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0ŵ  Nondimensional initial slack function 

1  Constant coefficient of mid-plane stretching term in the classical 

beam equation of motion 

2  Constant coefficient of electrostatic force term in the classical beam 

equation of motion 

T  Coefficient of thermal expansion (CTE) of the CNT 

0  Constant coefficient of the sixth-order partial derivation term in the 

strain gradient beam equation of motion 

1  Constant coefficient of mid-plane stretching term in the strain 

gradient beam equation of motion 

2  Constant coefficient of temperature gradient effect in the strain 

gradient beam equation of motion 

3  Constant coefficient of electrostatic force term in the strain gradient 

beam equation of motion 

pγ  Dilatation gradient vector 

ij   Kronecker delta 

 f   Variational quantity of f 



 

xviii 
 

0   Air dielectric constant 

ij  Strain tensor quantity (row-ith and column- jth) 

1
pqrη   Deviatoric stretch gradient (third-order tensor quantity), where p, q, 

and r are tensor indices 

   Poisson’s ratio 

   Mass density of the carbon nanotube 

ij   Cauchy stress tensor quantity (row-ith and column- jth) 

1
pqrτ   Third-order stress tensor, where p, q, and r are indices 

i   ith mode shape function 

pqχ   Gradient of rotation tensor, where p and q are indices 

i   ith natural frequency 

   AC harmonic frequency (dimensional) 

̂   AC harmonic frequency (nondimensional) 

 



 

xix 
 

ABSTRACT 

ABSTRACT (ENGLISH) 
Full Name : Iswan Pradiptya 

Thesis Title : Nonlinear Structural Mechanics of Electrically Actuated Carbon 
Nanotube based NEMS Devices 

Major Field : Mechanical Engineering 

Date of Degree : May 2017 

This thesis aims to investigate the nonlinear size dependent behavior of electrically 

carbon nanotubes (CNTs) based nanoelectromechanical systems (NEMS) while including 

higher-order strain gradient deformations, the geometric nonlinearity due to the von 

Karman nonlinear strain as well as the slack (initial curvature) and temperature gradient 

effects. The assumed non-classical beam model adopts some internal material length 

scale parameters related to the material nanostructures and is capable of interpreting the 

size effect that the classical continuum beam model is unable to pronounce. The higher-

order governing equations of motion and boundary conditions are derived using the so-

called Hamilton principle. A Galerkin modal based reduced-order model (ROM) 

expansion is developed to prescribe the non-classical nanotube mode shape as well as its 

static behavior under any applied DC actuation voltage. Results of the static analysis is 

compared with those obtained by the classical elasticity continuum theory. Then, a 

Jacobian method is utilized to determine the variation of the natural frequencies of the 

nanobeam with the DC load as well as the slack level. A detailed parametric study is 

conducted to study the influences of the size scale dependent parameters, the CNT 

length-to-radius ratio, the slack level and temperature gradients on the free vibration 

characteristics of the nanobeam. Moreover, a forced vibration analysis using long time 
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integration is conducted to investigate the strain gradient effect mainly in the linear 

regime. It is found that the size effect based on the strain gradient deformation has 

significant influence on static deflection responses, the fundamental nanotube natural 

frequencies dispersion as well as the dynamical behavior of the CNT-based nanobeam. 

Also, varying this size effect have revealed the offering of numerous possibilities of 

modes veering and crossing, all shown to be dependent of the strain gradient parameters 

as well as the CNT slack level. In addition, taking into account the size scale dependent 

effect change the nonlinearity profile of the frequency response analysis.  

This research may allow better understanding of the nonlinear behavior of CNT-

based nanosystem and can guide NEMS engineers in the design consideration stage, 

accordingly. 
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 ملخص الرسالة

ABSTRACT (ARABIC) 

  إسوان برادیبتیا  :  الاسم الكامل

أنابیب یة للأجھزة الكھرومیكانیكیة النانویة على أساس المیكانیكا الإنشائیة غیر الخط  :  عنوان الرسالة

ً  الكربون النانویة   المثارة كھربائیا

 ھندسة میكانیكیة  :  التخصص

ھــ 1438شعبان   :  `تاریخ الدرجة لعلمیة

)3O2Al-γعند درج (  
  (CNT)نویةتقترح ھذه الرسالة التتحقیق في السلوك غیر الخطي المعتمد على الحجم لأنابیب الكربون النا

المثارة كھربائیاً على اساس عارضة نانویة مع تضمین تشوه إنحدار الإنفعال ذو الطراز الأعلى، الھندسة غیر الخطیة 

الناتجة عن إنفعال فون كارمان غیر الخطي، بالإضافة إلى تأثیر الركود، وتأثیرات إنحدار درجة الحرارة. ویتبنى 

بعض متغیرات مقیاس طوال المواد الداخلیة متعلقة بالتركیب الداخلي  نموزج العارضة غیر التقلیدي المفترض

النانوي وھو قادر على تفسیر تأثیر الحجم الذي لایستطیع نموزج العارضة التقلیدي المستمر على بیانھ. المعادلات 

نموزج تحلیلي منخفص الحاكمة للحركة ذات الدرجة العلیا تم إشتقاقھا بإستخدام ما یسمى بمبدأ ھامیلتون. تم تطویر 

على اساس غالركین  لوصف ھیئة النمط (الوتیرة) غیر الكلاسیكیة وكذلك سلوكھا السكوني   (ROM) الدرجة  

مع تلك التي تم  السكونيمقارنة نتائج التحلیل  متت(المتسقر) تحت تطبیق (تنفیذ) اي حمل تشغیل ذو تیار مباشر. 

لتحدید التغیر في  جاكوبيتم استخدام طریقة  ثم المرونة الكلاسیكیة. استمراریة الحصول علیھا من خلال نظریة 

وقد أجریت دراسة تفصیلیة  وكذلك مستوى الركود. حمل التیار المباشرمع  للعارضة النانویةالترددات الطبیعیة 

الكربون النانویة بارامتریة لدراسة تأثیرات المعاملات (المتغیرات)  المعتمدة على مقیاس الحجم، نسبة طول أنابیب 

إلى نصف قطرھا، مستوى الركود وانحدارات درجات الحرارة على خصائص الاھتزاز الحر لأنابیب الكربون 

علاوة على ذلك، تم إجراء تحلیل الإھتزاز القسري الخطي بإستخدام تكامل طویلة المدة لتقصي تأثیر إنحدار  النانویة.

یر الحجم على أساس تشوه إنحدار الانفعال لھ تأثیر كبیر على استجابات وُجد أن تأثالإنفعال في المنطقة الخطیة. 

الانحراف السكوني، وتشتت (تناثر) الترددات الطبیعیة الاساسیة لانابیب الكربون النانویة  بالإضافة إلى السلوك 

تأثیر الحجم ھذا عرض أیضا، قد أظھر تغییر  الدینامیكي للعارضة النانویة القائمة على انابیب الكربنون الناویة.



 

xxii 
 

(تقدیم)  العدید من الاحتمالات من انماط الإنحراف ونقاط التقاطع ، وكلھا أظھرت أنھا تعتمد على  عوامل انحدرا 

بالإضافة إلى ذلك، مع الأخذ بعین الاعتبار  الإنفعال المتغیرة  بالإضافة إلى مستوى ركود انابیب الكربون النانویة.

ھذا البحث قد یسمح بفھم أفضل  یاس الحجم یغییر المظھر غیر الخطي لتحلیل استجابة التردد.التأثیر المعتمد على مق

للسلوك غیر الخطي للأنظم النانویة على اساس انابیب الكربون النانویة ویمكن أن یوجھ مھندسین الأجھزة 

 الكھرومیكانیكیة النانویة في مرحلة إعتبارات التصمیم  وفقا لذلك.
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CHAPTER 1 

CHAPTER 1: INTRODUCTION 

INTRODUCTION 

In this chapter, a preliminary background, main interest, and motivation of the 

thesis are presented. An adequate literature survey is also cited to overview the main 

contributions of the CNT-based continuum models development. The literature survey is 

including few technical applications of the use of CNT-based nanobeam devices, the 

applicability of the continuum elasticity theory to model the structural behaviors of CNT 

in a certain condition, the size scale dependent effect of small structure modeling, and the 

temperature gradient effects. In the last sub-section of this chapter, the objectives of the 

research are outlined. 

1.1 Motivation 

The era of nanotechnology was inspired by the following famous Richard 

Feynman’s speech entitled “There's Plenty of Room at the Bottom” in 1959 [1]: 

“I would like to describe a field, in which little has been done, but in which an 
enormous amount can be done in principle. This field is not quite the same as the others. 
Furthermore, a point that is most important is that it would have an enormous number of 
technical applications. What I want to talk about is the problem of manipulating and 
controlling things on a small scale.” 

Richard Feynman 

He announced to the entire world the possibility of manipulating and controlling 

things in the small scales (sub-macro scales). Nowadays people call this term as micro 
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and nanotechnology. One of the particular applications of nanotechnology is the subject 

so-called nanoelectromechanical system (NEMS). This area has been attracting a 

considerable amount of research interest from the scientific communities. One of the 

notable milestones in nanotechnology development is the invention of Carbon Nanotube. 

Carbon nanotubes (CNTs) have attracted an enormous wave of research interest since its 

discovery back in the earlier 90s [2]. These tiny structures represent the most promising 

contenders in various nano-based applications in numerous fields such as: physical, 

biological and electromechanical devices, etc. This is mainly due to their favorable 

mechanical and electrical properties.  

A wide-ranging of research has been conducted to characterize the mechanical 

properties of CNTs, it mostly concluded that CNTs are showing remarkable results such 

as a high tensile strength, a low mass density, high length-to-radius ratio, and relatively 

thermally robust. The aforementioned properties have led CNTs to be widely used in the 

various type of nanoelectromechanical systems (NEMS) such as nanoresonators, 

nanoactuators, and nanosensors [3-8]. The interest of developing fully functioning CNT-

based NEMS have been growing expeditiously since the last two decades in the academic 

and industrial scale [9-11]. Given that, a huge wave of research interest has been 

conducted, aiming the fully understanding of CNT behaviors. 

In order to design a NEMS device principally utilizing CNTs as the main and 

effective structures, understanding their structural behaviors including the natural and 

resonant frequency and dynamic response are becoming indispensable. These challenges 

are mostly tackled by conducting an experimental analysis which is costly, demands a lot 

of complex apparatus requirements, and mainly challenging due to further technological 
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difficulties [11]. To overcome those constraints, people then think to use modeling 

approach as a promising alternative. Molecular dynamics (MD) was then developed by 

computational scientist to tackle these difficulties, and used by many researchers in this 

field [12-20]. In fact, MD is the most successful tool to model accurately the CNT 

behaviors, but there are some limitations in term of computational capabilities and 

effectiveness, i.e. limited atom numbers, very short time step, and extremely time-

consuming computation  [11, 21]. To be able to possibly overcome this limitation, 

researchers have been competing, in the past few decades, to improve 

analytical/numerical modeling tools base on the continuum mechanics, capable of 

predicting the structural behaviors of the CNT-based nanostructure. 

Classical continuum theory has been used by many engineers working in this nano-

scale field, since the originating work of Yakobson et al. [22]. They are touted as the first 

group who proposed an equivalent of the structural mechanics simplified model of CNTs 

and shells continuum elasticity to study their structural behaviors [11, 23-28]. They have 

concluded that these approaches are simple and computationally efficient. Moreover, 

when analyzing nanoscale structures, size-dependent effects were recently described as 

significant factors in the nanoscale continuum modeling of nano based structures [29-34]. 

Knowing that the classical continuum theory is not able to capture the size scale 

dependent effect, a non-classical modeling approaches are somehow needed. Eringen’s 

nonlocal elasticity theory and the strain gradient theory (SGT) are the most used 

approach to model the size-dependent effects [11, 35-37]. In the latter approach, and 

instead of using one length scale dependent parameter which is taken into account in the 

Eringen’s nonlocal theory, the SGT uses three size scale dependent parameters to be able 
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to capture the 3-D size dependent effects. It is worth noting that considering 3-D size 

dependent effects are somehow more powerful and offering flexibility to the NEMS 

design engineer. Commonly, most of the aforementioned investigations of the size 

dependent effects have raised the following similar conclusions: (1) The static behaviors 

of size dependent model were showing significant discrepancy compared to the classical 

theory, and (2) The natural frequencies of the micro/nano beams are somehow size-

dependent, where, in many cases, the classical continuum underestimates the 

fundamental frequencies. Nevertheless, and since most of the previously published works 

deal numerically the nonlinear excitation forces by using either a fitting approach or 

series approximating functions, the nonlinear strain gradient-based structural behavior of 

single-walled carbon nanotubes (SWCNTs) under the nonlinear term of electrostatic 

force has not been studied thoroughly. 

In addition to the size dependent effects, CNT-based nanodevices may experience 

high-temperature changes during their manufacturing and operation, leading to thermal 

deformation (i.e. shrinkage or expansion) and therefore residual stress affecting 

consequently their overall behaviors and reliability. Several works have been published 

regarding the estimation of the coefficient of thermal expansion (CTE), useful as critical 

parameter to investigate the thermal gradient effect on the CNT-based nanostructures. 

Later, many investigations of the thermal properties and thermal effects of CNTs based 

nano-devices have been conducted, and the majority have shown that any temperature 

changes could greatly influence the mechanical and electrical behaviors of these devices 

[19, 38-44]. Their results showed a significant effect of temperature in the variation of 

resonance frequencies of the CNT based nano-resonators. 
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To  the  best  of  the  authors  knowledge,  and after a thorough survey of the 

literature, it is concluded that a very limited  number  of  investigations  considered  the  

nonlinear  structural  problem of CNT based nanobeam, using the strain gradient 

elasticity theory, in which the nonlinearity due to the geometry (mainly due to the von 

Karman nonlinear strains of the CNT as well as the slack effect), the nonlinear actuating 

force exact term and thermal gradient effect are taken into consideration. To fill this gap 

in the literature, the present study aims to develop a non-classical CNT-beam model 

incorporating a modified strain gradient theory that accounts for the strain deformations 

gradients to capture the size effects of a CNT nanobeam with nonlinearities due to von 

Karman nonlinear strains, electrostatic forcing and thermal gradient effect. 

1.2 Literature Review 

In this section, we summarize several applications of CNT-based nanosystem in 

order to overview the remarkable and promising future in the world of nanotechnology. 

We then review the main contributions of employing non-classical elasticity theories in 

the modeling of nanostructure as well as its significant effects to their structural 

behaviors. We also cite several publications addressing the imperative of thermal gradient 

effect.   

1.2.1 Nanoresonators 

Nano-resonators are nano-devices or nano-systems vibrating at a so-called resonant 

frequency in order to exhibit the so-called resonance. These systems are also well known 

as oscillators. Thanks to their tiny (in the nano-scale) sizes, these nanostructures, which 

are mainly utilized as nanoresonators, possess high natural/resonant frequencies, and 

hence offer an important range for sensitivity to their environment. This high sensitivity 
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is favorable for sensing applications in the nano-scale. In this regards, a research group 

from Cornell University introduced a tunable CNT-based oscillator [3]. They reported a 

doubly clamped CNT under electrical actuation could be tuned. Moreover, they showed 

the possibility of using this kind of structure to measure very small amount of forces in 

the nano-scale. Truax et al. [45] proposed a mechanism of the so-called co-integrated 

micro-actuators to axially tune the fundamental frequencies of single-walled carbon 

nanotube (SWCNT) based resonators. They claimed that this method is capable to 

increase the resonant quality factor and removing residual slack. Li et al. [46] fabricated 

nano-cantilever with very high frequency in the application of fast scanning probe 

microscope (SPM). Hüttel et al. [47] investigated the mechanical resonance of a doubly 

clamped CNT suspended over platinum electrodes with a 800 nm trench. They reported 

that their structure can resonate at around 120 to 360 MHz with a high quality factor Q 

around 105. In addition, they stressed on the importance of the nonlinear structural 

behaviors of the nano-structure mainly in coupling both the actuation (forcing) 

frequencies and the operating temperature. 

In the structural dynamics field, it is known that the vibrational behaviors of 

mechanical structure are highly affected by their mechanical damping. Eichler et al. [48] 

deeply explored the nonlinear damping of both the CNT-based and graphene-based 

resonator. Their method represented an important breakthrough in improving the 

understanding of the nonlinearity of the damping represented as ηx2 dx/dt, where η is the 

nonlinear damping coefficient. They also demonstrated that the quality factor 

significantly depend upon the variation of the driving force applied to the structure. 

Recently, the research conducted by Island et al. [49] successfully developed high 
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frequency SWCNT-based NEMS clamped-clamped beam with a quality factor up to 106. 

They tuned the structure frequency by altering the effective length of the structure and 

tension from the electrodes. They reported extremely high fundamental frequencies up to 

≈280 GHz. In an another similar effort to improve the quality factor and higher 

fundamental frequencies, Moser et al. [8] claimed that their CNT-based resonator 

measured the highest possible to resonant frequency f  in micro/nano resonators of around 

300Q f  THz, with a comparable quality factor Q with the previously mentioned 

published work [49] , i.e. Q ≈ 4.5×106. Therefore, these results are offering very 

promising CNT-based NEMS devices to be used as candidate in ultra-sensitive mass and 

force detections and other quantum mechanics applications. 

1.2.2 Nanosensors 

Nanosensors are getting a considerable attention from the scientific communities in 

the last decade. These tiny structures are promising in numerous applications such as 

ultrasensitive mass and force sensors, quantum macromechanical experiments, medical 

applications (in mass detection of viruses and bacteria), drugs deliveries, and biological 

applications [4, 6, 7, 50-55]. To mention few, Chiu et al. [4] used the shifting concept of 

resonance frequency of some CNT-based structures to detect and estimates the inertial 

mass of atoms. They adapted the method proposed by Sazonova et al. [3] to tune the 

frequencies. An alternating DC and AC voltages were applied between the source and 

drain electrodes. The resonance was achieved by tuning the forcing AC voltage 

frequency near the fundamental frequency of the CNT based nanobeam. The vibrations 

will modulate the gate capacitance and then one can measure the variations of the 
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capacitor induced currents which correlates with the carbon nanotube structural vibration 

amplitudes.  

Noting the smart sensing idea in the nano-scale, we can state that if one assumed a 

very small mass in the neighborhood of the CNT based nano-structure, the resonant 

frequency will be shifted, and the vibration amplitudes decrease slightly. This scenario is 

effective to measure mass in the atomic level. The group led by Adrian Bachtold from 

The Institute of Photonic Science, in Barcelona, Spain, was reported an outstanding 

ultrasensitive mass sensor resolution with a yoctogram (10-24 g) mass sensitivity [6]. This 

latter group published their research on CNT-based ultrasensitive force detection with the 

sensitivity of 12 × 10-21 N / Hz1/2. This remarkable design is probably tribute as the most 

advance of their kind. The same group also reported a design of ultrasensitive force 

detection system based on the CNT-nanoresonator. They used a known capacitive force 

to assess the force sensitivity. They set the enclosed system at 1.2 K operating 

temperature and successfully reported 12 zeptoNewton Hz-1/2 force-sensor sensitivity. 

They claimed that this achievement may open the possibility of individual nuclear spins 

detection. 

1.2.3 Nanoactuators  

Along with the rapid development of the nano and molecular electronics, scientists 

and engineers were driven to explore the possibility to use CNTs as actuators. An article 

published in Science and conducted by Rueckes et al. [5] designed a nanodevice 

employing suspended SWCNT with cross bar array configuration as nanoswitch. This 

work were tremendously relevant for many scientists mainly working in this area to 

exploit the use of CNT based nano-structures as nonvolatile random access memory for 
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molecular computing. In fact, the bistable behavior nature of the system, primarily due to 

the crossed and curved CNTs geometry, was useful to perform the switching (ON and 

OFF) action under the application of electrostatic actuations. Fennimore et al. [56] 

successfully built and operated a nano-motor incorporating a rotatable plate with the 

MWCNT used as bearing. This nano-motor can be precisely controlled by changing the 

actuating electric voltages. A group from Nagoya University published a work on nano-

robotics manipulations [57]. Kuznetsov et al. [58] demonstrated the possibility of using 

CNT as nano-actuators by presenting some numerical analysis approving the principle of 

operation of this kind of nano-devices. Unfortunately, the development and use of CNT-

based nano-actuators is somehow limited in the literatures compared with the nano-

resonators and nano-sensors. 

1.2.4 Size-dependent effects on the CNT-based nanobeam modeling 

Size-dependent effects were recently described as significant factors in the 

nanoscale continuum modeling of nano based structures [29-34]. In fact, many groups 

investigated experimentally the size dependent effects in the micro/nano scales. To cite 

few: Namazu et al. [29] reported that a silicon beam with the order of hundred 

nanometers in thickness of has almost 4 times stiffer than larger dimension of silicon 

beam. By experimental investigation, Fleck [30] reported that the torsional rigidity of a 

copper rod with 12 μm diameter was almost three times larger than the copper rod with 

the diameter of 170 μm. The similar conclusions were also reported by other groups 

stressing the size-dependent effect on the small structures [31-34]. Hence this effect 

should be appropriately investigated. 
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Several elastic continuum model the incorporate the effect of size scale dependent 

effect have been proposed in the literature to predict the structural behaviors of 

nanobeams. These include Eringen’s nonlocal elasticity theory [26, 33, 35, 36, 59-74], 

Mindlin’s couple stress theory [75], modified couple stress theory [31, 37, 76-80], and 

strain gradient theory (SGT) [32, 73, 77-79, 81-88]. Contrast with the classical elasticity 

theory, Eringen’s nonlocal theory assume that the stress a point is not only a function of 

the strain at the corresponding point but also is a function of the strains on the other 

points. This theory take into account the inter-atomic long-range force. Several published 

works based on this theory are available in the literature. To mention few:  Peddieson et 

al. [33] introduced the applicability on nonlocal elastic beam theory to nanotechnology 

application. Sudak [59] developed a complex model governing the column buckling of 

double-walled CNT (DWCNT) behaviors using nonlocal continuum theory. The van der 

Walls force was also considered in the model along with length scale dependent 

parameter. He demonstrated that the size effect dependencies should not be ignored in the 

analysis of DWCNT. Following the work of Sudak, Zhang et al. studied free transverse 

vibration analysis of DWCNT.  They calculated analytically the natural frequencies of 

the DWCNT and the effects of size scale dependent parameter on the amplitude and 

frequencies of free vibration scenario. They concluded that the classical theory might 

overestimate the natural frequencies prediction in the low magnitude regime, 

reciprocally, the classical one could underestimate the results in the higher frequency.  

The SWCNT and DWCNT were incorporated in the framework of nonlocal elastic 

beam by Wang and Varadan [61]. They studied the effects of length and diameter scale to 

the dimensionless natural frequencies of the CNT. Their conclusions were similar to the 
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aforementioned works. Reddy [62] reformulated the available beam theories including 

Euler-Bernoulli, Timoshenko, Reddy and Levinson using the Eringen’s nonlocal theories. 

He used Hamilton’s principle to obtain the equation of motion via variational 

mathematics. The analytical solutions for bending, buckling and free vibration were 

presented briefly. Reddy and Pang [66] studied in deep the nonlocal elastic Timoshenko 

beam theory applied in several boundary conditions, including simply supported, 

clamped-clamped, cantilever and propped cantilever. Further, the size dependent effects 

to the deflections, buckling load, and natural frequencies were investigated in the normal 

and transverse shear stress components. Recently, Ansari et. el. [72] proposed the 

variational differential quadrature method to study the thermal loading in the vibrational 

characteristic of SWCNT employing nonlocal shell model in the framework. In the 

implementation of the nonlocal elastic beam theory, the magnitude of the size scale 

parameter is the key issue in order to obtain astonishing results compared to either 

molecular dynamics or experiments. The nonlocal parameter is related to the atomic 

structure and their lattice dynamics. While the classical parameters such as Young’s 

moduli and shear elastic moduli are unable to represent the phonons dispersion of CNT, 

the energy dispersion phonons analysis will be useful to estimate nonlocal parameter 

represented the interatomic interactions within the CNT structure. Several works 

regarding the size scale parameter estimation are available in the literatures [36, 63, 67, 

74] 

On the other hand, the strain gradient theory considers the higher-order strain 

gradient of the microstructure but does not consider the inter-atomic long-range force. 

Instead of using one length scale dependent parameter, the SGT uses three size scale 
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dependent parameters to be able to capture the 3-D size dependent effects. The strain 

gradient theory (SGT) was formerly known as the higher-order elasticity theory 

developed earlier by Mindlin back in 1960s [89, 90]. The most important argument in this 

theory is that the strain energy density [79] depends on the classical strain (first-order 

deformation gradient) as well as the higher order deformation gradients. A modified 

strain gradient theory was proposed by Lam et al. [32], which mainly incorporates three 

size scale dependent parameters by considering higher order strain gradients.  

There are several works [77-79, 83] employing the modified SGT to predict the 

structural behaviors of the micro and nanobeam such as buckling, bending, free 

vibrations, and forced vibrations. To name few: Wang et al. [77] studied the deflection, 

rotation, and natural frequencies of microbeam assuming SGT in the framework of the 

Timoshenko beam theory. Kahrobaiyan et al. [78] developed a nonlinear size-dependent 

Euler-Bernoulli beam model incorporating the beam geometric nonlinearity arising 

principally from the mid-plane stretching effects. They solved the free-vibration problem 

of hinged-hinged microbeam using a perturbation technique. Akgoz and Civalek [79] 

studied the size scale dependent and Poisson’s effects on the static behaviors of SGT-

based microbeam. They also explored the effect of various boundary conditions on the 

size scale base microbeam. The sequential work of Fakhrabadi et al. [86, 91] studied the 

effects of size dependent parameters in the static behaviors of doubly clamped and 

cantilever CNT-based nanobeam under parallel electrostatic load. They reported a 

significant discrepancies of the static analysis results between SGT and classical theory. 

By fitting the highly nonlinear electrostatic force term, Miandoab et al. [92, 93] solved 

both static, free vibration and dynamic problems of nanobeam. In addition, the 
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bifurcation diagram and resonant frequencies plot of the bi-stable resonator was 

compared between SGT and classical theory. As a particular case of the SGT, the 

modified couple stress theory is a specific case of strain gradient theory by assuming l0 

and l1 which are the first and second size scale dependent parameters are zero, 

respectively [31, 75-80]. It is mostly been used due to their simplicity, and the classical 

boundary conditions are still valid to be used without any miscalculation doubt. 

1.2.5 Temperature gradient effect 

In addition to the size dependent effects, CNT-based nanodevices may experience 

high-temperature changes during their manufacturing and operation, leading to thermal 

deformation (i.e. shrinkage or expansion) and therefore residual stress affecting 

consequently their overall behaviors and reliability. Several works have been published in 

this regards: Jiang et al. [94] developed an analytical method to calculate the coefficient 

of thermal expansion (CTE) for CNTs, and reported that these values are negative at low 

and room temperature and then become positive at high temperature. Later, many 

investigations of the thermal properties and thermal effects of CNTs based nano-devices 

have been conducted, and the majority have shown that any temperature changes could 

greatly influence the mechanical and electrical behaviors of these devices [19, 38-43]. 

The axial and radial thermal expansion of SWCNTs was investigated using molecular 

structural mechanics by Li and Chou [38]. Zang et al. [39] and Alamusi et al. [19] 

reported CNT softening behavior proliferation with any assumed temperature increase. 

Kang et al. [44] studied the temperature dependent effect on the mass detection 

sensitivity of CNT based nano-resonators. They used simple sinusoidal force as an 

actuation method. They solved the problem by converting the continuous equation of 
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motion to a Duffing-like single-degree of freedom oscillator equation without accounting 

for the electrostatic actuating term. Their results showed a significant effect of 

temperature in the variation of resonance frequencies of the CNT based nano-resonators. 

1.3 Thesis Objective and Organization  

The objectives of this thesis are: 

1. To derive the equation of motion of the doubly clamped CNT-based nanobeam 

incorporating both size scale dependent parameters and temperature gradient 

effects in the framework of strain gradient Euler-Bernoulli beam theory. 

2. To prescribe the non-classical mode-shape function by considering linearized 

eigenvalue problem. 

3. To perform the static analysis of doubly clamped CNT-based nanobeam under 

parallel plate electrostatic actuation load and investigate the effect of size scale 

dependent parameters as well as the temperature gradient effects. 

4. To solve the linearized eigenvalue problem of doubly clamped CNT-based 

nanobeam and predict the natural frequency of the nanobeam while varying the 

size scale dependent parameters, electrostatic load, and temperature gradients. 

5. To perform the dynamic analysis of doubly clamped CNT-based nanobeam under 

parallel plate electrostatic actuation load and investigate the effect of size scale 

dependent parameters. 

6. To perform parametric study for the above mentioned cases for various nanobeam 

parameters. 
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This thesis is organized as follows. Following this introduction, a brief and useful 

background is presented. The classical continuum, the strain gradient elasticity theory 

and the thermal gradient effects are briefly reviewed in Chapter 2. In Chapter 3, a 

nonlinear beam model employing a modified strain gradient theory is presented, where 

the von Karman nonlinear strain deformations (mid-plane stretching), initial curvature 

(slack), temperature gradient effect, and electrostatic forcing nonlinearities are all taken 

into consideration. Then, in order to get the non-classical expression of mode shapes 

assuming the non-classical beam model, an eigenvalue problem is first constructed and 

then solved numerically using singular value decomposition method, to obtain the 

eigenvalues and eigenfunctions while varying the size scale parameters. In the same 

chapter, a Galerkin based reduced-order discretization technique to convert the nonlinear 

partial differential equation into ordinary differential equations is presented. In Chapter 4, 

numerical results related to the static deflections analysis of the CNT-based nanobeam 

with nonlinear mid-plane stretching when subjected to a static DC voltage and 

temperature gradients are presented. In Chapter 5, an eigenvalue problem analysis is 

carried out to investigate the natural frequency dispersion of the straight and slacked 

CNT. Further, the investigation of modes veering and modes crossing possibilities are 

carried out in the presence of higher-order strain gradient deformation and temperature 

gradients effects. The effects of the size scale dependent parameters to the dynamics 

behavior of the CNT-based nanobeam in very low actuation load regime are presented in 

Chapter 6. Finally, Chapter 7 will conclude the thesis and outlines few recommendations 

as future research. 
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CHAPTER 2 

CHAPTER 2: BACKGROUND 

BACKGROUND 

In this chapter we introduce general concepts in modeling the nonlinear structural 

mechanics of CNT-based nanobeams. The commonly assumed classical continuum 

theory is reviewed, following with the non-classical continuum modeling incorporating 

the size scale dependent parameters effects. A brief review of simple one dimensional 

(1D) thermal stress modeling is also presented in the last section of this chapter. 

2.1. The Classical Continuum Model of Beam 

The general expression of the CNT-based Euler-Bernoulli nanobeam model for 

either straight or slacked configuration (with initial curvature) are available in the 

literatures [23-25, 42, 95]. The model was developed based on classical continuum 

theory. The most common procedure of deriving the classical beam equation of motion 

can be outlines as follows:  

1. Define the elastic strain model while assuming the von Karman-type nonlinear 

strain-displacement relation given as follows: 
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where u(x,t) and w(x,t) are the axial and transverse displacements of a point on the neutral 

axis. Simply, the strain energy density U, kinetic energy T, and non-conservative work of 

the considered system Wnon are given by, 
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where E is Young’s modulus, A  is cross section area, ρ is mass density, σ is Cauchy 

stress tensor, ε is strain tensor, L is length of the beam, and the external force F(t) is given 

as the external force per unit length.  

2. Then, obtain the variational form of the above energy expressions, and integrate the 

expressions assuming an initial time t1 and a final time t2. 

3. Employ the Hamilton’s principle to get the equation of motion and its respective 

boundary conditions, which call be written as follows [23, 95]: 
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Another form of the above equation (2.5) while including the damping dissipating terms 

as well as the slack effect is given by [24, 25, 96] 

 
24 2 2 2

0 0
4 2 2 20

d d
2 , ,

2 d d

Lw w w EA w w w w w
EI A c F x t

x t t L x x x x x


                            
  (2.7) 

where the initial slack function and the damping coefficient are denoted by w0(x) and c, 

respectively. The slack function is commonly modeled as the first Euler-buckling 

instability function  0 0 sin /w b x L , where b0 represents the beam mid-point elevation 

[24, 25, 88, 96]. 

For convenience and in order to avoid numerical errors when manipulating small 

dimensional quantities in this nano-scale, the following nondimensional parameters were 

assumed to construct a normalized version of the equation of motion [23-25, 59, 61, 88, 

95]: 

ˆ ;
w

w
d

    0
0̂ ;

b
b

d
    0

0ˆ ;
w

w
d

    ˆ ;
x

x
L

  ˆ ;
classic

t
t

T
   ˆ ;

r
r

d
                    (2.8) 

We substitute the above expression of Eq. (2.8) into Eq. (2.7), the nondimensional 

equation of motion is given as, 
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T c
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  

                            

   


     (2.9) 

We note here that all the above defined normalized variables in Eq. (2.8) are 

dimensionless. The above described classical models can be used to predict the static, 
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linearized fundamental frequency, and the dynamic behaviors of any geometrical 

dimensions. These models are reported to be unable of capturing the size scale 

dependencies which are imperative in the micro/nano-scale structure, as reported by 

many researchers (detailed literature review available in Chapter 1). Moreover, the above 

classical model does still lack of temperature dependencies because of the absence of 

coefficient of thermal expansion, which is known to become significant, when the beam 

is being excited by a thermal gradient load. Therefore, an improved model incorporating 

the above conditions is still needed. 

2.2. A short review of strain gradient elasticity theory 

In the classical Cauchy stress theory, the strain energy only depends on the stress 

and strain tensor [31, 32]. Whereas, in the framework of a strain gradient theory [32], one 

should consider the higher strain terms involving a dilatation gradient term which 

represents a vector quantity, denoted by pγ , a deviatoric stretch gradient which is a third 

order tensor, denoted by 1
pqrη , and a gradient of rotation tensor denoted as pqχ . Hence, 

the total strain energy within a considered domain volume  can be written as [32]: 

 1 11

2 pq pq p p pqr pqr pq pqU dv


    σ ε p γ τ η m χ    (2.10) 

where pqσ represents the Cauchy stress tensor, and ,pp 1
pqrτ and pqm are the higher-order 

stress tensors corresponding to the higher-order tensor terms. The remaining parameters 

in Eq. (2.10) are summarized below [32, 81]: 

 , ,

1
,

2pq p q q pu u                                                 (2.11) 
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  , ,i mm i                                                     (2.12) 

   

   

1
, , , , ,

, , , ,

1 1
2

3 15
1

2 2 ,
15

pqr qr p rp q pq r pq ss r sr s

qr ss p sp s rp ss q sq q

      

     

     

     

                     (2.13) 

 , ,

1
,

2pq p q q p                                               (2.14) 

 1
( ) ,

2p p
curl u                                               (2.15) 

  2 ,
T

pq pq pqG                                               (2.16) 

2
02 ,p pp Gl                                                   (2.17) 

1 2 1
12 ,pqr pqrGl                                                 (2.18) 

2
22 ,pq pqm Gl                                                 (2.19) 

where up is the CNT axial displacement, θp is the rotation vector, pγ is the dilatation 

gradient vector, δpq is the Kronecker’s delta operator,   and G are the Lame constants, 

respectively. The size scale dependent parameters noted above as l0, l1, and l2 are the 

dilatation, the deviatoric stretch, and the rotation gradients, respectively. 

The above described strain energy density had been used by Kong et al. [81] to 

develop the equation of motion governing the static behaviors of the microbeam. They 

derived the model of micro cantilever beam problem. They developed the model in the 

framework of Bernoulli-Euler beam. They used simple concentrated force, and then 

formulated the analytical procedure to solve static bending problem. They concluded with 

the significant deviations of those obtained by strain gradient theory, couple stress theory 
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(as simple as taking l0 and l1 are zero), and the classical theory. The results of static 

analysis are represented in Figure 2.1. 

 The results of Figure 2.1 show the significance of the size scale effects on several 

beam case studies and with various beam thickness and length. Figures 2.1a-d show that 

that the bending rigidity of the small beam increases with the decrease of the beam 

thickness. The deviations with the classical continuum model are almost diminishing 

when the thickness of the beam is approaching the size scale dependent parameters. 

These results are qualitatively in agreement with the experimental study of Lam et al. 

[32] who proposed the modified strain gradient theory. 

 

Figure 2.1: Comparison of the static deflection of cantilever microbeams based on classical 

continuum, couple stress, and strain gradient theories and for various beam thickness h: (a) h = 20 

μm; (b) h = 50 μm; (c) h = 100 μm; (d) h = 200 μm [81]. 



 

22 
 

2.3. Thermal Gradient Effects 

Another effect which had been reported to be imperative in the CNT-based 

nanobeam modeling is the temperature gradient effect. Ansari et al. [42] studied CNT-

based nanobeam with several boundary conditions. They incorporated the thermal effect 

embedded in the classical beam theory, then solved the equation using variational 

iteration method (VIM). The thermal effect term was assumed as ,
1 2T

EA
N T





 where 

NT  is axial load due to thermal gradient, υ is Poisson’s ratio, α is coefficient of thermal 

expansion, T is temperature. They concluded that the beam is experiencing stiffening 

behavior, leading to an increase of the effective natural frequency when operated at lower 

temperature gradient conditions. Contrary, the beam experiences softening behavior 

tending to decrease its effective natural frequency when operated at higher temperature 

gradients. The limitation of the work of Ansari et al. [42] was the absence of the 

electrostatic actuating load mostly used in numerous applications of CNT-based devices. 

Another work was reported in this same topic by Kang et al. [44] while using the finite 

element method. They solved the nonlinear classical beam equation with thermal effect 

subjected by simple harmonic load. They concluded on the resonance frequencies drop of 

CNT-based nanobeam in higher temperature environments. Their study is useful in 

providing an insight on the thermal effect on nano-structures when subjected to harmonic 

excitations.  
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CHAPTER 3 

CHAPTER 3: PROBLEM DEFINITION, MODELING AND SOLUTION 

METHODOLOGY 

PROBLEM DEFINITION, MODELING AND 

SOLUTION METHODOLOGY 

In this chapter, the derivations of equation of the CNT-based nanobeam are 

presented briefly incorporating the size scale dependent effect. The proposed model 

would also incorporate the von-Karman nonlinearity for mid-plane stretching effect, the 

nonlinear electrostatic force exact term and the temperature gradient effects. The CNT-

based nanobeam is modeled in the framework of an Euler-Bernoulli beam assuming both 

ends clamping boundary condition. We used the Hamilton’s principle to derive the 

equation of motion of the doubly clamped CNT-based nanobeam while considering the 

non-classical strain energy expression using a modified strain gradient theory proposed 

by Lam et al. [32]. 

3.1. Equation of Motion of Doubly Clamped Slacked CNT-based 

Nanobeam 

Figure 3.1 shows a schematic of a parallel-plates electrically actuated CNT. The 

CNT-based nanobeam is modeled in the framework of an Euler-Bernoulli beam assuming 

doubly-clamped boundary condition, with a radius r, a shell thickness h, an effective 

length L, a mass density ρ, a Young’s modulus E, a cross-sectional area A, and a  cross-

sectional moment of inertia I. It is worth mentioning first, that few previous studies have 
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reported the imperfect (slack) geometry of nanostructure made of clamped-clamped 

CNTs [3, 97-100]. They all concluded that due to their fabrication process using the so-

called chemical vapor deposition (CVD) technique, fabricating perfectly straight CNTs 

with controlled geometry and orientation is somehow difficult. They also established that 

the level of slack can significantly affect the structural/dynamical behavior of these nano-

structures. Therefore, the below investigated CNT based nanobeam will be assumed 

initially curved with some slack levels. 

 

(a) 

 

(b) 

Figure 3.1: Schematic of a doubly clamped CNT based nanobeam assuming parallel-plates 

electrostatic actuation. 

3.1.1. Non-classical strain energy density derivation 

In order to obtain the equation of motion of the problem in Figure 3.1, we will use 

the so-called Hamilton’s principle to derive the governing equation of motion of the CNT 

while considering the non-classical strain energy expression as was previously presented 

in [32]. Strain energy density expression incorporating the size scale dependent 
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parameters is presented in this subsection. By assuming an Euler-Bernoulli beam model, 

the carbon nanotube displacement field can be expressed as: 

         0
1 2 3 0

, d
, ; 0; , ,

d

w x t w x
u u x t z u u w x t w x

x x

 
       

              (3.1) 

By considering the von-Karman nonlinearity of the clamped-clamped CNT for mid-plane 

stretching effect, the first order nonlinear strain-displacement relations for an initially 

curved beam can be written as follows [62, 87, 101]: 

       2 2 2 2
0 0

11 2 2

, ,1 1
,

2 2

w x t dw x w x t d w xu
z

x x dx x dx


     
               

              (3.2) 

where w0(x), u(x,t), and w(x,t) represent the initial slack profile function in the x-z plane, 

the axial displacement along the x-axis and the transverse displacements along the-z axis, 

all measured from the initial slack profile, respectively. 

Next, we evaluate the higher strain terms as function of the beam displacement 

components, we are left with the following expressions [32]: 

2 2 2 3 3
11 0 0 0

1 2 2 2 3 3

d d d
,

d d d

u w w w w w w
z

x x x x x x x x


     

           
                      (3.3) 

2 2
11 0

3 2 2

d
,

d

w w

z x x


  

      
                                           (3.4) 

2 2
3 2 3 1 0

12 21 2 2

1 1 1 1 1 d
,

2 2 2 2 2 d

u u u u w w

y y z x x z x x
 

                                  
    (3.5) 

where 1  and 3 are non-zero components of dilatation gradient terms. 12 and 21 are 

non-zero components of gradient of rotation tensors. Expanding the indices of Eq. (2.13) 
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and Eqs. (2.17)-(2.19), while imposing a non-zero components of deviatoric stretch 

gradient tensor, 1
pqrη , we obtain the following non-zero terms [32]: 

2 2 2 3 3
1 0 0 0
111 2 2 2 3 3

2 d d d
,

5 d d d

u w w w w w w
z

x x x x x x x


     
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                      (3.6) 
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Next, we obtain the non-zero components of higher-order stress tensor, ,pp 1
pqrτ and pqm , 

2
1 0 12 ;p l G   2

3 0 32 ,p l G                                               (3.10) 
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Then, substituting Eqs. (3.3-3.16) into the strain energy density function, Eq. (2.10), 

yields the following variational of the potential energy due to the classical and nonlocal 

strain gradient terms: 

0 0 1 1 2 2 3 3

0 0 0 0

,
L L L L

U P dx Q dx E A dx R dx                         (3.17) 

where the operators 0, 1, 2, and 3, are defined as follows: 
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             (3.18) 

and where the constants P, Q, and R, are defined with the following explicit expressions 
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   (3.19) 

The size scale dependent parameters, l0, l1, and l2 are the dilatation, the deviatoric stretch, 

and the rotation gradients, respectively [32]. 

Subsequently, and in order to include the effect of nonlinear geometric mid-plane 

stretching, we consider the following axial strain energy function due to residual axial 

stress denoted as ,AU  and defined as follows: 
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       (3.20) 

where N0/A represents the residual axial stress, mainly assumed to be uniformly 

distributed over the cross-sectional area of the beam. The above expression, as will be 
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embedded in the equation of motion, would account for both linear part (normal force), 

and the nonlinear part (mid-term stretching effect) of the residual stress force. Next, using 

Eq. (3.20), we can approximate the variational of the axial strain energy as follows: 
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0 0 0 0 2
00 0

,
LL L

A

u ww w w
U N dx N u N w N wdx

x x x x x

 
   

    
          
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3.1.2. The kinetic energy and work of non-conservative forces 

The variational of kinetic energy function T can simply be defined as: 
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                     (3.22) 

The last component that will be included in Hamilton’s principle is the work of non-

conservative forces, denoted by W , and can be expressed as: 
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where Fe and Fax symbolizes the electrostatic and axial forces, respectively, and the 

quantities Cs, and Cv are the structural and the viscous damping coefficient terms, 

respectively. 
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3.1.3. Hamilton’s principle 

Finally, we can get the CNT-based nanobeam equation of motion by substituting 

Eqs. (3.17), (3.21), (3.22), and (3.23) into the following extended Hamilton’s principle 

equation: 
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Afterward, integrating by part, and then simplifying the mathematical expression by 

gathering the terms multiplying both arbitrary operators “δu” and “δw”, we can write the 

following two coupled equations of motion governing both the axial and the transverse 

displacement functions governing the motion of the CNT nanobeam neutral axis: 
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(3.26) 

where the parameters P, Q, and R are defined in Eq. (3.19). Note here that as the 

longitudinal dynamics is low prominent for a flexible structure as compared to its 

transverse dynamics, the inertia term in Eq. (3.25) can be assumed small and therefore 

can be neglected. Also note that in the above Eqs. (3.25) and (3.26), the internal axial 

force due to a temperature gradient is considered through the axial force function Fax. For 
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this, we consider the conventional thermal elasticity theory, where the thermal axial force 

can be written as follows Fax = EAαTΔT, where αT is the coefficient of thermal expansion 

(CTE) of the CNT, and ΔT is the temperature gradient. 

After re-arranging Eq. (3.25) and substitute it into Eq. (3.26), one can write the 

following equation of motion governing only the transverse displacement of the CNT 

based nanobeam:  

 

4 4 6 6 2 2
0 0

4 4 6 6 2
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T e

w d w w d w w w w
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x dx x dx t t x t

w
N EA T F

x x




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       

                (3.27) 

Then, we compute the internal axial force by integrating the axial stress of a discretionary 

beam cross-section as follows: 

   2 2

0
0 11 0

,1 1

2 2A A

w x t dw xu
N N E dA N E dA

x x dx


                   
             (3.28) 

Assuming a uniformly distributed axial force induced by transverse deflection and zero 

external axial force (N = 0), the geometric nonlinearity due to the mid-plane stretching of 

the beam along the x-axis can be described by the average of its stretching axial force 

over the whole beam length and shown in the integral-differential term, hence Eq. (3.28) 

reduces to: 

2 2

0
0

02

LEA w dw
N dx

L x dx

               
                                     (3.29) 

Substituting Eq. (3.29) into Eq. (3.26), we get the subsequent equation of motion with its 

respective corresponding boundary conditions governing the transverse displacement of 
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the CNT based nanobeam, and while considering both the size dependent parameters as 

well as the thermal gradient effects: 
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Note that in Eq. (3.31), the first four boundary conditions are the classical one and the 

last two are quoted as the non-classical one both associated with the clamped-clamped 

nano-structure.  

The electrostatic force function,  ,eF x t , for a carbon nanotube under a parallel-

plates electric field assumption can be written as [23-25, 95]: 

     
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Where, 0 is air dielectric constant, VDC is DC gate voltage, VAC is AC gate voltage, Ω is 

AC harmonic frequency, and d is the gap width between bottom electrode and axis-x, as 

shown in Figure 3.1. For convenience and to get rid of any numerical computation 

problems that may arise when solving for the previous equations, we assume the 

following non-dimensional variables: 
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where time constant of 
4AL

T
P


 . Next, by substituting Eq. (3.33) into Eqs. (3.30)-

(3.32), the normalized equation of motion can be written in normalized form as: 
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and the following corresponding normalized boundary conditions: 
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        (3.37) 

The detailed derivation can be referred in the Appendix of this thesis. 

3.2. Galerkin’s Modal Decomposition  

In order to solve the above nonlinear equation of motion, Eq. (3.34), we propose 

the use of the Galerkin decomposition technique, useful to discretize the partial 

differential equation into finite number of coupled ordinary differential equations through 

a reduced-order modeling (ROM) process [102]. This approach along with its 
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applications to nonlinear analysis is available in the following textbook [103]. As a result, 

we assume that the transverse deflection of the slacked CNT-based nanobeam can be 

approximated as:  

   
1

( , ) ,
n

i i
i

w x t u t x


                                                (3.38) 

where,  1 i n x    represent trial functions, assumed here as the mode shape functions of 

the clamped-clamped nanobeam, and  1 i nu t   are their respective modal coordinates. 

The trial (admissible) functions for the clamped-clamped beam mode shapes are assumed 

to be orthonormal functions so that: 

   
1

0

1

0i j ij

i j
x x dx

i j
  


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                                     (3.39) 

By substituting Eq. (3.38) into Eq. (3.34), multiplying by  1 j n x   , and then integrating 

the whole equation of motion from 0 to 1, we obtain set of ordinary differential equations 

(ODEs) in term of modal coordinates functions  1 i nu t  . These ODEs can be solved 

numerically using suitable nonlinear coupled differential equations algorithms. The above 

constructed ROM will be used in the coming section to solve the eigenvalue problem in 

order to calculate the CNT natural frequencies and their corresponding eigenvectors, 

which represent the mode shapes, expressions as functions of the CNT non-classical 

parameters. 
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3.3. Non-classical Mode Shapes 

In this sub-section, the non-classical mode shapes prescription is presented.  It is 

worth mentioning here that, as we are dealing with some non-classical boundary 

conditions, Eq. (3.37), considering the classical mode-shapes expressions will no longer 

be valid to construct the ROM. Therefore, we need to develop a linearized eigenvalue 

analysis in this regards. The governing equation of a linear eigenvalue problem can be 

obtained by assuming the modal coordinates  iu t  as an exponential function in term of 

each modal natural frequency of the nanobeam, i.e.: 

( ) ,ij t
iu t e                                                   (3.40) 

Substituting Eqs. (3.40) and (3.38) into Eq. (3.34), 
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       (3.41) 

Then, in order to get the linear eigenvalue problem governing equation, we substitute Eq. 

(3.40) into the ROM equations while neglecting the effect of all external and nonlinear 

forces (the electric force, the damping forces, the axial thermal effect force, and the mid-
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plane stretching terms). Hence, we end up with the following the sixth-order ODE needed 

to obtain the expression of the non-classical mode shape functions: 

 2
0 0,vi iv

i i i i                                                     (3.42) 

where ωi are ith natural frequency of the beam. A general solution of Eq. (50) can be 

expressed as [104] 

  3 5 61 2 4
1 2 3 4 5 6 ,m x m x m xm x m x m x

i x C e C e C e C e C e C e                   (3.43) 

where mi symbolize the roots of the characteristic equation of the eigenvalue problem 

governed by Eq. (3.42). The acquired roots will then be used to determine the constants 

of integrations Ci of the non-classical mode shape functions. We can obtain the 

characteristic equation of the Eq. (3.42), 

  6 4 2
0 0,f m m m                                           (3.44) 

We evaluate the real and imaginary parts of all the roots for small value of β0 as depicted 

in both Figure 3.2 and Figure 3.3 respectively. 

 

Figure 3.2: Variation of the first four real roots with small values of the tuning parameter β0. 
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Figure 3.3: Variation of the first six imaginary roots with small values of the tuning parameter β0. 

It should be noted from Figure 3.2 that the real part of both roots m5 and m6 are zero 

for any small value of β0. Moreover, along with dispersion roots plot in the Figure 3.3, 

one can be added that the imaginary part of first four roots are all zero, and the remaining 

two roots are complex conjugates. Therefore, one can conclude that the roots 

characteristic equation can be written considering small values of β0 as follows: 

 1,2 1 3,4 2 5,6 3,     ,    ,m m m j                                    (3.45) 

Next, we substitute Eq. (3.45) into the characteristic equation Eq. (3.44), then 

straightforwardly function of λi in term of ωi or i = 1, 2, 3 can be obtained. It can be 

noted here that the general solution of Eq. (3.44) is also function of ωi, where i represents 

the ith mode shape.  

From Eq. (3.45) and (3.43), the mode shape function can written as: 
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Since the mode shape function should satisfy the boundary conditions, next we substitute 

Eq. (3.46) into Eq. (3.37), the matrix eigenvalue problem can be written as: 

   0 1 2 3 1 2 3 4 5 6, , , , , , , , 0,
T

C C C C C C      A                                 (3.47) 

 0 , 0,i  A                                                      (3.48) 

One notes here that matrix A in Eq. (3.48) is a 6x6 matrix appears as a function of 

ωi. Not to get trivial solutions, the constants coefficients of matrix C should not be zero, 

hence,  1 2 3 4 5 6, , , , , 0.
T

C C C C C C C  Consequently, we have to make sure that the 

determinant of matrix A is identically zero, thus solving for the unknown coefficients λi 

and lastly get the remaining parameters necessary to generate the non-classical mode 

shape functions, which are satisfying all of the classical and non-classical boundary 

conditions. The obtained mode shape functions will be used with Eq. (3.38), to solve the 

equation of motion, Eq. (3.30), either statics or dynamics. Toward this, these methods 

will be used to investigate the statics and dynamics of the doubly-clamped CNT-based 

nanobeam. 
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CHAPTER 4 

CHAPTER 4: STATIC ANALYSIS 

STATIC ANALYSIS 

In this chapter, the size scale dependent parameters effects on the CNT mode 

shapes are first studied. Then, the higher-order strain gradient parameters effects on the 

static deflections of the doubly-clamped CNT based nanobeam are carried out. The 

results of static analysis is then compared with those obtained when assuming classical 

elasticity theory. The Galerkin’s modal decomposition technique which has been 

described in Chapter 3 is applied in this static analysis. The chapter also outlines the 

temperature gradient effects on the CNT-based nanobeam when assuming high CNT 

length-to-radius ratio. 

4.1. The Size Scale Dependent Parameter Effects on the CNT Mode 

Shape 

4.1.1. The size scale dependent effects on the mode shape parameters 

As previously described in Chapter 3, it is clearly stated that by considering very 

small β0, we can easily solve Eq, (3.48). The solutions of ωi are depicted in Figure 4.1, 

which is representing the first linear frequency. In this figure, one compares the current 

results with those obtained by Miandoab et al. [93]. The results are showing significant 

deviations due to the different adopted boundary conditions as will be explained 

subsequently. Figure 4.1 shows that the strain gradient theory is sensitive to the boundary 

conditions indicated by the significant deviations of first natural frequency of the 
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considered nanobeam. Based on the previously described derivation of the equation of 

motion (see Appendix for the details regarding the equation of motion derivations), it was 

found that the first derivative (the slope) and the second derivative (the moment) of the 

beam in-plane transverse deflection are set equal to zero. In is worth mentioning here that 

in previous attempt to solve such equations, a research group [93] assumed the first 

derivative (the slope) and third derivative (the shear) should all be equal to zero, 

respectively. It is important to note that, in the modified strain gradient theory, the 

bending moment not only depends on the second derivative of the transverse deflection 

but also depends on the fourth derivative of the transverse deflection [32]. This is 

consistent with few other published works [81, 84, 101, 105], in which the moment 

equation is written as: 

2 4

2 4
,

w w
M P Q

x x

 
 

 
                                               (4.1) 

 
Figure 4.1: Comparison of the variation of the square root of the first frequency when assuming 

classical and non-classical beam equation as well as two set of non-classical boundary conditions. 
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From Figure 4.1, through analyzing the parameters effect mainly defined here as β0 as 

given in Eq. (3.36), we can clearly see that, as we decrease the CNT dimensions (the 

radius), the estimations of the fundamental natural frequency using non-classical beam 

model are drastically deviating from the classical continuum beam theory.  

Next, we investigate the strain gradient effects on the roots of the characteristic 

equation, Eq. (3.45) which are important parameters of the mode shape function. The 

results are shown in the Figure 4.2(a), Figure 4.2(b), and Figure 4.2(c). The figures are 

clearly showing significant result deviations between the one considering the boundary 

conditions in Eq. (4.1) and the boundary conditions as assumed in [93] specifically for 1

and 3 which are the first and third roots, respectively. The second root results are almost 

negligible, as depicted in Figure 4.2(b). It is again showing that the boundary conditions 

assumption is critical in the application of strain gradient theory in the case of doubly-

clamped beam. However, the previously stated conclusion is still can be adopted here 

about the deviations will increase toward the decrease of beam dimension.  

4.1.2. The non-classical mode shape 

We consider several CNT-based nanobeam dimensions as a numerical example to 

see the size dependent effects on the mode shape. One compares up to four mode shape 

functions to be investigated. The CNT-beam geometrical parameters are listed in the 

Table 4.1. 
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                                    (a)                                                                   (b)           

 
        (c) 

Figure 4.2: Variation of the absolute value of the first, second, and third characteristic roots of the 

eigenvalue problem when assuming classical and non-classical beam equation as well as two set 

of non-classical boundary conditions. 

Table 4.1: The assumed CNT geometrical properties used to simulate the results of 

Figure 4.3 

d  

(nm) 

L  

(nm) 

r  

(nm) 

l  

(nm) 

100 2000 0.65 5.0 
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Figure 4.3: Comparison between the CNT classical and non-classical mode shapes assuming the 

geometrical properties of Table 4.1. 

It is visibly shown that taking into account the size scale dependent parameters in 

the equation will significantly affect the mode shape functions. Despite the statement in 

[70] that the classical mode shape function are still valid to be used in the strain gradient 

model, it depends on how much the accuracy is specified by the NEMS designer. 

4.2. Size Scale Dependent Parameter Effects 

In order to get the static solution of the CNT based nano-beam, the time dependent 

terms are neglected in Eq. (3.38), and the admissible solution of the differential equation 

can be written as: 
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   
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where  1 i n x   are the normalized non-classical mode shapes of each considered beam, 

and 1 i na    are time-independent constant coefficients. Substituting the above 

approximated solution, Eq. (4.2), into the equation of motion while satisfying the 

orthogonality conditions of the eigenvector when multiplying the outcome equation with 

each mode-shapes function  1 i n x   , then integrating numerically from 0 to 1, we get 

with the following ROM governing the static behavior of the CNT based nanobeam: 
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(4.3) 

Finally, through solving the above coupled non-linear algebraic equation as function of 

the constant parameters ai, one can approximate the static responses of any assumed CNT 

nanobeam case study. 

As Eq. (4.3) cannot be solved analytically due to the complicated nonlinear 

functions embedded in all almost all the integral terms, we propose to implement a 

numerical approach in which the above-coupled nonlinear algebraic equations would be 

considered as an unconstrained minimization problem; subsequently one can solve them 

using a modified trust-region algorithm. The basic idea behind this numerical algorithm 

is iterating on the value of k so that the nonlinear function f(x,η) is minimized around 

j = 1,2,3,.. 
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zero, where x, assumed to be the control variable in this process, is the non-dimensional 

position of the beam. Formerly, one approximate the function f with an estimate function 

ξ(k) which should mimic the same behavior of the function f in the neighborhood of a 

trust region denoted by S, and around an initial guess point denoted by η. A set of loops 

should be properly designed to ensure that the value of the function f is minimum over 

the trust region S, which can be described by the following sub-problem: 

  min , ,
s

k k S                                                   (4.4) 

The loop is repeated until the objective point of ,k  would satisfy the following 

condition:    f k f   . Finally, the acquired objective point will be embedded in 

the ROM nonlinear-coupled equations to get a full expression of the beam deflection 

profile. One develops the MATLAB codes to solve this coupled equations. Several 

parameters were studied to investigate the static transversal deflection of the CNT-based 

nanobeam with the present of higher order strain gradient effects. 

4.2.1. Numerical example and convergences 

In the below simulations, the CNT nanobeam is assumed as a cylinder beam with 

length of L=3000 nm, Young’s modulus E=1.0 TPa and a mass density  =1.35 g/cm3. 

Various case studies of are considered. Table 4.2 summarizes these cases with their 

respective geometrical properties. We first examine the convergence of the constructed 

reduced-order model. Therefore, the solutions of classical theory are verified using the 

previously published work [23] to ensure the numerical solution convergences. 
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Table 4.2: Geometrical properties of the case studies of CNTs considered in this work. 

Case 
d 

(nm) 

r 

(nm) 
Ref. 

1 100 30 [23, 95, 106] 

2 100 20 [23, 95, 106] 

3 100 10 Current work 

4 100 1 Current work 

5 300 1 Current work 

6 300 3 Current work 

7 300 5 Current work 

8 500 1 [24, 95] 

 

By easily dropping the strain gradient term, the model is become very much 

equivalent with the classical model. We then calculate the maximum static deflection of 

both classical model and non-classical model from cases 1, 2, 3, and 4, and first four 

symmetric/odd modes, ensuring the convergences results. Figure 4.4 and Figure 4.5 show 

the convergence results of classical model and non-classical model for case 1 of Table 

4.2, respectively. Figure 4.4 shows that considering five modes are quietly acceptable 

convergences. Also the figure reveals that asymmetric modes are not significant in the 

static deflection results. We can clearly observe from the mode shape curve that the 

middle point of asymmetric modes (even modes) are almost zero. For the case of doubly-

clamped beam which the maximum deflections mostly located in the L/2 of the beam, 

hence, ignoring the even modes are somehow still valid without any significant errors. 

We did the same checking approach for strain gradient model as shown in the Figure 4.5, 

accordingly. 
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Figure 4.4: Variation of the normalized maximum static deflection of the CNT with the DC 

voltage for case 1 of Table 4.2, when assuming classical continuum theory, and for various 

number of modes in the ROM. 

 

Figure 4.5: Variation of the normalized maximum static deflection of the CNT with the DC 

voltage for case 1 of Table 4.2, when assuming non-classical continuum (strain gradient) theory, 

and for various number of modes in the ROM. 
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4.2.2. Size scale dependent effects on the maximum static deflection 

Next, we calculate the maximum static deflection of the beam parameters available 

in the Table 4.2 while varying the size scale dependent parameters. Figure 4.6 shows the 

normalized maximum deflection of doubly-clamped CNT for the cases 1, 2 and 3 of 

Table 4.2, while assuming all length scales parameters to be equal, i.e:  0 1 2l l l l  

[32, 81, 83]. In the same figure, we consider several values of l  while comparing the 

outcomes with the classical continuum theory (CCT), for several electrostatic DC gate 

voltages. As presented in the Figure 4.6, we can clearly discern the discrepancy between 

the static response curves assuming the classical continuum theory and the one of the 

strain-gradient theory. It is observed that, for a certain fixed DC gate voltage, the SGT 

theory static solutions are smaller as compared to the classical static solution. This 

discrepancy is becoming larger for higher size scale parameters.  

It is also interesting to note that the SGT, which is taking into consideration the 

higher order strain gradients as compared to the CCT, is somehow stiffening the CNT 

nanobeam. As consequence, we can clearly observe that the pull-in voltages of the 

doubly clamped CNT beam are increasing with the SGT testifying that the classical 

continuum theory is underestimating the pull-in instability values for small-scale beam. 

Also note that zooming around the pull-in instability region in Figure 4.6, one can notice 

that the strain gradient effect is more prominent, but this effect reduces as we consider 

CNT with smaller length-to-radius ratio (L/r). In contrary, far from the pull-in instability, 

the same figure shows that the strain gradient has more significant effect in the low 

actuation load regime for CNT with larger length-to-radius ratio (L/r). 
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Figure 4.6: Comparison of the normalized maximum static deflection variation of the CNT with 

the DC voltage when assuming the classical continuum theory (CCT) and the strain gradient 

theory (SGT) for cases 1, 2, and 3 of Table 4.2, respectively. 

In the next coming example, the effect of the strain gradient parameters on the 

static behavior of the CNT of case 4 in Table 4.2 is investigated. Figure 4.7 depicts the 

variation of the normalized CNT static with the DC voltage. The figure shows interesting 

behaviors in the low gate voltage regime, where the inclusion of size scale dependent 

parameters increases nonlinearly the discrepancies between CCT and SGT for CNT with 

larger length-to-radius ratio (L/r), as was previously explained in Figure 4.6. This 

nonlinear effect in the low actuation domain diminishes for CNT with lower length-to-

radius ratio (L/r). Furthermore, in the region near the pull-in instability, the size-

dependent effect is almost showing a linear stiffening effect resulting in an increase in the 
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pull-in voltage. Further investigation of strain gradient parameters effects in the low 

voltage regime will be discussed in later subsection. 

 

Figure 4.7: Comparison of the normalized maximum static deflection variation of the CNT with 

the DC voltage when assuming the classical continuum theory (CCT) and the strain gradient 

theory (SGT) for case 4 of Table 4.2. 

To more elucidate the size scale dependent effects on the static deflection profile, 

we plot the first mode which is the most dominant mode of cases 1, case 2 and 3 of Table 

4.2. We assume l0 = l1 =l2= l = 5 nm as a size scale dependent parameter for CNT-based 

nanobeam with relatively large diameter as presented in Table 4.2. Again, the results 

show that the size scale dependent parameters are becoming more prominent for smaller 

diameter of the SCT-based nanobeam. The static deflection deviations between those 

calculated using classical and non-classical are becoming larger for small diameter, i.e. 

case 3 in Table 4.2. The results are in agreement with the theory, stated that the size scale 
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dependent effects are much significant on the smaller geometrical dimensions of the 

structure. 

 

 

Figure 4.8: Comparison of the CNT static profiles of cases 1, 2 and 3 of Table 4.2, for DC gate 

voltage of 16 Volt, and when considering the classical continuum theory (CCT), and the strain 

gradient theory (SGT), respectively. 
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4.3. The temperature gradient effects 

We propose next to investigate the thermal gradient effect on the CNT based 

nanobeam while considering the SGT. For this, we consider a doubly clamped CNT 

nanobeam with parameters of cases 5, 6, and 7 of Table 4.2. A straight CNT 

configuration is assumed to investigate the effect of the thermal gradient only without 

including the initial curvature (slack) effect. Further discussion about this consideration 

will be presented later. The CNT coefficient of thermal expansion coefficient was 

assumed to be equal to 6 -11.6 10 KT
   and 6 -11.1 10 KT

  for low and high 

temperature values, respectively, as compared to the room temperature value [42, 44, 72, 

107].  

4.3.1. Temperature gradient effect to the pull-in voltage and maximum static deflection 

In the below, we consider cases 5, 6, and 7 while varying the temperature gradient 

from 300 K  to300 K . From the summarized results of Table 4.3, we can clearly 

observe that decreasing the temperature value way below the room temperature tends to 

stiffen the CNT as indicated by the increase of the pull-in voltage (shrinking effect) and 

with the decrease of the maximum deflection at the pull-in. The total contrary behavior is 

occurring for the cases of a temperature increase with respect to the room temperature. 

This is demonstrating that with any increase of the thermal gradient, the nanobeam would 

feel a positive axial compressive stresses tending to affect its initial deflection state 

before even applying any actuating load (expansion effect).  
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Table 4.3: Effect of the temperature gradient variation on the CNT pull-in gate voltage 

and its respective normalized maximum deflection. 

Case    

ΔT (K) 

Case 5 Case 6 Case 7 

VoltPI
* max

PIw * VoltPI  max
PIw  VoltPI  max

PIw  

-300 31.24 0.7520 43.59 0.7410 50.29 0.7354 

-250 31.15 0.7528 43.46 0.7418 50.14 0.7362 

-200 31.06 0.7535 43.33 0.7425 49.98 0.7370 

-150 30.98 0.7541 43.21 0.7432 49.85 0.7377 

-100 30.89 0.7548 43.08 0.7440 49.70 0.7385 

-50 30.80 0.7555 42.96 0.7447 49.55 0.7393 

0 30.72 0.7562 42.83 0.7455 49.41 0.7400 

+50 30.63 0.7569 42.71 0.7464 49.26 0.7408 

+100 30.54 0.7576 42.58 0.7469 49.11 0.7415 

+150 30.46 0.7582 42.45 0.7477 48.97 0.7423 

+200 30.36 0.7591 42.33 0.7484 48.82 0.7430 

+250 30.27 0.7598 42.20 0.7492 48.67 0.7438 

+300 30.18 0.7605 42.07 0.7500 48.52 0.7446 

*PI and wmax stand for pull-in and non-dimensional maximum deflection 

Moreover, and in order to investigate the temperature gradient effect in the low 

voltage regime, we compute the non-dimensional maximum static deflection for the case 

of r = 1 nm (case 5) while varying the gate voltage. The results are depicted in both 

Figure 4.9 and Figure 4.10, for low and high temperature gradient, respectively. As 

depicted in Figure 4.9, the CNT static profiles are completely different due to the 
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shrinking effect in the low-temperature regime. In fact, the nonlinear effect of the 

temperature appears from the low gate voltage until approximatively one-third the pull-in 

voltage, then all static curves share almost a linear temperature gradient effect till the 

pull-in instability. In comparison, Figure 4.10 shows that considering high-temperature 

gradient values, the CNT would be initially curved due to the thermal axial compressive 

stresses. This effect is somehow similar to the initially curved (slacked) doubly clamped 

structures [24]. In addition, and as previously reported in [24], the pull-in voltage of 

slacked CNT is decreased and the non-dimensional maximum deflections in the pull-in 

point slightly increase. This is what we are exactly getting in Figure 4.10, assuming 

positive thermal gradient effect. 

 
Figure 4.9: Thermal gradient effect on the CNT maximum static deflection of case 5 of Table 4.2 

when assuming low-temperature regime. 
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Figure 4.10: Thermal gradient effect on the CNT maximum static deflection of case 5 of Table 

4.2 when assuming high-temperature regime. 

4.3.2. The critical temperature buckling analysis 

This part is organized mainly to investigate the critical (threshold) temperature 

value that would trigger a thermal expansion sufficient for the buckling initiation of the 

clamped-clamped CNT based nano-resonator. We calculate this onset value thermal 

expansion of the CNT by neglecting all the time dependent functions as well as the 

electrostatic force in the nonlinear beam equation of motion, Eq. (4.3), while conserving 

the mid-plane stretching term and the temperature gradient. As a numerical case, we 

consider a CNT on case 5 of Table 4.2. Figure 4.11 displays the CNT static deflection 

versus an assumed temperature gradient using one mode shape in the ROM process. In 

the same figure, we assume all size scale dependent parameters equal to 

0 1 2 1 nm.l l l l     The figure shows that for this case study, a critical buckling 

thermal threshold is occurring at around  9.4 K. Increasing the temperature gradient value 
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above this critical thermal threshold will initiate a post-buckling state. The same figure is 

demonstrating that the CNT exhibits in a nonlinear manner the post-buckling regime 

when the temperature gradient is furtherly increased. 

To compliment the above numerical results, we propose next to compute the CNT 

critical buckling temperatures while considering different SGT parameters, Figure 4.12. 

Additionally and in the same figure, the SGT results will be compared with those 

obtained while assuming classical continuum theory. The classical results show that the 

critical buckling while considering one mode in the calculation is very small. This finding 

is in agreement with what was previously reported in Lee and Chang [108]. In fact, they 

have investigated in their work the critical buckling temperatures of single wall carbon 

nanotube (SWCNT) using the classical continuum theory, and they have concluded that 

these critical temperatures are relatively small values for all for the fundamental mode 

(the first mode of vibration).  

Figure 4.12 shows that taking into account the nonlinear geometric terms due to the 

assumed thermal gradient along with the mid-plane stretching are affecting significantly 

the computation of the critical thermal buckling thresholds. Similarly, it is clearly shown 

that increasing the SGT parameters i.e. decreasing the CNT radius to the size scale 

dependent parameters ratio, tends to increase the critical buckling temperature thresholds, 

as compared to the classical continuum theory. This is mainly due to the stiffening effect 

of the CNT-based nanobeam in the presence of higher-order strain gradient deformations. 

That to say that the strain gradient effects are considerably related to the stiffness of any 

considered nanostructure [32]. 
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Figure 4.11: Variation of CNT maximum static deflection with an assumed temperature gradient 

excitation and while assuming a SGT parameters of  0 1 2 1 nm.l l l l     

 

Figure 4.12: Variation of the CNT maximum static deflection with an assumed temperature 

gradient excitation and while varying the strain gradient parameters as follows:  l = 0 nm (the 

classical continuum theory case), l = 1.0 nm, l = 1.25 nm, and l = 1.5 nm. 
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CHAPTER 5 

CHAPTER 5: EIGENVALUE PROBLEM 

EIGENVALUE PROBLEM 

In this chapter, we propose to investigate the size scale dependent and thermal 

gradient effects on the variation of the natural frequencies of the doubly-clamped carbon 

nanotube with various static DC actuating voltages. Toward this, we consider an un-

damped eigenvalue problem while including the geometric nonlinearity, nonlinear 

electrostatic force, size-dependent and thermal gradient in the CNT equation of motion. 

All the obtained results then are compared with those obtained using classical theory. 

5.1. Linearized Eigenvalue Problem Derivation 

We first derive the linearized eigenvalue problem (LEVP) to investigate the size 

scale dependent and thermal gradient effects on the natural frequency of CNT-based 

nanobeam. The normalized equation of motion with the respective boundary conditions 

of the doubly clamped CNT beam with slack can be re-written as: 

     

0 3

1 1
2 2

2 1 0

0 0

ˆˆ ˆ ˆ ˆ( , )
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T o
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T w dx w w dx w w

 
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                   (5.1) 

Considering the Galerkin decomposition of Eq. (3.38) and substituting it into the above 

un-damped equation of motion, we obtain the following normalized equations function of 

the time-varying modal coordinates and the space function mode shapes, respectively: 
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 (5.2) 

Eq. (5.2) can be written in the state-space representation as follows: 

  ,RU U                                                       (5.3) 

where, 

   1 2 1 1 2 2... ... ,n n nx x x u u u u u u U                     (5.4) 

The above vector U represents the modal coordinate vector and  R u  is the right-

hand side vector representing the stiffness coefficients and all the nonlinear terms in Eq. 

(5.2). We can clearly notice that the vector  R u  is a nonlinear function of modal 

coordinate  1u t . Then, by splitting U into a static part denoted by staticU , representing 

the equilibrium position due to the DC actuation, and a dynamic part denoted by 

 dynamic tU  representing the small oscillations around the equilibrium position, the vector 

U  can be written as: 

  ,static dynamic t U U U                                              (5.5) 
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Substituting Eq. (5.5) into Eq. (5.4), using a Taylor series expansion for small variation 

of  dynamic tU , eliminating the higher-order terms, and imposing that   0,staticR U  we 

are left with the below truncated Taylor’s series expression: 

  h.o.t,dynamic static dynamic U J U U                                       (5.6) 

where  staticJ U  is the Jacobian matrix computed at the equilibrium points [24, 109] and 

h.o.t stands for higher-order terms. If one assume n-modes in the Galerkin decomposition 

ROM process, the Jacobian matrix will be an n×n matrix and can then be calculated as 

follows: 
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                         (5.7) 

where f are the state space form of the EOM for nth mode-shapes.  

To compute the natural frequencies of the CNT with any corresponding DC electrostatic 

voltage, one should substitute the stable static response solution, staticU into the matrix J 

and then calculate its corresponding eigenvalues, using the below equation: 

  0,static matrixI J U                                                    (5.8) 

where Imatrix is the identity matrix. Finally, the natural frequencies of the system can be 

obtained by taking the square roots of the Jacobian matrix eigenvalues. 
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5.2. Linearized Eigenvalue Problem of straight CNT 

5.2.1. Considering one mode LEVP using classical continuum theory 

By considering classical continuum theory, the normalized form of equation of 

motion considering one mode shape can be written as: 
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Next, by defining matrix U, 
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Then, 1-mode form of the Jacobian matrix can be written as: 
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The results for case 1 of Table 4.2 are depicted in Figure 5.1. 

 

Figure 5.1: Variation of the first in-plane (fundamental) natural frequency with the DC load of the 

CNT of case 1 of Table 4.2 assuming the classical continuum theory. 

 The figure shows the natural frequency of CNT-based nanobeam with large 

diameter. The frequency is slightly decreasing while increasing the actuation load until 

30 Volt, showing the softening effect due to quadratic nonlinearity is more prominence. 

Applying the larger actuation load near the pull-in, the frequency increases indicating the 

hardening effect due to prominent cubic nonlinearity, then it suddenly drop to zero 

exactly at the pull-in voltage. 

To more investigate the natural frequency on the smaller diameter of CNT-based 

doubly clamped nanobeam, we consider case 3 of Table 4.2 as the next numerical 

example. The results are depicted in the Figure 5.2. The figure is showing slightly 

different characteristic compared to Figure 5.1. As one can see that for the beam with 
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large length-to-radius ratio (L/r), the softening behavior is not observed. The natural 

frequency dramatically increases with the increases of actuation load without any 

decreasing point, and suddenly drop to zero at the pull-in voltage. The absent of softening 

behavior is due to the mid-plane stretching effect is more prominent over the electrostatic 

actuating load. 

 

Figure 5.2: Variation of the first in-plane (fundamental) natural frequency with the DC load of the 

CNT of case 3 of Table 4.2 assuming the classical continuum theory. 

5.2.2. Considering five mode LEVP using classical continuum theory 

Next, we consider LEVP up to five modes using classical theory. One modify the 

Eq. (5.1) by dropping strain gradient effect and slack function, 
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We define the matrix U as: 

    1 2 3 4 5 6 7 8 9 10 1 1 2 2 3 3 4 4 5 5 ,U x x x x x x x x x x u u u u u u u u u u         (5.16) 

We assume a straight CNT of the case 1 and 3 of Table 4.2 as numerical cases to be 

investigated. The results are plotted in Figure 5.3(a) and Figure 5.3(b). In the case 1, one 

can see that the higher mode natural frequencies of the large radius beam are almost 

insensitive to the electrostatic actuation load while considering CNT with large radii. The 

CNT with smaller radii is more sensitive to the actuation load as shown by the stiffening 

effect occurrences even for small gate voltage. For both case, stiffening effects of the 

higher modes are prominent near the pull-in. Nevertheless, both cases show that first 

mode frequency is dropping to zero at the pull-in voltage.  

 

                                           (a)                                                                                  (b) 

Figure 5.3: Variation of the first five in-plane natural frequencies with the DC load assuming the 

classical continuum theory of the CNT of (a) case 1 from Table 4.2. (b) case 3 from Table 4.2. 
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5.2.3. Considering five mode LEVP using strain gradient theory 

In this part, we will use all the procedure presented in section 5.1 to calculate the 

natural frequency of CNT-based nanobeam in the present of strain gradient effect. The 

only part in the equation that should be dropped is the thermal gradient, which will be 

discussed in the next section. As a first case study in this eigenvalue problem section, we 

assume a straight CNT of the case 2 of Table 4.2. We propose in the below to compute 

the variation of its natural frequencies with the DC load and while varying the size scale 

dependent parameters as well. Note here that we considered both symmetric and 

asymmetric mode-shape in the below calculation in order to capture all possible modes: 

the odd and even in-plane natural frequencies of the CNT nanobeam. 

Figures 5.4(a) and 5.4(b) depict the variation of the normalized and dimensional 

fundamental frequency with the DC voltage and for various size scale parameters, 

respectively. As clearly observed from Figure 5.4(a), the non-classical theory tends to 

underestimate the normalized frequencies of the CNT. In fact, for all simulated cases in 

the same figure, it can be noted that the fundamental frequency is decreasing slightly in 

for low values of the gate voltage, and then start to sharply increase for higher DC values 

and more particularly near the pull-in voltage instability, where a suddenly drop to zero 

of the frequency is observed. Watching judiciously Figure 5.4(b), which represents 

another version of Figure 5.4(a) but while considering dimensional unit for the 

fundamental frequency, we can conclude that in the low voltage actuation regime, the 

non-classical effect tends to increase the natural frequency of the nanobeam, but this 

phenomenon then reciprocally changes when the actuation load increases near the pull-in 
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instability. As to that, we can notice that in for gate voltages higher that 20 Volt, the 

results of SGT are lower than the classical results. 

 
                                           (a)                                                                                  (b) 

Figure 5.4: Variation of the first in-plane (fundamental) natural frequency with the DC load of the 

CNT of case 2 from Table 4.2 [95]  assuming both the classical continuum theory and the strain 

gradient theory: (a) nondimensional form, and (b) dimensional form (in MHz). 

Next, we propose to study the length scale parameters effects on the higher 

symmetric and anti-symmetric modes of vibrations of the CNT-based nanobeam. Thus, 

the variation of the second and higher frequencies versus DC voltage are plotted in both 

Figure 5.5 and Figure 5.6 to look into the effect of the length scale parameters. Figure 5.5 

shows the nonlinear variation with the DC load of the second mode natural frequency. 

Figure 5.5(a) states again that the classical theory overestimates the normalized second 

frequency whereas Figure 5.5(b) clearly displays the stiffening effect of the SGT model 

as depicted by the increase of natural frequency mainly in the lower values of the DC 

voltage. Moreover, this stiffening effect tend to decrease when the DC load is 

approaching the pull-in voltage. These eigenvalue problem results are consistent with the 
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static analysis both stating that the stiffening behavior is more dominant in the low gate 

voltage regime. 

 

                                           (a)                                                                                  (b) 

Figure 5.5: Variation of the second in-plane natural frequency with the DC load of the CNT of 

case 2 from Table 4.2 [95]  assuming both the classical continuum theory and the strain gradient 

theory: (a) nondimensional form, and (b) dimensional form (in MHz). 

To further study what happen in the higher order modes, we plot the variation of 

the higher frequency with the DC load and for various length scale parameters. As 

depicted in Figure 5.6, the qualitative behavior of the second up to the fifth frequencies 

are similar, but different from the first fundamental frequency. In fact, as explained 

before, the first fundamental frequency exhibits a slight  decrease  followed  by  an  

increase  for  increasing  DC  voltage  before  the  occurrence of  pull-in instability. 

Increasing  the  values  of the length scale  parameter  leads  to  an  increase  in  the 

fundamental frequency for low DC voltages and then the opposite effect is observed in 

addition to a further growth of the pull-in voltage. Furthermore, when the length scale 

parameters increase, all the higher order frequencies (second up to the fifth) are 
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increasing, and this increase is more and more prominent for the higher frequencies. 

Finally, the same figure shows that for a straight CNT case study, the natural frequency 

are highly tunable while varying the magnitude of DC gate voltage. All higher 

frequencies are drastically increasing with the DC load and more particularly near the 

pull-in instability. Furthermore, their variation profiles with the DC load showed not a 

single possibility of modes veering or even modes crossing. 

 

Figure 5.6: Variation of the second, third, fourth and fifth in-plane natural frequencies (in MHz) 

with the DC load of the CNT of case 2 from Table 4.2 [95]  assuming both the classical 

continuum theory and the strain gradient theory. 

5.3. Linearized Eigenvalue Problem of Slacked CNT 

In this section, we propose to investigate both effects of the CNT initial curvature 

(slack) as well as the size scale dependent parameters. As a first case study, one consider 
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the same CNT’s parameters as previously reported in [24]. One also compute the natural 

frequencies for zero gate voltage while varying the slack and the size scale dependent 

parameters. Here, one assume the CNT initial curvature as described by the following 

profile function      0 0 sinw x b d x  [96]. Then, the level of slack are computed as 

follows:    Slack % / ,L L L   where L  is the CNT length in the deformed/slacked 

state and L is its length in the perfectly straight state. 

5.3.1. Considering classical theory 

One modify Eq. (5.2) by dropping the size scale dependent and thermal gradient 

terms in order to get the normalized equation of motion of classical Euler-Bernoulli beam 

theory. The equation can be written as: 
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(5.17) 

As previously reported in [24], for the case of initially curved CNTs, and assuming 

classical continuum theory, mode-veering states occur between two adjacent asymmetric 

(odd) modes, while mode-crossing states also arise between two nearby symmetric and 

anti-symmetric modes, respectively. Then, and while varying the size scale dependent 

parameters, we intend to observe any possibility of mode veering and mode crossing. In 

the below reported figures, we used red circle to mark the mode-veering locations and red 
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arrows to mark the mode-crossing positions. One calculate until first five modes in this 

investigation. Figure 5.7 shows the results exactly the same with the results reported by 

Ouakad and Younis [24] in despite of the used of fewer modes which were considered in 

the calculation. We will discuss this results along with analysis of strain gradient effect 

for this similar case in the next coming part. 

 

Figure 5.7: Variation of the first five nondimensional in-plane natural frequencies with the slack 

level and for zero DC load of the CNT of case 8 from Table 4.2 assuming the classical continuum 

theory. 

5.3.2. Considering strain gradient theory 

Next, we use the Eqs. (5.2) and (5.17) to calculate the natural frequency of the 

slacked CNT-based nanobeam both using classical and non-classical theory and then 

compare the results. We investigate the case of zero gate voltage as well as gate voltage 

variations. The same red circle and red arrow marks are still used to make clear 

understanding of the plots. These plots are useful to further predict how many mode 

veering and crossing points could possibly occur while varying the gate voltages. 
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                                           (a)                                                                                  (b) 

Figure 5.8: Variation of the first five nondimensional in-plane natural frequencies with the slack 

level and for zero DC load of the CNT of case 8 from Table 4.2 assuming the strain gradient 

theory (SGT) with: (a) l = 1.0 nm, and (b) l = 1.5 nm. 

First, one compares the variation of the first five natural frequencies with the slack 

levels and for zero DC load while considering the classical continuum theory and the 

strain gradient theory as depicted in the Figure 5.7 and Figure 5.8, respectively. The 

figure is illustrating some interesting results. It can first be observed that the size 

dependent parameter slightly affect the results for low slack levels, however it 

significantly deviates from the classical continuum outcomes for higher slack levels. The 

figure reveals that the mode-veering and mode-crossing locations are all shifted to higher 

slack values while increasing of the size scale dependent parameters. This indicates that 

taking into account the higher order strain gradient is somehow reducing the effective 

slack effect of the structure. Therefore, the mode-veering and crossing predictions could 

be erroneous if assuming classical continuum theory. 

To more elucidate on the size-dependent parameters effect on the mode-veering and 

mode-crossing locations, we summarize in Figure 5.9 the occurrence locations of the 
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mode-veering and crossing slack levels for various size scale dependent parameters 

ranging from zero (representing the classical continuum theory) and up to values around 

1.5 nm. Note that we considered here only the first five modes (both symmetric and anti-

symmetric). The dimensional slack level 0b (nm) and the one in percentage (%) level are 

both displayed in Figure 5.9(a) and Figure 5.9(b), respectively. Figure 5.9(a) and Figure 

5.9(b) show that the modes veering and crossing as a consequence of slackness are 

significantly affected by size scale dependent parameter l. One takes a point in the 

following discussion, by assuming classical theory (i.e. l = 0), it is clearly shown in the 

Figure 5.9(a) that a curved CNT profile with b0 = 20 nm slack triggers a veering point and 

two crossing points symbolized by ( ) , ( )  and (), respectively. However, while the 

SGT-parameter with l = 0.5 nm is taken into account, the mode 3-4 () crossing point is 

not observed. Moreover, by taking another numerical case in Figure 5.9(b), while 

assuming SGT-parameter of l = 1.5 nm, one point of veering and one crossing are 

predicted on the CNT beam with b0 = 90 nm. On the other hand, while assuming classical 

theory, the two points of veering and crossing (i.e. four points) as predicted by Ouakad 

and Younis [24]. The results indicate that the effective slack effect was reduced with the 

increase of size scale dependent. Figure 5.9(a) and Figure 5.9(b) also show that the 

nonlinearity of this effect is more prominent in the higher modes. Hence, we show the 

possibility that taking into account the higher order strain gradient will significantly 

affect the natural frequency of slacked CNT. 
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                                           (a)                                                                                  (b) 

Figure 5.9: Variation of the modes-veering and modes-crossing locus with the SGT size 

dependent parameter and while assuming: (a) dimensional slack level 0b  in nm, and (b) slack 

levels in percentage. 

In order to investigate further the higher order strain gradient effect to the mode 

veering and crossing, we calculate the natural frequency of the assumed CNT-based 

nanobeam while varying gate voltage. One assumes two slack values as numerical cases, 

i.e. CNT with slack of 30 nm and 60 nm. Next, we calculated the natural frequency of 

both slack cases using the classical theory as well as the non-classical theory. In the non-

classical theory calculations, two size scale dependent parameters of l = 1.0 nm and l = 

1.5 nm are assumed. Figure 5.10(a) shows the natural frequency variation versus DC gate 

voltage of classical CNT-beam with slack of 30 nm. Then, to see the strain gradient effect 

of non-classical CNT-beam, while assuming the above mentioned two SGT parameters, 

we calculate the natural frequency variations using Eq. (5.2) as depicted in the Figure 

5.10(b) and Figure 5.10(c). Looking carefully the zoomed low gate voltage regime of 

Figures 5.10(a)-(b), it is clearly shown that the veering and crossing points are 

significantly changing around the low gate voltage regime below 8 volt. In the Figure 
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5.10(a), two veering and two crossing points were observed. Surprisingly, we only 

observe one veering and one crossing frequency in the Figure 5.10(b), then even all the 

veering is disappear, predicting only one crossing point shown in the Figure 5.10(c) 

which is considering higher value of SGT parameters. 

To ensure that these effects are consistent in the larger slack, we assume the slack 

of b0 = 60 nm. As depicted in Figures 5.11(a)-(c), the effective slack effects which are 

suspected responsible for the veering and crossing occurrence are somehow reduced by 

the higher order strain gradient effects. These results also confirm that the effects of size 

dependent parameter are more prominent in the low gate voltage regime as well as in 

higher mode, as discussed in the static analysis. Again, these results show that the 

effective slack effects are significantly reduced while taking into account the strain 

gradient terms in the LEVP. It is worth noting here that the natural frequency dispersions 

of higher DC gate voltages which are obtained by classical theory are almost showing 

similar trend compared to those obtained by non-classical theory. Therefore, one plot the 

LEVP results until the pull-in point for the case of classical theory, and specifically only 

the zoomed low gate voltage regimes for the non-classical theory LEVP calculations. 
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                                                                                         (a) 

 

                                           (b)                                                                                  (c) 

Figure 5.10: Variation of the first five nondimensional in-plane natural frequencies with the DC 

load, for a slack level of b0 = 30 nm of the CNT of case 8 from Table 4.2 while assuming: (a) the 

classical continuum theory l = 0 nm, (b) the strain gradient theory l = 1.0 nm, and (c) the strain 

gradient theory l = 1.5 nm. 
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                                                                                         (a) 

 
                                           (b)                                                                                  (c) 

Figure 5.11: Variation of the first five nondimensional in-plane natural frequencies with the DC 

load, for a slack level of b0 = 60 nm of the CNT of case 8 from Table 4.2 while assuming: (a) the 

classical continuum theory l = 0 nm, (b) the strain gradient theory l = 1.0 nm, and (c) the strain 

gradient theory l = 1.5 nm. 



 

76 
 

5.4. Thermal Gradient Effects on The Natural Frequency of CNT-

based Nanobeam  

In this section, we propose to investigate the natural frequency dispersion of the 

doubly-clamped CNT-based nanobeam while considering various temperature gradients. 

It was clearly discussed in the static analysis (Chapter 4) that the temperature gradients 

are significant in the low gate voltage regime. In order to examine the thermal gradient 

effect on the natural frequencies dispersion of the doubly clamped straight carbon 

nanotube, we adopted the following steps: we first examine the variation of the CNT 

fundamental natural frequency with the DC voltage and for various thermal gradient 

loads (low and high regimes). Next, we propose to study the effect of the thermal 

gradient load on the natural frequencies with zero gate voltage in order to predict any 

possibilities of modes crossing and modes veering in the case of higher temperature 

gradients. In the last part of this sub-chapter, the dispersion curves for the straight CNT 

first five natural frequencies are computed through varying the DC actuating amplitude in 

the low gate voltage regime. It is worth noting here that we propose to analyze all of the 

above case studies while assuming the strain gradient theory where all size scale 

dependent parameters are equal to 0 1 2 1 l l l l    nm. In addition, the geometric mid-

plane stretching nonlinearity, post-buckling deflection, the actuating force nonlinearity, 

and the temperature gradient are all taken into account in the below simulations. 

5.4.1. Considering one mode LEVP 

In the below simulations, we first consider the linearized EVP with only 

considering one mode in the ROM and with including the temperature gradient term. We 

examine the both cases of low and high temperature gradients then we display both 
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outcomes using two separates figures: Figure 5.12 and 5.12 respectively. In these figures, 

we display the variation of the first fundamental natural frequency of the CNT of case 5 

from Table 4.2. 

For the fundamental frequency dispersion in the low temperature gradient regime, 

Figure 5.12, the results indicate a significant deviation especially around the low gate 

voltage domain. This is attributed to the dominance of the mid-plane stretching stiffening 

effect mainly governed by the low temperature gradient in the low DC gate voltage 

regime. In fact, one can realize that considering low actuating voltage regime (DC 

voltage below 3 Volt), a low temperature gradient tends to increase the natural frequency 

of the CNT. However this phenomenon is in contrast changing when the DC load 

increases beyond 3 Volt until reaching the pull-in instability, where the frequency drops 

to zero. This can be attributed to the decrease of the effective CNT length due to a tensile 

like thermal gradient load. Therefore, the effective mid-plane stretching effect, which 

principally stiffen the CNT, is then decreased by a tensile load in this low thermal 

gradient regime. In addition, we can understand from the same plot that for high gate DC 

voltages, the fundamental frequency values are slightly lower as compared to the room 

temperature case where 0T  . This is mainly due to the dominance of the electrostatic 

force nonlinearity, at high DC load amplitudes, which is essentially of quadratic 

(softening) type. 

Next, Figure 5.13 depicts the same dispersion of the CNT first natural frequency 

with the DC load but while assuming high temperature gradients. The obtained results are 

significantly different as compared to the low temperature gradient results of Figure 5.12. 

We can visibly comprehend that, in this case, the fundamental frequency increases with 
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the increase of temperature gradients. This is recognized as the post buckling structural 

behavior which contributes more than the temperature gradient effect which tends to 

increase the frequency of the CNT for all assumed values of the DC actuating load. As 

was previously discussed in Chapter 4, doubly-clamped CNT subjected to high thermal 

loading tends to expand the length of the CNT. This expansion contributes mostly to 

curve the straight CNT due to the both clamping boundary conditions right after 

exhibiting the critical buckling temperature instability. This structural behavior tends to 

let the cubic geometric nonlinearity to be more dominant, therefore increasing the natural 

frequency of the CNT based nanobeam. It also can be inferred from Figure 5.13 that the 

natural frequencies of CNT when assuming high temperature gradients drop earlier to 

zero (near pull-in)  than the case of the room temperature where 0T  . 

 
Figure 5.12: Variation of the first nondimensional in-plane (fundamental) natural frequency with 

the DC load, for zero slack level of the CNT of case 5 from Table 4.2 and for various low 

temperature gradients, and while assuming SGT with l = 1 nm. 
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Figure 5.13: Variation of the first nondimensional in-plane (fundamental) natural frequency with 

the DC load, for zero slack level of the CNT of case 5 from Table 4.2 and for various high 

temperature gradients, and while assuming SGT with l = 1 nm. 

5.4.2. Considering five mode LEVP 

Afterward, we propose to assess the high temperature gradient effect of the doubly 

clamped CNT-based nanobeam while assuming zero gate voltage. We assume here zero 

actuation load in order to investigate the CNT mid-plane stretching effect which will be 

here mainly ruled by any assumed thermal gradient load. As was formerly argued in 

Chapter 4, doubly clamped CNT based nanobeam behaves like slacked CNT when 

operated above a critical buckling temperature threshold. To this end, we propose to 

investigate any possibility of crossing and veering between the first few lower CNT 

natural frequencies. First, to more understand the above pronounced results of Figure 

5.13, we consider the first five modes of vibration in the linearized eigenvalue problem 

while varying the higher temperature gradient from 0 to 500 K and while assuming the 

SGT size scale dependent parameters all equal to l = 1 nm. The results are displayed in 

Figures 5.14. It can be observed from the figure that the first natural frequency is 
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increasing nonlinearly with the thermal gradient effect to finally saturate for 50 T K  . 

It also can be observed that the third and fifth frequencies are also sensitive to the 

temperature gradients. They both increase nonlinearly as we increase the temperature 

gradient. The second and fourth frequencies are completely unaffected by the temperature 

gradient changes, as indicated with the first and second straight dashed lines.  

Two mode crossings are observed here (labeled by red arrows in Figure 5.14): the 

first is occurring for a temperature gradient around 25 K between the first mode and the 

second one, the second is happening at around 100 K temperature gradient involving the 

third mode and the fourth mode. Hence, the results of Figure 5.14 show that when the 

temperature gradient is varied from zero to a value greater that 100 K, two modes 

crossing will possibly occur. These results also indicate that the mid-plane stretching 

effect due to the buckling deflection is more prevailing in the post-buckling regime.  

 

Figure 5.14: Variation of the normalized first five in-plane natural frequencies with various 

higher temperature gradients, for zero DC load, and while assuming SGT with l = 1 nm. 
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                                              (a)                                                                                 (b) 

 
                                                                                        (c) 

Figure 5.15: Variation of the first five nondimensional in-plane natural frequencies with the DC 

load, for a straight CNT (b0 = 0 nm) of case 8 from Table 4.2 assuming a strain gradient theory 

with l = 1.0 nm, and for (a) 0 highT K   (room temperature condition), (b) 200 highT K  , and 

(c) 400 highT K  . 

Subsequently, to more clarify the above discussed mode veering and mode crossing 

issues when assuming high temperature gradients with zero gate voltage, we propose next 

to investigate these mode interactions options with including the DC electrostatic 

actuating load. To this end, we consider three different temperature gradient cases: 
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0 T K  (room temperature condition), 200 highT K  and 400 highT K  , Figures 

5.15(a)-(c), respectively. Figure 5.15(a) shows the variation of normalized first five 

natural frequencies with the applied DC voltage for the room temperature condition. We 

can observe from the figure that for the case of straight CNT in a room temperature 

condition, the frequencies dispersion is showing not a single potential of modes crossing 

or modes veering. These results are in perfect agreement with the outcomes of [24] which 

reported on the straight CNTs natural frequencies dispersion without considering any 

thermal gradient effect. 

Increasing further the thermal gradient amplitude to higher values as compared to 

the room temperature situation, Figures 5.15(b) and 5.15(c) display the straight CNT 

normalized first five in-plane natural frequencies dispersion with the applied DC load and 

for two different temperature gradient values of 200 highT K   and 400 highT K  , 

respectively. We can initially observe from Figure 5.15(b), that assuming temperature 

gradient  200 highT K  , one modes veering (indicated in the figure by a red dashed 

square) and two modes crossing (designated by two red arrows) were introduced at low 

gate voltages, i.e. 0 Volt < VDC < 10 Volt. A veering between the first mode and the third 

one is occurring around a gate voltage of 2.5 Volt, however this was not predicted in the 

case of room temperature condition, Figure 5.15(a). In addition, when we increased the 

temperature gradient to 400 highT K  , Figure 5.15(c), we observed that the extra 

thermal gradient load resulted into an extra thermal expansion and therefore an addition 

deflection in new post-buckling state of the CNT. We can also see that the additional 

thermal gradient loads resulted into altering the modes veering and modes crossing 
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locations. It is clearly shown in Figure 5.15(c) that the first-third modes veering location 

is shifted to a higher gate voltage around 4 Volt, as compared to 2.5 Volt in the case of 

200 highT K  . The modes crossing positions are also moved to higher gate voltages as 

we increased of the higher temperature gradient. Moreover, one can observe that the third 

and fifth natural frequencies are slightly decreasing in low gate voltage regime to then 

increase with the increase of the DC load. This indicate that the CNT is of softening 

effect governed by its initial post-buckling deflection state in the low gate voltage regime, 

to the become less dominant as compared to geometric cubic nonlinearity with tends to 

stiffen the nano-structure when increasing the gate voltage amplitude. 

Lastly, we consider next studying the low temperature gradient effect with 

assuming two different cases, 200 lowT K   , Figure 5.16(a), and 400 lowT K   , 

Figure 5.16(b), for the sake of verifying the integrity of the static buckling analysis of 

Chapter 4, where we indicated that the CNT length reduction effect is dominant in the 

low gate voltage regime. We can clearly see from both figures the dominance of the 

stiffening effect (increase of all natural frequencies) in the CNT structural behavior for all 

considered DC amplitudes and in the low temperature gradient conditions.  

It can similarly be observed that there are no possibilities of modes veering and 

modes crossing occurrences. This is mainly attributed to the reason that assuming low 

thermal gradient loads would always result into straight CNT based nanobeam 

configuration. In addition, the natural frequencies dispersion in this case of CNT 

operating under very low ambient temperature values indicate exactly the same trend as 

for the case of straight CNT with ambient temperature condition. The straight CNT with 

low thermal gradient values will remain straight due to the reduction in its effective 
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length. Indeed, decreasing the temperature will increase the natural frequency in the low 

gate voltage, therefore the hardening mid-plane stretching effect convert to be more 

dominant than the softening electrostatic actuation term in these loading conditions. 

 
                                              (a)                                                                                 (b) 

Figure 5.16: Variation of the first five nondimensional in-plane natural frequencies with the DC 

load, for a straight CNT (b0 = 0 nm) of case 8 from Table 4.2 assuming a strain gradient theory 

with l = 1.0 nm, and for (a) 200 lowT K   , and (b) 400 lowT K   . 
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CHAPTER 6 

CHAPTER 6: DYNAMIC ANALYSIS 

DYNAMIC ANALYSIS 

In this chapter, we propose to investigate the dynamic response of the doubly 

clamped CNT-based nano-resonator under DC static and AC harmonic loads. We 

prescribe a ROM using the first (fundamental) in-plane mode-shape then used it to 

integrate numerically the ordinary differential equation of motion in the time domain. By 

using a long time integration technique while assuming a 4th order Runge-Kutta method, 

we consider very small gate voltage to investigate the dynamic responses of the CNT, 

ensuring converged results without much hysteretic and nonlinear behaviors. The effects 

of alternating current gate voltage, size scale dependent parameters, and quality factor 

will be then analyzed and discussed. 

6.1. Reduced Order Model Prescription for Dynamic Analysis 

6.1.1. Classical continuum theory 

By considering classical continuum theory, the equation of motion considering first 

in-plane mode shape can be written as [95]: 

                   
224 2
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ˆ ˆˆ ˆ ˆ

L

e

u t u tx x x
u t x C x u t dx F x t

x t t x x
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   

     
            

 (6.1) 

The normalized electrostatic force term  ˆˆ,eF x t  in Eq. (6.1) is expressed as:  
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     (6.2) 

where u1(t) is first in-plane modal coordinate, 1 and 2 are given by Eq. (2.9). Next, one 

apply the orthogonality condition of the mode shape  1 x̂ , the equation can be written 

as [95]: 
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Eq. (6.3) can be re-written as: 
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where, 
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                           (6.7) 

And where, Q  is the quality factor of the resonator, C is the damping coefficient,  is 

mass density, n is the natural frequency, ̂  is the AC harmonic load frequency, and 

Tclassic is given by Eq. (2.9). 

Next, by assuming the state space variable, 
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One substitutes Eq. (6.8) into Eq. (6.4), 
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6.1.2. Strain gradient theory 

One assumes    1 1
ˆ ˆˆ ˆ ˆ( , ) ,w x t q t x  where  1

ˆq t  represent the first in-plane modal 

coordinate and  1 x̂  is the first in-plane mode shape. Next, by considering strain gradient 

theory, the equation of motion considering first in-plane mode shape can be written as: 
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where, 0 , 1 , 3  are given by Eq. (3.36), and the electrostatic load is given by: 
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here, T is given by 
4AL

T
P


  and P is given by Eq. (3.19). 

Next, by applying the orthogonality condition of the mode shape  1 x , the equation can 

be re-written as: 
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Eq. (6.12) can be simplified as: 
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Finally, one assumes the state space variable, 
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We substitute Eq. (6.15) into Eqs. (6.13) and (6.14), hence, one obtains the one mode 

normalized equation of motion in the state space form. 
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6.2. Dynamic Response 

6.2.1. The size scale dependent effect 

In this section, we propose to investigate the effects of the size scale dependent 

parameters to the dynamical behavior of the doubly-clamped CNT-based nanoresonator.  

The CNTs of cases 1, 3 and 8 were considered in the simulation to study the size 

dependent effect on the dynamical behavior of the doubly clamped CNT based 

nanobeam. We also assume different size scale dependent parameters as follows: l = 0 

which represents the classical continuum theory, l = 1.0 nm, l = 1.25 nm, and l = 1.5 nm 

in the below simulations.  

Next, we use the 4th Runge-Kutta method to get the dynamic response of the 

straight CNT under static DC and harmonic AC harmonic load. Figure 6.1 shows the 

dynamic response of case number 1 of Table 4.2 subjected to a static 2 Volt DC load 

superimposed to a dynamic 2 Volt AC harmonic load with forcing frequency near the 

CNT-based nanobeam fundamental frequency (  ≈ 22). In the same figure, we are 

assuming a quality factor of Q = 100, and zero initial conditions for the modal 

coordinates. The damping coefficient in these simulations is related to the quality factor 

Q as given by Eq. (6.11). One can observe that the CNT time history dynamic response at 

its mid-point is reaching the steady-state response for values of normalized time greater 

than 50. 
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Figure 6.1: Time history curve of the maximum dynamic response of the CNT of case 1 of Table 

4.2 at a forcing frequency of Ω ≈ 22, forcing amplitude of VDC =VAC =2 Volt, a SGT parameter of 

1 nml  , and a quality factor of Q = 100. 

Then, we develop an algorithm to compute the frequency response curves 

displaying the CNT based nanobeam converged dynamical solutions while varying the 

AC harmonic input excitation frequency as denoted by . The values of the normalizing 

frequency n  are obtained from the results of the linear eigenvalue problem which 

mainly depend on the value of static DC load. Figure 6.2 shows the variation of the CNT 

of case 1 of Table 4.2 mid-point maximum dynamic values for various AC load 

frequency ranging from 20 to 30, and for various size scale dependent parameters. The 

figure demonstrates that in all cases, the CNT dynamic response exhibit a hardening 

behavior where the resonant frequency is greater that the natural frequency of the excited 

structure. Moreover, as the strain gradient parameters tend to increase, the resonance 

frequency of the CNT increase as well. In fact, these results infer a consistent 

consequence of the previously discussed conclusion of the linearized eigenvalue problem 



 

91 
 

that the strain gradient theory is by all means altering the rigidity of the CNT-based 

nanobeam by making it stiffer. 

 

Figure 6.2: Frequency-response curve of the CNT of case 1 of Table 4.2 for various strain 

gradient parameters values, VDC =VAC =2 Volt, and a quality factor of Q = 100. 

As previously identified from the linearized eigenvalue problem simulations, the 

strain gradient effect is more prominent for CNT with smaller radii, consequently we 

propose next to simulate the CNT dynamic responses of the case 3 and 8 of Table 4.2, 

Figures 6.3 and 6.4 respectively. Both figures are illustrating similar frequency response 

curves shapes all demonstrating hardening behaviors with increasing resonance 

frequencies. Indeed, through comparing all reproduced frequency response curves, 

Figures 6.2-6.4, we can deduce that the discrepancies between the results when assuming 

classical continuum mechanics as compared to those obtained using the strain gradient 

theory are becoming higher when the CNT radius is decreased. Moreover, the resonance 

frequency shift is more significant as the CNT radii are reduced to smaller values. It can 

be concluded that the strain gradient effect is definitely more evident when the 
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geometrical dimensions of the CNT are closer to the strain gradient parameters. These 

results again show the capability of the strain gradient theory to capture the size scale 

dependent effect especially while considering very small CNT structural geometry. 

Finally, it can be comprehended from Figure 6.4 that the strain gradient effects are not 

altering only the location of the resonant frequency, but also change the CNT dynamic 

response through reducing its maximum dynamic oscillation, therefore stiffening its 

overall structural behavior. This significant outcome may explain one of the causes 

behind the discrepancies reported in the literature when comparing the results of classical 

continuum mechanics to experimental data for CNTs driven harmonically at resonance 

near their fundamental modes. 

 

Figure 6.3: Frequency-response curve of the CNT of case 3 of Table 4.2 for various strain 

gradient parameters values, VDC =VAC =0.25 Volt, and a quality factor of Q = 100. 
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Figure 6.4: Frequency-response curve of the CNT of case 8 of Table 4.2 for various strain 

gradient parameters values, VDC =10 milliVolt, VAC =2 milliVolt, and a quality factor of Q = 100. 

6.2.2. The effect of alternating current gate voltage (VAC) 

Figures 6.5 and Figure 6.6 show the effect of applied AC voltage on the oscillation 

amplitude and resonance frequency. In these simulations, cases 1 and 3 of Table 4.2 are 

considered to observe the effect of VAC while assuming a quality factor of Q = 100. The 
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results indicate that increasing the VAC tends to increase the hardening type of 

nonlinearity and the oscillation amplitudes of the resonator. The resonance frequencies 

are also slightly shifted as the increased of VAC.  

 

Figure 6.5: Frequency-response curve for case 1 of Table 4.2 showing the effect of VAC and 

considering a quality factor of Q = 100 and VDC =2 Volt and assuming SGT parameter of l = 0.8 nm. 

 

Figure 6.6: Frequency-response curve for case 3 of Table 4.2 showing the effect of VAC and 

considering a quality factor of Q = 100 and VDC =0.25 Volt and assuming SGT parameter of l = 0.8 

nm. 
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6.2.3. The effect of quality factor (Q) 

Figure 6.7 shows the amplitudes versus excitation frequencies for four different 

quality factors for case 3 of Table 4.2. In order to observe the quality factor effect to 

dynamical response, VAC = 0.25 Volt and VDC = 1 Volt are selected such that the vibrations 

occur in the nonlinear vibration regime. It is clearly observed that the quality factor effect 

tends to decrease the amplitude of the vibrations as well as enlarge the frequency 

bandwidth. The hardening type nonlinearity effect is also intervened while decreasing the 

quality factor. One can observe that the energy losses are increases for CNT with lower 

quality factor as indicated by the decreases of oscillation amplitudes which mean that the 

solutions are converged faster. The resonators with high quality factor have low damping 

ratio, hence the CNT can vibrate longer. High quality factor is favorable characteristic in 

the design of CNT-based NEMS resonators.  

 

Figure 6.7: The effect of quality factor (Q) on the frequency response curve for case 3 of Table 

4.2, considering the voltage values of VAC = 0.25 Volt and VDC = 1 Volt and assuming SGT 

parameter of l = 0.8 nm.  
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CHAPTER 7 

CHAPTER 6: DYNAMIC ANALYSIS 

CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

7.1. Conclusions 

Based on the strain gradient deformation beam theory, a size-dependent nanobeam 

model, which assumes three higher-order material size scale dependent parameters 

related to the material nanostructures, is developed to investigate the static and free 

vibration of a CNT based nanobeam. The higher-order governing equations, taking into 

account the geometric nonlinearities due to von Karman nonlinear strains and slack 

effect, temperature gradient and their respective boundary conditions were derived using 

the Hamilton principle. The Galerkin based reduced order modeling along with the 

Jacobian method were both employed to analyze the variation of the CNT static 

deflection and natural frequencies of the with the DC load as well as its slack level. The 

effects of the size scale dependent parameters, the slack level, the CNT length-to-radius 

ratio, and temperature gradient characteristics were all discussed.  

A static analysis was carried out through varying the SGT size scale dependent 

parameters as well as the temperature gradient. In addition, the natural frequencies of 

straight and slacked CNT based nanobeam were investigated. From both static and free 

vibration analysis, it is concluded that the size effect on the static and free vibration 

characteristics of the CNT based nanobeam is significant when the CNT radius is smaller 
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than the length scale parameters especially in the low gate voltage regime. The CNT 

frequencies are significantly varying when the size scale dependent parameters are 

changing. A stiffening effect, mainly due to the strain gradient effects, were observed to 

be significant at the low temperature gradient regime. Other outcomes showed also the a 

CNT assuming higher temperature gradient is showing a similar static behavior as a 

slacked CNT as was previously reported in [24].  

A substantial conclusion of this study is that the natural frequencies variations 

assuming low gate voltages were showing remarkable discrepancies between classical 

theory and the strain gradient theory, which therefore should not be ignored in analyzing 

nanoscale structures. In addition, the effect of the size scale dependent parameters and 

temperature gradients on the modes veering and modes crossing occurrence of slacked 

CNT based nanobeam was shown to be prominent in altering these modal interactions. 

Therefore, assuming a strain gradient theory indicated a decrease in the effective slack 

effect on the vibrational behavior of initially curved CNT.  

In addition, the temperature gradient effects were also shown to play significant 

role in the modes veering and modes crossing occurrences. Computed natural frequency 

dispersion curves showed that for cases assuming higher temperature gradients are 

significantly affecting the existence of modes veering and modes crossing. On the other 

hand, when assuming cases with low temperature gradients, the CNT frequency 

dispersions curved were not showing any single possibility of modes veering and modes 

crossing. The model also confirmed the stiffening effect behavior while operating the 

resonator in a low temperature gradient conditions. Succeeding the free-vibration 

analysis, a forced vibration analysis under low gate actuation was conducted to 
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investigate the size scale dependent effect to the dynamical behavior of the CNT based 

nano-resonator. Three different CNT geometrical parameters were assumed in order to 

study the size scale effect. Results showed that the discrepancies between the CNT 

dynamic responses obtained when using the classical continuum mechanics and those 

when assuming the strain gradient model are becoming more significant while assuming 

smaller CNT geometries. The obtained results allow better understanding of the nonlinear 

behavior of CNT based nanoresonators and can guide NEMS engineers accordingly in 

the design consideration stages. 

7.2. Future Recommendations 

The below listed future works are recommended as further extension of this current 

work: 

1. The velocity gradient effect can be added to the kinetic energy, somehow it will 

be useful to capture a unique behavior in the dynamic regime. 

2. A thorough dynamic analysis should be conducted using more robust technique 

such as shooting technique and method of multiple scale to capture the 

nonlinear effects and therefore gaining more accuracy in getting the CNT 

resonant frequencies at high DC and AC amplitudes. 

3. A global dynamic analysis can be carried out in order to study the size 

dependent and temperature gradient effect in the nonlinear regime. 

4. A systematic procedure should be developed in order to estimate the specific 

value of size scale dependent parameters by conducting experimental work 

using the comprehensive method and accurate measurement tools. 
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Appendix  

 

Doubly-clamped Slacked CNT-based Nanobeam Equation of Motion Derivation 

Based on Strain Gradient Theory 

Based on Lam et al (2003), the strain energy density U of a linear elastic continuum 

for the entire region of   is given as a function of the symmetric strain tensor ij , the 

dilation gradient vector i , the deviatoric stretch gradient tensor 1
ijk  and the symmetric 

rotation gradient tensor ij , as follows: 

 1 11

2 pq pq p p pqr pqr pq pqU dv


    σ ε p γ τ η m χ                         (A.1) 

where pqσ represents the Cauchy stress tensor, and ,pp 1
pqrτ and pqm are the higher-order 

stress tensors corresponding to the higher-order tensor terms. The remaining parameters 

in Eq. (A.1) are summarized below: 

 , ,

1
,

2pq p q q pu u                                                 (A.2) 

  , ,i mm i                                                     (A.3) 

   

   

1
, , , , ,

, , , ,

1 1
2

3 15
1

2 2 ,
15

pqr qr p rp q pq r pq ss r sr s

qr ss p sp s rp ss q sq q

      

     

     

     

                     (A.4) 

 , ,

1
,

2pq p q q p                                               (A.5) 
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 1
( ) ,

2p p
curl u                                               (A.6) 

  2 ,
T

pq pq pqG                                               (A.7) 

2
02 ,p pp Gl                                                   (A.8) 

1 2 1
12 ,pqr pqrGl                                                 (A.9) 

2
22 ,pq pqm Gl                                               (A.10) 

   
,

1 1 2

E
 


 

                                         (A.11) 

 
,

2 1

E
G





                                               (A.12) 

where up is the CNT axial displacement, θp is the rotation vector, pγ is the dilatation 

gradient vector, δpq is the Kronecker’s delta operator,   and G are the Lame constants, 

respectively. The size scale dependent parameters noted above as l0, l1, and l2 are the 

dilatation, the deviatoric stretch, and the rotation gradients, respectively. 

By assuming an Euler-Bernoulli beam model, the carbon nanotube displacement 

field can be expressed as: 

         0
1 2 3 0

, d
, ; 0; , ,

d

w x t w x
u u x t z u u w x t w x

x x

 
       

              (A.13) 

Considering the von-Karman nonlinearity of the clamped-clamped CNT for mid-

plane stretching effect, the first order nonlinear strain-displacement relations for an 

initially curved beam can be written as follows [62, 87, 101]: 

0
11 11 11,z                                                    (A.14) 
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   2 2

0 0
11

,1 1
;

2 2

w x t dw xu

x x dx


   
         

 
   2 2

0
11 2 2

,
,

w x t d w x

x dx


 
    

 (A.15) 

       2 2 2 2
0 0

11 2 2

, ,1 1
,

2 2

w x t dw x w x t d w xu
z

x x dx x dx


     
               

       (A.16) 

Evaluating the higher strain terms as function of the beam displacement components, we 

are left with the following expressions: 

2 2 2 3 3
11 0 0 0

1 2 2 2 3 3

d d d
,

d d d

u w w w w w w
z

x x x x x x x x


     

           
                      (A.17) 

2 2
11 0

3 2 2

d
,

d

w w

z x x


  

      
                                           (A.18) 

   12 21 1 2

2 2
3 2 3 1 0

2 2

1 1 1

2 2 2

1 1 1 1 1 d
,

2 2 2 2 2 d

y x

u u u u w w

y y z x x z x x

                      
                                 

u u

    (A.19) 

Expanding the indices of Eq (A.4) and Eqs, (A.8)-(A.10), while imposing a non-zero 

deviatoric stretch gradient tensor components, we are left with the following non-zero 

terms: 

2 2 2 3 3
1 0 0 0
111 2 2 2 3 3

2 d d d
,

5 d d d

u w w w w w w
z

x x x x x x x


     
           

                      (A.20) 

2 2
1 1 1 0
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4 d
,

15 d

w w

x x
  

 
      

                                     (A.21) 

2 2 2 3 3
1 1 1 1 1 1 0 0 0
122 133 212 221 313 331 2 2 2 3 3

1 d d d
,

5 d d d

u w w w w w w
z

x x x x x x x
     

     
                 

(A.22) 
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2 2
1 1 1 0
223 232 332 2 2

1 d
;

15 d

w w

x x
  

 
     

2 2
1 0
333 2 2

1 d
,

5 d

w w

x x


 
   

                  (A.23) 

2
1 0 12 ;p l G   2

3 0 32 ,p l G                                               (A.24) 

2 2
12 21 2 12 2 212 2 ,m m Gl Gl                                               (A.25) 

1 2 1
111 1 1112 ,Gl                                                           (A.26) 

2 2
1 1 1 2 0
113 131 311 1 2 2

8 d
,

15 d

w w
Gl

x x
  

 
      

                                  (A.27) 
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2 d d d
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5 d d d

u w w w w w w
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     
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(A.28) 

2 2
1 1 1 2 0
223 232 322 1 2 2

2 d
,

15 d

w w
Gl

x x
  

 
      

                                 (A.29) 

1 2 1
333 1 3332 ,Gl                                                         (A.30) 

Then, substituting the all above expressions into the strain energy density function, Eq. 

(A.1). 

1 1 1 1 1 1 1 1 1 1 1 1
11 11 1 1 3 3 111 111 113 113 122 122 131 131 133 133 212 212

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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...
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...
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               
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and where the constants P, Q, and R, are defined with the following explicit expressions 
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   (A.36) 

The lengthen scales noted above as l0, l1, and l2 are the dilatation, the deviatoric stretch, 

and the rotation gradients, respectively [32]. 
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Subsequently, and in order to include the effect of nonlinear geometric mid-plane 

stretching, we consider the following axial strain energy function due to residual axial 

stress denoted as ,AU  and defined as follows: 
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where N0/A represents the residual axial stress, mainly assumed to be uniformly 

distributed over the cross-sectional area of the beam. The above expression, as will be 

embedded in the equation of motion, would account for both linear part (normal force), 
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and the nonlinear part (mid-term stretching effect) of the residual stress force. Next, using 

Eq. (A.39), we can approximate the variational of the axial strain energy as follows: 
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The variational of kinetic energy function T can simply be defined as: 
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(A.41) 

One assume that the terms with red arrow are much smaller than the quadratic integration 

terms then it could be neglected. The last component that will be included in Hamilton’s 

principle is the work of non-conservative forces, denoted by W , and can be expressed as: 
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where Fe and Fax symbolizes the electrostatic and axial forces, respectively, and the 

quantities Cs, and Cv are the structural and the viscous damping coefficient terms, 

respectively. Finally, we can get the CNT-based nanobeam equation of motion by 

substituting Eqs. (A.38), (A.40), (A.41), and (A.42) into the following extended 

Hamilton’s principle equation: 
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From the above expression, by straightforwardly separating “δu” and “δw”, we impose two 

equation of motions represent the transversal displacement w and axial displacement u. 

Derivation steps of transversal displacement: 
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 
  

  

(A.46) 

The axial displacement can be written as: 

 
2 2 2 22 2

0 0
2 2

1 1 1 1
, ,

2 2 2 2 ax

u w dw u w dw u
EA R F x t A u

x x x dx x x x dx t
 

                                                       
 

(A.47) 
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Note here that as the longitudinal dynamics is low prominent for a flexible structure as 

compared to its transverse dynamics, the inertia term in Eq. (A.47) can be assumed small 

and therefore can be neglected. Also note that in the above Eqs. (A.46) and (A.47), the 

internal axial force due to a temperature gradient is considered through the axial force 

function Fax. For this, we consider the conventional thermal elasticity theory, where the 

thermal axial force can be written as follows Fax = EAαTΔT, where αT is the coefficient of 

thermal expansion (CTE) of the CNT, and ΔT is the temperature gradient. By rearranging 

Eq. (A.47), 

2 2 2 22
0 0

2

1 1 1 1
,

2 2 2 2 T

u w dw u w dw
EA R EA T

x x x dx x x x dx


                                                     
   (A.48) 

One substitutes the above expression into Eq. (A.46), the below expression can be 

obtained, 

   

2 4 4 6 6
0 0

2 4 4 6 6

2

0

0

, ,T s v e

w w d w w d w
A P Q

t x dx x dx

w w w
N EA T C C F x t

x x t x t





     
             

               

               (A.49) 

Then, we compute the internal axial force by integrating the axial stress of a discretionary 

beam cross-section as follows: 

   2 2

0
0 11 0

,1 1

2 2A A

w x t dw xu
N N E dA N E dA

x x dx


                   
             (A.50) 

Assuming a uniformly distributed axial force induced by transverse deflection and zero 

external axial force (N = 0), the geometric nonlinearity due to the mid-plane stretching of 
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the beam along the x-axis can be described by the average of its stretching axial force over 

the whole beam length and shown in the integral-differential term, hence Eq. (A.50) 

reduces to: 

2 2

0
0

02

LEA w dw
N dx

L x dx

               
                                        (A.51) 

Substituting Eq. (A.51) into Eq. (A.49), we get the subsequent equation of motion with its 

respective corresponding boundary conditions governing the transverse displacement of 

the CNT based nanobeam, and while considering both the size dependent parameters as 

well as the thermal gradient effects: 
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         (A.52) 
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          (A.53) 

Note that in Eq. (A.53), the first four boundary conditions are the classical one and the last 

two are quoted as the non-classical one both associated with the clamped-clamped nano-

structure. The electrostatic force function for a carbon nanotube under a parallel-plates 

electric field assumption can be written as [23-25, 95]: 

      
       

2
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21
0 0 0

cos
,

2 cosh 1 /
, dc ac

e
V V t

d w w d w w r d w w r
F x t




 


       
       (A.54)
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