.

A Xilinx Virtex-6 LX 550T FPGA prototyping board, Figure 22, (with 1 Gbps Ethernet

ports) was attached to the cloud as an autonomous HW resource using Python scripts that

implement the driver-agent model supported by OpenStack as outlined in details in [154].

The FPGA is then scheduled and assigned to a client as a conventional VM and all the

client traffic are forwarded to it.

75

Figure 22: Xilinx Virtex 6 XC6VLX550T board

A special user interface software that would run on a client’s workstation was developed.

It manages the setup and operation of an FPGA-based computing node on the cloud. It

handles all the communications between the client’s workstation and the on-cloud FPGA.

Clients can use it to establish/manage a session on the cloud-based FPGA and handle all

data transfers to/from the FPGA from/to the client’s workstation. It also handles all the

messages with the TA (using a special port), performs the key generation, encryption and

decryption of the FPGA’s configuration files, client’s data and results. The interface also

76

reports the total time elapsed in establishing the secure FPGA-based computing node on

the cloud. The trusted authority’s server was emulated by a Python script running on the

TA workstation on the LAN. It receives the client’s request, performs a random shuffle to

produce M, compute gb mod p and the hash Hash(b(M) + ID(Fi)), and send them to the

client. Since the TA is emulated within the same LAN as the client, Amazon cloud is

‘pinged’ to estimate the latency of communicating with the TA. The Ping is done for

different Amazon cloud locations using the CloudPing.info service [122]. On average, the

ping command took around 290 ms from the testbed site. This represents the round-trip

time taken to obtain the FPGA mask (M), gb mod p and the corresponding hash value

from the TA.

77

Figure 23: The implemented OpenStack cloud. (a) OpenStack Cloud implementation logical

architecture, (b) OpenStack Cloud implementation physical implementation.

For prototyping purposes, the Static Logic blocks were implemented using the FPGA’s

reconfigurable logic blocks. The Static Logic is made of the following components (a

detailed description of the Static Logic components can be found in Appendix A):

78

1. A 512-bit SHA3 hashing block to support 256-bit session keys. This circuit

was designed and implemented based on the Keccak sponge function reported

in [155]. The design required major changes to make it routable and to

pipeline it (mainly rounds steps),

2. A 256-bit AES crypto-engine based on an OpenCores core by M. Litochevski,

and L. Dongjun [156],

3. An OpenCore implementation of the modular exponentiation block (modexp)

based on the Square-and-Multiply algorithm by McQueen [157],

4. The PUF as a 2048-bit register containing a random number, and the masking

circuitry (as shown in Figure 16),

5. A main FSM to control the various signals and interactions of the static logic.

An abstracted drawing of the FSM is shown in Figure 26.

6. An Ethernet controller and a state machine to handle the data flow between

the components. Sending and receiving packets FSMs are shown in Figure 24

and Figure 25 respectively.

79

Figure 24: Receiving packets FSM

80

Figure 25: Sending packets FSM

81

The FPGA’s logic and memory utilization of the different Static Logic blocks are shown

in Table 5 along with their maximum possible frequencies. These results show that even

if the Static Logic components were to be implemented using the FPGA’s configurable

resources they would consume relatively very low resources (~5% of LUTs, ~2.5% of

flip-flops, ~1.1% of the available block RAMs, and ~0.5% of the available DSP

multipliers). Prior work ([158]–[160]) reported similar results indicating that these types

of functions can be implemented very efficiently on FPGAs.

The Static Logic was also synthesized as a custom circuit to estimate its area if it was

made as hard macros on the FPGA. The total gate count was 144,012 gates (total RAM

Figure 26: Main FSM

82

and FFs count remain the same as the FPGA implementation). Based on that, and to put

this into perspective, the total area of the Static Logic as custom HW macros is estimated

to be 0.0414 mm2 in a state-of-the-art 16/14 nm fabrication technology based on the

International Technology Roadmap for Semiconductors (ITRS) [161]. A typical state-of-

the-art FPGA would have a die area from few hundred mm2 to around 2,000 mm2 [162].

As shown in Table 5, the Static Logic synthesized on the FPGA was also relatively fast.

All components used the 100 MHz FPGA board clock since that was more than enough

to handle the board’s 1 Gbps Ethernet traffic. The SHA3-512 achieved a throughput of

237MB/s and a latency of 27 cycles to process 64B of data. Hence, the extra hashing step

for the variant protocol of Figure 15 will only add 27 cycles to the authentication time.

Similarly, the AES-256 module had a throughput of 235MB/s and 40 cycles latency for

16B of data. In fact, it only takes 17ms to encrypt/decrypt a 4MB file. Modexp

component is rarely used and it is used only at the beginning of the session. It takes less

than 0.7ms to perform modular exponentiation for 256 bit base and exponent with the

256 bit modulus. The latency of our basic masking circuitry is 2048 cycles for the 2048

bit PUF-RN. These components can be easily operated at higher frequencies to handle

higher bandwidth Ethernet links.

Figure 27 illustrates the required behavior of the on-FPGA Static Logic. Upon receiving

M and ga mod p from the Ethernet controller, M_valid and ga_mod_p_valid signals

should go high for one clock cycle. M_valid strobes the masking circuitry to produce b

which would be used by the modexp and SHA3 modules to start producing gb mod p and

the corresponding hashes. g was set to 2 and p to a 256 bit random number. Once

Hash(b(M)+ID(Fi)) is ready, SHA3_out_valid signal should go high for one clock cycle.

83

Similarly, gb_mod_p_valid should go high for one cycle when gb mod p becomes valid.

The FPGA can then receive the encrypted configuration, decrypts it, and then use the

ICAP to configure the client partial region.

84

Table 5: Static Logic resource consumption.

Static Logic LUTs FFs BRAMs DSP FMax (MHz)

Full System
16,546

(4.81%)

17,488

(2.54%)

14*

(1.11%)

4

(0.46%)
212.8

SHA3-512
7,573

(2.20%)

2,211

(0.32%)

0

(0.00%)

0

(0.00%)
273.9

Ethernet

Controller

1,302

(0.38%)

1,045

(0.15%)

12

(0.95%)

0

(0.00%)
234.6

AES-256
4,068

(1.18%)

1,215

(0.18%)

2

(0.16%)

0

(0.00%)
264.0

modexp
6,816

(1.98%)

3,595

(0.52%)

0

(0.00%)

4

(0.46%)
130.6

Masking

circuitry

3,100

(0.90%)

4,349

(0.68%)

0

(0.00%)

0

(0.00%)
430.3

FSM
2,488

(0.72%)

2,460

(0.36%)

0

(0.00%)

0

(0.00%)
413.6

* ~ 264 Kb out of 22,752 Kb total.

Figure 28 shows the actual signals obtained from the implemented prototype using Xilinx

Chipscope (a technology that allows real-time monitoring of on-FPGA buses). Only the

least 32 significant bits of each bus are displayed in Chipscope since the maximum

triggers that can be shown in Chipscope is 256 bits. In addition, the signals were captured

from three successive runs. In the 1st run (Figure 28(a), M is first received, then ga mod p

is received, b is generated by the masking circuitry, then hash(b+ ID(Fi)) is computed and

sent back to the client. For the 2nd run, Figure 28(b), both M and b are set as constants to

85

the values that were sent/computed in the 1st run, then gb mod p is computed followed by

gab mod p. However, since each modular exponentiation operation takes about 70,000

cycles, ChipScope is only triggered before the last 100 cycles or so gb mod p generation

(gab mod p generation is not shown). Finally, for the 3rd run, Figure 28(c) shows

receiving the encrypted configuration and decrypting it (the Chipscope output cursor

position shows the decrypted configuration synch word “665599AA”). As this Figure

shows, the implemented Static Logic achieves the correct required behavior.

Figure 27: The expected behavior of the Static Logic.

86

Figure 28: Chipscope screenshots showing the various signals of the implemented Static Logic. (a)

Receiving M, ga mod p and producing the hash value, (b) gb mod p generation, (c) Receiving the

encrypted partial configuration. The output cursor points to the beginning of the configuration

(665599AA).

87

To evaluate the practicality of the proposed scheme, the setup time of an FPGA-based

computing node on the cloud was measured and compared to conventional SW-based

virtual-machines image boot time on the same cloud. Figure 29 shows a snapshot of the

user interface SW. It shows the sequence of events to establish a secure session on the

FPGA. Table 6 shows the boot times for various virtual machine instances with CirrOS

images on the OpenStack-based cloud implementation testbed. The boot requests were

issued from a client workstation on the same LAN as the cloud testbed. CirrOS is a 12

MB OpenStack small Linux based operating system image that is used for testing images

in OpenStack clouds.

As Table 6 shows, it took 41 seconds to boot a medium size VM within the same cloud.

Using the same client-cloud configuration, a secure FPGA-based computing node (with

10 MB configuration file) is booted in about 2.8 seconds as shown in Figure 29. This is

about 15 times faster than a medium size VM on the same cloud. Moreover, considering

a client having an internet connection with a speed equals to the global average speed of

the internet (i.e. 6.3Mb/s [163]) he/she can establish a session from his/her location to the

on-cloud FPGA in about 14 seconds.

88

Figure 29: The user C# interface showing the message exchanged during session establishment.

Table 6: Boot time (in seconds) for different virtual machine sizes on the implemented OpenStack

cloud.

VM Size Virtual cores RAM Disk Ephemeral Storage Boot time(sec)

xlarge 8 16 GB 10 GB 160 GB 52

large 4 8 GB 10 GB 80 GB 46

medium 2 4 GB 10 GB 40 GB 41

small 1 2 GB 10 GB 20 GB 34

tiny 1 512 MB 1 GB 0 GB 30

To evaluate the performance of our scheme and compare its time with Intel SGX, an

image processor was used as a user application. The image processor was compiled from

c using chips2 [164] and is performing images (bitmap format) edge detection using

Sobel operator [165]. The processor was installed and connected with a python script to

89

send the images and receive the output. The design work at the Ethernet speed of at least

80 Mbytes/s. The synthesis report of the image processor is in Table 7.

Table 7: The image processor resource utilization

FF 560 (0.0815 %)

LUTs 1278 (0.3719 %)

BRAMs 11 (1.7405 %)

Frequency 199.233MHz

The experiments for measuring SW (python) performance were carried on a Xeon

machine with the following specifications; Intel Xeon CPU with 8 core 3.20GHz, 23.5

GB of memory, 2 TB of disk, and 64-bit Ubuntu 14.04 OS. The experiments were carried

over 1G bits of data and Table 8 reports the time it takes for different percentage of the

1G bits of data, where normal python script time to process the data in plaintext is 6.03

seconds. FPGA_1GE is an FPGA with 1 Gbps Ethernet and FPGA_10GE is an FPGA

with 10 Gbps Ethernet. Compared to Intel SGX results obtained from [166], our solution

is much faster for larger data making it more suitable in terms of performance to cloud

applications and streaming analytics. Results of [166] depicted that a data larger than 8

MB (which is the L3 cache size) will make the SGX 5.5x slower due to the overhead of

cryptographic operations performed while the data leaves the CPU package and a data

beyond 92 MB (which is close to the maximum size of 128 MB of the EPC of Intel SGX)

will cause Intel SGX to be 200x slower due to the overhead associated with Intel SGX

page swapping. An alternative method for processing data larger than 92 MB using Intel

90

SGX is to keep the data encrypted out of the SXG enclave and the client application

enters the enclave when needed. This includes calling the enclave, reading the encrypted

data, decrypting it inside the enclave, processing the data, encrypting the results, exiting

the enclave and writing the enclave data back to the disk. This way, the data may be

processed in smaller chunks; reducing the overhead associated with larger data and

avoiding page swapping. However, entering the enclave to process sensitive data is

highly dependent on the application using the enclave. Also, entering and leaving the

enclave is costly as illustrated by Zhao et al. [127] and considering an enclave call per

8000 instructions leads to an overhead of 467% compared to executing instructions

without calling an enclave. In our comparison, we assume the overhead of processing

chunks greater than 8 MB and less than or equal to 90 MB to be 5.5x as this is the

minimum slowdown reported in [166]. This slowdown is also reasonable for streaming

applications (like our image processor) that has no data dependency, which makes it

possible to divide the data into chunks less than 92 MB.

91

Table 8: Performance comparison with Intel SGX

Time (sec)

Data size

(MB)
% from 1Gb SGX FPGA_1GE FPGA_10GE

134.22 100 33.18 5.03 3.52

120.80 90 29.86 4.53 3.17

107.37 80 26.54 4.03 2.82

93.95 70 23.23 3.52 2.47

80.53 60 19.91 3.02 2.11

67.11 50 16.59 2.52 1.76

53.69 40 13.27 2.01 1.41

40.27 30 9.95 1.51 1.06

26.84 20 6.64 1.01 0.70

13.42 10 3.32 0.50 0.35

12.08 9 2.99 0.45 0.32

10.74 8 2.65 0.40 0.28

9.40 7 2.32 0.35 0.25

8.05 6 1.99 0.30 0.21

6.71 5 0.06 0.25 0.18

5.37 4 0.05 0.20 0.14

4.03 3 0.04 0.15 0.11

2.68 2 0.02 0.10 0.07

1.34 1 0.01 0.05 0.04

92

4.4 Client’s Circuit Intellectual Properties on the Cloud

The problem of protecting Client’s Circuit IPs in the cloud is unique and different than

protecting the IP in an FPGA owned by a client. The client is the party that sends the

encrypted configuration to the cloud (including his application and the IP). Normally,

protecting an IP in an FPGA owned by a client (i.e. one client) involves ensuring that

only the FPGA that is supposed to use the IP is configured (i.e. prevent cloning the IP),

which is not the case for the on-cloud FPGA as the FPGA assigned to the client is

unknown to the IP core vendor (CV). Our scheme discussed in previous sections can be

used to protect the IP core in the cloud from any party, including the client and the cloud

provider. The scheme needs to be modified, as in Figure 30, to be used for protecting

third party IPs. Basically, a static logic is needed to receive the IPs and it contains a

controller that controls the masking circuitry and the ICAP interface for partial

reconfiguration and a decryption module to decrypt the IP and its key. The steps needed

to securely partially configure the on-cloud FPGA are as follows:

1. CV enrolls IP to the TA by providing the key IP_key.

2. TA encrypts the key using b that is produced by applying a mask m.

3. TA sends the user M, the encrypted IP_key (Enc(IP_key))and hash of b.

4. CV sends the IP encrypted using IP_key to the client.

5. The user sends M to FPGA i.

6. FPGA i generates b.

7. User sends Enc(IP_key).

8. FPGA decrypts Enc(IP_key).

93

9. Users sends encrypted IP.

10. FPGA decrypts it and uses ICAP to configure the partial region of the IP.

Figure 30: The framework for protecting IPs in the cloud

The CV might need to check for integrity of its IP while running in the FPGA and a new

mechanism should be developed to provide such checking. In our scheme, the hash of the

IP should be sent to the client encrypted using the CV private key so that only the CV can

decrypt the hash.

The infrastructure for this modified scheme is similar to the original scheme when used

for protecting client data who use IPs in his design from third parties, and only the main

state control should be modified to accept more than one M and to store the CV’s private

key. It is observed that this modified scheme is extending our proposed original scheme

to the visualized FPGAs where multiple clients’ configuration can securely run in one

94

FPGA in the cloud. The FPGA static logic should be the same and only the FPGA

management would be changed, as discussed by Stuart Byma and steffan [154].

4.5 Conclusions

In this work, a new FPGA-based scheme for securing users’ data (and applications) in

clouds is proposed. It was shown that the proposed protocol for establishing a secure

session on a cloud’s FPGA provides strong protection against various types of attack. A

complete proof-of-concept prototype implementation of the scheme showed that it is

feasible even with existing FPGAs, simple to implement, efficient in terms of resource

utilization and takes less time to boot as compared to conventional software-based virtual

machines. The proposed scheme achieves perfect forward secrecy, provides

authentication of the on-cloud FPGAs by the clients and integrity checking of client

configuration to prevent any modification and/or other FPGA related attacks such as

reverse engineering and cloning.

95

5 CHAPTER

SECURE DATA PROCESSING FOR CLOUD-

INTEGRATED INTERNET OF THINGS USING FPGAS

In this chapter, we describe our novel scheme to secure IoT data processing in the cloud

from various kinds of attacks, including attacks from insiders. This includes the

protocols, and all the HW and SW components required to implement the proposed

scheme. The scheme achieves perfect forward secrecy, provides FPGA authentication, a

secure way to establish a symmetric session key between the on-cloud FPGA, the IoT

device and the client, and user’s configuration integrity check while running in the cloud

FPGA. Furthermore, a symmetric proxy re-encryption (PRE) is proposed to suite the

publish/subscribe systems of IoT. Not only does the implementation show the feasibility

of the proposed scheme (in terms of applicability to current FPGAs), but it shows that it

has very efficient resource utilization. Furthermore, synthesis results showed that this

infrastructure logic would take a total area of about 0.0380 mm2 in a state-of-the-art

16/14 nm fabrication technology if implemented as custom circuits on the FPGA (i.e.

Hard Macros). Experiments also showed that our proposed PRE is best suited in FPGAs

for better performance. Our PRE takes less than 6 seconds to transform a ciphertext of

size 1 Gb in SW and about 1 second in FPGAs using 1 Gbps Ethernet.

96

5.1 Introduction

Internet of things (IoT) is penetrating to all physical fields, including homes,

manufacturers and urban spaces, and is expected to dramatically grow in near future.

According to Gartner report [167], IoT devices are expected to reach around 21 billion by

2020. This massive number generates a massive amount of data that need to be stored,

aggregated and processed to make a value of the data produced by the IoT devices.

Securing sensitive data collected from IoT devices is a crucial issue that needs to be

considered and is one of the top issues in IoT ecosystems [168].

The amount of data collected from IoT devices is very large and the cloud is the natural

paradigm for storing and processing such huge data. In fact, leading cloud companies

already developed platforms for IoT such as Amazon AWS IoT [169], Microsoft Azure

IoT Suite [170], and IBM Watson Internet of Things [171]. To this end, cloud computing

can be thought as a marketplace for many services that share and handle the data. When it

comes to the security of the data, it is the responsibility of the marketplace owner to

provide adequate infrastructure for securing the data and it is the responsibility of the data

owner to maintain the security of his data and use the right infrastructure in the cloud.

In addition, IoT follow the publish/subscribe fashion and data come from multiple

sources (publishers) and can be processed by any cloud component (subscriber). To

secure such data in the cloud, a symmetric proxy re-encryption is needed to convert

publisher’s ciphertext to a ciphertext that can be decrypted by the subscriber(s). The

proxy re-encryption is needed to avoid decrypting the ciphertext while converting it and

the proxy re-encryption should be symmetric to allow using symmetric encryption which

is more efficient as compared to asymmetric encryption.

97

However, the cloud is not fully secure for sensitive data of IoT devices, especially from

insider attacks. Sensitive data requires much security mechanisms than any other security

critical systems requires such as banks systems. Factories might be damaged and people

might be injured or even die when such sensitive data is compromised. In the cloud, the

IoT data becomes more valuable and more exposed to attacks when aggregated and

processed to be presented.

Compared to conventional software-based systems, FPGA configuration does not require

the involvement of operating systems, drivers or compilers, making them suitable to build

security solution under more robust attack models and stronger security guarantees.

FPGA holds potential to deliver more sophisticated solutions for modern machine-to-

machine communication and big data applications [5]. FPGAs can be used to process

data in the edge (near the IoT devices) or can be integrated with other cloud HW

resources to form flexible, scalable, independent and secure compute resources within the

cloud infrastructure. Therefore, clients can securely use FPGAs to perform the

computation of their sensitive IoT data in the cloud in a secure manner while utilizing the

benefits of the cloud and the fast and secure computation of the FPGAs.

In this work, a novel scheme that utilizes FPGAs to secure IoT data processing and

secure the applications that use them in the cloud is proposed. The proposed scheme

protects against various types of attacks, provides FPGA authentication, ensures fixed

logic and user’s application integrity, and data confidentiality. Architectures for

integrating FPGAs into the cloud to implement the proposed scheme have also been

developed. Furthermore, a symmetric proxy re-encryption has been developed that suits

processing IoT data in the cloud. We also provide a complete prototype of our scheme

98

and the proxy re-encryption in FPGAs and discuss their performance in detail. Our

solution is scalable (paramount to any cloud-based computing), thus have great potential

for secure cloud-based computing as discussed also by other researchers [139].

In Section 5.2 various business IoT architectures are reviewed and in Section 5.3 an

overview of the proposed scheme is introduced, including the protocol, its security

analysis, the related framework (HW and SW components), and the proposed proxy re-

encryption. Experimental results are presented in Section 5.4. This includes the complete

implementation of the proposed scheme and proxy re-encryption in FPGAs and the

details of all components, their implementation details and performance figures. It also

provides performance comparisons between our FPGA-based proxy re-encryption and a

software version of it implemented in python. Finally, conclusions are presented in

Section 5.5.

5.2 Cloud-Integrated IoT Security Models

In this section, we discuss business cloud-integrated IoT platforms including Microsoft’s,

IBM’s, Google’s, Amazon’s and Intel’s IoT platforms. The business models are studied

because there are no clear research directions when it comes to IoT in the cloud.

Figure 31 shows the architecture of Microsoft Azure cloud for IoT [172]. There are three

parties in this architecture, the IoT client (the IoT device), the cloud and the client

(personal mobile devices and business systems). The client is connected to the cloud and

gives actions (commands) to the IoT device through the cloud (there is no direct channel

between the client and the IoT device).

99

The Components of the cloud are:

• Cloud gateway: A cloud gateway is a system that enables remote communication

from and to the IoT devices.

• Provisioning API: to make the device known to the cloud. It includes registering

and removing the device from the cloud, activating and deactivating the device.

• Stream processors: typically moving or routing data without any transformation.

• Device state store: stores IoT device information such as its ID and registry

record.

• App backend: The application back end implements the required business logic of

the solution.

• Solution UX: The solution user experience typically includes a website, but can

also include web services and APIs with a graphical user interface in the form of a

mobile or desktop app.

• Business integration connectors and gateway(s): The business integration is

responsible for the integration of the IoT environment into downstream business

systems. Typical examples include service billing, customer support.

• In addition to these components, Microsoft developed the data factory component

[3] that is used for data transformation and distribution (e.g. MapReduce).

100

Figure 31: Microsoft's Internet of Things security architecture [172]

The IBM [173], Google [174], Intel [175] and Amazon [169] IoT architectures are

similar to the Microsoft’s architecture and they use what they call pipelines to collect and

aggregate data from the IoT devices. It can be seen from these architectures that the flow

is similar and only the way of handling is different from provider to provider. Further, the

data collected from the IoT devices are pre-processed and converted to be processed by

an application backend.

Research on IoT security falls mainly into efficiently authenticating IoT devices and

securing the end-to-end communication. Due to the impracticality of standard security

solutions for authenticating the constrained IoT devices, lightweight authentication

methods were proposed. These methods include homomorphism [176], Elliptic Curve

Cryptography (ECC) [177] and DTLS protocol based authentication [178]. Commercial

cloud based IoT platforms use industry-standard protocols such as TLS and X.509 to

secure communication between the IoT devices and the cloud [172]. In addition, several

lightweight communication protocols were proposed; including protocols based on public

101

key infrastructure [179], IPv6/6LoWPAN [180], integrating DTLS and CoAP [181] and

SSL [182]. Researchers have also proposed various IoT security architectures and

discussed technologies that can be used to support IoT security. Layered security

architectures were proposed [183] [184] for IoT security and a security verification. The

layers cover various techniques related to IoT security such as key management,

encryption oracles and access control. These architectures conceptually cover various

attacks and mitigation techniques in each layer. A middleware was proposed in [185] to

meet the scalability and the high number of heterogeneous devices of the IoT system. The

middleware mainly targeted developing a security algorithm to tackle packet sniffing,

man-in-the-middle attack and identity spoofing in the IoT environment. An architecture

based on lightweight identity based cryptography (LIBC) with elliptic curve

cryptography (ECC) was proposed in [186] to solve security issues related to cloud-

integrated internet of things environment. However, these architectures neither

considered attacks from inside the cloud nor provided any or complete implementations

to demonstrate their practicality.

5.3 The Proposed Scheme

In this section, we discuss our scheme that is compliant to the architectures discussed in

earlier section. Particularly, we target the IoT data handling with the security added and

we also consider the data transformation in secure manner.

102

In this work, we assume that the on-cloud FPGA devices have the following capabilities,

similar to the capabilities assumed in Chapter 4, most of which already exist in current

FPGAs:

– Uniquely identifiable using any public identifier such as a printed serial number

or other means such as a unique device DNA, similar to that found in Xilinx

FPGAs [140]. This nonvolatile, unchangeable and permanently programmed

value can be used to authenticate FPGAs running client’s configuration. However,

device DNA alone is not suitable for device authentication as was illustrated in

[141].

– External reconfiguration and readback ports are disabled [142]. External ports

such as JTAG and SelectMAP are used to program FPGAs and to read back the

configuration in its current state inside an FPGA for debugging purposes.

– Configurable through an internal configuration access port (ICAP) such as in

Xilinx devices [142]. An ICAP receives the configuration bit stream from the

Static Logic and partially configures another portion of the FPGA. Hence, the

FPGA should also support partial reconfiguration,

– Supports readback of static configuration contents such as Look-Up-Tables,

interconnects, and I/Os only, but cannot readback dynamic data such as RAM or

Flip-Flop contents.

– Have standard high-speed communication ports such as 100 Gigabit Ethernet to

enable their in-cloud usage.

We use IoT device to refer to IoT capable device, constrained IoT device or IoT gateway.

In case the IoT device is constrained, the IoT gateway is responsible for communicating

103

with the cloud and the FPGAs. Client application and client are used interchangeably in

this work.

Figure 32 shows the parties involved in our proposed scheme. In addition to the client,

the IoT device and the Cloud Provider (CP) who is providing FPGA-based processing as

a service, the FPGA Vendor (FV) who sells FPGA devices to cloud operators also acts as

a trusted authority (TA). It is not necessary that the FPGA manufacturer is the TA.

Alternatively, an OEM (board) manufacturer could act as the TA. In this case, it will get

the PUF-RN from the manufacturer. The cloud is positioned between the clients’

applications and the IoT devices and is used for data store and processing and also for

command forwarding, as we consider that there is no direct communication between the

client application and the IoT device (similar to the cloud business models of Microsoft

[172] and IBM [171] for IoT). Therefore, IoT devices receive commands from the cloud

and send data to the cloud to be stored and processed and can be viewed by the clients’

applications. The processing is secured in the cloud using the FPGAs. Data

transformation is handled by the proxy. The trusted authority is an important party that is

used to facilitate authentication and secret sharing among the communicating parties.

104

Figure 32: The framework of the proposed scheme.

 Description of the Proposed Symmetric Proxy Re-encryption

In order to handle the data from IoT device in the cloud, the cloud takes several steps to

make a value of the data that usually comes from different IoT devices and get collected,

stored, aggregated, and processed to form the final result. When the data is encrypted, the

cloud processing backend would have to use different keys for each data they process and

similarly the IoT device needs to send the data encrypted to a specific processing

component which is not suitable for the cloud computing paradigm. Therefore, we

propose a proxy re-encryption (PRE) that would be in the cloud and would transfer the

data encrypted by the IoT devices keys to a data encrypted by the processing components

keys and would make it possible to transform IoT data to be processed by any processing

component without the need to resend the data by the IoT device.

The proxy re-encryption is shown in Figure 33. User A wants to authorize user B to

decrypt the data that is stored or going to be stored in the cloud in the format data* gr

105

mod p, where gr mod p is user’s A private key. User A and B first share a session key gab

mod p using Diffie-Hellman (DH) key exchange [26]. User A then sends the re-

encryption key (rK) to the proxy that is residing in the cloud. The rK is computed by

multiplying the session key by the multiplicative modular inverse of the IoT device

private key (gr mod p). The proxy uses the rK to convert the data by multiplying the data

by rK and sends the result to user B. The data is now converted to the format data* gab

mod p and user B can decrypt the data by dividing it by the shared session key (gab mod

p). Observe that the scheme allows any number of users to share the data produced by

user A. The division is done using the multiplicative modular inverse and all operation is

done with the mod taken and hence the data going in/out to/from the proxy is of the same

size. The proof of security of our scheme is straight forward and follows directly from the

proof of BBS proxy re-encryption [59].

The PRE can be used in the cloud for IoT data processing assuming that user A is an IoT

device and user B is an on-cloud FPGA(s). Therefore, the proxy and the FPGA are in the

cloud and they are geographically close to each other, which makes the conversion fast.

The only operations that need communication outside the cloud are the FPGA

authentication and the sharing of a session key with it. It is worthwhile to mention that

using shared key in the PRE is a valid property in our case of using the PRE for IoT data

conversion in the cloud since sharing the key should be performed between the IoT

device and the on-cloud FPGA.

The properties of the PRE discussed in Section 2.5 that are important in the cloud with

FPGAs are highlighted below:

1- Unidirectional: this property is not required in our case.

106

2- Non-transitive: this is achieved in our PRE as the re-encryption key must be

provided by the delegator.

3- Collusion-resistant: this is not important property in the cloud environment and

with the use of FPGAs.

4- Non-interactive: The private key is needed to establish a session with the IoT

device and our PRE is symmetric.

5- Multi-use/Single-use: this property is not needed in the cloud.

6- Key-privacy: our proxy is part of the pipeline infrastructure in the cloud and this

property is not needed as the identity of the IoT device and the FPGA is handled

by other cloud components rather than the proxy.

7- Transparent: our PRE is transparent.

8- Key-optimal: our PRE is key-optimal.

9- Temporary: our PRE has temporary property.

Our symmetric proxy re-encryption scheme brings the following advantages when

processing IoT data in the cloud:

– The whole process depends on key sharing and not on the data management,

– The scheme is suitable for both the IoT ecosystems and the multi-tenant nature of

the cloud computing. Any authorized party can use the data without the data

source involvement,

– The FPGAs and IoT devices remain as a worker or as a resource and they are not

directly involved in data sharing with applications.

107

– The PRE makes it possible to secure the publish/subscribe system of the IoT

devices and the on-cloud FPGAs.

 The Proposed Security Protocol

The proposed protocol for securing the communication between the client application, the

IoT devices, and the on-cloud FPGA is illustrated using the sequence diagram in Figure

34. The client application is a piece of software that is responsible for authenticating the

FPGA, securely sharing keys with the FPGA, securely sending configuration bitstream

and checking the configuration integrity while the configuration bitstream is running in

the FPGA. On the IoT device side, the IoT device also needs to authenticate the FPGA

and share a key with it. The IoT data is stored in the cloud using one key (gr mod p) and

the IoT device gives delegation for the authenticated FPGA to decrypt and process the

data.

Figure 33: The proposed symmetric proxy re-encryption

108

– The protocol is initiated by the client who sends a request for a physical resource

(i.e. the FPGA) to the CP. The FPGA is assigned to one client and can receive

data from multiple IoT devices. The CP assigns an FPGA for the client and sends

back its identifier (ID(Fi)) (step 1 and step 2 in Figure 34),

– The client forwards the ID(Fi) to the TA which responds with the following

FPGA authentication credentials; a session mask M that consists of an n-bit

random number with exactly L number of 1s, hash of the corresponding L-bit

number b concatenated with ID(Fi), and the FPGA’s session key portion (gb mod

p) (step 3 and step 4 in Figure 34). Note that both g and p are public values with g

usually being a small integer such as 2 and p being a prime number satisfying the

condition gb ≥ p. Similarly, ga must be ≥ p,

– The client forwards M and its own portion of the session key, ga mod p, to the CP

and requests FPGA authentication credentials. The FPGA will use M to generate

b using the masking circuitry (step 5 in Figure 34). The FPGA uses b to generate

its portion of the session key, (gb mod p), computes Hash(b+ID(Fi)), and sends

the result back to the client (step 6 in Figure 34). The client can now authenticate

the FPGA by comparing the values of Hash (b+ID(Fi)) and (gb mod p) received

from the TA and CP. This prevents MiM and FPGA impersonation attacks [26].

Both parties now share the symmetric session key gab mod p, completing the

Ephemeral Diffie–Hellman key exchange. At this point, a and b are destroyed by

the client and the FPGA, respectively. In addition, the session key will be

destroyed at the end of the session to achieve the desirable security feature of

Perfect Forward Secrecy (PFS),

109

– The client sends his/her circuit’s configuration bitstream Bit(client) encrypted

using gab mod p and the fixed logic on the FPGA will then decrypt it and use it to

configure the FPGA through the ICAP (step 7 in Figure 34),

– The CP broadcasts the ID of the FPGA to the client’s IoT device. The IoT device

then sends the FPGA ID to the TA and the TA responds with a new mask (M1)

along with the hash and the key portion of the Diffie-Hellman key exchange (gb1

mod p). The IoT device requests FPGA authentication by sending M1 and its

Diffie-Hellman key exchange portion (ga1 mod p) to the FPGA. The FPGA

responds by providing the hash and the (gb1 mod p). The IoT device can then

compare the hashes and keys portions received from both the TA and the FPGA

(steps 8-12 in Figure 34). If there is a match, the session will be established.

Otherwise, it will be terminated,

– The FPGA encrypts the key (b1), which is generated by the PUF circuitry, using

the session key established (ga1b1 mod p) and sends it to the IoT device (step 13 in

Figure 34). The IoT device sends the re-encryption key (rK1 = b1/gr mod p) to the

on-cloud proxy which in turn transforms the IoT device data that is encrypted

using (gr mod p) to be encrypted using b1 as in the scheme discussed in Figure 33

and sends the re-encrypted data to the FPGA (step 14 and step 15 in Figure 34).

The FPGA receives M1 from the CP and regenerates b1 and decrypts the data and

sends the result to the client after encrypting it using the session key (gab mod p).

The value b1 is regenerated to avoid storing large number of keys thereby

eliminates the need for memory resources needed to store the keys and allowing

any number of IoT devices to process their data in the FPGA,

110

– To protect against any circuit tampering (e.g. HW Trojans or sniffing circuitry

inserted on the FPGA), the client chooses a secure random value RN, encrypts it

with the gab mod p and sends it to the FPGA requesting configuration readback.

The Static Logic decrypts RN, reads back the FPGA configuration, hashes it with

RN, encrypts with the session key, and sends it back to the client (steps 17 and 18

in Figure 34). The client can use this to validate the integrity of the FPGA. This

check can be repeated any number of times (with a new RN every time to prevent

replay attacks), during the operation of the client’s circuit on the FPGA.

111

Figure 34: The sequence diagram of the protocol.

112

The steps above are repeated for every session and M is never repeated. For step 13 in

Figure 34, b1 could be XORed with a private static FPGA number and the resulted key

would be sent to the IoT devices instead of b1 to avoid exposing b1 outside the FPGA. It

should be noted that this scheme also supports 3rd-party provided circuit IPs (i.e. the

circuit is provided by an IP vendor). In this case, to protect the circuit IPs, the IP vendor

will encrypt the circuit IP(s) using a different Mask and key obtained through similar

steps, and perform the integrity checks.

113

 Security Analysis

This section, similar to section 4.2.6, summarizes the possible attacks of our IoT scheme

and the countermeasures the scheme is providing. Table 9 summarizes most popular

attacks and describes what protection mechanism our scheme can provide to prevent

these attacks.

ProVerif [187] was used for automatic verification of the proposed protocol and to ensure

that the protocol does not suffer from any vulnerabilities. The following assumptions

were made:

• We modeled the interactions between the IoT-device and the FPGA as this also

models the interactions between the client and the FPGA,

• The attacker has access to all communication channels except for private

channels,

• To verify the match of the hash values received from the TA and the FPGA in the

IoT device side, these values are sent to the IoT device and the FPGA. The FPGA

then send the value received from the TA to the IoT device to emulate the

operations of the b generation and its corresponding hash value,

• The channel between the IoT device/FPGA and the TA is private,

• The attacker is active which means that the attacker has full access to all messages

and can send or replay messages in the communication channels.

Appendix C shows the ProVerif code of our proposed protocol which consists of the

following parts:

• Channels involved and adversary model are in lines 3-8,

114

• Encryption/decryption and hash functions models are in lines 9-16,

• The TA operations are in lines 19-22,

• The IoT-device operations are in lines 23-29,

• The FPGA operations are in lines 30-34.

The results of this ProVerif code shows that the query is true; indicating that the protocol

is free from vulnerabilities.

Table 9: Summery of countermeasure against most popular attacks

Attack category Attacker Countermeasures

Malicious proxy
malicious

insider

This attack is ineffective because the data is not decrypted

by the proxy and the attacker sees encrypted data only.

Proxy and IoT

device collusion

malicious

insider who

impersonates

the IoT device

If the proxy and the IoT device collude by impersonating

the IoT device, the scheme is still secure since the b key is

known to the attacker and different key is used every

session.

Proxy and

FPGA collusion

malicious

insider who

impersonates

the FPGA

This attack is prevented by using the PUF-RN which is

known to the FPGA and the TA only. Further, the private

key of the IoT device is not exposed to any party, including

the FPGA.

Cryptographic

attacks

assumed to be a

malicious

insider who

tries to break

the

cryptographic

oracle and

obtains the

No plaintext version of any encrypted data is ever made

available to any party other than the one who generated it

(i.e. any data outside the FPGA is encrypted). open key

attack model is prevented using the PUF, which produces

random uncorrelated numbers from which the key is

generated. In addition, the steps of the protocol are

repeated for every session, the session mask (M) is never

repeated for stronger protection, and b is never disclosed as

115

session key

established

between the

client/IoT

device and the

FPGA.

a plaintext to the client or to any other party.

Network attacks

assumed to be a

malicious

insider/outsider

attempting to

impersonate the

FPGA and/or

obtain sensitive

data.

impersonation Prevented as shown in Figure 18

MiM Prevented as shown in Figure 19

replay Replaying the values to be sent by the

FPGA is prevented because M is never

repeated. Integrity checking is also

secured through the use of the symmetric

session key, and replaying it is prevented

through the use of the newly client-

generated random number (RN).

Physical and

FPGA attacks

assumed to be a

malicious

insider that has

access to the

FPGA devices

in the datacenter

and is trying to

obtain the

device secrets

and the IoT

sensitive data.

invasive

Damage the FPGA and any divulged

secrets such as the PUF-RN are useless

because it is only unique to that FPGA.

non-invasive

All blocks of the static logic have constant

processing time (i.e. cycles). Similarly,

Power and Electromagnetic Radiation

analysis attacks are mitigated due to the

use of differential PUF-RN circuitry and

similar techniques for the security

components such as the RSA [188]; the

power/electromagnetic profiles do not

depend on the value of b or the shared

key.

semi-invasive
The required knowledge and equipment

are beyond a malicious insider.

116

5.4 Results and Discussion

In this section, we describe the FPGA implementation of the proposed protocol and

report its resource overhead as well as the PRE performance of both software and FPGA

implementation.

 FPGA Implementation

To evaluate the practicality and performance of the proposed scheme, a complete proof-

of-concept prototype of an FPGA system has been implemented. A Xilinx Virtex-6 LX

550T FPGA prototyping board (with 1 Gbps Ethernet ports) was used for the prototype.

For prototyping purposes, the Static Logic blocks were implemented using the FPGA’s

reconfigurable logic blocks. The Static Logic is made of the following components:

– A 512-bit SHA3 hashing block to support 256-bit session keys. This circuit was

designed and implemented based on the Keccak sponge function reported in

[155]. The design required major changes to make it routable and to pipeline it

(mainly rounds steps),

– A 256-bit modular multiplier based on the interleaved modular multiplication

algorithm [189],

– An OpenCore implementation of the modular exponentiation block (modexp)

based on the Square-and-Multiply algorithm by McQueen [157]. The modexp was

also used to implement the multiplicative modular inverse,

– The PUF as a 2048-bit register containing a random number, and the masking

circuitry (as shown in Figure 16),

117

– An FSM, Figure 35, to control the components of the static logic.

– An Ethernet controller and a state machine to handle the data flow between the

components.

Figure 35: Main FSM of the IoT scheme

118

The FPGA’s logic and memory utilization of the different Static Logic blocks is shown in

Table 10 along with their maximum possible frequencies. These results show that even if

the Static Logic components were to be implemented using the FPGA’s configurable

resources they would consume relatively very low resources (~5% of LUTs, ~2.8% of

flip-flops, ~1.9% of the available block RAMs, and ~3.4% of the available DSP

multipliers). Prior work ([158] [159] [160]) reported similar results indicating that these

types of functions can be implemented very efficiently on FPGAs.

The Static Logic was also synthesized as a custom circuit to estimate its area if it was

made as hard macros on the FPGA. The total gate count was 112,877 gates (total RAM

and FFs count remain the same as the FPGA implementation). Based on that, and to put

this into perspective, the total area of the Static Logic as custom HW macros is estimated

to be 0. 0380 mm2 in a state-of-the-art 16/14 nm fabrication technology based on the

International Technology Roadmap for Semiconductors (ITRS) [161]. A typical state-of-

the-art FPGA would have a die area from few hundred mm2 to around 2,000 mm2 [162].

As shown in Table 10, the Static Logic synthesized on the FPGA was also relatively fast.

All components used the 100 MHz FPGA board clock since that was more than enough

to handle the board’s 1 Gbps Ethernet traffic. The SHA3-512 achieved a throughput of

237MB/s and a latency of 27 cycles to process 64B of data. Similarly, the 256-bit

modular multiplier takes 256 cycles to process 256 bits of data and can be enhanced by

making multiple copies of it to work in parallel as will be discussed in Section 3.2 below.

Modexp component is rarely used and it is used only at the beginning of the session and

when calculating the modular multiplicative inverse of b using Fermat's little theorem as

in equation (1). It takes less than 0.7ms to perform modular exponentiation for 256-bit

119

base and exponent with the 256-bit modulus. The latency of our basic masking circuitry

is 2048 cycles for the 2048 bit PUF-RN. These components can be easily operated at

higher frequencies to handle higher bandwidth Ethernet links.

Table 10: Resource utilization of the Static Logic

Static

Logic
LUTs FFs BRAMs DSP

FMax

(MHz)

Full

System

17,386 19,443 12* 29
234.9

(5.06%) (2.83%) (1.89%) (3.36%)

SHA3-

512

7,573 2,211 0 3

273.9

(2.20%) (0.32%) (0.00%) (0.35%)

Ethernet 1,302 1,045 12 19

234.6

Controller (0.38%) (0.15%) (1.89%) (2.20%)

Enc-Dec

2,107 773 0 0

134.7

(0.61%) (0.11%) (0.00%) (0.00%)

modexp

6,816 3,595 0 0

130.6

(1.98%) (0.52%) (0.00%) (0.00%)

Masking 3,340 4,349 0 2

430.3

circuitry (0.68%) (0.68%) (0.00%) (0.23%)

FSM

2,488 2,460 0 2

413.6

(0.72%) (0.36%) (0.00%) (0.23%)

* ~ 264 Kb out of 22,752 Kb total.

𝑎 . 𝑎𝑞−2 ≡ 1 (𝑚𝑜𝑑 𝑞) (1)

120

Figure 36 shows the actual signals obtained from the implemented prototype using Xilinx

Chipscope (a technology that allows real-time monitoring of on-FPGA buses). The

capturing is done for establishing a session with an IoT device, which takes more steps

than that establishing a session with the client as shown in Figure 34. Only the least 32

significant bits of each bus are displayed in Chipscope since the maximum triggers that

can be shown in Chipscope is 256 bits. In addition, the signals were captured from three

successive runs and the values should match the values in the example in Table 11. In the

1st run (Figure 36(a), M is first received, then ga mod p is received. For the 2nd run,

Figure 36(b), both M and ga mod p are set as their values in the first run as in Table 11,

then b is generated by the masking circuitry, then hash(b+ ID(Fi)) is computed and sent

back to the client. The third run (Figure 36(c)) is triggered when encrypted data is valid

thereby capturing the values of gb mod p followed by gab mod p followed by the

encrypted b that is sent to the IoT device. Figure 36(c) also shows the encrypted data and

the decrypted data along with their valid signals. The encrypted data is supposed to be the

same as re_data in Table 11. More snapshots of the design and its different components

can be found in Appendix A.

121

Table 11: keys and hash values Examples

Name
Size in

bits
Value

g 2 0x3

q 256 0xd0a6b524f46f5a59520d3efcba360545d911e748700ff141b7414405bcd22c0b

r 256 0x1b1ba9a04575d309395ed00546339621904dafe5094ed826d081af26407f00a2

gr 256 0x1302d7d599d1ec79d677e7eee28c6b565841563b17f6f3146aebc36a6382d841

a 256 0x14bb28715d971d180f7055e2098e1a8a2ff67c4090afc649dc69f2424f62ccec

b 256 0xa78fa95736cab7d8031b46104c08a0ff0786b067ffdd011fd24fd330977b67d4

ga 256 0x4b058bb3c58c38662bb2b8eb58534a24cba7e5194cedcb61c1f9cf5b0d890e78

gb 256 0xf343a2e3522bba046a7ded8510fd2d17b6ac9faa0cb96f346a21b9668bd3164

gab 256 0x6c528c1cef10ae5184e3f2a0f752b5fbb004928e80811282233b9847d3212e99

data 256 0x11

gr*data 256 0x7d36a1a577e3b7aedc9a8fcafc0baa6628bf27ed613db443cb0e1984cbf6150

rK 256 0x6e81c5e894ddb9371b6833cca4a8c39a96f79159d38ea7eee941cd9014063bb8

re_data 256 0x78c9acbd53051363d7cb66ff097e2bf568ec52055b878311360594f27612d5ea

Enc_b 256 0x97b894cce3b431462322142fec06a5d517b139ce288d92195336247f7ccf7c4f

ID 64 0xffffffffffffffff

SHA3(

b+ID)
512

0xa5ecac8593f8561a7475e729ea89aa4f118b8472260356587a3aaa804667a332791f

cb9bc8f7b1fa429286925c6e7a3abf7e22c7381f624d4046afd49a96ea12

122

Figure 36: Chipscope screenshots showing the operations of the implemented Static Logic on the FPGA. (a)

Receiving M, ga mod p, (b) Producing b and the hash values, (c) Producing gb mod p, gab mod p, encrypted b and

receiving the encrypted data and decrypting it.

123

 PRE Implementation

The PRE was also implemented in another Virtex 6 LX 550T FPGA. The proxy design

can be installed once in an untrusted manner since the data is not decrypted in the FPGA.

Our FPGA-based proxy consists of an Ethernet controller that receives TCP packets, 256-

bit modular multiplier, and an FSM to receive the rK key and accumulate the data into

256 bits chunks to be multiplied by the rK. The components of the FPGA along with their

maximum proxy are shown in Table 12. The synthesis results suggest that our proxy can

be implemented in low-cost FPGAs and there could be many multipliers working in

parallel. For a 1 Gbps Ethernet link, 10 bits can be processed every cycle. For this reason,

we decided to make a BRAMS for buffering the data that is received/sent from/to

Ethernet link and 10 multipliers to work in parallel such that 250 bits of the product result

are outputted every cycle, ignoring the latency off filling the BRAMs and computing the

first product result at the beginning.

Table 12: FPGA resource usage by the PRE Logic.

PRE

Logic
LUTs FFs BRAMs DSP

FMax

(MHz)

Full

System

21068

(6.13%)

8534

(1.24%)

12

(1.89%)

21

(2.43%)
135

ModMult

x 10

2,107

(0.61%)

773

(0.11%)

0

(0.00%)

0

(0.00%)
134.7

Ethernet

Controller

1,302

(0.38%)

1,045

(0.15%)

12

(1.89%)

19

(2.20%)
234.6

FSM
266

(0.07%)

260

(0.03%)

0

(0.00%)

2

(0.23%)
274.6

124

Figure 37 shows an example of our implemented proxy for the result and signals of one

multiplier. The image is triggered when the rk_valid signal goes high and it shows the

data_valid signal goes high. The last signal of the image is the result_valid signal and it

goes high when the result is ready or when in an ideal state. The rK is as in the example

in Table 11 and the data is what is received from the IoT device (gr mod p*data).

 Performance Evaluation

Our proxy re-encryption can be seen as a packet processer since nothing more receiving

the data and outputting the converted result is required. The natural way for

implementing packet processors is the FPGAs as explained in more details in [190].

To evaluate the performance of our FPGA implementation of the proxy, we compare it

with a software-based version implemented in python 2.7 (the script can be found in

Appendix D). We used a workstation with Intel Xeon CPU with 8 core 3.20GHz, 23.5

GB of memory, 2 TB of disk, and 64-bit Ubuntu 14.04 OS. To evaluate the software

performance, two experiments were carried out. The first experiment is to make the data

Figure 37: Chipscope image showing the operations of the PRE

125

available for the SW in arrays which means the data is entirely in the memory. For

precise measurement of the time of the SW version, the measurements were repeated

10000 times and the average of 10 runs was taken; producing the 1000 measurements in

Figure 40 for 1Mb of data. The minimum time was set to be the actual value and the

maximum time was set to be the experimental value and the percentage error was

calculated and found to be 2.76% only.

The second experiment was carried out by measuring the performance of the SW by

reading the data from the disk to model the actual performance as it is the case when the

SW runs in the cloud. Figure 42 shows the trend line of 1Mb of data. The percentage

error was found to be 3.80% only.

The FPGA implementation makes use of the data initialized in the BRAMs. Based on

these setups, Figure 38 shows the time it takes in seconds for both experiments and the

for the FPGA and Figure 39 and Figure 41 depict the speedup of the FPGA

implementation over the SW implementations. Reading the data from the disk is about

1.76x slower compared to reading the data from the memory. It can be noticed from

Figure 42 that there are some small jumps due to accessing the disk. The speedup is

shown in Figure 39 and Figure 41 for both experiments. The FPGA implementation is, on

average, 5.8 times faster than the SW implementation while the data in memory and

about 10.26 times faster than the SW implementation when the data is read from the disk.

Given the speedup obtained, if the Ethernet link speed is 10 Gbps instead of 1 Gbps, the

speedup will be about 58 when the data is read from the memory and about 102.6 when

the data is read from the disk.

126

Figure 38: Time comparison of the PRE FPGA implementation and the SW PRE. In the SW

implementation, the data is read from the memory and SW-HDD means that the data is read from

the disk.

Figure 39: The speedup obtained by our PRE FPGA implementation over PRE SW

implementation. The data is read from the memory.

0

1

2

3

4

5

6

7

8

9

1
k

2
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

1
2

8
M

2
5

6
M

5
1

2
M 1
G

Ti
m

e
in

 s
ec

o
n

d
s

Data size in bits

SW-HDD FPGA SW

127

Figure 40: The time of the python PRE over 1000 runs. The data is read from the memory.

Figure 41: The speedup obtained by our PRE FPGA implementation over PRE SW

implementation. The data is read from the disk.

0.0045

0.0047

0.0049

0.0051

0.0053

0.0055

0.0057

0.0059

0 100 200 300 400 500 600 700 800 900 1000

A
vg

. t
im

e
in

 s
eo

n
d

s

Iteration

1

6

11

16

21

26

1
k

2
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

1
2

8
M

2
5

6
M

5
1

2
M 1
G

Sp
ee

d
u

p

Data size in bits

128

Figure 42: The time of the python PRE over 1000 runs. The data is read from the disk.

5.5 Conclusions

In this work, a new FPGA-based scheme for securing IoT data in clouds is proposed,

including a symmetric proxy re-encryption. It was shown that the proposed protocol for

establishing a secure session on a cloud’s FPGA provides strong protection against

various types of attack. A complete proof-of-concept prototype implementation of the

scheme showed that it is feasible even with existing FPGAs, simple to implement,

efficient in terms of resource utilization and suites the publish/subscribe model. The

proposed scheme achieves perfect forward secrecy, provides authentication of the on-

cloud FPGAs by the clients and integrity checking of client configuration to prevent any

modification and/or other FPGA related attacks such as reverse-engineering and cloning.

0.007

0.0072

0.0074

0.0076

0.0078

0.008

0.0082

0 200 400 600 800 1000

A
vg

. t
im

e
in

 s
eo

n
d

s

Iteration

129

6 CHAPTER

CONCLUSION AND FUTURE WORK

In this dissertation, we studied the existing techniques for the problem of securing client

data in the cloud. Based on this, we proposed a novel scheme based on FPGAs to tackle

this problem. We developed all the SW/HW components of the scheme and proposed

protocols to securely communicate with the on-cloud FPGAs. We also showed that our

scheme can be easily integrated in the cloud as a cloud resource with a boot time that is

15x faster than booting a conventional VM. We also showed that in terms of

performance, our solution is faster and more secure than existing solutions such as Intel

SGX.

Moreover, we extend the space of our solutions to more challenging security situations

such as securing IoT data in the cloud. The results depicted that our scheme for handling

IoT data is efficient in terms of FPGA resource overhead and performance. We also

handle securely the transformation of encrypted IoT data in the cloud by proposing a

symmetric proxy re-encryption. Our proxy re-encryption performance was reported and

suggested that it is best suited for FPGAs to perform the transformation, which is at least

6x faster than Xeon machines when using the 1G Ethernet and is at least 60x faster when

using the 10G Ethernet.

This work can be extended in many ways. It opens huge opportunities for many

contributions. An obvious extension is using our work for securing client data for

virtualized FPGAs. Another extension is IP protection in the cloud environment. Further,

130

exploiting FPGAs for application that can be parallelized such that the benefits of

security and speed can be combined by using our schemes. For IoT and smart grids, our

solutions can be extended to function as a web services in the FPGAs and exhibit the

machine-to-machine communication, in which FPGAs are well suited for and is expected

to dominate in this field since the FPGAs brings the flexibility for bringing the

computation closer to the edge allowing the IoT data sent to the cloud to reduce in size.

131

REFERENCES

[1] I. T. Report, “The 2013 Vormetric Insider Threat Report,” 2013. [Online].

Available: ljo.es/TheVormetricInsiderThreatReportOct2013.pdf.

[2] C. I. T. Center, “How bad is the insider threat?,” 2013. [Online]. Available:

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=58738.

[3] T. Ristenpart and E. Tromer, “Hey, you, get off of my cloud: exploring

information leakage in third-party compute clouds,” in Proceedings of the 16th

ACM conference on Computer and communications security. ACM, 2009, pp. 199–

212.

[4] M. Arrington., “In our box: Hundreds of confidential twitter documents,” 2009.

[Online]. Available: http://techcrunch.com/2009/07/14/in-our-inbox-hundreds-of-

confidential-twitter-documents.

[5] P. S. Voss, “Towards unique performance using FPGAs in modern communication

, data processing and sensor systems,” in Signal Processing and Integrated

Networks (SPIN), 3rd International Conference on. IEEE, 2016, pp. 1–4.

[6] XenSource Inc, “xen.” [Online]. Available: www.xensource.com.

[7] KVM, “Kernal Based Virtual Machine.” [Online]. Available: www.linux-

kvm.org/page/.

[8] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art and

research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18, 2010.

[9] B. Jennings and R. Stadler, “Resource Management in Clouds : Survey and

Research Challenges,” J. Netw. Syst. Manag. 23.3, vol. 1, pp. 567–619, 2015.

132

[10] P. Swierczynski, M. Fyrbiak, C. Paar, C. Huriaux, and R. Tessier, “Protecting

against Cryptographic Trojans in FPGAs,” in Field-Programmable Custom

Computing Machines (FCCM), IEEE 23rd Annual International Symposium on.

IEEE, 2015.

[11] J. King and K. Lauerman, “ARP Poisoning Attack and Mitigation Techniques,”

Layer 2 Attacks Mitig. Tech. Cisco Catal. 6500 Ser., 2010.

[12] S. Kumar, “PING attack - How bad is it?,” Comput. Secur., vol. 25, no. 5, pp. 332–

337, 2006.

[13] S. Kumar, “Smurf-based Distributed Denial of Service (DDoS) attack

amplification in internet,” in Second International Conference on Internet

Monitoring and Protection, ICIMP 2007, 2007.

[14] A. Lavorgna, Loukas, George (2015). Cyber-Physical Attacks. A growing Invisible

Threat, no. No.2. 2016.

[15] D. E. Rob, Cryptography and Data Security. 1982.

[16] S. P. Skorobogatov, “Semi-invasive attacks-a new approach to hardware security

analysis,” Tech. report, Univ. Cambridge, Comput. Lab., no. 630, p. 144, 2005.

[17] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware trojan

insertion by direct modification of FPGA configuration bitstream,” IEEE Des.

Test, vol. 30, no. 2, pp. 45–54, 2013.

[18] S. Mal-Sarkar, Sanchita and Krishna, Aswin and Ghosh, Anandaroop and Bhunia,

“Hardware Trojan Attacks in FPGA Devices: Threat Analysis and Effective

Counter Measures,” Proc. 24th Ed. Gt. Lakes Symp. VLSI, pp. 287–292, 2014.

[19] E. Peeters, “Attacks with FPGA Experiments,” Ches 2005, pp. 309–323, 2005.

133

[20] A. J. Duncan, S. Creese, and M. Goldsmith, “Insider attacks in cloud computing,”

in Proc. of the 11th IEEE Int. Conference on Trust, Security and Privacy in

Computing and Communications, TrustCom-2012 - 11th IEEE Int. Conference on

Ubiquitous Computing and Communications, IUCC-2012, 2012, pp. 857–862.

[21] M.-D. Nguyen, N.-T. Chau, S. Jung, and S. Jung, “A Demonstration of Malicious

Insider Attacks inside Cloud IaaS Vendor,” Int. J. Inf. Educ. Technol., vol. 4, no.

6, pp. 483–486, 2014.

[22] X. Wan, Z. T. Xiao, and Y. Ren, “Building trust into cloud computing using

virtualization of TPM,” in Proceedings - 2012 4th International Conference on

Multimedia and Security, MINES 2012, 2012, pp. 59–63.

[23] M. Bamiah, S. Brohi, S. Chuprat, and M. N. Brohi, “Cloud implementation

security challenges,” in Proceedings of 2012 International Conference on Cloud

Computing Technologies, Applications and Management, ICCCTAM 2012, 2012,

pp. 174–178.

[24] A. A. Soofi, Khan, M.Irfan, and Fazal-E-Amin, “Encryption Techniques for Cloud

Data Confidentiality,” Int. J. Grid Distrib. Comput., vol. 7, pp. 11–20, 2014.

[25] C. Computing, “A Survey of Cryptographic based Security Algorithms for,” HCTL

Open Int. J. Technol. Innov. Res., vol. 8, no. March, pp. 1–17, 2014.

[26] R. C. Merkle, “Secure communications over insecure channels,” Communications

of the ACM, vol. 21, no. 4. pp. 294–299, 1978.

[27] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. Inf.

Theory, vol. 22, no. 6, 1976.

[28] OpenStack.com, “OpenStack Operations Guide,” OpenStack.com, 2013. [Online].

134

Available: /www.openstack.org.

[29] Chris Mitchell, Trusted Computing, 1st ed. Institution of Engineering and

Technology, 2005.

[30] R. Stallman, “Can You Trust Your Computer?,” 2013. [Online]. Available:

https://www.gnu.org/philosophy/can-you-trust.en.html.

[31] R. Anderson, “`Trusted Computing’ Frequently Asked Questions: TC / TCG /

LaGrande / NGSCB / Longhorn / Palladium / TCPA Version 1.1,” 2007. [Online].

Available: http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html.

[32] L. Nkosi, P. Tarwireyi, and M. O. Adigun, “Insider threat detection model for the

cloud,” 2013 Inf. Secur. South Africa - Proc. ISSA 2013 Conf., vol. 62500001,

2013.

[33] V. Costan and S. Devadas, “Security challenges and opportunities in adaptive and

reconfigurable hardware,” 2011 IEEE Int. Symp. Hardware-Oriented Secur. Trust,

pp. 1–5, 2011.

[34] R. Wojtczuk and J. Rutkowska, “Attacking Intel Trusted Execution Technology,”

Bios, pp. 1–6, 2009.

[35] L. Duflot, D. Etiemble, and O. Grumelard, “Using CPU System Management

Mode to Circumvent Operating System Security Functions,” CanSecWest 2006,

2006.

[36] S. Embleton, S. Sparks, and C. C. Zou, “SMM rootkit: A new breed of OS

independent malware,” Secur. Commun. Networks, vol. 6, no. 12, pp. 1590–1605,

2013.

[37] R. W. Joanna Rutkowska, “Preventing and detecting xen hypervisor subversions.”

135

Blackhat Briefings USA, 2008.

[38] F. Wecherowski, “A Real SMM Rootkit: Reversing and Hooking BIOS SMI

Handlers,” Phrack, vol. 0x0d, no. 0x42, 2009.

[39] R. Wojtczuk and J. Rutkowska, “Attacking SMM Memory via Intel ® CPU Cache

Poisoning,” Invisible Things Lab, 2008. [Online]. Available:

http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf.

[40] V. Costan and S. Devadas, “Intel SGX Explained,” Cryptol. ePrint Arch. Rep.

2016/086, 2016.

[41] I. Corporation, “Intel® 64 and IA-32 Architectures Software Developer’s Manual

Volume 3C: System Programming Guide, Part 3,” Intel, 2010. [Online]. Available:

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-

32-architectures-software-developer-vol-3c-part-3-manual.pdf.

[42] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study on the

state of the art and future research directions,” in Towards hardware-intrinsic

security, information security and cryptography, 2010, pp. 3–37.

[43] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, and R. Wolters,

“Read-Proof Hardware from Protective Coatings,” in Cryptographic Hardware

and Embedded Systems (CHES), 2006, pp. 369–383.

[44] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas,

“Extracting secret keys from integrated circuits,” IEEE Trans. Very Large Scale

Integr. Syst., vol. 13, no. 10, pp. 1200–1205, 2005.

[45] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device

Authentications and Secret Key Generation,” 44th ACM/IEEE Des. Autom. Conf.,

136

pp. 9–14, 2007.

[46] D. Suzuki and K. Shimizu, “The glitch PUF: A new delay-PUF architecture

exploiting glitch shapes,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2010, vol. 6225 LNCS, pp. 366–382.

[47] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, “The Butterfly

PUF protecting IP on every FPGA,” in 2008 IEEE International Workshop on

Hardware-Oriented Security and Trust, HOST, 2008, pp. 67–70.

[48] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM state as an

identifying fingerprint and source of true random numbers,” IEEE Trans. Comput.,

vol. 58, no. 9, pp. 1198–1210, 2009.

[49] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA Intrinsic PUFs and

Their Use for IP Protection,” Lect. Notes Comput. Sci., vol. 4727, pp. 63–80, 2007.

[50] A. Maiti and P. Schaumont, “Improved ring oscillator PUF: An FPGA-friendly

secure primitive,” J. Cryptol., vol. 24, no. 2, pp. 375–397, 2011.

[51] F. Kodýtek, R. Lórencz, and J. Buček, “Improved ring oscillator PUF on FPGA

and its properties,” Microprocessors and Microsystems, 2015.

[52] X. Xin, J. P. Kaps, and K. Gaj, “A configurable ring-oscillator-based PUF for

Xilinx FPGAs,” in Proceedings - 2011 14th Euromicro Conference on Digital

System Design: Architectures, Methods and Tools, DSD 2011, 2011, pp. 651–657.

[53] H. Yu, P. H. W. Leong, and Q. Xu, “An FPGA chip identification generator using

configurable ring oscillators,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20,

no. 12, pp. 2198–2207, 2012.

137

[54] J. H. Anderson, “A PUF design for secure FPGA-based embedded systems,” Proc.

Asia South Pacific Des. Autom. Conf. ASP-DAC, pp. 1–6, 2010.

[55] A. Wild and T. Guneysu, “Enabling SRAM-PUFs on xilinx FPGAs,” in

Conference Digest - 24th International Conference on Field Programmable Logic

and Applications, FPL 2014, 2014.

[56] Altera, “STRATIX 10 FPGA AND SOC.” [Online]. Available:

https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html.

[57] J. Melorose, R. Perroy, and S. Careas, “PUF based FPGAs for Hardware Security

and Trust,” 2015.

[58] M. Mambo and E. Okamoto, “Proxy cryptosystems: Delegation of the power to

decrypt ciphertexts,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol.

E80–A, no. 1, pp. 54–62, 1997.

[59] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy

cryptography,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1998, vol.

1403, pp. 127–144.

[60] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-

encryption schemes with applications to secure distributed storage,” ACM Trans.

Inf. Syst. Secur., vol. 9, no. 1, pp. 1–30, 2006.

[61] M. Green and G. Ateniese, “Identity-Based Proxy Re-encryption,” in Applied

Cryptography and Network Security, 2007, vol. 4521 LNCS, pp. 288–306.

[62] C. Sur, C. D. Jung, Y. Park, and K. H. Rhee, “Chosen-ciphertext secure

certificateless proxy re-encryption,” in Lecture Notes in Computer Science

138

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2010, vol. 6109 LNCS, pp. 214–232.

[63] C. K. Chu, J. Weng, S. S. M. Chow, J. Zhou, and R. H. Deng, “Conditional proxy

broadcast re-encryption,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2009, vol. 5594 LNCS, pp. 327–342.

[64] G. Ateniese, K. Benson, and S. Hohenberger, “Key-private proxy re-encryption,”

in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, vol. 5473, pp.

279–294.

[65] A. Syalim, T. Nishide, and K. Sakurai, “Realizing proxy re-encryption in the

symmetric world,” in Communications in Computer and Information Science,

2011, vol. 251 CCIS, no. PART 1, pp. 259–274.

[66] R. L. Rivest, “All-or-Nothing Encryption and the Package Transform,” Lect. Notes

Comput. Sci., vol. 1267, no. Chapter 19, pp. 210–218, 1997.

[67] P. Ferrie, “Attacks on Virtual Machine Emulators,” Symantec Technology

Exchange, 2007. [Online]. Available:

https://pdfs.semanticscholar.org/a72d/98d5a478efa62383a63862fc07dba831c8a5.p

df.

[68] J. R., “How to Detect VMM Using (Almost) One CPU Instruction,” 2004.

[Online]. Available:

http://www.securiteam.com/securityreviews/6Z00H20BQS.html.

[69] Tobias K, “Scoopy Doo - VMware Fingerprint Suite,” 2013. [Online]. Available:

139

www.trapkit.de/research/vmm/scoopydoo/index.html.

[70] L. Turnbull and J. Shropshire, “Breakpoints: An analysis of potential hypervisor

attack vectors,” in Conference Proceedings - IEEE SOUTHEASTCON, 2013.

[71] N. Elhage, “Virtunoid: Breaking out of KVM.” Black Hat USA, 2011.

[72] K. Kortchinsky, “Cloudburst—a vmware guest to host escape story.” Black Hat

USA, 2009.

[73] R. Wojtczuk, “Subverting the Xen hypervisor.” Black Hat USA, 2008.

[74] S. Ali and A. Alradha, “Protect Sensitive Data in Public Cloud from an Theft

Attack and detect Abnormal Client Behavior,” Int. J. Eng. Sci. Comput., no. May,

pp. 552–556, 2014.

[75] R. Pawar, H. Bhapkar, S. Domal, A. Bankar, and V. Dudhale, “Reducing Inner

Data Stealing Using Bogus Information Attacks in the Cloud Computing,” Int. J.

Innov. Technol. Explor. Eng., no. 11, pp. 37–39, 2014.

[76] C. Science and M. Studies, “Securing user data on cloud using Fog computing and

Decoy technique,” Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 2, no. 10, pp.

104–110, 2014.

[77] S. J. Stolfo, M. Ben Salem, and A. D. Keromytis, “Fog computing: Mitigating

insider data theft attacks in the cloud,” Proc. - IEEE CS Secur. Priv. Work. SPW

2012, pp. 125–128, 2012.

[78] N. J. King and V. T. Raja, “Protecting the privacy and security of sensitive

customer data in the cloud,” Comput. Law Secur. Rev., vol. 28, no. 3, pp. 308–319,

2012.

[79] L. Rasmusson and M. Aslam, “Protecting private data in the cloud,” in CLOSER

140

2012 - Proceedings of the 2nd International Conference on Cloud Computing and

Services Science, 2012, pp. 5–12.

[80] V. Sravan and K. Maddineni, “Security Techniques for Protecting Data in Cloud

Computing,” Master Thesis, no. November, pp. 1–75, 2011.

[81] J. Kaplan, C. Rezek, and K. Sprague, “Protecting information in the cloud,”

McKinsey Quarterly, 2013. [Online]. Available:

http://www.mckinsey.com/business-functions/digital-mckinsey/our-

insights/protecting-information-in-the-cloud.

[82] S. S. Yau and H. G. An, “Protection of Users’ Data Confidentiality in Cloud

Computing,” in Proceedings of the Second Asia-Pacific Symposium on

Internetware, 2010, pp. 1–6.

[83] S. K. Sood, “A combined approach to ensure data security in cloud computing,” J.

Netw. Comput. Appl., vol. 35, no. 6, pp. 1831–1838, 2012.

[84] H. Wang, Z. Wang, and J. Domingo-Ferrer, “Anonymous and secure aggregation

scheme in fog-based public cloud computing,” Future Generation Computer

Systems, 2016.

[85] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in

the Internet of Things,” Proc. first Ed. MCC Work. Mob. cloud Comput., pp. 13–

16, 2012.

[86] S. M., V. Patel, H. D., and N. Lakshmanan, “A Hybrid Protocol to Secure the

Cloud from Insider Threats,” in 2014 IEEE International Conference on Cloud

Computing in Emerging Markets (CCEM), 2014, pp. 1–5.

[87] M. B. B and S. M. S. Bhanu, “Analyzing User Behavior Using KeyStroke

141

Dynamics to Protect Cloud from Malicious Insiders,” in IEEE International

Conference on Cloud Computing in Emerging Markets (CCEM), 2014, pp. 1–8.

[88] L. Nkosi, P. Tarwireyi, and M. O. Adigun, “Detecting a malicious insider in the

cloud environment using sequential rule mining,” IEEE Int. Conf. Adapt. Sci.

Technol. ICAST, 2013.

[89] Q. Yaseen and B. Panda, “Tackling insider threat in cloud relational databases,”

Proc. - 2012 IEEE/ACM 5th Int. Conf. Util. Cloud Comput. UCC 2012, pp. 215–

218, 2012.

[90] B. M. Babu and M. S. Bhanu, “Prevention of Insider Attacks by Integrating

Behavior Analysis with Risk based Access Control Model to Protect Cloud,” in

Procedia Computer Science, 2015, vol. 54, pp. 157–166.

[91] Q. Althebyan, R. Mohawesh, Q. Yaseen, and Y. Jararweh, “Mitigating insider

threats in a cloud using a knowledgebase approach while maintaining data

availability,” in 2015 10th International Conference for Internet Technology and

Secured Transactions, ICITST 2015, 2016, pp. 226–231.

[92] Q. Yaseen, Q. Althebyan, B. Panda, and Y. Jararweh, “Mitigating insider threat in

cloud relational databases,” Secur. Commun. Networks, vol. 9, no. 10, pp. 1132–

1145, 2016.

[93] C. Gentry, “a Fully Homomorphic Encryption Scheme,” PhD Thesis, no.

September, pp. 1–209, 2009.

[94] V. Vaikuntanathan, “Computing blindfolded: New developments in fully

homomorphic encryption,” in Proceedings - Annual IEEE Symposium on

Foundations of Computer Science, FOCS, 2011, pp. 5–16.

142

[95] K. Eguro and R. Venkatesan, “FPGAs for trusted cloud computing,” in

Proceedings - 22nd International Conference on Field Programmable Logic and

Applications, FPL 2012, 2012, pp. 63–70.

[96] A. Moradi, M. Kasper, and C. Paar, “Black-Box Side-Channel Attacks Highlight

the Importance of Countermeasures An Analysis of the Xilinx Virtex-4 and

Virtex-5 Bitstream Encryption Mechanism,” Top. Cryptol. - Ct-Rsa 2012, vol.

7178, pp. 1–18, 2012.

[97] M. Masoomi, M. Masoumi, and M. Ahmadian, “A practical differential power

analysis attack against an FPGA implementation of AES cryptosystem,” 2010 Int.

Conf. Inf. Soc., pp. 308–312, 2010.

[98] F. Khelil, M. Hamdi, S. Guilley, J. L. Danger, and N. Selmane, “Fault Analysis

Attack on an FPGA AES Implementation,” in New Technologies, Mobility and

Security, 2008. NTMS ’08., 2008, pp. 1–5.

[99] V. Carlier, H. Chabanne, E. Dottax, and H. Pelletier, “Generalizing square attack

using side-channels of an aes implementation on an FPGA,” Proc. - 2005 Int.

Conf. F. Program. Log. Appl. FPL, vol. 2005, pp. 433–437, 2005.

[100] E. De Mulder, P. Buysschaert, S. B. Ors, P. Delmotte, B. Preneel, G.

Vandenbosch, and I. Verbauwhede, “Electromagnetic Analysis Attack on an

FPGA Implementation of an Elliptic Curve Cryptosystem,” EUROCON 2005 - Int.

Conf. Comput. as a Tool, vol. 2, 2005.

[101] J. Zhao, J. Han, X. Zeng, L. Li, and Y. Deng, “Differential Power Analysis and

Differential Fault Attack Resistant AES Algorithm and its VLSI Implementation,”

in 9th International Conference on Solid-State and Integrated-Circuit Technology,

143

2008, pp. 2–5.

[102] J. Wu, Y. Shi, and M. Choi, “FPGA-based measurement and evaluation of power

analysis attack resistant asynchronous S-Box,” 2011 IEEE Int. Instrum. Meas.

Technol. Conf., pp. 1–6, 2011.

[103] S. A. Kadir, A. Sasongko, and M. Zulkifli, “Simple power analysis attack against

elliptic curve cryptography processor on FPGA implementation,” Proc. 2011 Int.

Conf. Electr. Eng. Informatics, ICEEI 2011, no. July, pp. 2–5, 2011.

[104] S. Sun, Z. Yan, and J. Zambreno, “Experiments in attacking FPGA-based

embedded systems using differential power analysis,” in 2008 IEEE International

Conference on Electro/Information Technology, 2008, pp. 7–12.

[105] Trusted Computing Group, “TPM Main Specification Level 2.” [Online].

Available: https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-

2-TPM-Structures_v1.2_rev116_01032011.pdf.

[106] T. Eisenbarth, T. Güneysu, C. Paar, A.-R. Sadeghi, D. Schellekens, and M. Wolf,

“Reconfigurable trusted computing in hardware,” in Proceedings of the 2007 ACM

workshop on Scalable trusted computing - STC ’07, 2007, p. 15.

[107] B. Glas, A. Klimm, D. Schwab, K. M??ller-Glaser, and J. Becker, “A prototype of

trusted platform functionality on reconfigurable hardware for bitstream updates,”

Proc. 19th IEEE/IFIP Int. Symp. Rapid Syst. Prototyp. - Shortening Path from

Specif. to Prototype, RSP 2008, pp. 135–141, 2008.

[108] J. Cucurull and S. Guasch, “Virtual TPM for a secure cloud : fallacy or reality ?,”

in Congresos - RECSI 2014 - Comunicaciones, 2014, pp. 2–5.

[109] L. Xu, W. Shi, and T. Suh, “PFC: Privacy preserving FPGA cloud - A case study

144

of MapReduce,” in IEEE International Conference on Cloud Computing, CLOUD,

2014, pp. 280–287.

[110] T. Kekkonen, T. Kanstrén, and K. Hätönen, “Towards trusted environment in

cloud monitoring,” ITNG 2014 - Proc. 11th Int. Conf. Inf. Technol. New Gener.,

pp. 180–185, 2014.

[111] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards Trusted Cloud

Computing,” in Proceedings of the 2009 Conference on Hot Topics in Cloud

Computing, 2009, vol. 10, no. 2, p. 3.

[112] R. Neisse, D. Holling, and A. Pretschner, “Implementing trust in cloud

infrastructures,” Proc. - 11th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput.

CCGrid 2011, pp. 524–533, 2011.

[113] B. Bertholon, S. Varrette, and P. Bouvry, “CERTICLOUD: A novel TPM-based

approach to ensure cloud IaaS security,” in Proceedings - 2011 IEEE 4th

International Conference on Cloud Computing, CLOUD 2011, 2011, pp. 121–130.

[114] M. Achemlal, S. Gharout, and C. Gaber, “Trusted platform module as an enabler

for security in cloud computing,” in 2011 Conference on Network and Information

Systems Security, SAR-SSI 2011, Proceedings, 2011.

[115] R. Perez, R. Sailer, and L. van Doorn, “vTPM: virtualizing the trusted platform

module,” Usenix.Org, pp. 305–320, 2005.

[116] S. Nepal, J. Zic, H. Hwang, and D. Moreland, “Trust Extension Device: Providing

Mobility and Portability of Trust in Cooperative Information Systems,” in On the

Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and

IS, 2007, pp. 253–271.

145

[117] D. Thilakanathan, S. Chen, S. Nepal, R. a. Calvo, D. Liu, and J. Zic, “Secure

Multiparty Data Sharing in the Cloud Using Hardware-Based TPM Devices,” 2014

IEEE 7th Int. Conf. Cloud Comput., pp. 224–231, 2014.

[118] Z. S. Z. Shen and Q. T. Q. Tong, “The security of cloud computing system enabled

by trusted computing technology,” Signal Process. Syst. (ICSPS), 2010 2nd Int.

Conf., vol. 2, pp. 11–15, 2010.

[119] C. Chen, H. Raj, S. Saroiu, I. Nsdi, and A. Wolman, “cTPM : A Cloud TPM for

Cross-Device Trusted Applications,” 11th USENIX Conf. Networked Syst. Des.

Implement., vol. 8, pp. 187–201, 2014.

[120] J. Zic and S. Nepal, “Implementing a Portable Trusted Environment,” in Future of

Trust in Computing: Proceedings of the First International Conference Future of

Trust in Computing 2008: With 58 Illustrations, 2009, pp. 17–29.

[121] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology for CPU

Based Attestation and Sealing,” in HASP’13, 2013, pp. 1–7.

[122] L. M. Aumasson JP, “SGX Secure Enclaves In Practice: Security And Crypto

Review,” in blackhat, 2016.

[123] C. M. and S. M. M. Schwarz, S. Weiser, D. Gruss, “Malware Guard Extension:

Using SGX to Conceal Cache Attacks,” in arxiv, 2017.

[124] S. C. and A. S. F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen, “Software

Grand Exposure: SGX Cache Attacks Are Practical,” in arxiv, 2017.

[125] S. S. and T. M. J. Götzfried, M. Eckert, “Cache Attacks on Intel SGX.”

Proceedings of the 10th European Workshop on Systems Security, 2017.

[126] and M. P. Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,

146

“Inferring fine-grained control flow inside SGX enclaves with branch shadow-

ing,” in arXiv, 2016.

[127] A. Conference, C. Zhao, D. Saifuding, H. Tian, Y. Zhang, and C. Xing, “On the

Performance of Intel SGX,” in Web Information Systems and Applications

Conference, 2016.

[128] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “AEGIS:

Architecture for Tamper-Evident and Tamper-Resistant Processing,” Proc. Int.

Conf. Supercomput., pp. 160–171, 2003.

[129] D. Champagne and R. B. Lee, “Scalable architectural support for trusted

software,” High Perform. Comput. Archit. (HPCA), 2010 IEEE 16th Int. Symp.,

pp. 1–12, 2010.

[130] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware Extensions

for Strong Software Isolation,” Proc. 25th USENIX Secur. Symp., 2016.

[131] C. W. Fletcher, M. Van Dijk, and S. Devadas, “A secure processor architecture for

encrypted computation on untrusted programs,” Scalable Trust. Comput. STC ’12.

Proc. Seventh ACM Work., p. 3, 2012.

[132] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz,

and D. Song, “PHANTOM: Practical Oblivious Computation in a Secure

Processor,” in CCS’13, 2013, pp. 311–324.

[133] E. Brickell and J. Li, “Enhanced privacy ID: A direct anonymous attestation

scheme with enhanced revocation capabilities,” IEEE Trans. Dependable Secur.

Comput., vol. 9, no. 3, pp. 345–360, 2012.

[134] John Casey, “Top Five Challenges of Cloud Computing,” 2015. [Online].

147

Available: http://trilogytechnologies.com/top-five-challenges-of-cloud-

computing/.

[135] Cloud Standards Customer Council, “Impact of Cloud Computing on Healthcare,”

2012. [Online]. Available: www.cloud-council.org/CSCC-Impact-of-Cloud-

Computing-on-Healthcare.pdf.

[136] “Amazon EC2 F1 Instances,” 2017. [Online]. Available:

https://aws.amazon.com/ec2/instance-types/f1/.

[137] B. Guttman and E. Roback, “An Introduction to Computer Security : The NIST

Handbook,” Natl. Inst. Stand. Technol. Technol. Adm. U.S. Dep. Commer. An, vol.

SP800, no. 12, pp. 1–278, 1995.

[138] J. K. B, T. Lin, H. Bannazadeh, and A. Leon-garcia, “Testbeds and Research

Infrastructure. Development of Networks and Communities,” in 6th International

ICST Conference, 2012, vol. 44, pp. 3–13.

[139] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling FPGAs in

Hyperscale Data Centers,” in IEEE 12th Intl Conf on Ubiquitous Intelligence and

Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing

and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and

Its Associated Workshops (UIC-ATC-ScalCom), 2015, pp. 1078–1086.

[140] Xilinx Inc., “XAPP1084(v1.3): Developing Tamper Resistant Designs with Xilinx

Virtex-6 and 7 Series FPGAs,” 2013. [Online]. Available:

https://www.xilinx.com/support/documentation/xapp1084_tamp_resist_dsgns.pdf.

[141] S. Goren, O. Ozkurt, A. Yildiz, and H. F. Ugurdag, “FPGA bitstream protection

with PUFs, obfuscation, and multi-boot,” in 6th International Workshop on

148

Reconfigurable Communication-Centric Systems-on-Chip, ReCoSoC 2011 -

Proceedings, 2011.

[142] Xilinx Inc., “Xilinx Partial Reconfiguration User Guide,” 2012. [Online].

Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf

.

[143] Mark Stamp, “Hash Functions,” in Information Security Principles and Practice,

2nd ed., A JOHN WILEY & SONS, INC., PUBLICATION, 2011, p. 608.

[144] S. M. Trimberger and J. J. Moore, “FPGA security: Motivations, features, and

applications,” Proc. IEEE, vol. 102, no. 8, pp. 1248–1265, 2014.

[145] P. Maistri, S. Tiran, P. Maurine, I. Koren, and R. Leveugle, “Countermeasures

against em analysis for a secured FPGA-based AES implementation,” 2013 Int.

Conf. Reconfigurable Comput. FPGAs, ReConFig 2013, 2013.

[146] F. Regazzoni, Y. Wang, and F.-X. Standaert, “FPGA implementations of the AES

masked against power analysis attacks,” in Proceedings of COSADE 2011, 2011,

pp. 56–66.

[147] B. Bahrak and M. R. Aref, “Impossible differential attack on seven-round AES-

128,” IET Inf. Secur., vol. 2, no. 2, pp. 28–32, 2008.

[148] K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure DPA

resistant ASIC or FPGA implementation,” in Proceedings - Design, Automation

and Test in Europe Conference and Exhibition, 2004, vol. 1, pp. 246–251.

[149] M. N. Ismail, A. Aborujilah, S. Musa, and A. Shahzad, “New framework to detect

and prevent denial of service attack in cloud computing environment,” Int. J.

149

Comput. Sci. Secur., vol. 6, no. 4, pp. 226–237, 2012.

[150] V. Cheval and B. Blanchet, “Proving more observational equivalences with

ProVerif,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, vol.

7796 LNCS, pp. 226–246.

[151] T. Fitfield, “Introduction to OpenStack,” Linux J., vol. 2013, p. 4, 2013.

[152] K. Ward, “Survey: OpenStack Dominates Open Source Cloud,” 2014. [Online].

Available: https://virtualizationreview.com/articles/2014/12/01/openstack-

dominates-open-source-cloud.aspx.

[153] C. Research, “Top 15 Open Source Cloud Computing Technologies,” 2014.

[Online]. Available: https://www.crisp-research.com/tag/openstack/.

[154] S. Byma and J. Steffan, “FPGAs in the Cloud: Booting Virtualized Hardware

Accelerators with OpenStack,” in IEEE 22nd Annual International Symposium on

Field-Programmable Custom Computing Machines, 2014, pp. 109–116.

[155] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “On the indifferentiability

of the sponge construction,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2008, vol. 4965 LNCS, pp. 181–197.

[156] M. Litochevski and L. Dongjun, “High throughput and low area AES,” 2012.

[Online]. Available: https://opencores.org/project,aes_highthroughput_lowarea.

[157] [45] McQueen, “Basic RSA Encryption Engine.” [Online]. Available:

http://opencores.org/project,basicrsa.

[158] D. Suzuki, “How to maximize the potential of FPGA resources for modular

150

exponentiation,” in Advances in Cryptology - Cryptographic Hardware and

Embedded Systems - CHES 2007, 2007, pp. 272–288.

[159] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Smallest,” Lect.

Notes Comput. Sci. Adv. Cryptol. - Cryptogr. Hardw. Embed. Syst. - CHES 2005,

pp. 427–440, 2005.

[160] D. S. Kumar, “Compact Implementation of SHA3-1024 on FPGA,” vol. 3, no. 7,

pp. 79–86, 2015.

[161] ITRS, “International Technology Roadmap for Semicon ductors,” 2012. [Online].

Available:

http://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2015/0

_2015 ITRS 2.0 Executive Report (1).pdf.

[162] Xilinx Inc., “7 Series FPGAs Packaging and Pinout, Product Specification Xilinx.”

[Online]. Available:

https://www.xilinx.com/support/documentation/user_guides/ug475_7Series_Pkg_

Pinout.pdf.

[163] Akami, “State of the Internet Quarterly Report.” [Online]. Available:

https://www.akamai.com.

[164] Dawson, “Chips 2.0.” [Online]. Available: https://github.com/dawsonjon/Chips-

Demo.

[165] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, vol. 7. 1973.

[166] S. Brenner, C. Wulf, M. Lorenz, N. Weichbrodt, D. Goltzsche, C. Fetzer, P.

Pietzuch, and R. Kapitza, “SecureKeeper: Confidential ZooKeeper using Intel

SGX,” Middlew. 2016, 2016.

151

[167] J. Rivera and R. Van der Muelen, “Gartner Says the Internet of Things Installed

Base Will Grow to 26 Billion Units By 2020,” Gartner, 2013. .

[168] R. van Kranenburg and A. Bassi, “IoT Challenges,” Commun. Mob. Comput., vol.

1, no. 1, p. 9, 2012.

[169] Amazon, “AWS IoT,” Amazon, 2016. [Online]. Available:

https://aws.amazon.com/iot/.

[170] TechTarget, “Reference Architecture,” 2012. [Online]. Available:

http://internetofthingsagenda.techtarget.com/definition/reference-architecture.

[171] M. J. Yuan, “IBM Watson,” Ibm, 2011. .

[172] Microsoft, “Azure and Internet of Things,” 2017. [Online]. Available:

https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-what-is-azure-iot.

[173] A. M. Amitranjan Gantait, Joy Patra, “Securing IoT devices and gateways.” IBM,

2016.

[174] Google, “Overview of Internet of Things.” [Online]. Available:

https://cloud.google.com/solutions/iot-overview.

[175] “Intel IoT Platform.” [Online]. Available:

https://www.intel.com/content/www/us/en/internet-of-things/infographics/iot-

platform-infographic.html. [Accessed: 28-Jun-2017].

[176] H. Ning, H. Liu, and L. T. Yang, “Aggregated-proof based hierarchical

authentication scheme for the internet of things,” IEEE Trans. Parallel Distrib.

Syst., vol. 26, no. 3, pp. 657–667, 2015.

[177] N. Ye, Y. Zhu, R. C. Wang, R. Malekian, and Q. M. Lin, “An efficient

authentication and access control scheme for perception layer of internet of

152

things,” Appl. Math. Inf. Sci., vol. 8, no. 4, pp. 1617–1624, 2014.

[178] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle, “Towards

viable certificate-based authentication for the internet of things,” Proc. 2nd ACM

Work. Hot Top. Wirel. Netw. Secur. Priv. - HotWiSec ’13, p. 37, 2013.

[179] F. Li and P. Xiong, “Practical secure communication for integrating wireless

sensor networks into the internet of things,” IEEE Sens. J., vol. 13, no. 10, pp.

3677–3684, 2013.

[180] I. E. Bagci, S. Raza, T. Chung, U. Roedig, and T. Voigt, “Combined secure

storage and communication for the Internet of Things,” in 2013 IEEE International

Conference on Sensing, Communications and Networking, SECON 2013, 2013, pp.

523–531.

[181] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe: Lightweight

secure CoAP for the internet of things,” IEEE Sens. J., vol. 13, no. 10, pp. 3711–

3720, 2013.

[182] H. Zhang and T. Zhang, “Short Paper: ‘A peer to peer security protocol for the

internet of things’: Secure communication for the sensiblethings platform,” in

2015 18th International Conference on Intelligence in Next Generation Networks,

ICIN 2015, 2015, pp. 154–156.

[183] J. Qian, H. Xu, and P. Li, “A novel secure architecture for the internet of things,”

in Proceedings - 2016 International Conference on Intelligent Networking and

Collaborative Systems, IEEE INCoS 2016, 2016, pp. 398–401.

[184] D. Singh, G. Tripathi, and A. Jara, “Secure layers based architecture for Internet of

Things,” IEEE World Forum Internet Things, WF-IoT 2015 - Proc., pp. 321–326,

153

2015.

[185] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-Porisini, “A secure

and quality-aware prototypical architecture for the Internet of Things,” Inf. Syst.,

vol. 58, pp. 43–55, 2016.

[186] T. Bhattasali, R. Chaki, and N. Chaki, “Secure and trusted cloud of things,” in

2013 Annual IEEE India Conference, INDICON 2013, 2013.

[187] B. S. Xavier Allamigeon, Vincent Cheval, “ProVerif: Cryptographic protocol

verifier in the formal model,” 2014. [Online]. Available:

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/.

[188] A. P. Fournaris, “Fault and simple power attack resistant RSA using Montgomery

modular multiplication,” in ISCAS 2010 - 2010 IEEE International Symposium on

Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, 2010, pp. 1875–

1878.

[189] D. N. Amanor, C. Paar, J. Pelzl, V. Bunimov, and M. Schimmler, “Efficient

hardware architectures for modular multiplication on FPGAs,” in Proceedings -

2005 International Conference on Field Programmable Logic and Applications,

FPL, 2005, vol. 2005, pp. 539–542.

[190] M. Attig and G. Brebner, “400 Gb/s programmable packet parsing on a single

FPGA,” in Proceedings - 2011 7th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, ANCS 2011, 2011, pp. 12–23.

[191] cloudadmin, “Cloud Computing Architecture,” 2015. [Online]. Available:

http://cloudcomputingnet.com/cloud-computing-architecture/.

154

APPENDICES

APPENDIX A: FPGA Implementation and Simulation

a. Client Data Protection Scheme Components

RXD input 8-bit bus for receiving data from the Ethernet chip

RX input Unused signal

RXDV input Valid signal for the received data

RXER input Error signal for the received data

TXD output 8-bit bus for transmitting data to the Ethernet chip

TX output Unused signal

TXEN output Enable signal for data transmission

TXER output Error signal for the Transmitted data

Figure A 1: Top module inputs/outputs

155

Figure A 2: Implementation of the design placed in Xilinx Virtex 6 device.

Figure A 3: Simulation of the top module of the design

156

TX_STB input Transmit strobe

RX_STB output Receive strobe

Figure A 4: Ethernet controller block

157

Figure A 5: Ethernet controller simulation (1) transmitting a packet (2) receiving a packet.

1

2

158

DOA input 16-bit bus for data received from the Ethernet controller

Start_End input Signal to start/end the session

AES_key_valid input Signal to indicate that the AES can encrypt/decrypt the data

busy output Signal to indicate that the FSM is not able to receive new data

from the Ethernet controller

AES_start output Signal is used for the AES key expansion which is performed

at the beginning of the session.

Enc_Dec output Signal for the AES to encrypt or decrypt the data

Figure A 6: Main FSM module

159

Figure A 7: Protocol block and inputs/outputs

Figure A 8: Image processor module

160

i_key_mode input 2-bit bus for specifying the key length (0 = 128; 1 = 192; 2 = 256)

o_data_valid output data output valid

o_ready output indicates AES is ready for new input data at the next clock cycle

Figure A 9: AES module

161

byte_num input Number of bytes per block

is last input Signal to indicate the last block

buffer_full output Unused signal. For debugging purposes

Figure A 10: SHA3 module

Figure A 12: The output of SHA3 when out_ready goes high

Figure A 11: The operations of SHA3

162

Figure A 13: The result of SHA3

Figure A 14: Modular exponentiation module

163

Figure A 15: The operations of modexp, producing 3b mod p (b is exp and p is mod in the figure)

Figure A 16: The operations of modexp, producing 3ab mod p

Figure A 17: Masking circuitry module

Figure A 18: The operations of the masking circuitry

164

Figure A 19: Simplified view of the top components

165

b. IoT Scheme Implementation Related Components:

Figure A 20: Main FSM module

166

Figure A 21: Protocol module

167

Figure A 22: Modular multiplication module

Figure A 23: Encrypting and decrypting data; all other values are also shown such as M, b, etc.

168

Figure A 24: The value of the encrypted data zoomed

Figure A 25: The value of decrypted data zoomed

169

Figure A 26: The operations of modexp, producing the multiplicative modular inverse of b

Figure A 27: The operations of the modular multiplication

170

APPENDIX B: ProVerif Code for the client sensitive data

protection protocol

(* Diffie-Hellman without signatures resists active attacks

A -> B : e^n0

 B -> A : e^n1

 A and B compute the key as k = (e^n0)^n1 = (e^n1)^n0

 A -> B : {s}k

*)

free c.(*a channel used to send/receive messages between the parties *)

free c1. (*a channel used to send/receive messages between the TA and the client/FPGA

*)

private free s. (*a message to be send securely upon executing the protocol *)

(* active adversary *)

param attacker = active. (*Active means that the attacker can intercept messages send

,receive or modify messages *)

(* Shared key cryptography *)

fun enc/2. (*encryption function with 2 inputs *)

reduc dec(enc(x,y),y) = x. (*the corresponding decryption*)

fun hash/1. (* the hash function with 1 input *)

(* Diffie-Hellman functions *)

fun f/2. (*a function used to represent gab=gba *)

fun g/1. (*the exponent ion function *)

171

equation f(x,g(y)) = f(y,g(x)). (*the corresponding equation of the function f *)

(* Test whether message s is secret *)

query attacker:s.

(* The TA process *)

let TA = new n00; new b; new n1;

(*using channel c1 to share a key with the client and the FPGA*)

 (out(c1,g(n00)) | in(c1,x11); let k = f(n00,x11) in out(c1,

enc(g(n1),k));out(c1,enc(hash(b),k))).

(*The client process *)

let client = new n0; new n11;

(*sharing a key with the TA *)

 (out(c1,g(n11)) | in(c1,xx);

 let k = f(n11,xx) in

 in (c1,m);

(*receiving gb and hash(b) from the TA *)

 let gb_TA = dec(m,k) in

 in (c1,m1);

 let hash_b = dec(m,k) in

(*receiving gb and hash(b) from the FPGA *)

 out(c,g(n0)) ; in(c,gb_FPGA)| in(c,hash_FPGA);

(*authenticating the FPGA *)

 if gb_TA=gb_FPGA then

 (

172

 if hash_b=hash_FPGA then

(*if authentication done, send the message s *)

 let k1 = f(n0,gb_TA) in out(c, enc(s,k1))

)

 else

 (

 0)

).

(*The FPGA process *)

let FPGA = new n01;

(*sharing a key with the TA *)

 (out(c1,g(n01)) | in(c1,yy);

 let k = f(n01,yy) in

 in (c1,m1);

(*receiving gb and hash(b) from the TA *)

 let gb = dec(m1,k) in

 in (c1,m2);

 let hash_b1 = dec(m2,k) in

 in(c,x0);

 let k1 = f(gb,x0) in

(*sending gb and hash(b) to the client*)

 out(c,gb);

 out(c,hash_b1);

173

 in (c,m3);

(*receiving the message s from the client *)

 let s3 = dec(m3,k1) in 0).

process TA | client| FPGA

174

APPENDIX C: Proverif code for the IoT sensitive data

protection protocol

1. (* Diffie-Hellman representation

2. A -> B : e^n0

B -> A : e^n1

A and B compute the key as k = (e^n0)^n1 = (e^n1)^n0

3. A -> B : {s}k *)

4. free c.(*a channel used to send/receive messages between the parties *)

5. free c1. (*a channel used to send/receive messages between the TA and the

IoT_device/FPGA *)

6. private free s. (*a message to be send securely upon executing the protocol *)

7. (* active adversary *)

8. param attacker = active. (*Active means that the attacker can intercept messages send

,receive or modify messages *)

9. (* Shared key cryptography *)

10. fun enc/2. (*encryption function with 2 inputs *)

11. reduc dec(enc(x,y),y) = x. (*the corresponding decryption*)

12. fun hash/1. (* the hash function with 1 input *)

13. (* Diffie-Hellman functions *)

14. fun f/2. (*a function used to represent gab=gba *)

15. fun g/1. (*the exponent ion function *)

16. equation f(x,g(y)) = f(y,g(x)). (*the corresponding equation of the function f *)

17. (* Test whether message s is secret *)

18. query attacker:s.

19. (* The TA process *)

20. let TA = new n00; new b;

21. (*using channel c1 to share a key with the IoT_device and the FPGA*)

22. (out(c1,g(n00)) | in(c1,x11); let k = f(n00,x11) in out(c1,

enc(g(n1),k));out(c1,enc(hash(b),k))).

23. (*The IoT_device process *)

24. let IoT_device = new n0; new n11;

25. (*sharing a key with the TA *)

26. (*receiving gb and hash(b) from the TA *)

let gb_TA = in (c1,m);

let hash_b = in (c1,h) in

27. (*receiving gb and hash(b) from the FPGA *)

out(c,g(n0)) ; in(c,gb_FPGA)| in(c,hash_FPGA);

28. (*authenticating the FPGA *)

if gb_TA=gb_FPGA then

(

if hash_b=hash_FPGA then

29. (*if authentication done, send the message s *)

175

let k1 = f(n0,gb_TA) in out(c, enc(s,k1))

)else(0)).

30. (*The FPGA process *)

31. let FPGA = new n01;

32. (*receiving gb and hash(b) from the TA and receiving ga from the client *)

let gb = in (c1,m);

let hash_b1 = in (c1,h); in

in(c,x0);

let k1 = f(gb,x0) in

33. (*sending gb and hash(b) to the IoT_device*)

out(c,gb);

out(c,hash_b1);

in (c,m3);

34. (*receiving the message s from the IoT_device *)

let s3 = dec(m3,k1) in 0).

35. process TA | IoT_device | FPGA

176

APPENDIX D: Python Scripts

The TA:

import numpy as np

import random

import math

from keccak import *

g = 3

p = pow(2,256)

import socket

create a socket object

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

get local machine name

IOTdevice_IP = ""

IOTdevice_port = 9998

s.bind((IOTdevice_IP, IOTdevice_port))

s.listen(1)

conn, addr = s.accept()

print 'Connection address:', addr

Receive FPGA ID

FPGA_ID = conn.recv(1024)

N = 2048

177

K = 256 #K ones

M = np.array([0] * (N-K) + [1] * K)

zeros = ['0']*(N-K)

ones = ['1']*K

M = zeros+ones

random.shuffle(M)

with open('RN.txt') as f:

 arr01 = f.readline()

with open('mask.txt') as f:

 # arr02 = f.readline()

RN=list(arr01)

arr2=list(arr02)

#print((int(''.join(M), 2)))

ii=0

b=[0]*256

for i in range(0, len(M)):

 if(M[i]=='1'):

 b[ii]=RN[i]

 ii=ii+1

#print(b)

#print ii

#print(''.join(b))

178

print(int(''.join(b), 2))

#print p

gb =pow(g,int(''.join(b), 2),p)

#print str(gb)

SHA3 operatins

pt = (str(int(''.join(b), 2))+FPGA_ID).decode('ascii')

H = Keccak512(pt).hexdigest()

#print pt

#print H

Send M

conn.send(''.join(M)) #int(''.join(M), 2)

#M=bin(M)

#print (''.join(M))

Send gb

conn.send(str(gb)+" "+H)

#print str(gb)

Send H

#conn.send(H)

conn.close()

print "TA"

The Proxy:

 def invmod(a, p):

179

 '''

 The multiplicitive inverse of a in the integers modulo p.

 Return b s.t.

 a * b == 1 mod p

 '''

 return pow(a,p-2,p)

g=3

q= 0xd0a6b524f46f5a59520d3efcba360545d911e748700ff141b7414405bcd22c0b

r= 0x1b1ba9a04575d309395ed00546339621904dafe5094ed826d081af26407f00a2

gr= 0x1302d7d599d1ec79d677e7eee28c6b565841563b17f6f3146aebc36a6382d841

a= 0x14bb28715d971d180f7055e2098e1a8a2ff67c4090afc649dc69f2424f62ccec

ga= 0x4b058bb3c58c38662bb2b8eb58534a24cba7e5194cedcb61c1f9cf5b0d890e78

gb= 0xf343a2e3522bba046a7ded8510fd2d17b6ac9faa0cb96f346a21b9668bd3164

gab= 0x6c528c1cef10ae5184e3f2a0f752b5fbb004928e80811282233b9847d3212e99

data=0x11

rK=(ga*invmod(gr,q))%q# to be sent to the proxy

E_data=(data*gr)%q

Re_E_data=(E_data*rK)%q# to be performed the proxy

D_data=(Re_E_data*invmod(ga,q))%q

print hex(D_data)

180

Vitae

Name :Mohammed Al-Asali

Nationality :Yemeni

Date of Birth :3/29/1986

 Email :mohammedalasli@gmail.com

Address :Dhahran, Saudi Arabia

Academic Background : Mohammed received his B.Sc. degree in Computer

Engineering from King Fahd University of Petroleum and Minerals (KFUPM) in

2009. In 2010, Mohammed joined KFUPM as a research assistant to pursue his

M.Sc. degree in Computer Engineering. In 2013, Mohammed earned his M.Sc. in

Computer Engineering from KFUPM. Then Mohammed started his career as a

lecturer-B at KFUPM to pursue his PhD in Computer Science and Engineering.

Mohammed Completed his PhD in May 2017.

 Research Interests : Reconfigurable Computing, Cloud Computing Security and WSNs.

Publications :

M. Alasli, T. Sheltami, and E. Shakshuki, “Identifying the direction of wind in wireless

sensor networks,” in Procedia Computer Science, 2012, vol. 10, pp. 225–231.

181

M. Elrabaa, A. Hroub, M. Mudawar, A. AL-AGHBARI, M. Al-Asli, and A. Khayyat, “A

Very Fast Trace-Driven Simulation Platform for Chip-Multiprocessors Architectural

Explorations,” IEEE Trans. Parallel Distrib. Syst., pp. 1–1, 2017.

M. E. S. Elrabaa, A. A. Al-Aghbari, and M. A. Al-Asli, “A low-cost method for test and

speed characterization of digital integrated circuit prototypes,” in 2013 Saudi

International Electronics, Communications and Photonics Conference, SIECPC 2013,

2013.

S. M. Sait, F. C. Oughali, and M. Al-Asli, “Design partitioning and layer assignment for

3D integrated circuits using tabu search and simulated annealing,” J. Appl. Res.

Technol., vol. 14, no. 1, pp. 67–76, 2016.

M. E. S. Elrabaa, A. Al-Aghbari, M. Al-Asli, A. El-Maleh, A. Bouhraoua, and M.

Alshayeb, “A low-cost platform for the prototyping and characterization of digital

circuit IPs,” Integr. VLSI J., vol. 54, pp. 1–9, 2016.

	page30
	page18
	page36
	page37
	page43
	page44
	page45
	page46
	page54
	page57
	page63
	page67
	page73
	page79
	page85
	page98
	page116
	page130
	page136
	page149

