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CHAPTER 1

INTRODUCTION

1.1 Preface

Wireless communication is the transfer of information without the use of airegbles
allowing the system the freedom to be mobil&/ireless systems havdeveloped
significantly in the past years apthyed an extremely important role in our civilization
connecting people via tekervices The request for communicatiomsnongpeope is
growing rapidly; in responsejore connectivity, more servicemd higher qualityre the
base requirements

The design prospective of tiphysical layerf such systemsds to develop schemes and
methodologiesthat increase the information rasnd improve theefficiency of a
communicatiorsystem under thstrict conditions of the wireless environment.
Shortrange wireless technology pky key role in scenarios where everyboatyd
everything is connected by different types of communication links. Wiilet ofhuman
to human information exchanges are still by voice, a rapid incieadata transfers is
observed in other types of links as expressed by the rising neddcairon-aware

applications and video transfer capability within the home and @figgonments.



1.2 Motivation

1.2.1 Ultra-Wideband Channels

Ultra-Wideband (UWB) communication technolobgcame a powerfultechndogy for
wireless communication systems. It acts in Jowwer, shorrangewirelessnetworks.
UWB technologyis helpingpeopleto be free from wires. It enablegreless connectio
between multiple devices for trangssion of video, audi@and bandwidth demanding
communication technologies

UWB technologystarted in thd960s, when it was mostiradar and militargyechnology
[1]. UWB technologyhas presencwmdayin wide and diverse areawith applications in
high andlow-dataratecommunications for shedistance antbng-distanceransmission.
Such applications include (but not limited toMWireless (sensor) network$/edical
Computerized Imaging systeraadVehicular radar systems.

The new trend is to alloWWB waveforms taoexist withothernarrowbandystemgthe
US FCC approved such coexistence); which resultedgreagrowth in attentiorgiven
by academic/industry/standardization organization®JWB technology. In 2002the
United States=CC allowed urrestrictedutilization of the band (fromo® p #@ "' (U,
which formsalarge portionof spectrum.

With current advancementsr switching circuitry, more attention towards UWB
technology has followedlheseadvancementderiveda spreador the technologyrom
military to consumesectors.

The transmission oflata throughUWB channelsresults ina number of lookedor

characteristicsThe key factin UWB communications the use ofow energytransmitted



signals that occupya large bandwidt( t hou g h, a drequencydatlingf eat ur e

i mmuni tyo i.%he gch multipathtdevexsdy)ature ispresented by the large
number of propagatiopaths existing in a UWB channel.

UWB transceivers are usually used to carry information in form of radio impulses, hence
the name Impulse Radio Ultra Wideband-(lRVB). The transmission of shetitme radio
impulses enables the receivers to extract channel information for further processing.
Channel Impulse Responses (CIR) are assumed to have enough information to characterize
the channel between the transmitter and theivec.

Compressive Sensirigchniques allow compressing the data in the sampling stage (which

is known togreatly reducehe number of digital samples required to reconstruct certain
sparsesignals). For that reason, CS is useful where anataligital conversion (ADC)

faces a physical design limitation, and hence the usefulness in UWB systems.

1.2.2 Compressive Sensing

Signal acquisition is anajor areain signal processingrhe wellestablishedSampling
theoremsaare responsible afasing the transition frowontinuougo discretetime worlds.
The mostpopulartheoremin data acquisition and digitalization of informati@ncredited
to Shannon3], andit states that theatein which the signals are samplsbdouldbefi a t
| e atwitedhe maximum frequenayomponentpresent ina continuoudime signal in
order toperfectlyrepresenthe signain the discrete domain

However, the authors in [4] lamlt the foundation a€ompressivé&ampling, also known

as Compressed Sensing [CBheassumptioa madeare to easthe reproductionf signab



by usingfar fewer samples of measurements tbamventionamethodsof sampling(with

some constraints).

CS is potentially applicabl@ areas where the reconstruction of signals from a limited set
of linear measurements is possible. Application of CS includes wide range of consumer,
medical and military applicati@) such aPata Acquisition and Compressiohnalogto-
Information Convesion and Channel Codin§;omputerized Tomography (both optical

and waveinduced)andTarget Detection or Radar Positioning.

1.2.3 Direction Finding

Many methods are developed to enhance wireless communication systems, among them,
aretechniques to provide devices with the sense of location and orientation. Localization
algorithms are well established and documented in many researches.

In smart antenna technologyPérection Finding (DF)algorithm is usually incorporated

to develop sgtems that provide accurate location infotiorafor wireless services [5The
existing workin this areas mainly intendedto concludewith methods to improve the
precision and reduce ttemmplexity of the algorithms for Direction of Arrival/Angle of
Arrival (DOA/AOA) estimation.

The ncrease of demand for the wireless technology sexhigee spread into many areas.

All of the upcomingusage scenarios can be considaasdeasos for determining the
direction of arrival of incoming signsin wireless gstems such asmart mobile antenna
andsensor networg environmental monitoring anglblic securityseismology andearch

and rescuandstrategy and defense operations.



1.3 Problem Statement

With the wice range of advantages, the UWB channel is tthiosen for the reasons stated
earlier [Section 1.2.1]. The system is designed to assume a channel thatssupport
transmissionof high data rates. Common systems have a physical layer more or less
described by the Industrial standard IEEE.15.4a2007(6].
This researcimakesuse of the emerging techniques usedasegrrocessing signals which
haver el ati vely | arge bandwidth (hence require
Sampling Theor emo) to reduce the hardware
system design constrainfghe techniquealled theMatching Pursuit (MP) Algorithm [
Aand its modified variantso is implemented t
The global aim of this work is to develop a -@&ndly modified DOA estimation
techniqueusing extracted channel impulse responses to better work with UWB channels.
TheproposedF method provides higher accuracy of DOA estimation in situation where
the conventional DF methods would fall short. The results would discuss the profit of this
techique over the other conventional methods available in the literature. The key aspects
of this project are:
1 Formulation and realization of a modified DF technique for UWB channels
utilizing CS framework.
1 Presenng a verification of the technique using twidferent channel models.
1 Reduction in algorithm complexty by processing receiver extracted
propagation informatiorichannel impulse responseagther than considering
incoming signals.

1 Improvingestimation accuracy in low SNR environments of operation.



1.4 Summary

The framework ofCS provides robusttools for reducing the number of measurement
required to summarize sparse signéts. thatreasonCS is useful in systems where the
analogto-digital conversiorprocesss critical, for example UWB systems.

The improvement of DOA estimation techniques, led by the emerging CS method, would
make theproblemof DF less demandig. Although, the assumption thastifies the use

of CS toolss directly related tdhelevel of sparsityof the CIRs being considered

1.5 Layout

The layout of this thesis is as following:

Chapter 2 presents a literature review of the three main themes of the research

(UWB channels, Compressive Sensing and Direction Finding). The related

mathematicahnd statisticalrameworls, assumptionand equations are presented.

- Chapter 3 describes the scope of the work to be carried ojuistify the claimed
conclusionshow the simulation is done and the environment satapalscstated.

- Chapter 4 shows number ofresultsand graphgroduced duringhe research and a
discussion of the findings.

- Chapter 5 states the conclusions and possible future researabrtogies related

to this work.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, a survey about the existing foundationh@itdpic in hand is presented.
The main aspects in relation to this work are Wwamleband (UWB) channel
characteristics and modelling, Compressive Sensing &ieyithms Direction Finding

(DF) methodologies and Data Clustering and Analysis itigge-Delay domain.

The proposed method is a DEehniquefor UWB system that utilizes CS framework and
data clustering algorithms to provide more insight of the DOAs of multiple signals and
their paths. CS provides a handful of tools to deal with high idé¢ applicatiomand thus
relaxing the need for high sampling rate Analo@igital Convertors (ADC) at the

receiver while enables finding high resolution measurements.

DOA estimation is done through algebraic algorithms that are currently founa in th
literature (namely ESPRIT and Ro®USIC). Although, the difference here ihe
proposed method considdrigh resolution timelomain channel impulse responses (CIRS)
that are obtained by processing the received signal via a CS algorithm (namely CoSaMP)

which will be discussed later.

Clustering a group of data samples in a rradiltnensional space provides a collective

answer for the probable DOAs in the Andlelay Domain.



2.2 Ultra-Wideband (UWB) Channel Model

2.2.1 Channel Characterization

The FCC defines UWB systems as havingt 71 ( Ubandwidthor more The UWB

bandwidth is restricted b}0 dB below thgpeakpower of ceexisting narrowband systems

[8]. The fractional bandwidti{é ) is defines byp ¢——, where'Qand"Q definethe

lower and uppebounds othesignalspectrumrespectivelyThe value o & would

specify an UWB channel transmission.

UWB Systemshave severdiavorable characteristiasver othercommunicatiorsystems

such as

1 Wireless transmissioat hgh throughput:large bandwidth everal GH}, can
provide more thao T 3t AfOdatarate(low-r a n g &0 § .

1 High precision ranging-ine pulsesluration(sub-nanosecony fine time-domain
resolution, whichoffers subcentimeter accuracy fotransmitter localization
applications.

1 Reasonable path lospropagating wavepenetrateobstacles (inline-of-sight
(LOS) and on-line-of-sight (NLOS) communications)

1 Robust to fading: immunity to multipath fading, ability resolve multipath
componentsRAKE receiver advantage.

1 Security: very lonpower spectral densif{?SD) (power levels ateelow the noise

floor), not easyor unauthorized detection



1 Coexistencecoexiss with the bandwidth otellular systems, wireledscal area
networks (WLAN), gldal positioning systems (GP&hnd other wireless systems
1 Low cost transceivehardware designtow power signalsjntegratedRF and

baseband in a singeoC IC.

The main reasons for UWB to emerge as a solid contestant for future communication
systems ishe support for high data rates and the low power requreedrismit and receive

data. Theefeatures give UWB systesa coexistence feature with other currently deployed
wireless systemé Such as Wi r el elgure 2IAlINSstriitadine ditiiede

advantagesver other higkenergy, comparatively lowlata rate wireless systems

Bluetooth,
2.11b 802.11a
Emitted Cordless Phones
Signal Microwave Ovens
Power
41demmnz Lo _BLE_ B8 _ Bl ___ “Part15 Limit”

16 1.8 24 3.1 5
Frequency (Ghz)

10.6

Figure 2.1: Low-energy density and higénergy densityvirelesssystemg9].



2.2.2 SalehValenzuela(SV) Channel Model

Due to multipattfading, the IEEE 802.11b standard model is based on the statement that
the impulse response is made of finite impulse response filter (FIR) taps that have sampling
interval equal to the recipcal of the ray arrival rate [6 While the channel impulse
respnse CIR) of the UWB channel is based on the measurersagedinding of Saleh
Valenzuela(S-V) [10]. A Two-Poisson model is deployed for the arrival rate of clusters
and rays within each cluster. Figure 2.2 illustsak® concept of clustered CIR by giving

a Powerdelay Profile (PDP) example.

Path Mﬁgnitude

cluster 0 —

Figure 2.2: An illustration ofachannel impulse respongglR).

The terminology othe SV channel model is as follows:
“Y Arrival time of the first path of tha cluster,
t 1 Delay of theQ path within theX cluster relative to the first arrival time,
3 Power decay rate of clusters,

( Power decay rate of rays in the cluster,



¥ Cluster arval rate,
Ray arrival rate within eachudter,

i Amplitude of theQ ray in thetx cluster.

By definition,t ; "Y. ThePDFs of'Yandt j depends on the ratgsand_, andgiven

by the Poissodistributions:

n "y YAGbr'Y Y h & m P

ntegt _Agb_ts t 5 hQ n c]

= x

respectively. The amplitude of th@ path within theXx cluster denoted ; and it is

Rayleigh distributed with a mean i Wwritten as:

nn A@DYis A@bt 7_ ®

—x
0«
—x

wherg it is the average power of the first arrival of the first cluster (the very first

ray). An illustration of the assumedontel is given by Figure 2.3

Simulations done in [6] concluded that esumption of using-8 model for simulating

the CIR of UWB channels is a practical technique. It gives high matching percentages

when compared to real channel measurement data.
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Figure 2.3: SV channel mode]11].

2.2.3 Signal Model

UWB signalstransmitdataby low power levekignak (underthe thermal noiséoor) and
experiences dense multipathhenomenonTto simplify the design o/ WB systems, the
pulse shapes selected accordinglyhat designed pulsefatts severelthe overall system

performance
The UWB transmitted signal is modeled as

io B B ono W Qv 8
where the daté) ¥ pis the™Q transmitted bit;Y is the symbol duration aritf

"Y 70 is the pulse repetition periahd0 is the number of symbal3he pulse) 0 in



ImpulseRadio UWB (IRUWB) is eitherGaussian, monocycler poly-cycle pulse[12].

An example of a Gaussidike pulse is shown in Figure 2.4.

Amplitede (V)

0.04
0.03
002

om

Time (nz)

Figure 2.4: UWB Gaussiadike Pulse.

The signali 0 travels through and p -path fading channel. The channel impulse

response (CIR) is
Mo B | 1 0 ft c®

where the received pulse is assumed to extifigrent fading coefficient () from each
&path, whose delay i$. We assume that t+ E t . Figure 2.5shows the

resulting signapower levelsvhen a pulse propagates through a specific channel.
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Figure 25: (a) UWB CIR, (b) Pulse propagates through chafi@l

The received waveform is assumed to be

0 00270 Gno Ty Ay  t 0o @

where0 0 is the Gaussian noise defined as the-sided power spectrdensityof 0 7¢.

2.2.4 Sparsity of the UWB Channel

Sparsityis expresseth thefactthat the information rate of a continuous time signal may
be much smaller than suggested by its bandwidth, or that disicnetsignal depends on

a number of degrees fsteedom which is comparably much smaller than its length.



1 Definition: The signab is said to be sparse the basigy if it can be sufficiently

represented using only a small numbelt 0 of atoms fromuw.

Woss L &

wheress(®s is the zero norm (i.e.: nerero coefficients count in the signigl

Many signals are sparse if they are expressed in a convenient basis. The impication
sparsity is that one can discard the part of the coefficients without much perdeggual
Thus there is no neetb spend a lot of power intcapturingall the samplesof a sparse
signal in all coordinates when most of them are zero any®#agh process requires not
only the knowledgeof somecoefficients offi r esa Ig rbat klso the locations dhe
significant pieces of informatiorzortunately, tese piecesend to be clustered. As an
exampleof sparseclustered model, it has been shown that many physical chdaendts

bedistributed as clusters withrespective channel spread$.[6

A wireless channel can Bssumed to ba sparse channel, where thdajespread could
be very large, but the number of major paths is normally sergll compared to the
window length We can start with the assumption thia¢ short durationsignal (high

frequencyUWB pulse$ propagate througthe multipath channels, theeceived signal

continuego besparse in some domaind thugheuseof compressed sensiigpossible

To reinforce the assumption of received sigsahrsity we consider the order
Butterworth pulse usualiynplementedn UWB systemsas thedata bearenaving a length
of Y p¢ i Figure 2.6 shows the received signal per frame for a UWB channel that
models an indoor residential environment with LDESight (LOS)scenario(acmording

to thelEEE 802.15.4a channel model CMA)[in the absence of noise.

M p
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Figure 2.6: Effect of UWB channel indoor propagation in residential environment (I[LC85)

As is depicted in Figur2.6 from [13], the received signal madeof groupsof spread out
clustersof the transmittedignal It hasrelatively longerinter-clusters time intervals where
theamplitude of the receivezignalis zero oranegligible value. In this particulaxample,
the signal plotted in Figre 2.6 hasp &w x taps, of whichufx @ (x x Phave amplitude

lower thanp 1t [13].

2.3 CompressiveSensing
2.3.1 Definition

Compressive Sensin@§) is amodernconcepfounded on the theoretical results of signal
recoverywith random basisamples Thenotable result of CS discloses that a sigitl,
with a large number ofamplesthat is U -sparsein somebasis , can beprecisely

MC



reconstructedwith high probability usinga lower number ofrandom projections

A ¢ 0 mp rseasnspebiEhs gignal onto a randofunction that is incoherent with .

By applying CS methodologies, the sampling rate can be minimized f8\yspubst rate.

Considering the linear measurements model for the signal
o o — &y
where form the effective measurements matrix for estimatingitreparsevector—
Matrix is called the measument kernel, and it has lowerbankh a n t hoéranki g n al

which is equal t@) . The0 0 matrix is a projection plane for thégmal 0. Figure 2.7

summarizes the mathematical relation between CS entities.

Mx1

sparse
signal

K

nonzero
| entries

Nl

measurements

Figure 2.7: CS mathematical framewofk4].

The maximum value amongst inner product of the orthonormal basis and the orthonormal

measurememnnatrix is usually described by the coherence measure

“ h I AD %h &N

i



The classical sampling scheme correspond top and% 6 | 0 Qand is the
Fourier basis 6 Q 7 .lItis known that any random matrix is greatly incoherent

with any fixed matrix 8

2.3.2 Sparse Signal Recovery

The main issue in CS is the desigh a convenient measurement matrix (to avoid
information damage in dimension conversion) and designing dbeesponding
reconstruction algorithm to recovehe sparse vector—from only 0 compressed

measurement samples veator

The most common criteria for benchmarking the quality of a CS measurement matrix is

the Restrited Isometry Property (RIP) [L3This property is summarized as follows

Pl &8 & -8 Pl S P T

for a positive constant . Thess3s  is thea -normof the vector. The RIP property should

be fulfilled when choosing in order to successfully recover the signal. It is known that
by selecting to be a random matrix RIP can be satisfied with a high probability.

Gaussian, Bernoulli and partial Fourieatiices satisfies the RIP [15

If the RIP is met, then an accuragnal reconstruction problem procedure linear

programming of the form

| Els—=s subjectto 0 — P p

ZN;‘
wheress—ss B s—sis thed-normof the reconstructed signal.

MYy



The RIP tells us about how much success would bthenprocess of sparse signal
reconstruction. Nonetheless the process itself consists of solving the Euclidean norm using

least norm procedures. An analytical solution existsitaisdn theform of:

— 0 P ¢

which give poorresults and the solution is almost never sparse. §yguhe prior
information of that the solution is sparsei$ U -sparse, the result can be improved by

solving for the vector with least nezero entries. This is nameédnorm

| Els=s subjectto 0 = ¢po

ZNH

However, an exhaustive search problem is created and feasibility is reduced. A relaxation
of this problem is presented by [J1&nd [L7]. It is shown that by Gaussian measurements
it can be exactly reconstrugtsparsevector and closely approximate compressible vectors

with high probability usingt optimization shown in Equation 2.11.

The a-minimization is a conveyroblemand can besolvedusing moden optimization
techniques [1B This problem is usually calledelast Absolute Shrinkagend Selection
Operator (LASSO)In the next sectionsreviewis provided fothevariousCSalgorithms

and thé procedurs.

2.3.3 Matching Pursuit (MP) Algorithm

Sparse signal reconstructionasmmonlyachieved by methods that can be divided into

two classifications. Algorithms that solve the linear optimization by minimizing the

M ¢p



residual error as a function of the gain and the delay location of all dominant paths [19] are
the first class. The second bgithe algorithms that choose sequentially the most important
taps of the sampled CIR. The Greedy algorithms (such as the Matching Pursuit and its
orthogonal version) are the most popular from the second class [20]. In our case, we are
focusing on the seod class, because we are interested in finding DOA of the most

dominant paths (or taps) of the FIR model of the channel.

The Matching Pursuits (MP) algorithm tries to build up the sparse signal iteratively by
selecting the atom that maximizes the repregemt at each iteration. Orthogonal
Matching Pursuit (OMP) solves the problem by projecting the signal onto the subspace
spanned by the selected atoms (with no atoms selected twice). The result is optimal in the
least squares sense (require fewer stepscdnverge, although computationally

demanding).

In this work, we will focus on OMP algorithm family, because of its simplicity of
implementation and the fast computation time and the convenient results produced [21].
Algorithm 2.1 summarizes the steps reqdito implement the OMP algorithm required to
solve the signal reconstruction problem. It produces an estimajidor the sparse signal

extracted from a set of linearly sampled data points.



Algorithm 2.1: Orthogonal Matching Pursuit

Inputs: CSMatrix 0, measurement vectdy
Initialize: @ T WY
for ' Q p;"Q "Q p until stopping criterion is meto
QN 0 i {Form signal estimate from residual}
*r Ny “00HPQ {Add largest residual entry to suppol
ws N6 «hows N1 {Update signal estimate}
iN® ow {Update measurement residual}
end for

Output: Sparse representation

The algorithm takes the compressed measurements vector (the residual) as well as the
compressing matrix as inpuidando respectievely), and by solving for the highest value
support and subtracting its effects (as in most greedy algorithms), the resjdsiapdated

in each iteration until a stopping criteria is met.

Another variant of the Greedy MP family afgorithms is the Stagewise Orthogonal
Matching Pursuit (StOMP) [22] and Regularized Orthogonal Matching Pursuit (ROMP)
[23]. Each one of these algorithms has its positives and shortcomings as well. Some are
extremely fast although require relatively langumber of samples to produce a continent
estimation error. Some are computationally expensive though operate with comparatively
low number of acquired samples. The author of the Compressive Sampling Matching
Pursuit (CoSaMP) proves [24] that by modifyiitng OMP to combine features from both
categories results in a combinatorial algorithm that guarantees speed and provide lower

error bounds.



2.3.4 CompressiveSampling Matching Pursuit (CoSaMP) Algorithm

The Compressive Sampling Matching Purs(@oSaMP)algorithm described in last
section requires the same three inputs (inherited from its mother algorithm, the OMP) as

well as an additional input, being the sparsity of the approximation to be produced.

After setting the initial residual to the trivial conggsed signal, the algorithm repeats these

five steps until a halting criterion is triggered [25]:

1. Identification: Find the residual from the current samples and locate the largest
components.

2. Support Merger: Merging the newly identified components withdbmponents
that appear in the current approximation.

3. Estimation: Solving a leasiquares problem to find the target signal.

4. Pruning: Produce a new solution by retaining only the largest entries in the
estimation from step 3.

5. Sample Update: Subtract thiéeet of the current iteration approximation from the

residual.

The Pseudocode f@oSaMP is listed in Algorithm.2. Comprehensive details about how

this algoithm performs is included in [25



Algorithm 2.2: Compressive Sampling Orthogonal Matching Pursu

Inputs: CSMatrix 0, measurement vectay sparsity level

Initialize: @ Mo WQ ™

repeat
0 p
«N G’ {Form signal proxy
¥ N OOBD {Identify large componerits
Wy - OO0 BD {Merge supporis
s N O «hds N T { Signal estimation by least squgres
N @ {Prune to obtain next approximatjor

i N o Oow
Until halting criteriond i 6 Q

Output: i -Sparse representation

2.4 Direction Finding
2.4.1 Direction of Arrival Estimation Algorithms

Direction Finding (DF)or a Direction of Arrival (DOA) estimation algorithmjs based
essentiallyon eitheramaximum likelihoodsolutionor asubspace decomposition approach
[26] [27]. Subspacéasedapproachebavereceivedmore focus, aftethe work in [B] has
proved to beomputationally simpleotasits counterpartthe Maximum Likelihood (ML)

approach. Figure 2.8 classifies the most common algorithms for DOA estimation.
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Figure 2.8: Different methods for DOA estimation.

Regardingsignal subspactchniquesonly the signal projectionis consideredwhile in
noise subspace baseéechniques noise projection is used Subspaceapproachesare
categorizednto searckbased ana@lgebraiebased methods$:or searchbasedechniques
the responsefdhe array to a single source is to be known in advamcalytically, as a
function of arrival angle, diound via calibration)On the other hand|gebraictechngues

d o rnin¥dlive a search procesandresult inthe DOA estimatesn angledirectly.

MUItiple Signal Classification(MUSIC) algorithm is a searehased noise subspace
method used to determine the DOA of a narrowbanttsaising an array of ssors [3).
A famous algorithm based aignal subspace methathplemented as a DF solutios
Estimation of Signal Parameters via Rmaal Invariance TechniqueE$PRIT) [28]. In

RootMUSIC [30], we useantennarraythatis assumedo be unifornty-spaced and linear,



in which the searchprocessequired after usinflUSIC is exchanged bg root finding

solution

The next sections briefly review the formulation of these three algorithms (MUSIC,
ESRRIT, RootMUSIC). In section 3.4the methodology ftowed to apply those three
DOA estimation techniques to UWB sparse channels is presented. The aim is to benchmark

the performancef our new method againgtose existing algorithms.

2.4.2 Mathematical Formulation

Consider a @lement uniform linear array (ULA) receiving signal from a single emitter

source at directioras shown in Figure 2.9.

The received signal is assumed to be

n’E (:’ 1 :Q Ul
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Figure 2.9: 4-element ULA receiving signal from a single emitter at directi8n

whered 0 is the received RF signals vector ahd are the path delays resultifigm
relative direction compared to the receiver antenna arrays. In case of linearfarrays

t  Q ¥® O Efandt being the path delay from the array central point to the emitter,
Q are the lengths of paths from the array elements to middle pmietjoted the speed

of light, and—is the required angle to be found. The unknown random phas&term

is equal for all elements. The baseband received signal is as follow:

Jjota .
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~
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let_denote the wavel en gH-Rh(srusudhhites cdlled the stegringna ni f o |

vector) is the vector that has a unit amplitude defined by
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Assuming that 0 is normalized (unit power value), the channel model for the received

signal is formed as:

60 M3.PROH— 70 <P X

where’l 0 is an i.i.d complex Gaussian noise signal that has zero mean and unit variance.

By definition— is the source direction, and SNR is the recesigdatto-noise ratio.

Direction finding algorithms are usually implemented in digital systems, so thetdiscr

time version of the signal model can be writtersa®2 13 . R QH—  °1 'Q, where

Gis the index of the sample.

2.4.2.1 MUSIC Algorithm

The algorithm is developed assuming that ther@ asignals that are arriving on the array,

given by the discretéme vector form summation:

©®Q B | QH— TQh Q pB P Y

where — are the signal directiong, "Q are uncorrelated received signal complex

amplitudes, and "Q is a complex vector representing Gaussian noise process with zero



mean and univariance. The covariance df'Q vector is found by} 00 Q0 ™Q

and it has the form given by

r'.] B ” lH_ lH_ é C& w

where,, 0O | "Q s thenth signal SNR§ is the identity matrix of siz§ 1), and
"Ois the Hermitian operatotetn N N be the singulavalue decomposition (SVD)

of the matrixy ,where A EAC plBh  pipfBIp isadiagonal matrix of the
singular values ofy . The matrixfj can beportioned asjy { R} , where thed 0
matrixi it he si gnal subspaced resemble® the ve

singular values, and the matrix fit he nbosipsaece®u f orms the si ng

associated with the remaining 0 smallest singular values. The two subspaces are

orthogonal { is unitary, i.e.. | 0 . It follows that H —0 for —

—8 h—.

The spectrumY— P will contain peaks (very high amplitudes in the case of no
fi

noise assumption) at the signals directior$ h—. Although, it is usual that the
covariance matrix) is not available at the receiver. Thus, estimation of the covariance
matrix using the \ailable data is required to find the sample covariance matrix

B 060707 .

The SVD of the sample covariance matrixijs 1 1 , and thecorrespondingoise

subspaces found by portioning} asinf§f 1| M} . The spectrumY— is called the

MUSIC spectrum, and is given by

H'Y
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Orthogonality betweeitd — andf}  will minimize the denominator and hence will give

rise to peaks in the MUSIC spectrum. By computing and plotting the MUSIC spectrum

over the whole range o t he DOAOGs can be estimated by
spectrum. A onelimension search algdnin for the largesD peaks in the MUSIC

spectrum is required to get the DOAGs as an

2.4.2.2 ESPRIT Algorithm

ESPRIT algorithmis implementedby using twoidentical and identically oriented sub
arrays (where onef them represents shifted replica ofhe other),andthe displacement
vector between théwo subarrays isassumedo be known in advancgthough, it is

geometryindependent The two steering vectors for the two sapaysareassumed to be
H— LH—h H— LH— & p
wherell and L are two matrices defined for selection as having in each row only one entry

that is one and the remaining are set to zeros. In linear organized arrays, the steering vectors

for the two subarrays are related aH — H —Q , WhereQ is the
displacement between the two sabays.Similarly, thesteering matricefor the two sub

arraysare related a% — A — |[F —, where

~

F—1 AEAG™ B~ & ¢

H ¢



For sources with incoherent signals, the entries of the columtige dafignal suispace
eigenvectorg [ ) andthe steering matri{A —) extends the same subspace. Thus

A —4| whered| is nonsingular. It can be shown that = |F4| 4|  [k4d], where

P L. The matrices 4 |4 and |F would be having equal singular values.
Thus,thealgorithmwill be operating by twesteps. Firstanestimateof is to be found

Second the AOAs are calculated from the singular values of

The leasesquares (LS) solution to estimate is A OICE & PSS

P [ ,where O*denotes the pseudnverse Although the matriceg: and f may
contain erras in their estimate, so a solution might be using the total-kxpsire (TLS)

approach. The TLS solg¢he problem
L&EHJ%@_L AL s @B F & P& )

which leads to 41 31, whered andd ared 0 matrices computed

from the eigenvalue decomposition of

q

F F 4 1 1 8 T

;I

and AEA@h is the sorted eigenvectors. TIESPRIT is shown to be better

than LSESPRIT in fully calibrated sensor arrays.

The estimated DOAs are then calculated as

— OET _¥Q h Q pB cg v



2.4.2.3 Root-MUSIC

By considering the steeringctor$ — to bewritten as

fA %) DTQ——’Q O E—T—n o ()

[ R o
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wheren i A @B 7_Q O EF, andQ is the spacindpetween tharray elemerst The

denominator of the spectruimund byMUSIC algorithmwould then be written as

0 4+ —ppd— 4 -ppdoioe ¢& X

Thae are 0 p complex conjugate reciprocal rodts the polynomial™@D . In noise
free caséQo would haved sets ofdualrootsd A @®x“7_Q OE+F,Q pi8 M,
andthereare 0 0 p morefin oi s efion ergol odhasisefcha@isyoperationthe
roots positions are slightly shifted although can be estinfedadthe closestroots to unit

circle in"Qo .

Thus the RootMUSIC algorithmtries to findall possibleroots of'QD and estimate
signal DOAs from thé highestmagnitude rootsvhich correspond to the signal subspace

inside the unit circle.



2.4.3 Information Theoretic Detection

Usually, the receiver side does not know how many signals to estimaie i§.anknown).
The Akaike hformation Criterion (AIC) [3Rand Minimum Description Length (MDL)
[33] are the twecommon information theoretic approaches used to estiimateumber of
signals. They are widely used methods for estimating the size of smallest model that is

represented by a given set of data.

The eigenvalues represent the neigbspacevhich are assumed to be equal,tpas the

noise is white (spectrally fia uncorrelated by assumption). The sigsalbspace
eigenvalues are comparatively larger tharnThus, the smallest number of eigenvectors

that reflects the correlation between the antenna elements is to be treated as the number of

signals found in such odel (set of data).

In [34] a formulation of the AIC and MDL is presented, and it has been shown that the two
approaches are applicable for cases where the noise eigenvalues are roughly equal and the

signal is having higher power (basically a reasonable 8iues).

The two criterions are based on Kullbdokibler information measure, and are described

as a function oftheparametetr wherem & 0 pas:

1. 6 '06 cO0 0O 110 ¢0 ¢ O & Y
2. D'O0D 006 O 1100 -0 ch O 11 8 w
where



0 number of vectors used to find the eigenvalues

0  number of signalthat are incident on the array,

0 number of antenna array elements.

0 0 C® T

The probability of errors shown as a function of the SNRFkigure 2.10 (adapted from

[34]) for both AIC and MDL for comparison.

P(error)
1.0
jl}l_
0.5
0.1 '

SNR(dB)

Figure 210l nf or mati on detection cri[27leri ads compart

In low power applicationsspeciallythecase olUWB systemy, the need is for techniques
that perform better in low SNR environmelmt.low SNR values,ite MDL criteriagives
high probability when used to find thanthatresults from using thalC, hence it is more

favorable to be utilizedAlthough, in high SNR values the AIC outperforms the MDL.



2.4.4 Review ofCS based DFmethods

Here we present a review of some of the previous research work done regarding combining
compressive sensing with DOA estimation. Most of the research is focusedustiac
signals fAnarrowband signalso to exploit the
SVD calculation cost and get higher resolution signals using low sampling rate®- The

SVD is an algorithm developed to achieve that.

The authors of [3Fpresenta sparsédased source localization method in which the samples

of the array manifold are assumed to be sparse and signal reconstruction is made possible
by utilizing an& -norm based penalties. The proposed method uses subspace based DOA
algorithms RootMUSIC and ESPRIT). Their method uses arSVD calculation
technique to summarize the projection of parallel streams. Their scheme is applicable for
both narrowband and wideband systems through a resolution refinement method and a

regularized paramet_ for thea -SVD algorithm.

Another & -SVD implementation for acoustic saer localization appears in [B6The
method used is for acoustic signal localization with passive antenna arrays, which-is a non
parametric technique. Super resolution signale obtained using neguadratic
regularization penalty function to the sparse audio signals. Assummptame are for both
correlated or uncorrelated, narrowband or wideband channels. Beamforming, &ajpon

MUSIC algorithms are provetio increase resolan in the given assumptions.

An angle domain sparse bearing local@matmethod is developed in [BAgain, acoustic

signals whictareassumed to be modeled as a sparse vector in the angle space are processed

on



using an a-norm optimization problem solution. Here, a quantized compressed
microphone data is combined (sparse signal reconstruction) with angle domain analysis to

localize the transmitter.

As [3]] concluded,the nonconventionamethodsfor DOA estimationutilizing the two
algorithms ofMUSIC and ESPRIT are nohe besffit for estimatingthe DOAs insparse
channels, écauseonly small number of the significant channel paths are resolvable, i.e
capturedwith high timedomain resolutiorby the receiver antennasnfiguration (inter
element spacing and array arrangemenhtle need for other DF techniques for UWB
systems is because such CIRs hawery large numér of multipath componenthat
should be resolved efficientlyrherefore thesemethodscan beutilized in combination

with the framework of compressivesensing.That is true wherthe realization of real

multipath channels i® onlybec o n s i dffeatielgp B par se.

2.5 K-Means ClusteringAlgorithm

‘Gmeans clustering (Lloyd's algorithn8q]) is an iterative algorithm used for data
partitioning. It assigns observatiorpoints to one ofQclustersand givesheir centroids
The number of centroids is assumed to be knbefore the algorithrbeginsto group the

points into clusters

It is acommonly known simple statistical algorithm that works by alternating between two
steps until convergence. It starts with randomly assigning poinf® ¢usters. The

assignment step (in which each sample point is assigned to the cluster with the closest



mean), and the update step (in which it calculates the new means and sets them as

centroids). It reaches convergence when no sample point is reassitmegrevioustep.

while !(converged) I
for each point /' Number of

cluster K /
assign label Ve
end Centroid
Y
Distance objects to
for each cluster controids
compute mean Grouping based on
minimum distance
end l

end

Figure 2.11: K-Means Algorithm flovehartand pseudo code

K-Means treats each observation in the data set abjaot having a location in a two
dimensionakpace. The algorithm is implemented efficiently to work with both online and
offline clustering and data analysis routines. It makes use of data vectorization and matrix

multiplication between sparse matrices.

Algorithm 2.3: "QMeans Clustering

Inputs: 2D sample Dat&, number of cluster§) maximum number of iteratioris
Initialize: Q6 Q¢ 01,8 @ON & i
repeat
Computepoint-to-cluster distances of all observations to each centroic
Assignd ¢ ciceach observation with the closesntroid
Updated ‘Q¢ 6 | by @mputing the average in eathd & & Q
Until (nore-assignmergt aremade) ORQ 0)

Output: 0 OO'Qa i




Another alternative to achieve the goal of data clustering is the use of a member of the
ExpectatioAMaximization family of algorithms. Their implementation depends on finding

a maximum likelihood of a posteriori estimate. The application of such methods is rather
complex for the use of clustering for direction of arrival estimation. Althdughay

introduce enhancements that requires investigation.

2.6 Summary

Ultra-Wideband systems have a great role in enhancing communication links to utilize
higher data rates. The problem of minimizing multiple sources interference is achieved by
beamformingand hence the need for preciget practical direction finding appoaches.

The testing of such systems can be done using computer simulation, in which-a Saleh

Valenzuela and Rayracing models can be setup for sparse UWB channel realization.

In Compressive sensindieé number ofamples acquired much smaller thathe number

of samplesrequired © fully represent a signal. Thisadsto arelaxedsampling rate
constraints ando a minimized use of ADCs resources. Signal reconstruction from the
compressed versiaafoundby using aolution of a simplex convex optimization probtem
in many casewvith fast iterative algorithms that can dene effectively As it was said
before, the sparsest solution can bamed withd -normoptimizaion. Unfortunately, this
optimization problemis impractical under computationatonstraints The prolem is

relaxed usingx-norm

One of the Matching Pursuit family of algorithms (a modified variant of the orthogonal

one, CoSaMP) is selected to be used for sparse signal recovery. The role tf §i®8

oOT



when the sensing procedure is done in ameolundant fashion for the received signal, the
sampling rates may be reduced by factors where the informadimained in thesignal

remains intact

Conventional method for Direction Finding are wetbddished. The emerging demand of
source localization solutions in UWB has yet to be studied in subsequent work. Combining
DOA estimation procedures with some statistical methods for sparse UWB systems is

subjectof this research.

This research gives attigon to thedesignof the various blocks thanableshe DFsystem
to function and verifies the system operation via computer simulation. This report sheds

the light on these topics and highlights point where further investigation is recommended.

oy



CHAPTER THREE

METHODOLOGY

3.1 Proposed Method Description

3.1.1 Channel Impulse Response

The assumed system is proposed to operate in UWB communication systems. Impulse
Radio UWB (IRUWB) is a special case where shimterval lowpower impulses are
transmitted-ather than a modulated RF signal. The resulting signal (as well as the channel
impulse response) is assumed tsparse in nature (Section 2.2.#he channel affecting
UWB-IR transmission is considered to have sparse coefficients, so as the medilded

transmission.

The receiver for such system is required to have an impractically high sampling rate that is
a subject of hardware and design cost limitations. Other UWB systems, such as the 802.11
Wi-Fi protocol, assumes a bandwidth in terms of tens gfaimertz. According to Nyquist
sampling theory, the receiver should at least sample the received signal at twice the largest
frequency component (when dealing with incoming amplitude signals, rather than channel
impulse responses), which gives rise to the of compressive sensing in dealing with such
systems to relax the high sampling constraints (further though reducing power consumed

by the samplers of portable wireless systems).



With the aid of compressive sensing framework, the signal processingsasp&fitvB

signals are becoming increasingly feasible.
natureo signals and deal with Asparseo chant
current signal processing techniques for both narrowband areband communication

systems.

Channel Impulse Responses (CIRs) are to be synthesized using one of the two methods
described in Chapter 3. The model produced by the UWB measurements done by Intel is
utilized as the first source of CIR snapshots. The secamikhis erivedfrom a ray

tracing methodology. Each model has its set of parameters and settings; and both to be

considered as a simulation setup for system operation.

3.1.2 CompressiveSensing

Here we define two complementing processes, the compressionsiirelating the
inability of the receiver to sample at high sampling rate) and the expansion (i.e.: signal
reconstruction from sparse linear measurements). Based on the assumption that the signal
is in much higher bandwidth (typical UWB scenarios), theeineer samples at lower
sampling rate, and given the assumption that the channel is sparse, reconstruction
algorithms can be used to get a higher resolution channel impulse response for later DOA

estimation subsystem.

A method is developed to solve the lplem of CIR reconstruction from its compressed
samples; the CoSaMP algorithm (with Gaussian sampling matrix). The choice of using

CoSaMP is based on the conventional compressive sensing approach discussed in Section



3.3.2. The aim is to get a finer resadut signal (and hence a finer resolution CIR) taat

resolve DOAs within fine time resolution.

Although, the resolution of the CIR obtained would imply the success of such methods.
Special signals fApilotso ar etoexsitathd spegifict r an s mi
portions of spectrum of the channel; and by reproducing the same pilot signal at the
receiver, the problem of channel identification becomes an easier task. The ability to grasp

a clearer information about the CIR is subject to #ability of the designed pilot signal

to excite the channel bandwidth (i.e.: the bandwidth of the transmitted signal is sufficiently

wide, which is commonly the case for UWB systems).

3.1.3 Direction of Arrival Estimation

Methods of enhancing the performaéelirection finding techniques are varying between
simplifying algorithms workflows, increasing accuracy of detection for multiple adjacent
signals in lowSNR environments, reducing calculations and orders of operations and

relaxing implementation and dgsn design complexities.

Most of the conventional algorithms for DOA estimation utilize subspace based projection
analysis, although current research is emerging for using the channel impulse response
(CIR) acquired by the receiver for DOA estimation ardeiver localization. In such
systems, the receiver could use compressive sensing tools to get a finer resolution of the
CIR. Linear channel identification to obtain the CIR is currently deployed via adaptive

algorithms [37].
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Figure 3.1: p ¢ DOA Estimation for MPCs arriving symmetrically at receiver element.

When deploying conventional DF techniques; in some swen@llustrated in Figure 3.1

for the case op ¢ SIMO channel) the estimated DOA angle might be a combiadtori
(from multiple symmetric paths that overlap in time domain) which results in relatively
inaccurate estimation. By looking at the multipath components (MPCs) arriving at each
antenna, the correct DOA angle is estimated based on the CIR of each rdeent.e

This justifies the need to consider a high resolution of amplitudes and phases of the arrived

MPCs rather than using a signal (or noise) subspace projection technique.

3.1.4 Overall System Description

The block diagram in Fige 32 summarizes the proposed method for DOA estimation
under UWB channel conditions. A transmitter consisting of a conventional quadrature

modulation scheme is deployed. A Sparse UWB multipath channel realization is generated



using the concept of Section 32nd i s wused to fAcorrupto the

Gaussian noise is added so the systeR §drformance could be studied.

/
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Figure 3.02: Summarized block diagram of the proposed method.

The proposedystem contains an antenna arrag afiniformly spaced receiving elements

is capturing the signal passed through the channel. Compression is the method to simulate

the receiver incapable samplers fAlow rate sa
response is an essential stepto Ha<dA est i mat e on the angul ar
using the received signal vectoro. It is imp
utilizing adaptive algorithms (i.e.: LMS or RLS). The Expansion is the process of
6zoo4indg t he C1 RCstthat are kieped tegetheMlue to the lack of high

sampling rate ADCs.

The DOA estimation is done in the angular domain (delay bins versus estimated individual
DOAs) by associating MPC with & heeiving respec
element. A oe-dimensional search procedure is deployed to match incoming MPC

no



received by different antennas. Using these

arrival delays, a distinct DOA can be estimated as per -tétalyasis.

As a DOA detection techniquthe factors that affects system performance vary between
SNR levels, receiver element inigpacing distance, estimation errors result from detection
algorithm used, channel parameters and deployment case. Due to the presence of noise in
real life scenads and CIR extraction errors results from reconstruction algorithms,
direction estimations will become noisy and estimates tend to scatter around the actual

DOA of each incoming ray.

A majority classification method is used to get a collective final DQ#ase per arrived

ray as the main goal of this method. Clustering DOA estonaii the AngleDelay domain

[39] is a common method for reporting probable angles and the degree of confidence for
the estimated directions for later purposes (i.e.: transaitniforming). Statistical method

devised from the Kneans Algoritm are deployed for such goals.

In the following sections, a detailed procedure for each step is presentéldistrated

The first partof the channel modellings composed of the channel models used to
synthesize UWB channels andhlaiors. The methods stated in Sectioh13are carried

out to achieve a channel impulse response (CIR) that corresponds to the Intel suggested

model.

The second padf the channemodellingis theprocedure to simulai@ raytracing model
of an assumed premise that is composed of a transmitter element, a ranltgsiea

receiverelement and a barrier object. Channel nio@atracted from this method aset



in UWB scenarios. Bothmodels are used as a starting point to get channel impulse

responses that the later system will work on as inputs.

After defining a channel model, a justification of utilizing compressive sensing (CS) in the

proposed DOA estimation is presented. It isuassd that the receiver is unable to get a

fine resolution of the channel state parameters (amplitudes and phases) in presence of a

highly sampled (wideband) transmitted signal that exceeds its sampling frequency; rather

to mention that there will be 2 orare antenna/sampling elements that are required to
devise the direction of the incoming signa

power/portability design concerns).

Estimating DOAfrom CIRsis carried out in a sampley-sample basigrather than
corsidering a window of samplesf the received signahs done in conventional DF
method$. Thesamples are assumed to havaiHicienttime-domainresolution(number
of samples per delay bin) that allows for accurately resolving DOAs for distinct MIFBCs

expansion is the step accounted for producing high resolutions.

Numerical DOA estimation techniques (faskgebraic methods Figure 2.8 act an
important role in the overall systeaperation ancefficiency. Variants of ESPRIT and
RootMUSIC algorithms $ecion 24.2.2 and 2.£2.3) areselected as the main algorithms
for the purpose of estimating angles of individual samples becausieeiofsimple
implementatiorandreasonable computatiafficiency. Although, modified version (such

as UnitaryESPRIT) can beonsidered to replace tme

Apostprocessing step for the individual samp

accomplish a collective decision that can be used as a beamforming reference. A modified



clustering method (a statistical texfue described irBection 2.5 based on KMeans

algorithm is established to form a final DOA estimate.

Due to the broad number of techniques that are utilized to design this method, the number
of parameters to adjust are fairly large (highly flexible). Investigation isedaaut for

some key aspects and their performance limits are discusseddhapter4.

3.2 UWB Channel Model

3.2.1 Intel-based Model

Based orthe discussion presented on SectichZ.an extended model is proposed to
simulate the UWB channel effect with higegree of matching real channels measured
[6]. Thechannel model is based on th&/ $nodel withthe additional extensiodiscussed
below. Due to he fact that UWB channels havieh multipath propagatiorffects the
received UWB signal isomposedof multiple echoesof the transmitted signal, which

suffer individually fromdifferentpathattenuations and delays.

The used model is thene suggested by the IEEE 802.15.3a andvdaking groupsfor
UWB communication channelsin narrowband communicatiochannels, Rayleigh
random proesses are deployed to simultite fading coefficientsbutin UWB channed
fading is simulated salognormal random process][6An ExtendedSalehRValenzuela
(ESV) channelmodel is used fosimulating channel impulse response abthiring their

power delay profileRDP).



With reference to the notation listed in Sectio.2. the deployed channel model
coefficients are defined as;, N i {, wherern  is an equiprobable p. Andf  is
modeled as a legormal fading term, ag m 1 ¢ ;¢ . T Ol ‘Ajh, ,or1 j

p1™ where¢® . 1T Ol ‘AR, ,andOf 1 mQ T 'Q "7 where"Yis the
excess delay of the tap andm is the mean power of the first path of the first cluster,

andthe ray arrival timé is given by

op

The model used to generate an UWB CIR is verified to fit measurements in both LOS and
NLOS scenarios. The fitting is done via matching the values of the mean excess delay,

RMS delay, and mean path number from the measurements and the sim@]ation [

There are dur channel submodels presented by the standaet by thelEEE in the
802.15.&work-groupto fulfill measurement results, namehannel modesOM) [1, 2, 3
and4], for differentchannel characteristichey differ inline-of-sight (OS) availability,

delay and the transmitteeceiver separation ran{#0].

Figure 3.471 Al nftredci ng Model 06 shows a snapshot
impulse response (CIR) as well as its respective power delay profile generated by the
simulation of Intel model. The amplitude/power are normalized with respect to the

maximum arrive ray voltage/gatntoefficient at the RX.

nr
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3.2.2 Ray Tracing Model:

RayTracing is a system to calculate paths of electromagnetic waves and model their

propagation effects throughout an assumed premise. The appropriate system should

include the phenomena the-of-sight( L OS) I

diffraction and diffusion.

0SS

nfree

sipm c e

The graph on Figure 3.8lustrates the idea behind raacing. Although the two

phenomena in question are the LOS attenuation, and the reflection of radio waves when

they hit objects and their direction of departure (D@Banges as seen by the receiving

element compared to the line of sight DOD.
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Figure 3.3 Typical Ray Tracing Methodology.
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The set of assumptions that are based on propagation theory, and ar® @melieve a
closeto-real room CIR realization for UWB channel is detailed. The input parasneter
considered are: the room geometry (size and/or dimension), barrier locatieRXTX
separation, detection bin sif@me-domain resolution)receiver antennanierelement
spacing, frequency of operation and utilized bandwidth, and reflection coefficients of
walls/barrier/partition that depends omithmaterials The transmitter is assumed to be an
omntdi recti onal antenna whi ¢ h(2Dr mopagadh &s i n
considered in our modelRegarding the propagation environment, iagsumed to be
homogenous; i.ethereare no medium discontinuities (the wave is traveling through air).
Reflections only occur when the electromagnetic signal hilierea partition face, or the

room walls.

Figure 3.4shows the operation of a riiacing model in a room environment. The more

36

the objects to be simulated in the premises

level of tracing, and hence the sy the model results to actual scenarios. Although the
focus is on getting a sample CIR that has multiple reflections and spread over a reasonable

time scalgin terns of hundreds of nanoseconds)

n ¢
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Figure 3.4 Example of Ray Tracing Model Operation.

When the ray hits one of the receiver antefifd)e | ement s (i .e.: sensed)
and total path |l ength (which is | ater tran:t
recorded in the corresponding delay {iihve CIR is assumed to be as a disetime vector
guantity, each amplitude/phase sample correspond to a delayThim)DOA of that

individual rayis saved for later comparisons.

The fact that two or more rays may arrive at the same bin has been considered, and a
separate DOA is noted feach incoming rayThe raysarrive at the same delay bin are
added in terms of power and averaged in terms of DOAs. The highest power ray will
dominate the DOA estimation at that delay bin, because the estimates will be weighted by

their respective powers

Outputs of the Rayracing model are CIRs (by the number of the receiver antenna

elements), DOAs of each ray, path lengths of different rays and paths delays. To compute

pn



the CIR per antenna element using the computed received amplitudes, phases of each
sample are obtained from path delays and incorporated in a conwglleed noisdree
CIR. A simulation of a Gaussian channel noise is added to thefneéssamples to result

in a CIR of the current scenario.

By varying the location of TX and RX as well #s partition properties, the channel
realization (like the onesampledin Figure 357 A Ralyr a c i n g) olainddeis o
consequently changed, thus achieving random simulated snaps of different CIRs. By
controlling the parameters above and the presemrwar(gtry) of the barrier, availability of

a LOS component is a matter of chance (random geometiocagon of the transmitter

and the receiver).

PDP obtained by Ray-Tracing Model

CIR obtained by Ray-Tracing Model
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Figure 3.5 SamplePDPs ancCIRs obtained frondifferent channel models



3.3 CompressiveSensing

3.3.1 Compressionand Expansion

In Compressive sensing framework, compression of CIRs is done through multiplying the
presumablysparse vector (channel realization) by a Gaussian Random sensing kernel. This
operation simulates the receiver inability of detecting fine wdemi CIRs with the
presence of the wideband signal sensed by its antenna elements (zooming out the delay
axis). Sensing noise is the ertbatresults from the imperfections of the receive elements

structure, and assumed to be Gaussian with i.i.d samples

The compression matrix used is a normalized Gaussian matrix that has orthogonal columns.
Other matrices should be conditioned by satisfying the RIP constraint. Possible choices are
random matrices that have entries chosen according tGaussian, Berndli or Partial

Fourier distribution. The RIP property summarized mathematically as:

P &€ 8 -8 P 1 S8 og,

Signal Reconstiction problem (designated WyS Expansionprocess in Figure 3)@s

solved using compressive sensfragnework. 1 recover (i.e.zoom in the delay axishe

sparse CIR with an acceptable degree of error (MSE level), a linear programming algorithm
is used. Matching Pursuit (MP) algorithm variants are investigated for this purpose. The
performance of theeconstruction step is subject to the choiceenisgng matrix structure

in the CS Compressigrstep, as well as the desired level of MSE eartdt compression
ratios A more reliableimplementation of the MP concef$ection 23.3) is achieved by

Compreswe Sampling Matching Pursuit (CoSaMP) algoritfBection 23.4).
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Figure 3.6: CS compression arteikpansion for CIR realization.

3.3.2 Minimum Square Error Comparison of CS Algorithms

How to choose the best algorithm for UWB sparse channel is an isst@plexity versus
performance and design. An M@iased criterion for comparison between MP algorithms
is deployed. The performance depends on the noise level as well as the channel simulation

parameter. The MSE error is calculated as:

0°YO -B Q N Q Q o
where

0 k length of the CIRrectorii no. of del ay binso.

Q k Actual CIR before compressing.

Q k Recovered CIR after expansion.

The selection of the CoSaMP algorithm is done based on having the minimum MSE error
in the expansion step compared to the actual CIR produced by the Intel afidaRiag
model. The setup thatlidates thiproceduras presented in the results part abtthesis

(Section4.3).
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3.4 Direction Finding

3.4.1 Algorithms Implementation

Given the received signal vectors ¢f them, each corresposdb a different antenna
element), the algorithms MRIC, ESPRIT and Rod?lUSIC work by obtaining an
estimate for the recedd signal correlation matri# . The accuracy of such methods
depends on the window size (the number of samples captured to es|tirmaln other
words, DOA estimation resolution is a function of tha size and the window length
(number of samplesaptured. That isthe more mmberof samples, théetteris the

estimate of to ensemble the true covariance matrix.

Eigenvalue decomposition is an essential step into projecting the signal eigenvalues in the
signal/noise spaces. Given it h e ssp agapedtit he noi s efthesigna paceo,
eigenvalueg MUSIC, ESPRIT and RoaWlUSIC algorithms do calculate a DOA estimate.

The difference is the first algorithm AMUSI
DOAs of the incoming signals, whileSPRIT uses a Totdleast Squares solution to

numerically estimate the angles of arrivals. The third algorithm looks at the problem as a

polynomial roots solution.

The number of incoming ray®) is estimated using an information theoretic detection
method. NamelyAkaike Information Criterion (AIC) and Minimum Description Length
(MDL) (Section 24.3) are implemented to resolve this question. Although both measures
are similar and straightforwardn efficient eigenvalue decomposition does affects their

performance. Thu8 is given by:
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when using the MDL metric.

Figure 37 summarizes the steps for MUSIC algorithm. For the analytical DOA estimation
methods (ESPRITandRemUS 1 C) t hereds no need to calcul

step, theangle of arrivals is given by Sectio®2 as
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Figure 3.7. MUSIC algorithm flowchart.
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3.4.2 Angle-Delay Domain Clustering

The technique of obtaining a cumulative DOA estimate is done through clustering
individually estimated DOAs in the AnglBelay domain. Individuallyestimated DOAs

are the results of running one of the conventional algorithms for finding the AOA on a bin
by-bin basis. Estimates of DOAs are then viewed as adimensional space; angles axis
and their respective delay bins on the other axis. The pafitist space are shown to be

scattered and condensed around the actual r a

Apostpr ocessing step for clustering fAgroupingo
K-means algorithmSection 2.9. A modified technique is used when clustering thie{s

in the angledelay domain. The procedure of representing different DOA estimates with

different number of points is done as follows: the estimates obtained using low power are
representetly fewer points, and vice versa (i.e.: the more the receigeedpthe more the

confidence a the estimatethat arebased on them).

This method leads to treating noisy received bins as noisy DOA estimates, so that actual
received rays are favored in the clustering step. The way of judging whether a favored
estimatee s reliable or not depends on the defini
several ways of defining that, some of them are: by averaging all the powers across all the
receiver antennas in each bin, finding the weighted product sum, selecting theumaxi

power to represent that bin power, using the vaegaor the sum of square roatg . sum

of the received voltage

pcC



The clustering step is supposed to find centroids (the average cluster angle) of the DOA
clusters which should be compared againstattual ray AOA. The performance of this
process is subject to the performance of the estimation algoritedh(us.,ESPRIT or
RootMUSIC). Other factors are based on the channel structures (density and geometry of
reflectors) and CIR resolution captdrat the receiver. The choice of which method to use

on treating high powers is subject to more investigation and analysis.

3.4.3 DOA Estimation Metrics

The most lookedor features of a Directiefinding algorithm is having high accuracy and
resolution whenplied using small aperture arrays (small antenna footprint) and yet using
the minimal number ofantennaelements, and performing in lowest possible SNR

environment, though having a reasonable cost/performance implementation.

The root mean square is usexdaametric to compare the performance of DF algorithms.
The RMS Error (RMSE) in DOA estimation is computed as the square root of the average

squared errors over repeated DOA estimation trials. It is defined by

YO YO -B -B  — — o

where,

“Yk Number of repeated DOA estimation trails over which the error is averaged,

pPT



0 k Number of incident rays available at the receiver elements (estimated using AIC or

MDL),

— k The actual angle of arrival of thigh ray as generated in teenulation model,

— k The estimated angle of arrival of thth ray as estimated by th&#ustering DOA in

the angledelay domain

py



CHAPTER FOUR

RESULTS

4.1 Review

In this chapter, a review of the simulation setup is provided. A set of functional lidocks
detailed in order to illustrate the various steps (Figure 4.1) that represent the verification of
the DOA estimation method and the parameters considered in validating its performance

are described.

Channel Model Channel
Parameters Simulation
Time of Arrival (TOA) Power Delay Profile (PDP) Angle of Arrival
(for each ray) with delay information (AOA) of each Ray
\I |/ T
Complete Channel
Impulse Response Compare 1o
(CIR) check if it is
valid
L High Sampling Rates
Compressive
Sensing (CS)
Direction of Arrival (DOA)
Estimation using
Low Sampling Rates Angle-Delay Domain
Clustering
Conventional
Direction Finding hd
(DF)
% Extracted
I N DOA
7

Figure 4.1: Block diagram of the procedure.
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In the subsequent sectionke different parts and the overall system performance of the
proposed DOA estimation technique is listed and discussed. Thir@gee described in
chapter 3 is a way of estimating the DOA of an incoming signal in an UWB trasismi
environment. Performance measumesults and graphs that illustratee different steps

are listed in the succeeding sections. The tool used for testing and verifying the direction

finding systenis- AO1 A A

The core of the prdescribed techniquavolves the algorithms/techniques: UWB Channel
generation (Intel model and Rayacing model), CIR Compressing, CIR Expansion (with
CoSaMP reconstruction), DOA estimation (ESPRIT or RAUISIC), AngleDelay

Domain ClusteringK-Means), Performance metrifdSE).

There are two channel models deployed to test such sceridr@fayTracing channel
model and the model derived from the measurements done by Intel are simulated to obtain

CIRs of different channel realizations.

The later discussion involves thase of compressive sensing in dealing with the high
bandwidth transmission. The receiver is assumeete incapable of samplingt high
sampling rates dictated by tbhandwidth of the transmitted signdlhe efficiency of such

method is debated and its ulis are expressed.

Conventional DOA estimation numerical methods (ESPRIT/RUJEIC) are utilized in
a binby-bin basis to find intermediate DOA estimates in each deilayto form a
constellation of points in the AnglBelay space. The following sectiodgal with the

problem of clustering DOA estimates in the Anrglelay domain.



The final DOA measures are assumed to be the centroids a@btieentratedistinct
estimates. Readings from the simulations are compared to the actual values of ray DOAs

statedby the models for verification. Comparisons are facilitated using the RMSE metric.

4.2 UWB Channel Generation

4.2.1 Ray-Tracing Model

Simulations to get different CIRs to mimic real life UWB channels are done using the basic
knowledge of radio frequengyopagation phenomenoihe methodology described in
Section 32.2 dictates that a realization of a power delay profile (PDP) along with
individual rays DOAs would give sufficient information to deal with the DOA estimation

problem.

A scenario where there are 4 receiving antenna elements is used to give further explanation
of the system operation. Figure 4sBows a snapshot of the tracing operation of this

scenariovhere a ray (purple line) is registered to hit the first and the #mtennas

The setupparameters aras follows: frequency of operation is set to 3 GHz, TX sweep
angle (scanning range) is set to 360 degrees, maximum allowed number of reflections is
p @eflection per ray, room dimensions gratPd , barrier is set tde relatively at the
middle of the room and inclined towards TX side, minimum hit/miss detection angle is set
to ber® degrees, bin size {5 T § reflection coefficient is same across the room boarders
and the barrier and is set & vand for purpos of illustration the antenna interspacing

distance is set tg T &
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Figure 4.2 RayTracing Model operatioanapshat

The resulting PDPs of each receiving antenna of the scetefiieed in Figue 4.2with

respect to the timdomain is plotted in Figure 4.3he power levels are normalized and

scaled tg TA "with respect to the highest received power across the 4 antennas (the LOS

component), the signal power is septal "above the noise leveThe length of the CIR

in nsis set tox mtatt as the powersf laterreceivedraystends to fade out due to multiple

consecutive reflection@he lengthier pathraveled by the EM wave the more its power

drops due to free space lasBjultipath Components (MPCs) are shown to bespand

have a nature of arriving times at the receiver antenna elements as clusters.



Figure 4.3 CIR obtained from Rayracing simulation with the aforementioned parameters.

Each ray hits one of the receiving elemesg&sjeralvariables associated with that ray are
recorded: the sweep angle in which it has been recorded to hit an RX antenna, the path
length traveled through multiple reflections, whether two or more rays arrive at the same
time or not (and their number), and rhosnveniently, their DOA resulted from the last

reflectorThese DOAGs are used for comparison with

The graph on Figure 4ghows the angle of arrival (AOA) generated by the simulation per
ray for the same previously described scenariohmoup of ragthat falls more or less

in the same delay bin (slightly before or after) are shown to have similar AOA (although
not exactly equal). The fact that RX interelement distance is small compared to the actual
path the ray travels accounts foe tinain idea of direction detection with multiple antennas.

It is to be mentioned that the maximum delay shown is reduagatér ifor convenience.


























































































