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The behavior of a process is governed by several quality characteristics that may

be classified as characteristics of interest and ancillary characteristics. In most

of the real processes there exists relationships among these quality characteris-

tics/variables. These relationships are quantified by models termed as profiles

that may be linear or non-linear. In this study, we have focused on simple linear

profiles that are described by three parameters namely slope, intercept and error

variance. Control charts play a key role to monitor any possible variations in the

parameters of interest. In this dissertation, we have investigated the performance

of the existing linear profile charts in Phase I and Phase II under some useful vari-

ants of sampling schemes. These include a variety of ranked set sampling schemes

and modified successive sampling schemes. Moreover, we have covered joint mon-

itoring approaches to control location and scale parameters under parametric and
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non-parametric setups.

We have investigated the performance of our newly proposed charts using dif-

ferent measures including probability to signal and run length properties. We have

compared our results with the well-known existing methodologies under different

settings of design parameters. The comparative analysis revealed that our study

proposals outshine the existing methods under different amounts of shifts in the

process parameters. In addition, we have used practical datasets from industrial

and electrical engineering and implemented our proposed techniques to show their

application in real processes.
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ملخص الرسالة

:الاسم طاهر محمود  

(linear profile)تحسين مراقبة معالم المظهر الخطي     عنوان الرسالة:

الأحصاء التطبيقي :التخصص الرئيسي

2017أبريل  :تاريخ الدرجة

. في ساعدةلي خصائص مطلوبة و خصائص مإسلوك العملية تحدد بواسطة العديد من خصائص الجودة و التي يمكن تصنيفها 

ن طريق نماذج ع تحديدهايتم  اتو المتغيرات. هذه العلاقأبين هذه الخصائص  تكمن العديد من العمليات الواقعية هناك علاقة

 الخطية البسيطةمظاهرو غير خطية. في هذه الدراسة ركزنا على الأن تكون خطية أمكن يو التي  (profile)المظهرترمز لها ب

(linear profiles)  مخططات التحكم تلعب دوراَ مهما لمراقبة  التي يتم وصفها بثلاث معالم هي: الميل, القاطع و خطأ التباين.و

الخطية في المرحلة الاولى و المرحلة مظهر في هذه الاطروحة, ناقشنا اداء مخططات ال أي أنحرافات في المعالم المستهدفة.

خذت من معاينة المجموعة الرتبية و تشمل مجموعة المخططات المتنوعة لعينات أ   هذهالثانية تحت بعض طرق المعاينة المفيدة. 

 المستوى ةومعلم كاندارة معلمة الملإالمراقبة المشتركة  طريقةعلاوة على ذلك، قمنا بتغطية  .من مخطط المعاينة المتتابعة المعدلة

 المعلمية و اللا معلمية. الظروفتحت 

شارة و طول الشغل. قارنا نتائجنا مع نتائج حتمال الإإمختلفة تتضمن خصائص  معاييرستخدم إيدة بداء مخططتاتنا الجدأناقشنا 

ن دراستنا تتفوق على الطرق الموجودة تحت قيم مختلفة أظهرت أ. المقارنة العلميةعدادات مختلفة لمعالم إالطرق الموجودة تحت 

نات عملية من الصناعة و الهندسة الكهربائية و تم تطبيق تقنياتنا المقترحة ستخدمنا بياإنحرافات فى معالم العملية. بالأضافة, للإ

 .ظهار تطبيقاتها فى العمليات الحقيقيةلإ



CHAPTER 1

INTRODUCTION

This chapter introduces statistical process control (SPC) and more specifi-

cally control charts such as memory less chart (Shewhart) and memory type

chart (EWMA). The structures of simple linear profiles and its special case

(joint/simultaneous monitoring of mean and variability) are also discussed in the

following sections. Finally, the outlines of the thesis are also reported.

1.1 Statistical process control

World is a global village, where the super markets are filled with the variety of

products or services. In our days, customers do not only purchase a product to

fulfill their need but also consider the quality and cost efficiency of the prod-

uct/service. Quality, in manufacturing perspective, is a measure of excellence or

a state of being free from defects, deficiencies and significant variation. Generally,

there are two causes of variation that affect the performance of the process; chance

cause or natural cause of variation that cannot be properly eliminated unless there

1



is major change in the equipment or material used in the process and other is the

special or assignable cause of variation that can be divided further in two cate-

gories namely transient and persistent variations. These causes of variation can

be precisely identified, eliminated or reduced by investing the problem and finding

the causes results in process improvement. Statistical process control (SPC), a

set of the well-known tool kits, is used to monitor the variations in a process.

SPC tool-kit contains seven magnificent tools that are used to differentiate the

aforementioned variations. These tools are known as histogram, box-plot, pareto

chart, check sheet, defect concentration diagram, scatter plot and control charts

(for brief discussion one may see [1–3]).

1.1.1 Control charts

Control chart, one of the major tool of SPC, is commonly applied to monitor

the performance of process with respect to time. In control chart, there are two

decision lines named as lower control limit (LCL) and upper control limit (UCL),

which allows us to decide whether the process is working under in-control (IC)

or out-of-control (OOC) situation. If the control chart identifies that process is

out-of-control, there is a need to diagnose the cause behind this abrupt change in

the process. Generally, Control charts are worked into two main stages named as

retrospective stage (Phase I) and prospective stage (Phase II). The objective of

the retrospective analysis is to find the optimal choice of process parameters and

control limits for the monitoring phase (Phase II). In Phase I analysis historical

2



data is used to estimate the in-control state of the process while Phase II depends

on present data to analyze current state of the process. Usually, in retrospective

stage, practitioner expect some source of variations in the process and a higher

probability of their detection, whereas monitoring stage is used for quick detection

of changes in the process parameters. Further, Control charts are divided into

two main classes: memory less control charts (e.g. Shewhart) and memory type

(EWMA) control charts which are briefly discussed in the following subsections.

Shewhart control chart

In the earlier of 19th century, [4] proposed a memory less control chart named

as Shewhart control chart which is used to detect abrupt change in the process

parameters (location or/and scale). The Shewhart chart is dependent on the

current sample information, thats why its effective to detect the large or transient

shifts in the process. The structure of Shewhart control chart consist of two

decision lines known as upper control limit (UCL), lower control limit (LCL) and

a central limit (CL). The aforementioned limits for a statistic (θ) are defined as:

UCL = µ0 + k1 (σ0) ; CL = µ0; LCL = µ0 − k1 (σ0)

where, θ ∼ N (µ0, σ
2
0) and the limits of the Shewhart chart depends on charting

constant (k1) which is selected against the fixed IC average run length (ARL0).

Generally, when the distribution of the statistic follows standard normal distribu-

tion then k1 = 3 is used to gain ARL0 = 370 and hence the limits are known as
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3σ limits. Further, the Shewhart chart declares an OOC signal when (θ) plotted

outside of the band (i.e. LCL to UCL) otherwise chart declares IC state of the

process.

As mentioned above that Shewhart charts are not efficient for the detection of

small and moderate shifts. So, there have been numerous attempts to patch this

deficiency. One attempt is the application of sensitizing rules discussed by [5, 6]

and another is the use of variable sampling interval (VSI) control charts in place

of fixed sampling interval (FSI) (cf. [7–9]).

Exponentially weighted moving average control chart

The exponentially weighted moving average (EWMA) control chart was intro-

duced by [10], which is also used to monitor the small or moderate shifts in the

process parameters. The EWMA chart is a memory type structure because it

utilizes the past information along current information. The EWMA statistic for

a statistic (θ) is defined as:

Zi = λθi + (1− λ)Zi−1

where i is the sample number and λ is the constant which have a range between

zero and one (i.e. 0 < λ ≤ 1). The starting value of aforementioned EWMA

statistic is taken equal to zero (i.e. Z1 = µ0). The time varying limits of the

EWMA charts are given as:

UCLi = µ0 + k2σ0

√
λ

2−λ(1− (1− λ))2i

CL = µ0
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LCLi = µ0 − k2σ0

√
λ

2−λ(1− (1− λ))2i

The EWMA chart have two parameters λ and k3 . λ determines the decline of

weights while k2 determines the width of control limits. These two parameters

are carefully chosen against fixed IC average run length (ARL0) to determine

the performance of EWMA chart. On large values of i ,the aforementioned time

varying limits converges to constant limits which are given as:

UCL = µ0 + k2σ0

√
λ

2− λ
; CL = µ0; LCL = µ0 − k2σ0

√
λ

2− λ

Hence, the term (1− (1− λ))2i tends to 1 if the sample tends to ∞. Some modi-

fications on EWMA charts may see in [11–17]

1.2 Linear profiling

Usually, control charts are designed to monitor single quality characteristic (e.g.

qualitative or quantitative) of a process but in many manufacturing processes,

quality characteristics have a relationship with other auxiliary variable(s). For

example, in semiconductor manufacturing, flow of gasses is dependent on pres-

sure of mass flow controller and in electrical engineering, charge of a capacitor is

dependent on the capacitance level. When such quality characteristic is linearly

associated with another explanatory variable then it is termed as simple linear

profile and the monitoring of simple linear profile parameters (i.e. slope, intercept

and error variance) is known as liner profiling.

5



Assume that for the jth random sample collected over time, we have the paired

observation (Yij, Xi); i = 1, 2, . . . . . . .., n , then simple linear profile model used

in linear profiling is defined as:

Yij = β0 + β1Xi + εij ; j = 1, 2, 3, . . . . . . ..,m; (1.1)

where the terms appearing in model 1.1 are β0 (Intercept), β1 (Slope) and ε is

the error term. We have also assumed that εij ∼ N (µ, σ2). The least square

estimates of the parameters are given by the following expressions:

β̂1 =

∑n
i=1

∑m
j=1(X(i) − X̄)Yij∑n

i=1

∑m
j=1 (X(i) − X̄)

2 =
Sxy
Sxx

β̂0 = Ȳ − β̂1X̄

where Ȳ =
∑n
i=1

∑m
j=1 Yij

nm
, X̄ =

∑n
i=1Xi
n

and the conditional mean, variance and

covariance of β̂0, β̂1 are defined as:

E
[
β̂0|X

]
= β0; E

[
β̂1|X

]
= β1

var
[
β̂0|X

]
= σ2

[
1

nm
+

X̄2

Sxx

]
; var

[
β̂1|X

]
=
σ2

Sxx
; cov

[
β̂0, β̂1|X

]
= −σ

2 X̄

Sxx

Mean square error is an unbiased estimator of the variance of error term σ2
e , which

is defined as:

MSE =

∑n
i=1

∑m
j=1 e

2
ij

nm− 2
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where eij = yij − ŷij is the ith residual of jth sample and ŷij is the ith fitted

regression line in the jth sample. It is to be mentioned that model 1.1 may be

transformed using the transformation Xi
∗ = Xi − X̄ to gain the zero covariance

of b̂0 and b̂1. After transforming Xi, we obtain a modified form (derived later in

Section A.1) of the aforementioned model 1.1 named as transformed model which

is defined as:

Yij = (B0) + (B1)Xi
∗ + εij (1.2)

where B0 = β0 + β1X̄ + (βσ) X̄ and B1 = (β1 + βσ)Xi
∗. Here, shift is defined

in σ units with reference to slope of model 1.1 (i.e.βσ). One may define the

expressions of means, variances and covariance of b̂0 and b̂1. It is to be noted that

the covariance of b̂0 and b̂1 will be zero as the average of Xi
∗ is zero. It is to be

mentioned that the estimated intercept and slope of transformed model will be

denoted by b̂0 and b̂1 respectively.

In literature, many researchers addressed several studies on linear profiling

(cf. [18–20]) but a popular proposal named as Shewhart−3 chart was introduced

by [21]. In Shewhart − 3 chart, individual chart for each parameter (i.e. slope,

intercept and error variance) are combined to evaluate the joint/simultaneous

monitoring of the process. The structure of the individual chart for each parameter

are define below:

for intercept :


UCL = B0 + Lα/2

√
σ2
[

1
nm

]
LCL = B0 − Lα/2

√
σ2
[

1
nm

]

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for slope :


UCL = B1 + Lα/2

√
σ2

Sxx

LCL = B1 − Lα/2
√

σ2

Sxx



for error variance :


UCL = σ2

n−2
+ χ2

α
2
,nm−2

LCL = σ2

n−2
− χ2

1−α
2
,nm−2


where Lα/2 is the α/2th quantile of students t distribution whereas, χ2

α/2 and

χ2
1−(α/2) are the upper and lower α/2th quantiles of chi-square distribution having

nm-2 degree of freedom. The level of significance (α) is obtained by the definition

of overall level of significance (i.e. αoverall = 1− (1− α)3).

As discussed above that Shewhart charts are only useful for the detection

of large shifts in process parameters while memory type structure (EWMA) are

suitable to detect small or moderate shifts in process parameters. Recently, [22]

proposed a memory type structure for the joint monitoring of linear profile pa-

rameters named as EWMA-3 control chart. The structure of the EWMA-3 chart

is defined as:

EWMAIj = λ
(
b̂0

)
+ (1− λ)EWMAI[j−1]

EWMASj = λ
(
b̂1

)
+ (1− λ)EWMAS[j−1]

EWMAEj = max
{
λ ln (MSE) + (1− λ)EWMAE[j−1], ln

(
σ2

0

)}
where EWMAIj is the jth EWMA statistic for intercept; EWMASj and

EWMAEj are the jth EWMA statistics for slope and error variance respectively;λ

is the smoothing parameter that ranges between zero and one (i.e. 0 < λ ≤ 1).
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The mean and variance of each of the three EWMA statistic are given as:

E (EWMAIj) = B0; E (EWMASj) = B1; E (EWMAEj) = ln
(
σ2
)

V ar (EWMAIj) =
λ

2− λ
σ2

[
1

nm

]
; V ar (EWMASj) =

λ

2− λ
σ2

Sxx

V ar (EWMAEj) = V ar (ln (MSE)) ∼=
2

n− 2
+

2

(n− 2)2 +
4

3(n− 2)3−
16

15(n− 2)5

Based on the above mentioned properties of the EWMA statistics, the asymptotic

limits for each EWMA plotting statistic are given as:

for EWMAIj :


UCLI = B0 + LI

√
λ

2−λσ
2
[

1
nm

]
LCLI = B0 − LI

√
λ

2−λσ
2
[

1
nm

]


for EWMASj :


UCLS = B1 + LS

√
λ

2−λ
σ2

Sxx

LCLS = B1 − LS
√

λ
2−λ

σ2

Sxx


for EWMAEj :

{
UCLE = ln

(
σ2
)

+ LE

√
λ

2− λ
V ar (ln (MSE))

}

where LI , LI and LE , are the control limits coefficients for intercept, slope and

standard deviation of error term, which are carefully choosen against the prespec-

ified IC average run length. In this dissertation, we have designed several studies

to enhanced the performance of aforementioned methods.
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1.2.1 Special case of simple linear profiles

In simple linear profiles, control charts are used to monitor the study variable

which is linearly associated with another explanatory variable. In simple linear

profiles, three parameters are considered for the monitoring purpose such as slope,

intercept and error variance. Slope is an important parameter which provides the

estimate of average rate of change between study and explanatory variable. If the

slope of the model is zero (i.e. β1 = 0 ) then the effect of explanatory variable

is eliminated from the process and the IC simple linear profile model (given in

equation (1.1)) is defined as:

Yij = β0 + εij (1.3)

where β0 is the arithmetic mean of Y while the variance of error term (σ2) is the

simple variance of Y . In literature,Ȳ control chart is a famous technique used

for the monitoring of process mean and S2 chart is a well-known method for the

monitoring of process variability (σ2).

Joint monitoring of process mean and variability

Usually, control charts are used to monitor a single process parameter such as

location or scale. Before monitoring location parameter, it is important to make

sure that the process scale or dispersion is in-control (IC). Variation in scale

parameter may affect the performance of specific control chat in two ways; an

increase in scale parameter may cause increase in False Alarm Rate (FAR) while

reduction in scale parameter may cause decrease in the probability of detecting

10



a shift. So, it seems more appealing to monitor both parameters together. For

example, in the manufacturing process of circuit, a shift may be observed in both

mean and variance of the thickness of the solder paste printed onto circuit boards

due to improper fixation of the stencil.

In literature, two well-known terms named joint monitoring and simultane-

ous monitoring are used for the monitoring of mean and dispersion parameters

together. It is noted that the joint/simultaneous monitoring of mean and variabil-

ity may say a special case of simple linear profiles when the slope of the simple

linear profile model is zero (i.e. β1 = 0). For the joint/simultaneous monitor-

ing of mean and variability several studies are designed by [23–25] but the most

popular proposals based on maximum (Max) and sum of square (SS) statistics

are proposed by [12,26]. These popular charts include EWMA-Max, EWMA-SS,

SS-EWMA and Max-EWMA charts which are briefly discussed in chapter 4.

1.3 Brief literature review

In this section, we provide a comprehensive literature on simple linear profiles and

the existing joint monitoring methods.

1.3.1 Simple linear profiles

In many production processes, variable of interest can be modeled by a relation

between a predicted variable and one or more predictor variables. The functional

relationship among these variables is referred as profile and is addressed by dif-

11



ferent authors with fixed and random explanatory variables. For monitoring of

simple linear profiles that is related to the control charting of regression adjusted

variables was proposed by [18,27–30]. [31] developed EWMA/R and Hotelings T 2

charts to monitor the parameters of simple linear profiles. [22] proposed simulta-

neous scheme named as EWMA-3 for the monitoring of intercept, slope and error

variance while [32] examined the quality characteristics of linear profile through

multivariate cumulative sum control chart.

In simple linear profiles, effects of non-normal environments are studied by [33]

and a control chart based on change point model was discussed by [34]. However,

a comparative study between Shewhart methods (cf. [22] and [35]) was discussed

by [36], whereas χ2 and integrated MCUSUM control charts are proposed by [37]

for the monitoring of linear profile parameters. A comprehensive overview on

linear profiles was given by [38] and a control chart for the monitoring of recursive

residuals was proposed by [39]. Control chart based on likelihood ratio in linear

profiles was discussed by [40]. Moreover, [41] proposed a study based on CUSUM

approach and a study related to small sample size (one or two) in linear profiles was

discussed by [42]. [20] proposed a Phase II study about linear profile parameters

under random effect model.

In linear profiles monitoring, there is a limited literature available regarding

Phase I analysis. To mention a few of these we have: [43] proposed two multivari-

ate control charts for the stability of linear calibration curves; [44] discussed two

Phase I control charts for multilevel ion chromatography linear calibrations; [19]

12



proposed a Phase I study based on F-test in the simple linear profiles; The retro-

spective studies based on change point model was discussed by [45,46]; for mixed

model in linear profiles was discussed by [47], whereas Problem of within auto-

correlation in the model of [47] was eliminated by [48]; [49] discussed the effect

of Phase I estimation for the linear profile parameters (i.e. intercept, slope and

error variance) under EWMA-3 structure proposed by [22].

The aforementioned studies have used the idea of linear profiling by using

simple random sampling (SRS). In this study, we intend to use different ranked

set strategies and modified succesive sampling to enhance the detection ability of

control charts used to monitor linear profile parameters.

1.3.2 Joint monitoring methods

In the literature, two well-known terms named joint monitoring and simultaneous

monitoring are used for the monitoring of location and dispersion parameters

together. Joint monitoring is a term that alludes to monitoring both parameters

through a single plotting statistic plotted against a pair of control limits. In

simultaneous monitoring, parameters are monitored through separate plotting

statistics plotted against distinct pair of control limits.

There is a variety of literature addressing simultaneous/joint monitoring of

process location and dispersion parameters. [23] initiated simultaneous monitoring

and used two independent plotting statistics on the same chart. [50] used an

EWMA based simultaneous scheme using absolute value of standardize sample
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mean. [24] also discussed simultaneous monitoring of mean and variance under

EWMA structure. Keeping in view some limitations of simultaneous monitoring

(such as it requires independence of plotting statistics, interpretation of an out-

of-control (OOC) signal is not straight forward), [51] proposed semicircle control

chart based on the root mean square statistic which is further improved in the form

of Max chart by [52]. [53] also designed a simultaneous scheme for variable control

chart. [25] proposed a maximum generally weighted moving average (MaxGWMA)

control chart for the simultaneous monitoring of process parameters.

For the joint monitoring of location and scale parameters, [12, 26] used some

memory-type charts based on single statistic. These charts are based on the

maximum (Max) and sum of square (SS) statistics and include EWMA-Max,

EWMA-SS, SS-EWMA and Max-EWMA charts. Later, some other approaches

were explored that include: a Max-CUSUM chart [54], an EWMA-SC chart [14],

a non-central chi-square chart for joint monitoring [55], an SS-CUSUM chart [56],

a likelihood ratio based approach [57], a modified Max-EWMA chart using range

statistic instead of variance [13], a Max-DEWMA chart [58, 59], an SS-DEWMA

approach [60], a change point approach [61], non-parametric approaches [62–66],

a joint Shewhart approach for finite horizons [67]. In addition, [68, 69] and the

references therein may be seen for an overview in this direction.
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1.4 Objectives of the thesis

Simple linear profiles play a key role in many manufacturing processes used for

the monitoring of study variable which is linearly related with another ancillary

variable. In this dissertation, we plan to invertigate and further enhance the

performance of existing control charts related to the monitoring of linear profile

parameters and its special cases. The specific objectives of our study are listed

below.

(i) Proposing Phase I and Phase II studies for the monitoring of simple linear

profiles under several ranked set sampling schemes.

(ii) Enhancing the performance of Shewhart structure using modified successive

sampling scheme for the monitoring of linear profile parameters.

(iii) Designing new joint monitoring scheme under EWMA structure for linear

profile parameters and its special case under progressive setup.

(iv) Investigating non-parametric control charting setup for the joint monitoring

of process parameters (location and dispersion).

1.5 Outline of the thesis

The investigation of linear profile parameters in retrospective stage (Phase I) and

prospective stage (Phase II) has been done only under simple random sampling

(SRS). In chapter 2, we have examined both Phases for the monitoring of linear
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profiles parameters (i.e. intercept, slope and variance of error term) under dif-

ferent ranked set strategies such as ranked set sampling (RSS), median ranked

set sampling (MRSS), extreme ranked set sampling (ERSS), double ranked set

sampling (DRSS), double median ranked set sampling (DMRSS) and double ex-

treme ranked set sampling (DERSS). The comparative study on the performance

of existing and our proposed schemes has been discussed in terms of probability

to signal (PTS) for Phase I and in terms of average run length (ARL) for Phase

II. Moreover, an illustrative example from electrical engineering is also used to

highlight the importance of the proposed method in real applications.

The modified successive sampling (MSS) is a cost-effective scheme as compared

to simple random sampling (SRS), also useful when data consist of missing obser-

vations. Chapter 3 offers Shewhart− 3 control chart under MSS to enhanced the

monitoring of linear profile parameters. Moreover, the special cases of the linear

profiling are also discussed in this chapter. For the performance analysis, we have

used an extensive comparative study which is expressed in form of run length

properties. The illustrative examples with real-life data sets are also included to

highlight the importance of the proposed charts.

Most of the recent literature on simple liner profiles was discussed under simul-

taneous structure for the monitoring of linear profile parmeters such as intercept,

slope and error variance. In simulteneous methods each parameter have individual

chart which consist of respective pair of limits such as for the simultaneous moni-

toring of linear profile parameters three individual charts based on each parameter
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are designed in a mechanism to obtain overall performance of the process. In such

cases, if a process is designed to target overall ARL0 = 200 then each individual

chart have to bear ARL0 = 584.5 which is a tedious mechanism and impractical.

In Chapter 4, we have designed an alternative approach (joint monitoring) to the

simultaneous monitoring of linear profile parameters. Moreover, special case of

simple linear profiles under progressive setup (which is a special case of EWMA

chart) is also discussed in this study. The study has provided an extensive com-

parison between the proposed charts and some existing schemes in terms of run

length properties. Further, real-life application about electrical engineering is also

included to highlight the importance of the proposed methods.

Process monitoring is a continuous process and it needs careful attention for

an improved quality of output. Location and dispersion parameters play a vital

role in regulating every process and it requires a timely detection of any change in

their stable behaviors. Nowadays, practitioners prefer a single charting setup that

offers better ability to detect joint shifts in the process parameters. In Chapter

5, we have designed a comprehensive study based on non-parametric charting

structures for the joint monitoring of location and dispersion parameters. The

study has provided an extensive comparison about proposed charts under different

environments and the performance analysis is discussed in terms of run length

properties. Real-life application about strikes in US manufacturing industries is

also included to highlight the importance of the proposed methods.
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CHAPTER 2

LINEAR PROFILE

MONITORING UNDER

RANKED SET SCHEMES

In statistical process control (SPC), control chart is a dynamic tool which works

under two different phases (Phase I or Phase II). Retrospective stage (Phase I) is

mainly used to estimate the unknown parameters of the process while prospective

stage (Phase II) focuses on the monitoring of process based on the estimated

control limits from Phase I. For more discussion on Phase I and Phase II, see

[70–72]).

The investigation of linear profile parameters in these Phases has been done

only under simple random sampling [19, 22]. In this chapter, we will examine

these Phases for the monitoring of linear profiles parameters (i.e. intercept, slope

and variance of error term) under different ranked set strategies such as ranked
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set sampling (RSS), median ranked set sampling (MRSS), extreme ranked set

sampling (ERSS), double ranked set sampling (DRSS), double median ranked set

sampling (DMRSS) and double extreme ranked set sampling (DERSS). Moreover,

an illustrative example from electrical engineering is also used to highlight the

importance of the proposed method in real applications.

2.1 Phase I analysis

Energy is a critical enabler, which have essential demand all over the world. It is a

basic need for all living organisms to perform several activities such as breathing,

movement, metabolism etc. In this modern era, energy is used as a source for

cooking, heating, lighting, transport, telecommunications and mechanical power.

Electricity is the ideal form of energy which is generated through coal, oil, fossils

fuels, solar, wind and nuclear energy. Nowadays, in term of cost, cheap electricity

is also generated through the solar medium. The solar system (given in Figure 2.1)

consists of photovoltaic (PV) panels that converts sunlight into DC electricity.

Further, solar panels are connected through inverters that are used to convert

the DC voltage into AC voltage. The bi-directional meter is used as a medium

between solar supply and power grid supply to exchange the rate of electricity

from one end to another end.

In solar panel system, several inverters are used to convert the DC voltage

into AC voltage such as voltage source invertor (VSI), current source inverter

(CSI) and Z-source inverter. The VSI is a buck inverter which gives less output
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Figure 2.1: Portrait of solar panel system for households

voltage as compare to DC input voltage while CSI is a boost inverter and it

provides more output voltage as compare to DC input voltage. However, Z-

source inverter consists of both abilities (buck and boost) which is responsible to

overcome various problems of VSI and CSI. The structure of Z-source inverter

consists of two capacitors, two switches (series or anti-parallel) and a 3−ϕ bridge

inverter. A three phase (3−ϕ) bridge inverter is an electronic device which is used

to converts the DC into three phase AC. Usually, parallel plate capacitors are used

as a DC link in grid-connected PV system and its capacitance is inversely related

to the distance between two conductive plates while direct relationship exists in

the capacitance and the surface area of the conductive plates.

Generally, electrical engineers are concerned about the variations of output
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voltage in power grid system. Whereas, monitoring of the voltage using control

chart is not possible until practitioner considers the capacitance of the process

which is inversely associated with the voltage. Similarly, monitoring the dissolve

amount of aspartame (an artificial sweetener) have no worth without considering

effect of temperature in the study. However, in the semiconductor manufacturing

application, monitoring of pressure in chamber also needed the information about

flow of the gases in the chamber. So, to overcome such problems one needs to use

the concept of linear profiles which can handle the monitoring of study variable

when it is linearly associated with another (explanatory) variable.

In the literature, several studies (discussed in Section 1.3.1) are avaible for

the monitoring of simple linear profile parameters (i.e. intercept, slope and error

variance) under Phsae I, such as [22] recommended their prospective method into

retrospective method, by replacing the three EWMA structures with three She-

whart structures. Further, [19] compared their Phase I study based on F-test with

the three Phase I approaches proposed by [22,43,44]. In this study, we intend to

use different ranked set strategies (RSS) to enhance the detection ability of control

charts used to monitor linear profile parameters in Phase I. The performance of

proposed schemes will be compared to the Phase I method originally introduced

by [22] and elaborated by [19] under simple random sampling.
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2.1.1 Modification of linear profiles under Phase I

In this section, we provide the background of ranked set schemes and linear pro-

files. These are required to develop our modified Phase I structure for simple

linear profile parameters under several ranked set sampling schemes.

Ranked set sampling schemes

The efficient scheme as compare to simple random sampling (SRS) named as

Ranked set sampling (RSS) was proposed by [73]. RSS is defined as: select n

random samples for each of n sets and sort them in each set with respect to

concomitant variable. In each cycle, choose the minimum value from the 1st set,

then 2nd smallest from the 2nd set and the largest sample from nth set. The cycle

may be repeated r times until nr samples have been measured. These nr samples

thus, form the RSS.

[74] suggested another type of ranked set scheme termed as median ranked

set sampling (MRSS). MRSS is defined as: randomly select n samples for each

of n sets and ranked them in each set using the concomitant variable. In MRSS

selection of n samples are dependent on even or odd set size. For even set size,

select the 1st half samples from the smallest rank of (n/2)th order and the smallest

rank of (n+ 1/2)th order in the 2nd half. For odd set size, choose the median value

of each ranked set (i.e. (n+ 1/2)th ranked value). The cycle may be repeated r

times until nr samples have been measured. These nr samples thus, form the

MRSS.
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Another modified scheme named as extreme ranked set sampling (ERSS) is

defined as (cf. [75]); select n random sets each of siz en and sort each set with

respect to concomitant variable. When set size is even, select the smallest sample

from the first (n/2)th set and from the other (n/2)th set the largest sample for

actual measurement. For the odd set size, select the smallest sample from the

first (n+ 1/2)th set and the largest sample from the last (n+ 1/2)th sets; median

of the remaining set, for actual measurement. The cycle may be repeated r time

until nr samples have been measured. These nr samples thus, form the ERSS.

The outline of double ranked set sampling (DRSS) was provided by [76], which

is defined as: randomly select n3 samples and further split them into n sets each

of n2 samples. Apply the aforementioned RSS on each set having n2 samples

and form the new n sets each of size n then again apply the RSS technique to

obtain the second stage samples. The cycle may be repeated r time until nr

samples have been measured. These nr samples thus, form the DRSS. However,

the second stage of MRSS and ERSS is termed as double median ranked set

sampling (DMRSS) and double extreme ranked set (DERSS) respectively. Which

may also be obtained by the double implementation of their procedures (MRSS

and ERSS), following the same steps as mentioned above for DRSS. For more

details, one may see [77].

The ranked set sampling and its modifications such as MRSS, ERSS, DRSS,

DMRSS, DERSS are considered as perfect if there exist extreme positive correla-

tion (ρ = 1) between study variable and concomitant variable. Otherwise, they

23



are categorized as imperfect.

Linear profiles under RSS schemes

The technique used to monitor the study variable which is associated with other

explanatory variable(s) is termed as linear profiles. In this subsection, we briefly

describe the theoretical background of linear profiles under different ranked set

strategies (Later denoted by (τ) in stated study). We have covered several choices

of (τ) named RSS, MRSS, ERSS, DRSS, DMRSS and DERSS. For more discussion

about simple linear profiles model under RSS strategies, one may see [78,79]. The

simple linear profile model with intercept (B0) and slope (B1) having sample size

(n), subgroups (k) and number of cycles (r) under ranked set strategies is defined

as:

Y[i]jl = B0 +B1X(i) + ε[i]jl ; i = 1, 2, 3, .., n ; j = 1, 2, 3, . . .m.., k; l = 1, 2, 3, .., r

(2.1)

where Y[i]jl is the explained variable for ith ordered sample in jth subgroup and lth

cycle, X(i) is fixed explanatory variable with ith random sample and ε[i]jl is the

error term for ith ordered sample in jth subgroup and lth cycle. It is to be noted

that If l = 1 then one may get the above terms under SRS. The least square

estimates of intercept (B0), slope (B1) and their properties are also estimated

by following Section 1.2 and the least square estimates of transformed model are

denoted by b0[i]jl and b1[i]jl. It is also to be noted that X variable is fixed in our

study and is used for the estimation of profile parameters. However, a different
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variable is used for the ranking of errors used in our profile model.

The Shewhart− 3[τ ] method

[22] although introduced retrospective method under SRS but the performance

of his scheme was examined by [19]. In this study, we will introduce different

ranked set strategies (τ) in the said scheme to enhance its performance. The

Shewhart control chart for each linear profile parameter (i.e. intercept, slope and

error variance) under Phase I on the base of transformed model are defined as;

for b̃0[i]jl;
LCL = B0 − LI[τ ]

√
(m−1)MSE[i]jl

mn

UCL = B0 + LI[τ ]

√
(m−1)MSE[i]jl

mn

for b̃1[i]jl;
LCL = B1 − LS[τ ]

√
(m−1)MSE[i]jl

mSxx

UCL = B1 + LS[τ ]

√
(m−1)MSE[i]jl

mSxx

where LI[τ ] and LS[τ ] are the control charting constant for intercept and slope

respectively (c.f. Table 2.1). For the monitoring of error variance σ2, F[i]jl is used

which is defined as

F[i]jl =
MSE[i]l

MSE[i](−j)l

where MSE[i]jl =
∑r
l=1

∑k
j=1

∑n
i=1 e

2
[i]jl

rk(n−2)
and MSE[i](−j)l =

∑k
i6=j

∑r
l=1

∑n
i=1 e

2
[i]jl

r(n−2)(k−1)
. The

control limits for monitoring of error variance ((LCLf and(UCLf )are also pro-

vided in Table 2.1.

The aforementioned three plotting statistics are combined in such a way to

evaluate simultaneous monitoring of the linear profile parameters (intercept, slope
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and error variance). The said combined scheme is designed under different ranked

set strategies which is named as Shewhart − 3[τ ] chart in the later part of this

study.

2.1.2 Performance evaluation and comparison

In this section, we will evaluate the performance of Shewhart− 3[τ ] chart which

is used to monitor simple linear profile parameters namely intercept, slope and

standard deviation of error term. Moreover, we will also provide the comparison

between the proposed schemes and the existing scheme under simple random

sampling.

IC parameters and charting constants

In this study, we assumed IC simple linear profile with B0 = 0 and B1 = 1

following [19] i.e. Y[i]jl = X∗(i) + ε[i]jl. we fixed sample size (n = 10) and

X(i) = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, and 1.8 while corresponding transformed

values of X(i) are X∗(i) = −0.9,−0.7,−0.5,−0.3,−0.1, 0.1, 0.3, 0.5, 0.7, and 0.9

with average equals to zero. The transformed model is as follows: Y[i]jl =

(B0) + (B1)X∗(i) + ε[i]jl , where B0 = X̄ + (βσ) X̄, B1 = (1 + βσ)X∗(i) and

ε[i]jl v BN (s, t; µs = 0, σs = 1, µt = 0, σt = 1, ρ)). Several choices of ρ has been

consider in our study. ρ = 0.25, 0.50 and 0.75 are used to represents imperfect

ranked set samplings whereas ρ = 1 represents imperfect ranked set samplings.

For the Phase I study, samples are collected in the form of rational subgroups.

Subgroups are introduced in such way that in the presence of instable values, the
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chances of variation with in subgroups will be minimized while chances of varia-

tion between subgroups will be maximized. We have considered different choices

of subgroups (i.e. k = 20, 30, 50, 100, 200) each of sample size (n = 3, 5, 8, 10).

Further, subgroups are categorized as m0 (stable subgroups) and m1 (inconsistent

subgroups) (i.e. k = m0+m1 ), whereas we also investigate the performance of pro-

posed structure with different pairs of subgroups such as (k = 20,m1 = 2, 5, 10),

(k = 30,m1 = 3, 5, 10) and (k = 50,m1 = 5, 10).

In this study, the performance of proposed schemes with its counterparts is

evaluated in terms of overall probability to signal (PTS) (α). PTS is defined as

the detection ability of a chart in terms of probability when the process is actually

OOC. The charting constants and control limits are chosen in such a way that

individual PTS (α∗) may be set to achieve a specified value α. We have fixed α =

0.04 (following [19]) and by using the relationship α = 1− (1−α∗)3k, we get α∗ =

0.00068, 0.0004530, 0.0002721, 0.0001360641, 0.00006803434 for k = 20, 30, 50, 100

and 200 respectively. For the computation of control charting constants (intercept

and slope) and control limits for error variance (given in Table 2.1), we have carried

an extensive Monte Carlo simulation study with 1e6 iteration.

Performance evaluations for Shewhart− 3[τ ] method

In order to monitor the performance of Shewhart− 3[τ ] method we have consid-

ered several shifts in the linear profiles parameters which are as follows:

(i) Shifts introduced in m1 (θ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0)

for the intercept of transformed model.
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(ii) Shifts presented in m1 (β = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0) for

the slope of original model.

(iii) Shifts in m1 (δ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0) for the slope

of transformed model.

(iv) Simultaneous shifts (θ, β = 1.0, 2.0, 3.0, 4.0, and 5.0) in m1 for intercept of

transformed model and slope of original model.

(v) Simultaneous shifts (θ, δ = 1.0, 2.0, 3.0, 4.0, and 5.0) in m1 for both intercept

and slope of transformed model.

(vi) Shifts existing in m1 (γ = 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0) for

the error variance of original model.

The performance of Shewhart− 3[τ ], has been evaluated using overall PTS by

carrying out extensive simulation study. The results are given in Tables 2.2 to 2.6

and some useful graphs of selective cases are also portrayed in Figures 2.2 to 2.6.

Comparative analysis of Shewhart− 3[τ ] method

The overall probability to signal (with respect to several shifts) of Phase I method

under different strategies (i.e. SRS, RSS, MRSS, ERSS, DRSS, DMRSS, DERSS)

at fixed k = 20 and m1 = 2 are reported in Tables 2.2 to 2.6 and Figures 2.2

and 2.3. Moreover, the selective cases regarding effect of inconsistent subgroups

(m1) and rational subgroups (k) are portrayed in Figures 2.4 and 2.5. In the

following discussion, the term Shewhart− 3[τ ] is used for the proposed method
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Table 2.1: Control charting constants and limits on fixed k = 20,n = 10,m1 = 2,
and α = 0.04

τ ρ LI LS LCLf UCLf
SRS 0 3.465302 3.465302 0.078703 3.885346

RSS

0.25 3.46045 3.476658 0.078676 3.886953
0.5 3.458631 3.499682 0.078759 3.892813
0.75 3.461062 3.598332 0.077852 3.931364

1 3.428133 4.184676 0.073483 4.888926

MRSS

0.25 3.463541 3.459926 0.07853 3.883322
0.5 3.458447 3.459738 0.078512 3.886022
0.75 3.459945 3.458302 0.078896 3.88036

1 3.418342 3.426893 0.078209 3.927688

ERSS

0.25 3.385554 3.386755 0.078628 3.880239
0.5 3.144039 3.154674 0.079882 3.806181
0.75 2.699666 2.741504 0.087807 3.577494

1 1.9695 2.127761 0.15448 3.129479

DRSS

0.25 3.462009 3.476124 0.078945 3.877121
0.5 3.456355 3.505408 0.078061 3.891441
0.75 3.440969 3.605198 0.077809 3.951971

1 3.330267 4.737909 0.059595 7.21733

DMRSS

0.25 3.485839 3.437171 0.079421 3.856836
0.5 3.483514 3.475506 0.078659 3.919555
0.75 3.436684 3.480446 0.078883 3.885405

1 3.413136 3.421338 0.078984 3.939591

DERSS

0.25 3.302964 3.300814 0.08075 3.847935
0.5 2.850913 2.840614 0.083236 3.613461
0.75 2.168248 2.16968 0.121724 3.063981

1 1.214729 1.361864 0.372063 2.276139
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with fixed order of strategies (τ) such as SRS, RSS, MRSS, ERSS, DRSS, DMRSS,

DERSS.

Shifts in intercept parameter:

Probability to signal for the shifts in intercept are reported in Table 2.2. The

results depict that for fixed ρ = 0.25, the shift in intercept (θ = 1.00) may

cause 0.0135 unit increase in the overall PTS of Shewhart− 3[SRS] while 0.0119,

0.0109, 0.0112, 0.0122, 0.0146 and 0.0119 units increase in the overall PTS are

reported in Shewhart− 3[τ ] with respect to RSS, MRSS, ERSS, DRSS, DMRSS

and DERSS schemes. When shift (θ = 2.50) is added in intercept then 0.2237,

0.2434, 0.2440, 0.2359, 0.2467, 0.2419 and 0.2393 units increase in term of overall

PTS are reported for Shewhart− 3[τ ] respectively. Further, for Shewhart− 3[τ ]

on fixed shift (θ = 4.50), the overall PTS are reported as: 0.7559, 0.7694, 0.7681,

0.7648, 0.7713, 0.7689 and 0.7682.

In the presence of shifts in intercept at fixed ρ = 0.75, results of

Shewhart− 3[τ ] are portrayed in Figure 2.2(A). The comparison reveled that

proposed method under DRSS and DMRSS outperforms all other schemes. How-

ever, the comparative study regarding different choices of ρ was described in Fig-

ure 2.3(A). Shifts in intercept for Shewhart− 3[MRSS] , revealed a direct relation

between ρ and performance of the method.
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Shifts in slope of original model:

Table 2.3 represents the comparative analysis of Shewhart− 3[τ ] in the presence of

shifts in slope of original model. The results reveals that on fixed ρ = 0.5, increase

in slope (β = 1.00) may cause 0.0545, 0.0788, 0.0894, 0.0714, 0.0848, 0.0896 and

0.0763 units increase in term of overall PTS for Shewhart− 3[τ ] respectively.

When shift (β = 2.50) is added in slope then 0.7292 unit increase in the overall

PTS was reported forShewhart− 3[SRS] and 0.8075, 0.8160, 0.7959, 0.8201, 0.8287

and 0.8122 units increase in the overall PTS are reported for Shewhart− 3[τ ] with

respect to RSS, MRSS, ERSS, DRSS, DMRSS and DERSS schemes. However, for

Shewhart− 3[τ ] at fixed shift (β = 4.50), the overall PTS are reported as: 0.9366,

0.9401, 0.9417, 0.9397, 0.9432, 0.9447 and 0.9414.

For fixed ρ = 0.75, results of Shewhart− 3[τ ] with shifts in the slope of original

model are represented in Figure 2.2(B). The assessment revealed that proposed

method under DRSS and DMRSS performs comparatively better than others.

Moreover, the analysis for different selections of ρ was defined in Figure 2.3(B).

Shifts in slope of original model for Shewhart− 3[DRSS], revealed a direct relation

between ρ and the performance of method.

Shifts in slope of transformed model:

Shifts in the slope of transformed model are described in Table 2.4. The results de-

pict that at fixed ρ = 1, the shift in slope (δ = 1.00) may cause 0.0122 unit increase

in the overall PTS of Shewhart− 3[SRS] while 0.0596, 0.2368, 0.0351, 0.1058,
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Figure 2.2: Comparison of Shewhart− 3[τ ] at fixed ρ = 0.75

0.8365 and 0.0655 units increase in the overall PTS are reported in Shewhart− 3[τ ]

with respect to RSS, MRSS, ERSS, DRSS, DMRSS and DERSS schemes.

When shift (δ = 2.50) added in the slope then 0.2226, 0.7579, 0.8376, 0.6606,

0.8274, 0.8971 and 0.8023 units increase in term of overall PTS are reported for

Shewhart− 3[τ ] respectively. Further, for Shewhart− 3[τ ] at fixed shift (δ =

4.50), the overall PTS are reported as: 0.7564, 0.8431, 0.8590, 0.8401, 0.8413,

0.9582 and 0.84428.
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Figure 2.3: Performance of Shewhart− 3[τ ] with different choices of ρ

In the presence of shifts in the slope of transformed model, results of

Shewhart− 3[τ ] are portrayed in Figure 2.2(C). The comparison reveled that

proposed method under DRSS and DMRSS beats all other schemes under study.

Further, the comparative study for different choices of ρ was examined in Fig-

ure 2.3(C). Shifts in the slope of transformed model for Shewhart− 3[DMRSS],

revealed a direct relationship between ρ and performance of the method.
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Simultaneous shifts in intercept and slope:

The performance of Shewhart− 3[τ ] under DMRSS and DERSS, in the presence of

joint shifts in intercept and slope of original or transformed model are discussed

in Table 2.6. In the following comparative study, we fixed rational subgroups

(k = 20), inconsistent subgroups (m1 = 5) and ρ = 0.75. The results depict

that on fixed IC intercept (θ = 0)and IC slope of transformed model (θ = 0),

the shift in slope of original model (β = 1.00) may cause 0.2803 and 0.2009 units

increase in the overall PTS of Shewhart− 3[DMRSS] and Shewhart− 3[DERSS]

respectively, while shift in slope of transformed model (δ = 1.00) when intercept

(θ = 0) and slope of original model (β = 0) are fixed may cause 0.0600 and 0.0386

units increase in the overall PTS of Shewhart− 3[τ ] with respect to DMRSS and

DERSS.

For fixed slope of original model (β = 0) and slope of transformed model

(δ = 0), a shift in intercept (θ = 3) may cause almost 0.8926 and 0.8282 units

increase in the overall PTS of Shewhart− 3[DMRSS] and Shewhart− 3[DERSS]

respectively. Further, on fixed IC slope of transformed model (δ = 0), a shift in

both slope of original model (β = 2) and intercept (θ = 2) probably cause 0.9589

and 0.9578 units increase in the overall PTS of Shewhart− 3[τ ] with respect

to DMRSS and DERSS. A shift in both slope of transformed model (δ = 2)

and intercept (θ = 2) at fixed IC slope of original model (β = 0) may cause

0.7202 and 0.5689 units increase in the overall PTS of Shewhart− 3[DMRSS] and

Shewhart− 3[DERSS] respectively.
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Overall, at IC intercept, our proposed schemes are more effective to monitor

shift in slope of original model as compared to shift in the slope of transformed

model while Shewhart− 3[DMRSS] have relatively good performance when there

is a shift in intercept and slope of original model or transformed model are IC or

OOC.

Shifts in the variance of error term:

Table 2.5 represents the comparative analysis of Shewhart− 3[τ ] in the presence

of shifts in error variance. The results revealed that on fixed ρ = 0.75, increase

in error variance (γ = 1.40) may cause 0.1006, 0.1305, 0.1017, 0.1982, 0.7059,

0.5597 and 0.9109 units increase in term of overall PTS for Shewhart− 3[τ ] re-

spectively. When shift (γ = 2.00) is added in error variance then 0.5614 unit in-

crease in the overall PTS was reported for Shewhart− 3[SRS] and 0.6849, 0.5662,

0.8062, 0.7059, 0.5597 and 0.9109 units increase in the overall PTS are reported for

Shewhart− 3[τ ] with respect to RSS, MRSS, ERSS, DRSS, DMRSS and DERSS

schemes. However, for Shewhart− 3[τ ] on fixed shift (γ = 2.80), the overall PTS

are reported as: 0.8159, 0.8985, 0.8194, 0.9316, 0.9063, 0.8139 and 0.9470.

The findings of Shewhart− 3[τ ] with shifts in the error variance are repre-

sented in Figure 2.2(D). The assessment reveled that proposed method under

DERSS performs comparatively better than others. Moreover, the analysis for

different selections of was portrayed in Figure 2.3(D). Shifts in error variance for

Shewhart− 3[DERSS] , revealed an increasing relation between and the perfor-

mance of method.
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2.1.3 Effect of different design parameters

In this subsection, we will briefly discuss the effect of inconsistent subgroups (m1),

rational subgroups (k) and sample size (n) on probability to signal for detecting

shifts in intercept, slope and error variance.

Effect of inconsistent subgroups (m1):

The effects of OOC subgroups in linear profile parameter such as intercept, slope

and error variance are portrayed in Figure 2.4. In case of shifts in intercept, the

effect of m1 on fixed ρ = 1 are reported in Figure 2.4(A). The results reveal that

on fixed intercept shift (θ = 1.5), 0.8501, 0.9591, 0.9611 increase in overall PTS

are reported for Shewhart− 3[DMRSS] with respect to m1 = 2, 5 and 10. The

results of different m1 for shift in slope of original model at ρ = 0.25 are discussed

in Figure 2.4(B). On fixed slope shift (β = 2.5), the increasing rate of overall PTS

are reported 0.7511, 0.8511 and 0.8715 for the Shewhart− 3[DMRSS] with respect

to m1=2,5 and 10. In terms of shift in slope of transformed model, the effect

of m1 on fixed ρ = 0.75 are described in Figure 2.4(C). The results depict that

on fixed slope shift (δ = 3.5), 0.8105, 0.9425 and 0.9460 units increase in overall

PTS are reported for the Shewhart− 3[DMRSS] with respect to m1=2,5 and 10.

The findings of several m1 for shift in error variance at ρ = 0.5 are portrayed in

Figure 2.4(D). On fixed error variance shift (γ = 2.8), the increase in overall PTS

are reported about 0.8335, 0.8809, and 0.9210 units for the Shewhart− 3[DERSS]

with respect to m1=2,5 and 10.
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Figure 2.4: Comparison of m1 with respect to shifts in linear profile parameters

Effect of rational subgroups (k):

The comparative analysis of subgroups with respect to linear profiles parameters

(i.e. intercept, slope and error variance) are discussed in Figure 2.5. For the

appropriate analysis, we fixed 10% ratio between the rational subgroups (k) and

inconsistent subgroups (m1). For example, when k = 20 then we fixed m1 = 2

and when k = 30, 50, 100 and 200 then we fixed m1=3, 5, 10 and 20 respectively.

In terms of shifts in intercept, the effect of k on fixed ρ = 0.25 are reported
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in Figure 2.5(A). The results depict that on fixed intercept shift (θ = 1), 0.0146,

0.0120, 0.0172, 0.0172, 0.0182, unit increase in overall PTS are reported for the

Shewhart− 3[DMRSS] with respect to k=20, 30, 50, 100 and 200. The results

of different k for the shift in slope of original model at ρ=0.5 are discussed in

Figure 2.5(B). On fixed slope shift (β=2), the increasing rate of overall PTS are

reported 0.6410, 0.7330, 0.8357, 0.8742 and 0.9131 for the Shewhart− 3[DMRSS]

with respect to k=20, 30, 50, 100 and 200.

In case of shift in slope of transformed model, the effect of k on fixed ρ = 1

are described in Figure 2.5(C). The results reveal that on fixed slope shift (δ = 3),

0.9278, 0.9502, 0.9623 , 0.9666 and 0.9720 units increase in overall PTS are re-

ported for the Shewhart− 3[DMRSS] with respect to k=20, 30, 50, 100 and 200.

The findings of several k for shift in error variance at ρ=0.75 are portrayed

in Figure 2.5(D). On fixed error variance shift (γ=2.6), the increase in overall

PTS are reported about 0.9443, 0.9612, 0.9623, 0.9661 and 0.9661 units for the

Shewhart− 3[DERSS] with respect to k=20, 30, 50, 100 and 200. Overall, it is

depicted from the stated simulated study that the performance of our proposed

schemes increased due to increase of rational subgroups (k) and inconsistent sub-

groups (m1).

Effect of sample size (n):

The effect of sample size in the monitoring of linear profile parameters are dis-

cussed in Figure 2.6. For the comparative analysis, we fixed rational subgroups

(k=20) and inconsistent subgroups (m1=2) while we consider several choices of
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Figure 2.5: Comparison of k with respect to shifts in linear profile parameters

sample size (i.e n= 3,5,8 and 10) for the analysis purpose. On n=3, we fixed

X(i)=0,0.9,1.8 and used X(i)=0,0.2,0.9,1.6,1.8 for the sample size n=5. In case

of sample size n= 8, X(i)=0,0.2,0.4,0.6,1.2,1.4,1.6,1.8 is used for the said study.

In case of shifts in intercept, the effect of n on fixed ρ=0.25 are reported in

Figure 2.6(A). The results depict that on fixed intercept shift (θ = 3), 0.2851,

0.3782, 0.4039 and 0.4090, unit increase in overall PTS are reported for the

Shewhart− 3[DMRSS] with respect to n=3,5, 8 and 10. The results of different n
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for the shift in slope of original model at =0.5 are discussed in Figure 2.6(B). On

fixed slope shift (β=1.5), the increasing rate of overall PTS are reported almost

0.1035, 0.1712, 0.2405 and 0.3247 units for the Shewhart− 3[DMRSS] with respect

to n=3,5,8 and 10.

For the amount of shift in slope of transformed model, the effect of n on fixed

ρ=1 are described in Figure 2.6(C). The results reveal that on fixed slope shift

(δ=4), 0.8423, 0.8753, 0.9365 and 0.9565 units increase in overall PTS are reported

for the Shewhart− 3[DMRSS] with respect to n=3,5,8 and 10. The findings of

several n for shift in error variance at ρ=0.75 are portrayed in Figure 2.6(D). On

fixed error variance shift (γ=3.0), the increase in overall PTS are reported about

0.5074, 0.8412, 0.9375 and 0.9489 units for the Shewhart− 3[DERSS] with respect

to n=3,5,8 and 10. Overall, it shows that the performance of Shewhart− 3[τ ]

schemes increased due to increase in sample size (n) at fixed rational subgroups

(k=20) and inconsistent subgroups (m1=2).

2.1.4 A real life application

As discussed above that for fixed charge (Q), capacitance (C) is inversely related

to voltage (V ). So, for the monitoring of voltage (V ) generated through Z-source

inverter in grid connected PV system, we used a data set having values of V at

each level of C. The implementation of Shewhart− 3[τ ] scheme on aforementioned

data set is discussed in the following steps:
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Figure 2.6: Comparison of n with respect to shifts in linear profile parameters

Step 1: Run the 75456 profiles to get the following IC regression model:

V̂ = 402.3512− 0.01983691 C

Further, the properties of linear regression model are reported in Appendix A.6

Step 2: Apply SRS, DMRSS and DERSS techniques on 75456 samples of V at

each level of C. Finally, 1533 samples of V at each level of C are compiled though

the aforementioned schemes. By using selected 1533 data sets and transformed
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capacitance (C∗ = −150µF,−100µF,−50µF, 0µF, 50µF, 100µF and150µF ), we

calculate 1533 profiles.

Step 3: On the base of 1533 profiles, we calculate control limits at fixed k=200

and α=0.05 for each scheme which are

Shewhart− 3[SRS] =
LCLB0 = 788.5457 LCLB1 = −0.1138149 LCLf = 0.02875877

UCLB0 = 803.6243 LCLB1 = 0.09670317 UCLf = 3.79974000

Shewhart− 3[DMRSS] =
LCLB0 = 786.4855 LCLB1 = −0.1157737 LCLf = 0.02933718

UCLB0 = 804.2855 LCLB1 = 0.10163490 UCLf = 3.44160200

Shewhart− 3[DERSS] =
LCLB0 = 785.6046 LCLB1 = −0.1236473 LCLf = 0.0114879

UCLB0 = 804.6087 LCLB1 = 0.11757860 UCLf = 3.4597220

The linear profile parameters under SRS schemes are plotted against their

control limits in Figure 2.7. The figure shows that 3 OOC signals are reported

in intercept parameter while 2 and 3 signals are reported in the slope and error

variance respectively. For the Shewhart− 3[DMRSS] , shows 2 OOC signals in

intercept while 3 signals are reported in both slope and error variance respectively

(cf. Figure 2.8).

For the Shewhart− 3[DERSS], statistics of linear profile parameters are plotted

against limits in Figure 2.9. Where only 1 OOC signal is captured in intercept

while 7 signals are reported in slope parameter. Percentages of OOC signals in

IC situation are provided in Table 2.7

Step 4: For the diagnosis analysis, we used data perturbation aproach (cf.
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Section A.7) to introduced intercept shift in first 50 samples, next 50 samples

with index 51-100 have slope shift, next 101-150 index have joint shift in intercept

and slope and finally, last 50 have error variance shift. We introduced shifts in

following way:

(i) For the intercept shift, we used C∗ =

−550,−500,−450,−400,−350,−300,−250.

(ii) For the slope shift, we used C∗ = 75, 50, 25, 0,−25,−50,−75.

(iii) For both shifts in slope and intercept, we used C∗ =

−25,−50,−75,−100,−125,−150,−175.

(iv) For the shift in error variance, we multiply each observation of voltage data

set with 1.5.

The percentages of OOC signals are given in Table 2.7. In case of

Shewhart− 3[SRS] , shifts in linear profile parameters are plotted in Figure 2.10.

The findings depict that 83 OOC points are reported in intercept chart while 28,

41, 2, 4 and 2 OOC points are reported with respect to slope, both intercept and

slope, error variance, both intercept and error and in all parameters. Figure 2.11

represents the portrayed of OOC situation under Shewhart− 3[DMRSS]. The re-

sults depicts that 80, 25, 53, 2, 2 and 3 OOC points are reported with respect to

intercept, slope, both intercept and slope, error variance, both intercept and error

and in all parameters.
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The results of Shewhart− 3[DERSS] with respect to different shifts in linear

profile parameters are plotted in Figure 2.12. The findings reveal 70 OOC points

in intercept chart while 15, 49, 3, 2 and 5 OOC points are reported with respect

to slope, both intercept and slope, error variance, both intercept and error and in

all parameters.

In this illustrative example, the overall results depict that in case of shifts in

intercept, slope and their joint shifts (intercept and slope), Shewhart− 3[DMRSS]

detecting large number of OOC signals while Shewhart− 3[DERSS] have relatively

good detection in the presence of shifts in error variance.

Table 2.7: The percentages of OOC points with respect to linear profile parameters

Parameters B0 B1 B0+B1 F B0+F B0+B1+F Overall

In control

SRS 1.5 1 - 1.5 - - 4
DMRSS 1 1.5 - 1.5 - - 4
DERSS 0.5 3.5 - - - - 4

Special Cause

SRS 41.5 14 20.5 1 2 1 80
DMRSS 40 12.5 26.5 1 1 1.5 82.5
DERSS 35 7.5 24.5 1.5 1 2.5 81
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Figure 2.7: In-control situation for Shewhart− 3[SRS]
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Figure 2.8: In-control situation for Shewhart− 3[DMRSS]
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Figure 2.9: In-control situation for Shewhart− 3[DERSS]
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Figure 2.10: Diagnosis analysis for Shewhart− 3[SRS]
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Figure 2.11: Diagnosis analysis for Shewhart− 3[DMRSS]
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Figure 2.12: Diagnosis analysis for Shewhart− 3[DERSS]
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2.2 Phase II analysis

In recent literature (given in Section 1.2), the idea of linear profiling under Phase

II was discussed using simple random sampling (SRS). The concept of ranked set

sampling (RSS) was introduced by [73] and more mathematical modifications were

developed by [80]. Many of the researchers used ranked set sampling in control

charts to make them more sensitive against different type of shifts (cf. [76,81–86]).

[22] introduced an EWMA − 3 control chart for simultaneous monitoring

of shifts in intercept, slope and standard deviation of disturbance term. They

used simple random sampling (SRS) in their study for process monitoring. In this

study, we intend to use different ranked set sampling techniques to enhance the

performance of the aforementioned EWMA− 3 control chart.

EWMA− 3[τ ] charting structure

[22] introduced EWMA−3 control chart under SRS (EWMA− 3[SRS]) for simul-

taneous monitoring of shifts in linear profile parameters including intercept, slope

and standard deviation of disturbance term. We introduce here the EWMA− 3

charting structure under different ranked set strategies (τ) on the base of trans-

formed model (cf. equation (1.2) is defined as;

EWMAI[i][τ ] = λ
(
b0[i]l

)
+ (1− λ)EWMAI[i−1][τ ]

EWMAS[i][τ ] = λ
(
b1[i]l

)
+ (1− λ)EWMAS[i−1][τ ]

56



EWMAE[i][τ ] = max{ λ ln(MSE[i]l) + (1− λ)

EWMAE[i−1][τ ], ln(σ2
0)}

where EWMAI[i][τ ] is the ith EWMA statistic for intercept under different sam-

plings (τ) ;EWMAS[i][τ ] and EWMAE[i][τ ] are the ith EWMA statistics for slope

and error variance respectively under different strategies (τ); λ is the smoothing

parameter that ranges between zero and one (i.e. 0 < λ ≤ 1). The popular choices

of λ fall in the interval 0.05 ≤ λ ≤ 0.25 (cf. [87]).

The mean and variance of each of the three EWMA[τ ] statistic are given as;

E
(
EWMAI[i][τ ]

)
= B0,

E
(
EWMAS[i][τ ]

)
= B1,

E
(
EWMAE[i][τ ]

)
= ln

(
σ2

0

)
,

V ar
(
EWMAI[i][τ ]

)
=

λ

2− λ
σ2
e[τ ]

[
1

nr

]
,

V ar
(
EWMAS[i][τ ]

)
=

λ

2− λ
σ2
e[τ ]

Sxx
,

V ar(EWMAE[i][τ ]) = V ar(ln(MSE[i]l)) ∼=
2

n− 2
+

2

(n− 2)2 +
4

3(n− 2)3 −
16

15(n− 2)5 .

(cf. [11]) Based on the above mentioned properties of the EWMA[τ ] statistics, the
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asymptotic limits for each EWMA[τ ] plotting statistic are given as:

(i) For EWMAI[i][τ ]:

UCLI = B0 + LEI[τ ]

√
λ

2− λ
σ2
e[τ ][

1

nr
]

LCLI = B0 − LI[τ ]

√
λ

2− λ
σ2
e[τ ][

1

nr
]

(ii) For EWMAS[i][τ ]:

UCLS = B1 + LES[τ ]

√
λ

2− λ
σ2
e[τ ]

Sxx

LCLS = B1 − LES[τ ]

√
λ

2− λ
σ2
e[τ ]

Sxx

(iii) For EWMAE[i][τ ]:

UCLE = ln
(
σ2

0

)
+ LEE[τ ]

√
λ

2− λ
V ar(ln

(
MSE[i]l

)
)

where LEI[τ ], LES[τ ] and LEE[τ ] are the control limits coefficients for intercept,

slope and standard deviation of error term respectively under different sampling

strategies (SRS, RSS, MRSS, ERSS, DRSS, DMRSS and DERSS); σ2
e[r] is the

error variance of RSS and σ2
e[dr], σ

2
e[m], σ

2
e[dm], σ

2
e[e1,en] and σ2

e[de1,den] are the error

variances of DRSS, MRSS, DMRSS, ERSS and DERSS respectively. The error

variances for different ranked set samplings (σ2
e[τ ]) are given in the Appendix A.2.

The above mentioned three EWMA[τ ] statistics are combined in such a way to
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evaluate simultaneous monitoring of the three parameters of interest namely in-

tercept, slope and error variance.

The findings of the EWMA[τ ] are reported in [17]. For the diagnostic anal-

ysis, we consider different shifts for the monitoring of linear profile parameters

including intercept, slope and error variance. In case of several shifts in intercept

term (θ), it is concluded that EWMA− 3[DMRSS] scheme outperforms all other

schemes under consideration. The same may also be noticed where shifts in term

of σ units are considered for the slope in original model (β). The detection of

shifts in error variance (γ) reveals that EWMA− 3[DERSS] is marginally better

than others while EWMA− 3[DMRSS] is a poor performer, especially at larger

values of shifts and ρ. Further, negative shifts in the slope of transformed model

(δ) depicts that EWMA− 3[DMRSS] scheme surpass all other schemes under con-

sideration and referring to different values of independent variable exhibits that

EWMA− 3[DMRSS] scheme beats all the other schemes under consideration.

Overall in monitoring phase, when ranked set sampling is imperfect (ρ = 0.25),

no real change is experienced in the performance EWMA− 3[τ ] schemes and With

the increase of ρ, we have observed significant improvement in the performance of

EWMA− 3[τ ] schemes. Further, as the smoothing parameter λ decrease per-

formance of EWMA− 3[τ ] also increased but in some cases reverse results are

observed and as the sample size n increase, performance of EWMA− 3[τ ] also

increased.
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2.3 Concluding remarks

In statistical process control, control chart is a key device and its implementation

involves two different Phases (retrospective phase or prospective phase). Usually,

retrospective phase is used to estimate the unknown parameters of the process

while prospective phase emphasizes on the monitoring of process based on the

estimated parameters from retrospective phase. In this chapter, we used different

ranked set strategies τ such as RSS, MRSS, ERSS, DRSS, DMRSS and DERSS

instead of SRS to enhance the performance of Phase I method and Phase II

method.

In Phase I method, we have used overall probability to signal (PTS) as a perfor-

mance measure to compare the Shewhart− 3[τ ] and existing Shewhart− 3[SRS]

charts. The findings reveal that the proposed method Shewhart− 3[τ ] outper-

forms the existing Shewhart− 3[SRS] scheme to timely detect assignable causes

in process parameters. In case of shifts in intercept and slope of original or trans-

formed model, Shewhart− 3[DRSS] and Shewhart− 3[DMRSS] outperforms all the

other schemes while Shewhart− 3[DERSS] exhibits relatively better performance

in the presence of shifts in error variance.

In case of simultaneous monitoring, Shewhart− 3[τ ] takes an edge for original

model as compared to transformed model to monitor slope, given process intercept

is IC. For OOC intercept, Shewhart− 3[DMRSS] offers relatively superior detection

ability for shifts in slope for original/ transformed model. Moreover, the efficiency

of Shewhart− 3[τ ] scheme increases with the increasing levels of correlation used
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in ranked set samples (ρ), rational subgroups (k), inconsistent subgroups (m1)

and sample size (n).

In Phase II, we intend to check the performance of EWMA− 3[τ ] chart by

introducing different amounts of shifts in linear profile parameters. The findings

depict that when we introduce several amounts of shifts in intercept (B0), slope

of orignal model (β1) and slope of tranformed model (B1), EWMA− 3[DMRSS]

scheme outperforms all other schemes under consideration. In the presence of

shifts in error variance parameter, the detection abiliy of EWMA− 3[DMRSS]

is very poor while EWMA− 3[DERSS] is marginally better than others. Overall

in monitoring phase, with the increase of design parameters (correlation (ρ) and

sample size (n)), we have observed significant improvement in the performance

of EWMA− 3[τ ] schemes. Further, as the smoothing parameter λ decrease

performance of EWMA− 3[τ ] also increased.
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CHAPTER 3

LINEAR PROFILING UNDER

MODIFIED SUCCESSIVE

SAMPLING

In the literature, the term simple linear profiles is used for the monitoring of linear

profile parameters (slope, intercept and error variance) when the study variable is

linearly associated with a single explanatory variable. Most of the present litera-

ture on simple linear profiles utilizes the simple random sampling. In this chapter,

we intend to enhance the monitoring of simple linear profile parameters by consid-

ering the modified successive sampling scheme which is not only cost-effective but

also efficient as compared to simple random sampling scheme. Moreover, special

cases of the simple linear profile monitoring are also discussed in this chapter.
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3.1 Introduction

All recent studies about simple linear profiling (reported in Section 1.3.1) are de-

signed under simple random sampling (SRS) and ranked set samplings (RSS) (cf.

Chapter 2). Generally, for the single occasion inventory problem, simple random

sampling (SRS) is referred in most surveys while [88] suggested the successive

sampling for various occasions. The design of successive sampling considers the

first sample taken at first occasion and second sample (including some points from

first sample) taken at the next occasion. The design of MSS scheme consists of

small number of observations which makes it cost efficient scheme as well as it is

a useful technique in the presence of missing observations. Some modifications in

the successive sampling can be seen in [89–92].

Recently, [93] proposed the modified form of successive sampling (MSS) for

the quality characteristic variable which is defined in following steps;

Step 1: Take first sample (Y1,1, Y1,2, Y1,3, . . . . . . , Y1,n) of size n by using the SRS.

Step 2: Take second sample (Y2,1, Y2,2, Y2,3, . . . . . . , Y2,n−c) of size n-c by using

the SRS and the remaining c observations are picked as percentiles points of first

sample in the following way: Y2,n−c+1 = P1 (Y1,1, Y1,2, . . . . . . , Y1,n), Y2,n−c+2 =

P2 (Y1,1, Y1,2, . . . . . . , Y1,n) and so on, up to Y2,n = Pc (Y1,1, Y1,2, . . . . . . , Y1,n).

Step 3: Similarly, third sample consist of n-c new observations by using the SRS

and remaining c observations from the percentile points of second sample, and

this procedure is repeated for the specific run of production.

In existing literature, [21] originated a phase II study named as Shewhart−3
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chart (given in Section 1.2) for the monitoring of simple linear profile parameters

under simple random sampling (SRS). In this study, we have designed similar

phase II study based on successive sampling technique (cf. [88]). It is noted that

modified Shewhart structure under MSS named as Shewhart− 3[MSS] chart in

the later part of this study.

3.1.1 The Shewhart− 3MSS charting structure

The Shewhart control chart for each linear profile parameter (i.e. intercept, slope

and error variance) under MSS on the base of transformed model given in equation

(1.2) are defined as:

for b0[i] :


UCLI = B0 + LI1[MSS]

√
σ2
e[MSS]

[
1
nm

]
LCLI = B0 − LI2[MSS]

√
σ2
e[MSS]

[
1
nm

]


for b1[i] :


UCLS = B1 + LS1[MSS]

√
σ2
e[MSS]

Sxx

LCLS = B1 − LS2[MSS]

√
σ2
e[MSS]

Sxx



for σ̂2
e[i] :


LCLE = ln (σ2

0)− LE1[MSS]

√
V ar

(
ln
(
MSE[i]j

))
UCLE = ln (σ2

0) + LE2[MSS]

√
V ar

(
ln
(
MSE[i]j

))


where V ar
(
ln
(
MSE[i]j

)) ∼= 2
n−2

+ 2
(n−2)2

+ 4
3(n−2)3

− 16
15(n−2)5

, and LI1[MSS],

LI2[MSS], LS1[MSS] , LS2[MSS] , LE1[MSS] and LE2[MSS] are the control limits co-

efficients for intercept, slope and variance of error term under modified successive

sampling.
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In this chapter, modified successive sampling is symbolized as

MSSn,c,P1, P2,.......,Pc where n represents sample size, the number of observa-

tions from previous sample is represented by c and Pq∀ q = 1, 2, 3, . . . . . . , c . is

the percentile picked from the previous sample. Although, several possible values

of c and Pq,1−q can be taken but the current study considers the following two

situations.

i MSSn,2,P1, P2 , where n-2 observations are generated by using SRS and the

remaining two observations are taken from the specific percentile pairs (P1, P2)

of the previous sample. In this study, the choice of percentile pairs (P1, P2) are

(P0.25, P0.75), (P0.30, P0.70),(P0.35, P0.65), (P0.40, P0.60) and (P0.45, P0.55).

ii MSSn,3,P1, P2,P3 , where n-3 observations are generated by using SRS and

the remaining three observations are taken from the specific percentile pairs

(P1, P2, P3) of the previous sample. In this study, the choice of percentile pairs

(P1, P2, P3) are (P0.25, P0.50, P0.75), (P0.30, P0.50, P0.70), (P0.35, P0.50, P0.65),

(P0.40, P0.50, P0.60) and (P0.45, P0.50, P0.55).

It is to be noted that the MSS schemes (MSSn,2,P1, P2 , MSSn,3,P1, P2,P3) are said

to be simple random sampling (SRS) when observations are not taken from of the

previous sample (i.e. SRS = MSSn,2,P0, P0 or MSSn,3,P0,P0, P0) .

3.1.2 Performance evaluations

In this subsection, we provide a brief discussion on the IC parameters of proposed

charts. Moreover, we will discuss the performance evaluation of the stated study.
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Designing of in-control parameters and control limits

For the original IC simple linear model given in equation (1.1), we assumed β0 = 3

and β1 = 2 by following [21]
(
i.e. Y[i]k = 3 + 2X(i) + ε[i]k

)
. Where the fixed values

of explanatory variable are X(i) = 2, 4, 6, and 8 , sample size (n = 4) and the

error term is ε[i]k ∼ N (s; µs = 0, σs = 1). Moreover, the transformed model

given in equation (1.2) is obtained by substituting the B0 = 3+2X̄+(βσ) X̄ and

B1 = (2 + βσ)X∗(i). whereas, the fixed transformed values of explanatory variable

are X∗(i) = −3, − 1, 1, and 3 with average equals to zero.

The performance of Shewhart − 3[MSS] charts is evaluated in terms of

average run length (ARL) which is defined as the number of samples un-

til a signal occurs. ARL is categorized into two types, in-control average

run length (ARL0) and out-of-control average run length (ARL1). For the

fixed overall (ARL0), we need to set the control limits coefficients including

LI1[MSS], LI2[MSS], LS1[MSS], LS2[MSS], LE1[MSS] and LE2[MSS] with respect to dif-

ferent combinations of design parameters (n, c) and choices of percentiles. In this

study, we have evaluated the results for some selective choices of these design pa-

rameters (n=5, 7 and c=2,3) and the results are reported in Table 3.1 to achieve

an overall ARL0 = 200. For computations, we used Monte Carlo simulation study

with 105 iterations.
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Table 3.1: Control charting constants of Shewhart-3 chart under MSS schemes

n Scheme LI1[MSS] LI2[MSS] LS1[MSS] LS2[MSS] LE1[MSS] LE2[MSS]

5

MSSn,2,P0.25, P0.75 -2.65051 2.63689 -2.19630 2.78229 0.08673 5.43789
MSSn,2,P0.30, P0.70 -2.66279 2.66568 -2.32100 2.71618 0.02304 5.04384
MSSn,2,P0.35, P0.65 -2.66348 2.67022 -2.38273 2.64063 0.00769 4.85906
MSSn,2,P0.40, P0.60 -2.63955 2.63672 -2.38533 2.55926 0.00425 4.71889
MSSn,2,P0.45, P0.55 -2.61524 2.61429 -2.41571 2.48039 0.00270 4.71316

MSSn,3,P0.25, P0.50,P0.75 -2.49249 2.50122 -2.01845 2.98639 0.00480 4.39014
MSSn,3,P0.30, P0.50,P0.70 -2.42583 2.43451 -2.16765 2.76051 0.00169 4.03714
MSSn,3,P0.35, P0.50,P0.65 -2.31189 2.30833 -2.24453 2.55740 0.00073 3.90108
MSSn,3,P0.40, P0.50,P0.60 -2.24524 2.21959 -2.26650 2.42236 0.00051 3.83348
MSSn,3,P0.45, P0.50,P0.55 -2.12171 2.10866 -2.24848 2.30943 0.00036 3.81815

7

MSSn,2,P0.25, P0.75 -2.76920 2.78558 -2.37381 2.69893 0.13854 5.59925
MSSn,2,P0.30, P0.70 -2.78380 2.77136 -2.41385 2.63938 0.09414 5.40458
MSSn,2,P0.35, P0.65 -2.78116 2.78970 -2.43796 2.58164 0.05909 5.28626
MSSn,2,P0.40, P0.60 -2.75744 2.76380 -2.45170 2.56195 0.03939 5.16095
MSSn,2,P0.45, P0.55 -2.76222 2.74351 -2.47242 2.50960 0.02792 5.18708

MSSn,3,P0.25, P0.50,P0.75 -2.63886 2.63644 -2.25238 2.77901 0.05541 5.00933
MSSn,3,P0.30, P0.50,P0.70 -2.62606 2.61153 -2.29772 2.67295 0.03349 4.81843
MSSn,3,P0.35, P0.50,P0.65 -2.57092 2.57175 -2.32866 2.55189 0.01955 4.69043
MSSn,3,P0.40, P0.50,P0.60 -2.55048 2.54438 -2.35341 2.49075 0.01366 4.66880
MSSn,3,P0.45, P0.50,P0.55 -2.52279 2.53287 -2.34390 2.41319 0.01221 4.65537

Shifts for performance evaluation

In order to evaluate the performance of Shewhart − 3[MSS] charts, we have con-

sidered several amount of shifts in linear profile parameters (ψ). The description

of shifts in linear profile parameters are given as follows:

(i) Shifts in intercept parameter
(
B0 to B0 + θ

(
σe[MSS]/

√
n
))

,

(ii) Shifts in slope parameter
(
B1 to B1 + δ

(
σe[MSS]/

√
Sxx

))
,

(iii) Shifts in slope parameter
(
β1 to β1 + β

(
σe[MSS]/

√
Sxx

))
,

(iv) Shifts in error variance
(
σ2
e[MSS] to γ

2σ2
e[MSS]

)
,

where the size of shifts in intercept parameter are quantified as (θ = 0.2, 0.4, 0.6,

0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0), for slope parameter (δ and β = 0.025, 0.05,
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0.075, 0.1, 0.125, 0.150, 0.175, 0.2, 0.225 and 0.25) and for the

variance of disturbance term shifts are enumerated as (γ =

1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0). It is noted that process

is said to be IC when θ, β and δ are equal to zero and γ = 1 otherwise, process

is said to be OOC.

3.2 Comparative analysis

In this section, we discuss the comparative results of Shewhart − 3 chart under

different sampling environments. The average run length (ARL), standard devi-

ation of run length SDRL and different percentiles (25th, 75th and 95th) of run

length distribution are provided in Tables 3.2-3.10 and ARL curves are plotted in

Figures 3.1-3.4. Further, the performance of Shewhart − 3 chart under different

sampling environments is discussed in terms of percentage change in the ARL1

which is obtained as:

Percentage change =
ARL0 − ARL1

ARL0

3.2.1 Shifts in intercept parameter:

The results for Shewhart − 3[SRS] chart, Shewhart − 3[MSS] charts at fixed c =

2 and c = 3 under shifted intercept parameter are reported in Tables 3.2-3.4

respectively. Which shows that (100%) upward shift in intercept parameter, may

decrease 97.31% and 98.41% ARL1 of Shewhart−3[SRS] chart, 98.08% and 98.72%
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ARL1 of Shewhart − 3[MSSn,2,P0.25, P0.75 ]
chart and 98.00% and of 98.83%, ARL1

of Shewhart − 3[MSSn,2,P0.25, P0.75 ]
chart for the both cases of n (i.e. n=5 and 7)

respectively. Moreover, the ARL curves for shifted intercept parameter are plotted

in Figure 3.1, which reveals that Shewhart−3[MSS] charts have better performance

as compared to Shewhart−3[SRS] chart. Specifically, Shewhart−3[MSS] chart with

percentile choices (P0.45, P0.55) and (P0.45, P0.50, P0.55) outperforms all others

except in case when design parameters are n=7 and c=2.
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Figure 3.1: ARL curves of Shewhart− 3 chart under different sampling schemes
for intercept shifts

(
B0 to B0 + θ

(
σe[MSS]/

√
n
))
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Table 3.2: Performance of linear profile parameters under SRS

ψ Shifts
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95

θ

0.000 200.80 199.53 58.00 276.00 597.00 199.34 198.77 57.00 276.00 598.00
0.200 144.24 141.98 42.75 200.00 425.05 126.75 126.97 36.00 176.00 383.05
0.400 63.62 62.80 19.00 89.00 193.00 45.44 44.53 13.00 63.00 134.00
0.600 25.72 25.41 8.00 36.00 77.00 15.62 15.28 5.00 21.00 46.00
0.800 11.11 10.71 4.00 15.00 33.00 6.51 6.03 2.00 9.00 18.00
1.000 5.41 4.88 2.00 7.00 15.00 3.16 2.62 1.00 4.00 8.00
1.200 3.07 2.52 1.00 4.00 8.00 1.96 1.35 1.00 2.00 5.00
1.400 2.00 1.41 1.00 3.00 5.00 1.41 0.76 1.00 2.00 3.00
1.600 1.49 0.86 1.00 2.00 3.00 1.16 0.43 1.00 1.00 2.00
1.800 1.22 0.52 1.00 1.00 2.00 1.06 0.24 1.00 1.00 2.00
2.000 1.10 0.32 1.00 1.00 2.00 1.02 0.13 1.00 1.00 1.00

δ

0.000 200.72 199.02 57.00 276.00 606.00 200.14 201.41 57.00 277.00 608.00
0.025 191.12 191.52 54.00 263.00 578.05 176.52 177.91 51.00 245.00 530.05
0.050 168.22 169.77 48.00 234.00 505.00 127.51 127.41 37.00 177.00 382.05
0.075 135.74 136.21 39.00 188.00 402.05 78.49 78.25 23.00 108.00 237.05
0.100 108.38 107.57 30.00 150.25 325.05 45.89 45.15 14.00 64.00 138.00
0.125 77.93 75.92 23.00 109.00 228.00 26.86 26.54 8.00 37.00 80.00
0.150 58.35 57.36 17.00 80.00 172.05 16.03 15.49 5.00 22.00 47.00
0.175 40.82 40.04 12.00 56.00 121.00 9.85 9.14 3.00 14.00 28.00
0.200 30.19 29.32 9.00 42.00 89.00 6.47 5.85 2.00 9.00 18.00
0.225 21.95 21.35 7.00 30.00 65.00 4.44 3.93 2.00 6.00 12.00
0.250 15.82 15.17 5.00 22.00 46.00 3.21 2.67 1.00 4.00 8.00

β

0.000 201.67 200.37 59.00 278.00 602.05 202.40 201.99 58.00 278.00 609.00
0.025 159.61 160.09 44.00 222.00 476.05 116.79 116.37 33.00 162.00 345.00
0.050 89.93 89.91 26.00 124.00 270.05 40.63 39.74 12.00 56.00 121.00
0.075 46.81 45.96 14.00 65.00 138.00 14.18 13.60 4.00 19.00 41.00
0.100 23.08 22.37 7.00 32.00 68.00 5.97 5.44 2.00 8.00 17.00
0.125 12.10 11.47 4.00 17.00 35.00 2.97 2.47 1.00 4.00 8.00
0.150 6.96 6.51 2.00 9.00 20.00 1.84 1.23 1.00 2.00 4.00
0.175 4.30 3.71 2.00 6.00 12.00 1.35 0.70 1.00 2.00 3.00
0.200 2.89 2.35 1.00 4.00 8.00 1.14 0.41 1.00 1.00 2.00
0.225 2.12 1.54 1.00 3.00 5.00 1.04 0.21 1.00 1.00 1.00
0.250 1.65 1.05 1.00 2.00 4.00 1.01 0.11 1.00 1.00 1.00

γ

1.000 199.32 199.82 56.00 276.00 610.00 198.78 196.16 57.00 279.00 596.00
1.200 37.45 36.97 11.00 52.00 112.00 33.19 33.30 10.00 45.25 100.00
1.400 11.76 11.32 4.00 16.00 34.05 9.48 9.04 3.00 13.00 27.00
1.600 5.60 5.13 2.00 8.00 16.00 4.39 3.90 2.00 6.00 12.00
1.800 3.40 2.85 1.00 5.00 9.00 2.67 2.11 1.00 3.00 7.00
2.000 2.42 1.84 1.00 3.00 6.00 1.93 1.36 1.00 2.00 5.00
2.200 1.95 1.37 1.00 2.00 5.00 1.54 0.91 1.00 2.00 3.00
2.400 1.65 1.05 1.00 2.00 4.00 1.34 0.68 1.00 2.00 3.00
2.600 1.44 0.80 1.00 2.00 3.00 1.23 0.54 1.00 1.00 2.00
2.800 1.33 0.66 1.00 2.00 3.00 1.15 0.42 1.00 1.00 2.00
3.000 1.25 0.56 1.00 1.00 2.00 1.11 0.35 1.00 1.00 2.00
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Table 3.3: Performance of Shewhart−3[MSS] in the presence of shifts in intercept
parameter at fixed c=2

Schemes θ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95
M
S
S
n
,2
,P

0
.2
5
,
P
0
.7
5

0.00 200.34 212.24 51.00 279.00 625.05 199.01 205.28 54.00 274.00 604.00
0.20 124.99 129.52 31.00 178.00 384.00 112.65 114.15 31.00 157.00 338.00
0.40 47.73 49.62 12.00 68.00 148.00 36.05 36.35 10.00 50.00 110.00
0.60 17.30 18.38 4.00 24.00 54.00 11.88 12.02 3.00 17.00 36.00
0.80 7.44 7.81 2.00 10.00 23.00 5.05 4.87 1.00 7.00 15.00
1.00 3.85 3.89 1.00 5.00 12.00 2.56 2.21 1.00 3.00 7.00
1.20 2.26 1.99 1.00 3.00 6.00 1.64 1.18 1.00 2.00 4.00
1.40 1.57 1.12 1.00 2.00 4.00 1.25 0.60 1.00 1.00 2.00
1.60 1.24 0.64 1.00 1.00 3.00 1.09 0.34 1.00 1.00 2.00
1.80 1.09 0.35 1.00 1.00 2.00 1.02 0.16 1.00 1.00 1.00
2.00 1.04 0.21 1.00 1.00 1.00 1.01 0.08 1.00 1.00 1.00

M
S
S
n
,2
,P

0
.3
0
,
P
0
.7
0

0.00 199.52 203.67 54.75 279.00 598.05 207.77 211.47 58.00 289.25 631.05
0.20 131.78 134.53 35.00 185.00 398.00 114.03 119.27 31.00 158.00 342.05
0.40 50.94 52.62 13.00 71.00 154.00 35.75 36.50 10.00 50.00 108.00
0.60 19.00 19.90 5.00 26.00 58.00 12.06 12.27 3.00 17.00 37.00
0.80 7.89 8.04 2.00 11.00 24.00 4.83 4.67 1.00 7.00 14.00
1.00 3.96 3.93 1.00 5.00 12.00 2.52 2.19 1.00 3.00 7.00
1.20 2.32 2.05 1.00 3.00 7.00 1.61 1.10 1.00 2.00 4.00
1.40 1.60 1.17 1.00 2.00 4.00 1.23 0.60 1.00 1.00 2.00
1.60 1.26 0.67 1.00 1.00 3.00 1.09 0.33 1.00 1.00 2.00
1.80 1.10 0.38 1.00 1.00 2.00 1.03 0.17 1.00 1.00 1.00
2.00 1.04 0.22 1.00 1.00 1.00 1.01 0.07 1.00 1.00 1.00

M
S
S
n
,2
,P

0
.3
5
,
P
0
.6
5

0.00 204.37 204.88 56.00 287.00 611.05 204.67 206.68 55.75 288.00 621.00
0.20 132.68 135.41 36.00 184.00 409.00 117.14 118.93 32.00 166.00 357.05
0.40 50.53 52.81 13.00 69.00 155.05 37.76 37.93 10.00 53.00 114.00
0.60 19.01 20.29 5.00 26.00 59.00 12.35 12.45 3.00 17.00 38.00
0.80 7.98 8.28 2.00 11.00 24.00 5.05 4.83 1.00 7.00 15.00
1.00 4.02 3.92 1.00 5.00 12.00 2.55 2.24 1.00 3.00 7.00
1.20 2.37 2.13 1.00 3.00 7.00 1.63 1.13 1.00 2.00 4.00
1.40 1.62 1.22 1.00 2.00 4.00 1.25 0.62 1.00 1.00 3.00
1.60 1.26 0.68 1.00 1.00 3.00 1.09 0.32 1.00 1.00 2.00
1.80 1.11 0.41 1.00 1.00 2.00 1.03 0.17 1.00 1.00 1.00
2.00 1.04 0.22 1.00 1.00 1.00 1.01 0.08 1.00 1.00 1.00

M
S
S
n
,2
,P

0
.4
0
,
P
0
.6
0

0.00 199.29 201.20 54.00 281.00 597.00 195.05 198.28 54.00 273.00 595.10
0.20 131.97 135.10 36.00 182.00 403.00 113.88 114.28 32.00 159.00 337.05
0.40 49.27 50.92 13.00 69.00 150.00 35.68 36.52 9.00 50.00 109.00
0.60 17.87 18.39 5.00 24.00 54.00 11.70 11.77 3.00 16.00 35.00
0.80 7.63 7.82 2.00 11.00 23.00 4.90 4.77 1.00 7.00 15.00
1.00 3.88 3.82 1.00 5.00 12.00 2.51 2.16 1.00 3.00 7.00
1.20 2.30 2.05 1.00 3.00 7.00 1.60 1.11 1.00 2.00 4.00
1.40 1.58 1.15 1.00 2.00 4.00 1.24 0.60 1.00 1.00 2.00
1.60 1.25 0.66 1.00 1.00 3.00 1.08 0.31 1.00 1.00 2.00
1.80 1.10 0.40 1.00 1.00 2.00 1.02 0.17 1.00 1.00 1.00
2.00 1.04 0.22 1.00 1.00 1.00 1.01 0.08 1.00 1.00 1.00

M
S
S
n
,2
,P

0
.4
5
,
P
0
.5
5

0.00 205.58 208.93 54.00 291.00 620.00 201.76 207.39 53.75 280.00 612.05
0.20 132.52 135.00 36.00 186.00 404.00 129.48 131.41 34.00 181.00 396.00
0.40 48.46 49.68 13.00 67.00 149.00 48.68 50.05 13.00 68.00 148.00
0.60 17.39 18.41 4.00 24.00 54.00 17.72 18.61 4.00 25.00 55.00
0.80 7.52 7.94 2.00 10.00 23.00 7.43 7.79 2.00 10.00 23.00
1.00 3.77 3.80 1.00 5.00 12.00 3.81 3.77 1.00 5.00 11.00
1.20 2.25 1.99 1.00 3.00 6.00 2.28 2.05 1.00 3.00 6.00
1.40 1.58 1.16 1.00 2.00 4.00 1.55 1.13 1.00 2.00 4.00
1.60 1.25 0.69 1.00 1.00 3.00 1.23 0.64 1.00 1.00 3.00
1.80 1.09 0.36 1.00 1.00 2.00 1.10 0.39 1.00 1.00 2.00
2.00 1.03 0.21 1.00 1.00 1.00 1.03 0.20 1.00 1.00 1.00
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Table 3.4: Performance of Shewhart−3[MSS] in the presence of shifts in intercept
parameter at fixed c=3

Schemes θ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95
M
S
S
n
,3
,P

0
.2
5
,
P
0
.5
0
,P

0
.7
5

0.00 205.62 213.73 53.00 287.00 638.05 205.05 215.09 54.00 288.00 643.00
0.20 132.50 136.90 34.00 186.00 405.00 111.81 114.73 29.00 158.00 336.00
0.40 51.03 54.52 12.00 72.00 162.00 33.59 34.55 9.00 47.00 103.00
0.60 18.80 20.30 4.00 27.00 60.00 11.16 11.72 3.00 15.00 34.00
0.80 8.04 8.77 1.00 11.00 26.00 4.78 4.81 1.00 7.00 15.00
1.00 4.10 4.42 1.00 6.00 13.00 2.40 2.22 1.00 3.00 7.00
1.20 2.32 2.32 1.00 3.00 7.00 1.54 1.10 1.00 2.00 4.00
1.40 1.60 1.35 1.00 2.00 4.00 1.20 0.59 1.00 1.00 2.00
1.60 1.25 0.75 1.00 1.00 3.00 1.07 0.30 1.00 1.00 2.00
1.80 1.09 0.39 1.00 1.00 2.00 1.02 0.14 1.00 1.00 1.00
2.00 1.03 0.21 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.3
0
,
P
0
.5
0
,P

0
.7
0

0.00 208.87 219.15 54.00 289.00 642.00 204.30 210.23 55.00 285.00 626.00
0.20 130.32 136.79 33.00 185.00 402.00 109.96 111.97 29.00 154.00 336.00
0.40 47.64 51.81 11.00 66.00 150.00 34.11 35.78 9.00 48.00 103.00
0.60 17.21 19.08 3.00 25.00 54.00 10.81 11.35 3.00 15.00 33.00
0.80 7.38 8.36 1.00 10.00 24.00 4.50 4.52 1.00 6.00 14.00
1.00 3.76 4.15 1.00 5.00 12.00 2.39 2.21 1.00 3.00 7.00
1.20 2.19 2.15 1.00 3.00 7.00 1.53 1.09 1.00 2.00 4.00
1.40 1.52 1.21 1.00 1.00 4.00 1.19 0.55 1.00 1.00 2.00
1.60 1.20 0.66 1.00 1.00 2.00 1.06 0.28 1.00 1.00 2.00
1.80 1.07 0.36 1.00 1.00 2.00 1.02 0.15 1.00 1.00 1.00
2.00 1.03 0.21 1.00 1.00 1.00 1.00 0.07 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.3
5
,
P
0
.5
0
,P

0
.6
5

0.00 202.91 212.07 50.00 292.00 628.05 197.83 202.26 52.00 278.00 605.00
0.20 119.34 127.77 27.00 167.00 378.05 109.16 114.29 28.00 151.00 340.00
0.40 41.32 45.75 8.00 58.00 136.00 31.15 32.45 8.00 44.00 97.00
0.60 14.83 17.06 2.00 21.00 49.00 10.34 10.93 2.00 14.00 32.00
0.80 6.38 7.46 1.00 9.00 22.00 4.27 4.29 1.00 6.00 13.00
1.00 3.24 3.65 1.00 4.00 10.00 2.30 2.08 1.00 3.00 7.00
1.20 1.99 1.98 1.00 2.00 6.00 1.49 1.04 1.00 2.00 4.00
1.40 1.43 1.13 1.00 1.00 4.00 1.18 0.55 1.00 1.00 2.00
1.60 1.16 0.62 1.00 1.00 2.00 1.06 0.27 1.00 1.00 1.00
1.80 1.05 0.29 1.00 1.00 1.00 1.02 0.14 1.00 1.00 1.00
2.00 1.02 0.15 1.00 1.00 1.00 1.00 0.07 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.4
0
,
P
0
.5
0
,P

0
.6
0

0.00 200.90 211.95 47.00 281.25 633.00 207.65 213.21 57.00 290.00 631.05
0.20 121.01 128.88 28.00 170.00 381.05 109.47 114.62 28.00 153.00 335.00
0.40 41.10 45.17 8.00 58.00 135.00 30.87 32.35 7.00 44.00 95.00
0.60 14.73 16.87 2.00 21.00 49.00 10.18 10.88 2.00 14.00 32.00
0.80 6.41 7.37 1.00 9.00 22.00 4.28 4.42 1.00 6.00 13.00
1.00 3.25 3.66 1.00 4.00 11.00 2.26 2.08 1.00 3.00 7.00
1.20 1.98 2.01 1.00 2.00 6.00 1.47 1.03 1.00 2.00 4.00
1.40 1.41 1.07 1.00 1.00 4.00 1.17 0.52 1.00 1.00 2.00
1.60 1.16 0.60 1.00 1.00 2.00 1.05 0.26 1.00 1.00 1.00
1.80 1.06 0.31 1.00 1.00 1.00 1.01 0.11 1.00 1.00 1.00
2.00 1.02 0.15 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.4
5
,
P
0
.5
0
,P

0
.5
5

0.00 183.98 210.57 30.00 262.00 615.00 200.15 207.45 52.00 279.00 618.05
0.20 97.81 111.77 15.00 141.00 321.05 106.89 113.02 26.00 151.00 334.05
0.40 32.03 37.42 4.00 47.00 107.00 31.49 33.55 7.00 45.00 98.00
0.60 11.70 14.37 2.00 17.00 42.00 9.96 10.88 2.00 14.00 32.00
0.80 5.34 6.65 1.00 7.00 20.00 4.21 4.38 1.00 6.00 13.00
1.00 2.80 3.42 1.00 3.00 10.00 2.25 2.11 1.00 3.00 7.00
1.20 1.76 1.80 1.00 2.00 5.00 1.46 1.03 1.00 2.00 4.00
1.40 1.29 0.92 1.00 1.00 3.00 1.17 0.53 1.00 1.00 2.00
1.60 1.11 0.49 1.00 1.00 2.00 1.05 0.27 1.00 1.00 1.00
1.80 1.04 0.24 1.00 1.00 1.00 1.01 0.13 1.00 1.00 1.00
2.00 1.01 0.11 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00
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3.2.2 Shifts in slope parameter of transformed model:

The Table 3.2, 3.5 and 3.6 are about the results for shifted slope parameter of

transformed model in Shewhart− 3[SRS] chart, Shewhart− 3[MSS] charts at fixed

c = 2 and 3 respectively. Which reveals that (17.5%) upward shift in slope parame-

ter of transformed model, may decrease 79.67% and 95.08% ARL1 of Shewhart−

3[SRS] chart, 88.74% and 97.74% ARL1 of Shewhart − 3[MSSn,2,P0.30, P0.70 ]
chart

and 89.58% and 97.90% ARL1 of Shewhart − 3[MSSn,3,P0.30,P0.5, P0.70 ]
chart for

n=5 and 7 respectively. However, the ARL curves for shifted slope parameter of

transformed model are plotted in Figure 3.2, which shows that Shewhart−3[MSS]

charts have relatively better performance as compared to Shewhart−3[SRS] chart.

Specifically, Shewhart − 3[MSS] chart under percentile choices (P0.45, P0.55) and

(P0.45, P0.50, P0.55) outperforms all others except in case when design parameters

are n=7 and c=2.

3.2.3 Shifts in slope parameter of original model:

The results for Shewhart−3[SRS] chart, Shewhart−3[MSS] charts at fixed c=2 and

3, under shifted slope parameter of orignal model are reported in Tables 3.2, 3.7

and 3.8 respectively. Which shows that (7.5%) upward shift in intercept parame-

ter, may decrease 76.79% and 92.99% ARL1 of Shewhart− 3[SRS] chart, 83.84%

and 83.81% ARL1 of Shewhart−3[MSSn,2,P0.45, P0.55 ]
chart and 88.76% and 95.67%

ARL1 of Shewhart−3[MSSn,3,P0.45,P0.5, P0.55 ]
chart for the both cases of n (i.e. n=5

and 7 respectively. Moreover, the ARL curves for shifted intercept parameter are
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Table 3.5: Performance of Shewhart−3[MSS] in the presence of shifts in the slope
of transformed model parameter at fixed c=2

Schemes δ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95
M
S
S
n
,2
,P

0
.2
5
,
P
0
.7
5

0.000 194.12 205.30 48.00 272.00 596.05 195.65 200.48 54.00 273.00 597.00
0.025 184.70 192.26 46.00 261.00 567.00 168.13 172.86 45.00 234.00 501.05
0.050 148.82 156.08 37.00 210.00 453.00 105.03 108.26 28.00 146.00 320.05
0.075 110.80 114.49 28.75 156.00 334.00 54.60 55.69 15.00 76.00 166.00
0.100 74.61 78.86 18.00 106.00 234.00 27.53 27.57 8.00 38.00 83.00
0.125 49.33 50.62 13.00 69.00 153.00 13.95 13.80 4.00 20.00 42.00
0.150 32.54 33.92 8.00 45.00 100.00 8.07 7.70 3.00 11.00 24.00
0.175 21.59 21.97 6.00 30.00 65.05 4.88 4.30 2.00 7.00 13.00
0.200 14.60 14.50 4.00 20.00 44.00 3.28 2.61 1.00 4.00 8.00
0.225 10.09 9.90 3.00 14.00 29.00 2.39 1.64 1.00 3.00 6.00
0.250 7.19 6.58 2.00 10.00 20.00 1.91 1.16 1.00 2.00 4.00

M
S
S
n
,2
,P

0
.3
0
,
P
0
.7
0

0.000 203.54 205.49 57.00 286.00 620.00 202.33 202.60 57.00 283.00 614.00
0.025 190.96 195.04 51.00 265.00 576.00 171.70 172.95 48.00 239.00 527.05
0.050 155.99 158.73 43.00 219.25 469.00 104.14 107.24 27.00 146.00 315.05
0.075 116.43 118.84 32.00 164.00 353.00 54.42 55.55 15.00 75.00 167.05
0.100 80.22 81.36 22.00 113.00 243.05 26.55 26.91 7.00 37.00 81.05
0.125 53.22 54.52 15.00 74.00 161.00 14.05 13.93 4.00 19.00 42.00
0.150 35.23 35.91 10.00 49.00 105.05 7.48 7.04 2.00 10.00 22.00
0.175 22.92 22.97 6.00 32.00 69.00 4.59 3.97 2.00 6.00 13.00
0.200 15.71 15.88 4.00 22.00 47.00 3.06 2.38 1.00 4.00 8.00
0.225 10.75 10.27 3.00 15.00 31.00 2.30 1.60 1.00 3.00 5.00
0.250 7.44 6.84 2.00 10.00 21.00 1.85 1.13 1.00 2.00 4.00

M
S
S
n
,2
,P

0
.3
5
,
P
0
.6
5

0.000 205.68 211.46 57.00 284.00 625.00 204.77 202.62 58.00 284.00 622.00
0.025 191.70 192.66 54.00 268.00 573.00 168.97 172.53 47.00 234.00 521.00
0.050 158.48 161.67 43.00 221.00 479.00 99.66 99.61 28.00 140.00 297.00
0.075 117.33 120.60 32.00 163.00 363.00 51.64 52.26 14.00 73.00 156.00
0.100 81.87 83.59 23.00 114.00 244.00 24.85 25.56 7.00 34.00 76.00
0.125 53.62 54.84 14.00 74.00 165.05 13.24 13.37 4.00 18.00 40.00
0.150 34.92 35.83 9.00 49.00 105.00 7.16 6.91 2.00 10.00 21.00
0.175 22.96 23.76 6.00 32.00 71.00 4.49 4.05 2.00 6.00 12.00
0.200 15.44 15.55 4.00 22.00 47.00 3.01 2.43 1.00 4.00 8.00
0.225 10.48 10.37 3.00 15.00 31.00 2.22 1.54 1.00 3.00 5.00
0.250 7.43 7.08 2.00 10.00 22.00 1.80 1.10 1.00 2.00 4.00

M
S
S
n
,2
,P

0
.4
0
,
P
0
.6
0

0.000 199.13 200.86 55.00 280.00 600.05 195.70 198.35 52.00 275.00 590.00
0.025 190.19 198.40 51.00 266.00 570.00 168.12 171.02 49.00 234.00 515.00
0.050 155.29 155.86 44.00 215.00 460.00 103.58 106.50 27.00 145.00 316.00
0.075 113.85 117.57 31.00 161.00 349.00 54.61 55.87 15.00 76.00 166.00
0.100 80.15 83.31 22.00 113.00 245.00 26.04 26.59 7.00 36.00 80.00
0.125 52.05 54.72 13.00 72.00 164.00 13.41 13.72 4.00 19.00 41.00
0.150 34.05 35.39 9.00 48.00 105.00 7.41 7.24 2.00 10.00 22.00
0.175 22.08 22.84 6.00 31.00 68.00 4.55 4.07 2.00 6.00 13.00
0.200 14.55 14.79 4.00 20.00 44.00 3.02 2.42 1.00 4.00 8.00
0.225 10.01 10.17 3.00 14.00 30.00 2.26 1.60 1.00 3.00 5.00
0.250 7.13 6.84 2.00 10.00 21.00 1.80 1.11 1.00 2.00 4.00

M
S
S
n
,2
,P

0
.4
5
,
P
0
.5
5

0.000 205.32 207.29 56.00 286.00 616.00 200.77 207.55 53.00 281.00 618.05
0.025 188.59 195.35 49.00 262.00 584.00 190.86 194.25 52.00 268.00 582.05
0.050 151.90 155.91 40.00 214.00 463.00 151.52 154.51 41.00 211.00 456.05
0.075 112.49 116.56 30.00 157.00 346.00 112.45 115.82 30.00 156.00 344.00
0.100 74.78 77.20 20.00 104.00 227.00 75.99 78.06 20.00 107.00 231.00
0.125 49.09 50.56 13.00 69.00 151.00 49.22 50.85 13.00 69.00 152.00
0.150 31.33 33.44 8.00 44.00 99.00 31.86 33.41 8.00 44.00 97.00
0.175 20.57 21.83 5.00 28.00 63.00 20.24 21.12 5.00 29.00 62.00
0.200 13.64 14.21 3.00 19.00 41.00 13.80 14.48 3.00 19.00 43.00
0.225 9.22 9.34 2.00 13.00 29.00 9.31 9.30 3.00 13.00 28.00
0.250 6.50 6.24 2.00 9.00 19.00 6.65 6.52 2.00 9.00 20.00
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Table 3.6: Performance of Shewhart−3[MSS] in the presence of shifts in the slope
of transformed model parameter at fixed c=3

Schemes δ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95
M
S
S
n
,3
,P

0
.2
5
,
P
0
.5
0
,P

0
.7
5

0.000 208.02 217.60 53.00 290.00 637.00 206.06 209.33 55.00 290.00 629.10
0.025 191.94 199.92 49.00 271.00 589.00 168.04 169.00 46.00 234.00 498.05
0.050 155.21 157.85 42.00 215.00 472.00 102.51 105.83 28.00 141.00 309.00
0.075 118.49 122.45 32.00 165.00 361.00 52.81 53.92 14.00 72.00 163.00
0.100 78.94 80.91 21.00 110.00 243.00 25.87 26.04 7.00 36.00 78.00
0.125 52.20 53.32 14.00 72.00 159.00 13.56 13.35 4.00 19.00 40.00
0.150 35.31 35.26 10.00 49.00 106.00 7.35 6.78 2.00 10.00 21.00
0.175 22.77 22.67 6.00 32.00 68.00 4.60 3.88 2.00 6.00 12.00
0.200 15.39 15.29 5.00 21.00 46.00 3.16 2.29 1.00 4.00 8.00
0.225 10.79 10.33 3.00 15.00 31.00 2.37 1.56 1.00 3.00 5.00
0.250 7.71 7.05 3.00 10.00 22.00 1.92 1.12 1.00 2.00 4.00

M
S
S
n
,3
,P

0
.3
0
,
P
0
.5
0
,P

0
.7
0

0.000 206.14 216.10 52.00 289.00 644.00 204.71 210.05 55.00 285.00 621.05
0.025 190.81 200.96 49.00 268.00 584.05 169.91 176.82 44.00 237.00 521.05
0.050 161.24 169.75 39.00 225.00 503.00 105.56 108.92 28.00 146.00 322.00
0.075 115.39 120.91 29.00 162.00 359.05 52.26 53.90 14.00 73.00 158.00
0.100 77.52 82.49 19.00 107.00 240.00 24.97 25.89 7.00 35.00 76.00
0.125 51.66 54.42 13.00 72.00 162.05 12.74 12.73 4.00 17.00 39.00
0.150 33.17 34.33 8.00 47.00 102.00 7.11 6.69 2.00 10.00 21.00
0.175 21.48 22.77 5.00 30.00 67.00 4.30 3.69 2.00 6.00 12.00
0.200 14.49 14.90 4.00 20.00 45.00 2.95 2.19 1.00 4.00 7.00
0.225 9.76 9.71 3.00 14.00 29.00 2.29 1.50 1.00 3.00 5.00
0.250 6.97 6.76 2.00 9.00 21.00 1.83 1.08 1.00 2.00 4.00

M
S
S
n
,3
,P

0
.3
5
,
P
0
.5
0
,P

0
.6
5

0.000 199.65 210.88 48.00 285.00 622.00 199.48 204.68 53.00 282.00 599.00
0.025 191.08 200.92 46.00 269.00 591.05 160.14 164.01 42.00 224.00 493.00
0.050 157.39 169.14 36.75 217.00 499.05 95.72 99.86 24.00 133.00 294.00
0.075 113.77 119.71 25.00 163.00 348.00 47.95 49.80 12.00 67.00 146.00
0.100 74.30 80.14 16.00 107.00 232.05 23.19 23.69 6.00 33.00 71.00
0.125 47.62 51.48 10.00 68.00 153.00 11.38 11.71 3.00 16.00 35.00
0.150 30.40 33.16 6.00 43.00 97.00 6.53 6.36 2.00 9.00 19.00
0.175 20.08 22.46 4.00 28.00 66.00 3.97 3.50 1.00 5.00 11.00
0.200 13.18 14.43 3.00 18.00 43.00 2.78 2.17 1.00 4.00 7.00
0.225 8.69 9.42 2.00 12.00 28.00 2.12 1.42 1.00 3.00 5.00
0.250 6.34 6.52 2.00 9.00 20.00 1.73 1.03 1.00 2.00 4.00

M
S
S
n
,3
,P

0
.4
0
,
P
0
.5
0
,P

0
.6
0

0.000 202.28 219.55 46.00 285.00 650.05 210.35 219.07 55.00 294.00 642.00
0.025 186.54 202.94 41.00 263.00 598.00 173.18 178.31 45.00 243.00 534.05
0.050 146.65 160.18 31.00 207.25 464.00 101.12 105.70 26.00 143.25 313.05
0.075 104.15 115.98 20.00 147.25 339.05 49.71 52.73 12.00 70.00 155.00
0.100 68.06 74.61 14.00 97.00 218.00 23.56 24.96 5.00 33.00 74.05
0.125 43.02 48.28 8.00 61.00 141.00 11.43 12.12 3.00 16.00 36.00
0.150 27.23 30.40 5.00 39.00 89.00 6.44 6.43 2.00 9.00 19.00
0.175 17.20 19.41 3.00 24.00 57.00 4.06 3.75 1.00 5.00 12.00
0.200 11.63 12.78 2.00 16.00 37.00 2.76 2.24 1.00 4.00 7.00
0.225 7.82 8.44 2.00 11.00 26.00 2.10 1.49 1.00 3.00 5.00
0.250 5.54 5.76 2.00 7.00 18.00 1.70 1.06 1.00 2.00 4.00

M
S
S
n
,3
,P

0
.4
5
,
P
0
.5
0
,P

0
.5
5

0.000 186.73 212.49 33.00 265.00 622.05 197.92 202.17 52.00 277.00 603.00
0.025 167.95 191.66 27.00 242.00 558.00 160.57 167.95 40.00 224.00 494.00
0.050 129.90 149.42 20.00 188.00 433.05 95.22 99.74 23.00 134.00 293.00
0.075 90.89 105.74 12.00 132.00 301.00 45.08 47.62 10.00 63.00 139.00
0.100 57.89 67.41 9.00 83.00 193.00 21.25 23.09 4.00 30.00 68.00
0.125 35.75 41.83 5.00 51.00 119.00 10.77 11.31 2.00 15.00 34.00
0.150 23.76 27.95 4.00 34.00 79.05 6.10 6.00 2.00 9.00 18.00
0.175 15.42 17.71 3.00 22.00 53.00 3.87 3.64 1.00 5.00 11.00
0.200 10.38 11.91 2.00 14.00 35.00 2.71 2.27 1.00 3.00 7.00
0.225 7.66 8.56 2.00 11.00 26.00 2.03 1.52 1.00 2.00 5.00
0.250 5.48 6.11 1.00 7.00 18.00 1.63 1.01 1.00 2.00 4.00

75



3.
0

3.
5

4.
0

4.
5

5.
0

n = 5, c = 2

 δ

ln
(A

R
L)

0 0.05 0.1 0.15 0.2 0.25

SRS
MSSP0.25, P0.75

MSSP0.3, P0.7

MSSP0.35, P0.65

MSSP0.4, P0.6

MSSP0.45, P0.55

2
3

4
5

n = 7, c = 2

 δ

ln
(A

R
L)

0 0.05 0.1 0.15 0.2 0.25

SRS
MSSP0.25, P0.75

MSSP0.3, P0.7

MSSP0.35, P0.65

MSSP0.4, P0.6

MSSP0.45, P0.55

3.
0

3.
5

4.
0

4.
5

5.
0

n = 5, c = 3

 δ

ln
(A

R
L)

0 0.05 0.1 0.15 0.2 0.25

SRS
MSSP0.25, P0.5, P0.75

MSSP0.3, P0.5, P0.7

MSSP0.35, P0.5, P0.65

MSSP0.4, P0.5, P0.6

MSSP0.45, P0.5, P0.55

2
3

4
5

n = 7, c = 3

 δ

ln
(A

R
L)

0 0.05 0.1 0.15 0.2 0.25

SRS
MSSP0.25, P0.5, P0.75

MSSP0.3, P0.5, P0.7

MSSP0.35, P0.5, P0.65

MSSP0.4, P0.5, P0.6

MSSP0.45, P0.5, P0.55

Figure 3.2: ARL curves of Shewhart− 3 chart under different sampling schemes
for slope shifts

(
B1 to B1 + δ

(
σe[MSS]/

√
Sxx

))
plotted in Figure 3.3, which reveals that Shewhart−3[MSS] charts have better per-

formance as compared to Shewhart−3[SRS] chart. Specifically,Shewhart−3[MSS]

chart with percentile choices (P0.45, P0.55) and (P0.45, P0.50, P0.55) outperforms

all others except in case when design parameters are n=7 and c=2.
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Table 3.7: Performance of Shewhart−3[MSS] in the presence of shifts in the slope
of original model parameter at fixed c=2

Schemes β
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95
M
S
S
n
,2
,P

0
.2
5
,
P
0
.7
5

0.000 194.76 208.14 47.00 273.00 617.00 199.81 202.71 52.00 281.00 602.00
0.025 142.50 147.78 37.00 202.00 433.00 103.37 104.74 28.00 146.00 312.05
0.050 71.10 75.55 17.00 100.00 221.00 31.83 32.64 8.00 45.00 96.00
0.075 32.21 34.27 8.00 45.00 102.05 10.57 10.69 3.00 15.00 32.00
0.100 15.65 16.53 4.00 22.00 49.00 4.38 4.31 1.00 6.00 13.00
0.125 8.12 8.46 2.00 12.00 25.00 2.34 1.97 1.00 3.00 6.00
0.150 4.72 4.84 1.00 7.00 15.00 1.51 0.96 1.00 2.00 4.00
0.175 3.02 2.90 1.00 4.00 9.00 1.19 0.53 1.00 1.00 2.00
0.200 2.12 1.84 1.00 3.00 6.00 1.06 0.25 1.00 1.00 2.00
0.225 1.62 1.20 1.00 2.00 4.00 1.01 0.12 1.00 1.00 1.00
0.250 1.33 0.78 1.00 1.00 3.00 1.00 0.06 1.00 1.00 1.00

M
S
S
n
,2
,P

0
.3
0
,
P
0
.7
0

0.000 201.07 208.54 54.00 279.00 613.00 208.39 209.68 58.00 293.00 624.00
0.025 147.22 149.87 39.00 208.00 443.00 104.75 106.13 30.00 145.00 320.00
0.050 75.30 76.72 20.00 106.00 224.00 30.92 31.03 8.00 44.00 92.00
0.075 34.55 36.35 9.00 48.00 107.00 10.46 10.70 3.00 14.00 32.00
0.100 16.68 17.22 4.00 23.00 51.00 4.35 4.22 1.00 6.00 13.00
0.125 8.64 8.95 2.00 12.00 27.00 2.26 1.92 1.00 3.00 6.00
0.150 5.07 5.17 1.00 7.00 15.00 1.51 0.98 1.00 2.00 4.00
0.175 3.18 3.01 1.00 4.00 9.00 1.18 0.49 1.00 1.00 2.00
0.200 2.18 1.88 1.00 3.00 6.00 1.05 0.25 1.00 1.00 1.00
0.225 1.66 1.25 1.00 2.00 4.00 1.02 0.13 1.00 1.00 1.00
0.250 1.35 0.79 1.00 1.00 3.00 1.00 0.05 1.00 1.00 1.00

M
S
S
n
,2
,P

0
.3
5
,
P
0
.6
5

0.000 201.64 203.97 57.00 284.00 604.00 206.41 208.32 57.00 289.00 617.05
0.025 152.19 157.36 41.00 208.00 467.05 104.77 106.76 29.00 147.00 314.00
0.050 76.67 79.26 20.00 107.00 233.00 32.60 33.11 9.00 46.00 99.00
0.075 35.18 36.05 9.00 49.00 105.00 10.47 10.59 3.00 15.00 32.00
0.100 16.98 17.63 4.00 24.00 53.00 4.35 4.20 1.00 6.00 13.00
0.125 8.76 9.14 2.00 12.00 27.00 2.34 1.97 1.00 3.00 6.00
0.150 5.02 5.06 1.00 7.00 15.00 1.48 0.96 1.00 2.00 3.00
0.175 3.14 3.03 1.00 4.00 9.00 1.18 0.50 1.00 1.00 2.00
0.200 2.17 1.90 1.00 3.00 6.00 1.06 0.25 1.00 1.00 2.00
0.225 1.64 1.20 1.00 2.00 4.00 1.01 0.12 1.00 1.00 1.00
0.250 1.34 0.80 1.00 1.00 3.00 1.00 0.05 1.00 1.00 1.00

M
S
S
n
,2
,P

0
.4
0
,
P
0
.6
0

0.000 206.14 211.34 57.00 292.00 627.00 194.50 197.06 54.00 270.00 591.05
0.025 151.13 154.54 41.00 210.00 459.00 103.19 102.88 29.00 146.00 304.00
0.050 75.24 77.39 20.00 103.00 229.00 30.44 31.21 8.00 42.00 95.00
0.075 34.13 35.94 8.00 48.00 106.00 10.05 10.36 3.00 14.00 31.00
0.100 16.32 16.98 4.00 23.00 52.00 4.31 4.12 1.00 6.00 13.00
0.125 8.40 8.74 2.00 12.00 26.00 2.25 1.90 1.00 3.00 6.00
0.150 4.77 4.88 1.00 7.00 15.00 1.48 0.97 1.00 2.00 3.00
0.175 3.01 2.92 1.00 4.00 9.00 1.16 0.46 1.00 1.00 2.00
0.200 2.08 1.77 1.00 2.00 6.00 1.06 0.26 1.00 1.00 1.00
0.225 1.61 1.20 1.00 2.00 4.00 1.01 0.11 1.00 1.00 1.00
0.250 1.31 0.75 1.00 1.00 3.00 1.00 0.05 1.00 1.00 1.00

M
S
S
n
,2
,P

0
.4
5
,
P
0
.5
5

0.000 204.11 209.24 55.00 286.00 624.00 203.73 208.07 55.00 283.00 621.00
0.025 148.51 154.89 39.00 205.00 455.00 148.33 150.14 41.00 206.00 449.00
0.050 73.84 77.19 19.00 102.00 231.00 74.25 77.39 19.00 104.00 224.00
0.075 32.93 34.65 8.00 46.00 101.05 32.98 35.01 8.00 47.00 102.00
0.100 15.62 16.67 3.00 22.00 50.00 15.58 16.52 4.00 22.00 48.00
0.125 8.01 8.51 2.00 11.00 25.00 8.04 8.56 2.00 11.00 25.00
0.150 4.67 4.81 1.00 6.00 14.00 4.59 4.75 1.00 6.00 14.00
0.175 2.90 2.84 1.00 4.00 9.00 2.93 2.85 1.00 4.00 9.00
0.200 2.05 1.81 1.00 2.00 6.00 2.03 1.77 1.00 2.00 6.00
0.225 1.54 1.09 1.00 2.00 4.00 1.56 1.13 1.00 2.00 4.00
0.250 1.27 0.68 1.00 1.00 3.00 1.28 0.71 1.00 1.00 3.00
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Table 3.8: Performance of Shewhart−3[MSS] in the presence of shifts in the slope
of original model parameter at fixed c=3

Schemes β
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95
M
S
S
n
,3
,P

0
.2
5
,
P
0
.5
0
,P

0
.7
5

0.000 206.15 212.78 53.00 289.00 639.00 202.97 208.73 55.00 280.00 609.05
0.025 153.63 158.54 40.00 216.00 470.00 100.28 101.84 27.00 140.00 302.00
0.050 76.37 79.49 20.00 106.00 233.00 29.80 31.17 8.00 42.00 91.00
0.075 34.82 37.07 8.00 49.00 109.00 9.96 10.39 2.00 14.00 30.05
0.100 16.90 17.95 4.00 24.00 52.00 4.20 4.33 1.00 6.00 13.00
0.125 8.82 9.47 2.00 12.00 28.00 2.23 1.98 1.00 3.00 6.00
0.150 5.11 5.51 1.00 7.00 16.00 1.45 0.97 1.00 2.00 3.00
0.175 3.16 3.31 1.00 4.00 10.00 1.16 0.49 1.00 1.00 2.00
0.200 2.19 2.11 1.00 3.00 7.00 1.05 0.26 1.00 1.00 1.00
0.225 1.64 1.34 1.00 2.00 4.00 1.01 0.12 1.00 1.00 1.00
0.250 1.32 0.86 1.00 1.00 3.00 1.00 0.05 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.3
0
,
P
0
.5
0
,P

0
.7
0

0.000 205.97 214.10 53.00 287.25 632.00 205.08 207.42 54.00 290.00 627.00
0.025 149.15 157.12 37.00 210.00 462.05 102.87 105.94 28.00 144.00 313.00
0.050 73.13 77.71 17.00 104.00 223.00 29.26 30.72 7.00 41.00 92.00
0.075 32.28 35.73 7.00 46.00 101.00 9.58 10.09 2.00 13.00 29.00
0.100 15.23 16.78 3.00 22.00 50.00 4.03 4.07 1.00 5.00 12.00
0.125 8.01 9.07 1.00 11.00 27.00 2.12 1.84 1.00 3.00 6.00
0.150 4.69 5.26 1.00 6.00 15.00 1.41 0.90 1.00 1.00 3.00
0.175 2.90 3.03 1.00 4.00 9.00 1.14 0.46 1.00 1.00 2.00
0.200 2.02 1.98 1.00 2.00 6.00 1.04 0.23 1.00 1.00 1.00
0.225 1.52 1.21 1.00 2.00 4.00 1.01 0.10 1.00 1.00 1.00
0.250 1.26 0.76 1.00 1.00 3.00 1.00 0.05 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.3
5
,
P
0
.5
0
,P

0
.6
5

0.000 203.12 215.52 48.00 287.00 630.00 198.12 204.56 53.00 276.00 608.05
0.025 144.19 154.78 33.00 202.00 457.00 95.21 99.81 25.00 133.00 293.00
0.050 65.97 72.81 13.00 94.00 213.00 27.63 29.31 6.00 39.00 85.05
0.075 28.21 32.14 5.00 40.00 91.00 9.03 9.53 2.00 13.00 28.00
0.100 13.16 15.24 2.00 18.00 45.00 3.81 3.92 1.00 5.00 12.00
0.125 6.81 8.02 1.00 9.00 23.00 2.00 1.72 1.00 2.00 6.00
0.150 3.93 4.52 1.00 5.00 13.00 1.37 0.85 1.00 1.00 3.00
0.175 2.51 2.69 1.00 3.00 8.00 1.12 0.42 1.00 1.00 2.00
0.200 1.77 1.62 1.00 2.00 5.00 1.04 0.22 1.00 1.00 1.00
0.225 1.40 1.03 1.00 1.00 3.00 1.01 0.10 1.00 1.00 1.00
0.250 1.20 0.63 1.00 1.00 2.00 1.00 0.04 1.00 1.00 1.00

M
M
S
S
n
,3
,P

0
.4
0
,
P
0
.5
0
,P

0
.6
0

0.000 206.24 222.07 47.00 290.00 649.00 205.07 211.94 54.00 288.00 629.10
0.025 137.13 149.25 28.00 195.00 445.00 100.49 106.34 24.00 142.00 317.00
0.050 60.00 67.46 10.00 86.00 194.00 27.66 29.76 6.00 39.00 88.00
0.075 25.22 29.83 3.00 36.00 86.00 8.76 9.63 2.00 12.00 28.00
0.100 11.78 14.52 2.00 17.00 41.00 3.62 3.80 1.00 5.00 11.00
0.125 5.98 7.37 1.00 8.00 21.00 1.98 1.73 1.00 2.00 6.00
0.150 3.46 4.13 1.00 4.00 12.00 1.33 0.78 1.00 1.00 3.00
0.175 2.28 2.39 1.00 3.00 7.00 1.12 0.43 1.00 1.00 2.00
0.200 1.63 1.40 1.00 2.00 4.00 1.03 0.19 1.00 1.00 1.00
0.225 1.32 0.89 1.00 1.00 3.00 1.01 0.09 1.00 1.00 1.00
0.250 1.16 0.56 1.00 1.00 2.00 1.00 0.04 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.4
5
,
P
0
.5
0
,P

0
.5
5

0.000 186.02 211.88 31.00 266.00 613.00 197.65 205.69 51.00 278.00 611.00
0.025 118.26 138.38 17.00 171.00 393.00 97.44 105.26 22.00 135.00 310.00
0.050 49.69 60.96 6.00 72.00 173.00 26.48 29.44 5.00 37.00 86.00
0.075 20.91 26.22 2.00 30.00 72.00 8.54 9.49 2.00 12.00 28.00
0.100 9.76 12.62 1.00 13.00 37.00 3.52 3.67 1.00 5.00 11.00
0.125 5.09 6.58 1.00 6.00 18.00 1.94 1.73 1.00 2.00 5.00
0.150 2.99 3.59 1.00 3.00 10.00 1.33 0.78 1.00 1.00 3.00
0.175 1.99 2.05 1.00 2.00 6.00 1.11 0.39 1.00 1.00 2.00
0.200 1.49 1.22 1.00 1.00 4.00 1.03 0.18 1.00 1.00 1.00
0.225 1.25 0.72 1.00 1.00 3.00 1.01 0.08 1.00 1.00 1.00
0.250 1.12 0.45 1.00 1.00 2.00 1.00 0.02 1.00 1.00 1.00
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Figure 3.3: ARL curves of Shewhart− 3 chart under different sampling schemes
for slope shifts

(
β1 to β1 + β

(
σe[MSS]/

√
Sxx

))
3.2.4 Shifts in error variance of disturbance term:

Tables 3.2,3.9 and 3.10 are about the results for shifted error variance parameter

in Shewhart− 3[SRS] chart, Shewhart− 3[MSS] charts at fixed c=2 and 3 respec-

tively. Which reveals that (60%) upward shift in error variance parameter, may

decrease 97.19% and 97.79% ARL1 of Shewhart−3[SRS] chart, 97.12% and 97.16%

ARL1 of Shewhart − 3[MSSn,2,P0.40, P0.60 ]
chart and 97.84% and 97.91% ARL1 of
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Shewhart− 3[MSSn,3,P0.40,P0.5, P0.60 ]
chart for n=5 and 7 respectively. However, the

curves for shifted error variance parameter are plotted in Figure 3.4, which shows

that Shewhart− 3[MSS] charts have relatively better performance as compared to

Shewhart − 3[SRS] chart. Specifically,Shewhart − 3[MSS] chart under percentile

choices (P0.45, P0.55) and (P0.45, P0.50, P0.55) outperforms all others while in case

of n=7 and c=2,Shewhart − 3[MSS] chart under percentile choice (P0.40, P0.60)

have relatively good performance among all others.
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Figure 3.4: ARL curves of Shewhart− 3 chart under different sampling schemes

for error variamce shifts
(
σ2
e[MSS] to γσ

2
e[MSS]

)
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Table 3.9: Performance of Shewhart−3[MSS] in the presence of shifts in the error
variance parameter at fixed c=2

Schemes γ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95
M
S
S
n
,2
,P

0
.2
5
,
P
0
.7
5

1.00 196.15 204.03 48.00 280.00 606.05 205.80 209.06 57.00 285.00 620.00
1.20 36.36 38.51 8.00 51.00 113.05 35.51 36.91 9.00 50.00 110.00
1.40 11.69 12.50 2.00 17.00 37.00 10.13 10.94 2.00 14.00 32.00
1.60 5.55 5.79 1.00 8.00 17.00 4.32 4.56 1.00 6.00 14.00
1.80 3.31 3.34 1.00 4.00 10.00 2.53 2.42 1.00 3.00 8.00
2.00 2.33 2.19 1.00 3.00 7.00 1.81 1.51 1.00 2.00 5.00
2.20 1.83 1.53 1.00 2.00 5.00 1.44 0.97 1.00 1.00 3.00
2.40 1.55 1.13 1.00 2.00 4.00 1.29 0.72 1.00 1.00 3.00
2.60 1.39 0.89 1.00 1.00 3.00 1.18 0.53 1.00 1.00 2.00
2.80 1.27 0.70 1.00 1.00 3.00 1.12 0.42 1.00 1.00 2.00
3.00 1.19 0.57 1.00 1.00 2.00 1.07 0.32 1.00 1.00 2.00

M
S
S
n
,2
,P

0
.3
0
,
P
0
.7
0

1.00 203.32 204.20 55.00 287.00 620.05 204.05 207.67 57.00 284.00 607.00
1.20 39.47 41.41 10.00 56.00 122.00 35.78 36.99 9.00 50.00 109.00
1.40 12.50 13.44 3.00 17.00 40.00 9.60 10.11 2.00 13.00 30.00
1.60 5.75 6.31 1.00 8.00 19.00 4.28 4.37 1.00 6.00 13.00
1.80 3.43 3.55 1.00 5.00 11.00 2.54 2.42 1.00 3.00 7.00
2.00 2.37 2.27 1.00 3.00 7.00 1.83 1.51 1.00 2.00 5.00
2.20 1.85 1.60 1.00 2.00 5.00 1.46 0.99 1.00 2.00 3.00
2.40 1.56 1.18 1.00 2.00 4.00 1.28 0.71 1.00 1.00 3.00
2.60 1.36 0.90 1.00 1.00 3.00 1.17 0.52 1.00 1.00 2.00
2.80 1.26 0.71 1.00 1.00 3.00 1.12 0.41 1.00 1.00 2.00
3.00 1.19 0.58 1.00 1.00 2.00 1.07 0.30 1.00 1.00 2.00

M
S
S
n
,2
,P

0
.3
5
,
P
0
.6
5

1.00 201.74 204.08 55.00 282.00 609.00 205.80 209.06 57.00 285.00 620.00
1.20 40.10 41.95 10.00 56.00 123.00 35.51 36.91 9.00 50.00 110.00
1.40 12.84 13.98 2.00 18.00 41.00 10.13 10.94 2.00 14.00 32.00
1.60 5.98 6.62 1.00 8.00 19.00 4.32 4.56 1.00 6.00 14.00
1.80 3.50 3.75 1.00 5.00 11.00 2.53 2.42 1.00 3.00 8.00
2.00 2.42 2.42 1.00 3.00 8.00 1.81 1.51 1.00 2.00 5.00
2.20 1.85 1.62 1.00 2.00 5.00 1.44 0.97 1.00 1.00 3.00
2.40 1.56 1.22 1.00 2.00 4.00 1.29 0.72 1.00 1.00 3.00
2.60 1.37 0.93 1.00 1.00 3.00 1.18 0.53 1.00 1.00 2.00
2.80 1.26 0.74 1.00 1.00 3.00 1.12 0.42 1.00 1.00 2.00
3.00 1.18 0.58 1.00 1.00 2.00 1.07 0.32 1.00 1.00 2.00

M
S
S
n
,2
,P

0
.4
0
,
P
0
.6
0

1.00 203.73 208.43 56.00 285.00 624.00 197.02 198.10 54.00 279.00 589.05
1.20 39.50 42.16 9.00 56.00 122.00 34.22 36.04 8.00 48.00 106.00
1.40 12.65 14.06 2.00 18.00 41.00 9.97 10.63 2.00 14.00 31.00
1.60 5.86 6.55 1.00 8.00 19.00 4.26 4.47 1.00 6.00 13.00
1.80 3.39 3.66 1.00 4.00 11.00 2.51 2.45 1.00 3.00 8.00
2.00 2.37 2.42 1.00 3.00 7.00 1.81 1.51 1.00 2.00 5.00
2.20 1.84 1.70 1.00 2.00 5.00 1.42 0.96 1.00 1.00 3.00
2.40 1.54 1.20 1.00 2.00 4.00 1.27 0.73 1.00 1.00 3.00
2.60 1.37 0.93 1.00 1.00 3.00 1.16 0.51 1.00 1.00 2.00
2.80 1.25 0.70 1.00 1.00 3.00 1.11 0.39 1.00 1.00 2.00
3.00 1.18 0.56 1.00 1.00 2.00 1.07 0.32 1.00 1.00 2.00

M
S
S
n
,2
,P

0
.4
5
,
P
0
.5
5

1.00 201.22 206.64 54.00 279.00 609.00 206.29 212.88 55.00 287.00 622.00
1.20 40.69 43.64 9.00 58.00 127.00 40.55 43.11 9.00 57.00 127.00
1.40 13.20 15.01 2.00 18.00 43.00 12.95 14.54 2.00 18.00 42.00
1.60 5.87 6.65 1.00 8.00 19.00 6.00 6.80 1.00 8.00 20.00
1.80 3.37 3.68 1.00 4.00 11.00 3.44 3.79 1.00 4.00 11.00
2.00 2.31 2.36 1.00 3.00 7.00 2.38 2.40 1.00 3.00 7.00
2.20 1.80 1.63 1.00 2.00 5.00 1.80 1.63 1.00 2.00 5.00
2.40 1.51 1.14 1.00 2.00 4.00 1.51 1.18 1.00 1.00 4.00
2.60 1.36 0.91 1.00 1.00 3.00 1.35 0.92 1.00 1.00 3.00
2.80 1.24 0.70 1.00 1.00 3.00 1.24 0.70 1.00 1.00 3.00
3.00 1.19 0.61 1.00 1.00 2.00 1.18 0.58 1.00 1.00 2.00
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Table 3.10: Performance of Shewhart − 3[MSS] in the presence of shifts in the
error variance parameter at fixed c=3

Schemes γ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95
M
S
S
n
,3
,P

0
.2
5
,
P
0
.5
0
,P

0
.7
5

1.00 210.29 218.85 55.00 294.00 650.00 201.79 207.27 55.00 279.00 605.05
1.20 41.69 45.97 8.00 59.00 134.00 36.10 38.54 8.00 50.00 115.00
1.40 13.17 15.66 2.00 19.00 45.00 10.20 11.30 2.00 14.00 34.00
1.60 6.14 7.41 1.00 9.00 21.00 4.45 4.89 1.00 6.00 14.00
1.80 3.57 4.25 1.00 5.00 13.00 2.54 2.63 1.00 3.00 8.00
2.00 2.45 2.76 1.00 3.00 8.00 1.80 1.60 1.00 2.00 5.00
2.20 1.88 1.89 1.00 2.00 6.00 1.45 1.08 1.00 1.00 4.00
2.40 1.55 1.36 1.00 1.00 4.00 1.26 0.74 1.00 1.00 3.00
2.60 1.37 1.06 1.00 1.00 3.00 1.16 0.55 1.00 1.00 2.00
2.80 1.26 0.82 1.00 1.00 3.00 1.10 0.41 1.00 1.00 2.00
3.00 1.18 0.67 1.00 1.00 2.00 1.07 0.33 1.00 1.00 2.00

M
S
S
n
,3
,P

0
.3
0
,
P
0
.5
0
,P

0
.7
0

1.00 207.19 215.18 53.00 293.00 639.00 205.43 205.62 57.00 290.00 618.05
1.20 41.79 46.40 8.00 60.00 135.00 35.98 38.84 8.00 51.00 115.00
1.40 14.01 16.71 2.00 20.00 48.00 10.41 12.16 1.75 15.00 35.00
1.60 6.25 8.00 1.00 8.00 23.00 4.50 5.13 1.00 6.00 15.00
1.80 3.49 4.39 1.00 4.00 13.00 2.52 2.68 1.00 3.00 8.00
2.00 2.37 2.81 1.00 3.00 8.00 1.75 1.60 1.00 2.00 5.00
2.20 1.81 1.85 1.00 2.00 6.00 1.45 1.11 1.00 1.00 4.00
2.40 1.53 1.42 1.00 1.00 4.00 1.27 0.78 1.00 1.00 3.00
2.60 1.34 1.04 1.00 1.00 3.00 1.14 0.51 1.00 1.00 2.00
2.80 1.22 0.78 1.00 1.00 3.00 1.10 0.43 1.00 1.00 2.00
3.00 1.17 0.66 1.00 1.00 2.00 1.07 0.33 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.3
5
,
P
0
.5
0
,P

0
.6
5

1.00 202.30 211.20 48.75 285.00 630.05 200.14 203.33 54.00 281.00 605.00
1.20 41.42 47.95 6.00 60.00 139.05 35.63 38.63 7.00 51.00 112.00
1.40 13.54 17.81 1.00 19.00 50.00 10.41 12.29 1.00 15.00 35.00
1.60 6.01 8.03 1.00 8.00 22.00 4.41 5.21 1.00 6.00 15.00
1.80 3.49 4.57 1.00 4.00 13.00 2.48 2.72 1.00 3.00 8.00
2.00 2.30 2.85 1.00 2.00 8.00 1.77 1.66 1.00 2.00 5.00
2.20 1.75 1.82 1.00 2.00 6.00 1.41 1.08 1.00 1.00 4.00
2.40 1.45 1.25 1.00 1.00 4.00 1.23 0.72 1.00 1.00 3.00
2.60 1.31 1.00 1.00 1.00 3.00 1.15 0.54 1.00 1.00 2.00
2.80 1.20 0.73 1.00 1.00 2.00 1.09 0.39 1.00 1.00 2.00
3.00 1.14 0.58 1.00 1.00 2.00 1.06 0.29 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.4
0
,
P
0
.5
0
,P

0
.6
0

1.00 199.41 219.38 44.00 279.00 634.05 211.07 216.12 55.00 299.25 642.00
1.20 39.52 47.63 5.00 56.00 138.00 36.87 40.86 7.00 53.00 119.00
1.40 12.62 16.48 1.00 18.00 48.00 10.48 12.48 1.00 15.00 36.00
1.60 5.65 7.70 1.00 7.00 22.00 4.41 5.27 1.00 6.00 15.00
1.80 3.20 4.17 1.00 4.00 12.00 2.48 2.76 1.00 3.00 8.00
2.00 2.16 2.63 1.00 2.00 7.00 1.72 1.61 1.00 2.00 5.00
2.20 1.71 1.78 1.00 1.00 5.00 1.41 1.07 1.00 1.00 4.00
2.40 1.42 1.24 1.00 1.00 4.00 1.22 0.70 1.00 1.00 3.00
2.60 1.29 0.96 1.00 1.00 3.00 1.14 0.51 1.00 1.00 2.00
2.80 1.21 0.77 1.00 1.00 3.00 1.09 0.38 1.00 1.00 2.00
3.00 1.13 0.55 1.00 1.00 2.00 1.06 0.31 1.00 1.00 1.00

M
S
S
n
,3
,P

0
.4
5
,
P
0
.5
0
,P

0
.5
5

1.00 182.04 209.76 30.00 259.00 605.00 195.21 200.87 52.00 271.00 601.00
1.20 35.92 46.76 3.00 51.00 132.05 35.99 40.48 6.00 51.00 119.05
1.40 11.00 15.41 1.00 14.00 43.00 10.13 12.09 1.00 14.00 35.00
1.60 4.99 7.16 1.00 6.00 19.00 4.33 5.26 1.00 6.00 15.00
1.80 2.91 3.85 1.00 3.00 11.00 2.45 2.69 1.00 3.00 8.00
2.00 2.07 2.52 1.00 2.00 7.00 1.76 1.69 1.00 2.00 5.00
2.20 1.65 1.70 1.00 1.00 5.00 1.39 1.02 1.00 1.00 4.00
2.40 1.41 1.19 1.00 1.00 4.00 1.23 0.73 1.00 1.00 3.00
2.60 1.26 0.89 1.00 1.00 3.00 1.14 0.54 1.00 1.00 2.00
2.80 1.19 0.70 1.00 1.00 2.00 1.09 0.40 1.00 1.00 2.00
3.00 1.14 0.57 1.00 1.00 2.00 1.06 0.32 1.00 1.00 1.00
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3.3 A case study

Generally, electrical engineers are engaged to monitor the variations of voltage in

the system. As discussed in Section 2.1 that capacitance (C) has inverse relation

with voltage (V) at fixed charge (Q). So, we used 75456 sample values of V against

each level of C (i.e. C = 50µF, 100µF, 150µF, 200µF, 250µF, 300µF and 350µF )

reported in [94]. In this study, we consider (V) as dependent variable and (C)

as an explanatory variable. The implementation of Shewhart− 3[SRS] chart and

Shewhart−3[MSS] chart on the real data set is discussed with the following steps;

Step 1: For the IC regression model, we run 75456 sample values of V against

fixed values of C and get a following model

V̂ = 402.3512− 0.01983691 C

Further, the properties of aforementioned linear regression model are reported in

Appendix A.6.

Step 2: For the analysis, we have fixed overall ARL (i.e. ARL0 = 200) to obtain

the charting constants of the Shewhart − 3[SRS] chart and Shewhart − 3[MSS]

chart. These constants are computed by an extensive Monte Carlo simulation

study with 106 iteration. The control limits are

For Shewhart− 3[SRS] :


LCLI = 764.6225 UCLI = 827.4706

LCLS = −0.2972 UCLS = 0.2877

LCLE = 35.7496 UCLE = 1873.7680
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For Shewhart− 3[MSS] :


LCLI = 769.1012 UCLI = 823.3839

LCLS = −0.2462 UCLS = 0.2440

LCLE = 13.5944 UCLE = 1294.5400

Step 3: Once, we estimate the control limits, we used only 100 profiles as IC

profiles shaded pink in Figures 3.5 and 3.6 for Shewhart − 3[SRS] chart and

Shewhart− 3[MSS] chart. Further, following phases for several shifts are made by

using the data perturbation approach later discussed in Section A.7:

i For the detection of shifts in intercept, we used C∗ =

−350, −300, −250, −200, −150, −100 and − 50 against 25 sets of

V and the resulted 25 profiles with index 101 to 125 for Shewhart − 3[SRS]

chart and Shewhart− 3[MSS] chart are portrayed in Figures 3.5 and 3.6.

ii For the detection of shifts in slope parameter, we used C∗ =

−12.5, −25, −37.5, −50, −62.5, −75 and − 87.5 against 25 sets of

V and the resulted 25 profiles with index 126 to 150 for Shewhart − 3[SRS]

chart and Shewhart− 3[MSS] chart are portrayed in Figures 3.5 and 3.6.

iii For the detection of shifts in variance of disturbance term, we multiply 25

sets of V with
√

2.25 and the resulted 25 profiles with index 151 to 175

for Shewhart − 3[SRS] chart and Shewhart − 3[MSS] chart are portrayed in

Figures 3.5 and 3.6.

For Shewhart − 3[SRS] chart and Shewhart − 3[MSS] chart, the number of OOC

profiles with their index are reported in Table 3.11. In the presence of shifts
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Figure 3.5: Shewhart− 3[SRS] chart for different phases of illustrative example

in linear profile parameters such as intercept, slope and error variance, the find-

ings reveal that Shewhart− 3[MSS] chart have better detection ability relative to

Shewhart − 3[SRS] chart. In precise, the implementation of modified successive

sampling in Shewhart−3 chart enhanced its performance for the detection of OOC

linear profile parameters. In grid-connected PV system, the Shewhart − 3[MSS]

appeared as efficient chart to detect the variations in the voltage which is linearly

associated with capacitance. Moreover, it may be useful for the practitioners who
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Figure 3.6: Shewhart− 3[MSS] chart for different phases of illustrative example

are engaged in the monitoring of simple linear profile parameters.

3.4 Special case of simple linear profiles

In the literature, many studies based on statistical quality control charts are de-

signed to monitor the mean and variability of a single study variable. In simple

linear profiles, control charts are used to monitor the study variable which is

linearly associated with explanatory variable. The monitoring of mean and vari-
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Table 3.11: The number of OOC profiles (index ) with respect to different phases

Parameters Shewhart-3
Phases

1-100 101-125 126-150 151-175

Intercept

SRS 0
3 2 27

108,114,117 130,136 149-175

MSS 0

9

0

26
104,105,107, 150-175
110,113,114,
120,122,125

Slope

SRS 0 0
7 1

126,130,131,
136,138,149,150 166

MSS
2

0
9 5

131,136,137,140, 152,153,
1,88 141,144,146,148,149 159,166,168

Error variance

SRS 0 0 0

10
151,152,154,163,

164,167,168,
170,173-174

MSS 0 0 0

12
151,152,154,155,161,163,
164,167,168,170,171,174

ability may say a special case of simple linear profiles when the slope of the simple

linear profile model is zero (i.e. β1 = 0). The IC simple linear profile model given

in equation (1.1) with β1 = 0 is defined as:

Y[i]k = β0 + ε[i]k (3.1)

where β1 = 0 is the arithmetic mean of Y while the variance of error term (σ2
e)

is the simple variance of Y. In literature, Ȳ control chart is a famous technique

used for the monitoring of process mean while S2 chart is a well-known method

for the monitoring of process variability. Further, these two classical charts under

modified successive sampling are discussed in following subsections.
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3.4.1 Ȳ control chart under MSS

The Shewhart type charts are widely used to monitor the location in many man-

ufacturing processes. Many of the researchers are still engaged to improve these

control charts. The location charts under different sampling plans are discussed

in [85, 86, 95] while some studies on other type of modifications are discussed

by [96–100].

Recently, [93] used a cost efficient sampling strategy (Modified successive sam-

pling (MSS)) to design Shewhart chart to monitor the shifts in location parameter.

The plotting statistic and control limits of the Shewhart chart under MSS are de-

fined as:

Yi =

∑n
j=1 Yi,j

n

LCLMSS−M = µ0 − LMSS−M

√
σ2

0

n
;UCLMSS−M = µ0 − LMSS−M

√
σ2

0

n

where µ0 is the population mean,σ2
0 is the variance of the population and LMSS−M

is the charting constant on the specific IC average run length (ARL0). They have

proposed four Shewhart charts based on MSS scheme and the performance of

proposed chart is measured using average run length. The findings of their study

depicts that the proposed scheme outperforms the existing scheme (Shewhart Ȳ

control chart under SRS) in the presence of both positive and negative amount of

shifts in location parameter of the process.
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3.4.2 S2 control chart under MSS

Dispersion charts are used to monitor with in samples variability while location

charts are used to monitor between samples variability. Sometime practitioners

are unable to interpret an OOC signal in location chart due to instability in the

variance of process. Moreover, variance is also the part of the control limits for

location chart that is why it is preferable to monitor the process dispersion before

location of the process.

The Shewhart type charts such as S, R and S2 charts are widely used to mon-

itor the dispersion in many manufacturing processes. Many of the researchers are

still engaged to improve these control charts. The dispersion charts under differ-

ent sampling plans are discussed in [101–105] while other type of modifications are

studied by [42,106–113]. In this subsection, we have designed a study to improve

the existing S2 chart by implementing successive sampling technique (cf. [88]).

The plotting statistic and control limits of the Shewhart S2 chart under MSS are

defined as:

S2
i =

∑n
j=1 (Yi,j − Ȳi)

2

n− 1
(3.2)

LCLMSS = µ̂S2 − LMSSσ̂S2 = S̄S2 − LMSSMSES2 (3.3)

UCLMSS = µ̂S2 + LMSSσ̂S2 = S̄S2 + LMSSMSES2 (3.4)

where LMSS is the charting constant on the specific IC average run length

(ARL0),S̄S2 and MSES2 are the mean and mean square error of S2 under MSS

(cf. Table 3.12).
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Performance evaluation and comparisons

Design of proposed control chart depends on the sample size (n), number

of observations from previous sample (c) and percentile function (Pq ∀ q =

1, 2, 3, . . . . . . , c) which are used to pick observations from previous sample. We

consider the samples of size n=5 and 7 while c=2 and 3 for the current study.

The prefixed ARL0 = 370 is used to search the appropriate LMSS values which

are given in Table 3.12.

Table 3.12: Properties of S2 under MSS

c Scheme
n=5 n=7

S̄S2 MSES2 LMSS S̄S2 MSES2 LMSS

2

MSSP0.25, P0.75 1.084 0.3678 4.29 0.9731 0.258 4.13
MSSP0.30, P0.70 0.8552 0.3415 4.39 0.8608 0.2604 4.07
MSSP0.35, P0.65 0.7294 0.3758 4.16 0.7972 0.2775 3.92
MSSP0.40, P0.60 0.6689 0.4004 4.006 0.7601 0.2922 3.83
MSSP0.45, P0.55 0.6397 0.4159 3.92 0.7417 0.2992 3.78

3

MSSP0.25,P0.50, P0.75 0.7565 0.2996 4.16 0.7768 0.2533 3.86
MSSP0.30,P0.50, P0.70 0.5514 0.4035 3.49 0.6827 0.2917 3.55
MSSP0.35,P0.50, P0.65 0.46 0.4823 3.15 0.6277 0.3247 3.34
MSSP0.40,P0.50, P0.60 0.4291 0.5059 3.045 0.6016 0.342 3.25
MSSP0.45,P0.50, P0.55 0.4126 0.5211 2.97 0.5901 0.3499 3.21

The dispersion charts such as S2 chart are important and applicable to detect

the degree of change in the variation of process. Along with explaining the IC

properties of the charts, it is useful to examine the OOC performance of the

charts. The OOC average run length (ARL1), standard deviation of run length

SDRL and different percentiles (25th, 75th and 95th) of run length distribution

are given in Tables 3.13-3.15 for S2 chart under SRS and MSS respectively. To

check the OOC performance of the proposed charts, shifts of different size are
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introduced in dispersion parameter. That shift parameter is denoted by γ and is

equal to γ = σ1
σ0

where σ1 is the OOC process standard deviation. The run length

study for S2 chart under SRS is reported in Table 3.13. The findings indicate

that an upward shift (20%) in dispersion parameter from the in-control situation

resulted about 55.04% and 60.36% decrease in (ARL1) of S2 chart under SRS for

both cases (i.e.n=5 and 7) respectively.

Table 3.13: Run length properties of S2 chart under SRS

γ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95

1.00 369.90 370.87 106.00 513.00 1110.00 373.15 374.60 108.00 516.00 1119.00
1.10 253.75 253.87 73.00 353.00 758.05 245.81 244.15 71.00 342.00 732.00
1.20 166.31 166.58 48.00 231.00 497.00 147.92 147.50 43.00 205.00 443.00
1.30 109.23 108.91 32.00 151.00 325.00 90.80 90.53 26.00 125.00 271.00
1.40 74.33 73.69 22.00 103.00 222.00 59.09 58.74 17.00 82.00 176.00
1.50 52.68 52.23 15.00 73.00 157.00 40.15 39.65 12.00 56.00 119.00
1.60 38.86 38.56 11.00 54.00 115.00 28.57 28.14 8.00 39.00 85.00
1.70 29.79 29.36 9.00 41.00 89.00 21.22 20.72 6.00 29.00 62.00
1.80 23.43 22.87 7.00 32.00 70.00 16.61 16.11 5.00 23.00 49.00
1.90 18.93 18.46 6.00 26.00 56.00 13.21 12.76 4.00 18.00 39.00
2.00 15.58 15.00 5.00 21.00 46.00 10.78 10.32 3.00 15.00 31.00

The results for S2 chart under MSS at fixed c=2 are given in Table 3.14. If the

choice of percentiles pair is (P0.25, P0.75) then (30%) upward shift in dispersion

parameter, may decrease 80.47% and 83.83% ARL1 of said S2 chart for both

cases i.e. n=5 and 7 respectively. Moreover, if the choice of percentiles pair

is then upward shift in dispersion parameter, may decrease 88.42% and 91.73%

ARL1 of S2 chart for both cases i.e. n=5 and 7 respectively. Finally, the run

length study for S2 chart under MSS at fixed c=3 is reported in Table 3.15. If the

choice of percentiles is (P0.30, P0.50, P0.70) then an upward 40% shift in dispersion

parameter decreases the ARL1 of said S2 chart for both cases (n=5 and 7) to 61.64

and 45.49 respectively. Further, when choice of ercentiles is (P0.40, P0.50, P0.60)
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then an upward 60% shift in dispersion parameter may decrease up to 36.65 and

24.51 ARL1 of the said S2 chart for both cases i.e. n=5 and 7 respectively.

Considering the different sample sizes (i.e. n=5 and 7 ), number of observations

from previous sample (i.e. c=2 and 3), shifts in dispersion parameter γ (on

horizontal axis) and log average run length (ln (ARL)) (on vertical axis), we have

portrayed the display in Figure 3.7. The results depict that the performance of

charts increase with the increase of shift in dispersion parameter θ = 1.00 up to

2. It is also observed that S2 chart under MSS with choice of percentile pairs

(P0.25, P0.75) and (P0.25, P0.50, P0.75), outperforms then the other S2 charts

under different schemes.

Illustrative example

Nowadays, electrical engineers take interest in the Z-source inverter for a grid

connected PV system instead of conventional voltage source inverter (VSI) and

conventional current source inverter (CSI) (for more detail see Section 2.1). For an

illustrative example, we get 75456 sample values of Voltage (V) against each level

of Capacitance (C) given in [94]. In the stated study, we consider 75455 values of

Voltage (V) against 150 , 250 and 350 capacitance level which are further divided

into 15091 subgroups each of size 5.

For the classical Shewhart S2 chart, we estimate sample variance of each sub-

group belongs to 350µF capacitance level and through it we calculate the lower

control limit LCLSRS = 0.0144 and upper control limit UCLSRS = 2.463. On the

other hand, for the Shewhart S2 chart under (MSS5,2,Q0.25, Q0.75), we estimate sam-
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Table 3.14: Run length properties of S2 chart under MSS at fixed c = 2

Schemes γ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95

M
S
S
n
,2
,P

0
.2
5
,
P
0
.7
5

1 369.56 369.08 106 513 1109 369.21 371.56 105 511.25 1110
1.1 193.53 194.28 55 269 579 177.7 177.88 51 247 536
1.2 113.28 113.41 32 157 340 97.62 97.61 28 136 292
1.3 72.18 72.09 21 100 217 59.7 60.09 17 83 179
1.4 49.45 49.48 14 69 148 39.16 39.31 11 54 118
1.5 35.53 35.46 10 49 106 27.24 27.26 8 38 81
1.6 26.97 26.9 8 37 81 20.18 20.37 6 28 61
1.7 21.23 21.13 6 29 63 15.36 15.33 4 21 46
1.8 17.04 16.96 5 24 51 12.23 12.15 3 17 37
1.9 14.09 14 4 19 42 9.94 9.81 3 14 30
2 11.88 11.78 3 16 35 8.32 8.22 2 11 25

M
S
S
n
,2
,P

0
.3
0
,
P
0
.7
0

1 371.31 371.98 106 514 1110 371.72 375.07 105 515.25 1120
1.1 200.19 202.15 56 278 607 183.68 185.5 52 255 551
1.2 119.88 121.58 33 166 362 102.47 103.13 29 143 309
1.3 77.33 78.68 21 108 234 62.62 63.46 17 87 189
1.4 53.3 54.19 14 74 161 41.59 42.56 11 58 126
1.5 38.63 39.71 10 54 118 29.24 29.94 8 41 89
1.6 29.29 30.11 8 41 89 21.33 21.85 6 30 65
1.7 22.69 23.32 6 32 70 16.33 16.61 4 23 50
1.8 18.49 19.18 5 26 57 12.93 13.27 3 18 39
1.9 15.15 15.69 4 21 46 10.51 10.77 3 15 32
2 12.7 13.19 3 18 39 8.65 8.82 2 12 26

M
S
S
n
,2
,P

0
.3
5
,
P
0
.6
5

1 374.12 375.77 106 521 1122 365.67 367.15 104 509 1096
1.1 206.36 208.55 57 288 623 184.49 185.84 52 256 558
1.2 124.14 126.43 34 173 376 103.32 105.21 29 143 313
1.3 81.44 83.01 22 114 246 63.94 65.25 17 89 194
1.4 56.46 58.17 15 79 173 42.17 43.11 11 59 128
1.5 41.1 42.65 11 58 126 29.71 30.59 8 42 91
1.6 31.1 32.49 8 44 96 22.06 22.76 6 31 68
1.7 24.32 25.58 6 34 76 16.7 17.38 4 23 52
1.8 19.49 20.61 5 27 61 13.2 13.84 3 18 41
1.9 16 16.99 4 23 50 10.63 11.12 3 15 33
2 13.4 14.31 3 19 42 8.89 9.28 2 12 27

M
S
S
n
,2
,P

0
.4
0
,
P
0
.6
0

1 376.03 379.63 106 521 1134 375.33 378.75 105 522 1129
1.1 207.91 211 57 290 628 189.03 191.7 53 262 573
1.2 127.41 129.93 35 178 386 107.02 108.71 29 149 324
1.3 84.13 86.42 22 118 257 66.26 67.76 18 92 202
1.4 58.41 60.58 15 82 179.05 44.02 45.16 12 61 134
1.5 42.51 44.1 11 60 131 30.86 31.93 8 43 95
1.6 32.41 34.13 8 45 101 22.66 23.57 6 32 70
1.7 25.32 26.93 6 36 79 17.35 18.33 4 24 54
1.8 20.21 21.49 5 28 63 13.68 14.42 3 19 42
1.9 16.72 17.94 4 24 53 11.1 11.72 3 16 35
2 14.02 15.26 3 20 45 9.09 9.62 2 13 29

M
S
S
n
,2
,P

0
.4
5
,
P
0
.5
5

1 371.87 373.74 105 518 1122 376.04 377.2 107 525 1120
1.1 208.89 211.68 58 291 637 188.64 190.19 53 262 570
1.2 128.23 131.36 35 179 390 107.9 109.52 30 150 327
1.3 85.32 88.56 22 120 261 66.78 68.19 18 93 201
1.4 59.26 61.36 15 83 182 44.49 46.04 12 62 136
1.5 43.07 45.14 11 60 134 31.1 32.17 8 44 96
1.6 32.6 34.48 8 46 102 23.1 24.01 6 32 71
1.7 25.61 27.48 6 36 81 17.55 18.42 4 25 55
1.8 20.54 22.18 4 29 65 13.87 14.59 3 19 43
1.9 16.79 18.27 3 24 54 11.22 11.9 3 16 35
2 14.06 15.44 3 20 45 9.22 9.81 2 13 29
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Table 3.15: Run length properties of S2 chart under MSS at fixed c = 3

Schemes γ
n=5 n=7

ARL SDRL Q0.25 Q0.75 Q0.95 ARL SDRL Q0.25 Q0.75 Q0.95

M
S
S
n
,2
,P

0
.2
5
,P

0
.5
0
,
P
0
.7
5

1 373.83 379.94 102 520 1134 374.13 377.8 105 521 1129
1.1 208.43 213.7 56 290 636 187.6 191.13 52 260 571
1.2 126.35 130.14 33 177 386 106.39 108.87 29 149 322
1.3 82.62 85.98 21 116 254 65.75 68.32 17 92 203
1.4 58.02 61.31 14 81 182 43.29 45.25 11 61 134
1.5 42.32 45.48 10 60 133 30.7 32.42 7 43 95
1.6 31.92 34.57 7 45 101 22.47 23.8 5 32 71
1.7 25.01 27.42 5 35 80 17.15 18.35 4 24 54
1.8 20.22 22.22 4 29 65 13.51 14.64 3 19 43
1.9 16.63 18.44 3 24 54 10.92 11.96 2 15 35
2 13.88 15.63 2 20 45 9.09 9.88 2 13 29

M
S
S
n
,2
,P

0
.3
0
,P

0
.5
0
,
P
0
.7
0

1 368.52 376.5 99 515 1121 374.1 379.64 104 522 1129
1.1 211.02 219.56 55 296 650 190.71 195.74 51 265 580
1.2 131.91 139.26 32 186 409 108.75 112.75 28 152 335
1.3 87.46 93.8 20 123 276 68.32 71.99 17 96 212
1.4 61.64 66.89 13 87 196 45.49 48.13 11 64 141
1.5 45.13 50.2 9 64 145 32.17 34.72 7 46 102
1.6 34.21 38.58 6 49 112 23.62 25.91 5 33 75
1.7 26.68 30.66 4 38 88 17.98 19.77 3 26 57
1.8 21.61 25.21 3 31 73 14.12 15.83 2 20 46
1.9 17.65 20.85 2 25 60 11.36 12.81 2 16 37
2 14.78 17.64 2 21 50 9.4 10.69 1 13 31

M
S
S
n
,2
,P

0
.3
5
,P

0
.5
0
,
P
0
.6
5

1 375.11 385.43 99 524 1151 367.13 372.65 102 511 1111
1.1 217.49 228.07 55 306 673 190.47 195.58 51 265 582
1.2 135.84 145.65 32 191 428 110.47 114.5 29 155 340
1.3 91.23 99.84 19 129 292 69.39 73.47 17 97 216
1.4 64.46 71.81 12 92 209 46.38 49.53 11 66 146
1.5 47.28 53.58 8 67 155 32.68 35.63 7 47 105
1.6 35.71 41.39 5 51 119 24.33 26.87 5 34 78
1.7 28.14 33.37 4 40 95 18.45 20.73 3 26 60
1.8 22.69 27.22 3 32 78 14.44 16.4 2 21 47
1.9 18.46 22.64 2 26 65 11.61 13.32 2 16 39
2 15.32 19.01 1 22 54 9.58 11.14 1 14 32

M
S
S
n
,2
,P

0
.4
0
,P

0
.5
0
,
P
0
.6
0

1 376.46 388.17 98 529 1151 368.15 375.18 101 512 1116
1.1 219.78 232.8 53 308 685 193.73 198.72 52 269.25 592
1.2 138.21 149.28 31 195 438 112.05 116.81 28 157 345.05
1.3 92.89 101.98 19 132 297 70.82 74.91 17 100 219
1.4 65.66 73.55 12 93 213 47.19 50.86 10 67 149
1.5 48.34 55.43 8 69 159 33.43 36.61 7 48 107
1.6 36.65 43.04 5 53 123 24.51 27.41 4 35 79
1.7 28.73 34.63 3 41 98 18.72 21.27 3 27 62
1.8 22.88 28.14 2 33 80 14.62 16.8 2 21 48
1.9 18.65 23.12 2 27 65 11.83 13.71 2 17 40
2 15.66 19.72 1 22 55 9.68 11.36 1 14 33

M
S
S
n
,2
,P

0
.4
5
,P

0
.5
0
,
P
0
.5
5

1 370.2 386.05 94 519 1144 369.79 376.85 101 517 1123
1.1 215.3 229.16 51 304 675 193.1 197.78 51 271 588
1.2 136.48 148.08 29 194 432 113.43 118.53 29 159 350
1.3 91.67 102.09 17 131 297 71.11 75.48 17 101 222
1.4 65.05 73.81 11 93 214 47.94 51.99 10 68 152
1.5 47.89 55.95 7 69 161 33.56 36.85 7 48 107
1.6 36.22 43.49 5 52 124 24.99 27.98 5 35 81
1.7 28.32 34.58 3 40 99 18.88 21.49 3 27 62
1.8 22.61 28.12 2 32 80 14.85 17.18 2 21 49
1.9 18.39 23.37 1 26 66 11.85 13.94 1 17 40
2 15.15 19.54 1 21 55 9.73 11.51 1 14 33
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Figure 3.7: Comparative analysis of S2 charts under different schemes

ple variances of subgroups after implementing the modified successive sampling

on existing subgroups and calculate the control limits (i.e. LCLMSS = 0.0183

and UCLMSS = 1.9868 ). Further, if plotting statistic S2
SRS or S2

MSS fall outside

of their corresponding limits then the process is declared OOC. This could imply

that the generation of voltage has been disturbed and engineers have to look for

the factor(s) behind OOC condition.

For the diagnosis purpose, we select first 100 in-control subgroups from 350µF ,
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second 100 shifted subgroups from 250µF and finally last 100 shifted subgroups

from 150µF . We calculate sample variances (S2
SRS and S2

MSS) of selected 300

subgroups which are plotted against the control limits in Figures 3.8 and 3.8. The

classical Shewhart S2 chart depicts that there exist no OOC point in first 100

subgroups, in next 100 subgroups 10 OOC signals are received and in last 100

subgroups 70 points are declared OOC. However, the Shewhart S2 chart under

MSS reveals no OOC point in first 100 subgroups, 14 OOC points in the next 100

subgroups and 76 OOC signals in last 100 samples. This shows that our proposed

schemes perform well in the detection of voltage converted by Z-source inverter

in 3-ϕ grid connected PV system.
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Figure 3.8: Shewhart S2
[SRS] chart for the detection of voltage in 3-ϕ grid con-

nected PV system
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Figure 3.9: Shewhart S2
[MSS] chart for the detection of voltage in 3-ϕ grid con-

nected PV system
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3.5 Concluding Remarks

In any process, when the study variable is linearly associated with a single ex-

planatory variable then the monitoring of such process is known as simple linear

profiling. In simple linear profiling three parameters (slope, intercept and error

variance) are considered for the monitoring purpose. Most of the recent literature

on simple linear profiling has been done under simple random sampling but in this

chapter, we implemented modified successive sampling to enhanced the existing

Shewhart chart. Moreover, the monitoring of mean and variability may say a spe-

cial case of simple linear profiles when the slope of the simple linear profile model is

zero (i.e. β1 = 0). Practically, detection of dispersion shift is important before the

detection of location shift in the process. The classical S2 chart is the best choice

from the literature for the monitoring of dispersion parameter. This chapter also

proposes an improved S2 chart by using modified successive sampling. The run

length properties are used for performance measure which indicates that all the

proposed charts under MSS outperforms the classical charts which are based on

SRS.
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CHAPTER 4

AN ALTERNATIVE

APPROACH TO

SIMULTANEOUS

MONITORING OF LINEAR

PROFILE PARAMETERS

Often control charts are designed to monitor single parameter of the process but

very few studies are available related to simultaneous and joint monitoring of

the process parameters. In simultaneous monitoring, parameters are monitored

through separate plotting statistics plotted against distinct pair of control limits

while joint monitoring is a term that alludes to monitoring parameters through a

single plotting statistic plotted against a pair of control limits. One may see brief
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literature on simultaneous and joint monitoring in Section 1.3.2. In this chap-

ter, we have designed joint structures for the monitoring of simple linear profile

parameters and discussed the special case of joint linear profiling and EWMA

structure.

4.1 Joint monitoring of linear profile parameter

The recent studies for simple linear profiles (given in Section 1.3.1) are based on

simultaneous structure which is a tedious method such as distinct pair of control

limits required individual charting constants. For example, in case of linear profile

parameters such as slope, intercept and error variance, on fixed overall average

run length 200, one my need 584.7 average run length for each individual chart of

simultaneous structure which is a tedious method for the practitioner. EWMA-3

chart proposed by [22] is well-known methodology based on simultaneous structure

for the monitoring of linear profile parameters (i.e. intercept, slope and error

variance). In this study, we have designed new control charts based on joint

structures for the monitoring of simple linear profile parameters which is a simple

procedure and easy to applicable.

4.1.1 Simple linear profile structures

In this subsection, we provide the theoretical structure of our proposed joint

methodologies and the existing charts such as Hoteling T2 chart, EWMA/R chart,

Shewhart-3 chart and EWMA-3 chart.
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Proposed control charts

Control chart based on simple linear profiles play a key role in any process where

the study variable is linearly associated with another explanatory variable. The

simple linear model given in equation (1.1) is a basic model used in linear profiling

but due to the limitation (e.g. independence of parameters) model (1.2) (trans-

formed model) was preferred in many studies. The least square estimates of the

parameters of transformed model are represented by b̂0, b̂1 and M̂SE. For the

joint monitoring, we transformed the estimates to get the normality such as:

Zb̂0 =
b̂0 −B0√
σ2
(

1/nm

)

Zb̂1 =
b̂1 −B1√(
σ2

/Sxx

)

Z
M̂SE

= Φ−1

[
H

{
(n− 2) M̂SE

σ2
0

;n− 2

}]

where Φ−1 [.] is inverse standard normal distribution function and H {.; (n− 2)}

is termed as chi-square distribution function having (n− 2) degree of freedom. In

recent literature, two more transformations are used for the dispersion parameter

to gain approximate normal results such as three-parameter logarithmic transfor-

mation (cf. [114]) and Johnson SB transformation (cf. [115]). The description of

these two transformations for mean square error is
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T
M̂SE

= aT + bT ln
(
M̂SE + cT

)
U
M̂SE

= aU + bU ln

(
M̂SE − cU

dU + cU − M̂SE

)

where aT = AT (n) − 2BT (n) lnσ0, bT = BT (n) , cT = CT (n)σ2
0, aU =

AU (n) , bU = BU (n) , cU = CU (n)σ2
0 and dU = DU (n)σ2

0. The values of these

constants are reported in Table 4.1 for n = 3, 4, 5, . . . ., 15 .

Table 4.1: Constant for transformations (three-parameter logarithmic transfor-
mation and Johnson SB transformation)

n aT bT cT aU bU cU dU
3 -0.6627 1.8136 0.6777 3.1936 1.1952 -0.2588 15.0770
4 -0.7882 2.1089 0.6261 3.3657 1.3983 -0.2438 12.5910
5 -0.8969 2.3647 0.5979 3.5402 1.5727 -0.2352 11.3120
6 -0.9940 2.5941 0.5801 3.7111 1.7281 -0.2295 10.5300
7 -1.0827 2.8042 0.5678 3.8768 1.8698 -0.2254 10.0000
8 -1.1647 2.9992 0.5588 4.0369 2.0010 -0.2224 9.6180
9 -1.2413 3.1820 0.5519 4.1918 2.1238 -0.2200 9.3280

10 -1.3135 3.3548 0.5465 4.3417 2.2396 -0.2181 9.1000
11 -1.3820 3.5189 0.5421 4.4869 2.3495 -0.2166 8.9170
12 -1.4473 3.6757 0.5384 4.6279 2.4544 -0.2152 8.7660
13 -1.5097 3.8260 0.5354 4.7648 2.5549 -0.2141 8.6400
14 -1.5697 3.9705 0.5327 4.8981 2.6515 -0.2132 8.5320
15 -1.6275 4.1100 0.5305 5.0279 2.7446 -0.2123 8.4400

The Max-EWMA-3 charting structures

The exponentially weighted moving average chart (EWMA) was firstly originated

by [10] which is an effective technique to monitor small or moderate shifts in

the process. Further, [12] proposed a modified EWMA chart termed as Max-

103



EWMA for the joint monitoring of two parameters (location and scale). We have

used similar Max-EWMA approach to monitor the linear profile parameters (i.e.

intercept, slope and error variance) which is further referred as Max-EWMA-3

chart. The structure of Max-EWMA-3 depends on EWMA statistics which are

based on Zb̂0 , Zb̂1 and transformed mean square error
(
Z
M̂SE

, T
M̂SE

and U
M̂SE

)
,

Mi = λZb̂0 + (1− λ)Mi−1

Ni = λZb̂1 + (1− λ)Ni−1

Oi = λZ
M̂SE

+ (1− λ)Oi−1

Pi = λT
M̂SE

+ (1− λ)Pi−1

Qi = λU
M̂SE

+ (1− λ)Qi−1

where M0, N0, O0, P0 and Q0 are used as initial values and λ is a smoothing

(weight) parameter having range (0 < λ ≤ 1). As discussed above that there exist

three transformations to obtain the normality of error variance. So, based on these

three transformations, three separate Max-EWMA-3 charts with their limits are

given below:

Max− EWMA− 3− Ai :


Statistic Max (|Mi| , |Ni| , |Oi|) ,

UCLMOi

√
λ

2−λ (1.32639 + 0.5859607LMax)
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Max− EWMA− 3−Bi :


Statistic Max (|Mi| , |Ni| , |Pi|) ,

UCLMPi

√
λ

2−λ (1.32639 + 0.5859607LMax)

Max− EWMA− 3− Ci :


Statistic Max (|Mi| , |Ni| , |Qi|) ,

UCLMQi

√
λ

2−λ (1.32639 + 0.5859607LMax)

where LMax is the control limits coefficient that is used to control the IC run

length behavior of the chart.

The SS-EWMA-3 charting structures

Another approach for the joint monitoring of process parameters based on sum

of square of EWMA statistics was proposed by [26]. We used this concept

for the monitoring of linear profile parameters and referred as SS-EWMA-3

chart. The structure of SS-EWMA-3 chart depends on aforementioned EWMA

statistics which are based on Zb̂0 , Zb̂1 and transformed mean square error(
Z
M̂SE

, T
M̂SE

and U
M̂SE

)
,

SS − EWMA− 3− Ai :


Statistic M2

i +N2
i +O2

i

UCLSSOi
λ(3+LSS

√
6)

2−λ

SS − EWMA− 3−Bi :


Statistic M2

i +N2
i + P 2

i

UCLSSPi
λ(3+LSS

√
6)

2−λ

SS − EWMA− 3− Ci :


Statistic M2

i +N2
i +Q2

i

UCLSSQi
λ(3+LSS

√
6)

2−λ
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where LSS is the control limits coefficient that is used to control the IC run length

behavior of the chart.

Existing control charts

For the comparison, we have considered several existing simple linear profile meth-

ods such as Shewhart-3 chart, EWMA-3 chart, T 2 chart and EWMA/R chart.

The Shewhart-3 chart was proposed by [21] while EWMA-3 chart was originated

by [22] which are already discussed in Section 1.2. Further, the structures of T 2

chart and EWMA/R chart are given below.

The T 2 chart

[31] proposed a multivariate control chart for the monitoring of slope and inter-

cept. The jth statistic of T 2 control chart is estimated by

T 2
j = (Zj − U)TΣ−1 (Zj − U)

where

Zj =
(
β̂0j , β̂1j

)T
; U = (β0, β1)T

Σ =

 σ2
[

1
n

+ X̄2

SXX

]
−σ2 X̄

SXX

−σ2 X̄
SXX

σ2

SXX


The T 2 statistic follows χ2 distribution with 2 degree of freedom and the upper

control limit (UCLH = χ2
2,α) is the αth quantile of χ2 distribution while lower

control limit (LCLH = 0). When process is unstable then the T 2 statistic follows
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non-central χ2 distribution with non-centrality parameter (τ), which is obtain as:

τ = n
(
ϕσ + βσX̄

)2
+ (βσ)2SXX

where ϕ is the amount of shift in intercept for model (1.1) and β is the measure

of shift in the slope of model (1.2).

The EWMA/R chart

[31] also proposed a combined structure based on EWMA and R chart for the

monitoring of linear profile parameters. Basically, EWMA chart has some limita-

tions which are covered by incorporating the R chart. The jth statistic of EWMA

chart is estimated by

Zj = λēj + (1− λ)Zj−1

where, λ is the smoothing parameter which ranges from 0 to 1, ēj =
∑n
i=1 eij
n

and

the initial value of EWMA statistic is zero. (i.e. Z0 = 0). The process is said to be

out-of-control (OOC) when Zj is less than LCL or greater than UCL. The control

limits (LCL and UCL) based on charting constant (LER) for EWMA chart are

given as follow:

LCLE = −LERσ

√
λ

(2− λ)

[
1

n

]
;UCLE = LERσ

√
λ

(2− λ)

[
1

n

]

There exist two causes to combine R chart with EWMA chart, (i) to detect shifts

in error variance under model (1.1) and (ii) to tackle the unusual situation of error
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variance. Further, the jth statistic and control limits of R chart are defined as

Rj = maxi (eij)−mini (eij)

LCLR = σ (d2 − LERd3) ;UCLR = σ (d2 + LERd3)

where d2 and d3 are unbiased constants reported in [1].

4.1.2 Performance evaluations

In this subsection, we provide a brief discussion on the IC parameters of proposed

charts. Moreover, we will discuss the performance evaluation of the stated study.

Designing of in-control parameters and control limits

For the original IC simple linear model given in equation (1.1), we assumed β0 = 3

and β0 = 2 by following [22] (i.e. Yij = 3 + 2Xi + εij). Where the fixed values of

explanatory variable are Xi = 2, 4, 6, and 8, sample size (n = 4) and the error

term is εij ∼ N (s; µs = 0, σs = 1). Moreover, the transformed model given

in equation (1.2) is obtained by substituting the B0 = 3 + 2X̄ + (βσ) X̄ and

B1 = (2 + βσ)X∗i . whereas, the fixed transformed values of explanatory variable

are X∗i = −3, − 1, 1, and 3 with average equals to zero.

The performance of proposed charts is evaluated in terms of average run length

(ARL) which is defined as the number of samples until a signal occurs.(ARL)

is categorized into two types, in-control average run length (ARL0) and out-of-

control average run length (ARL1). For the fixed overall ARL0 = 200, we need
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to set the control limits coefficients including LMax, LSS, Lα/2
, LI , LS and

LE which are reported in Table 4.2. For computations, we used Monte Carlo

simulation study with 105 iterations.

Table 4.2: In-control design parameters for each chart at fixed ARL0 = 200

Parameters Max-EWMA-3 SS-EWMA-3 Shewhat 3 EWMA 3 EWMA/R

Intercet
LMax = 2.91 LSS = 3.63 Zα/2 = 3.14 LI = 3.0156 LER = 3.1151

Slope
LMax = 2.91 LSS = 3.63 Zα/2 = 3.14 LS = 3.0109 LER = 3.1151

Error variance LMax = 2.91 LSS = 3.63
LCLH = 0.001

LE = 1.3723 LER = 3.1151
UCLH = 14.17

Smoothing parameter λ = 0.2 λ = 0.2 - λ = 0.2 λ = 0.2

Shifts for performance evaluation

In order to evaluate the performance of charts under consideration, we have con-

sidered several amounts of shifts in linear profile parameters. The description of

shifts in linear profile parameters are given as follows:

(i) Shifts in intercept parameter (B0 to B0 + θ (σe/
√
n))

(ii) Shifts in slope parameter
(
β1 to β1 + β

(
σe/
√
Sxx

))
(iii) Shifts in slope parameter

(
B1 to B1 + δ

(
σe/
√
Sxx

))
(iv) Joint shifts in intercept (B0 to B0 + θ (σe/

√
n)) and slope parameter

(
B1 to B1 + δ

(
σe/
√
Sxx

))
(v) Shifts in error variance (σ2

e to γσ
2
e)

It is noted that process is said to be IC when λ, β and δ are equal to zero and

γ = 1 otherwise, process is said to be OOC.
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4.1.3 Comparative analysis

In this section, we discuss the comparative results of proposed and existing charts

in terms of average run length (ARL). Further, the performance of charts under

consideration is discussed in terms of percentage change in the (ARL1) which is

obtained as:

Percentage change =
ARL0 − ARL1

ARL0

Shifts in intercept parameter

The results for charts under consideration at shifted intercept parameter are re-

ported in Table 4.3. Which shows that (40%) upward shift in intercept parameter

(θ = 0.40), may decrease 68.3% and 61.1% ARL1 of T 2 and Shewhart-3 charts

while all other charts have approximately 92.0% decrease in the ARL1. Moreover,

the ARL curves for shifted intercept parameter are plotted in Figure 4.1(A), which

reveals that joint (Max-EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-

3) charts have similar performance but they have better performance as compared

to EWMA/R, T 2 and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-

EWMA-3-C charts outperforms all others charts under consideration.

Shifts in slope parameter of original model

The Table 4.4 is about the results for shifted slope parameter of original model

given in equation (1.1). Which reveals that upward shift in slope parameter

of original model (β = 0.075), may decrease 90.1%, 69.7% and 60.4% ARL1 of

EWMA/R, T 2 and Shewhart-3 charts while 92.0% decrease in ARL1 was reported
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Table 4.3: ARL comparison of control charts under intercept shifts

Chart
θ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
EWMA/R 66.50 17.70 8.40 5.40 3.90 3.20 2.70 2.30 2.10 1.90

T 2 137.70 63.50 28.00 13.20 6.90 4.00 2.60 1.80 1.50 1.20
Shewhart-3 151.40 77.90 33.80 15.50 7.70 4.30 2.70 1.90 1.50 1.20
EWMA-3 59.10 16.20 7.90 5.10 3.80 3.10 2.60 2.30 2.10 1.90

Max-EWMA-3-A 61.29 16.69 7.99 5.14 3.84 3.10 2.60 2.28 2.07 1.90
Max-EWMA-3-B 60.89 16.33 7.98 5.16 3.83 3.09 2.63 2.29 2.08 1.89
Max-EWMA-3-C 58.87 16.17 7.89 5.13 3.80 3.06 2.59 2.26 2.04 1.89
SS-EWMA-3-A 59.99 17.07 8.49 5.51 4.13 3.33 2.81 2.44 2.20 2.03
SS-EWMA-3-B 59.17 17.51 8.45 5.56 4.14 3.32 2.82 2.45 2.19 2.03
SS-EWMA-3-C 61.34 17.38 8.48 5.52 4.13 3.31 2.81 2.44 2.19 2.03

in EWMA-3, Max-EWMA-3 and SS-EWMA-3 charts. However, the ARL curves

for shifted slope parameter of original model are plotted in Figure 4.1(B), which

shows that joint (Max-EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3)

charts have similar performance but they have better performance as compared

to EWMA/R, T 2 and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-

EWMA-3-C charts outperforms all others charts under consideration.

Table 4.4: ARL comparison of control charts under shifts in slope of orignal model

Chart
β

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25
EWMA/R 119.00 43.90 19.80 11.30 7.70 5.80 4.70 3.90 3.40 3.00

T 2 166.00 105.60 60.70 34.50 20.10 12.20 7.80 5.20 3.70 2.70
Shewhart-3 178.30 125.00 79.20 46.70 27.90 17.10 10.90 7.10 5.00 3.60
EWMA-3 101.60 36.50 17.00 10.30 7.20 5.50 4.50 3.80 3.30 2.90

Max-EWMA-3-A 107.27 37.50 17.39 10.30 7.23 5.58 4.49 3.77 3.26 2.91
Max-EWMA-3-B 104.17 37.38 17.47 10.27 7.19 5.51 4.49 3.79 3.29 2.93
Max-EWMA-3-C 102.87 35.90 17.02 10.16 7.06 5.42 4.43 3.73 3.25 2.88
SS-EWMA-3-A 98.17 35.01 16.43 9.87 6.98 5.36 4.35 3.70 3.21 2.88
SS-EWMA-3-B 101.11 35.39 16.43 9.89 6.90 5.33 4.36 3.72 3.23 2.87
SS-EWMA-3-C 101.03 34.78 16.66 9.89 6.94 5.35 4.36 3.69 3.22 2.87
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Figure 4.1: ARL curves of control charts with respect to different shifts in param-
eters

Shifts in slope parameter of transformed model

The results for charts under consideration at shifted slope parameter of trans-

formed model are reported in Table 4.5. Which shows that downward shift in

slope parameter of transformed model (δ = −0.4), may decrease 92.4%, 95.2%

and 94.5% ARL1 of EWMA/R, T 2 and Shewhart-3 charts. However, the joint

(Max-EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3) charts have ap-
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proximately 97.7% decrease in ARL1. Moreover, the ARL curves for shifted slope

parameter of transformed model are plotted in Figure 4.1(C), which reveals that

Max-EWMA-3, SS-EWMA-3 and EWMA-3 charts have similar performance but

they have better performance as compared to EWMA/R, T 2 and Shewhart-3

charts. Specifically, Max-EWMA-3-C and SS-EWMA-3-C charts outperforms all

others charts under consideration.

Table 4.5: ARL comparison of control charts under shifts in slope of transformed
model

Chart
δ

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
EWMA/R 1.20 1.40 1.80 2.60 4.20 7.50 15.30 33.70 76.70

T 2 1.10 1.20 1.50 1.90 2.90 4.90 9.60 21.20 52.20
Shewhart-3 1.10 1.23 1.49 2.03 3.07 5.40 10.93 25.65 63.87
EWMA-3 1.71 1.87 2.06 2.32 2.73 3.32 4.39 6.70 12.90

Max-EWMA-3-A 1.73 1.89 2.08 2.34 2.74 3.36 4.48 6.71 13.52
Max-EWMA-3-B 1.73 1.89 2.08 2.33 2.73 3.34 4.46 6.76 13.36
Max-EWMA-3-C 1.71 1.88 2.06 2.31 2.71 3.31 4.37 6.60 13.18
SS-EWMA-3-A 1.89 2.03 2.21 2.50 2.93 3.61 4.75 7.13 14.04
SS-EWMA-3-B 1.89 2.02 2.20 2.49 2.95 3.61 4.77 7.21 14.27
SS-EWMA-3-C 1.88 2.02 2.21 2.50 2.93 3.61 4.74 7.18 13.93

Shifts in error variance of disturbance term

The Table 4.6 is about the results for shifted error variance pa-

rameter in charts under consideration. Which reveals that up-

ward shift in error variance parameter (γ = 1.6), may decrease

97.0%, 96.1%, 96.8%, 96.4%, 96.2%, 96.6%, 96.6%, 96.5%, 96.8% and

96.7% ARL1 of EWMA/R, T 2, Shewhart-3, EWMA-3, Max-EWMA-3-A,

Max-EWMA-3-B, Max-EWMA-3-C, SS-EWMA-3-A, SS-EWMA-3-B and

SEWMA-3-C charts respectively. However, the ARL curves for shifted error
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variance parameter are plotted in Figure 4.1(D), which shows that joint (Max-

EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3) charts have similar

performance but they have better performance as compared to EWMA/R, T 2

and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-EWMA-3-C charts

have relatively good performance among all others.

Table 4.6: ARL comparison of control charts under shifts in error variance

Chart
γ

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
EWMA/R 34.30 12.00 6.10 3.90 2.90 2.30 1.90 1.70 1.50 1.40

T 2 39.60 14.90 7.90 5.10 3.80 3.00 2.50 2.20 2.00 1.80
Shewhart-3 40.10 13.50 6.50 4.00 2.80 2.20 1.80 1.60 1.50 1.40
EWMA-3 33.50 12.70 7.20 5.10 3.90 3.20 2.80 2.50 2.30 2.10

Max-EWMA-3-A 37.33 13.28 7.70 5.35 4.12 3.40 2.87 2.52 2.26 2.06
Max-EWMA-3-B 29.11 11.53 6.77 4.86 3.81 3.13 2.72 2.41 2.17 1.97
Max-EWMA-3-C 30.86 11.68 6.86 4.92 3.82 3.16 2.68 2.36 2.14 1.94
SS-EWMA-3-A 33.07 12.09 7.09 4.90 3.81 3.10 2.67 2.31 2.08 1.90
SS-EWMA-3-B 27.98 10.53 6.32 4.52 3.53 2.91 2.52 2.23 2.01 1.83
SS-EWMA-3-C 29.55 11.08 6.55 4.63 3.57 2.98 2.52 2.22 2.01 1.82

Joint shifts in intercept and slope of transformed model

The Table 4.7 is about the results of all charts under consideration for the joint

shifts in intercept and slope of transformed model. As discussed above that joint

and simultaneous charts have similar performance but Max-EWMA-3-C and SS-

EWMA-3-C charts have relatively good performance as compared to others. At

fixed shift in slope of transformed model (δ = 0.1), shift in intercept parameter

(θ = 0.05) may resulted 29.6%, 30.1%, 75.9%, 76.0% and 75.5% decrease in the

ARL1 of EWMA/R, T 2, Shewhart-3, EWMA-3, Max-EWMA-3-C, SS-EWMA-

3-C charts respectively. At fixed shift in intercept parameter (θ = 0.25), shift in
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slope of transformed model (δ = 0.15), may resulted 80.8%, 61.0%, 91.1%, 91.3%

and 92.1% decrease in the ARL1 of EWMA/R, T 2, Shewhart-3, EWMA-3, Max-

EWMA-3-C, SS-EWMA-3-C charts respectively. In conclusion, the joint (Max-

EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3) charts have similar

performance but they have better performance as compared to EWMA/R, T 2

and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-EWMA-3-C charts

have relatively good performance among all others.

Table 4.7: ARL comparison of control charts under shifts in error variance

θ Chart
δ

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

0.05

EWMA/R 179.10 169.90 156.60 140.80 123.20 105.10 88.80 73.40 60.20 49.60
Shewhart-3 193.18 180.64 162.76 139.73 119.05 98.79 79.91 63.73 50.47 40.90
EWMA-3 157.60 114.70 74.80 48.30 32.20 22.50 16.90 13.20 10.70 8.90
Max-EWMA-3-C 156.63 113.18 73.85 48.06 31.53 22.40 16.70 13.13 10.55 8.77
SS-EWMA-3-C 157.46 109.89 75.16 49.01 33.63 23.30 17.74 13.96 11.36 9.44

0.1

EWMA/R 139.50 133.60 125.76 115.50 103.50 90.40 78.30 65.70 55.60 46.30
Shewhart-3 184.63 172.96 154.66 137.51 115.32 95.28 77.85 62.38 50.83 40.31
EWMA-3 122.10 94.60 66.40 44.90 30.70 21.90 16.60 13.10 10.60 8.90
Max-EWMA-3-C 118.71 94.15 64.80 44.09 30.10 21.96 16.28 12.74 10.57 8.74
SS-EWMA-3-C 118.33 90.65 62.10 43.18 30.03 22.50 17.05 13.39 10.98 9.32

0.15

EWMA/R 96.80 94.20 90.30 85.10 78.50 70.90 63.00 55.30 47.70 40.90
Shewhart-3 165.25 160.43 143.16 128.64 109.11 91.59 74.65 60.80 49.55 39.75
EWMA-3 84.60 70.80 54.50 39.60 28.50 20.90 16.10 12.80 10.40 8.80
Max-EWMA-3-C 83.85 69.37 54.43 38.85 28.13 20.98 15.90 12.71 10.24 8.75
SS-EWMA-3-C 83.70 67.61 49.40 36.63 26.81 20.51 15.94 12.78 10.71 9.03

0.2

EWMA/R 64.80 63.80 62.10 59.70 56.60 52.90 48.50 44.00 39.20 34.60
Shewhart-3 148.30 143.85 132.16 116.66 101.51 87.21 70.79 57.63 47.31 38.28
EWMA-3 57.10 51.10 42.40 33.30 25.40 19.50 15.40 12.40 10.20 8.70
Max-EWMA-3-C 56.41 50.39 41.34 32.61 25.06 19.41 15.27 12.31 10.21 8.57
SS-EWMA-3-C 56.89 48.89 38.62 30.20 22.91 18.34 14.39 12.00 10.09 8.60

0.25

EWMA/R 44.30 43.80 42.90 41.80 40.30 38.40 36.10 33.60 30.80 28.10
Shewhart-3 130.54 125.22 114.09 103.59 91.89 78.02 67.20 55.43 45.70 36.84
EWMA-3 39.50 36.50 32.30 27.10 22.00 17.80 14.40 11.90 10.00 8.50
Max-EWMA-3-C 39.34 35.99 31.89 26.62 21.71 17.44 14.30 11.68 9.96 8.43
SS-EWMA-3-C 40.08 35.29 29.26 24.28 19.45 15.85 13.19 11.10 9.57 8.27

0.3

EWMA/R 31.00 30.80 30.50 29.90 29.20 28.30 27.10 25.70 24.20 22.50
Shewhart-3 112.33 107.85 100.24 91.56 81.92 71.51 61.72 50.87 42.88 35.20
EWMA-3 28.20 26.90 24.70 22.00 18.80 15.70 13.20 11.20 9.60 8.30
Max-EWMA-3-C 27.85 26.03 24.31 21.52 18.66 15.43 13.26 11.12 9.48 8.18
SS-EWMA-3-C 28.78 26.37 22.81 19.61 16.56 13.92 11.97 10.18 8.86 7.78
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4.2 Special case of joint linear profiling

As discussed in Section 3.4 that the monitoring of mean and variability may say

a special case of simple linear profiles when the slope of the simple linear profile

model (given in equation 1.1) is zero (i.e. β1 = 0). In literature there exist several

methods (discussed in Section 1.3.2) for the joint or simultenious monitoring of

process parameters. Max-EWMA and SS-EWMA are well-known methods used

for the joint monitoring of process parameters (location and dispersion).

Recently, [116] proposed a new memory-type procedure named progressive

mean (PM) control chart. PM chart is a special case of EWMA chart [117] which

is not only simple but also dominates existing memory-type charts and most of

their modifications. In this study, we have proposed a new memory-type control

chart based on progressive mean under max statistic, namely Max-P chart, for

the joint monitoring of location and dispersion parameters.

4.2.1 Control charts for joint monitoring of location and

dispersion

Let Y be the quality characteristic of a process which is used to monitor the

parameters of stated process (e.g. location (µ0) and scale (σ2
0)). Assume, Yij ∼

N (µ0 + θσ0, γσ
2
0) where subgroup number and sample size of each subgroup are

represented by i = 1, 2, 3, . . . ., m and j = 1, 2, 3, . . . ., n respectively. The process

is said to be stable or IC if θ = 0 and γ = 1. However, if θ 6= 0 and γ >

1, the process is deemed OOC or unstable. Generally, Y i =
∑n

j=1 Yij/n is used
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to monitor the location parameter and Si
2 =

∑n
j=1

(
Yij − Y i

)2
/n− 1 is used

to monitor variations in the process. The estimator Y i is a complete sufficient

statistic and (n− 1)Si
2is an ancillary statistic because its distribution is free from

parental parameters. Hence, by the use of Basu’s theorem (given in Appendix A.3)

both Y i and Si
2 are independent (for more details see, [118]). These two statistics

have their own different sampling distributions namely: Y i ∼ N (µ0, σ
2
0/n ) and

Si
2 ∼ (σ2

0/(n− 1))χ2
n−1 . However, we can transform them to a single distribution

using the following transformations:

Ui =
Y i − µ0√

σ2
0

n

, (4.1)

Vi = Φ−1

[
H

{
(n− 1)Si

2

σ2
0

;n− 1

}]
, (4.2)

where Φ−1 [.] is inverse standard normal distribution function and H{.; (n − 1)}

is termed as chi-square distribution function having (n− 1) degree of freedom.

The statistics Y i and Si
2are independent and Ui and Vi respectively are their one-

to-one transformation so this implies that Ui and Vi are also independent. Here,

both Ui and Vi follow a standard normal distribution.

Based on the above mentioned equations (4.1) and (4.2), we provide math-

ematical structures of some existing and the proposed charting structures. We

have covered four existing and one new proposed Max Progressive (Max-P) con-

trol charts in this study.
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Existing control charts

This subsection provides some memory type control charts that are used to mon-

itor small or transient shifts in the process parameters. We have covered Max-

EWMA, Max-DEWMA, SS-EWMA and SS-DEWMA charts for our study pur-

poses.

The Max-EWMA chart

A memory type control chart named as exponentially weighted moving average

(EWMA) control chart was proposed by [10]. Later, [12] proposed a modified

EWMA chart termed as Max-EWMA for the joint monitoring of location and

scale parameters. The structure of Max-EWMA depends on two EWMA statistics

which are based on Ui and Vi given in equation (4.1) and (4.2),

Wi = λUi+(1−λ)Wi−1, (4.3)

Zi = λVi+(1−λ)Zi−1, (4.4)

where U0 and V0 are used as initial values and λ is a smoothing (weight) parameter

having range (0 < λ ≤ 1). The structure of Max-EWMA chart is given as:

Max− EWMAi = Max(|Wi| , |Zi|),

UCLMax−EWMAi =

√
λ[1−(1−λ)2i]

2−λ (1.128379 + 0.602810L3),

UCLMax−EWMAi =
√

λ
2−λ (1.128379 + 0.602810L3),
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where L3 is the control limits coefficient that is used to control the IC run length

behavior of the chart.

The SS-EWMA chart

For the joint monitoring of process parameters (location and scale), [26] proposed

a scheme based on classical EWMA chart named as SS-EWMA. The structure of

SS-EWMA depends on two EWMA statistics Wi and Zi given in equation (4.3)

and (4.4). The SS-EWMA statistic and its UCL are defined as:

SS − EWMAi = W 2
i + Z2

i

UCLSS−EWMAi =
2λ[1−(1−λ)2i]

2−λ (1 + L4)

UCLSS−EWMAi = 2λ
2−λ (1 + L4),

where L4 is the control limits coefficient that is used to control the IC run length

behavior of the chart.

The Max-DEWMA chart

[119] proposed an extended version of EWMA chart named as double exponen-

tially weighted moving average (DEWMA) control chart. [58] developed a modifi-

cation in DEWMA chart named as Max-DEWMA. The Max-DEWMA technique

is very useful for the joint monitoring of location and scale. The structure of

Max-DEWMA depends on two new EWMA statistics Si and Ti that depend on
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two EWMA statistics Wi and Zi given in equation (4.3) and (4.4).

Si = λWi+(1−λ)Si−1, (4.5)

Ti = λXi+(1−λ)Ti−1, (4.6)

Further, the Max-DEWMA statistic and its UCL are defined as:

Max−DEWMAi = Max(|Si| , |Ti|),

UCLMax−DEWMAi =

(1.128379 + 0.602810L5)

√√√√√√√√√√√√√√√
λ4

[1−(1−λ)2]
3



1 + (1− λ)2

− (i2 + 2i+ 1) (1− λ)2i

+
(
2i2 + 2i− 1

)
(1− λ)2i+2

− (i2) (1− λ)2i+4


,

where L5 is the control limits coefficient that is used to control the IC run length

behavior of the chart.

The SS-DEWMA chart

[60] proposed a new SS-DEWMA chart (similar to Max-DEWMA chart) used

for the joint monitoring of process parameters. The structure of SS-DEWMA

depends on two DEWMA statistics Si and Ti (cf. (4.6) and (4.6)). The plotting

statistic and UCL of SS-DEWMA are defined as:

SS −DEWMAi = S2
i + T 2

i
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UCLSS−DEWMAi = 2 (1 + L6) λ4

[1−(1−λ)2]
3



1 + (1− λ)2

− (i2 + 2i+ 1) (1− λ)2i

+
(
2i2 + 2i− 1

)
(1− λ)2i+2

− (i2) (1− λ)2i+4


where L6 is the control limits coefficient that is used to control the IC run length

behavior of the chart.

A new max progressive (Max-P) control chart

[116] used a statistic for control charting named as progressive mean (PM) which

is defined as;

PM i =

∑i
k=1 Y k

i
(4.7)

where PM i is an unbiased estimator of population mean µ0 and its variance for

a given i is given as σ2
0/ni. If we consider n = 1 then the progressive mean can

be viewed as a cumulative average of samples and (4.7) reduces to

PM i =

∑i
k=1 Yk
i

(4.8)

The PM statistics based on U ′is and V ′i s given in (4.1) and (4.2) can now be defined

as:

PM1i =

∑i
k=1 Uk
i

(4.9)

PM2i =

∑i
k=1 Vk
i

(4.10)
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The mean and the variance of PM statistics in (4.9) and (4.10) are given as:

µPM1i
= µPM2i

= 0 (4.11)

σ2
PM1i

= σ2
PM2i

=
1

i
(4.12)

Further, the aforementioned progressive mean statistics are plugged into Max

statistic which is the plotting statistic of our new proposed charting scheme.

Mathematically, it is given as,

Max− P i = Max(|PM1i| , |PM2i|), (4.13)

The independence of Ui and Vi also ensures that PM1i and PM2iare indepen-

dent. Hence, the cumulative distribution function (CDF) of Max− P i under IC

situation is derived as:

F (g;σPM1i
) = P (MaxP i ≤ g) ,

= P (|PM1i| ≤ g. |PM2i| ≤ g),

= P (|PM1i| ≤ g) .P (|PM2i| ≤ g),

=

{
2Φ

(
g

σPM1i

)}2

; g ≥ 0 (4.14)
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and the probability density function (pdf) of Max− P i is derived as,

f (g;σPM1i
) =

d

dg
F
(
g;σ2

PM1i

)
=

4

σ2
PM1i

φ

(
g

σPM1i

){
2Φ

(
g

σPM1i

)
− 1

}
(4.15)

where Φ(.) and φ (.) are known as standard normal CDF and standard normal

pdf respectively. Moreover, by using the numerical computation, mean and the

variance of Max− P i are defined as,

µMax−P i =

∫ ∞
0

g f (g;σPM1i
) dg =

2√
π

(σPM1i
) (4.16)

σ2
Max−P i =

∫ ∞
0

g2 f (g;σPM1i
) dg =

(
1− 2

π

)(
σ2
PM1i

)
(4.17)

Finally, based on (4.15) and (4.16), the control limits of the proposed chart can

be defined as:

UCL1−MaxP i=µMax−P i + L σ2
Max−P i (4.18)

where L is the constant that determines the width of control limits. For a fixed

value L, (4.18) produces fairly wide control limits for large values of i which may

cause the deprivation in false alarm rate (FAR). To overcome such problem, [120]

introduced a penalty function which results into narrower limits. The updated

UCL1Max−P i is given as:

UCLMax−P i=µMax−P i + L σ2
Max−P i

L1

iq
= µMax−P i + L2 σ

2
Max−P i

1

iq
(4.19)
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where L2 (= L ∗ L1 ) is the control limits coefficient that is used to control the

IC run length behavior of the proposed Max-P chart using penalized limits and

f (i) =iq is treated as penalty function. It is to be noted that the performance of

proposed chart is affected (positively or negatively) by any change in the value of

q. Also, q = 0 leads us back to un-panelized limits given in (4.18).

4.2.2 Performance evaluations

In this section, we will discuss various performance measures used in this study

to evaluate the ability of different charting structures. For the proposed chart, we

will also derive the charting constants and evaluate the performance ability of the

proposed Max-P chart.

Performance measures

The performance of a control chart is measured through run length (RL) that is

defined as the number of samples until an OOC signal is received. The RL prop-

erties are summarized using some useful properties including average run length

(ARL), standard deviation of run length (SDRL), relative average run length

(RARL), extra quadratic loss (EQL) and performance comparison index (PCI).

ARL is a well-known measure which is defined as the average number of plotting

statistics until process is declared as OOC. We denote ARL by ARL0 (when the

process parameters are IC) while for case of OOC situation it is denoted by ARL1.

SDRL is defined as the standard deviation of the run length distribution. Further,
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RARL, EQL and PCI are defined as follow (for more details see [121–123]).

RARL=
1

Ψmax− Ψmin

∫ Ψmax

Ψmin

ARL(Ψ)

ARLbmk(Ψ)
dΨ, (4.20)

EQL=
1

Ψmax− Ψmin

∫ Ψmax

Ψmin

Ψ2ARL(Ψ)dΨ, (4.21)

PCI=
EQL

EQLbest chart
, (4.22)

where ARL(Ψ) is the ARL1 of a particular chart at shift Ψ (i.e. θ and γ) and

ARLbmk (Ψ)is the ARL1 of the benchmark chart (we consider Max-P as a bench-

mark for our study purposes) at shift Ψ.

Charting constants for the proposed Max-P chart

As mentioned above, the UCL of Max-P chart depends on control limits coeffi-

cient parameter L2 and panelizing function f (i) =iq. We have to carefully choose

the values of L2 in order to fix ARL0 at a pre-specified level. We have tested

several choices of q and found that the optimal value is q = 0.1 (we will use this

choice through this study i.e. f (i) =i0.1).The procedure to find control charting

parameter (L2) for Max-P control chart is illustrated in the following steps:

(i) Generate a subgroup of a fixed size n from normal distribution and calculate

sample mean Y 1 and sample variance S2
1 . By using the Y 1 and S2

1 , calculate

U1 and V1 given in equation (4.1) and (4.2) and save them in respective

vectors for Ui and Vi. Calculate the progressive means PM11based on U1

and PM21 based on V1 using equations (4.9) and (4.10) respectively. Further,
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for the calculation of first Max progressive Max− p1 plotting statistic, find

the maximum of the absolute PM11 and absolute PM21 using equations

(4.13).

(ii) Plot Max− p1 against a preset control limit (UCLMax−P 1
) using an arbi-

trary value of L2. If Max− p1 exceeds UCLMax−P 1
then the process is

declared OOC and the corresponding subgroup number is saved as a run

length. On the other hand, we proceed to next step (iii), if the Max− p1

remains inside the zero and UCLMax−P 1
.

(iii) We keep doing these iterations, as demonstrated in (i)-(ii), until a value of

Max− pi exceeds from UCLMax−P i and the process is declared OOC. The

corresponding sample number (which is the minimum value of i for which

the process goes OOC is saved as a value of run length.

(iv) Repeat steps (i)-(iii) a large number of times in order to get a complete

empirical behavior of distribution of run lengths and calculate the average

of that distribution. That is our observed ARL0.

Following steps (i)-(iv), we search the value of L2 such that our observed ARL0

is equal to the prefixed ARL0. We have carried out extensive Monte Carlo simu-

lations to work out the values of L2 at prefixed choices of ARL0.

For our study purposes we have derived the values of L2 for n = 5 and i = 0.1 at

some useful choices of ARL0 such as 168, 250 or 370, as given below:

L2 = 2.16 at prefixed ARL0 = 168;
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L2 = 2.33 at prefixed ARL0 = 250;

L2 = 2.52 at prefixed ARL0 = 370;

For other combinations of ARL0 and n one may follow the same lines as above to

derive the appropriate values of control limits coefficient L2.

Performance evaluation for the proposed Max-P chart

In order to examine the OOC performance of the proposed Max-P control chart,

we have considered several amounts of shifts in location and scale parameters.

The specific choices are listed as:

θ= 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00;

γ= 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00.

In the presence of different shifts in the process parameters, performance of the

proposed Max-P chart, at prefixed ARL′0s, is evaluated in the form of ARL and

SDRL and is reported as a tabular display (cf. Table 4.8). We have used the

same design parameters as finalized in above section. The results show that the

proposed Max-P chart exhibits attractive detection ability in presence of shifts in

location and/or scale parameter as may be seen form Table 4.8.

For a quantitative discussion of the ARL results, we define a measure referring

to the percentage change in ARL1 relative to the prefixed ARL0, mathematically
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given as:

Percentage change =

(
ARL0−ARL1

ARL0

)
× 100.

Using this measure we can discuss the results in terms of percentage gain (decrease

in in ARL1 relative to the prefixed ARL0). For instance, at ARL0 = 370, the

results of the proposed Max-P chart revealed that:

� when θ= 0, 25% increase in scale parameter (i.e. γ= 1.25 ) produces

97.48% decrease in the ARL1; 75% increase in scale parameter

(i.e. γ= 1.75 ) produces 99.35% decrease in ARL1.

� when γ= 1, 25% increase in location parameter ( θ= 1.25 ) produces

96.41% decrease in ARL1; 75% increase in location parameter

( θ= 1.75 ) produces 99.21% decrease in ARL1.

� when θ= 0.25, 75% increase in scale parameter (i.e. γ= 1.75 ) produces

99.37% decrease in the ARL1;

� when γ= 1.25, 75% increase in location parameter ( θ= 1.25 ) produces

99.25% decrease in ARL1;

� when θ = 0.25 and γ= 1.25, 25% increase in both parameters causes 98.09%

decrease in the ARL1.

The similar findings may be observed at other combinations of the design param-

eters (n, i, L2) for our proposed Max-P chart.
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4.2.3 Comparative analysis

In this section, we provide a comparative analysis of the proposed Max-P chart

with some other competing counterparts namely Max-EWMA, Max-DEWMA,

SS-EWMA and SS-DEWMA charts. We have evaluated the performance of all

the said charts at several combinations of θ and γ using their respective design

parameters. For comparison purposes, the specific design parameters of different

charts used in this study are listed below:

Max-EWMA: λ = 0.10, L3 = 2.79, n = 5, ARL0 = 250;

SS-EWMA: λ = 0.10, L4 = 3.57, n = 5, ARL0 = 250;

Max-DEWMA: λ = 0.10, L5 = 2.082, n = 5, ARL0 = 250;

SS-DEWMA: λ = 0.10, L6= 2.348, n = 5, ARL0 = 250;

Max-P:i = 0.10, L2 = 2.33, n = 5, ARL0 = 250;

The results obtained at these design parameters are shown in the form of table and

graph (cf. Table 4.9 and Figure 4.2). The comparative reveals that the proposed

Max-P chart offers better run length features relative to other competing charts in

the presence of shifts in scale and/or location parameter(s), as may be seen from

Table 4.9 and Figure 4.2. Moreover, the DEWMA version based on both Max

and SS charts perform better than their corresponding EWMA version based on

Max and SS charting schemes. Some specific observations at the above mentioned

design parameters are listed below:

� when θ = 0, 50% increase in scale parameter ( γ= 1.50 ) causes 98.66%

decrease in the ARL1 for Max-P chart while 97.08%, 97.06%, 98.23% and
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98.29% decreases are observed in the ARL1s for Max-EWMA, SS-EWMA,

Max-DEWMA and SS-DEWMA charts respectively.

� when γ= 1, 50% increase in location parameter (θ = 0.50) causes 95.44%,

90.00%, 89.76%, 92.52% and 92.53% decrease in ARL1s of Max-P, Max-

EWMA, SS-EWMA, Max-DEWMA and SS-DEWMA charts respectively.

� when θ = 0.25, 50% increase in scale parameter ( γ= 1.50 ) causes 98.74%

decrease in the ARL1 of Max-P chart while 97.25%, 97.32%, 98.40% and

98.46% decrease reported in the ARL1s of Max-EWMA, SS-EWMA, Max-

DEWMA and SS-DEWMA charts respectively.

� for 25% shift in scale parameter ( γ= 1.25 ) and 75% increase in location

parameter (θ = 0.75), we observe 99.01%, 97.93%, 97.94%, 98.84% and

98.89% reductions in the ARL1s of Max-P, Max-EWMA, SS-EWMA, Max-

DEWMA and SS-DEWMA charts respectively.

� In case of 50% increase in both parameters (θ = 0.5 and γ= 1.5), the

reductions in ARL1s of Max-P, Max-EWMA, SS-EWMA, Max-DEWMA

and SS-DEWMA charts are respectively 98.95%, 97.68%, 97.82%, 98.73%

and 98.82%.

It is obvious from the analysis of our results that the proposed Max-P chart offers

relatively better ARL properties and outperforms the other competing charts for

varying amounts of shifts in location and/or scale parameter(s).
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In addition, we have also evaluated the overall performances, in the form of

EQL, RARL and PCI, of all the charts (under discussion in this study) using

equations (4.20)-(4.22). These performance measures are reported in Table 4.9.

The smaller values of EQL, RARL and PCI for the proposed Max-P chart relative

to other competing counterparts also advocates the superiority of the proposal of

this study.

Table 4.9: Comparative analysis of Max-P chart with existing charts at ARL0 =
250

γ θ
Max-P Max-EWMA SS-EWMA Max-DEWMA SS-DEWMA

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.25

0 1.48 0.51 3.22 0.46 3.47 0.53 1.36 0.5 1.53 0.54

0.25 1.48 0.51 3.23 0.47 3.38 0.51 1.37 0.5 1.47 0.52

0.5 1.47 0.5 3.22 0.46 3.15 0.4 1.36 0.5 1.31 0.47

0.75 1.47 0.5 3.23 0.46 2.96 0.25 1.36 0.49 1.12 0.32

1 1.41 0.49 3.18 0.43 2.77 0.42 1.26 0.44 1.01 0.11

1.25 1.07 0.25 2.98 0.15 2.28 0.45 1.02 0.13 1 0.01

1.5 1 0.02 2.58 0.49 2.01 0.08 1 0 1 0

1.75 1 0 2 0.04 2 0 1 0 1 0

2 1 0 2 0 2 0.01 1 0 1 0

EQL 1.66 3.78 3.36 1.62 1.56

RARL 1 2.3 2.06 0.95 0.9

PCI 1 2.28 2.02 0.97 0.94

0.5

0 2.98 1.19 5.89 1.43 6.36 1.54 3.44 1.65 3.83 1.77

0.25 2.99 1.18 5.9 1.43 5.87 1.31 3.44 1.64 3.4 1.51

0.5 2.78 1 5.78 1.28 4.88 0.94 3.18 1.42 2.56 1.08

0.75 2.23 0.68 4.85 0.8 3.98 0.66 2.33 0.91 1.87 0.74

1 1.71 0.53 3.74 0.57 3.29 0.5 1.61 0.61 1.39 0.52

1.25 1.28 0.45 3.03 0.34 2.89 0.37 1.19 0.39 1.11 0.32

1.5 1.05 0.21 2.55 0.5 2.44 0.5 1.02 0.15 1.02 0.12

1.75 1 0.05 2.07 0.26 2.06 0.24 1 0.03 1 0.03

2 1 0 2 0.04 2 0.04 1 0 1 0.01

EQL 1.88 4.13 3.89 1.86 1.75

RARL 1 2.18 2.01 1.02 0.93

PCI 1 2.19 2.07 0.99 0.93

0.75

0 9.04 5.52 18.37 9.94 19.86 11.01 13.44 8.23 14.37 8.64

0.25 7.24 4.05 15.76 7.29 13.06 5.66 10.91 6.31 9.17 5.3

0.5 4.13 1.94 8.47 2.68 7.48 2.25 5.29 2.91 4.66 2.55

0.75 2.54 1.06 5.23 1.29 5.06 1.19 2.82 1.47 2.67 1.39
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1 1.78 0.7 3.81 0.8 3.82 0.78 1.78 0.84 1.76 0.83

1.25 1.37 0.51 3.04 0.56 3.12 0.55 1.32 0.53 1.32 0.53

1.5 1.13 0.34 2.54 0.52 2.65 0.52 1.1 0.3 1.1 0.31

1.75 1.03 0.18 2.17 0.37 2.24 0.43 1.02 0.14 1.02 0.15

2 1 0.07 2.02 0.15 2.04 0.2 1 0.05 1 0.06

EQL 2.04 4.36 4.39 2.1 2.05

RARL 1 2.13 2.1 1.08 1.03

PCI 1 2.13 2.15 1.03 1

1

0 254.47 995.59 252.32 245.61 247.07 239.23 251.32 271.24 252.95 268.67

0.25 11.59 9.28 25.22 16.84 25.3 16.97 18.8 14.62 18.88 14.8

0.5 4.53 2.81 8.84 3.75 9.1 3.82 5.95 4.09 6.11 4.24

0.75 2.68 1.42 5.33 1.72 5.54 1.75 3.04 1.97 3.08 2.03

1 1.86 0.88 3.85 1.03 4.03 1.06 1.93 1.1 1.97 1.15

1.25 1.45 0.61 3.07 0.74 3.22 0.74 1.43 0.68 1.45 0.71

1.5 1.21 0.42 2.56 0.58 2.69 0.6 1.18 0.42 1.19 0.44

1.75 1.08 0.28 2.22 0.44 2.34 0.5 1.07 0.25 1.07 0.26

2 1.03 0.16 2.04 0.29 2.1 0.32 1.02 0.13 1.02 0.15

EQL 2.17 4.47 4.66 2.27 2.3

RARL 1 2.05 2.14 1.11 1.12

PCI 1 2.06 2.15 1.04 1.06

1.25

0 8.2 7.4 17.61 11.44 17.24 11.02 13.01 11.69 12.95 11.67

0.25 6.17 5.12 13.2 7.44 12.14 6.7 9.26 8.07 8.63 7.45

0.5 3.76 2.69 7.96 3.63 7.43 3.29 4.96 4.07 4.6 3.73

0.75 2.51 1.51 5.23 1.99 5.08 1.84 2.9 2.16 2.8 2.09

1 1.86 0.99 3.88 1.25 3.88 1.2 1.99 1.31 1.94 1.27

1.25 1.49 0.69 3.11 0.89 3.14 0.86 1.49 0.81 1.47 0.79

1.5 1.27 0.49 2.61 0.68 2.66 0.68 1.24 0.53 1.23 0.52

1.75 1.14 0.36 2.27 0.52 2.33 0.53 1.11 0.34 1.11 0.34

2 1.06 0.23 2.06 0.42 2.11 0.41 1.04 0.21 1.05 0.21

EQL 2.17 4.43 4.46 2.25 2.21

RARL 1 2.07 2.04 1.11 1.07

PCI 1 2.04 2.05 1.04 1.02

1.5

0 3.42 2.58 7.38 3.52 7.26 3.44 4.45 3.93 4.32 3.92

0.25 3.2 2.38 6.93 3.18 6.61 3.06 4.03 3.53 3.89 3.45

0.5 2.66 1.85 5.86 2.48 5.39 2.27 3.2 2.73 2.98 2.5

0.75 2.12 1.32 4.67 1.77 4.28 1.59 2.42 1.89 2.24 1.72

1 1.74 0.96 3.75 1.31 3.49 1.18 1.85 1.29 1.73 1.14

1.25 1.46 0.71 3.09 0.99 2.96 0.91 1.48 0.85 1.43 0.81

1.5 1.28 0.53 2.63 0.78 2.56 0.71 1.26 0.58 1.23 0.54

1.75 1.16 0.4 2.29 0.61 2.28 0.58 1.14 0.4 1.12 0.37

2 1.09 0.29 2.06 0.51 2.08 0.49 1.07 0.27 1.06 0.26

EQL 2.08 4.28 4.14 2.13 2.06

RARL 1 2.1 2 1.07 1.02

PCI 1 2.05 1.99 1.02 0.99

1.75

0 2.2 1.48 4.78 2.01 4.72 1.97 2.51 2.08 2.4 2.04

0.25 2.16 1.45 4.65 1.91 4.51 1.85 2.41 1.99 2.34 1.96
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0.5 1.96 1.23 4.35 1.7 4.08 1.63 2.17 1.73 2.07 1.63

0.75 1.74 1.03 3.87 1.44 3.57 1.33 1.89 1.42 1.78 1.29

1 1.54 0.82 3.38 1.19 3.11 1.07 1.61 1.08 1.53 0.97

1.25 1.37 0.64 2.94 0.98 2.72 0.87 1.4 0.8 1.34 0.72

1.5 1.26 0.52 2.57 0.81 2.43 0.72 1.25 0.59 1.22 0.53

1.75 1.16 0.4 2.29 0.68 2.2 0.61 1.15 0.43 1.13 0.4

2 1.1 0.31 2.07 0.59 2 0.54 1.08 0.3 1.07 0.29

EQL 1.97 4.05 3.82 2 1.94

RARL 1 2.12 1.99 1.04 1

PCI 1 2.05 1.94 1.01 0.98

2

0 1.68 0.99 3.62 1.42 3.57 1.41 1.8 1.32 2.42 2.06

0.25 1.65 0.98 3.58 1.39 3.5 1.34 1.73 1.24 2.32 1.93

0.5 1.61 0.92 3.45 1.3 3.29 1.24 1.67 1.18 2.08 1.64

0.75 1.49 0.79 3.23 1.17 3.04 1.11 1.54 1.01 1.77 1.28

1 1.4 0.69 2.98 1.05 2.75 0.96 1.4 0.83 1.53 0.96

1.25 1.29 0.58 2.71 0.92 2.51 0.84 1.31 0.69 1.34 0.71

1.5 1.21 0.48 2.44 0.8 2.27 0.72 1.21 0.53 1.21 0.53

1.75 1.14 0.39 2.22 0.7 2.08 0.65 1.13 0.41 1.13 0.4

2 1.09 0.31 2.03 0.63 1.92 0.58 1.09 0.32 1.07 0.28

EQL 1.88 3.77 3.52 1.88 1.93

RARL 1 2.07 1.95 1.01 1.11

PCI 1 2.01 1.88 1 1.03

4.2.4 Diagnostic ability of charts

Usually, when the process is declared OOC then it is important to diagnose

the source of shift (e.g. due to location parameter, dispersion parameter or

with respect to both parameters). For the diagnostic analysis we choose three

charts namely Max−P i, Max−EWMAi and Max−DEWMAi charts. The

specific symbols we will use in this diagnostic analysis are reported in the

form a table (cf. Table 4.10). The structure of the stated diagnosis anal-

ysis is given as: Plot the plotting statistics (i.e. Max−P i, Max−EWMAi

and Max−DEWMAi) against their respective control limits UCLMax−P i ,

UCLMax−EWMAi and UCLMax−DEWMAi . Plot a dot against i when plotting statis-
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Figure 4.2: ARL curves (on logarithmic scale) for the proposed and some coun-
terpart charts under (a) shifts in scale parameter at fixed IC location parameter;
(b) shifts in location parameter at fixed IC scale parameter; (c) shifts in scale
parameter at a shifted location parameter; (d) shifts in location parameter at a
shifted scale parameter.

tics do not exceed their limits, otherwise, label the plotted points accordingly

using the symbols shown in Table. In case of Max-P chart, when the plotting

statistic Max−P i exceeds UCLMax−P i , check both |PM1i| and |PM2i|against

UCLMax−P i . If Ui > 0 and only |PM1i| is greater than UCLMax−P i then label it

with symbol “m+′′ which indicates that only process mean increased. However,
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decrease in the process mean will be shown when Ui < 0 and only |PM1i| is

greater than UCLMax−P i which is labeled by “m−′′. On the other hand, in case

of increase in process dispersion, symbol “v+′′ can be assigned when Vi > 0 and

only |PM2i| is greater than UCLMax−P i whereas, when Vi < 0 and only |PM2i|

is greater than UCLMax−P i then label with symbol “v−′′ indicates a deprivation

in process dispersion. Further, when both |PM1i| and |PM2i| exceedUCLMax−P i

and Ui, Vi > 0, the symbol ” + +” depicts a positive shift in both parameters.

Similarly, symbol ”−−” shows a decreasing shift in both parameters, ” +−” de-

picts an increasing shift in location and decreasing shift in dispersion and symbol

” − +” shows an increasing shift in dispersion parameter and decreasing shift in

location parameter. A similar structure may also be used to analyze the diagnosis

ability of other competing Max-EWMA and Max-DEWMA charts.

The results obtained for the diagnostic abilities of Max-P, Max-EWMA and

Max-DEWMA control charts are reported in a tabular form (cf. Table 4.11).

The results advocate that the proposed Max-P chart outshines the competing

Max-EWMA and Max-DEWMA charts, in general, in diagnosing location and/or

dispersion shifts. For instance, when γ = 0.25 and θ = 1 (for the case of m+) the

proposed Max-P chart produces 63 signals, whereas 45 and 6 signals are reported

in Max-EWMA and Max-DEWMA charts respectively. Moreover, when γ = 0.25

and θ = 1 (for the case of +−) the proposed Max-P chart produces 448 signals,

whereas 297 and 470 signals are reported in Max-EWMA and Max-DEWMA

charts respectively. Furthermore, when γ = 0.25 and θ = 2 (for the case of +−)
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the proposed Max-P chart produces 545 signals, whereas 15 and 0 signals are

reported in Max-EWMA and Max-DEWMA charts respectively.

Table 4.10: Assignment of the symbols to different situations

|PM2i|> UCLMax−P i
|Zi| > UCLMax−EWMAi

|Ti| > UCLMax−DEWMAi

|PM2i| < UCLMax−P i
Vi > 0 Vi < 0|Zi| < UCLMax−EWMAi

|Ti| < UCLMax−DEWMAi

|PM1i| < UCLMax−P i
v+ v−|Wi| < UCLMax−EWMAi

|Si| < UCLMax−DEWMAi

|PM1i| > UCLMax−P i Ui > 0 m+ ++ +−
|Wi| > UCLMax−EWMAi Ui < 0 m− −+ −−
|Si| > UCLMax−DEWMAi

4.2.5 A real application in electrical engineering

In this section, we describe a real phenomena related to electrical engineering and

the implementation of Max-P, Max-EWMA and Max-DEWMA charts to monitor

the voltage of the photovoltaic (PV) system in the said electrical engineering

process. The description of the PV system is already dicussed in Section 2.1.

Implementation of the proposed and existing charts

Usually, electrical engineers are engaged to monitor the variations of voltage in the

system. As discussed above that voltage (V ) has inverse relation with capacitance

(C) at fixed charge (Q). In this illustrative example, the monitoring of voltage

(V ) generated through Z-source inverter in grid connected PV system, we get a

data set having two capacitance levels (C = 250µF and 350µF ) each of 75455
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Table 4.11: Diagnostic abilities of the proposed and some counterpart charts

γ

Max-P Max-EWMA Max-DEWMA
θ θ θ

0 0.25 0.5 1 2 0 0.25 0.5 1 2 0 0.25 0.5 1 2

0.25

m+ 0 0 0 63 455 0 0 0 45 985 0 0 0 6 1000
m− 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v− 1000 1000 1000 489 0 1000 1000 1000 658 0 1000 1000 1000 524 0
++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+− 0 0 0 448 545 0 0 0 297 15 0 0 0 470 0
−+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−− 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5

m+ 0 2 145 693 919 0 0 68 864 1000 0 0 35 940 1000
m− 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v+ 0 0 0 0 0 0 0 0 0 0 6 6 5 0 0
v− 1000 988 705 66 0 1000 1000 864 22 0 994 994 882 4 0
++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+− 0 10 150 241 81 0 0 68 114 0 0 0 78 56 0
−+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−− 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1

m+ 257 888 943 983 989 272 976 993 1000 1000 239 852 919 990 1000
m− 218 2 0 0 0 245 0 0 0 0 255 120 76 10 0
v+ 263 45 27 4 1 238 10 4 0 0 236 11 1 0 0
v− 261 58 15 7 0 244 13 0 0 0 270 16 3 0 0
++ 0 6 10 4 8 1 0 3 0 0 0 1 0 0 0
+− 0 1 5 2 2 0 1 0 0 0 0 0 1 0 0
−+ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−− 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.5

m+ 81 270 406 671 805 27 169 405 794 977 5 72 310 843 997
m− 91 31 16 0 0 37 3 0 0 0 11 18 51 36 2
v+ 775 626 448 159 23 923 788 526 129 4 884 797 476 48 0
v− 1 3 2 0 0 0 0 0 0 0 95 82 64 8 0
++ 36 61 124 170 170 6 40 69 86 19 0 18 80 52 1
+− 0 0 0 0 2 0 0 0 0 0 2 0 8 10 0
−+ 16 9 4 0 0 7 0 0 0 0 3 11 11 3 0
−− 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0

2

m+ 80 142 184 330 475 29 60 150 383 758 2 14 52 319 892
m− 80 42 23 6 0 31 6 1 0 0 7 4 12 26 7
v+ 683 674 582 374 72 910 872 747 412 46 933 915 839 443 22
v− 1 0 0 0 0 0 0 0 0 0 52 48 46 20 0
++ 71 98 185 288 453 14 59 100 204 96 0 9 41 165 73
+− 0 0 0 0 0 0 0 0 0 0 0 2 0 7 6
−+ 85 44 26 2 0 16 3 2 1 0 5 7 9 20 0
−− 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
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values of V reported in [94] and also used by [17].

In this study, we consider first 150 subgroups each of size n = 5 from IC

capacitance level (C = 350µF ) while next 250 OOC subgroups are taken from the

C = 250µF . By using 15091 subgroups of C = 350µF , we compute population

mean (µ0 = 397.0841) and variance (σ2
0 = 0.4367731). On the fixed ARL0 =

250 and some specific design parameters we have computed the control limits’

coefficients for the three competing charts and the outcomes are listed below (to

be used with this dataset):

Max-P Chart: f (i) = i0.1 and L2 = 3.98

Max-EWMA Chart: λ = 0.1 and L3 = 4.50

Max-DEWMA Chart: = 0.1 and L5 = 3.40

Using these quantities, we have constructed all the three charts for the aforemen-

tioned dataset. The resulting charting displays are given in graphical form in

Figures 4.3-4.5. The plots contain brown shaded points with pink background

from IC subgroups while white shaded area is the OOC area where red shaded

point are the OOC signals. The diagnostic abilities of the three charts are also

evaluated for this dataset and the results are reported in Table 4.12.

The implementation of Max-P chart (presented in Figure 4.3) reveals that

232 points are declared OOC. Out of 232 OOC (indices reported in Table 4.12)

points, 168 points are declared OOC due to increase in scale while 53 points

are declared OOC due to decrease in the scale parameter. Moreover, 5 points are

OOC due to increase in both location and scale parameters while 4 points are OOC
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due to decrease in location and increase in scale parameter. However, only one

point is declared OOC due to increase in location and decrease in scale parameter

and the same detections due to decrease in both location and scale parameters.

For Max-EWMA chart (presented in Figure 4.4), 114 points are declared OOC

(indices reported in Table 4.12). The case wise diagnosis depicts that 15 points are

declared OOC due to increase in location while only 3 points are declared OOC

due to decrease in the location parameter. However, 86 OOC points are reported

due to increase in scale parameter and only 10 OOC points are reported due to

decrease in scale parameter. For Max-DEWMA chart (shown in Figure 4.5), 132

OOC points are detected (indices stated in Table 4.12). The diagnostic analysis

shows that 16 OOC points are captured due to increase in location parameter and

only 11 OOC points are reported due to decrease in scale parameter. Moreover, 91

points are declared OOC due to increase in scale parameter while only 14 points

are declared OOC due to decrease in the scale parameter.

In precise, the implementation of our proposed chart and existing charts depict

that Max-P chart outperforms other counterparts for the detection of joint shift

in process parameters (location and scale). The proposed Max-P chart appeared

as an efficient scheme to detect the variation in voltage converted by Z-source

inverter in 3-ϕ grid connected PV system and may be useful for the practitioners

who are engaged in the joint monitoring of such kind of parameters.
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Table 4.12: Indices of case wise diagnosis for the proposed and some counterpart
charts

Chart MAX-P Max-EWMA Max-DEWMA

m+ NA

267-271,
273-275,

277-279, 281,
283-285

269-271, 273-275,
277-279, 281,

283-285, 287, 290,
293

m− NA 272, 280, 282

272, 276, 280,
282, 286, 288,
289, 291, 292,

294, 295

v+

168, 170-174, 176, 177, 182-186,
189-196, 199-210, 213, 216, 217,
219, 221, 223, 224, 226, 228-233,
235, 237-243, 245, 247, 248, 250,

252, 256, 259, 261, 263, 267,
268, 270, 271, 276-278, 281, 282,
292, 293, 295, 297, 298, 301-306,
308-310, 312-328, 330, 332-339,

341-345, 348-352, 354-381,
384-400

305, 306,
308-310,

312-328, 330,
332-339,
341-345,
348-381,
384-400

170-174, 176, 177,
308-310, 312-328,

330, 332-339,
341-345, 348-352,
354-381, 384-400

v−

175, 178-181, 187, 188, 197, 198,
211, 212, 214, 215, 218, 220,
222, 225, 227, 234, 236, 244,

246, 249, 251, 253-255, 257, 258,
260, 262, 264-266, 269, 272- 275,

279, 280, 294, 296, 307, 311,
329, 331, 340, 346, 347, 353,

382, 383

307, 311, 329,
331, 340, 346,
347, 353, 382,

383

175, 178-180, 307,
311, 329, 331,
340, 346, 347,
353, 382, 383

++ 283, 284, 287, 290, 299 NA NA
+− 285 NA NA
−+ 286, 288, 289, 300 NA NA
−− 291 NA NA

*NA=not available
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Figure 4.3: Max-P chart for IC and OOC states for the illustrative example
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Figure 4.4: Max-EWMA chart for IC and OOC states for the illustrative example
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Figure 4.5: Max-DEWMA chart for IC and OOC states for the illustrative exam-
ple
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4.3 Concluding remarks

Recent literature about simple linear profiles was designed under simultaneous

structure for the monitoring of linear profile parmeters (i.e. intercept, slope and

error variance). In simulteneous methods each parameter have individual chart

with its respective pair of limits. In simultaneous monitoring of linear profile pa-

rameters three individual charts based on each parameter are designed in a mech-

anism to obtain overall performance of the process. The joint monitoring is an

alternative approch to simultaneous monitoring which has single charting methe-

dology for all parameters under consideration. In this study, we proposed joint

structures (Max-EWMA-3 and SS-EWMA-3) for the monitoring of linear profile

parameters. The results concludes that joint (Max-EWMA-3 and SS-EWMA-3)

and simultaneous (EWMA-3) charts have similar performance but joint structure

offers simple design and paractical to use. Moreover, Max-EWMA-3, SS-EWMA-

3 and EWMA-3 charts have better performance as compared to EWMA/R, T 2

and Shewhart-3 charts. In precise, Max-EWMA-3-C and SS-EWMA-3-C charts

have relatively better performance (in terms of efficency and simplicity) among

all others.

The joint monitoring of location and dispersion are the special case of joint

linear profiling. In this chapter, we proposed Max-P chart to monitor both pro-

cess parameters in a single charting setup. This study comprises an extensive

comparison among Max-p chart and some existing joint monitoring schemes in-

cluding Max-EWMA, SS-EWMA, Max-DEWMA and SS-DEWMA. The study
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findings reveal that the newly proposed Max-P monitoring scheme has relatively

better performance in the presence of shifts in process parameter(s). Therefore,

it may used as a powerful tool by quality control researchers and practitioners in

the monitoring of joint shifts in manufacturing processes. A real application of

the proposed scheme has also offered attractive detection ability to monitor the

variations in the voltage of a photovoltaic (PV) system in an electrical engineering

process.
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CHAPTER 5

NON-PARAMETRIC

APPROACH FOR JOINT

MONITORING OF PROCESS

PARAMETERS

Control charts are often designed and used to monitor single process parame-

ter such as location and dispersion. There exist several studies (discussed in

Section 1.3.2) for the joint monitoring of process parameters. Usually, normal-

ity is a typical assumption needed for parametric charts while non-parametric

charts are free from any such constraints. The literature in this direction may

see in [64–66, 124]. Moreover, a traditional approach used in SPC is to monitor

each parameter separately, however simultaneous monitoring of more than one

parameters is also getting popular in industry. [62, 63, 69, 125] and the references
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therein may be seen for literature on simultaneous charts.

Recently, [62] proposed a Shewhart type distribution free chart for joint moni-

toring of the process parameters. It is based on the Lepage test, a combination of

Wilcoxon rank sum test for location and Ansari Bradley test for scale (cf. [126])

and this chart hereafter named as Shewhart-Lepage (SL) chart. On the same

lines, [63] developed a distribution free Shewhart chart for joint monitoring that

utilizes Cucconi test proposed by [127] and hereafter referred as Shewhart Cucconi

(SC) chart. [128] provided a comparative analysis of Cucconi test versus Lepage

test under some distributional setups and favored Cucconi test over Lepage.

This study intends to investigate the impact of the light and heavy tailed

distributions on the performance of SL and SC charts. In addition, the effect of

reference/test samples is included in this study.

5.1 Description of SC and SL charts

Let U1, U2, . . . . . . . . . , Um and V1, V2, . . . . . . . . . . . . , Vn be independent random sam-

ples from their respective populations with continuous cumulative distribution

functions: F (U) = Q
(
U−θ
γ

)
and G (V ) = Q

(
V−θ
γ

)
; θ ∈ R; γ > 0; where Q

is some unknown continuous functions. The constants θ and γ represent the un-

known location and scale parameters respectively. Let us introduce an indicator

variable Ik = 0 or 1 depending on whether or not the kth order statistic of the

combined sample of N = m + n observations belongs to U or V . It is to be

mentioned that m is reference sample (phase I) and n is the test sample (phase
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II). Further, we assume that k be the linear rank of kth order variable.

The popular nonparametric Wilcoxon rank sum (WRS) test statistic T1 is defined

as

T1 =
N∑
k=1

kIk

For the equality of two scale parameters, Ansari Bradley (AB) is an efficient non-

parametric test whose statistic T2 is defined as

T2 =
N∑
k=1

∣∣∣∣k − 1

2
(N + 1)

∣∣∣∣ Ik
Consider S1 as the sum of the square of the ranks of V i’s in the combined sample

i.e.

S1 =
N∑
k=1

k2Ik

Further, note that the quantities (N + 1 − k)Ik, for k = 1, 2, ..., N, may be

considered as the contrary ranks of V i’s. The sum of squares of contrary ranks of

V i’s in the combined sample, say S2, is given by

S2 =
N∑
k=1

(N + 1− k)2Ik = n(N + 1)2 − 2 (N + 1)T1 + S1

Assuming θ = 0 and γ = 1 refer to IC state (F = G), we have the following

properties (cf. Appendix A.4).

E (T1 | IC) =
1

2
n (N + 1) V ar (T1 | IC) =

1

12
mn (N + 1)
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E (T2 | IC) =


m(N+2)

4
when N is even

m
N

[
N+1

2

]2
when N is odd

V ar (T2 | IC) =


mn(N2−4)

48(N−1)
when N is even

mn(N+1)(N2+3)
48N2 when N is odd

E (S1 | IC) = E (S2 | IC) =
n (N + 1) (2N + 1)

6

V ar (S1 | IC) = V ar (S2 | IC) =
mn

180
(N + 1) (2N + 1) (8N + 11)

The combination of AB and WRS is known as Lepage statistic [126] and is given

as

L =
(T1 − E (T1|IC))2

V AR (T1 | IC)
+

(T2 − E (T2|IC))2

V AR (T2 | IC)
(5.1)

and Cucconi statistic [127] for testing both location and scale is defined by

C =
W 2 + Z2 − 2WZρ

2 (1− ρ2)
(5.2)

where W and Z are the standardized statistics given as

W =
S1 − E (S1|IC)√
V AR (S1 | IC)

=
6S1 − n (N + 1) (2N + 1)√

mn
5

(N + 1) (2N + 1) (8N + 11)

Z =
S2 − E (S2|IC)√
V AR (S2 | IC)

=
6S2 − n (N + 1) (2N + 1)√

mn
5

(N + 1) (2N + 1) (8N + 11)
,

when θ > 0 and γ = 1, E(W ) > 0 and E(Z) < 0; when θ = 0 and γ > 1,

149



E(W ) > 0 and E(Z) > 0; and in general, when θ 6= 0 and γ 6= 1, E(W ) 6= 0

and E(Z) 6= 0. Similar inequalities may be observed in other possible cases,

when either θ differs from 0, or γ differs from 1, in any direction. Also, note that

E(W |IC) = E(Z|IC) = 0 and V (W |IC) = V (Z|IC) = 1 (cf. Appendix A.5).

Moreover, when F = G, the correlation coefficient between W and Z is given

as [128]:

ρ = Corr (W,Z | IC) =
2 (N2 − 4)

(2N + 1) (8N + 11)
− 1

5.2 Design of control charting constants of dis-

tribution free charts

Construction and design of both SC and SL charts depend on the distributions of

the statistics given in (5.1) and (5.2). The lower control limit of both charts is zero

as both statistics can never be negative (cf. [62,63]) and the upper control limits of

both charts, say H, used to make decision. The values of H are provided in [62,63]

for some selective values of n and m. We have covered more combinations of n and

m to find the upper control limit say H for both charts, using a simulation study

with 100,000 replicates (in R 3.1.1). We have taken the retrospective samples

i.e. m = 30, 50, 100, 150, 500 and 1000 while prospective samples i.e. n =

5, 8, 11, 16 and 25 for this study, fixing ARL0 = 500. The results are reported

in Table 5.1 for SL and SC charts.

The decision procedure for the two charts is given as:
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Table 5.1: Constant H for SC and SL charts at ARL0=500

m=30 m=50 m=100 m=150 m=500 m=150
SC

n=5 4.48 5.25 5.98 6.25 6.65 6.73
n=8 4.31 4.77 5.56 5.91 6.42 6.54
n=11 4.45 4.8 5.34 5.67 6.29 6.42
n=16 4.47 4.85 5.31 5.56 6.11 6.28
n=25 4.18 4.7 5.25 5.49 6 6.16

SL
n=5 9.4 10.32 11.25 11.5 12.02 12.14
n=8 9.28 10.22 11.15 11.53 12.1 12.24
n=11 9.24 10.1 11.07 11.45 12.06 12.22
n=16 9.11 9.95 10.9 11.32 12.04 12.21
n=25 8.4 9.5 10.74 11.17 12.02 12.2

SL chart : The statistic L is used for plotting in SL chart. If L is greater

than H, then the process is declared OOC. For the follow up analysis, we compute

the p-values of the WRS test for location and AB test for scale with the phase I

sample and the ith test sample and are denoted as p1 and p2 respectively. If p1

is very low but not p2,a shift of location is detected or if p2 is very low and p1 is

relatively high,a shift in scale parameter is detected. When both WRS and AB

p-values are very low, a joint shift in the location and scale is considered.

SC chart : The statistic C is used for plotting in SL chart. If C exceeds H,

the process is declared OOC. For the follow up analysis, we compute the p-values

for Wilcoxon test (p3) and Mood test (p4) based on two samples (reference sample

and test sample), [63]. The shift in location is noted, when p3 is very low but

not p4, and if p3 is relatively high but not p4 then there is the indication about

shift in scale. If both p3 and p4 are very low, shift is noted in both location and

scale. Sometimes neither p3 nor p4 are very low though the plotting statistic C
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is high, in this situation the effect is due to the relation between location and

scale changes or due to false alarm. So to overcome this problem combine ithand

(i−1)th prospective samples and recalculate the (p3) and (p4) for further decision.

5.3 Performance analysis of SL and SC charts

In this section, we will investigate the performance of SL and SC charts under dif-

ferent distributional environments. We will also examine the effects of reference

and test samples on the performance of these charts. We will use average run

length (ARL) and standard deviation run length (SDRL) as performance mea-

sures. The ARL value is denoted by ARL0 for in-control situation and ARL1 for

out-of-control situation. The distributional setups covered in this study include:

Uniform: U (
√
−3 ,

√
3), Student’s t: t4 , Lognormal: LN(1,1) , Gamma: G(1,1)

, and contaminated normal (C1 : with 10% contaminations; C2 : with 30% con-

taminations). The first two are symmetric and light tailed, next two are skewed

and heavy tailed, and last two are contaminated distributions. [15, 128–131] are

some useful references about the said distributional environments. The graphical

displays of these distributions are given in Figure 5.1.

5.4 OOC performance

In order to examine the OOC performance of SL and SC charts, we have considered

shifts in location and scale for these choices: θ = 0, 0.25, 0.50, 0.75, 1.00, 1.50,
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Figure 5.1: Probability density plots of different distributions

2.00 and γ = 0.50, 0.75, 1, 1.25, 1.5, 1.75 and 2. We have chosenm= 30, 50, 100,

150, 500 and 1000 aand n = 5, 8, 11, 16 and 25. It makes a total of 30 pairs

(m,n). The properties of SL and SC charts, in terms of ARL and SDRL, are

evaluated for different combinations θ and γ. These results are provided in Tables

5.2 and 5.3 under different distributions. For the sake of brevity, we only discuss

the results of the pair (100, 5). Moreover, some useful ARL curves are also

produced and are provided in Figures 5.2 and 5.3.

The useful findings about the two charts are listed as:

� In general, the run length follows right skewed distribution; the run length

distributions of both charts decrease with the increase in the location and

scale shifts; shift in the scale parameter is detected faster than the shift
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Table 5.2: ARLs of SC and SL Charts under Different Distributions usingm = 100
and n = 5

U (
√
−3 ,

√
3) t4 LN(1,1) G(1,1) C1 C2

γ θ SC SL SC SL SC SL SC SL SC SL SC SL

0.5

0.00 133.60 1171.98 15598.55 4741.50 1958.81 1351.42 14130.31 332.10 4244.22 771.56 753.65 374.45
0.25 153.60 1184.99 15053.16 4721.17 4446.38 1405.95 12805.36 2288.34 3179.54 652.55 717.98 342.99
0.50 4596.41 990.82 3651.45 6725.76 9842.98 1701.95 5629.85 1595.17 1644.35 479.31 655.09 314.40
0.75 2185.38 182.76 271.02 3925.29 12483.72 1703.05 1238.17 296.32 625.48 226.86 560.32 281.93
1.00 16.18 11.66 13.11 2888.23 9251.59 1183.41 218.56 35.65 215.57 71.55 453.31 238.19
1.50 1.59 1.39 1.14 1607.68 1044.82 164.16 3.66 1.32 22.81 5.46 288.71 133.39
2.00 1.00 1.00 1.01 795.95 47.68 11.86 1.05 1.00 3.79 1.49 185.64 68.50

0.75

0.00 3639.70 5250.33 5776.59 9287.89 12139.71 1784.44 10500.39 1406.33 1497.88 692.08 631.99 360.24
0.25 10453.54 1930.49 2348.37 8441.62 6892.77 1146.05 3579.71 290.75 1198.41 535.60 612.85 345.37
0.50 201.87 122.63 285.72 6249.00 1657.41 405.53 866.22 150.12 645.93 270.15 552.64 314.30
0.75 25.75 21.42 34.85 4173.70 269.82 104.72 183.01 55.13 287.55 107.38 483.19 257.58
1.00 8.05 7.39 6.00 3025.55 55.96 28.35 38.16 11.77 105.60 36.96 412.44 207.27
1.50 2.07 1.96 1.32 1435.98 5.97 4.12 2.86 1.43 17.23 5.48 273.54 118.28
2.00 1.11 1.07 1.03 589.88 1.80 1.57 1.08 1.01 3.91 1.71 185.71 71.33

1

0.00 506.23 499.45 511.47 503.09 503.04 505.16 503.96 506.55 511.82 500.85 506.78 507.24
0.25 111.64 133.09 267.71 245.33 261.97 259.18 782.65 534.14 423.98 404.52 494.57 490.28
0.50 31.67 37.89 66.51 55.74 71.47 69.17 240.77 162.23 266.94 216.13 455.29 450.29
0.75 13.19 15.55 16.09 13.54 20.79 20.23 72.60 53.58 133.49 96.20 411.23 387.42
1.00 6.75 7.89 5.17 4.64 7.64 7.64 22.60 16.62 63.85 39.75 359.26 321.20
1.50 2.52 2.85 1.51 1.49 2.10 2.16 3.02 2.23 13.94 8.47 260.57 207.84
2.00 1.36 1.41 1.07 1.09 1.20 1.23 1.14 1.06 4.40 2.86 190.03 139.47

1.25

0.00 22.81 39.65 112.22 136.30 76.10 102.55 18.35 28.47 203.03 198.85 410.70 389.44
0.25 19.97 31.65 73.29 84.49 45.91 57.89 177.22 199.10 180.53 172.20 401.98 380.56
0.50 14.46 19.18 28.97 29.93 17.54 20.25 121.88 110.31 123.96 109.05 383.55 359.37
0.75 9.47 11.07 10.80 10.74 7.31 7.97 48.95 43.15 73.42 54.95 353.64 317.61
1.00 6.06 6.96 4.71 4.68 3.62 3.85 19.29 16.75 41.02 28.50 315.83 276.75
1.50 2.90 3.25 1.68 1.72 1.50 1.57 3.62 2.85 12.83 8.47 244.72 197.99
2.00 1.66 1.81 1.14 1.17 1.09 1.11 1.26 1.14 4.65 3.24 186.30 135.86

1.5

0.00 8.09 14.67 40.09 56.25 24.25 37.13 7.06 11.07 100.81 97.56 340.70 307.79
0.25 7.83 13.64 30.78 40.54 17.07 23.69 18.87 31.48 88.99 89.52 342.21 301.97
0.50 7.01 11.14 16.53 19.25 8.28 10.24 61.19 69.09 68.48 63.88 324.87 286.24
0.75 6.17 8.41 8.05 9.00 4.20 4.81 38.18 37.91 46.47 38.58 301.81 268.04
1.00 5.18 6.29 4.32 4.63 2.45 2.71 18.40 17.78 29.86 22.70 281.01 238.85
1.50 3.14 3.49 1.82 1.91 1.31 1.36 4.38 3.83 11.48 8.05 229.81 181.89
2.00 1.97 2.14 1.23 1.27 1.05 1.07 1.49 1.32 5.08 3.72 186.46 135.55

1.75

0.00 4.74 8.46 19.39 28.97 11.72 18.94 4.31 6.69 59.37 55.99 288.24 250.96
0.25 4.64 8.15 16.38 23.38 9.06 13.34 7.47 12.63 50.90 54.32 283.87 246.25
0.50 4.42 7.33 10.88 13.94 5.19 6.62 15.58 25.51 43.14 42.68 271.38 237.93
0.75 4.20 6.29 6.43 7.71 3.03 3.51 27.12 30.59 32.22 29.04 264.18 227.34
1.00 3.80 5.29 3.96 4.50 1.97 2.18 17.83 18.30 22.62 19.19 247.84 208.32
1.50 3.12 3.60 1.92 2.08 1.21 1.26 5.24 5.07 10.84 8.22 214.13 168.13
2.00 2.20 2.39 1.31 1.37 1.03 1.04 1.84 1.65 5.39 4.10 180.64 132.26

2

0.00 3.38 5.81 11.54 18.11 7.12 11.84 3.20 4.87 40.46 35.55 248.38 209.49
0.25 3.35 5.68 10.24 15.29 5.86 8.79 4.55 7.44 33.66 37.23 250.30 207.66
0.50 3.24 5.41 7.75 10.65 3.77 4.89 7.11 12.18 29.54 31.10 242.79 200.31
0.75 3.17 4.97 5.25 6.69 2.42 2.88 11.64 17.69 24.08 23.29 234.72 193.50
1.00 2.99 4.40 3.63 4.32 1.70 1.89 14.87 16.88 18.16 16.44 225.19 184.62
1.50 2.68 3.41 1.98 2.20 1.16 1.20 6.14 6.36 9.79 8.20 195.52 153.90
2.00 2.32 2.55 1.38 1.47 1.03 1.03 2.29 2.15 5.54 4.51 170.17 132.57
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Table 5.3: SDRLs of SC and SL Charts under Different Distributions using
m = 100 and n = 5

U (
√
−3 ,

√
3) t4 LN(1,1) G(1,1) C1 C2

γ θ SC SL SC SL SC SL SC SL SC SL SC SL

0.5

0.00 1523.32 3438.77 26154.47 15223.50 10820.01 3922.19 24104.39 1212.42 5762.79 1152.54 1165.85 462.47
0.25 3023.32 3506.40 22552.20 14967.63 15555.80 3377.95 20772.47 7520.43 4863.72 973.78 1135.92 419.56
0.50 14639.87 2769.44 10064.97 14773.53 21235.22 4046.90 13380.19 5877.11 3319.82 767.23 1063.13 417.88
0.75 7716.73 499.28 2384.35 13315.89 21560.04 3839.40 5596.81 2573.27 1796.22 496.24 1013.83 394.96
1.00 22.29 15.20 106.34 11305.25 17742.19 2831.89 1910.50 475.51 818.40 281.56 823.35 410.21
1.50 1.07 0.83 0.71 8864.32 4978.54 777.76 35.83 2.47 149.53 22.06 655.10 319.56
2.00 0.07 0.05 0.07 6302.91 408.96 41.36 0.64 0.08 30.15 2.89 494.31 185.81

0.75

0.00 13916.04 9698.16 9485.65 19606.95 17472.98 2883.92 16745.08 2724.92 2298.94 865.22 1005.81 461.84
0.25 18810.79 4380.18 5963.97 19060.68 12867.26 1896.86 8592.19 523.63 2021.06 744.40 989.55 432.95
0.50 327.14 185.02 1039.44 16231.99 4985.29 859.17 3075.42 329.09 1381.87 467.73 918.59 438.71
0.75 30.13 24.54 221.31 13388.02 942.35 262.07 908.14 165.33 907.08 363.98 859.89 395.57
1.00 8.37 7.76 17.96 11673.86 136.19 54.03 186.15 34.21 427.66 123.80 785.62 370.67
1.50 1.58 1.49 0.79 8030.86 8.67 4.79 9.81 1.87 134.33 17.72 615.42 264.77
2.00 0.36 0.29 0.17 4801.92 1.43 1.10 0.60 0.14 27.68 2.10 452.18 203.34

1

0.00 851.89 702.26 853.95 712.30 818.90 720.95 836.01 711.49 723.14 804.96 827.01 729.03
0.25 134.50 162.99 535.68 417.24 461.83 424.46 1915.06 1037.74 760.01 646.67 871.64 711.38
0.50 34.76 42.01 146.08 130.01 124.03 111.20 662.72 313.50 617.50 437.40 765.56 703.94
0.75 13.56 16.23 33.98 21.43 31.48 27.53 188.94 137.30 386.99 268.98 738.65 669.15
1.00 6.61 7.78 8.02 5.66 9.10 8.94 52.61 36.38 256.72 147.65 723.87 629.51
1.50 2.04 2.42 1.04 0.95 1.70 1.76 5.51 3.76 99.17 54.36 590.70 493.13
2.00 0.73 0.79 0.29 0.32 0.51 0.55 0.69 0.39 35.49 27.53 495.19 424.78

1.25

0.00 23.81 42.05 163.10 174.78 97.38 126.44 18.82 29.69 286.95 335.96 728.38 570.31
0.25 20.59 33.27 109.80 123.10 59.77 72.91 281.84 283.74 327.52 271.34 733.74 587.17
0.50 14.58 19.67 44.99 44.47 21.03 24.47 222.75 182.89 271.87 214.53 701.67 579.38
0.75 9.29 11.07 15.30 14.19 7.96 8.59 101.57 69.38 200.18 126.31 674.40 563.25
1.00 5.77 6.69 5.48 5.09 3.41 3.63 33.07 27.11 157.51 85.21 611.01 529.24
1.50 2.42 2.78 1.21 1.20 0.91 0.99 5.50 3.74 60.55 43.06 548.87 476.71
2.00 1.08 1.25 0.42 0.46 0.31 0.35 0.85 0.57 24.00 15.72 470.69 373.64

1.5

0.00 7.77 14.68 51.18 67.60 27.76 41.45 6.73 10.82 138.08 168.01 686.31 478.92
0.25 7.45 13.42 41.65 51.14 19.44 26.69 20.10 33.57 160.81 137.43 601.55 485.66
0.50 6.64 10.96 21.10 23.69 8.71 10.88 84.64 96.83 167.35 113.32 668.38 463.00
0.75 5.79 8.12 9.63 10.33 4.00 4.58 55.69 53.46 111.48 75.83 576.60 472.61
1.00 4.76 5.90 4.59 4.73 1.99 2.29 26.45 25.01 97.94 53.64 547.22 470.79
1.50 2.62 3.00 1.35 1.43 0.65 0.72 5.75 4.69 55.60 21.25 511.73 434.71
2.00 1.39 1.59 0.55 0.60 0.23 0.27 1.19 0.91 27.12 8.49 493.54 391.42

1.75

0.00 4.26 8.03 22.75 32.97 12.28 19.95 3.85 6.29 80.30 97.01 568.63 394.23
0.25 4.16 7.76 19.15 26.84 9.33 13.94 7.27 12.66 95.33 76.66 506.45 404.74
0.50 3.90 6.98 12.77 16.22 5.03 6.52 16.98 28.03 93.15 69.49 487.01 398.63
0.75 3.71 5.85 7.11 8.44 2.59 3.11 34.93 38.86 75.73 48.14 481.79 418.78
1.00 3.31 4.83 3.93 4.47 1.43 1.65 22.75 22.82 62.09 38.74 472.90 405.47
1.50 2.61 3.10 1.42 1.60 0.51 0.57 6.26 5.95 41.53 19.02 442.68 385.83
2.00 1.64 1.82 0.65 0.74 0.19 0.21 1.62 1.36 26.37 6.29 443.42 341.43

2

0.00 2.87 5.39 12.63 19.82 7.01 12.18 2.70 4.41 58.03 64.65 436.40 347.44
0.25 2.82 5.22 11.26 16.66 5.68 8.62 4.14 7.13 57.65 51.27 478.36 342.76
0.50 2.70 4.92 8.42 11.68 3.37 4.58 6.94 12.39 53.91 46.07 449.94 332.65
0.75 2.65 4.52 5.36 6.95 1.91 2.42 12.64 19.66 50.35 39.54 457.56 345.47
1.00 2.46 3.88 3.42 4.17 1.11 1.33 17.57 19.59 45.03 26.37 439.34 356.90
1.50 2.13 2.89 1.47 1.72 0.43 0.49 6.84 7.10 27.69 15.50 430.07 348.88
2.00 1.76 2.02 0.73 0.85 0.16 0.18 2.11 1.96 31.29 7.96 387.64 351.30

155



0
20

40

U ( − 3 , 3)

 θ

(A
R

L)

0.25 0.5 0.75 1 1.5 2

SC
SL

0
40

80

t (4)

 θ

(A
R

L)

0.25 0.5 0.75 1 1.5 2

SC
SL

0
20

50

LN (1, 1)

 θ

(A
R

L)

0.25 0.5 0.75 1 1.5 2

SC
SL

0
10

0
20

0

G (1, 1)

 θ
(A

R
L)

0.25 0.5 0.75 1 1.5 2

SC
SL

0
10

0
20

0

C1

(0.1) N (0, 1) + (0.9) N (1, 100)

 θ

(A
R

L)

0.25 0.5 0.75 1 1.5 2

SC
SL

0
20

0
40

0
C2

(0.3) N (0, 1) + (0.7) N (1, 100)

 θ

(A
R

L)

0.25 0.5 0.75 1 1.5 2

SC
SL

Figure 5.2: ARL1 curve with varying location shifts θ and fixed δ = 1.25

in the location parameter; both charts are sensitive to shifts in location

and scale but both charts react more quickly to detect a shift in standard

deviation rather than mean.

� For the case of uniform distribution, SC chart performs slightly better than

SL chart. For instance: when θ = 0.25 and γ = 1.25 ARL1 values of SC and

SL charts are 19.97 and 31.espectively; when θ = 0.0 and γ = 1.25 ARL1

values of SC and SL charts are 22.81 and 39.65 respectively; when θ = 0.25
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Figure 5.3: (lnARL1) profile with respect to scale shift (γ) on fixed θ = 0.5

and γ = 1.00 ARL1 values of SC and SL charts are 111.64 and 133.09.

� The SC chart performs slightly better than SL chart under t4. For example:

when θ = 0.25 and γ = 1.25 ARL1 values of SC and SL charts are 73.29 and

84.49 respectively; when θ = 0.0 and γ = 1.25 ARL1 values of SC and SL

charts are 112.36 and 136.30 respectively while when θ = 0.25 and γ = 1.00

ARL1 values of SC and SL charts are 267.71 and 245.33.

� For the case of lognormal distribution, SC chart performs slightly better
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than SL chart. Due to an upward shift θ= 0.25 and γ= 1.25 ARL1 decreases

45.91 of SC and 57.89 of SL chart. when θ= 0.0 and γ= 1.25 ARL1 values of

SC and SL charts are 76.10 and 102.55 respectively while when θ= 0.25 and

γ= 1.00 ARL1 values of both SC and SL charts decreases approximately

48%.

� Gamma (1, 1) provides substantial results when θ= 0.0 and γ= 1.0. When

θ= 0.25 and γ= 1.00, ARL1 of both charts is greater than the intended

ARL0, which makes both charts less effective and ARL biased for such

shift. By varying the γ we observe the same effect on the results of said

charts. Moreover, having θ= 1.5 and 2 with γ= 1.25 shows increasing trend

as compared to the results when γ remains IC. Similar type of the finding

for the exponential distribution was also noted by [132].

� In contaminated environment (C1 and C2 ), effectiveness of detecting the

shift in location and scale is affected for both SC and SL charts as compared

to other environments. SL chart performs slightly better than SC chart. In

C1, reduction in ARL1 values of SC and SL charts are reported as: 64%

and 66% on θ= 0.25 and γ= 1.25, 59% and 60% on θ= 0.0 and γ= 1.25

and approximately 15% and 19% on θ= 0.25 and γ= 1.00. On the other

hand in C2, reduction in ARL1 values of SC and SL charts are as: 20%

and 24% on θ= 0.25 and γ= 1.25, 18% and 22% on θ= 0.0 and γ= 1.25 and

approximately 1.08% and 1.9% on θ= 0.25 and δ= 1.00.

� Consider the effect of specific shift γ =1.25 on the charts with respect to
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different environments. The shifts in θ (on horizontal axis) and ARL1 (on

vertical axis) are portrayed in Figure 5.2. The results revealed better per-

formance of SC and SL chart with the increase of θ. Further, results from

Figure 5.3 show better performance of SC and SL chart with increase in γ

on fixed θ= 0.5. Moreover, in light tailed distributions SC chart performs

well while in heavy tailed environments SL chart is superior, and both charts

lose their performance in case of C2.

5.5 Effect of reference sample and test sample

on the performance of charts

Control limits of nonparametric charts are estimated from reference sample (m)

and this may have a significant effect on the performance of the phase-II chart

which is reported in Table 5.4. In general, increasing m produces decreasing trend

in ARL1 of both charts under all environments. Specifically, at fixed γ = 1.5, the

ARL1 of the SC chart under G (1,1) decreases about 44.5% due to increase in

m from 30 to 50 at fixed θ = 0.75 while it decreases 64.1%, 68.4%, 70.7% and

71.8% from the 30 to 100, 150, 500 and 1000 samples respectively. On the other

hand in SL chart 23.5% , 32.9%, 36.3%, 40.1% and 40.7% fall out is reported in

ARL1 from m = 30 to 1000 respectively on the fixed location parameter θ = 0.25.

Moreover, the same findings are examined for different γ at fixed θ = 1.

The test sample (n) also exhibits significant effects on the performance of
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the phase-II chart and its profile study is given in Table 5.5. At fixed γ = 1.25,

ARL1 of the SC chart under t4 environment decreases about 53.9% due to increase

in n from 5 to 8 at fixed θ = 0.75 while it decreases 66.5%, 76.6% and 84.7% from

the 5 to 11, 16 and 25 samples respectively. On the other hand, a decrease of

39.6%, 66.4%, 74.5% and 84.7% in ARL1 of SL chart is reported with n = 5 to 25

respectively on the fixed location parameter θ = 0.75. The same findings are

also observed at fixed θ = 1 and varying values of γ. In general, increasing

the test sample size produces decreasing trend in ARL1 of both charts under all

environments.

5.6 Illustrative example

In this section, we apply our SC and SL charts on a dataset containing duration

of contract strikes in US manufacturing industries (cf. [133]). A strike is a refusal

of employees to perform work as a form of protest. In industries, strikes may

cause the losses in manufacturing and production departments. So, administra-

tion and human resource management always try to avoid it. In case of a strike

they monitor the strike duration to minimize loss. From the said data, we have

considered the data from January 1968 to October 1976. Further (following [66])

we have considered 100 observations between January 1968 and February 1969 as

a reference sample and remaining 460 data points as test samples (each of size

10). The control limits for SC and SL charts are obtained by the same simulation

procedure as mentioned for Table 5.1, and are given as: 5.37 for SC chart and 11.1
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for SL chart at ARL0 = 500. The values of the plotting statistics for SC and SL

charts, along with test samples, are reported in Table 5.6 and their corresponding

control charts are given in Figure 5.4.
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Figure 5.4: Control chart displays i) SC chart, ii) SL chart

It is evident that both SC and SL charts indicate an OOC signal at 10thpoint. For

the follow up diagnosis of shift by SL chart, we have computed the p-values for

Wilcoxon test (p1= 0.001684) and Ansari Bradley test (p2= 0.1267), indicating

a shift in location parameter. Similarly for SC chart, we got the p-values for

Wilcoxon test (p3= 0.001684) and Mood test (p4= 0.04445), referring to locational

shift. The results of this example are also in line with [66] which concluded that

there is no scale shift in the process.
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Table 5.6: Contract strikes, test samples and corresponding SC and SL Statistics

Serial no. Test samples (n) SC SL

1 5 18 44 44 59 60 7 14 31 32 0.942 1.557
2 77 1 2 7 10 18 23 25 36 42 0.466 1.361
3 46 47 50 77 9 37 41 49 52 119 2.47 4.58
4 2 13 25 31 31 35 44 45 53 111 0.784 2.149
5 3 4 5 6 7 9 14 23 26 37 2.407 4.86
6 46 47 77 2 11 16 147 2 2 4 1.745 3.181
7 6 16 18 31 42 6 7 32 44 70 0.92 1.628
8 32 71 7 27 14 26 4 4 43 60 0.186 0.639
9 62 64 68 82 3 13 30 154 3 17 1.502 2.632
10 19 28 72 99 104 114 152 153 216 15 6.95 12.23
11 21 52 109 3 5 9 26 52 61 148 0.674 1.258
12 168 2 11 19 26 30 36 47 50 87 0.416 1.124
13 3 5 7 17 23 30 104 108 192 18 0.326 0.129
14 40 47 57 1 5 10 15 19 28 42 0.594 1.346
15 64 148 4 6 12 12 28 105 112 163 2.12 3.774
16 11 12 29 50 235 10 19 41 52 100 0.769 1.534
17 3 4 10 12 34 88 101 102 104 124 2.629 5.101
18 15 61 98 22 24 38 64 84 5 6 0.445 0.886
19 70 70 1 11 18 19 50 90 9 15 0.084 0.149
20 20 24 84 117 1 23 25 59 63 179 1.582 2.399
21 92 153 17 226 13 23 2 38 3 3 1.417 1.311
22 6 139 2 25 85 13 125 4 54 91 2.193 3.807
23 38 2 6 61 18 64 122 11 16 31 0.046 0.089
24 39 41 2 4 5 7 9 13 38 3 1.911 3.883
25 10 4 5 22 27 28 36 39 85 191 0.119 0.7
26 5 44 56 6 21 33 109 125 127 8 0.762 1.574
27 9 13 14 15 28 50 60 135 5 7 0.184 0.253
28 16 21 37 41 2 2 20 24 57 8 0.651 2.062
29 16 24 59 115 123 141 146 146 3 15 3.952 6.63
30 15 18 20 26 34 84 122 174 4 14 0.347 1.274
31 15 17 22 24 39 53 107 5 9 10 0.782 1.978
32 16 22 24 31 31 34 38 42 65 74 2.706 6.862
33 101 130 1 2 2 3 4 8 11 22 4.704 7.843
34 23 27 32 33 35 43 43 44 100 2 1.378 4.147
35 19 20 20 20 23 24 33 33 63 67 2.719 8.275
36 94 116 1 8 15 15 22 23 26 27 0.176 1.844
37 55 160 5 8 13 20 42 53 59 83 0.782 1.755
38 101 8 11 15 22 58 60 108 31 42 0.832 1.656
39 45 50 61 106 142 36 52 99 38 47 4.435 8.895
40 62 38 51 98 133 9 86 141 9 5 2.534 5.763
41 49 8 13 2 6 37 28 36 48 136 0.07 0.118
42 139 2 14 15 33 143 42 8 122 56 0.886 1.503
43 14 14 106 127 131 140 141 163 22 23 4.387 7.672
44 29 99 118 2 12 12 21 21 27 38 0.247 1.458
45 42 117 2 12 19 22 75 126 8 36 0.216 0.36
46 107 5 5 29 151 9 16 29 35 65 0.137 0.274

164



5.7 Concluding remarks

Control charts are often designed and used to monitor single process parameter

such as location and dispersion but an attractive approach is to monitor both

parameters together. In this study, we investigate the two nonparametric SC

and SL charts for the joint monitoring of location and scale parameters. The

performance analysis has revealed that SC takes an edge over SL under light

tailed distributions while SL is a good alternative under heavy tailed distributions.

Moreover, a reasonably larger reference and test samples produce better ARL

performance of these charts.
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CHAPTER 6

SUMMARY, CONCLUSIONS

AND FUTURE

RECOMMENDATIONS

In this chapter, the findings of this thesis along future recomendations are re-

ported. Which are given in the following sections:

6.1 Summary and conclusions

In many manufacturing/production processes, control charts are used to moni-

tor the quality characteristic of the process whereas, in some processes, quality

characteristic has relationship (linear or non-linear) with other explanatory vari-

able(s). For example, the dissolve amount of aspartame (an artificial sweetener)

is reliant on the temperature, in semiconductor manufacturing application; pres-
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sure in the chamber depends on the flow of gases in the chamber and in electrical

process; capacitance of the capacitor has inverse relation with the voltage at fixed

charge. In literature, the term simple linear profiles is referred for the methods

which are used to monitor such quality characteristic that has linear association

with another ancillary variable. Usually, in simple linear profiles, three parame-

ters are considered to study the state of any process such as slope, intercept and

error variance.

Generally, control charts are worked into two main stages named as retrospec-

tive stage (Phase I) and prospective stage (Phase II). The objective of the retro-

spective analysis is to find the optimal choice of process parameters and control

limits for the monitoring phase (Phase II). In this dissertation, we have designed

and investigated Phase I and Phase II simple linear profile methods under the

different ranked set sampling strategies such as ranked set sampling (RSS), me-

dian ranked set sampling (MRSS), extreme ranked set sampling (ERSS), double

ranked set sampling (DRSS), double median ranked set sampling (DMRSS) and

double extreme ranked set sampling (DERSS). The results indicated that the pro-

posed methods under RSS and its modified forms have superior detection ability

as compared to the existing schemes. Particularly, DMRSS and DERSS offers

superior performance as compared to the other schemes of interest. In addition to

RSS samplings, we have also used modified version of successive sampling scheme

(MSS) to enhance the performance of simple linear profiles method named as

Shewhart− 3 chart. The run length properties are used as performance measure
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which indicates that all the proposed charts under MSS outperforms the classical

chart which is based on SRS.

In literature, simple liner profiles was evaluated under simultaneous structure

for the monitoring of linear profile parmeters such as intercept, slope and error

variance. In simulteneous structure each parameter have individual chart which

consist of respective pair of limits. For example, in simultaneous monitoring of

linear profile parameters three individual charts based on each parameter are

designed in a mechanism to obtain overall performance of the process. We have

designed joint structures (which depends on single charting structure) for the

monitoring of linear profile parameters. The results reveals that the joint (Max-

EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3) charts have almost

similar performance but they have better performance as compared to EWMA/R,

T 2 and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-EWMA-3-C

charts have relatively good performance among all others.

Slope is an important parameter which provides the estimate of average rate of

change between study and explanatory variable. If the slope of the simple linear

model is zero (i.e. β1 = 0) then the effect of explanatory variable is eliminated

from the process and the joint monitoring of mean and variability becomes a

special case of simple linear profiles. In this dissertation, we proposed a parametric

control chart named Max progressive (Max-p) chart for joint monitoring of shifts in

process parameter(s). The results reveal that the newly proposed chart has better

performance to detect shifts in the process parameter(s) as compared to popular
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proposals such as Max-EWMA, SS-EWMA, Max-DEWMA and SS-DEWMA.

Further, we also investigate the two nonparametric SC and SL charts for the

joint monitoring of location and scale parameters. The performance analysis has

revealed that SC takes an edge over SL under light tailed distributions while SL is

a good alternative under heavy tailed distributions. Moreover, a reasonably larger

reference and test samples produce better ARL performance of these charts.

6.2 Limitations of the study

The limitations about our study are given in the following points:

(i) This dissertation is designed to monitor the parameters of simple linear

model named slope, intercept and error variance.

(ii) Generally, in simple linear profiles two well-known models are used such as

fixed effect model and random effect model. This study comprises fixed effect

model in simple linear profiles.

(iii) This study is focusing on normal distributional setups for the quality char-

acteristics of interest.

6.3 Future recommendations

The future recommendations on our proposed methods are given in the following

points:
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(i) The current study has investigated the impact of variant sampling schemes

in simple linear profile analysis. However, the scope of this study may be

extended to multiple linear profiles and non-linear profiles.

(ii) The complete dissertation consists of methods that are used to enhanced the

monitoring of linear profile parameters under fixed effect model. One may

use these methods to enhanced the monitoring of linear profile parameters

under random effect model.

(iii) Mostly, present study has covered the normal behavior in simple linear pro-

files. However, the scope of this study may be extended to cover non-normal

behaviors in simple linear profiles.

(iv) The Shewhart structures for simple linear profiles may be extended in other

directions such as implementation of run rules and addition of fast initial

response (FIR) feature.

(v) Some interesting future research directions might include studying the per-

formance of these charts under multiple structural breaks and when a shift

occurs at steady-state.
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APPENDIX A

A.1 Transformed linear model

The simple linear profile model under ranked set strategies is defined as:

Yij = β0 + β1Xi + εij ; i = 1, 2, 3, . . . . . . .., n ; j = 1, 2, 3, . . . . . . ..,m

writing the shifted β1 such as β1= β1 + βσ in the linear regression model given in

above model, we obtain

Yij = β0 + (β1 + βσ)Xi + εij

where β is the shift for slope and by adding or subtracting with (β1 + βσ)X, we

get

Yij = β0 + (β1 + βσ)Xi + εij + (β1 + βσ)X − (β1 + βσ)X

Yij = [β0 + (β1 + βσ)X] + [(β1 + βσ)Xi − (β1 + βσ)X] + εij

Yij = [(β0 + β1X) + (βσ)X] + [(β1 + βσ)(Xi −X)] + εij
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Since, average of X(i)
∗ is zero so the covariance will be also zero and assumed A0 =

β0 + β1X, A1 = β1 and Xi
∗ = Xi −X then the above equation is written as

Yij =
(
A0 + (βσ)X

)
+ (A1 + βσ)Xi

∗ + εij

Yij = (B0) + (B1)Xi
∗ + εij

A.2 Properties of error term in different ranked

set samplings

In the simple regression, we assumed that the error term is normally distributed

having the mean zero and constant variance (i.e. ε ∼ N (0, σ2)). So the stan-

dardized form of error is defined as

w =
ε− 0

σ
=
ε

σ

In this study, we are focusing on different strategies (τ) named RSS, MRSS,

ERSS, DRSS, DMRSS and DERSS so the probability density function f(.), mean

E(.) and variance V ar(.) for error term under RSS (ε(r)) and DRSS
(
ε∗(r)

)
are

defined as:

f
(
ε(r);σ

2
)

= n!
n∏
r=1

[
n!

(r − 1)! (n− r)!

{
F
( ε
σ

)}r−1{
1− F

( ε
σ

)}n−r
f
( ε
σ

) 1

σ

]

172



E
(
ε(r)

)
= σ

∫ +∞

−∞
w n!

n∏
r=1

[
n!

(r − 1)! (n− r)!
{F (w)}r−1{1− F (w)}n−rf (w) dw

]

E
(
ε(r)

)
= σ Dr1

V ar
(
ε(r)

)
= σ2

∫ +∞

−∞
w2 n!

n∏
r=1

[
n!

(r − 1)! (n− r)!
{F (w)}r−1{1− F (w)}n−rf (w) dw

]

-
(
E
(
ε(r)

))2

σ2
e[r] = V ar

(
ε(r)

)
= σ2 Dr2 − (σ Dr1)2 = σ2 ( Dr2 −D2

r1)

f
(
ε∗(r);σ

2
)

= n!
n∏
r=1

[
n!

(r − 1)! (n− r)!

{
F
(ε(r)

σ

)}r−1{
1− F

(ε(r)

σ

)}n−r
f
(ε(r)

σ

) 1

σ

]

E
(
ε∗(r)
)

= σ

∫ +∞

−∞
w(r) n!

n∏
r=1

[
n!

(r − 1)! (n− r)!
{
F
(
w(r)

)}r−1{
1− F

(
w(r)

)}n−r
f
(
w(r)

)
dw(r)

]

E
(
ε(r)

)
= σD∗r1

V ar
(
ε∗(r)
)

= σ2

∫ +∞

−∞
w2

(r) n!
n∏
r=1

[
n!

(r − 1)! (n− r)!
{
F
(
w(r)

)}r−1{
1− F

(
w(r)

)}n−r
f
(
w(r)

)
dw(r) −

(
E
(
ε∗(r)

))2

σ2
e[dr] = V ar

(
ε∗(r)
)

= σ2 D∗r2 − (σD∗r1)2 = σ2 (D∗r2 −D∗2r1)

For odd set (n = 2m− 1) , the probability density function f(.), mean E(.) and

variance V ar(.) for error term under MRSS (ε(m)) and DMRSS (ε∗(m)) are defined

f
(
ε(m);σ

2
)

=
(2m− 1)!

(m− 1)! (m− 1)!

{
F
( ε
σ

)}m−1{
1− F

( ε
σ

)}m−1

f
( ε
σ

) 1

σ
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E
(
ε(m)

)
= σ

∫ +∞

−∞
w

(2m− 1)!

(m− 1)! (m− 1)!
{F (w)}m−1{1− F (w)}m−1f (w) dw

E
(
ε(m)

)
= σ Dm1

V ar
(
ε(m)

)
= σ2

∫ +∞

−∞
w2 (2m− 1)!

(m− 1)! (m− 1)!
{F (w)}m−1{1− F (w)}m−1f (w) dw−

(
E
(
ε(m)

))2

σ2
e[m] = V ar

(
ε(m)

)
= σ2 Dm2 − (σ Dm1)2 = σ2 ( Dm2 −D2

m1)

f
(
ε∗(m);σ

2
)

=
(2m− 1)!

(m− 1)! (m− 1)!

{
F
(ε(m)

σ

)}m−1{
1− F

(ε(m)

σ

)}m−1

f
(ε(m)

σ

) 1

σ

E
(
ε∗(m)

)
= σ

∫ +∞

−∞
w(m)

(2m− 1)!

(m− 1)! (m− 1)!

{
F
(
w(m)

)}m−1{
1− F

(
w(m)

)}m−1
f
(
w(m)

)
dw(m)

E
(
ε∗(m)

)
= σD∗m1

V ar
(
ε∗(m)

)
= σ2

∫ +∞

−∞
w2

(m)

(2m− 1)!

(m− 1)! (m− 1)!

{
F
(
w(m)

)}m−1{
1− F

(
w(m)

)}m−1

f
(
w(m)

)
dw(m) −

(
E
(
ε(m)

))2

σ2
e[dm] = V ar

(
ε∗(m)

)
= σ2 D∗m2 − (σD∗m1)2 = σ2 (D∗m2 −D∗2m1)

Let ε1 is the error of smallest sample and εn is the error of largest sample then for

odd sets, the probability density function f(.), mean E(.) and variance V ar(.) for

error term under ERSS (ε(1), ε(n)) and DERSS (ε∗(1), ε
∗
(n)) are defined

f
(
ε(1);σ

2
)

= n
{

1− F
( ε
σ

)}n−1

f
( ε
σ

) 1

σ

f
(
ε(n);σ

2
)

= n
{
F
( ε
σ

)}n−1

f
( ε
σ

) 1

σ
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E
(
ε(1)

)
= σ

∫ +∞

−∞
w n {1− F (w)}n−1f (w) dw

E
(
ε(1)

)
= σ D11

E
(
ε(n)

)
= σ

∫ +∞

−∞
w n {F (w)}n−1f (w) dw

E
(
ε(n)

)
= σ Dn1

V ar
(
ε(1)

)
= σ2

∫ +∞

−∞
w2 n {1− F (w)}n−1f (w) dw −

(
E
(
ε(1)

))2

σ2
e[e1] = V ar

(
ε(1)

)
= σ2 D12 − (σ D11)2 = σ2 ( D12 −D2

11)

V ar
(
ε(n)

)
= σ2

∫ +∞

−∞
w2 n {F (w)}n−1f (w) dw −

(
E
(
ε(n)

))2

σ2
e[en] = V ar

(
ε(n)

)
= σ2 Dn2 − (σ Dn1)2 = σ2 ( Dn2 −D2

n1)

f
(
ε∗(1);σ

2
)

= n
{

1− F
(ε(1)

σ

)}n−1

f
(ε(1)

σ

) 1

σ

f
(
ε∗(n);σ

2
)

= n
{
F
(ε(n)

σ

)}n−1

f
(ε(n)

σ

) 1

σ

E
(
ε∗(1)

)
= σ

∫ +∞

−∞
w(1) n

{
1− F

(
w(1)

)}n−1
f
(
w(1)

)
dw(1)

E
(
ε(1)

)
= σD∗11

E
(
ε∗(n)

)
= σ

∫ +∞

−∞
w(n) n

{
F
(
w(n)

)}n−1
f
(
w(n)

)
dw(n)

E
(
ε∗(n)

)
= σD∗n1

V ar
(
ε∗(1)

)
= σ2

∫ +∞

−∞
w2

(1) n
{

1− F
(
w(1)

)}n−1
f
(
w(1)

)
dw −

(
E
(
ε∗(1)

))2

σ2
e[de1] = V ar

(
ε∗(1)

)
= σ2D∗12 − (σD∗11)2 = σ2 (D∗12 −D∗211)
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V ar
(
ε∗(n)

)
= σ2

∫ +∞

−∞
w2

(n) n
{
F
(
w(n)

)}n−1
f
(
w(n)

)
dw −

(
E
(
ε∗(n)

))2

σ2
e[den] = V ar

(
ε∗(n)

)
= σ2D∗n2 − (σD∗n1)2 = σ2 (D∗n2 −D∗2n2)

A.3 Independence of sample mean
(
Ȳ
)

and sam-

ple variance
(
S2
)

Let Y = (Y1, Y2, . . . .., Yn) be the normal random variable with parameters µ and

σ2. The sample mean and variance of Y are defined as

Ȳ =

∑n
i=1 Yi
n

; S2 =

∑n
i=1 (Yi − Ȳ )

2

n− 1

To prove the independence of Ȳ and S2, following theorems are used.

Theorem 1: Complete sufficient statistic through exponential family distribu-

tion.

Let {fθ : θ ∈ Θ} be a k-parameter exponential family given by

fθ (y) = exp

[
k∑
i=1

QiθTi (y) +D (θ) + S (y)

]

where θ = (θ1, θ2, . . . .., θk) ∈ Θ , an interval in Rk, T1, T2, . . . ., Tk and S are

defined on Rn, T = (T1, T2, . . . ., Tk) and y = (y1, y2, . . . .., yn), k ≤ n. Let

Q = (Q1, Q2, . . . ., Qk), and suppose the range of Q contains an open set in Rk,

then T = (T1 (Y ) , T2 (Y ) , . . . ., Tk (Y )) is a complete sufficient statistic.
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Suppose Y ∼ N (µ, σ2) and the both parameters are unknown. We know that

the family of distribution of X = (Y1, Y2, . . . .., Yn) is a two-parameter exponential

family with T (Y1, Y2, . . . .., Yn) = (
n∑
i=1

Yi,
n∑
i=1

Y 2
i ). Then by the aforementioned

theorem
n∑
i=1

Yi is a complete sufficient statistic of parameter µ. We also know that

any 1-1 transformation of complete sufficient statistic is also complete sufficient

statistic (i.e. Ȳ is a complete sufficient statistic).

Theorem 2: Ancillary statistic.

A statistic B (Y ) is said to be ancillary statistics if its distribution does not depend

on the under-laying model parameter θ. For example, let Y1, Y2, . . . .., Yn be a ran-

dom sample from N (µ, 1). Then the statistic B (Y ) = (n− 1)S2 =
n∑
i=1

(Yi − Ȳ )2

is an ancillary statistic because (n−1)S2 ∼ χ2
n−1 and free from parental parameter

µ.

Theorem 3: Basus theorem.

Statement: if A (Y ) is a complete sufficient statistic for θ, then any ancillary

statistics B (Y ) is independent of A. Proof: as mentioned in Rohatgi that if B

is an ancillary statistic, then Pθ = {B (Y ) ≤ b} is free of θ for all b. Let the

conditional probability gb (A) = {B (Y ) ≤ b|A (Y ) = a}, then

Eθ {gb (A (Y ))} = Pθ {B (Y ) ≤ b}

Thus

Eθ (gb (A)− P {B (Y ) ≤ b}) = 0
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For all θ . By completeness of A it follows that

Pθ (gb (A)− P {B ≤ b} = 0) = 1

That is,

Pθ {B (Y ) ≤ b|A (Y ) = a} = P {B (Y ) ≤ b}

with probability equals to 1. Hence A and B are independent.

As discussed in theorem 1 that Ȳ is a complete sufficient statistic and S2 is an

ancillary statistic (cf. theorem 2). So, by theorem 3 (Basu’s theorem) it is proved

that Ȳ and S2 are independent.

A.4 Statistical framework for Lepage

The Lepage statistic depends on two well-known test statistics namely Wilcoxon

Rank-sum (T1) and Ansari Bradley (T2). Which are defined as

T1 =
N∑
k=1

kIK

T2 =
N∑
k=1

∣∣∣∣k − 1

2
(N + 1)

∣∣∣∣ IK
where Ik is an indicator variable used to assign zero when sample belongs to

reference set (U) otherwise the value of Ik is 1. The derivation of mean and
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variance of Wilcoxon Rank-sum statistic are

E (T1) =
N∑
k=1

kE (IK)

E (T1) =
N∑
k=1

k
n

N

E (T1) =
N (N + 1)

2

n

N

E (T1) =
n (N + 1)

2

V ar (T1) =
N∑
k=1

k2V ar (IK)

V ar (T1) =
N∑
k=1

k2mn

N2

V ar (T1) =
N (N + 1) (2N + 1)

6

mn

N2

V ar (T1) =
mn (N + 1) (2N + 1)

6N

The derivation of mean and variance for Ansari Bradley statistic when total sample

size is even are

E (T2) = 2m

N
2∑

K=1

K

N

E (T2) = 2m
N
2

(
N
2

+ 1
)

2

1

N

E (T2) = m
N

2

(
N

2
+ 1

)
1

N

E (T2) =
m

2

(
N

2
+ 1

)
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E (T2) =
m

2

(
N + 2

2

)

E (T2) =
m (N + 2)

4

V ar (T2) =
mn

N2 (N − 1)

[
N

N∑
k=1

(
k − 1

2
(N + 1)

)2

−
N∑
k=1

(∣∣∣∣k − 1

2
(N + 1)

∣∣∣∣)2
]

V ar (T2) =
mn

N2 (N − 1)

[
N2 (N2 − 1)

12
−
(
N

m
E (T2)

)2
]

V ar (T2) =
mn

N2 (N − 1)

[
N2 (N2 − 1)

12
−
(
N2

4

)2
]

V ar (T2) =
mn (N2 − 4)

48 (N − 1)

and in case of odd total sample size (N), the mean and variance are

E (T2) =
m
(

2
∑N−1

2
k=1 k + N+1

2

)
N

E (T2) = m

2


(N−1)

2

[
(N−1)

2
+ 1
]

2

+
N + 1

2

 1

N

E (T2) =
m

N

[
N − 1

2

(
N + 1

2

)
+
N + 1

2

]

E (T2) =
m

N

(
(N − 1) (N + 1)

4
+
N + 1

2

)

E (T2) =
m

N

[
N2 +N −N − 1

4
+
N + 1

2

]

E (T2) =
m

N

[
N2 − 1

4
+
N + 1

2

]

E (T2) =
m

N

[
N2 − 1 + 2N + 2

4

]
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E (T2) =
m

N

[
N2 + 2N + 1

4

]

E (T2) =
m

N

[
N + 1

2

]2

V ar (T2) =
mn

N2 (N − 1)

[
N

N∑
k=1

(
k − 1

2
(N + 1)

)2

−
N∑
k=1

(∣∣∣∣k − 1

2
(N + 1)

∣∣∣∣)2
]

V ar (T2) =
mn

N2 (N − 1)

[
N2 (N2 − 1)

12
−
(
N

m
E (T2)

)2
]

V ar (T2) =
mn

N2 (N − 1)

[
N2 (N2 − 1)

12
−
(
N2 − 1

4

)2
]

V ar (T2) =
mn (N + 1) (N2 + 3)

48N2

A.5 Statistical framework for Cucconi

The Cucconi statistic depends on two statistics namely W and Z. For the proper-

ties of W and Z statistics, mean and variance of S1 and S2 statistics are required

which are derived as follow:

E (S1) = E

(
N∑
k=1

k2Ik

)

where Ik is an indicator variable used to assign zero when sample belongs to

reference set (U) otherwise the value of Ik is 1.

E (S1) =
N∑
k=1

k2E (Ik)
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as mentioned by [134] that the sum of square of first N natural number is

N∑
k=1

k2 =
N (N + 1) (2N + 1)

6

and the expected value, variance and correlation of indicator variable are

E (Ik) =
n

N
, V ar (Ik) =

nm

N2
, Cov (Ij, Ik) =

−nm
N2 (N − 1)

E (S1) =
n

N

(
N (N + 1) (2N + 1)

6

)

E (S1) =
n (N + 1) (2N + 1)

6

by using similar estimation one may easily derived the mean S2 whhich is

E (S2) = E

(
N∑
k=1

(N + 1− k)2Ik

)
=
n (N + 1) (2N + 1)

6

The derivations of variances for S1 and S2 are as follows:

V ar (S1) = V ar

(
N∑
k=1

k2Ik

)

V ar (S1) =
N∑
k=1

k4V ar (Ik) +
N∑
i=1

N∑
j=1

k2
i k

2
jCov (Ii, Ij)

V ar (S1) =
N∑
k=1

k4nm

N2
+

N∑
i=1

N∑
j=1

k2
i k

2
j

(
− nm

N2 (N − 1)

)

V ar (S1) =
(N − 1)

∑N
k=1 k

4nm− nm
∑N

i=1

∑N
j=1 k

2
i k

2
j

N2 (N − 1)
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V ar (S1) =
nm

N2 (N − 1)

[
N

N∑
k=1

R4 −
N∑
k=1

R4 −
N∑
i=1

N∑
j=1

k2
i k

2
j

]

V ar (S1) =
nm

N2 (N − 1)
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N

N∑
k=1

R4 −
N∑
k=1

R4 −
N∑
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i k

2
j

]

V ar (S1) =
nm

N2 (N − 1)

N N∑
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R4 −

(
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R2
j

)2
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6 (N − 1)

[
3N2 + 3N − 1

5
− 2N2 + 3N + 1

6

]

V ar (S1) =
nm (N + 1) (2N + 1)

6 (N − 1)

[
18N2 + 18N − 6− 10N2 − 15N − 5

30

]

V ar (S1) =
nm (N + 1) (2N + 1)

6 (N − 1)

[
8N2 + 3N − 11

30

]

V ar (S1) =
nm (N + 1) (2N + 1)

180

[
8N2 + 11N − 8N − 11

(N − 1)

]

V ar (S1) =
nm (N + 1) (2N + 1)

180

[
N (8N + 11)− 1 (8N + 11)

(N − 1)

]

V ar (S1) =
nm (N + 1) (2N + 1)

180

[
N (8N + 11)− 1 (8N + 11)

(N − 1)

]

V ar (S1) =
nm (N + 1) (2N + 1) (8N + 11)

180

[
(N − 1)

(N − 1)

]

V ar (S1) =
nm (N + 1) (2N + 1) (8N + 11)

180
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by using similar estimation one may easily derived the variance of S2 statistic

V ar (S2) = V ar

(
N∑
k=1

(N + 1− k)2Ik

)
=
nm (N + 1) (2N + 1) (8N + 11)

180

Further, the means and variances of W and Z are derived below:

E (W ) =
6E
(∑N

k=1 k
2Ik

)
− n (N + 1) (2N + 1)√

nm(N+1)(2N+1)(8N+11)
5

E (W ) =
6
(
n(N+1)(2N+1)

6

)
− n (N + 1) (2N + 1)√

nm(N+1)(2N+1)(8N+11)
5

E (W ) =
n (N + 1) (2N + 1)− n (N + 1) (2N + 1)√

nm(N+1)(2N+1)(8N+11)
5

E (W ) =
0√

nm(N+1)(2N+1)(8N+11)
5

E (W ) = 0

by using similar estimation one may easily derived the mean of Z statistic

E (Z) =
6E
(∑N

k=1 (N + 1− k)2Ik

)
− n (N + 1) (2N + 1)√

nm(N+1)(2N+1)(8N+11)
5

= 0

The derivations of variances for W and Z are as follows:

V ar (W ) =
6V ar

(∑N
k=1K

2Ik

)
− n (N + 1) (2N + 1)√

nm(N+1)(2N+1)(8N+11)
5

184



V ar (W ) =
36
[
nm(N+1)(2N+1)(8N+11)

180

]
− 0

nm(N+1)(2N+1)(8N+11)
5

V ar (W ) =

[
nm(N+1)(2N+1)(8N+11)

5
nm(N+1)(2N+1)(8N+11)

5

]

V ar (W ) = 1

by using similar estimation one may easily derived the variance of Z statistic

V ar (Z) =
6V ar

(∑N
k=1 (N + 1− k)2Ik

)
− n (N + 1) (2N + 1)√

nm(N+1)(2N+1)(8N+11)
5

= 1

A.6 Description of real data set

In grid connected PV system, parallel plate capacitors are used as a DC link

which consists of two conductive plates separated by a dielectric material (as dis-

cussed in Section 2.1). Usually, in a parallel plate capacitor, capacitance (C)

is directly related to the surface area of the conductive plates and inversely as-

sociated to the potential difference between the plates (V ). For the illustrative

example, we get 75456 sample values of Voltage (V ) against each level of Ca-

pacitance (C) given in [94]. There exist 7 different capacitance levels such as,

50µF, 100µF, 150µF, 200µF, 250µF, 300µF and 250µF . In the stated study,

we consider Voltage (V ) as a dependent variable and Capacitance (C) as an in-

dependent variable. For the IC regression model, we run 75456 sample values of
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V against fixed values of C and get a following model

V̂ = 402.3512− 0.01983691 C

SE = (0.02465) (0.0001102)

t = (16321.5) (−179.9) R2 = 0.5301

Based on the above simple linear regression model, as the one µF capacitance

increases indefinitely, we expect 402.3313 Voltage in the gird PV connected system.

We used t-test approach to access that whether there is any significant relationship

between C and V . Assuming the null hypothesis that β = 0, t-test value having

p-value less than 0.05 reveals that there is a significant relationship between the

variables used in the linear regression model. Further, R2 = 0.5301 depicts that

53% variation in the Voltage (V ) is explained by the capacitance (C).

The diagnosis analysis of simple linear regression is presented in Figure A.1. Nor-

mality of the residuals is an important assumption of simple linear regression. For

the normality checking, we used both graphical and testing approaches. The nor-

mal QQ plot and Lilliefors test having statistic values 0.191 (p-value = 0.2628)

shows that there is no issue with the normality of residuals. Further, the plot

about fitted values and capacitance depicts that linearity assumption is also sat-

isfied. The plots about fitted versus residuals and standardized residuals also

depicts that the residuals have constant variances while the Breusch-Pagan test

having statistic value 3.2149 (p-value = 0.07297) is also the evident that there
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Figure A.1: Diagnosis analysis of simple linear model between Voltage and Ca-
pacitance

exists no issue with the homoscedasticity of the residuals.

A.7 Data perturbation

In literature, data perturbation approaches are classified into two categories such

as value distortion approach and probability distribution approach [135, 136]. In

distortion technique, data elements are perturbed by several methods that includes

additive noise, multiplicative noise, or other randomization methods [137]. The

probability distribution approach substitutes the data set with the sample from
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own distribution [138] or by another sample from same (or estimated) distribution

(cf. [139]). In linear perturbation, the additive noise method is the simplest one

perturbation method having model,

Y = X + ε

where ε is the random noise and independent from X, with zero mean and co-

variance matrix Σεε. Σεε has non-zero diagonal terms and the off-diagonal terms

are equals to zero which is the evident that all ε’s are independent for each other

(for more details see [140–145]. Further, [146] enhanced the basic additive noise

method by considering following model

Y = β0 + β1X + ε

This model is like the basic additive noise model but the covariance matrix of the

noise term is defined by Σεε = dΣXX . Where d is the scaler quantity and ΣXX

is the covariance matrix of X. More modifications on the additive noise models

are briefly describe in [147]. Further, there exist several perturbation techniques

for non-linear models such as: multiplicative model proposed by [148], Sullivans

Model addressed by [149], Copula model initiated by [150] and data shuffling

discussed by [151]. Usually, additive and multiplicative perturbations are used

for numeric data while some perturbation techniques are also used for categorical

data set (for more detail see [152–155]
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A.7.1 Implication of data perturbation in regression anal-

ysis

Regression is a well-known statistical tool used to estimate the association between

explained (Y ) and one or more explanatory variable (X). The classical normal

linear regression model (CNLR) is defined as follow

Y = β
′

(1×k) X(k×1) + ε

Where ε is the disturbance term and the normality and independence of CNLR

model imply that

 X

Y

 ∼ N


 µ

β′µ


 Σ Σβ

β′Σ β′Σβ + σ2




where µ is the vector of means of X, Σ is the (K ×K) covariance matrix of X

and σ2 is the variance of disturbance terms. Further, the masked data (M) may

be defined as

M(K×1) = X(K×1) +N(K×1)

where N is the vector normally distributed zero mean additive noise with covari-

ance matrix Θ. Assume X and N are independent then it follows

 M

Y

 ∼ N


 µ

β′µ


 ΣΘ Σβ

β′Σ β′Σβ + σ2



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It is noted that noise addition schemes may be characterized by the covariance Θ

and it is defined as Θ = ΩΣ (cf. [146, 156]. Ω is a proportionality constant and

under the assumption about the independence of noise components, Ω is a matrix.

In common practice, variances of the noise components are the proportional to the

variance of corresponding attributes then Ω may defined as Θ = diagonal (ΩΣ).

When the subset of sensitive attributes is masked then the noise addition scheme

may be characterized by a partitioned matrix. For the first P masked of the K

attributed the variance covariance matrix is defined as follow

Θ =

 Θ11 0

0 0


where the Θ11 is (P × P ) sub matrix and Tendicks method required Θ11 = ΩΣ11.

Moreover, independent noise components required Θ11 = Ω diagonal (Σ11) and

Σ11 is the (P × P ) sub matrix of Σ. It is noted that when Y is regressed on true

values of the attribute X then the expected value of the regression coefficients is

β while when masked attribute are used then it may obtained as follow

E (Y |M) = β′
[
I − Σ(Σ−Θ)−1]µ+ β′Σ(Σ−Θ)−1M

Hence, the expected value of the coefficients for Y regressed on M is obtained

by b = (Σ−Θ)−1Σβ. One may obtain more details on perturbation used in

regression model in [157].
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