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THESIS ABSTRACT 

 

NAME:   Awadalla SalahElDin Awadalla Salih 

TITLE OF STUDY:  Improved Direction of Arrival Estimation for 

Ultra-Wideband Channels 

MAJOR FIELD:  Electrical Engineering 

DATE OF DEGREE:  January 2017 

By combining the techniques of Compressive Sensing (CS) and utilizing an optimized 

version of a current DOA estimation algorithms, a framework of a new method for DF 

applicable for UWB channels is proposed. Computer Simulations are carried out in this 

research to verify the system operation. 

The first part of this research focuses on the application of CS extraction techniques to 

obtain a high-resolution Channel Impulse Response (CIR) of an UWB SIMO transmission 

environment. Expansion is achieved using Compressive Sampling Matching Pursuit 

(CoSaMP) algorithm that utilizes a linear solution for the under-fitted data model to find 

an estimation of the compressed data samples. CS framework enables the DOA estimator 

to work on a sample-by-sample basis while relaxing the need for a high sample rate ADCs. 

A new DF method is deduced by combing conventional algebraic algorithm for DF 

(ESPRIT) and clustering the space of DOA estimates found in the Angle-Delay domain. 

Clustering is achieved using a modified K-means algorithm to include the incoming raysô 

respective powers per index delay. ESPRIT algorithm is deployed in a sample-by-sample 

over the antenna array samples by using the extracted CIRs vectors instead of the received 

signal strengths. 
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Various functional blocks of the new DF method are described and their simulation results 

under UWB assumptions are stated and discussed. This method provides an additional 

amount of details over the conventional DF methods in characterizing UWB channels by 

describing DOA of different rays and their respective time of arrivals (delays). A 

comparison of performance of this method with the performance of the conventional 

MUSIC DOA algorithm is conducted.  
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CHAPTER 1 

INTRODUCTION  

 

 

1.1  Preface 

 

Wireless communication is the transfer of information without the use of wires or cables, 

allowing the system the freedom to be mobile. Wireless systems have developed 

significantly in the past years and played an extremely important role in our civilization; 

connecting people via tele-services. The request for communications among people is 

growing rapidly; in response, more connectivity, more services, and higher quality are the 

base requirements. 

The design prospective of the physical layer of such systems, is to develop schemes and 

methodologies that increase the information rate and improve the efficiency of a 

communication system under the strict conditions of the wireless environment. 

Short-range wireless technology plays a key role in scenarios where everybody and 

everything is connected by different types of communication links. While most of human 

to human information exchanges are still by voice, a rapid increase in data transfers is 

observed in other types of links as expressed by the rising need for location-aware 

applications and video transfer capability within the home and office environments. 
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1.2  Motivation  

 

1.2.1 Ultra -Wideband Channels 

 

Ultra-Wideband (UWB) communication technology became a powerful technology for 

wireless communication systems. It acts in low-power, short-range wireless networks. 

UWB technology is helping people to be free from wires. It enables wireless connection 

between multiple devices for transmission of video, audio and bandwidth demanding 

communication technologies. 

UWB technology started in the 1960s, when it was mostly a radar and military technology 

[1]. UWB technology has presence today in wide and diverse areas, with applications in 

high and low-data-rate communications for short-distance and long-distance transmission. 

Such applications include (but not limited to): Wireless (sensor) networks, Medical 

Computerized Imaging systems and Vehicular radar systems. 

The new trend is to allow UWB waveforms to coexist with other narrowband systems (the 

US FCC approved such coexistence); which resulted in a great growth in attention given 

by academic/industry/standardization organizations to UWB technology. In 2002, the 

United States FCC allowed unrestricted utilization of the band (from σȢρ ρπȢφ '(Ú), 

which forms a large portion of spectrum. 

With current advancements in switching circuitry, more attention towards UWB 

technology has followed. These advancements derived a spread for the technology from 

military to consumer sectors. 

The transmission of data through UWB channels results in a number of looked-for 

characteristics. The key fact in UWB communication is the use of low energy transmitted 
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signals that occupy a large bandwidth (though, a desired feature ñfrequency fading 

immunityò is guaranteed). The rich multipath diversity nature is presented by the large 

number of propagation paths existing in a UWB channel. 

UWB transceivers are usually used to carry information in form of radio impulses, hence 

the name Impulse Radio Ultra Wideband (IR-UWB). The transmission of short-time radio 

impulses enables the receivers to extract channel information for further processing. 

Channel Impulse Responses (CIR) are assumed to have enough information to characterize 

the channel between the transmitter and the receiver. 

Compressive Sensing techniques allow compressing the data in the sampling stage (which 

is known to greatly reduce the number of digital samples required to reconstruct certain 

sparse signals). For that reason, CS is useful where analog-to-digital conversion (ADC) 

faces a physical design limitation, and hence the usefulness in UWB systems. 

 

1.2.2 Compressive Sensing 

 

Signal acquisition is a major area in signal processing. The well-established Sampling 

theorems are responsible of easing the transition from continuous to discrete-time worlds. 

The most popular theorem in data acquisition and digitalization of information is credited 

to Shannon [3], and it states that the rate in which the signals are sampled should be ñat 

leastò twice the maximum frequency component present in a continuous-time signal in 

order to perfectly represent the signal in the discrete domain. 

However, the authors in [4] laid out the foundation of Compressive Sampling, also known 

as Compressed Sensing (CS). The assumptions made are to ease the reproduction of signals 
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by using far fewer samples of measurements than conventional methods of sampling (with 

some constraints). 

CS is potentially applicable in areas where the reconstruction of signals from a limited set 

of linear measurements is possible. Application of CS includes wide range of consumer, 

medical and military applications, such as Data Acquisition and Compression, Analog-to-

Information Conversion and Channel Coding, Computerized Tomography (both optical 

and wave-induced) and Target Detection or Radar Positioning. 

 

1.2.3 Direction Finding 

 

Many methods are developed to enhance wireless communication systems, among them, 

are techniques to provide devices with the sense of location and orientation. Localization 

algorithms are well established and documented in many researches. 

In smart antenna technology, a Direction Finding (DF) algorithm is usually incorporated 

to develop systems that provide accurate location information for wireless services [5]. The 

existing work in this area is mainly intended to conclude with methods to improve the 

precision and reduce the complexity of the algorithms for Direction of Arrival/Angle of 

Arrival (DOA/AOA) estimation. 

The increase of demand for the wireless technology services have spread into many areas. 

All of the upcoming usage scenarios can be considered as reasons for determining the 

direction of arrival of incoming signals in wireless systems, such as smart mobile antenna 

and sensor networks, environmental monitoring and public security, seismology and search 

and rescue and strategy and defense operations. 
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1.3  Problem Statement 

 

With the wide range of advantages, the UWB channel is to be chosen for the reasons stated 

earlier [Section 1.2.1]. The system is designed to assume a channel that supports 

transmission of high data rates. Common systems have a physical layer more or less 

described by the Industrial standard IEEE 802.15.4a-2007 [6]. 

This research makes use of the emerging techniques used to ease processing signals which 

have relatively large bandwidth (hence require high sampling rates ñaccording to Nyquist 

Sampling Theoremò) to reduce the hardware requirements and relax communication 

system design constraints. The technique called the Matching Pursuit (MP) Algorithm [7] 

ñand its modified variantsò is implemented to achieve compressive sampling. 

The global aim of this work is to develop a CS-friendly modified DOA estimation 

technique using extracted channel impulse responses to better work with UWB channels. 

The proposed DF method provides higher accuracy of DOA estimation in situation where 

the conventional DF methods would fall short. The results would discuss the profit of this 

technique over the other conventional methods available in the literature. The key aspects 

of this project are: 

¶ Formulation and realization of a modified DF technique for UWB channels 

utilizing CS framework. 

¶ Presenting a verification of the technique using two different channel models. 

¶ Reduction in algorithms complexity by processing receiver extracted 

propagation information (channel impulse responses) rather than considering 

incoming signals. 

¶ Improving estimation accuracy in low SNR environments of operation. 
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1.4 Summary 

 

The framework of CS provides robust tools for reducing the number of measurement 

required to summarize sparse signals. For that reason, CS is useful in systems where the 

analog-to-digital conversion process is critical, for example UWB systems. 

The improvement of DOA estimation techniques, led by the emerging CS method, would 

make the problem of DF less demanding. Although, the assumption that justifies the use 

of CS tools is directly related to the level of sparsity of the CIRs being considered. 

 

1.5 Layout 

 

The layout of this thesis is as following: 

- Chapter 2 presents a literature review of the three main themes of the research 

(UWB channels, Compressive Sensing and Direction Finding). The related 

mathematical and statistical frameworks, assumptions and equations are presented. 

- Chapter 3 describes the scope of the work to be carried out to justify the claimed 

conclusions, how the simulation is done and the environment setup are also stated. 

- Chapter 4 shows number of results and graphs produced during the research and a 

discussion of the findings. 

- Chapter 5 states the conclusions and possible future research opportunities related 

to this work. 
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CHAPTER TWO  

LITERATURE REVIEW  

 

 

2.1  Introduction  

 
In this chapter, a survey about the existing foundation for the topic in hand is presented. 

The main aspects in relation to this work are Ultra-Wideband (UWB) channel 

characteristics and modelling, Compressive Sensing (CS) algorithms, Direction Finding 

(DF) methodologies and Data Clustering and Analysis in the Angle-Delay domain. 

The proposed method is a DF technique for UWB system that utilizes CS framework and 

data clustering algorithms to provide more insight of the DOAs of multiple signals and 

their paths. CS provides a handful of tools to deal with high data rate applications and thus 

relaxing the need for high sampling rate Analog-to-Digital Convertors (ADC) at the 

receiver, while enables finding high resolution measurements. 

DOA estimation is done through algebraic algorithms that are currently found in the 

literature (namely ESPRIT and Root-MUSIC). Although, the difference here is the 

proposed method considers high resolution time-domain channel impulse responses (CIRs) 

that are obtained by processing the received signal via a CS algorithm (namely CoSaMP), 

which will be discussed later. 

Clustering a group of data samples in a multi-dimensional space provides a collective 

answer for the probable DOAs in the Angle-Delay Domain.  
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2.2 Ultra -Wideband (UWB) Channel Model 
 

2.2.1 Channel Characterization 

 

The FCC defines UWB systems as having υππ -(Ú bandwidth or more. The UWB 

bandwidth is restricted by 10 dB below the peak power of co-existing narrowband systems 

[8]. The fractional bandwidth (ὄ) is defines by ὄ ς , where Ὢ and Ὢ define the 

lower and upper bounds of the signal spectrum, respectively. The value of ὄ πȢς would 

specify an UWB channel transmission. 

UWB Systems have several favorable characteristics over other communication systems, 

such as: 

¶ Wireless transmission at high throughput: large bandwidth (several GHz), can 

provide more than υππ -ÂȾÓ data rate (low-range ñρπ άò). 

¶ High precision ranging: Fine pulses duration (sub-nanosecond), fine time-domain 

resolution, which offers sub-centimeter accuracy for transmitter localization 

applications. 

¶ Reasonable path loss: propagating waves penetrate obstacles (in line-of-sight 

(LOS) and non-line-of-sight (NLOS) communications). 

¶ Robust to fading: immunity to multipath fading, ability to resolve multipath 

components, RAKE receiver advantage. 

¶ Security: very low power spectral density (PSD) (power levels are below the noise 

floor), not easy for unauthorized detection. 
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¶ Coexistence: coexists with the bandwidth of cellular systems, wireless local area 

networks (WLAN), global positioning systems (GPS), and other wireless systems. 

¶ Low cost transceiver hardware design: low power signals, integrated RF and 

baseband in a single SoC IC. 

 

The main reasons for UWB to emerge as a solid contestant for future communication 

systems is the support for high data rates and the low power required to transmit and receive 

data. These features give UWB systems a coexistence feature with other currently deployed 

wireless systems (Such as Wireless LAN ñWLANò). Figure 2.1 illustrate some of these 

advantages over other high-energy, comparatively low-data rate wireless systems. 

 

 

Figure 2.1: Low-energy density and high-energy density wireless systems [9].  
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2.2.2 Saleh-Valenzuela (S-V) Channel Model 

 

Due to multipath fading, the IEEE 802.11b standard model is based on the statement that 

the impulse response is made of finite impulse response filter (FIR) taps that have sampling 

interval equal to the reciprocal of the ray arrival rate [6]. While the channel impulse 

response (CIR) of the UWB channel is based on the measurements-based finding of Saleh-

Valenzuela (S-V) [10]. A Two-Poisson model is deployed for the arrival rate of clusters 

and rays within each cluster. Figure 2.2 illustrates the concept of clustered CIR by giving 

a Power-delay Profile (PDP) example. 

Path Magnitude

Time

cluster 0

              
1T                 

13
t

13b

 

Figure 2.2: An illustration of a channel impulse response (CIR).  

The terminology of the S-V channel model is as follows: 

Ὕ  Arrival time of the first path of the ὰ  cluster, 

†ȟ  Delay of the Ὧ  path within the ὰ  cluster relative to the first arrival time, 

ɜ   Power decay rate of clusters, 

ɾ   Power decay rate of rays in the ὰ  cluster, 
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ɤ  Cluster arrival rate, 

‗  Ray arrival rate within each cluster, 

‍  Amplitude of the Ὧ  ray in the ὰ  cluster. 

By definition, †ȟ Ὕ. The PDFs of Ὕ and †ȟ depends on the rates ɤ and ‗, and given 

by the Poisson distributions: 

ὴὝȿὝ ɤÅØÐɤὝ Ὕ ȟ     ὰ π     ςȢρ 

ὴ†ȟ† ȟ ‗ÅØÐ‗†ȟ † ȟ ȟ     Ὧ π   ςȢς 

respectively. The amplitude of the Ὧ  path within the ὰ  cluster denoted ‍ȟ and it is 

Rayleigh distributed with a mean ‍
ȟ
 written as: 

‍
ȟ
‍ πȟπÅØÐὝȾɜÅØÐ†ȟȾ‗     ςȢσ 

where ‍ πȟπ is the average power of the first arrival of the first cluster (the very first 

ray). An illustration of the assumed model is given by Figure 2.3. 

Simulations done in [6] concluded that the assumption of using S-V model for simulating 

the CIR of UWB channels is a practical technique. It gives high matching percentages 

when compared to real channel measurement data. 
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Figure 2.3: S-V channel model [11].  

 

2.2.3 Signal Model 

 

UWB signals transmit data by low power level signals (under the thermal noise floor) and 

experiences a dense multipath phenomenon. To simplify the design of UWB systems, the 

pulse shape is selected accordingly. That designed pulse affects severely the overall system 

performance. 

The UWB transmitted signal is modeled as  

ίὸ В В ὥὴὸ ὮὝ ὯὝ     ςȢτ 

where the data ὥ ᶰ ρ is the Ὧ  transmitted bit, Ὕ  is the symbol duration and Ὕ

Ὕ Ⱦὔ is the pulse repetition period and ὔ is the number of symbols. The pulse ὴὸ in 
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Impulse-Radio UWB (IR-UWB) is either Gaussian, monocycle or poly-cycle pulse [12]. 

An example of a Gaussian-like pulse is shown in Figure 2.4. 

 

 

Figure 2.4: UWB Gaussian-like Pulse. 

 

The signal ίὸ travels through an ὒ ρ-path fading channel. The channel impulse 

response (CIR) is: 

Ὤὸ В ὸ‏ ‌ †        ςȢυ 

where the received pulse is assumed to exhibit different fading coefficient (‌) from each 

ὰ-path, whose delay is †. We assume that † † Ễ † . Figure 2.5 shows the 

resulting signal power levels when a pulse propagates through a specific channel. 
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Figure 2.5: (a) UWB CIR, (b) Pulse propagates through channel [13]. 

The received waveform is assumed to be 

ὶὸ ίὸ Ὤzὸ ὥὴὸ ὮὝ ὯὝ † ύὸ          ςȢφ 

where ύὸ is the Gaussian noise defined as the two-sided power spectral density of ὔȾς. 

 

2.2.4 Sparsity of the UWB Channel 

 

Sparsity is expressed in the fact that the information rate of a continuous time signal may 

be much smaller than suggested by its bandwidth, or that discrete-time signal depends on 

a number of degrees of freedom which is comparably much smaller than its length. 
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¶ Definition : The signal ὀ is said to be sparse in the basis ɰ if it can be sufficiently 

represented using only a small number ὑḺὓ of atoms from ɰ. 

 ȿȿɰὀȿȿ ὑ          ςȢχ 

where ȿȿὪȿȿ is the zero norm (i.e.: non-zero coefficients count in the signal Ὢ). 

Many signals are sparse if they are expressed in a convenient basis. The implication of 

sparsity is that one can discard the part of the coefficients without much perceptual loss. 

Thus, there is no need to spend a lot of power into capturing all the samples of a sparse 

signal in all coordinates when most of them are zero anyway. Such process requires not 

only the knowledge of some coefficients of ñreal-signalò but also the locations of the 

significant pieces of information. Fortunately, these pieces tend to be clustered. As an 

example of sparse-clustered model, it has been shown that many physical channels tend to 

be distributed as clusters within respective channel spreads [6]. 

A wireless channel can be assumed to be a sparse channel, where the delay spread could 

be very large, but the number of major paths is normally very small compared to the 

window length. We can start with the assumption that the short duration signal (high 

frequency UWB pulses) propagate through the multipath channels, the received signal 

continues to be sparse in some domain, and thus the use of compressed sensing is possible. 

To reinforce the assumption of received signal sparsity, we consider the ψ  order 

Butterworth pulse usually implemented in UWB systems as the data bearer having a length 

of Ὕ ρὲί. Figure 2.6 shows the received signal per frame for a UWB channel that 

models an indoor residential environment with Line-Of-Sight (LOS) scenario (according 

to the IEEE 802.15.4a channel model CM1 [6]) in the absence of noise. 
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Figure 2.6: Effect of UWB channel indoor propagation in residential environment (LOS) [13]. 

 

As is depicted in Figure 2.6 from [13], the received signal is made of groups of spread out 

clusters of the transmitted signal. It has relatively longer inter-clusters time intervals where 

the amplitude of the received signal is zero or a negligible value. In this particular example, 

the signal plotted in Figure 2.6 has ρςȟφχς taps, of which ωȟχφυ (χχϷ) have amplitude 

lower than ρπ [13]. 

 

2.3  Compressive Sensing 
 
 

2.3.1 Definition 

 

Compressive Sensing (CS) is a modern concept founded on the theoretical results of signal 

recovery with random basis samples. The notable result of CS discloses that a signal, Ὢ, 

with a large number of samples that is ὓ-sparse in some basis , can be precisely 
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reconstructed with high probability using a lower number of random projections 

ñcompressed samplesò of the signal onto a random function  that is incoherent with . 

By applying CS methodologies, the sampling rate can be minimized to sub-Nyquist rate. 

Considering the linear measurements model for the signal ὁ 

ὁ ὀ —         ςȢψ 

where  form the effective measurements matrix for estimating the ὑ-sparse vector —. 

Matrix  is called the measument kernel, and it has lower rank ὔ than the signal ñὀò rank 

which is equal to ὓ. The ὔ ὓ matrix  is a projection plane for the signal ὀ. Figure 2.7 

summarizes the mathematical relation between CS entities. 

 

Figure 2.7: CS mathematical framework [14]. 

 

The maximum value amongst inner product of the orthonormal basis and the orthonormal 

measurement matrix is usually described by the coherence measure 

‘ ȟ ÍÁØ ‰ȟ‪        ςȢω 
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The classical sampling scheme correspond to ‘ ρ and ‰ ὸ ὸ‏ Ὧ and  is the 

Fourier basis ‪ ὸ Ὡ Ⱦ . It is known that any random matrix is greatly incoherent 

with any fixed matrix Ȣ 

 

2.3.2 Sparse Signal Recovery 

 

The main issue in CS is the design of a convenient measurement matrix (to avoid 

information damage in dimension conversion) and designing the corresponding 

reconstruction algorithm to recover the sparse vector — from only ὔ compressed 

measurement samples vector ώ. 

The most common criteria for benchmarking the quality of a CS measurement matrix is 

the Restricted Isometry Property (RIP) [13]. This property is summarized as follows 

ρ ‏  ȿȿ—ȿȿ ȿȿ —ȿȿ ρ ‏  ȿȿ—ȿȿ     ςȢρπ 

for a positive constant ‏. The ȿȿϽȿȿ  is the ὰ-norm of the vector. The RIP property should 

be fulfilled when choosing  in order to successfully recover the signal. It is known that 

by selecting  to be a random matrix RIP can be satisfied with a high probability. 

Gaussian, Bernoulli and partial Fourier matrices satisfies the RIP [15]. 

If the RIP is met, then an accurate signal reconstruction problem procedure the linear 

programming of the form 

ÍÉÎ
ᶻɴᴙ

ȿȿ—ᶻȿȿ   subject to ὁ —ᶻ     ςȢρρ 

where ȿȿ—ȿȿ В ȿ—ȿ is the ὰ-norm of the reconstructed signal. 
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The RIP tells us about how much success would be in the process of sparse signal 

reconstruction. Nonetheless the process itself consists of solving the Euclidean norm using 

least norm procedures. An analytical solution exists and it is in the form of: 

—ᶻ ὁ       ςȢρς 

which give poor results and the solution is almost never sparse. By using the prior 

information of that the solution is sparse (— is ὑ-sparse), the result can be improved by 

solving for the vector with least non-zero entries. This is named ὰ-norm: 

ÍÉÎ
ᶻɴᴙ

ȿ—ȿz   subject to ὁ —ᶻ   ςȢρσ 

However, an exhaustive search problem is created and feasibility is reduced. A relaxation 

of this problem is presented by [16] and [17]. It is shown that by Gaussian measurements 

it can be exactly reconstruct ὑ-sparse vector and closely approximate compressible vectors 

with high probability using ὰ optimization shown in Equation 2.11. 

The ὰ-minimization is a convex problem and can be solved using modern optimization 

techniques [18]. This problem is usually called Least Absolute Shrinkage and Selection 

Operator (LASSO). In the next sections, a review is provided for the various CS algorithms 

and their procedures. 

 

 

2.3.3 Matching Pursuit  (MP) Algorithm  

 

Sparse signal reconstruction is commonly achieved by methods that can be divided into 

two classifications. Algorithms that solve the linear optimization by minimizing the 
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residual error as a function of the gain and the delay location of all dominant paths [19] are 

the first class. The second being the algorithms that choose sequentially the most important 

taps of the sampled CIR. The Greedy algorithms (such as the Matching Pursuit and its 

orthogonal version) are the most popular from the second class [20]. In our case, we are 

focusing on the second class, because we are interested in finding DOA of the most 

dominant paths (or taps) of the FIR model of the channel. 

The Matching Pursuits (MP) algorithm tries to build up the sparse signal iteratively by 

selecting the atom that maximizes the representation at each iteration. Orthogonal 

Matching Pursuit (OMP) solves the problem by projecting the signal onto the subspace 

spanned by the selected atoms (with no atoms selected twice). The result is optimal in the 

least squares sense (require fewer steps to converge, although computationally 

demanding). 

In this work, we will focus on OMP algorithm family, because of its simplicity of 

implementation and the fast computation time and the convenient results produced [21]. 

Algorithm 2.1 summarizes the steps required to implement the OMP algorithm required to 

solve the signal reconstruction problem. It produces an estimation (ὼ) for the sparse signal 

extracted from a set of linearly sampled data points. 
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Algorithm 2 .1: Orthogonal Matching Pursuit 

Inputs:  CS Matrix ὃ, measurement vector ώ 

Initialize:  ὼ π, ὶ ώ, ɤ  

for  Ὥ ρ; Ὥ Ὥ ρ until stopping criterion is met do 

 Ὣᴺὃὶ     {Form signal estimate from residual} 

 ɤᴺɤ  ᷾ÓÕÐÐ( Ὣ   { Add largest residual entry to support} 

 ὼȿ ᴺὃ ώȟ    ὼȿ ᴺπ  { Update signal estimate} 

 ὶᴺώ ὃὼ   { Update measurement residual} 

end for 

Output: Sparse representation ὼ 

 

The algorithm takes the compressed measurements vector (the residual) as well as the 

compressing matrix as inputs (ώ and ὃ respectievely), and by solving for the highest value 

support and subtracting its effects (as in most greedy algorithms), the residual (ὶ) is updated 

in each iteration until a stopping criteria is met. 

Another variant of the Greedy MP family of algorithms is the Stagewise Orthogonal 

Matching Pursuit (StOMP) [22] and Regularized Orthogonal Matching Pursuit (ROMP) 

[23]. Each one of these algorithms has its positives and shortcomings as well. Some are 

extremely fast although require relatively large number of samples to produce a continent 

estimation error. Some are computationally expensive though operate with comparatively 

low number of acquired samples. The author of the Compressive Sampling Matching 

Pursuit (CoSaMP) proves [24] that by modifying the OMP to combine features from both 

categories results in a combinatorial algorithm that guarantees speed and provide lower 

error bounds. 

 



нн 
 

2.3.4 Compressive Sampling Matching Pursuit  (CoSaMP) Algorithm 

 

The Compressive Sampling Matching Pursuit (CoSaMP) algorithm described in last 

section requires the same three inputs (inherited from its mother algorithm, the OMP) as 

well as an additional input, being the sparsity of the approximation to be produced. 

After setting the initial residual to the trivial compressed signal, the algorithm repeats these 

five steps until a halting criterion is triggered [25]: 

1. Identification: Find the residual from the current samples and locate the largest 

components. 

2. Support Merger: Merging the newly identified components with the components 

that appear in the current approximation. 

3. Estimation: Solving a least-squares problem to find the target signal. 

4. Pruning: Produce a new solution by retaining only the largest entries in the 

estimation from step 3. 

5. Sample Update: Subtract the effect of the current iteration approximation from the 

residual. 

 

The Pseudocode for CoSaMP is listed in Algorithm 2.2. Comprehensive details about how 

this algorithm performs is included in [25]. 
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Algorithm 2 .2: Compressive Sampling Orthogonal Matching Pursuit 

Inputs:  CS Matrix ὃ, measurement vector ώ, sparsity level ί 

Initialize:  ὼ π, ○ ώ, Ὥ π 

repeat 

 ὭN Ὥ ρ 

 ◐ᴺὃᶻ○   { Form signal proxy}  

 ɤᴺÓÕÐÐ◐   { Identify large components}  

 Ὕᴺɤ ᷾ÓÕÐÐὼ    { Merge supports}  

 ὦȿᴺὃ◐ȟ   ὦȿ ᴺπ  { Signal estimation by least squares}  

 ὼN ὦ    { Prune to obtain next approximation}  

 ὶᴺ◐ ὃὼ    

Until halting criterion ὸὶόὩ 

Output: ί-Sparse representation ὼ 

 

 

2.4  Direction Finding 
 
 

2.4.1 Direction of Arrival Estimation Algorithms 

 

Direction Finding (DF) (or a Direction of Arrival (DOA) estimation algorithm) is based 

essentially on either a maximum likelihood solution or a subspace decomposition approach 

[26] [27]. Subspace-based approaches have received more focus, after the work in [28] has 

proved to be computationally simple not as its counterpart; the Maximum Likelihood (ML) 

approach. Figure 2.8 classifies the most common algorithms for DOA estimation. 
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Figure 2.8: Different methods for DOA estimation. 

 

Regarding signal subspace techniques, only the signal projection is considered, while in 

noise subspace based techniques, noise projection is used. Subspace approaches are 

categorized into search-based and algebraic-based methods. For search-based techniques, 

the response of the array to a single source is to be known in advance (analytically, as a 

function of arrival angle, or found via calibration). On the other hand, algebraic techniques 

donôt involve a search process, and result in the DOA estimates in angles directly.  

MUltiple Signal Classification (MUSIC) algorithm is a search-based noise subspace 

method used to determine the DOA of a narrowband source using an array of sensors [29]. 

A famous algorithm based on signal subspace method implemented as a DF solution is 

Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [28]. In 

Root-MUSIC [30], we use antenna array that is assumed to be uniformly-spaced and linear, 
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in which the search process required after using MUSIC is exchanged by a root finding 

solution. 

The next sections briefly review the formulation of these three algorithms (MUSIC, 

ESPRIT, Root-MUSIC). In section 3.4, the methodology followed to apply those three 

DOA estimation techniques to UWB sparse channels is presented. The aim is to benchmark 

the performance of our new method against those existing algorithms. 

 

2.4.2 Mathematical Formulation 

 

Consider a 6-element uniform linear array (ULA) receiving signal from a single emitter 

source at direction — as shown in Figure 2.9. 

The received signal is assumed to be: 

 

ὀὸ

ụ
Ụ
Ụ
ợ
ίὸ † Ὡ

ίὸ † Ὡ
ể

ίὸ † Ὡ Ứ
ủ
ủ
Ủ

     ςȢρτ 
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Figure 2.9: 4-element ULA receiving signal from a single emitter at direction —Ȣ 

 

where ὀὸ is the received RF signals vector and †  are the path delays resulting from 

relative direction compared to the receiver antenna arrays. In case of linear arrays †

† ὨȾὧÓÉÎ—, and † being the path delay from the array central point to the emitter, 

Ὠ  are the lengths of paths from the array elements to middle point, ὧ denoted the speed 

of light, and — is the required angle to be found. The unknown random phase term Ὡ  

is equal for all elements. The baseband received signal is as follow: 

ὀὸ

ụ
Ụ
Ụ
ợ
ίὸ † Ὡ

ίὸ † Ὡ
ể

ίὸ † Ὡ Ứ
ủ
ủ
Ủ

        ςȢρυ 

Let ‗ denote the wavelengths. The ñarray manifoldò Ἡ— (or usually it is called the steering 

vector) is the vector that has a unit amplitude defined by 
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Ἡ—

ÅØÐὮς“ὨÓÉÎ—Ⱦ‗

ÅØÐὮς“ὨÓÉÎ—Ⱦ‗
ể

ÅØÐὮς“Ὠ ÓÉÎ—Ⱦ‗

       ςȢρφ 

Assuming that ίὸ is normalized (unit power value), the channel model for the received 

signal is formed as: 

ὁὸ Ѝ3.2 ίὸ Ἡ— Ἶὸ      ςȢρχ 

where Ἶὸ is an i.i.d complex Gaussian noise signal that has zero mean and unit variance. 

By definition — is the source direction, and SNR is the received-signal-to-noise ratio. 

Direction finding algorithms are usually implemented in digital systems, so the discrete-

time version of the signal model can be written as: ὁὯ Ѝ3.2 ίὯ Ἡ— ἾὯ, where 

Ὧ is the index of the sample. 

 

2.4.2.1  MUSIC Algorithm  

The algorithm is developed assuming that there are ὖ signals that are arriving on the array, 

given by the discrete-time vector form summation: 

ώὯ В ‌ Ὧ Ἡ— ἾὯȟ         Ὧ ρȟȣȟὑ     ςȢρψ 

where — are the signal directions, ‌ Ὧ are uncorrelated received signal complex 

amplitudes, and ἾὯ is a complex vector representing Gaussian noise process with zero-
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mean and unit-variance. The covariance of ώὯ vector is found by ἠ ὉὁὯὁὯ , 

and it has the form given by 

ἠ В „ Ἡ—  Ἡ— ἓ       ςȢρω 

where „ Ὁ ‌ Ὧ  is the ὴth signal SNR, ἓ is the identity matrix of size ὴὴ, and 

Ὄ is the Hermitian operator. Let ἠ ἣἣ  be the singular-value decomposition (SVD) 

of the matrix ἠ , where ÄÉÁÇ„ ρȟȣȟ„ ρȟρȟȣȟρ  is a diagonal matrix of the 

singular values of ἠ . The matrix ἣ can be portioned as  ἣ ἣȟἣ , where the ὓ ὖ 

matrix ἣ  ñthe signal subspaceò resembles the vector corresponding to the largest ὖ 

singular values, and the matrix ἣ  ñthe noise subspaceò forms the singular vector 

associated with the remaining ὓ ὖ smallest singular values. The two subspaces are 

orthogonal (ἣ is unitary), i.e.:  ἣ  ἣ . It follows that   Ἡ — ἣ  for —

—ȟȣȟ—. 

The spectrum Ὓ—
Ἡ  ἣ

 will contain peaks (very high amplitudes in the case of no 

noise assumption) at the signals directions —ȟȣȟ—. Although, it is usual that the 

covariance matrix ἠ  is not available at the receiver. Thus, estimation of the covariance 

matrix using the available data is required to find the sample covariance matrix ἠ

В ὁὯὁὯ . 

The SVD of the sample covariance matrix is ἠ ἣ  ἣ , and the corresponding noise 

subspace is found by portioning ἣ as in ἣ ἣȟἣ . The spectrum Ὓ— is called the 

MUSIC spectrum, and is given by 
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Ὓ—
Ἡ  ἣ

       or       Ὓ—
Ἡ  Ἡ

Ἡ  ἣ
       ςȢςπ 

Orthogonality between Ἡ— and ἣ  will minimize the denominator and hence will give 

rise to peaks in the MUSIC spectrum. By computing and plotting the MUSIC spectrum 

over the whole range of —, the DOAôs can be estimated by locating the peaks in the 

spectrum. A one-dimension search algorithm for the largest ὖ peaks in the MUSIC 

spectrum is required to get the DOAôs as an angle (i.e.: a numerical form). 

 

2.4.2.2  ESPRIT Algorithm  

ESPRIT algorithm is implemented by using two identical and identically oriented sub-

arrays (where one of them represents a shifted replica of the other), and the displacement 

vector between the two subarrays is assumed to be known in advance (though, it is 

geometry independent). The two steering vectors for the two sub-arrays are assumed to be 

Ἡ — ╙Ἡ— ȟ      Ἡ — ╙Ἡ—        ςȢςρ 

where ╙ and ╙ are two matrices defined for selection as having in each row only one entry 

that is one and the remaining are set to zeros. In linear organized arrays, the steering vectors 

for the two sub-arrays are related as Ἡ — Ἡ — Ὡ , where Ὠ is the 

displacement between the two sub-arrays. Similarly, the steering matrices for the two sub-

arrays are related as Ἃ — Ἃ — ╠—, where  

╠—ḯÄÉÁÇ Ὡ ȟȣȟὩ    ςȢςς 
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For sources with incoherent signals, the entries of the columns of the signal sub-space 

eigenvectors (╔) and the steering matrix (Ἃ—) extends the same subspace. Thus ╔

Ἃ— ╣ where ╣ is nonsingular. It can be shown that ╔ ═╠ ╣ ╔ ╣  ╠ ╣, where 

╔ ╙╔. The matrices ╣  ╠ ╣ and ╠ would be having equal singular values. 

Thus, the algorithm will be operating by two steps. First, an estimate of  is to be found. 

Second, the AOAs are calculated from the singular values of . 

The lease-squares (LS) solution to estimate  is ÁÒÇ ÍÉÎȿȿ╔ ╔ ȿȿ

╔Ẍ  ╔ , where ϽẌ denotes the pseudo-inverse. Although the matrices ╔ and ╔  may 

contain errors in their estimate, so a solution might be using the total least-square (TLS) 

approach. The TLS solves the problem 

ÍÉÎ
ȟ ╩ ȟ╩

ȿȿ╩ȟ╩ ȿȿ       ÓȢÔȢ     ╔ ╩ ╔ ╩     ςȢςσ 

which leads to  ╜  ╜  [31], where ╜  and ╜  are ὖ ὖ matrices computed 

from the eigenvalue decomposition of 

╔

╔
╔ ╔

╜ ╜
╜ ╜

  
╜ ╜

╜ ╜
    ςȢςτ 

and ÄÉÁÇ‗ȟȣȟ‗  is the sorted eigenvectors. TLS-ESPRIT is shown to be better 

than LS-ESPRIT in fully calibrated sensor arrays. 

The estimated DOAs are then calculated as 

— ÓÉÎ ‗Ⱦς“Ὠ       ȟ      Ὥ ρȟȣ ȟὖ      ςȢςυ 



ом 
 

2.4.2.3  Root-MUSIC 

By considering the steering vector ╪— to be written as: 

╪—

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợÅØÐὮ ὨÓÉÎ—

 

ÅØÐὮ ὨÓÉÎ—
 

ể

ÅØÐὮ ὨÓÉÎ—
 Ứ

ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
פּ  

פּ  

ể

פּ  

Ứ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

ḯ╪ּפ    ςȢςφ 

where ּפḯÅØÐὮς“Ⱦ‗ὨÓÉÎ—, and Ὠ is the spacing between the array elements. The 

denominator of the spectrum found by MUSIC algorithm would then be written as 

Ὢ— ╪ — ╔ ╔ ╪— ╪
פּ
 ςȢςχ    פḯὪּפּ╪ ╔ ╔

There are ὔ ρ complex conjugate reciprocal roots for the polynomial Ὢּפ. In noise-

free case Ὢּפ would have ὖ sets of dual roots ּפ ÅØÐὮς“Ⱦ‗ὨÓÉÎ— , Ὥ ρȟȣȟὖ, 

and there are ςὔ ὖ ρ more ñnoiseò roots ñneglectedò. In case of noisy operation, the 

roots positions are slightly shifted although can be estimated from the closest roots to unit 

circle in Ὢּפ. 

Thus, the Root-MUSIC algorithm tries to find all possible roots of Ὢּפ and estimates 

signal DOAs from the ὖ highest-magnitude roots which correspond to the signal subspace 

inside the unit circle. 
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2.4.3 Information Theoretic Detection 

 

Usually, the receiver side does not know how many signals to estimate (i.e.: ὖ is unknown). 

The Akaike Information Criterion (AIC) [32] and Minimum Description Length (MDL) 

[33] are the two-common information theoretic approaches used to estimate the number of 

signals. They are widely used methods for estimating the size of smallest model that is 

represented by a given set of data. 

The eigenvalues represent the noise-subspace which are assumed to be equal to „; as the 

noise is white (spectrally flat, uncorrelated by assumption). The signal-subspace 

eigenvalues are comparatively larger than „. Thus, the smallest number of eigenvectors 

that reflects the correlation between the antenna elements is to be treated as the number of 

signals found in such model (set of data). 

In [34] a formulation of the AIC and MDL is presented, and it has been shown that the two 

approaches are applicable for cases where the noise eigenvalues are roughly equal and the 

signal is having higher power (basically a reasonable SNR values). 

The two criterions are based on Kullback-Leibler information measure, and are described 

as a function of the parameter ά where π ά ὔ ρ as: 

1. ὃὍὅὓ    ςὑὔ ὓ ÌÎὗὓ       ςὓςὔ ὓ     ςȢςψ 

2. ὓὈὒὓ     ὑὔ ὓ ÌÎὗὓ ὓςὔ ὓ ÌÎὑ   ςȢςω 

where  
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ὑ  number of vectors used to find the eigenvalues, 

ὓ  number of signals that are incident on the array, 

ὔ  number of antenna array elements. 

ὗὓ
Ͻ ϽϽϽ

Ͻ ϽϽϽ
        ςȢσπ 

The probability of error is shown as a function of the SNR in Figure 2.10 (adapted from 

[34]) for both AIC and MDL for comparison. 

 

Figure 2.10: Information detection criteriaôs comparison (AIC and MDL) [27]. 

 

In low power applications (specially the case of UWB systems), the need is for techniques 

that perform better in low SNR environment. In low SNR values, the MDL criteria gives 

high probability when used to find ὓ than that results from using the AIC, hence it is more 

favorable to be utilized. Although, in high SNR values the AIC outperforms the MDL. 



оп 
 

 

2.4.4 Review of CS based DF methods 

 

Here we present a review of some of the previous research work done regarding combining 

compressive sensing with DOA estimation. Most of the research is focused on acoustic 

signals ñnarrowband signalsò to exploit the sparsity constrain. The goal is to reduce the 

SVD calculation cost and get higher resolution signals using low sampling rates. The ὰ-

SVD is an algorithm developed to achieve that. 

The authors of [35] present a sparse-based source localization method in which the samples 

of the array manifold are assumed to be sparse and signal reconstruction is made possible 

by utilizing an ὰ-norm based penalties. The proposed method uses subspace based DOA 

algorithms (Root-MUSIC and ESPRIT). Their method uses an ὰ-SVD calculation 

technique to summarize the projection of parallel streams. Their scheme is applicable for 

both narrowband and wideband systems through a resolution refinement method and a 

regularized parameter ‗ for the ὰ-SVD algorithm. 

Another ὰ-SVD implementation for acoustic source localization appears in [36]. The 

method used is for acoustic signal localization with passive antenna arrays, which is a non-

parametric technique. Super resolution signals are obtained using non-quadratic 

regularization penalty function to the sparse audio signals. Assumptions made are for both 

correlated or uncorrelated, narrowband or wideband channels. Beamforming, Capon and 

MUSIC algorithms are proven to increase resolution in the given assumptions. 

An angle domain sparse bearing localization method is developed in [37]. Again, acoustic 

signals which are assumed to be modeled as a sparse vector in the angle space are processed 
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using an ὰ-norm optimization problem solution. Here, a quantized compressed 

microphone data is combined (sparse signal reconstruction) with angle domain analysis to 

localize the transmitter.  

As [31] concluded, the nonconventional methods for DOA estimation utilizing the two 

algorithms of MUSIC and ESPRIT are not the best-fit  for estimating the DOAs in sparse 

channels, because only small number of the significant channel paths are resolvable, i.e 

captured with high time-domain resolution by the receiver antennas configuration (inter-

element spacing and array arrangement). The need for other DF techniques for UWB 

systems is because such CIRs have a very large number of multipath components that 

should be resolved efficiently. Therefore, these methods can be utilized in combination 

with the framework of compressive sensing. That is true when the realization of real 

multipath channels is to only be considered ñeffectivelyò sparse. 

 

2.5  K-Means Clustering Algorithm  
 
 

Ὧ-means clustering (Lloyd's algorithm [38]) is an iterative algorithm used for data-

partitioning. It assigns ὲ observation points to one of Ὧ clusters and gives their centroids. 

The number of centroids is assumed to be known before the algorithm begins to group the 

points into clusters. 

It is a commonly known simple statistical algorithm that works by alternating between two 

steps until convergence. It starts with randomly assigning points to Ὧ clusters. The 

assignment step (in which each sample point is assigned to the cluster with the closest 
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mean), and the update step (in which it calculates the new means and sets them as 

centroids). It reaches convergence when no sample point is reassigned in the previous step. 

 

while !(converged)  

 for each point  

  assign label  

 end  

 for each cluster  

  compute mean  

 end  

end  

 

Figure 2.11: K-Means Algorithm flowchart and pseudo code. 

K-Means treats each observation in the data set as an object having a location in a two-

dimensional space. The algorithm is implemented efficiently to work with both online and 

offline clustering and data analysis routines. It makes use of data vectorization and matrix 

multiplication between sparse matrices. 

Algorithm 2.3: Ὧ-Means Clustering  

Inputs:  2D sample Data ὢ, number of clusters Ὧ, maximum number of iterations ὸ 

Initialize:  Ὧ ὅὩὲὸὶέὭὨί, ὒὥὦὩὰί 

repeat 

 Compute point-to-cluster distances of all observations to each centroid 

 Assign ὰὥὦὩὰ to each observation with the closest centroid 

 Update ὅὩὲὸὶέὭὨί by computing the average in each ὰὥὦὰὩ 

Until ( no re-assignments are made) OR (Ὥ ὸ) 

Output: ὒὥὦὩὰί 
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Another alternative to achieve the goal of data clustering is the use of a member of the 

Expectation-Maximization family of algorithms. Their implementation depends on finding 

a maximum likelihood of a posteriori estimate. The application of such methods is rather 

complex for the use of clustering for direction of arrival estimation. Although it may 

introduce enhancements that requires investigation. 

 

2.6  Summary 
 

Ultra-Wideband systems have a great role in enhancing communication links to utilize 

higher data rates. The problem of minimizing multiple sources interference is achieved by 

beamforming, and hence the need for precise, yet practical, direction finding approaches. 

The testing of such systems can be done using computer simulation, in which a Saleh-

Valenzuela and Ray-Tracing models can be setup for sparse UWB channel realization. 

In Compressive sensing, the number of samples acquired is much smaller than the number 

of samples required to fully represent a signal. This leads to a relaxed sampling rate 

constraints and to a minimized use of ADCs resources. Signal reconstruction from the 

compressed version is found by using a solution of a simplex convex optimization problem; 

in many cases with fast iterative algorithms that can be done effectively. As it was said 

before, the sparsest solution can be obtained with ὰ-norm optimization. Unfortunately, this 

optimization problem is impractical under computational constraints. The problem is 

relaxed using ὰ-norm. 

One of the Matching Pursuit family of algorithms (a modified variant of the orthogonal 

one, CoSaMP) is selected to be used for sparse signal recovery. The role of CS is to show 
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when the sensing procedure is done in a non-redundant fashion for the received signal, the 

sampling rates may be reduced by factors where the information contained in the signal 

remains intact. 

Conventional method for Direction Finding are well established. The emerging demand of 

source localization solutions in UWB has yet to be studied in subsequent work. Combining 

DOA estimation procedures with some statistical methods for sparse UWB systems is 

subject of this research.  

This research gives attention to the design of the various blocks that enables the DF system 

to function, and verifies the system operation via computer simulation. This report sheds 

the light on these topics and highlights point where further investigation is recommended. 
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CHAPTER THREE  

METHODOLOGY  

 

3.1 Proposed Method Description 
 

3.1.1 Channel Impulse Response 

 

The assumed system is proposed to operate in UWB communication systems. Impulse 

Radio UWB (IR-UWB) is a special case where short-interval low-power impulses are 

transmitted rather than a modulated RF signal. The resulting signal (as well as the channel 

impulse response) is assumed to be sparse in nature (Section 2.2.4). The channel affecting 

UWB-IR transmission is considered to have sparse coefficients, so as the modulated-UWB 

transmission. 

The receiver for such system is required to have an impractically high sampling rate that is 

a subject of hardware and design cost limitations. Other UWB systems, such as the 802.11 

Wi-Fi protocol, assumes a bandwidth in terms of tens of megahertz. According to Nyquist 

sampling theory, the receiver should at least sample the received signal at twice the largest 

frequency component (when dealing with incoming amplitude signals, rather than channel 

impulse responses), which gives rise to the use of compressive sensing in dealing with such 

systems to relax the high sampling constraints (further though reducing power consumed 

by the samplers of portable wireless systems). 
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With the aid of compressive sensing framework, the signal processing aspects of UWB 

signals are becoming increasingly feasible. The ability of the receiver to acquire ñsparse in 

natureò signals and deal with ñsparseò channels makes the possibility high for enhancing 

current signal processing techniques for both narrowband and wideband communication 

systems. 

Channel Impulse Responses (CIRs) are to be synthesized using one of the two methods 

described in Chapter 3. The model produced by the UWB measurements done by Intel is 

utilized as the first source of CIR snapshots. The second model is derived from a ray-

tracing methodology. Each model has its set of parameters and settings; and both to be 

considered as a simulation setup for system operation. 

 

3.1.2 Compressive Sensing 

 

Here we define two complementing processes, the compression (i.e.: simulating the 

inability of the receiver to sample at high sampling rate) and the expansion (i.e.: signal 

reconstruction from sparse linear measurements). Based on the assumption that the signal 

is in much higher bandwidth (typical UWB scenarios), the receiver samples at lower 

sampling rate, and given the assumption that the channel is sparse, reconstruction 

algorithms can be used to get a higher resolution channel impulse response for later DOA 

estimation subsystem. 

A method is developed to solve the problem of CIR reconstruction from its compressed 

samples; the CoSaMP algorithm (with Gaussian sampling matrix). The choice of using 

CoSaMP is based on the conventional compressive sensing approach discussed in Section 
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3.3.2. The aim is to get a finer resolution signal (and hence a finer resolution CIR) that can 

resolve DOAs within fine time resolution. 

Although, the resolution of the CIR obtained would imply the success of such methods. 

Special signals ñpilotsò are usually transmitted within the data signal to excite the specific 

portions of spectrum of the channel; and by reproducing the same pilot signal at the 

receiver, the problem of channel identification becomes an easier task. The ability to grasp 

a clearer information about the CIR is subject to the capability of the designed pilot signal 

to excite the channel bandwidth (i.e.: the bandwidth of the transmitted signal is sufficiently 

wide, which is commonly the case for UWB systems). 

 

3.1.3 Direction of Arrival Estimation  

 

Methods of enhancing the performance of direction finding techniques are varying between 

simplifying algorithms workflows, increasing accuracy of detection for multiple adjacent 

signals in low-SNR environments, reducing calculations and orders of operations and 

relaxing implementation and system design complexities. 

Most of the conventional algorithms for DOA estimation utilize subspace based projection 

analysis, although current research is emerging for using the channel impulse response 

(CIR) acquired by the receiver for DOA estimation and receiver localization. In such 

systems, the receiver could use compressive sensing tools to get a finer resolution of the 

CIR. Linear channel identification to obtain the CIR is currently deployed via adaptive 

algorithms [37]. 
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Figure 3.1: ρς DOA Estimation for MPCs arriving symmetrically at receiver element. 

 

When deploying conventional DF techniques; in some scenarios (illustrated in Figure 3.1 

for the case of ρς SIMO channel) the estimated DOA angle might be a combinatorial 

(from multiple symmetric paths that overlap in time domain) which results in relatively 

inaccurate estimation. By looking at the multipath components (MPCs) arriving at each 

antenna, the correct DOA angle is estimated based on the CIR of each receiver element. 

This justifies the need to consider a high resolution of amplitudes and phases of the arrived 

MPCs rather than using a signal (or noise) subspace projection technique. 

 

3.1.4 Overall System Description 

 

The block diagram in Figure 3.2 summarizes the proposed method for DOA estimation 

under UWB channel conditions. A transmitter consisting of a conventional quadrature 

modulation scheme is deployed. A Sparse UWB multipath channel realization is generated 
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using the concept of Section 3.2, and is used to ñcorruptò the signal. Additive white 

Gaussian noise is added so the system SNR performance could be studied. 

 

 

 

 

 

 

Figure 3.02: Summarized block diagram of the proposed method. 

 

The proposed system contains an antenna array of ά uniformly spaced receiving elements 

is capturing the signal passed through the channel. Compression is the method to simulate 

the receiver incapable samplers ñlow rate samplersò. The extraction of the channel impulse 

response is an essential step to base DOA estimate on the angular domain ñrather than 

using the received signal vectorò. It is implemented via conventional channel identification 

utilizing adaptive algorithms (i.e.: LMS or RLS). The Expansion is the process of 

ózooming-inô the CIR to resolve MPCs that are lumped together due to the lack of high 

sampling rate ADCs. 

The DOA estimation is done in the angular domain (delay bins versus estimated individual 

DOAs) by associating MPC with their respective óimagesô through the ά receiving 

element. A one-dimensional search procedure is deployed to match incoming MPC 
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received by different antennas. Using these MPC associationsô along with the relative ray 

arrival delays, a distinct DOA can be estimated as per delay-bin basis. 

As a DOA detection technique, the factors that affects system performance vary between 

SNR levels, receiver element inter-spacing distance, estimation errors result from detection 

algorithm used, channel parameters and deployment case. Due to the presence of noise in 

real life scenarios and CIR extraction errors results from reconstruction algorithms, 

direction estimations will become noisy and estimates tend to scatter around the actual 

DOA of each incoming ray. 

A majority classification method is used to get a collective final DOA estimate per arrived 

ray as the main goal of this method. Clustering DOA estimation in the Angle-Delay domain 

[39] is a common method for reporting probable angles and the degree of confidence for 

the estimated directions for later purposes (i.e.: transmit beamforming). Statistical method 

devised from the K-means Algorithm are deployed for such goals. 

 

In the following sections, a detailed procedure for each step is presented and illustrated. 

The first part of the channel modelling is composed of the channel models used to 

synthesize UWB channels and behaviors. The methods stated in Section 3.2.1 are carried 

out to achieve a channel impulse response (CIR) that corresponds to the Intel suggested 

model. 

The second part of the channel modelling is the procedure to simulate a ray-tracing model 

of an assumed premise that is composed of a transmitter element, a multiple-antenna 

receiver element and a barrier object. Channel models extracted from this method are set 
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in UWB scenarios. Both models are used as a starting point to get channel impulse 

responses that the later system will work on as inputs.  

After defining a channel model, a justification of utilizing compressive sensing (CS) in the 

proposed DOA estimation is presented. It is assumed that the receiver is unable to get a 

fine resolution of the channel state parameters (amplitudes and phases) in presence of a 

highly sampled (wideband) transmitted signal that exceeds its sampling frequency; rather 

to mention that there will be 2 or more antenna/sampling elements that are required to 

devise the direction of the incoming signal (which gives rise to receiverôs cost and 

power/portability design concerns). 

Estimating DOA from CIRs is carried out in a sample-by-sample basis (rather than 

considering a window of samples of the received signal as done in conventional DF 

methods). The samples are assumed to have a sufficient time-domain resolution (number 

of samples per delay bin) that allows for accurately resolving DOAs for distinct MPCs. CS 

expansion is the step accounted for producing high resolutions. 

Numerical DOA estimation techniques (fast algebraic methods, Figure 2.8) act an 

important role in the overall system operation and efficiency. Variants of ESPRIT and 

Root-MUSIC algorithms (Section 2.4.2.2 and 2.4.2.3) are selected as the main algorithms 

for the purpose of estimating angles of individual samples because of their simple 

implementation and reasonable computation efficiency. Although, modified version (such 

as Unitary-ESPRIT) can be considered to replace them. 

A post-processing step for the individual samplesô DOA estimates is developed to 

accomplish a collective decision that can be used as a beamforming reference. A modified 
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clustering method (a statistical technique described in Section 2.5) based on K-Means 

algorithm is established to form a final DOA estimate. 

Due to the broad number of techniques that are utilized to design this method, the number 

of parameters to adjust are fairly large (highly flexible). Investigation is carried out for 

some key aspects and their performance limits are discussed in the Chapter 4. 

 

3.2 UWB Channel Model 
 

3.2.1 Intel -based Model 

 

Based on the discussion presented on Section 2.2.2, an extended model is proposed to 

simulate the UWB channel effect with high degree of matching real channels measured in 

[6]. The channel model is based on the S-V model with the additional extension discussed 

below. Due to the fact that UWB channels have rich multipath propagation effects, the 

received UWB signal is composed of multiple echoes of the transmitted signal, which 

suffer individually from different path attenuations and delays. 

The used model is the one suggested by the IEEE 802.15.3a and 4a working groups for 

UWB communication channels. In narrowband communication channels, Rayleigh 

random processes are deployed to simulate the fading coefficients, but in UWB channels 

fading is simulated as log-normal random process [6]. An Extended Saleh-Valenzuela 

(ESV) channel model is used for simulating channel impulse response and obtaining their 

power delay profile (PDP). 
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With reference to the notation listed in Section 2.2.2, the deployed channel model 

coefficients are defined as ‌ȟ ὴȟ‍ȟ, where ὴȟ is an equiprobable ρ. And ‍ȟ is 

modeled as a log-normal fading term, as ςπÌÏÇ‍ȟᶿ.ÏÒÍÁÌ ‘ȟȟ„ , or ‍ȟ

ρπȾ  where ὲᶿ .ÏÒÍÁÌ ‘ȟ„ , and Ὁ‍ȟ ɱὩ Ⱦ Ὡ ȟ Ⱦ , where Ὕ is the 

excess delay of the ὰ  tap and ɱ  is the mean power of the first path of the first cluster, 

and the ray arrival time ‘ is given by: 

‘
 Ⱦ  ȟȾ

 

 
      σȢρ 

The model used to generate an UWB CIR is verified to fit measurements in both LOS and 

NLOS scenarios. The fitting is done via matching the values of the mean excess delay, 

RMS delay, and mean path number from the measurements and the simulation [6]. 

There are four channel sub-models presented by the standard set by the IEEE in the 

802.15.3a work-group to fulfill  measurement results, namely channel modes (CM) [1, 2, 3 

and 4], for different channel characteristics. They differ in line-of-sight (LOS) availability, 

delay and the transmitter-receiver separation range [40]. 

Figure 3.4 ï ñIntel-Tracing Modelò shows a snapshot of the realization of a channel 

impulse response (CIR) as well as its respective power delay profile generated by the 

simulation of Intel model. The amplitude/power are normalized with respect to the 

maximum arrived ray voltage/gain-coefficient at the RX. 
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3.2.2 Ray Tracing Model: 

 

Ray-Tracing is a system to calculate paths of electromagnetic waves and model their 

propagation effects throughout an assumed premise. The appropriate system should 

include the phenomena of line-of-sight (LOS) loss ñfree space propagationò, reflection, 

diffraction and diffusion. 

The graph on Figure 3.3 illustrates the idea behind ray-tracing. Although the two 

phenomena in question are the LOS attenuation, and the reflection of radio waves when 

they hit objects and their direction of departure (DOD) changes as seen by the receiving 

element compared to the line of sight DOD. 

 

Figure 3.3: Typical Ray Tracing Methodology. 
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The set of assumptions that are based on propagation theory, and are made to achieve a 

close-to-real room CIR realization for UWB channel is detailed. The input parameters 

considered are: the room geometry (size and/or dimension), barrier location, TX-RX 

separation, detection bin size (time-domain resolution), receiver antenna inter-element 

spacing, frequency of operation and utilized bandwidth, and reflection coefficients of 

walls/barrier/partition that depends on their materials. The transmitter is assumed to be an 

omni-directional antenna which radiates in 360 degreesô circle (2D propagation is 

considered in our model). Regarding the propagation environment, it is assumed to be 

homogenous; i.e., there are no medium discontinuities (the wave is traveling through air). 

Reflections only occur when the electromagnetic signal hits either a partition face, or the 

room walls. 

Figure 3.4 shows the operation of a ray-tracing model in a room environment. The more 

the objects to be simulated in the premises (chairs, tables, éetc); the more the complexity 

level of tracing, and hence the closer the model results to actual scenarios. Although the 

focus is on getting a sample CIR that has multiple reflections and spread over a reasonable 

time scale (in terms of hundreds of nanoseconds). 
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Figure 3.4: Example of Ray Tracing Model Operation. 

 

When the ray hits one of the receiver antenna (RX) elements (i.e.: sensed), itôs magnitude 

and total path length (which is later translated to its total time of travel ñdelayò) are 

recorded in the corresponding delay bin (the CIR is assumed to be as a discrete-time vector 

quantity, each amplitude/phase sample correspond to a delay bin). The DOA of that 

individual ray is saved for later comparisons. 

The fact that two or more rays may arrive at the same bin has been considered, and a 

separate DOA is noted for each incoming ray. The rays arrive at the same delay bin are 

added in terms of power and averaged in terms of DOAs. The highest power ray will 

dominate the DOA estimation at that delay bin, because the estimates will be weighted by 

their respective powers. 

Outputs of the Ray-Tracing model are CIRs (by the number of the receiver antenna 

elements), DOAs of each ray, path lengths of different rays and paths delays. To compute 
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the CIR per antenna element using the computed received amplitudes, phases of each 

sample are obtained from path delays and incorporated in a complex-valued noise-free 

CIR. A simulation of a Gaussian channel noise is added to the noise-free samples to result 

in a CIR of the current scenario. 

By varying the location of TX and RX as well as the partition properties, the channel 

realization (like the one sampled in Figure 3.5 ï ñRay-Tracing Modelò) obtained is 

consequently changed, thus achieving random simulated snaps of different CIRs. By 

controlling the parameters above and the presence (geometry) of the barrier, availability of 

a LOS component is a matter of chance (random geometric re-location of the transmitter 

and the receiver). 

 

Figure 3.5: Sample PDPs and CIRs obtained from different channel models. 
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3.3 Compressive Sensing 
 

3.3.1 Compression and Expansion 

 

In Compressive sensing framework, compression of CIRs is done through multiplying the 

presumably-sparse vector (channel realization) by a Gaussian Random sensing kernel. This 

operation simulates the receiver inability of detecting fine resolution CIRs with the 

presence of the wideband signal sensed by its antenna elements (zooming out the delay 

axis). Sensing noise is the error that results from the imperfections of the receive elements 

structure, and assumed to be Gaussian with i.i.d samples. 

The compression matrix used is a normalized Gaussian matrix that has orthogonal columns. 

Other matrices should be conditioned by satisfying the RIP constraint. Possible choices are 

random matrices that have entries chosen according to sub-Gaussian, Bernoulli or Partial 

Fourier distribution. The RIP property is summarized mathematically as: 

ρ ‏ ȿ—ȿ ȿ —ȿ ρ ‏ ȿ—ȿ    σȢς 

Signal Reconstruction problem (designated by CS Expansion process in Figure 3.6) is 

solved using compressive sensing framework. To recover (i.e., zoom in the delay axis) the 

sparse CIR with an acceptable degree of error (MSE level), a linear programming algorithm 

is used. Matching Pursuit (MP) algorithm variants are investigated for this purpose. The 

performance of the reconstruction step is subject to the choice of sensing matrix structure 

in the (CS Compression) step, as well as the desired level of MSE error and compression 

ratios. A more reliable implementation of the MP concept (Section 2.3.3) is achieved by 

Compressive Sampling Matching Pursuit (CoSaMP) algorithm (Section 2.3.4). 
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Figure 3.6: CS compression and Expansion for CIR realization. 

 

3.3.2 Minimum Square Error Comparison of CS Algorithms 

 

How to choose the best algorithm for UWB sparse channel is an issue of complexity versus 

performance and design. An MSE-based criterion for comparison between MP algorithms 

is deployed. The performance depends on the noise level as well as the channel simulation 

parameter. The MSE error is calculated as: 

ὓὛὉ В Ὤ Ὥ Ὤ Ὥ       σȢσ 

where 

 ὒḳ length of the CIR vector ñno. of delay binsò. 

Ὤ ḳ Actual CIR before compressing. 

Ὤ ḳ Recovered CIR after expansion. 

The selection of the CoSaMP algorithm is done based on having the minimum MSE error 

in the expansion step compared to the actual CIR produced by the Intel and Ray-Tracing 

model. The setup that validates this procedure is presented in the results part of this thesis 

(Section 4.3). 
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3.4 Direction Finding 
 

3.4.1 Algorithms Implementation 

 

Given the received signal vectors (ὲ of them, each corresponds to a different antenna 

element), the algorithms MUSIC, ESPRIT and Root-MUSIC work by obtaining an 

estimate for the received signal correlation matrix ╡ . The accuracy of such methods 

depends on the window size (the number of samples captured to estimate ╡ ). In other 

words, DOA estimation resolution is a function of the bin size and the window length 

(number of samples captured). That is the more number of samples, the better is the 

estimate of ╡  to ensemble the true covariance matrix. 

Eigenvalue decomposition is an essential step into projecting the signal eigenvalues in the 

signal/noise spaces. Given ἣ  ñthe signal spaceò, ἣ  ñthe noise subspaceò,  ñthe signal 

eigenvaluesò, MUSIC, ESPRIT and Root-MUSIC algorithms do calculate a DOA estimate. 

The difference is the first algorithm ñMUSICò produces a spectrum with high peaks at 

DOAs of the incoming signals, while ESPRIT uses a Total-Least Squares solution to 

numerically estimate the angles of arrivals. The third algorithm looks at the problem as a 

polynomial roots solution. 

The number of incoming rays (ὖ) is estimated using an information theoretic detection 

method. Namely, Akaike Information Criterion (AIC) and Minimum Description Length 

(MDL) (Section 2.4.3) are implemented to resolve this question. Although both measures 

are similar and straightforward, an efficient eigenvalue decomposition does affects their 

performance. Thus ὖ is given by: 
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ὖ ςὑὔ ὓ ÌÎὗὓ       ςὓςὔ ὓ    σȢτ 

in case of using the AIC metric, or: 

ὖ    ὑὔ ὓ ÌÎὗὓ ὓςὔ ὓ ÌÎὑ   σȢυ 

when using the MDL metric. 

Figure 3.7 summarizes the steps for MUSIC algorithm. For the analytical DOA estimation 

methods (ESPRIT and Root-MUSIC) thereôs no need to calculate the spectrum or a search 

step, the angle of arrivals is given by Section 2.4.2 as: 

— ÓÉÎ ‗Ⱦς“Ὠ       ȟ      Ὥ ρȟȣ ȟὖ      σȢφ 

 

Figure 3.7: MUSIC algorithm flowchart. 
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3.4.2 Angle-Delay Domain Clustering 

 

The technique of obtaining a cumulative DOA estimate is done through clustering 

individually estimated DOAs in the Angle-Delay domain. Individually estimated DOAs 

are the results of running one of the conventional algorithms for finding the AOA on a bin-

by-bin basis. Estimates of DOAs are then viewed as a two-dimensional space; angles axis 

and their respective delay bins on the other axis. The points of that space are shown to be 

scattered and condensed around the actual raysô DOAs. 

A post-processing step for clustering ñgroupingò DOAs is made possible by the use of the 

K-means algorithm (Section 2.5). A modified technique is used when clustering the points 

in the angle-delay domain. The procedure of representing different DOA estimates with 

different number of points is done as follows: the estimates obtained using low power are 

represented by fewer points, and vice versa (i.e.: the more the received power the more the 

confidence on the estimates that are based on them). 

This method leads to treating noisy received bins as noisy DOA estimates, so that actual 

received rays are favored in the clustering step. The way of judging whether a favored 

estimate is reliable or not depends on the definition of ñreceived high powerò. There are 

several ways of defining that, some of them are: by averaging all the powers across all the 

receiver antennas in each bin, finding the weighted product sum, selecting the maximum 

power to represent that bin power, using the variance or the sum of square roots (i.e., sum 

of the received voltage). 
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The clustering step is supposed to find centroids (the average cluster angle) of the DOA 

clusters which should be compared against the actual ray AOA. The performance of this 

process is subject to the performance of the estimation algorithm used (i.e., ESPRIT or 

Root-MUSIC). Other factors are based on the channel structures (density and geometry of 

reflectors) and CIR resolution captured at the receiver. The choice of which method to use 

on treating high powers is subject to more investigation and analysis. 

 

3.4.3 DOA Estimation Metrics 

 

The most looked-for features of a Direction-finding algorithm is having high accuracy and 

resolution when applied using small aperture arrays (small antenna footprint) and yet using 

the minimal number of antenna elements, and performing in lowest possible SNR 

environment, though having a reasonable cost/performance implementation. 

The root mean square is used as a metric to compare the performance of DF algorithms. 

The RMS Error (RMSE) in DOA estimation is computed as the square root of the average 

squared errors over repeated DOA estimation trials. It is defined by 

ὙὓὛὉ В В — —       σȢχ 

where, 

Ὕḳ Number of repeated DOA estimation trails over which the error is averaged, 
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ὖḳ Number of incident rays available at the receiver elements (estimated using AIC or 

MDL), 

—ḳ The actual angle of arrival of the ὴth ray as generated in the simulation model, 

—ḳ The estimated angle of arrival of the ὴth ray as estimated by the clustering DOA in 

the angle-delay domain.  
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CHAPTER FOUR 

RESULTS 

 

4.1 Review 
 

 

In this chapter, a review of the simulation setup is provided. A set of functional blocks is 

detailed in order to illustrate the various steps (Figure 4.1) that represent the verification of 

the DOA estimation method and the parameters considered in validating its performance 

are described. 

 

Figure 4.1: Block diagram of the procedure. 
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In the subsequent sections, the different parts and the overall system performance of the 

proposed DOA estimation technique is listed and discussed. The technique described in 

chapter 3 is a way of estimating the DOA of an incoming signal in an UWB transmission 

environment. Performance measures, results, and graphs that illustrate the different steps 

are listed in the succeeding sections. The tool used for testing and verifying the direction-

finding system is -ÁÔÌÁÂ. 

The core of the pre-described technique involves the algorithms/techniques: UWB Channel 

generation (Intel model and Ray-Tracing model), CIR Compressing, CIR Expansion (with 

CoSaMP reconstruction), DOA estimation (ESPRIT or Root-MUSIC), Angle-Delay 

Domain Clustering (K-Means), Performance metrics (MSE). 

There are two channel models deployed to test such scenarios. The Ray-Tracing channel 

model and the model derived from the measurements done by Intel are simulated to obtain 

CIRs of different channel realizations. 

The later discussion involves the use of compressive sensing in dealing with the high 

bandwidth transmission. The receiver is assumed to be incapable of sampling at high 

sampling rates dictated by the bandwidth of the transmitted signal. The efficiency of such 

method is debated and its results are expressed. 

Conventional DOA estimation numerical methods (ESPRIT/Root-MUSIC) are utilized in 

a bin-by-bin basis to find intermediate DOA estimates in each delay-bin to form a 

constellation of points in the Angle-Delay space. The following sections deal with the 

problem of clustering DOA estimates in the Angle-Delay domain. 
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The final DOA measures are assumed to be the centroids of the concentrated distinct 

estimates. Readings from the simulations are compared to the actual values of ray DOAs 

stated by the models for verification. Comparisons are facilitated using the RMSE metric. 

 

4.2 UWB Channel Generation 
 

4.2.1 Ray-Tracing Model 

 

Simulations to get different CIRs to mimic real life UWB channels are done using the basic 

knowledge of radio frequency propagation phenomenon. The methodology described in 

Section 3.2.2 dictates that a realization of a power delay profile (PDP) along with 

individual rays DOAs would give sufficient information to deal with the DOA estimation 

problem. 

A scenario where there are 4 receiving antenna elements is used to give further explanation 

of the system operation. Figure 4.2 shows a snapshot of the tracing operation of this 

scenario where a ray (purple line) is registered to hit the first and the third antennas.  

The setup parameters are as follows: frequency of operation is set to 3 GHz, TX sweep 

angle (scanning range) is set to 360 degrees, maximum allowed number of reflections is 

ρφ reflection per ray, room dimensions are ρπψ ά , barrier is set to be relatively at the 

middle of the room and inclined towards TX side, minimum hit/miss detection angle is set 

to be πȢυ degrees, bin size is ρπ ὧά, reflection coefficient is same across the room boarders 

and the barrier and is set to πȢχυ and for purpose of illustration the antenna interspacing 

distance is set to ςπ ὧά. 
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Figure 4.2: Ray-Tracing Model operation snapshot. 

The resulting PDPs of each receiving antenna of the scenario defined in Figure 4.2 with 

respect to the time domain is plotted in Figure 4.3. The power levels are normalized and 

scaled to ρπ Ä" with respect to the highest received power across the 4 antennas (the LOS 

component), the signal power is set to ρπ Ä" above the noise level. The length of the CIR 

in ns is set to χππ ὲί; as the powers of later received rays tends to fade out due to multiple 

consecutive reflections (the lengthier path traveled by the EM wave the more its power 

drops due to free space loss). Multipath Components (MPCs) are shown to be sparse and 

have a nature of arriving times at the receiver antenna elements as clusters. 
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Figure 4.3: CIR obtained from Ray-Tracing simulation with the aforementioned parameters. 

 

Each ray hits one of the receiving elements, several variables associated with that ray are 

recorded: the sweep angle in which it has been recorded to hit an RX antenna, the path 

length traveled through multiple reflections, whether two or more rays arrive at the same 

time or not (and their number), and most conveniently, their DOA resulted from the last 

reflector. These DOAôs are used for comparison with computed DOAs. 

The graph on Figure 4.4 shows the angle of arrival (AOA) generated by the simulation per 

ray for the same previously described scenario. Each group of rays that falls more or less 

in the same delay bin (slightly before or after) are shown to have similar AOA (although 

not exactly equal). The fact that RX interelement distance is small compared to the actual 

path the ray travels accounts for the main idea of direction detection with multiple antennas. 

It is to be mentioned that the maximum delay shown is reduced to ςυπ ὲί for convenience.  




























































