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THESIS ABSTRACT

NAME: Tahir Mahmood
TITLE OF STUDY: Enhancing the Monitoring of Linear Profile Parameters
MAJOR FIELD: Applied Statistics

DATE OF DEGREE: April, 2017

The behavior of a process is governed by several quality characteristics that may
be classified as characteristics of interest and ancillary characteristics. In most
of the real processes there exists relationships among these quality characteris-
tics/variables. These relationships are quantified by models termed as profiles
that may be linear or non-linear. In this study, we have focused on simple linear
profiles that are described by three parameters namely slope, intercept and error
variance. Control charts play a key role to monitor any possible variations in the
parameters of interest. In this dissertation, we have investigated the performance
of the existing linear profile charts in Phase I and Phase II under some useful vari-
ants of sampling schemes. These include a variety of ranked set sampling schemes
and modified successive sampling schemes. Moreover, we have covered joint mon-

itoring approaches to control location and scale parameters under parametric and
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non-parametric setups.

We have investigated the performance of our newly proposed charts using dif-
ferent measures including probability to signal and run length properties. We have
compared our results with the well-known existing methodologies under different
settings of design parameters. The comparative analysis revealed that our study
proposals outshine the existing methods under different amounts of shifts in the
process parameters. In addition, we have used practical datasets from industrial
and electrical engineering and implemented our proposed techniques to show their

application in real processes.
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CHAPTER 1

INTRODUCTION

This chapter introduces statistical process control (SPC) and more specifi-
cally control charts such as memory less chart (Shewhart) and memory type
chart (EWMA). The structures of simple linear profiles and its special case
(joint /simultaneous monitoring of mean and variability) are also discussed in the

following sections. Finally, the outlines of the thesis are also reported.

1.1 Statistical process control

World is a global village, where the super markets are filled with the variety of
products or services. In our days, customers do not only purchase a product to
fulfill their need but also consider the quality and cost efficiency of the prod-
uct/service. Quality, in manufacturing perspective, is a measure of excellence or
a state of being free from defects, deficiencies and significant variation. Generally,
there are two causes of variation that affect the performance of the process; chance

cause or natural cause of variation that cannot be properly eliminated unless there



is major change in the equipment or material used in the process and other is the
special or assignable cause of variation that can be divided further in two cate-
gories namely transient and persistent variations. These causes of variation can
be precisely identified, eliminated or reduced by investing the problem and finding
the causes results in process improvement. Statistical process control (SPC), a
set of the well-known tool kits, is used to monitor the variations in a process.
SPC tool-kit contains seven magnificent tools that are used to differentiate the
aforementioned variations. These tools are known as histogram, box-plot, pareto
chart, check sheet, defect concentration diagram, scatter plot and control charts

(for brief discussion one may see [1-3]).

1.1.1 Control charts

Control chart, one of the major tool of SPC, is commonly applied to monitor
the performance of process with respect to time. In control chart, there are two
decision lines named as lower control limit (LCL) and upper control limit (UCL),
which allows us to decide whether the process is working under in-control (IC)
or out-of-control (OOC) situation. If the control chart identifies that process is
out-of-control, there is a need to diagnose the cause behind this abrupt change in
the process. Generally, Control charts are worked into two main stages named as
retrospective stage (Phase I) and prospective stage (Phase II). The objective of
the retrospective analysis is to find the optimal choice of process parameters and

control limits for the monitoring phase (Phase II). In Phase I analysis historical



data is used to estimate the in-control state of the process while Phase II depends
on present data to analyze current state of the process. Usually, in retrospective
stage, practitioner expect some source of variations in the process and a higher
probability of their detection, whereas monitoring stage is used for quick detection
of changes in the process parameters. Further, Control charts are divided into
two main classes: memory less control charts (e.g. Shewhart) and memory type

(EWMA) control charts which are briefly discussed in the following subsections.

Shewhart control chart

In the earlier of 19" century, [4] proposed a memory less control chart named
as Shewhart control chart which is used to detect abrupt change in the process
parameters (location or/and scale). The Shewhart chart is dependent on the
current sample information, thats why its effective to detect the large or transient
shifts in the process. The structure of Shewhart control chart consist of two
decision lines known as upper control limit (UCL), lower control limit (LCL) and

a central limit (CL). The aforementioned limits for a statistic () are defined as:

UCL = jg+ky (00); CL=po; LOL=pg— ki (00)

where, 0 ~ N (ug,02) and the limits of the Shewhart chart depends on charting
constant (k;) which is selected against the fixed IC average run length (ARLy).
Generally, when the distribution of the statistic follows standard normal distribu-

tion then k; = 3 is used to gain ARLy = 370 and hence the limits are known as



3o limits. Further, the Shewhart chart declares an OOC signal when (6) plotted
outside of the band (i.e. LCL to UCL) otherwise chart declares IC state of the
process.

As mentioned above that Shewhart charts are not efficient for the detection of
small and moderate shifts. So, there have been numerous attempts to patch this
deficiency. One attempt is the application of sensitizing rules discussed by [5, 6]
and another is the use of variable sampling interval (VSI) control charts in place

of fixed sampling interval (FSI) (cf. [7-9]).

Exponentially weighted moving average control chart

The exponentially weighted moving average (EWMA) control chart was intro-
duced by [10], which is also used to monitor the small or moderate shifts in the
process parameters. The EWMA chart is a memory type structure because it
utilizes the past information along current information. The EWMA statistic for

a statistic () is defined as:

where ¢ is the sample number and X is the constant which have a range between
zero and one (i.e. 0 < A < 1). The starting value of aforementioned EWMA
statistic is taken equal to zero (i.e. Z; = pp). The time varying limits of the

EWMA charts are given as:

UCLl = Uo + kQUO\/ﬁ(l — (1 — )\))21
CL = po

4



LCL; = po — kzao\/ﬁ(l — (1= )

The EWMA chart have two parameters A and k3 . A\ determines the decline of
weights while ks determines the width of control limits. These two parameters
are carefully chosen against fixed IC average run length (ARLj) to determine
the performance of EWMA chart. On large values of 7 ,the aforementioned time

varying limits converges to constant limits which are given as:

A A
UCL:[L0+]{320'0 m; CL:,MO; LCL:MO—kiQUO m

Hence, the term (1 — (1 — \))* tends to 1 if the sample tends to co. Some modi-

fications on EWMA charts may see in [11-17]

1.2 Linear profiling

Usually, control charts are designed to monitor single quality characteristic (e.g.
qualitative or quantitative) of a process but in many manufacturing processes,
quality characteristics have a relationship with other auxiliary variable(s). For
example, in semiconductor manufacturing, flow of gasses is dependent on pres-
sure of mass flow controller and in electrical engineering, charge of a capacitor is
dependent on the capacitance level. When such quality characteristic is linearly
associated with another explanatory variable then it is termed as simple linear
profile and the monitoring of simple linear profile parameters (i.e. slope, intercept

and error variance) is known as liner profiling.



Assume that for the j** random sample collected over time, we have the paired
observation (Yi;, X;); ¢ =1,2,........ ,n , then simple linear profile model used

in linear profiling is defined as:

Yij = ﬁo _’_Ble +5ij 3 j = 172,3, ........ , g (11)

where the terms appearing in model 1.1 are By (Intercept), 8; (Slope) and ¢ is
the error term. We have also assumed that e;; ~ N (u,0?). The least square

estimates of the parameters are given by the following expressions:

Y, PILEDIED (T X .. .
where YV = ====—_X = === and the conditional mean, variance and
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Mean square error is an unbiased estimator of the variance of error term o2, which

is defined as:
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where e;; = y;; — §i; is the i residual of j™ sample and ¢;; is the " fitted
regression line in the j** sample. It is to be mentioned that model 1.1 may be
transformed using the transformation X;* = X; — X to gain the zero covariance
of IA)O and 131. After transforming X;, we obtain a modified form (derived later in
Section A.1) of the aforementioned model 1.1 named as transformed model which

is defined as:

where By = By + 51X + (B0) X and By = (B + o) X;*. Here, shift is defined
in ¢ units with reference to slope of model 1.1 (i.e.f0). One may define the
expressions of means, variances and covariance of 130 and by. It is to be noted that
the covariance of 130 and l;l will be zero as the average of X" is zero. It is to be
mentioned that the estimated intercept and slope of transformed model will be
denoted by b and b, respectively.

In literature, many researchers addressed several studies on linear profiling
(cf. [18-20]) but a popular proposal named as Shewhart —3 chart was introduced
by [21]. In Shewhart — 3 chart, individual chart for each parameter (i.e. slope,
intercept and error variance) are combined to evaluate the joint/simultaneous
monitoring of the process. The structure of the individual chart for each parameter

are define below:

UCL = By + Lajs y/0? [ 1]

LCL = By — Loy y/0? [ ]

nm

for intercept :



UCL = By + Laja ) &
LCL = By — Loy \/ &

_0_2 2
UCL = 5 X,

for slope :

for error variance :
_ o2 2
LCL =2, — 2

where L,/ is the o/ 2" quantile of students t distribution whereas, x? /2 and
X%—(a /9 Are the upper and lower /2" quantiles of chi-square distribution having
nm-2 degree of freedom. The level of significance («) is obtained by the definition
of overall level of significance (i.e. apperan =1 — (1 — 04)3).

As discussed above that Shewhart charts are only useful for the detection
of large shifts in process parameters while memory type structure (EWMA) are
suitable to detect small or moderate shifts in process parameters. Recently, [22]
proposed a memory type structure for the joint monitoring of linear profile pa-
rameters named as EWMA-3 control chart. The structure of the EWMA-3 chart
is defined as:

EWM A =\ (bo) + (1= X) EWMAp;
EWMAg; = A (by) + (1= ) EWMAg;
EWMAg; =max{ Xin(MSE)+ (1 —X\) EWM Agj;_y, In (%)}

where EWMA;; is the j EWMA statistic for intercept; EWMAg; and
EW M Ag;j are the 5" EWMA statistics for slope and error variance respectively;\

is the smoothing parameter that ranges between zero and one (i.e. 0 < A < 1).



The mean and variance of each of the three EWMA statistic are given as:

E(EWMAy;) = By; E(EWMAg;) = B;; E(EWMAg;) = In(c?)

A 1
Var (EWMAy;) = o? {%} o Var (EWMAg)) = 53— <

2 2 4 16

n— 2+(n—2)2+3(n— 2)° 15(n —2)°

Var (EWMAg;) = Var(Iln(MSE)) =

Based on the above mentioned properties of the EWMA statistics, the asymptotic

limits for each EWMA plotting statistic are given as:

UYC(L[:BO—FL[\/ﬁO'2 [ﬁ]

for EWMAy; -
LCL; = By — L \/ 750° [ -]
UCLs = By + Lgy/ 3252
for EWMAg; : o

LCLs = By — Ls \/ 35 &

where L;, Ly and Lg , are the control limits coeflicients for intercept, slope and
standard deviation of error term, which are carefully choosen against the prespec-
ified IC average run length. In this dissertation, we have designed several studies

to enhanced the performance of aforementioned methods.



1.2.1 Special case of simple linear profiles

In simple linear profiles, control charts are used to monitor the study variable
which is linearly associated with another explanatory variable. In simple linear
profiles, three parameters are considered for the monitoring purpose such as slope,
intercept and error variance. Slope is an important parameter which provides the
estimate of average rate of change between study and explanatory variable. If the
slope of the model is zero (i.e. $; = 0 ) then the effect of explanatory variable
is eliminated from the process and the IC simple linear profile model (given in
equation (1.1)) is defined as:

Yij = Bo +¢ij (1.3)

where [ is the arithmetic mean of Y while the variance of error term (o?) is the
simple variance of Y . In literature,Y control chart is a famous technique used
for the monitoring of process mean and S? chart is a well-known method for the

monitoring of process variability (o).

Joint monitoring of process mean and variability

Usually, control charts are used to monitor a single process parameter such as
location or scale. Before monitoring location parameter, it is important to make
sure that the process scale or dispersion is in-control (IC). Variation in scale
parameter may affect the performance of specific control chat in two ways; an
increase in scale parameter may cause increase in False Alarm Rate (FAR) while

reduction in scale parameter may cause decrease in the probability of detecting
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a shift. So, it seems more appealing to monitor both parameters together. For
example, in the manufacturing process of circuit, a shift may be observed in both
mean and variance of the thickness of the solder paste printed onto circuit boards
due to improper fixation of the stencil.

In literature, two well-known terms named joint monitoring and simultane-
ous monitoring are used for the monitoring of mean and dispersion parameters
together. It is noted that the joint /simultaneous monitoring of mean and variabil-
ity may say a special case of simple linear profiles when the slope of the simple
linear profile model is zero (i.e. B; = 0). For the joint/simultaneous monitor-
ing of mean and variability several studies are designed by [23-25] but the most
popular proposals based on maximum (Max) and sum of square (SS) statistics
are proposed by [12,26]. These popular charts include EWMA-Max, EWMA-SS,

SS-EWMA and Max-EWMA charts which are briefly discussed in chapter 4.

1.3 Brief literature review

In this section, we provide a comprehensive literature on simple linear profiles and

the existing joint monitoring methods.

1.3.1 Simple linear profiles

In many production processes, variable of interest can be modeled by a relation
between a predicted variable and one or more predictor variables. The functional

relationship among these variables is referred as profile and is addressed by dif-
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ferent authors with fixed and random explanatory variables. For monitoring of
simple linear profiles that is related to the control charting of regression adjusted
variables was proposed by [18,27-30]. [31] developed EWMA /R and Hotelings 7%
charts to monitor the parameters of simple linear profiles. [22] proposed simulta-
neous scheme named as EWMA-3 for the monitoring of intercept, slope and error
variance while [32] examined the quality characteristics of linear profile through
multivariate cumulative sum control chart.

In simple linear profiles, effects of non-normal environments are studied by [33]
and a control chart based on change point model was discussed by [34]. However,
a comparative study between Shewhart methods (cf. [22] and [35]) was discussed
by [36], whereas x? and integrated MCUSUM control charts are proposed by [37]
for the monitoring of linear profile parameters. A comprehensive overview on
linear profiles was given by [38] and a control chart for the monitoring of recursive
residuals was proposed by [39]. Control chart based on likelihood ratio in linear
profiles was discussed by [40]. Moreover, [41] proposed a study based on CUSUM
approach and a study related to small sample size (one or two) in linear profiles was
discussed by [42]. [20] proposed a Phase II study about linear profile parameters
under random effect model.

In linear profiles monitoring, there is a limited literature available regarding
Phase I analysis. To mention a few of these we have: [43] proposed two multivari-
ate control charts for the stability of linear calibration curves; [44] discussed two

Phase I control charts for multilevel ion chromatography linear calibrations; [19]
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proposed a Phase I study based on F-test in the simple linear profiles; The retro-
spective studies based on change point model was discussed by [45,46]; for mixed
model in linear profiles was discussed by [47], whereas Problem of within auto-
correlation in the model of [47] was eliminated by [48]; [49] discussed the effect
of Phase I estimation for the linear profile parameters (i.e. intercept, slope and
error variance) under EWMA-3 structure proposed by [22].

The aforementioned studies have used the idea of linear profiling by using
simple random sampling (SRS). In this study, we intend to use different ranked
set strategies and modified succesive sampling to enhance the detection ability of

control charts used to monitor linear profile parameters.

1.3.2 Joint monitoring methods

In the literature, two well-known terms named joint monitoring and simultaneous
monitoring are used for the monitoring of location and dispersion parameters
together. Joint monitoring is a term that alludes to monitoring both parameters
through a single plotting statistic plotted against a pair of control limits. In
simultaneous monitoring, parameters are monitored through separate plotting
statistics plotted against distinct pair of control limits.

There is a variety of literature addressing simultaneous/joint monitoring of
process location and dispersion parameters. [23] initiated simultaneous monitoring
and used two independent plotting statistics on the same chart. [50] used an

EWMA based simultaneous scheme using absolute value of standardize sample
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mean. [24] also discussed simultaneous monitoring of mean and variance under
EWMA structure. Keeping in view some limitations of simultaneous monitoring
(such as it requires independence of plotting statistics, interpretation of an out-
of-control (OOC) signal is not straight forward), [51] proposed semicircle control
chart based on the root mean square statistic which is further improved in the form
of Max chart by [52]. [53] also designed a simultaneous scheme for variable control
chart. [25] proposed a maximum generally weighted moving average (MaxGWMA)
control chart for the simultaneous monitoring of process parameters.

For the joint monitoring of location and scale parameters, [12,26] used some
memory-type charts based on single statistic. These charts are based on the
maximum (Max) and sum of square (SS) statistics and include EWMA-Max,
EWMA-SS, SS-EWMA and Max-EWMA charts. Later, some other approaches
were explored that include: a Max-CUSUM chart [54], an EWMA-SC chart [14],
a non-central chi-square chart for joint monitoring [55], an SS-CUSUM chart [56],
a likelihood ratio based approach [57], a modified Max-EWMA chart using range
statistic instead of variance [13], a Max-DEWMA chart [58,59], an SS-DEWMA
approach [60], a change point approach [61], non-parametric approaches [62-66],
a joint Shewhart approach for finite horizons [67]. In addition, [68,69] and the

references therein may be seen for an overview in this direction.

14



1.4 Objectives of the thesis

Simple linear profiles play a key role in many manufacturing processes used for
the monitoring of study variable which is linearly related with another ancillary
variable. In this dissertation, we plan to invertigate and further enhance the
performance of existing control charts related to the monitoring of linear profile
parameters and its special cases. The specific objectives of our study are listed

below.

(i) Proposing Phase I and Phase II studies for the monitoring of simple linear

profiles under several ranked set sampling schemes.

(ii) Enhancing the performance of Shewhart structure using modified successive

sampling scheme for the monitoring of linear profile parameters.

(iii) Designing new joint monitoring scheme under EWMA structure for linear

profile parameters and its special case under progressive setup.

(iv) Investigating non-parametric control charting setup for the joint monitoring

of process parameters (location and dispersion).

1.5 Outline of the thesis

The investigation of linear profile parameters in retrospective stage (Phase I) and
prospective stage (Phase II) has been done only under simple random sampling

(SRS). In chapter 2, we have examined both Phases for the monitoring of linear
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profiles parameters (i.e. intercept, slope and variance of error term) under dif-
ferent ranked set strategies such as ranked set sampling (RSS), median ranked
set sampling (MRSS), extreme ranked set sampling (ERSS), double ranked set
sampling (DRSS), double median ranked set sampling (DMRSS) and double ex-
treme ranked set sampling (DERSS). The comparative study on the performance
of existing and our proposed schemes has been discussed in terms of probability
to signal (PTS) for Phase I and in terms of average run length (ARL) for Phase
I1. Moreover, an illustrative example from electrical engineering is also used to
highlight the importance of the proposed method in real applications.

The modified successive sampling (MSS) is a cost-effective scheme as compared
to simple random sampling (SRS), also useful when data consist of missing obser-
vations. Chapter 3 offers Shewhart — 3 control chart under MSS to enhanced the
monitoring of linear profile parameters. Moreover, the special cases of the linear
profiling are also discussed in this chapter. For the performance analysis, we have
used an extensive comparative study which is expressed in form of run length
properties. The illustrative examples with real-life data sets are also included to
highlight the importance of the proposed charts.

Most of the recent literature on simple liner profiles was discussed under simul-
taneous structure for the monitoring of linear profile parmeters such as intercept,
slope and error variance. In simulteneous methods each parameter have individual
chart which consist of respective pair of limits such as for the simultaneous moni-

toring of linear profile parameters three individual charts based on each parameter
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are designed in a mechanism to obtain overall performance of the process. In such
cases, if a process is designed to target overall ARLy = 200 then each individual
chart have to bear ARLy = 584.5 which is a tedious mechanism and impractical.
In Chapter 4, we have designed an alternative approach (joint monitoring) to the
simultaneous monitoring of linear profile parameters. Moreover, special case of
simple linear profiles under progressive setup (which is a special case of EWMA
chart) is also discussed in this study. The study has provided an extensive com-
parison between the proposed charts and some existing schemes in terms of run
length properties. Further, real-life application about electrical engineering is also
included to highlight the importance of the proposed methods.

Process monitoring is a continuous process and it needs careful attention for
an improved quality of output. Location and dispersion parameters play a vital
role in regulating every process and it requires a timely detection of any change in
their stable behaviors. Nowadays, practitioners prefer a single charting setup that
offers better ability to detect joint shifts in the process parameters. In Chapter
5, we have designed a comprehensive study based on non-parametric charting
structures for the joint monitoring of location and dispersion parameters. The
study has provided an extensive comparison about proposed charts under different
environments and the performance analysis is discussed in terms of run length
properties. Real-life application about strikes in US manufacturing industries is

also included to highlight the importance of the proposed methods.
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CHAPTER 2

LINEAR PROFILE

MONITORING UNDER

RANKED SET SCHEMES

In statistical process control (SPC), control chart is a dynamic tool which works
under two different phases (Phase I or Phase II). Retrospective stage (Phase I) is
mainly used to estimate the unknown parameters of the process while prospective
stage (Phase II) focuses on the monitoring of process based on the estimated
control limits from Phase I. For more discussion on Phase I and Phase II, see
[70-72]).

The investigation of linear profile parameters in these Phases has been done
only under simple random sampling [19,22]. In this chapter, we will examine
these Phases for the monitoring of linear profiles parameters (i.e. intercept, slope

and variance of error term) under different ranked set strategies such as ranked
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set sampling (RSS), median ranked set sampling (MRSS), extreme ranked set
sampling (ERSS), double ranked set sampling (DRSS), double median ranked set
sampling (DMRSS) and double extreme ranked set sampling (DERSS). Moreover,
an illustrative example from electrical engineering is also used to highlight the

importance of the proposed method in real applications.

2.1 Phase I analysis

Energy is a critical enabler, which have essential demand all over the world. It is a
basic need for all living organisms to perform several activities such as breathing,
movement, metabolism etc. In this modern era, energy is used as a source for
cooking, heating, lighting, transport, telecommunications and mechanical power.
Electricity is the ideal form of energy which is generated through coal, oil, fossils
fuels, solar, wind and nuclear energy. Nowadays, in term of cost, cheap electricity
is also generated through the solar medium. The solar system (given in Figure 2.1)
consists of photovoltaic (PV) panels that converts sunlight into DC electricity.
Further, solar panels are connected through inverters that are used to convert
the DC voltage into AC voltage. The bi-directional meter is used as a medium
between solar supply and power grid supply to exchange the rate of electricity
from one end to another end.

In solar panel system, several inverters are used to convert the DC voltage
into AC voltage such as voltage source invertor (VSI), current source inverter

(CSI) and Z-source inverter. The VSI is a buck inverter which gives less output

19



-=~J 7 \ S /
’ \
PV Panels ’ N NS\ AN
ll !
4 / y DC (voltage or |~ Z Source 3-phase 1 /
y , ,\ current) Source L Inverter /l % i
7 \
l ’
/ h \_/c ( N ‘I \ //7/
\\ OR@ 1 — P Ay >
I. - To AC Load / ~
orMotor v, ¥ >< (
'\ I, [ 43 g A A
B / X /)< /
’ < 1 ’
| ) ~ \ re -7 // >
Wo Seo N // \ \
DCtoDC ! Seo -
Converter ’ N  ffsmarr meter To gr|d
Inverter —
T
| DC-link ) ) o \
Main Circuit|
J— Breaker |
I Household

Figure 2.1: Portrait of solar panel system for households

voltage as compare to DC input voltage while CSI is a boost inverter and it
provides more output voltage as compare to DC input voltage. However, Z-
source inverter consists of both abilities (buck and boost) which is responsible to
overcome various problems of VSI and CSI. The structure of Z-source inverter
consists of two capacitors, two switches (series or anti-parallel) and a 3 — ¢ bridge
inverter. A three phase (3—) bridge inverter is an electronic device which is used
to converts the DC into three phase AC. Usually, parallel plate capacitors are used
as a DC link in grid-connected PV system and its capacitance is inversely related
to the distance between two conductive plates while direct relationship exists in
the capacitance and the surface area of the conductive plates.

Generally, electrical engineers are concerned about the variations of output
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voltage in power grid system. Whereas, monitoring of the voltage using control
chart is not possible until practitioner considers the capacitance of the process
which is inversely associated with the voltage. Similarly, monitoring the dissolve
amount of aspartame (an artificial sweetener) have no worth without considering
effect of temperature in the study. However, in the semiconductor manufacturing
application, monitoring of pressure in chamber also needed the information about
flow of the gases in the chamber. So, to overcome such problems one needs to use
the concept of linear profiles which can handle the monitoring of study variable
when it is linearly associated with another (explanatory) variable.

In the literature, several studies (discussed in Section 1.3.1) are avaible for
the monitoring of simple linear profile parameters (i.e. intercept, slope and error
variance) under Phsae I, such as [22] recommended their prospective method into
retrospective method, by replacing the three EWMA structures with three She-
whart structures. Further, [19] compared their Phase I study based on F-test with
the three Phase I approaches proposed by [22,43,44]. In this study, we intend to
use different ranked set strategies (RSS) to enhance the detection ability of control
charts used to monitor linear profile parameters in Phase I. The performance of
proposed schemes will be compared to the Phase I method originally introduced

by [22] and elaborated by [19] under simple random sampling.
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2.1.1 Modification of linear profiles under Phase I

In this section, we provide the background of ranked set schemes and linear pro-
files. These are required to develop our modified Phase I structure for simple

linear profile parameters under several ranked set sampling schemes.

Ranked set sampling schemes

The efficient scheme as compare to simple random sampling (SRS) named as
Ranked set sampling (RSS) was proposed by [73]. RSS is defined as: select n
random samples for each of n sets and sort them in each set with respect to
concomitant variable. In each cycle, choose the minimum value from the 1% set,
then 2" smallest from the 2"¢ set and the largest sample from n'* set. The cycle
may be repeated r times until nr samples have been measured. These nr samples
thus, form the RSS.

[74] suggested another type of ranked set scheme termed as median ranked
set sampling (MRSS). MRSS is defined as: randomly select n samples for each
of n sets and ranked them in each set using the concomitant variable. In MRSS
selection of n samples are dependent on even or odd set size. For even set size,
select the 1 half samples from the smallest rank of (n/2)™ order and the smallest
rank of (n + 1/2)™ order in the 2" half. For odd set size, choose the median value
of each ranked set (i.e. (n+ 1/2)™ ranked value). The cycle may be repeated r
times until nr samples have been measured. These nr samples thus, form the

MRSS.
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Another modified scheme named as extreme ranked set sampling (ERSS) is
defined as (cf. [75]); select n random sets each of siz en and sort each set with
respect to concomitant variable. When set size is even, select the smallest sample
from the first (n/2)" set and from the other (n/2)™ set the largest sample for
actual measurement. For the odd set size, select the smallest sample from the
first (n + 1/2)"" set and the largest sample from the last (n + 1/2)™ sets; median
of the remaining set, for actual measurement. The cycle may be repeated r time
until nr samples have been measured. These nr samples thus, form the ERSS.

The outline of double ranked set sampling (DRSS) was provided by [76], which
is defined as: randomly select n® samples and further split them into n sets each
of n? samples. Apply the aforementioned RSS on each set having n? samples
and form the new n sets each of size n then again apply the RSS technique to
obtain the second stage samples. The cycle may be repeated r time until nr
samples have been measured. These nr samples thus, form the DRSS. However,
the second stage of MRSS and ERSS is termed as double median ranked set
sampling (DMRSS) and double extreme ranked set (DERSS) respectively. Which
may also be obtained by the double implementation of their procedures (MRSS
and ERSS), following the same steps as mentioned above for DRSS. For more
details, one may see [77].

The ranked set sampling and its modifications such as MRSS, ERSS, DRSS,
DMRSS, DERSS are considered as perfect if there exist extreme positive correla-

tion (p = 1) between study variable and concomitant variable. Otherwise, they
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are categorized as imperfect.

Linear profiles under RSS schemes

The technique used to monitor the study variable which is associated with other
explanatory variable(s) is termed as linear profiles. In this subsection, we briefly
describe the theoretical background of linear profiles under different ranked set
strategies (Later denoted by (7) in stated study). We have covered several choices
of (1) named RSS, MRSS, ERSS, DRSS, DMRSS and DERSS. For more discussion
about simple linear profiles model under RSS strategies, one may see [78,79]. The
simple linear profile model with intercept (By) and slope (B;) having sample size
(n), subgroups (k) and number of cycles (r) under ranked set strategies is defined

as:

Yigju=Bo+ B Xu +ep; 1=1,2,3,..,n;5=12,3,..m..k =123, ., r

(2.1)
where Yj;;; is the explained variable for i" ordered sample in j subgroup and ("
cycle, X(; is fixed explanatory variable with i" random sample and gfijj1 1s the
error term for ¥ ordered sample in j* subgroup and I*" cycle. It is to be noted
that If [ = 1 then one may get the above terms under SRS. The least square
estimates of intercept (By), slope (Bj) and their properties are also estimated
by following Section 1.2 and the least square estimates of transformed model are

denoted by bopj;; and byj;. It is also to be noted that X variable is fixed in our

study and is used for the estimation of profile parameters. However, a different
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variable is used for the ranking of errors used in our profile model.

The Shewhart — 3;;; method

[22] although introduced retrospective method under SRS but the performance
of his scheme was examined by [19]. In this study, we will introduce different
ranked set strategies (7) in the said scheme to enhance its performance. The
Shewhart control chart for each linear profile parameter (i.e. intercept, slope and

error variance) under Phase I on the base of transformed model are defined as;

LOL = By — Ly =2

for BO[i]jl; NI
UCL = By + Ly (m=)M5 B0 )mn Lt
) LCL = By — Lyp)y/ 2P
for bujayi 1)MSE
UCL = B; + LS[T} - n)v,Szz Lt

where L and Lg; are the control charting constant for intercept and slope
respectively (c.f. Table 2.1). For the monitoring of error variance o, Fj;; is used

which is defined as

MSEpy,

Flajt = 35850

>l E?:l 2ic1 3[21']]1
rk(n—2)

k
i#£j ol=1 it 8[21']]'1

where MSEp; = r(n—2)(k—1)

The

and MSE[Z](_])Z =

control limits for monitoring of error variance ((LC'L; and(UCLy)are also pro-
vided in Table 2.1.
The aforementioned three plotting statistics are combined in such a way to

evaluate simultaneous monitoring of the linear profile parameters (intercept, slope
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and error variance). The said combined scheme is designed under different ranked
set strategies which is named as Shewhart — 3|;) chart in the later part of this

study.

2.1.2 Performance evaluation and comparison

In this section, we will evaluate the performance of Shewhart — 3(;) chart which
is used to monitor simple linear profile parameters namely intercept, slope and
standard deviation of error term. Moreover, we will also provide the comparison
between the proposed schemes and the existing scheme under simple random

sampling.

IC parameters and charting constants

In this study, we assumed IC simple linear profile with By = 0 and By = 1
following [19] i.e. Yy = XE;) + epi- - we fixed sample size (n = 10) and
X = 0,0.2,04,0.6,0.8,1,1.2,1.4,1.6, and 1.8 while corresponding transformed
values of X(; are X*; = -0.9,-0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7, and 0.9
with average equals to zero. The transformed model is as follows: Yj; =
(Bo) + (B1) X*) + €pji » where By = X + (Bo0) X, By = (1+ f0)X*; and
eujt > BN (s,t; p1s =0, 0g =1, py =0, 0, = 1, p)). Several choices of p has been
consider in our study. p = 0.25,0.50 and 0.75 are used to represents imperfect
ranked set samplings whereas p = 1 represents imperfect ranked set samplings.
For the Phase I study, samples are collected in the form of rational subgroups.

Subgroups are introduced in such way that in the presence of instable values, the
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chances of variation with in subgroups will be minimized while chances of varia-
tion between subgroups will be maximized. We have considered different choices
of subgroups (i.e. k& = 20,30,50,100,200) each of sample size (n = 3,5,8,10).
Further, subgroups are categorized as my (stable subgroups) and m; (inconsistent
subgroups) (i.e. k = mgy+m, ), whereas we also investigate the performance of pro-
posed structure with different pairs of subgroups such as (k = 20, m; = 2,5, 10),
(k =30,m; = 3,5,10) and (k = 50, m; = 5, 10).

In this study, the performance of proposed schemes with its counterparts is
evaluated in terms of overall probability to signal (PTS) («). PTS is defined as
the detection ability of a chart in terms of probability when the process is actually
OOC. The charting constants and control limits are chosen in such a way that
individual PTS (a*) may be set to achieve a specified value a. We have fixed o =
0.04 (following [19]) and by using the relationship a = 1 — (1 —a*)3k, we get a* =
0.00068, 0.0004530, 0.0002721, 0.0001360641, 0.00006803434 for k£ = 20, 30, 50, 100
and 200 respectively. For the computation of control charting constants (intercept
and slope) and control limits for error variance (given in Table 2.1), we have carried

an extensive Monte Carlo simulation study with 1e® iteration.

Performance evaluations for Shewhart — 3, method

In order to monitor the performance of Shewhart — 3;) method we have consid-

ered several shifts in the linear profiles parameters which are as follows:

(i) Shifts introduced in my (# = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5, and 5.0)
for the intercept of transformed model.
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(ii) Shifts presented in m; (8 = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5, and 5.0) for

the slope of original model.

(iii) Shifts in my (0 = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5, and 5.0) for the slope

of transformed model.

(iv) Simultaneous shifts (6,5 = 1.0,2.0,3.0,4.0, and 5.0) in m; for intercept of

transformed model and slope of original model.

(v) Simultaneous shifts (6,9 = 1.0, 2.0, 3.0,4.0, and 5.0) in m; for both intercept

and slope of transformed model.

(vi) Shifts existing in m; (v = 1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8 and 3.0) for

the error variance of original model.

The performance of Shewhart — 3, has been evaluated using overall PTS by
carrying out extensive simulation study. The results are given in Tables 2.2 to 2.6

and some useful graphs of selective cases are also portrayed in Figures 2.2 to 2.6.

Comparative analysis of Shewhart — 3;;; method

The overall probability to signal (with respect to several shifts) of Phase I method
under different strategies (i.e. SRS, RSS, MRSS, ERSS, DRSS, DMRSS, DERSS)
at fixed £ = 20 and m; = 2 are reported in Tables 2.2 to 2.6 and Figures 2.2
and 2.3. Moreover, the selective cases regarding effect of inconsistent subgroups
(my) and rational subgroups (k) are portrayed in Figures 2.4 and 2.5. In the

following discussion, the term Shewhart — 3, is used for the proposed method
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Table 2.1: Control charting constants and limits on fixed k£ = 20,n = 10,m; = 2,
and a = 0.04

T p Ly Ls LCL;  UCLy
SRS 0 3.465302 3.465302 0.078703 3.885346

0.25 3.46045 3.476658 0.078676 3.886953
0.5 3.458631 3.499682 0.078759 3.892813
0.75 3.461062 3.598332 0.077852 3.931364

1 3.428133 4.184676 0.073483 4.888926

RSS

0.25 3.463541 3.459926 0.07853  3.883322
0.5 3.458447 3.459738 0.078512 3.886022
0.75 3.459945 3.458302 0.078896  3.88036

1 3.418342 3.426893 0.078209 3.927688

MRSS

0.25 3.385554 3.386755 0.078628 3.880239
0.5 3.144039 3.154674 0.079882 3.806181
0.75 2.699666 2.741504 0.087807 3.577494

1 1.9695  2.127761 0.15448  3.129479

ERSS

0.25 3.462009 3.476124 0.078945 3.877121
0.5 3.456355 3.505408 0.078061 3.891441
0.75 3.440969 3.605198 0.077809 3.951971

1 3.330267 4.737909 0.059595  7.21733

DRSS

0.25 3.485839 3.437171 0.079421 3.856836
0.5 3.483514 3.475506 0.078659 3.919555
0.75 3.436684 3.480446 0.078883 3.885405

1 3.413136 3.421338 0.078984 3.939591

DMRSS

0.25 3.302964 3.300814 0.08075  3.847935
0.5 2.850913 2.840614 0.083236 3.613461
0.75 2168248 2.16968 0.121724 3.063981

1 1.214729 1.361864 0.372063 2.276139

DERSS
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with fixed order of strategies (7) such as SRS, RSS, MRSS, ERSS, DRSS, DMRSS,

DERSS.

Shifts in intercept parameter:

Probability to signal for the shifts in intercept are reported in Table 2.2. The
results depict that for fixed p = 0.25, the shift in intercept (# = 1.00) may
cause 0.0135 unit increase in the overall PTS of Shewhart — 3jsrs) while 0.0119,
0.0109, 0.0112, 0.0122, 0.0146 and 0.0119 units increase in the overall PTS are
reported in Shewhart — 3(;; with respect to RSS, MRSS, ERSS, DRSS, DMRSS
and DERSS schemes. When shift (6 = 2.50) is added in intercept then 0.2237,
0.2434, 0.2440, 0.2359, 0.2467, 0.2419 and 0.2393 units increase in term of overall
PTS are reported for Shewhart — 3 respectively. Further, for Shewhart — 3
on fixed shift (@ = 4.50), the overall PTS are reported as: 0.7559, 0.7694, 0.7681,
0.7648, 0.7713, 0.7689 and 0.7682.

In the presence of shifts in intercept at fixed p = 0.75, results of
Shewhart — 3}, are portrayed in Figure 2.2(A). The comparison reveled that
proposed method under DRSS and DMRSS outperforms all other schemes. How-
ever, the comparative study regarding different choices of p was described in Fig-
ure 2.3(A). Shifts in intercept for Shewhart — 3(arss) , revealed a direct relation

between p and performance of the method.
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Shifts in slope of original model:

Table 2.3 represents the comparative analysis of Shewhart — 3 in the presence of
shifts in slope of original model. The results reveals that on fixed p = 0.5, increase
in slope (5 = 1.00) may cause 0.0545, 0.0788, 0.0894, 0.0714, 0.0848, 0.0896 and
0.0763 units increase in term of overall PTS for Shewhart — 3|, respectively.
When shift (8 = 2.50) is added in slope then 0.7292 unit increase in the overall
PTS was reported forShewhart — 3srs) and 0.8075, 0.8160, 0.7959, 0.8201, 0.8287
and 0.8122 units increase in the overall PTS are reported for Shewhart — 3 with
respect to RSS, MRSS, ERSS, DRSS, DMRSS and DERSS schemes. However, for
Shewhart — 3 at fixed shift (8 = 4.50), the overall PTS are reported as: 0.9366,
0.9401, 0.9417, 0.9397, 0.9432, 0.9447 and 0.9414.

For fixed p = 0.75, results of Shewhart — 3 with shifts in the slope of original
model are represented in Figure 2.2(B). The assessment revealed that proposed
method under DRSS and DMRSS performs comparatively better than others.
Moreover, the analysis for different selections of p was defined in Figure 2.3(B).
Shifts in slope of original model for Shewhart — 3|prss], revealed a direct relation

between p and the performance of method.

Shifts in slope of transformed model:

Shifts in the slope of transformed model are described in Table 2.4. The results de-
pict that at fixed p = 1, the shift in slope (§ = 1.00) may cause 0.0122 unit increase

in the overall PTS of Shewhart — 3srs) while 0.0596, 0.2368, 0.0351, 0.1058,
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Figure 2.2: Comparison of Shewhart — 3 at fixed p = 0.75

0.8365 and 0.0655 units increase in the overall PTS are reported in Shewhart — 3
with respect to RSS, MRSS, ERSS, DRSS, DMRSS and DERSS schemes.
When shift (6 = 2.50) added in the slope then 0.2226, 0.7579, 0.8376, 0.6606,
0.8274, 0.8971 and 0.8023 units increase in term of overall PTS are reported for
Shewhart — 3, respectively. Further, for Shewhart — 3}, at fixed shift (§ =
4.50), the overall PTS are reported as: 0.7564, 0.8431, 0.8590, 0.8401, 0.8413,

0.9582 and 0.84428.
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Figure 2.3: Performance of Shewhart — 3, with different choices of p

In the presence of shifts in the slope of transformed model, results of
Shewhart — 3j;) are portrayed in Figure 2.2(C). The comparison reveled that
proposed method under DRSS and DMRSS beats all other schemes under study.
Further, the comparative study for different choices of p was examined in Fig-
ure 2.3(C). Shifts in the slope of transformed model for Shewhart — 3(prrss)

revealed a direct relationship between p and performance of the method.
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Simultaneous shifts in intercept and slope:

The performance of Shewhart — 3 under DMRSS and DERSS, in the presence of
joint shifts in intercept and slope of original or transformed model are discussed
in Table 2.6. In the following comparative study, we fixed rational subgroups
(k = 20), inconsistent subgroups (m; = 5) and p = 0.75. The results depict
that on fixed IC intercept (6 = 0)and IC slope of transformed model (§ = 0),
the shift in slope of original model (8 = 1.00) may cause 0.2803 and 0.2009 units
increase in the overall PTS of Shewhart — 3pyrss) and Shewhart — 3|pgrss)
respectively, while shift in slope of transformed model (§ = 1.00) when intercept
(0 = 0) and slope of original model (5 = 0) are fixed may cause 0.0600 and 0.0386
units increase in the overall PTS of Shewhart — 3|;; with respect to DMRSS and
DERSS.

For fixed slope of original model (f = 0) and slope of transformed model
(6 = 0), a shift in intercept (# = 3) may cause almost 0.8926 and 0.8282 units
increase in the overall PTS of Shewhart — 3paprss) and Shewhart — 3|pgrss)
respectively. Further, on fixed IC slope of transformed model (§ = 0), a shift in
both slope of original model (f = 2) and intercept (6 = 2) probably cause 0.9589
and 0.9578 units increase in the overall PTS of Shewhart — 3 with respect
to DMRSS and DERSS. A shift in both slope of transformed model (6 = 2)
and intercept (0 = 2) at fixed IC slope of original model (5 = 0) may cause
0.7202 and 0.5689 units increase in the overall PTS of Shewhart — 3parss) and

Shewhart — 3prrss) respectively.
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Overall, at IC intercept, our proposed schemes are more effective to monitor
shift in slope of original model as compared to shift in the slope of transformed
model while Shewhart — 3|pyrss) have relatively good performance when there

is a shift in intercept and slope of original model or transformed model are I1C or

00C.

Shifts in the variance of error term:

Table 2.5 represents the comparative analysis of Shewhart — 3(;) in the presence
of shifts in error variance. The results revealed that on fixed p = 0.75, increase
in error variance (y = 1.40) may cause 0.1006, 0.1305, 0.1017, 0.1982, 0.7059,
0.5597 and 0.9109 units increase in term of overall PTS for Shewhart — 3 re-
spectively. When shift (y = 2.00) is added in error variance then 0.5614 unit in-
crease in the overall PTS was reported for Shewhart — 3srs) and 0.6849, 0.5662,
0.8062, 0.7059, 0.5597 and 0.9109 units increase in the overall PTS are reported for
Shewhart — 3[;) with respect to RSS, MRSS, ERSS, DRSS, DMRSS and DERSS
schemes. However, for Shewhart — 3, on fixed shift (v = 2.80), the overall PTS
are reported as: 0.8159, 0.8985, 0.8194, 0.9316, 0.9063, 0.8139 and 0.9470.

The findings of Shewhart — 3|;; with shifts in the error variance are repre-
sented in Figure 2.2(D). The assessment reveled that proposed method under
DERSS performs comparatively better than others. Moreover, the analysis for
different selections of was portrayed in Figure 2.3(D). Shifts in error variance for
Shewhart — 3(prrss) , revealed an increasing relation between and the perfor-

mance of method.
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2.1.3 Effect of different design parameters

In this subsection, we will briefly discuss the effect of inconsistent subgroups (my),
rational subgroups (k) and sample size (n) on probability to signal for detecting

shifts in intercept, slope and error variance.

Effect of inconsistent subgroups (m;j):

The effects of OOC subgroups in linear profile parameter such as intercept, slope
and error variance are portrayed in Figure 2.4. In case of shifts in intercept, the
effect of m; on fixed p = 1 are reported in Figure 2.4(A). The results reveal that
on fixed intercept shift (0 = 1.5), 0.8501, 0.9591, 0.9611 increase in overall PTS
are reported for Shewhart — 3|pyrss) With respect to m; = 2,5 and 10. The
results of different m; for shift in slope of original model at p = 0.25 are discussed
in Figure 2.4(B). On fixed slope shift (8 = 2.5), the increasing rate of overall PTS
are reported 0.7511, 0.8511 and 0.8715 for the Shewhart — 3parrss) with respect
to m1=2,5 and 10. In terms of shift in slope of transformed model, the effect
of my on fixed p = 0.75 are described in Figure 2.4(C). The results depict that
on fixed slope shift (§ = 3.5), 0.8105, 0.9425 and 0.9460 units increase in overall
PTS are reported for the Shewhart — 3pyrss) with respect to m;=2,5 and 10.
The findings of several m, for shift in error variance at p = 0.5 are portrayed in
Figure 2.4(D). On fixed error variance shift (y = 2.8), the increase in overall PTS
are reported about 0.8335, 0.8809, and 0.9210 units for the Shewhart — 3|pgrss

with respect to m;=2,5 and 10.
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Figure 2.4: Comparison of m; with respect to shifts in linear profile parameters
Effect of rational subgroups (k):

The comparative analysis of subgroups with respect to linear profiles parameters
(i.e. intercept, slope and error variance) are discussed in Figure 2.5. For the
appropriate analysis, we fixed 10% ratio between the rational subgroups (k) and
inconsistent subgroups (mq). For example, when k& = 20 then we fixed m; = 2
and when k£ = 30, 50, 100 and 200 then we fixed m;=3, 5, 10 and 20 respectively.

In terms of shifts in intercept, the effect of k£ on fixed p = 0.25 are reported
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in Figure 2.5(A). The results depict that on fixed intercept shift (6 = 1), 0.0146,
0.0120, 0.0172, 0.0172, 0.0182, unit increase in overall PTS are reported for the
Shewhart — 3pyprss) With respect to k=20, 30, 50, 100 and 200. The results
of different k£ for the shift in slope of original model at p=0.5 are discussed in
Figure 2.5(B). On fixed slope shift (=2), the increasing rate of overall PTS are
reported 0.6410, 0.7330, 0.8357, 0.8742 and 0.9131 for the Shewhart — 3|parrss)
with respect to k=20, 30, 50, 100 and 200.

In case of shift in slope of transformed model, the effect of k£ on fixed p = 1
are described in Figure 2.5(C). The results reveal that on fixed slope shift (6 = 3),
0.9278, 0.9502, 0.9623 , 0.9666 and 0.9720 units increase in overall PTS are re-
ported for the Shewhart — 3;parss) with respect to £=20, 30, 50, 100 and 200.
The findings of several k for shift in error variance at p=0.75 are portrayed
in Figure 2.5(D). On fixed error variance shift (y=2.6), the increase in overall
PTS are reported about 0.9443, 0.9612, 0.9623, 0.9661 and 0.9661 units for the
Shewhart — 3(pprss) With respect to k=20, 30, 50, 100 and 200. Overall, it is
depicted from the stated simulated study that the performance of our proposed

schemes increased due to increase of rational subgroups (k) and inconsistent sub-

groups (myq).

Effect of sample size (n):

The effect of sample size in the monitoring of linear profile parameters are dis-
cussed in Figure 2.6. For the comparative analysis, we fixed rational subgroups

(k=20) and inconsistent subgroups (m;=2) while we consider several choices of
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Figure 2.5: Comparison of k£ with respect to shifts in linear profile parameters

sample size (i.e n= 3,5,8 and 10) for the analysis purpose. On n=3, we fixed
X$»=0,0.9,1.8 and used X;1)=0,0.2,0.9,1.6,1.8 for the sample size n=5. In case
of sample size n= 8, X(;=0,0.2,0.4,0.6,1.2,1.4,1.6,1.8 is used for the said study.
In case of shifts in intercept, the effect of n on fixed p=0.25 are reported in
Figure 2.6(A). The results depict that on fixed intercept shift (6 = 3), 0.2851,
0.3782, 0.4039 and 0.4090, unit increase in overall PTS are reported for the

Shewhart — 3parrss) With respect to n=3,5, 8 and 10. The results of different n
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for the shift in slope of original model at =0.5 are discussed in Figure 2.6(B). On
fixed slope shift (5=1.5), the increasing rate of overall PTS are reported almost
0.1035, 0.1712, 0.2405 and 0.3247 units for the Shewhart — 3(pyrss) With respect
to n=3,5,8 and 10.

For the amount of shift in slope of transformed model, the effect of n on fixed
p=1 are described in Figure 2.6(C). The results reveal that on fixed slope shift
(60=4), 0.8423, 0.8753, 0.9365 and 0.9565 units increase in overall PTS are reported
for the Shewhart — 3(pyrss) with respect to n=3,5,8 and 10. The findings of
several n for shift in error variance at p=0.75 are portrayed in Figure 2.6(D). On
fixed error variance shift (y=3.0), the increase in overall PTS are reported about
0.5074, 0.8412, 0.9375 and 0.9489 units for the Shewhart — 3|pgrss) with respect
to n=3,5,8 and 10. Overall, it shows that the performance of Shewhart — 3
schemes increased due to increase in sample size (n) at fixed rational subgroups

(k=20) and inconsistent subgroups (m;=2).

2.1.4 A real life application

As discussed above that for fixed charge (@), capacitance (C') is inversely related
to voltage (V). So, for the monitoring of voltage (V') generated through Z-source
inverter in grid connected PV system, we used a data set having values of V' at
each level of C'. The implementation of Shewhart — 3 scheme on aforementioned

data set is discussed in the following steps:
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Figure 2.6: Comparison of n with respect to shifts in linear profile parameters

Step 1: Run the 75456 profiles to get the following IC regression model:

~

V = 402.3512 — 0.01983691 C

Further, the properties of linear regression model are reported in Appendix A.6
Step 2: Apply SRS, DMRSS and DERSS techniques on 75456 samples of V' at
each level of C'. Finally, 1533 samples of V' at each level of C' are compiled though

the aforementioned schemes. By using selected 1533 data sets and transformed
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capacitance (C* = —150uF, —100uF, —50uF, OpF, 50 F, 100pF and150pF), we
calculate 1533 profiles.
Step 3: On the base of 1533 profiles, we calculate control limits at fixed k=200

and a=0.05 for each scheme which are

LCLp, =1788.5457 LCLp, = —0.1138149 LCL; = 0.02875877
Shewhart — 3isrs) =

UCLp, =803.6243 LCLp, =0.09670317 UCLy = 3.79974000

LCLp, =786.4855 LCLp = —0.1157737 LCL; = 0.02933718
Shewhart — 3pMRsS) =

UCLp, =804.2855 LCLp, =0.10163490 UCL; = 3.44160200

LCLp, =785.6046 LCLp, = —0.1236473 LCL; = 0.0114879
Shewhart — 3\pprss) =

UCLp, =804.6087 LCLp, =0.11757860 UCL; = 3.4597220

The linear profile parameters under SRS schemes are plotted against their
control limits in Figure 2.7. The figure shows that 3 OOC signals are reported
in intercept parameter while 2 and 3 signals are reported in the slope and error
variance respectively. For the Shewhart — 3pyrss) , shows 2 OOC signals in
intercept while 3 signals are reported in both slope and error variance respectively
(cf. Figure 2.8).

For the Shewhart — 3|pgrss), statistics of linear profile parameters are plotted
against limits in Figure 2.9. Where only 1 OOC signal is captured in intercept
while 7 signals are reported in slope parameter. Percentages of OOC signals in
IC situation are provided in Table 2.7

Step 4: For the diagnosis analysis, we used data perturbation aproach (cf.
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Section A.7) to introduced intercept shift in first 50 samples, next 50 samples
with index 51-100 have slope shift, next 101-150 index have joint shift in intercept
and slope and finally, last 50 have error variance shift. We introduced shifts in

following way:

(i) For the intercept shift, we used c* =

—550, =500, =450, —400, —350, —300, —250.

(ii) For the slope shift, we used C* = 75, 50, 25,0, —25, —50, —75.

(iii) For both shifts in slope and intercept, we used C* =

—925, —50, —75, —100, —125, —150, —175.

(iv) For the shift in error variance, we multiply each observation of voltage data

set with 1.5.

The percentages of OOC signals are given in Table 2.7. In case of
Shewhart — 3(srgs) , shifts in linear profile parameters are plotted in Figure 2.10.
The findings depict that 83 OOC points are reported in intercept chart while 28,
41, 2, 4 and 2 OOC points are reported with respect to slope, both intercept and
slope, error variance, both intercept and error and in all parameters. Figure 2.11
represents the portrayed of OOC situation under Shewhart — 3;parss). The re-
sults depicts that 80, 25, 53, 2, 2 and 3 OOC points are reported with respect to
intercept, slope, both intercept and slope, error variance, both intercept and error

and in all parameters.
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The results of Shewhart — 3prrss) with respect to different shifts in linear
profile parameters are plotted in Figure 2.12. The findings reveal 70 OOC points
in intercept chart while 15, 49, 3, 2 and 5 OOC points are reported with respect
to slope, both intercept and slope, error variance, both intercept and error and in
all parameters.

In this illustrative example, the overall results depict that in case of shifts in
intercept, slope and their joint shifts (intercept and slope), Shewhart — 3(prrss)
detecting large number of OOC signals while Shewhart — 3|pgrss) have relatively

good detection in the presence of shifts in error variance.

Table 2.7: The percentages of OOC points with respect to linear profile parameters

Parameters By B: Bg+B: F Bo+F Bg+Bi+F Overall
SRS 1.5 1 - 1.5 - - 4
In control DMRSS 1 1.5 - 1.5 - - 4
DERSS 0.5 3.5 - - - - 4
SRS 41.5 14 20.5 1 2 1 80

DMRSS 40 125 26.5 1
DERSS 35 7.5 24.5 1.5

—_

1.5 82.5

Special Cause
2.5 81

—_
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2.2 Phase II analysis

In recent literature (given in Section 1.2), the idea of linear profiling under Phase
IT was discussed using simple random sampling (SRS). The concept of ranked set
sampling (RSS) was introduced by [73] and more mathematical modifications were
developed by [80]. Many of the researchers used ranked set sampling in control
charts to make them more sensitive against different type of shifts (cf. [76,81-86]).

[22] introduced an EWMA — 3 control chart for simultaneous monitoring
of shifts in intercept, slope and standard deviation of disturbance term. They
used simple random sampling (SRS) in their study for process monitoring. In this
study, we intend to use different ranked set sampling techniques to enhance the

performance of the aforementioned EW M A — 3 control chart.

EWMA — 3|, charting structure

[22] introduced EW M A—3 control chart under SRS (EWMA — 354 for simul-
taneous monitoring of shifts in linear profile parameters including intercept, slope
and standard deviation of disturbance term. We introduce here the FWMA — 3
charting structure under different ranked set strategies (7) on the base of trans-

formed model (cf. equation (1.2) is defined as;

EWMA[[i][T] = A (bomo + (1 - )\)EWMA[[i_l][T}

EWMAS[i][T] = A (bl[z‘}l) + (1 - )\)EWMAS[Z'_”[T]
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EWMAEM[T} = max{ A ln(MSE[i]l) + (1 — )\)

EWMAE[i,l][T], ln(O'Qo)}

where EW M Apji7 is the i’" EWMA statistic for intercept under different sam-
plings (7); EW M Agpijj;) and EW M Agy-) are the i"" EWMA statistics for slope
and error variance respectively under different strategies (7); A is the smoothing
parameter that ranges between zero and one (i.e. 0 < A < 1). The popular choices
of A fall in the interval 0.05 < X < 0.25 (cf. [87]).

The mean and variance of each of the three EW M A, statistic are given as;

E (EWMApp) = Bo,

E(EWMAsjp) = By,

FE (EWMAE[i][T}) = In (020) y

A 1
Var (EWMAyp) = 592 [— } )

2— nr
A %
Var (EWMAsipn) = 53— 5
Var(EWMAggn) = Var(in(MSEy,)) = %jL
2 4 16

(n—2)° 3n—-2°% 15(n—2)"

(cf. [11]) Based on the above mentioned properties of the ETW M A, statistics, the
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asymptotic limits for each EW M A, plotting statistic are given as:

(i) For EWMAI[i][T]t

) 1
UCLy = Bo + Lery \/ 3%l

A 1
LOLy = By = Lipy \| 5=~ ]

]

(ii) For EWMASM [T]Z

A T
A O
LCLs = By — Lgsy NS
(iii) For EWMAE[i][T]:
) A
UCLg = In (0%) + Legp S )\Var(ln (MSE )

where Lgr;, Lgsy and Lggj; are the control limits coefficients for intercept,
slope and standard deviation of error term respectively under different sampling
strategies (SRS, RSS, MRSS, ERSS, DRSS, DMRSS and DERSS); 03[7’] is the
error variance of RSS and az[dr], az[m}, ag[dm], 0'3[617671} and Ug[del, den] 1€ the error
variances of DRSS, MRSS, DMRSS, ERSS and DERSS respectively. The error
variances for different ranked set samplings (0’3[7_]) are given in the Appendix A.2.

The above mentioned three EW M A, statistics are combined in such a way to
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evaluate simultaneous monitoring of the three parameters of interest namely in-
tercept, slope and error variance.

The findings of the EW M A are reported in [17]. For the diagnostic anal-
ysis, we consider different shifts for the monitoring of linear profile parameters
including intercept, slope and error variance. In case of several shifts in intercept
term (0), it is concluded that EWMA — 3;parss) scheme outperforms all other
schemes under consideration. The same may also be noticed where shifts in term
of o units are considered for the slope in original model (8). The detection of
shifts in error variance (7) reveals that EWMA — 3|pgrgs) is marginally better
than others while EWMA — 3pyrss) is a poor performer, especially at larger
values of shifts and p. Further, negative shifts in the slope of transformed model
(0) depicts that EW M A — 3pmrss) scheme surpass all other schemes under con-
sideration and referring to different values of independent variable exhibits that
EW MA — 3pamrss) scheme beats all the other schemes under consideration.

Overall in monitoring phase, when ranked set sampling is imperfect (p = 0.25),
no real change is experienced in the performance EW M A — 3;) schemes and With
the increase of p, we have observed significant improvement in the performance of
EWMA — 3j;7 schemes. Further, as the smoothing parameter A decrease per-
formance of EWMA — 3, also increased but in some cases reverse results are
observed and as the sample size n increase, performance of EWMA — 3, also

increased.
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2.3 Concluding remarks

In statistical process control, control chart is a key device and its implementation
involves two different Phases (retrospective phase or prospective phase). Usually,
retrospective phase is used to estimate the unknown parameters of the process
while prospective phase emphasizes on the monitoring of process based on the
estimated parameters from retrospective phase. In this chapter, we used different
ranked set strategies 7 such as RSS, MRSS, ERSS, DRSS, DMRSS and DERSS
instead of SRS to enhance the performance of Phase I method and Phase II
method.

In Phase I method, we have used overall probability to signal (PTS) as a perfor-
mance measure to compare the Shewhart — 3|, and existing Shewhart — 3(grg)
charts. The findings reveal that the proposed method Shewhart — 3, outper-
forms the existing Shewhart — 3srs) scheme to timely detect assignable causes
in process parameters. In case of shifts in intercept and slope of original or trans-
formed model, Shewhart — 3prss) and Shewhart — 3(prrss) outperforms all the
other schemes while Shewhart — 3|prrss) exhibits relatively better performance
in the presence of shifts in error variance.

In case of simultaneous monitoring, Shewhart — 3;) takes an edge for original
model as compared to transformed model to monitor slope, given process intercept
is IC. For OOC intercept, Shewhart — 3|parss) offers relatively superior detection
ability for shifts in slope for original/ transformed model. Moreover, the efficiency

of Shewhart — 3|;) scheme increases with the increasing levels of correlation used
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in ranked set samples (p), rational subgroups (k), inconsistent subgroups (m;)
and sample size (n).

In Phase II, we intend to check the performance of EWMA — 3,y chart by
introducing different amounts of shifts in linear profile parameters. The findings
depict that when we introduce several amounts of shifts in intercept (Bjy), slope
of orignal model () and slope of tranformed model (B,), EWMA — 3pmrss]
scheme outperforms all other schemes under consideration. In the presence of
shifts in error variance parameter, the detection abiliy of EWMA — 3parrss
is very poor while EWMA — 3[pgrgs) is marginally better than others. Overall
in monitoring phase, with the increase of design parameters (correlation (p) and
sample size (n)), we have observed significant improvement in the performance
of EWMA — 357 schemes. Further, as the smoothing parameter A decrease

performance of EWMA — 31 also increased.

61



CHAPTER 3

LINEAR PROFILING UNDER

MODIFIED SUCCESSIVE

SAMPLING

In the literature, the term simple linear profiles is used for the monitoring of linear
profile parameters (slope, intercept and error variance) when the study variable is
linearly associated with a single explanatory variable. Most of the present litera-
ture on simple linear profiles utilizes the simple random sampling. In this chapter,
we intend to enhance the monitoring of simple linear profile parameters by consid-
ering the modified successive sampling scheme which is not only cost-effective but
also efficient as compared to simple random sampling scheme. Moreover, special

cases of the simple linear profile monitoring are also discussed in this chapter.
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3.1 Introduction

All recent studies about simple linear profiling (reported in Section 1.3.1) are de-
signed under simple random sampling (SRS) and ranked set samplings (RSS) (cf.
Chapter 2). Generally, for the single occasion inventory problem, simple random
sampling (SRS) is referred in most surveys while [88] suggested the successive
sampling for various occasions. The design of successive sampling considers the
first sample taken at first occasion and second sample (including some points from
first sample) taken at the next occasion. The design of MSS scheme consists of
small number of observations which makes it cost efficient scheme as well as it is
a useful technique in the presence of missing observations. Some modifications in
the successive sampling can be seen in [89-92].

Recently, [93] proposed the modified form of successive sampling (MSS) for
the quality characteristic variable which is defined in following steps;
Step 1: Take first sample (Y11, Y12, Yig,...... , Y1) of size n by using the SRS.
Step 2: Take second sample (Y21, Y2, Yos3,...... , Yo ) of size n-c by using
the SRS and the remaining ¢ observations are picked as percentiles points of first
sample in the following way: Y2, i1 = P (Y11, Yio,...... Yin), Yon—ciro =

)

P, (Y11, Yigy oot . Y1,) and so on, up to Yz, = P. (Y11, Yi2,...... Y1)
Step 3: Similarly, third sample consist of n-c new observations by using the SRS
and remaining ¢ observations from the percentile points of second sample, and

this procedure is repeated for the specific run of production.

In existing literature, [21] originated a phase II study named as Shewhart—3
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chart (given in Section 1.2) for the monitoring of simple linear profile parameters
under simple random sampling (SRS). In this study, we have designed similar
phase II study based on successive sampling technique (cf. [88]). It is noted that
modified Shewhart structure under MSS named as Shewhart — 355 chart in

the later part of this study.

3.1.1 The Shewhart — 355 charting structure

The Shewhart control chart for each linear profile parameter (i.e. intercept, slope
and error variance) under MSS on the base of transformed model given in equation

(1.2) are defined as:

UCL; = By + Lnuss) US[MSS} [ﬁ}

for bO[i] :
LCL; = By — Lyapuss) UE[MSS} [ﬁ}
0.2
UCLg = By + Lgijuss) \/ —5—-
for bl[z] : -

LCLs = By — Leojuss) \/ 5255

LCLg = In(05) — Lipuss) \/VC”‘ (in (MSE;))

for 6%, :
eli]
UCLy = In (03) + Lespussy [ Var (In (MSEp;))
where Var (ln (MSE[Z-U)) = % + (n_22)2 + 3(n4_2)3 - 15(22)5, and Lyimss),

LI2[MSS]7 LSI[MSS] s LS2[MSS] s LEI[MSS] and LE?[MSS] are the control limits co-
efficients for intercept, slope and variance of error term under modified successive

sampling.
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In this chapter, modified successive sampling is symbolized as

MSS, cp, p,,....p. where n represents sample size, the number of observa-
tions from previous sample is represented by ¢ and P,V ¢ = 1,2,3,...... ,C . s
the percentile picked from the previous sample. Although, several possible values

of ¢ and P, _4 can be taken but the current study considers the following two

situations.

i MSSp2.p p,, Where n-2 observations are generated by using SRS and the
remaining two observations are taken from the specific percentile pairs (P, P»)

of the previous sample. In this study, the choice of percentile pairs (Py, P») are

(P0.25> PO.?S); (P0.307 P0470)7(P0.357 P0.65)7 (P0.40> PO.GO) and (P0.457 P0.55)'

ii MSS,3p, pp,, Where n-3 observations are generated by using SRS and
the remaining three observations are taken from the specific percentile pairs
(Py, P2, P3)ofthe previous sample. In this study, the choice of percentile pairs
(P, Py, P3) are (Poas, Poso, FPors), (Poso, Poso, Poro)s (Fosss Poso, Foes),

(P0.40, Py 50, Po.ﬁo) and (P0.457 Py 50, P0.55)-

It is to be noted that the MSS schemes (MSS, 2p,. p,, MSSn3p. p.p,) are said
to be simple random sampling (SRS) when observations are not taken from of the

previous sample (i.e. SRS = MSS,,2.p,. p, 0r MSS,, 31,1, 1) -

3.1.2 Performance evaluations

In this subsection, we provide a brief discussion on the IC parameters of proposed
charts. Moreover, we will discuss the performance evaluation of the stated study.
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Designing of in-control parameters and control limits

For the original IC simple linear model given in equation (1.1), we assumed 5y = 3
and 5, = 2 by following [21] (z’.e. Yigr = 3 +2X4) + qi]k). Where the fixed values
of explanatory variable are X(;) = 2, 4, 6, and 8 , sample size (n =4) and the
error term is ey ~ N (s; us =0, o0 =1). Moreover, the transformed model
given in equation (1.2) is obtained by substituting the By = 3+2X + (80) X and
By = (24 f0) X (- whereas, the fixed transformed values of explanatory variable
are X(*Z.) = -3, — 1, 1, and 3 with average equals to zero.

The performance of Shewhart — 3jysg charts is evaluated in terms of
average run length (ARL) which is defined as the number of samples un-
til a signal occurs. ARL is categorized into two types, in-control average
run length (ARLg) and out-of-control average run length (ARL;). For the
fixed overall (ARLj), we need to set the control limits coefficients including
Lissy, Liopass), Lsipess), Lsapass), Leipss) and Lgsnss) with respect to dif-
ferent combinations of design parameters (n, c) and choices of percentiles. In this
study, we have evaluated the results for some selective choices of these design pa-
rameters (n=>5, 7 and ¢=2,3) and the results are reported in Table 3.1 to achieve
an overall ARLqy = 200. For computations, we used Monte Carlo simulation study

with 10° iterations.
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Table 3.1: Control charting constants of Shewhart-3 chart under MSS schemes

n Scheme Lyimss) Lizpmss) Lsimss] Ls2mss) Lreimss)  Lrzpmss)
MSS, 2P 05, Pons  -2.65051  2.63689 -2.19630 2.78229  0.08673  5.43789
MSSn2.pPy g0, Poro  -2.66279  2.66568 -2.32100 2.71618  0.02304  5.04384
MSS, 2P g5, P -2.66348  2.67022 -2.38273  2.64063  0.00769  4.85906
MSSh 2Py a0, Prgo -2-63955  2.63672 -2.38533  2.55926  0.00425  4.71889
MSSn 2Py as, Poss -2.61524 261429 -2.41571 248039  0.00270  4.71316

5 MSSy3Py 05, PosoPors -2.49249 250122 -2.01845  2.98639  0.00480  4.39014

MSS03.Py 50, Poso,Pore -2-42583  2.43451 -2.16765  2.76051  0.00169  4.03714
MSS,3 Py a5, PosoPoss -2.01189 230833 -2.24453  2.55740  0.00073  3.90108
MSS,3 Py a0, PosoPoco  -2.24524  2.21959 -2.26650  2.42236  0.00051  3.83348
MSS,3.Py a5, PososPoss -2.12171  2.10866 -2.24848  2.30943  0.00036  3.81815
MSSn 2Py 05, Pos -2.76920  2.78558 -2.37381  2.69893  0.13854  5.59925
MSSn2.pys0, P -2-78380 2.77136 -2.41385  2.63938  0.09414  5.40458
MSS, 2P g5, Pres -2.78116  2.78970 -2.43796  2.58164  0.05909  5.28626
MSSn 2Py a0, Poco -2-70744 276380 -2.45170 2.56195  0.03939  5.16095
MSS, 2Py as, Poss -2.76222  2.74351 -2.47242  2.50960  0.02792  5.18708

T TMISS,3 000 Posoryn  2.638%6  2.63644  2.25238  2.77901  0.05541  5.00033
MSS,3.Py 50, PososPone -2.62606  2.61153  -2.29772  2.67295  0.03349  4.81843
MSS,3 Py a5, PosoPoss -2.07092 257175 -2.32866  2.55189  0.01955  4.69043
MSS03.Py a0, PososPoco  -2-00048 254438 -2.35341  2.49075  0.01366  4.66880
MS S0 3.Pyas, PosoPoss -2-02279  2.53287 -2.34390  2.41319  0.01221  4.65537

Shifts for performance evaluation

In order to evaluate the performance of Shewhart — 3|yss) charts, we have con-
sidered several amount of shifts in linear profile parameters (10). The description

of shifts in linear profile parameters are given as follows:

(i) Shifts in intercept parameter (BO to By + 0 (UG[MSS]/\/E)),
(ii) Shifts in slope parameter (31 to By + 6 (O'E[MSS}/\/S_XX)),
(iii) Shifts in slope parameter (51 to b+ (O'e[MSS]/\/S_XX)),
(iv) Shifts in error variance <O‘§[MSS] to 7202[MSS]>7

where the size of shifts in intercept parameter are quantified as (6 = 0.2, 0.4, 0.6,
0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0), for slope parameter (6 and 5 = 0.025, 0.05,
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0.075, 0.1, 0.125, 0.150, 0.175, 0.2, 0.225 and  0.25) and for the
variance of disturbance term  shifts are enumerated as (v =
1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0). It is noted that process

is said to be IC when 6, [ and § are equal to zero and v = 1 otherwise, process

is said to be OOC.

3.2 Comparative analysis

In this section, we discuss the comparative results of Shewhart — 3 chart under
different sampling environments. The average run length (ARL), standard devi-
ation of run length SDRL and different percentiles (25", 75" and 95) of run
length distribution are provided in Tables 3.2-3.10 and ARL curves are plotted in
Figures 3.1-3.4. Further, the performance of Shewhart — 3 chart under different
sampling environments is discussed in terms of percentage change in the ARL,

which is obtained as:

ARLy — ARL4

P t h =
ercentage cnange ARLO

3.2.1 Shifts in intercept parameter:

The results for Shewhart — 3srs) chart, Shewhart — 3ysg) charts at fixed ¢ =
2 and ¢ = 3 under shifted intercept parameter are reported in Tables 3.2-3.4
respectively. Which shows that (100%) upward shift in intercept parameter, may

decrease 97.31% and 98.41% ARL; of Shewhart—3srs) chart, 98.08% and 98.72%
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ARL; of Shewhart — 3[Mss ] chart and 98.00% and of 98.83%, ARL,

n,2,Py.25, .75

of Shewhart — S[Mss chart for the both cases of n (i.e. n=5 and 7)

n,2,Py.25, P0.75]
respectively. Moreover, the ARL curves for shifted intercept parameter are plotted
in Figure 3.1, which reveals that Shewhart—3y;sg) charts have better performance
as compared to Shewhart—3srg) chart. Specifically, Shewhart—3(yss) chart with

percentile choices (P45, Poss) and (Poas, Poso, Poss) outperforms all others

except in case when design parameters are n=7and c=2.

n=5c¢c=2 n=7,c=2
0 - —— SRS o - —— SRS
_A_ MSSPO 25> PU]S _A_ MSSPD 25 PD 75|
MSSp, . p,., < MSSpys, Py
v 1 MSSPO 35 PO,ES MSSPD 35> PO 65
— MSSp,,. Py, — MSSp,,. Pos
E:I ™M -~ MSSPOA& Poss D_:I M — MSSP()AS:POSS
< NS
£ AN — £ N —
- — —
o ©
1T 17T 17T 17T 17T 17T 17T T T°1 1T 1T 17T 17T 1T 1T T T T1
0O 04 08 12 16 2
0
n=7,c=3
1o} n - —— SRS
—&— MSSp,,q Py, Py,
< MSSp;, Pys, Py
¥ MSSpy s, Pos, Pos
. - MSSpy,, Pos. Pos
E:I o™ E:I o — T MSSP045.P05: Pos
NS NS
E=SN £ o
— — -
o ©
1T 1T 17T 1T 17T 17T T T T1
0O 04 08 12 16 2 0O 04 08 12 16 2
0 0

Figure 3.1: ARL curves of Shewhart — 3 chart under different sampling schemes
for intercept shifts (BO to By + 6 (O'E[MSS] / \/ﬁ))
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Table 3.2: Performance of linear profile parameters under SRS

n=5 n="7
v Shifts "ARL SDRL Qoss Qors Qoos ARL SDRL Qozs Qors  Qoos
0.000 200.80 199.53 58.00 276.00 597.00 199.34 198.77 57.00 276.00 598.00
0.200 144.24 141.98 42.75 200.00 425.05 126.75 126.97 36.00 176.00 383.05
0.400 63.62 62.80 19.00 89.00 193.00 45.44 44.53 13.00 63.00 134.00
0.600 25.72 25.41 8.00 36.00 77.00 15.62 15.28 5.00 21.00 46.00
0.800 11.11 10.71 4.00 15.00 33.00 6.51 6.03 2.00 9.00 18.00
< 1.000 5.41 4.88 2.00 7.00 15.00 3.16 2.62 1.00 4.00 8.00
1.200 3.07 2.52 1.00 4.00 8.00 1.96 1.35 1.00 2.00 5.00
1.400 2.00 1.41 1.00 3.00 5.00 1.41 0.76 1.00 2.00 3.00
1.600 1.49 0.86 1.00 2.00 3.00 1.16 0.43 1.00 1.00 2.00
1.800 1.22 0.52 1.00 1.00 2.00 1.06 0.24 1.00 1.00 2.00
2.000 1.10 0.32 1.00 1.00 2.00 1.02 0.13 1.00 1.00 1.00
0.000 200.72 199.02 57.00 276.00 606.00 200.14 201.41 57.00 277.00 608.00
0.025 191.12 191.52 54.00 263.00 578.05 176.52 177.91 51.00 245.00 530.05
0.050 168.22 169.77 48.00 234.00 505.00 127.51 12741 37.00 177.00 382.05
0.075 135.74 136.21 39.00 18R8.00 402.05 78.49 78.25 23.00 108.00 237.05
0.100 108.38 107.57 30.00 150.25 325.05 45.89 45.15 14.00 64.00 138.00
P 0.125 77.93 75.92 23.00 109.00 228.00 26.86 26.54 8.00 37.00 80.00
0.150 58.35 57.36  17.00 80.00 172.05 16.03 15.49 5.00 22.00 47.00
0.175 40.82 40.04 12.00 56.00 121.00 9.85 9.14 3.00 14.00 28.00
0.200 30.19 29.32 9.00 42.00 89.00 6.47 5.85 2.00 9.00 18.00
0.225 21.95 21.35 7.00 30.00 65.00 4.44 3.93 2.00 6.00 12.00
0.250 15.82 15.17 5.00 22.00 46.00 3.21 2.67 1.00 4.00 8.00
0.000 201.67 200.37 59.00 27R8.00 602.05 202.40 201.99 5HK8.00 278.00 609.00
0.025 159.61 160.09 44.00 222.00 476.05 116.79 116.37 33.00 162.00 345.00
0.050 89.93 89.91 26.00 124.00 270.05 40.63 39.74 12.00 56.00 121.00
0.075 46.81 45.96 14.00 65.00 138.00 14.18 13.60 4.00 19.00 41.00
0.100 23.08 22.37 7.00 32.00 68.00 5.97 5.44 2.00 8.00 17.00
Q. 0.125 12.10 11.47 4.00 17.00 35.00 2.97 2.47 1.00 4.00 8.00
0.150 6.96 6.51 2.00 9.00 20.00 1.84 1.23 1.00 2.00 4.00
0.175 4.30 3.71 2.00 6.00 12.00 1.35 0.70 1.00 2.00 3.00
0.200 2.89 2.35 1.00 4.00 8.00 1.14 0.41 1.00 1.00 2.00
0.225 2.12 1.54 1.00 3.00 5.00 1.04 0.21 1.00 1.00 1.00
0.250 1.65 1.05 1.00 2.00 4.00 1.01 0.11 1.00 1.00 1.00
1.000 199.32 199.82 56.00 276.00 610.00 198.78 196.16 57.00 279.00 596.00
1.200 37.45 36.97 11.00 52.00 112.00 33.19 33.30 10.00 45.25 100.00
1.400 11.76 11.32 4.00 16.00 34.05 9.48 9.04 3.00 13.00 27.00
1.600 5.60 5.13 2.00 8.00 16.00 4.39 3.90 2.00 6.00 12.00
1.800 3.40 2.85 1.00 5.00 9.00 2.67 2.11 1.00 3.00 7.00
- 2.000 2.42 1.84 1.00 3.00 6.00 1.93 1.36 1.00 2.00 5.00
2.200 1.95 1.37 1.00 2.00 5.00 1.54 0.91 1.00 2.00 3.00
2.400 1.65 1.05 1.00 2.00 4.00 1.34 0.68 1.00 2.00 3.00
2.600 1.44 0.80 1.00 2.00 3.00 1.23 0.54 1.00 1.00 2.00
2.800 1.33 0.66 1.00 2.00 3.00 1.15 0.42 1.00 1.00 2.00
3.000 1.25 0.56 1.00 1.00 2.00 1.11 0.35 1.00 1.00 2.00
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Table 3.3: Performance of Shewhart —35ss) in the presence of shifts in intercept
parameter at fixed ¢=2

n==5 n=7

Schemes 0 “ART SDRL Qozs Qors Qoos ARL SDRL Qozs Qors  Qoos
0.00 200.34 212.24 51.00 279.00 625.05 199.01 205.28 54.00 274.00 604.00
0.20 124.99 129.52 31.00 178.00 3R84.00 112.65 114.15 31.00 157.00 338.00
0.40 47.73 49.62 12.00 68.00 148.00 36.05 36.35 10.00 50.00 110.00

< 0.60 17.30 18.38  4.00 24.00 54.00 11.88 12.02  3.00 17.00 36.00
g 0.80 7.44 7.81 2.00 10.00 23.00 5.05 4.87  1.00 7.00 15.00

i 1.00 3.85 3.89  1.00 5.00 12.00 2.56 221 1.00 3.00 7.00
) 1.20 2.26 1.99  1.00 3.00 6.00 1.64 1.18  1.00 2.00 4.00
é\) 1.40 1.57 1.12 1.00 2.00 4.00 1.25 0.60  1.00 1.00 2.00
1.60 1.24 0.64 1.00 1.00 3.00 1.09 0.34  1.00 1.00 2.00

1.80 1.09 0.35  1.00 1.00 2.00 1.02 0.16  1.00 1.00 1.00

2.00 1.04 0.21  1.00 1.00 1.00 1.01 0.08 1.00 1.00 1.00

0.00 199.52  203.67 54.75 279.00 598.05 207.77  211.47 58.00 289.25 631.05

0.20 131.78 134.53 35.00 185.00 398.00 114.03  119.27 31.00 158.00 342.05

° 0.40  50.94 52.62 13.00 71.00 154.00  35.75 36.50 10.00  50.00 108.00

£ 0.60  19.00 19.90 5.00 26.00 58.00 12.06 12.27  3.00 17.00 37.00
i 0.80 7.89 8.04 2.00 11.00 24.00 4.83 4.67  1.00 7.00  14.00

f:: 1.00 3.96 3.93  1.00 5.00 12.00 2.52 2.19  1.00 3.00 7.00
) 1.20 2.32 2.05  1.00 3.00 7.00 1.61 1.10  1.00 2.00 4.00
g 1.40 1.60 1.17  1.00 2.00 4.00 1.23 0.60  1.00 1.00 2.00
1.60 1.26 0.67  1.00 1.00 3.00 1.09 0.33  1.00 1.00 2.00

1.80 1.10 0.38  1.00 1.00 2.00 1.03 0.17  1.00 1.00 1.00

2.00 1.04 0.22  1.00 1.00 1.00 1.01 0.07  1.00 1.00 1.00

0.00 204.37  204.88 56.00 287.00 611.05 204.67  206.68 55.75 288.00 621.00

0.20 132.68 135.41 36.00 184.00 409.00 117.14 11893 32.00 166.00 357.05

2 0.40  50.53 52.81 13.00 69.00 155.06  37.76 37.93 10.00 53.00 114.00

< 0.60 19.01 20.29  5.00 26.00 59.00 12.35 12.45 3.00 17.00 38.00
2 0.80 7.98 828 2.00 11.00 24.00 5.05 4.83 1.00 7.00 15.00

f: 1.00 4.02 3.92  1.00 5.00 12.00 2.55 224 1.00 3.00 7.00
) 1.20 2.37 213 1.00 3.00 7.00 1.63 1.13  1.00 2.00 4.00
tg 1.40 1.62 1.22 1.00 2.00 4.00 1.25 0.62  1.00 1.00 3.00
1.60 1.26 0.68  1.00 1.00 3.00 1.09 0.32  1.00 1.00 2.00

1.80 1.11 041  1.00 1.00 2.00 1.03 0.17  1.00 1.00 1.00

2.00 1.04 0.22  1.00 1.00 1.00 1.01 0.08  1.00 1.00 1.00

0.00 199.29  201.20 54.00 281.00 597.00 195.05 198.28 54.00 273.00 595.10

0.20 13197 13510 36.00 182.00 403.00 113.88  114.28 32.00 159.00 337.05

2 0.40  49.27 50.92 13.00  69.00 150.00  35.68 36.52  9.00  50.00 109.00

£ 0.60 17.87 1839  5.00 24.00 54.00 11.70 11.77  3.00 16.00  35.00
i;. 0.80 7.63 7.82 2.00 11.00 23.00 4.90 477 1.00 7.00 15.00

f;: 1.00 3.88 3.82  1.00 5.00 12.00 2.51 2.16  1.00 3.00 7.00
ot 1.20 2.30 2.05  1.00 3.00 7.00 1.60 1.11  1.00 2.00 4.00
g 1.40 1.58 1.15  1.00 2.00 4.00 1.24 0.60  1.00 1.00 2.00
1.60 1.25 0.66  1.00 1.00 3.00 1.08 0.31  1.00 1.00 2.00

1.80 1.10 0.40  1.00 1.00 2.00 1.02 0.17  1.00 1.00 1.00

2.00 1.04 0.22  1.00 1.00 1.00 1.01 0.08 1.00 1.00 1.00

0.00 205.58  208.93 54.00 291.00 620.00 201.76  207.39 53.75 280.00 612.05

0.20 132.52 135.00 36.00 186.00 404.00 129.48  131.41 34.00 181.00 396.00

2 0.40  48.46 49.68 13.00 67.00 149.00  48.68 50.05 13.00  68.00 148.00

< 0.60 17.39 18.41 4.00 24.00 54.00 17.72 18.61  4.00 25.00 55.00

3 0.80 7.52 794 2.00 10.00 23.00 7.43 779 2.00 10.00 23.00

i;i 1.00 3.77 3.80  1.00 5.00 12.00 3.81 3.77  1.00 5.00 11.00

) 1.20 2.25 1.99  1.00 3.00 6.00 2.28 2.05 1.00 3.00 6.00
S 1.40 1.58 1.16  1.00 2.00 4.00 1.55 1.13  1.00 2.00 4.00

1.60 1.25 0.69  1.00 1.00 3.00 1.23 0.64 1.00 1.00 3.00
1.80 1.09 0.36  1.00 1.00 2.00 1.10 0.39  1.00 1.00 2.00
2.00 1.03 0.21  1.00 1.00 1.00 1.03 0.20  1.00 1.00 1.00
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Table 3.4: Performance of Shewhart —3yss) in the presence of shifts in intercept
parameter at fixed ¢=3

n=5 n="7
Schemes ¢ “ART " SDRL Qozs Qors Qoos ARL SDRL Qozs  Qors  Qoos
0.00 205.62 213.73  53.00 287.00 638.05 205.05 215.09 54.00 288.00 643.00
0.20 132.50 136.90 34.00 186.00 405.00 111.81 114.73  29.00 158.00 336.00

Qg 0.40  51.03 54.52 12.00 72.00 162.00  33.59 34.55  9.00 47.00 103.00
2 0.60  18.80 20.30  4.00 27.00 60.00 11.16 11.72  3.00 15.00  34.00
! 0.80 8.04 877 1.00 11.00 26.00 4.78 4.81  1.00 7.00 15.00
é 1.00 4.10 442  1.00 6.00 13.00 2.40 2.22  1.00 3.00 7.00
= 1.20 2.32 232 1.00 3.00 7.00 1.54 1.10  1.00 2.00 4.00
OU); 1.40 1.60 1.35 1.00 2.00 4.00 1.20 0.59  1.00 1.00 2.00
= 1.60 1.25 0.75  1.00 1.00 3.00 1.07 0.30  1.00 1.00 2.00
1.80 1.09 0.39  1.00 1.00 2.00 1.02 0.14  1.00 1.00 1.00

2.00 1.03 0.21  1.00 1.00 1.00 1.00 0.06  1.00 1.00 1.00

0.00 208.87  219.15 54.00 289.00 642.00 204.30  210.23 55.00 285.00 626.00

. 0.20 130.32 136.79 33.00 185.00 402.00 109.96  111.97 29.00 154.00 336.00
,:E 0.40  47.64 51.81 11.00  66.00 150.00  34.11 35.78  9.00 48.00 103.00
2 0.60 17.21 19.08 3.00 25.00 54.00 10.81 11.35  3.00 15.00 33.00
= 0.80 7.38 836 1.00 10.00 24.00 4.50 4.52  1.00 6.00  14.00
g 1.00 3.76 4.15  1.00 5.00 12.00 2.39 2.21  1.00 3.00 7.00
= 1.20 2.19 2.15  1.00 3.00 7.00 1.53 1.09  1.00 2.00 4.00
gg 1.40 1.52 1.21  1.00 1.00 4.00 1.19 0.55  1.00 1.00 2.00
= 1.60 1.20 0.66  1.00 1.00 2.00 1.06 0.28  1.00 1.00 2.00
1.80 1.07 0.36  1.00 1.00 2.00 1.02 0.15  1.00 1.00 1.00

2.00 1.03 0.21  1.00 1.00 1.00 1.00 0.07  1.00 1.00 1.00

0.00 20291  212.07 50.00 292.00 628.05 197.83  202.26 52.00 278.00 605.00

0.20 119.34 12777 27.00 167.00 378.05 109.16  114.29 28.00 151.00 340.00
g 040  41.32 45.75  8.00 58.00 136.00 31.15 3245 8.00 44.00 97.00
2 0.60 14.83 17.06  2.00 21.00 49.00 10.34 1093  2.00 14.00 32.00
s 0.80 6.38 746  1.00 9.00 22.00 4.27 429  1.00 6.00  13.00
é 1.00 3.24 3.65  1.00 4.00  10.00 2.30 2.08 1.00 3.00 7.00
= 1.20 1.99 1.98  1.00 2.00 6.00 1.49 1.04  1.00 2.00 4.00
‘tg 1.40 1.43 1.13  1.00 1.00 4.00 1.18 0.55  1.00 1.00 2.00
= 1.60 1.16 0.62  1.00 1.00 2.00 1.06 0.27  1.00 1.00 1.00
1.80 1.05 0.29  1.00 1.00 1.00 1.02 0.14  1.00 1.00 1.00

2.00 1.02 0.15  1.00 1.00 1.00 1.00 0.07  1.00 1.00 1.00

0.00 200.90  211.95 47.00 281.25 633.00 207.65  213.21 57.00 290.00 631.05

. 0.20 121.01 128.88 28.00 170.00 381.05 109.47  114.62 28.00 153.00 335.00
e 0.40  41.10 45.17  8.00 58.00 135.00 30.87 32.35  7.00 44.00 95.00
2 0.60 14.73 16.87  2.00 21.00 49.00 10.18 10.88  2.00 14.00 32.00
= 0.80 6.41 7.37  1.00 9.00 22.00 4.28 442  1.00 6.00 13.00
g 1.00 3.25 3.66  1.00 4.00  11.00 2.26 2.08 1.00 3.00 7.00
= 1.20 1.98 2.01  1.00 2.00 6.00 1.47 1.03  1.00 2.00 4.00
g}f 1.40 1.41 1.07  1.00 1.00 4.00 1.17 0.52  1.00 1.00 2.00
= 1.60 1.16 0.60  1.00 1.00 2.00 1.05 0.26  1.00 1.00 1.00
1.80 1.06 0.31  1.00 1.00 1.00 1.01 0.11  1.00 1.00 1.00

2.00 1.02 0.15  1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00

0.00 183.98  210.57 30.00 262.00 615.00 200.15  207.45 52.00 279.00 618.05

m_ 0.20 97.81 111.77 15.00 141.00 321.05 106.89  113.02 26.00 151.00 334.05
< 0.40  32.03 3742 4.00 47.00 107.00 31.49 33.55 7.00 45.00 98.00
5 0.60 11.70 14.37  2.00 17.00 42.00 9.96 10.88  2.00 14.00  32.00
Q:S 0.80 5.34 6.65 1.00 7.00  20.00 4.21 438  1.00 6.00  13.00
g 1.00 2.80 3.42  1.00 3.00 10.00 2.25 211  1.00 3.00 7.00
% 1.20 1.76 1.80  1.00 2.00 5.00 1.46 1.03  1.00 2.00 4.00
% 1.40 1.29 0.92  1.00 1.00 3.00 1.17 0.53  1.00 1.00 2.00
= 1.60 1.11 0.49  1.00 1.00 2.00 1.05 0.27  1.00 1.00 1.00
1.80 1.04 0.24  1.00 1.00 1.00 1.01 0.13  1.00 1.00 1.00

2.00 1.01 0.11  1.00 1.00 1.00 1.00 0.06  1.00 1.00 1.00
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3.2.2 Shifts in slope parameter of transformed model:

The Table 3.2, 3.5 and 3.6 are about the results for shifted slope parameter of
transformed model in Shewhart — 3srg) chart, Shewhart — 3(yrss) charts at fixed
¢ = 2 and 3 respectively. Which reveals that (17.5%) upward shift in slope parame-
ter of transformed model, may decrease 79.67% and 95.08% ARL; of Shewhart —

3srs) chart, 88.74% and 97.74% ARL, of Shewhart — 3[ chart

MSSn,2,Py 30, P0A70]

and 89.58% and 97.90% ARL; of Shewhart — 3[ chart for

MSSn,3,Po.30,Po.5, Po.7o]

n=>5 and 7 respectively. However, the ARL curves for shifted slope parameter of
transformed model are plotted in Figure 3.2, which shows that Shewhart —35s
charts have relatively better performance as compared to Shewhart —3(srs) chart.
Specifically, Shewhart — 3pss) chart under percentile choices (P45, Poss) and
(Po.as, Poso, Poss) outperforms all others except in case when design parameters

are n=7 and c=2.

3.2.3 Shifts in slope parameter of original model:

The results for Shewhart—3srs) chart, Shewhart—3|yss) charts at fixed c=2 and
3, under shifted slope parameter of orignal model are reported in Tables 3.2, 3.7
and 3.8 respectively. Which shows that (7.5%) upward shift in intercept parame-
ter, may decrease 76.79% and 92.99% ARL; of Shewhart — 3[sgs) chart, 83.84%

and 83.81% ARL; of Shewhart — 3[ ] chart and 88.76% and 95.67%

MSSn,2,Pq 45, Py.s55

ARL; of Shewhart — 3[ chart for the both cases of n (i.e. n=5

MSSn,3,Po.457P0.5, P0.55]

and 7 respectively. Moreover, the ARL curves for shifted intercept parameter are
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Table 3.5: Performance of Shewhart —3yss) in the presence of shifts in the slope
of transformed model parameter at fixed ¢=2

n=4 n="7
Schemes 0 “ART  SDRL Qo2 Qors Qoss ARL SDRL Qo2 Qors  Qoos
0.000 194.12 205.30 48.00 272.00 596.05 195.65 200.48 54.00 273.00 597.00
0.025 184.70 192.26 46.00 261.00 567.00 168.13 172.86 45.00 234.00 501.05
0.050 148.82 156.08 37.00 210.00 453.00 105.03 108.26 28.00 146.00 320.05

€ 0.075 110.80 114.49 28.75 156.00 334.00  54.60 55.69 15.00 76.00 166.00
§ 0.100  74.61 78.86 18.00 106.00 234.00  27.53 27.57 8.00 38.00 83.00
i: 0.125  49.33 50.62 13.00 69.00 153.00 13.95 13.80  4.00 20.00 42.00
) 0.150  32.54 33.92 8.00 45.00 100.00 8.07 7.70  3.00 11.00 24.00
& 0.175  21.59 21.97  6.00 30.00 65.05 4.88 4.30  2.00 7.00  13.00
= 0.200  14.60 14.50  4.00  20.00  44.00 3.28 2.61  1.00 4.00 8.00
0.225  10.09 9.90 3.00 14.00 29.00 2.39 1.64 1.00 3.00 6.00

0.250 7.19 6.58 2.00 10.00 20.00 1.91 1.16  1.00 2.00 4.00

0.000 203.54  205.49 57.00 286.00 620.00 202.33  202.60 57.00 283.00 614.00

0.025 190.96 195.04 51.00 265.00 576.00 171.70 172.95 48.00 239.00 527.05

° 0.050 155.99 158.73 43.00 219.25 469.00 104.14 107.24  27.00 146.00 315.05
< 0.075 116.43 118.84 32.00 164.00 353.00  54.42 55.55 15.00  75.00 167.05
f. 0.100  80.22 81.36 22.00 113.00 243.05  26.55 2691 7.00 37.00 81.05
&: 0.125  53.22 54.52 15.00 74.00 161.00 14.05 13.93  4.00 19.00 42.00
o 0.150  35.23 35.91 10.00 49.00 105.05 7.48 7.04 2.00 10.00 22.00
S 0.175  22.92 2297  6.00 32.00 69.00 4.59 3.97  2.00 6.00 13.00
0.200 15.71 15.88  4.00 22.00 47.00 3.06 2.38  1.00 4.00 8.00

0.225  10.75 10.27  3.00 15.00 31.00 2.30 1.60  1.00 3.00 5.00

0.250 7.44 6.84 2.00 10.00 21.00 1.85 1.13  1.00 2.00 4.00

0.000 205.68  211.46 57.00 284.00 625.00 204.77  202.62 58.00 284.00 622.00

0.025 191.70 192.66 54.00 268.00 573.00 168.97  172.53 47.00 234.00 521.00

3 0.050 158.48 161.67 43.00 221.00 479.00  99.66 99.61 28.00 140.00 297.00
< 0.075 117.33 120.60 32.00 163.00 363.00 51.64 52.26 14.00  73.00 156.00
f 0.100  81.87 83.59 23.00 114.00 244.00  24.85 25.56  7.00 34.00 76.00
?\;: 0.125  53.62 54.84 14.00 74.00 165.05 13.24 13.37  4.00 18.00  40.00
) 0.150  34.92 35.83  9.00 49.00 105.00 7.16 6.91 2.00 10.00 21.00
Z} 0.175  22.96 23.76  6.00 32.00 71.00 4.49 4.05  2.00 6.00 12.00
= 0.200 15.44 15.55  4.00 22.00 47.00 3.01 243 1.00 4.00 8.00
0.225  10.48 10.37  3.00 15.00  31.00 2.22 1.54  1.00 3.00 5.00

0.250 7.43 7.08 200 10.00 22.00 1.80 1.10  1.00 2.00 4.00

0.000 199.13  200.86 55.00 280.00 600.05 195.70 198.35 52.00 275.00 590.00

0.025 190.19 198.40 51.00 266.00 570.00 168.12 171.02  49.00 234.00 515.00

3 0.050 155.29 155.86 44.00 215.00 460.00 103.58 106.50 27.00 145.00 316.00
€ 0.075 113.85 117.57 31.00 161.00 349.00 54.61 55.87 15.00 76.00 166.00
i 0.100  80.15 83.31 22.00 113.00 245.00 26.04 26.59 7.00 36.00 80.00
i: 0.125  52.05 54.72  13.00  72.00 164.00 13.41 13.72 4.00 19.00 41.00
) 0.150  34.05 35.39  9.00 48.00 105.00 7.41 724 200 10.00 22.00
& 0.175  22.08 22.84 6.00 31.00 68.00 4.55 4.07  2.00 6.00 13.00
- 0.200  14.55 14.79  4.00 20.00 44.00 3.02 242 1.00 4.00 8.00
0.225  10.01 10.17  3.00 14.00  30.00 2.26 1.60  1.00 3.00 5.00

0.250 7.13 6.84 2.00 10.00 21.00 1.80 1.11  1.00 2.00 4.00

0.000 205.32  207.29 56.00 286.00 616.00 200.77  207.55 53.00 281.00 618.05

0.025 188.59 195.35 49.00 262.00 584.00 190.86 194.25 52.00 268.00 582.05

3 0.050 151.90 155.91 40.00 214.00 463.00 151.52 154.51 41.00 211.00 456.05
< 0.075 112.49 116.56 30.00 157.00 346.00 112.45 115.82 30.00 156.00 344.00
3 0.100  74.78 77.20 20.00 104.00 227.00 75.99 78.06 20.00 107.00 231.00
?\;” 0.125  49.09 50.56 13.00 69.00 151.00  49.22 50.85 13.00  69.00 152.00
) 0.150  31.33 33.44 8.00 44.00 99.00 31.86 33.41 8.00 44.00 97.00
§ 0.175  20.57 21.83 5.00 28.00 63.00 20.24 21.12  5.00 29.00 62.00
0.200 13.64 14.21  3.00 19.00 41.00 13.80 14.48  3.00 19.00 43.00

0.225 9.22 9.34 2.00 13.00 29.00 9.31 9.30 3.00 13.00 28.00

0.250 6.50 6.24  2.00 9.00  19.00 6.65 6.52  2.00 9.00  20.00
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Table 3.6: Performance of Shewhart —3yss) in the presence of shifts in the slope
of transformed model parameter at fixed ¢=3

n=4 n="7
Schemes 0  “ARL SDRL Qoz Qors Qoss ARL SDRL Qozs Qors  Qoos
0.000 208.02 217.60 53.00 290.00 637.00 206.06 209.33  55.00 290.00 629.10
0.025 191.94 199.92  49.00 271.00 589.00 168.04 169.00 46.00 234.00 498.05

pE 0.050 155.21 157.85 42.00 215.00 472.00 102.51 105.83 28.00 141.00 309.00
2 0.075 118.49 12245 32.00 165.00 361.00  52.81 53.92 14.00 72.00 163.00
< 0.100  78.94 80.91 21.00 110.00 243.00 25.87 26.04 7.00 36.00 78.00
§ 0.125  52.20 53.32 14.00  72.00 159.00  13.56 13.35 4.00 19.00 40.00
e 0.150  35.31 35.26 10.00 49.00 106.00 7.35 6.78 2.00 10.00 21.00
0[05 0.175  22.77 22.67 6.00 32.00 68.00 4.60 3.88  2.00 6.00  12.00
= 0.200  15.39 1529  5.00 21.00 46.00 3.16 2.29  1.00 4.00 8.00
0.225  10.79 10.33  3.00 15.00 31.00 2.37 1.56  1.00 3.00 5.00

0.250 7.71 7.05 3.00 10.00 22.00 1.92 1.12 1.00 2.00 4.00

0.000 206.14  216.10 52.00 289.00 644.00 204.71 210.05 55.00 285.00 621.05

- 0.025 190.81 200.96 49.00 268.00 584.05 169.91 176.82 44.00 237.00 521.05
é 0.050 161.24 169.75 39.00 225.00 503.00 105.56 108.92  28.00 146.00 322.00
2 0.075 115.39 120.91 29.00 162.00 359.05  52.26 53.90 14.00 73.00 158.00
< 0.100  77.52 82.49 19.00 107.00 240.00  24.97 25.89 7.00 35.00 76.00
§ 0.125  51.66 54.42 13.00 72.00 162.05 12.74 1273 4.00 17.00  39.00
x 0.150  33.17 34.33  8.00 47.00 102.00 7.11 6.69 2.00 10.00 21.00
Eg: 0.175  21.48 2277 5.00 30.00 67.00 4.30 3.69  2.00 6.00 12.00
= 0.200  14.49 14.90  4.00 20.00 45.00 2.95 2.19  1.00 4.00 7.00
0.225 9.76 9.71  3.00 14.00 29.00 2.29 1.50  1.00 3.00 5.00

0.250 6.97 6.76  2.00 9.00  21.00 1.83 1.08  1.00 2.00 4.00

0.000 199.65  210.88 48.00 285.00 622.00 199.48  204.68 53.00 282.00 599.00

. 0.025 191.08  200.92 46.00 269.00 591.05 160.14 164.01 42.00 224.00 493.00
e 0.050 157.39 169.14 36.75 217.00 499.05  95.72 99.86 24.00 133.00 294.00
2 0.075 113.77  119.71 25.00 163.00 348.00  47.95 49.80 12.00 67.00 146.00
< 0.100  74.30 80.14 16.00 107.00 232.05 23.19 23.69 6.00 33.00 71.00
§ 0.125  47.62 51.48 10.00 68.00 153.00 11.38 11.71  3.00 16.00  35.00
e 0.150  30.40 33.16 6.00 43.00 97.00 6.53 6.36  2.00 9.00  19.00
glj 0.175  20.08 22.46  4.00 28.00 66.00 3.97 3.50  1.00 5.00 11.00
= 0.200  13.18 14.43  3.00 18.00 43.00 2.78 217 1.00 4.00 7.00
0.225 8.69 942 2.00 12.00 28.00 2.12 1.42  1.00 3.00 5.00

0.250 6.34 6.52  2.00 9.00  20.00 1.73 1.03  1.00 2.00 4.00

0.000 202.28  219.55 46.00 285.00 650.05 210.35  219.07 55.00 294.00 642.00

. 0.025 186.54  202.94 41.00 263.00 598.00 173.18 178.31 45.00 243.00 534.05
P 0.050 146.65 160.18 31.00 207.25 464.00 101.12 105.70  26.00 143.25 313.05
g 0.075 104.15 115.98 20.00 147.25 339.05 49.71 52.73 12.00  70.00 155.00
< 0.100  68.06 74.61 14.00 97.00 218.00  23.56 2496  5.00 33.00 74.05
g 0.125  43.02 4828 800 61.00 141.00 11.43 1212 3.00 16.00 36.00
e 0.150  27.23 30.40  5.00 39.00 89.00 6.44 6.43  2.00 9.00  19.00
g 0.175  17.20 19.41  3.00 24.00 57.00 4.06 3.75  1.00 5.00  12.00
= 0.200  11.63 1278 2.00 16.00 37.00 2.76 224 1.00 4.00 7.00
0.225 7.82 844 2.00 11.00 26.00 2.10 1.49  1.00 3.00 5.00

0.250 5.54 5.76  2.00 7.00 18.00 1.70 1.06  1.00 2.00 4.00

0.000 186.73  212.49 33.00 265.00 622.05 197.92  202.17 52.00 277.00 603.00

" 0.025 167.95 191.66 27.00 242.00 558.00 160.57  167.95 40.00 224.00 494.00
& 0.050  129.90 149.42  20.00 188.00 433.05  95.22 99.74 23.00 134.00 293.00
E 0.075  90.89 105.74 12.00 132.00 301.00  45.08 47.62 10.00  63.00 139.00
Q;: 0.100  57.89 6741  9.00 83.00 193.00 21.25 23.09 4.00 30.00 68.00
5- 0.125  35.75 41.83  5.00 51.00 119.00 10.77 11.31  2.00 15.00  34.00
i 0.150  23.76 2795 4.00 34.00 79.05 6.10 6.00  2.00 9.00 18.00
g)) 0.175 1542 17.71  3.00 22.00 53.00 3.87 3.64 1.00 5.00 11.00
= 0.200  10.38 11.91  2.00 14.00 35.00 2.711 227 1.00 3.00 7.00
0.225 7.66 856 2.00 11.00 26.00 2.03 1.52  1.00 2.00 5.00

0.250 5.48 6.11  1.00 7.00 18.00 1.63 1.01  1.00 2.00 4.00
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Figure 3.2: ARL curves of Shewhart — 3 chart under different sampling schemes
for slope shifts (31 to By + 0 (Oe[Mss]/\/Sxx))

plotted in Figure 3.3, which reveals that Shewhart—3|yss) charts have better per-
formance as compared to Shewhart — 3(srs) chart. Specifically,Shewhart — 355
chart with percentile choices (P45, Poss) and (Poas, Poso, Foss) outperforms

all others except in case when design parameters are n=7 and c=2.
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Table 3.7: Performance of Shewhart —3yss) in the presence of shifts in the slope
of original model parameter at fixed ¢=2

n=4 n="7
Schemes  § "ART ™ SDRL Qo2 Qors Qoss ARL SDRL Qozs Qors  Qoos
0.000 194.76 208.14 47.00 273.00 617.00 199.81 202.71 52.00 281.00 602.00
0.025 142.50 147.78 37.00 202.00 433.00 103.37 104.74 28.00 146.00 312.05
0.050 71.10 75.55 17.00 100.00 221.00 31.83 32.64 8.00 45.00 96.00

u; 0.075  32.21 34.27 8.00 45.00 102.05 10.57 10.69 3.00 15.00 32.00
§ 0.100  15.65 16.53  4.00 22.00 49.00 4.38 4.31  1.00 6.00  13.00

i: 0.125 8.12 8.46  2.00 12.00 25.00 2.34 1.97  1.00 3.00 6.00
) 0.150 4.72 4.84 1.00 7.00 15.00 1.51 0.96 1.00 2.00 4.00
& 0.175 3.02 290 1.00 4.00 9.00 1.19 0.53  1.00 1.00 2.00
= 0.200 2.12 1.84  1.00 3.00 6.00 1.06 0.25  1.00 1.00 2.00
0.225 1.62 1.20  1.00 2.00 4.00 1.01 0.12  1.00 1.00 1.00

0.250 1.33 0.78 1.00 1.00 3.00 1.00 0.06 1.00 1.00 1.00

0.000 201.07  208.54 54.00 279.00 613.00 208.39  209.68 58.00 293.00 624.00

0.025 147.22 149.87 39.00 208.00 443.00 104.75 106.13 30.00 145.00 320.00

e 0.050  75.30 76.72 20.00 106.00 224.00  30.92 31.03 8.00 44.00 92.00

< 0.075  34.55 36.35  9.00 48.00 107.00 10.46 10.70  3.00 14.00  32.00
§, 0.100  16.68 17.22  4.00 23.00 51.00 4.35 422 1.00 6.00 13.00

&: 0.125 8.64 895 2.00 12.00 27.00 2.26 1.92  1.00 3.00 6.00
o 0.150 5.07 5.17  1.00 7.00 15.00 1.51 0.98  1.00 2.00 4.00
2 0.175 3.18 3.01  1.00 4.00 9.00 1.18 0.49  1.00 1.00 2.00
- 0.200 2.18 1.88  1.00 3.00 6.00 1.05 0.25  1.00 1.00 1.00
0.225 1.66 1.25 1.00 2.00 4.00 1.02 0.13  1.00 1.00 1.00

0.250 1.35 0.79  1.00 1.00 3.00 1.00 0.05  1.00 1.00 1.00

0.000 201.64  203.97 57.00 284.00 604.00 206.41 208.32 57.00 289.00 617.05

0.025 152.19 157.36  41.00 208.00 467.05 104.77  106.76 29.00 147.00 314.00

3 0.050  76.67 79.26 20.00 107.00 233.00  32.60 33.11  9.00 46.00 99.00

< 0.075  35.18 36.05  9.00 49.00 105.00 10.47 10.59  3.00 15.00  32.00
j 0.100  16.98 17.63  4.00 24.00 53.00 4.35 420  1.00 6.00  13.00

?\;: 0.125 8.76 9.14 2.00 12.00 27.00 2.34 1.97  1.00 3.00 6.00
) 0.150 5.02 5.06 1.00 7.00 15.00 1.48 0.96  1.00 2.00 3.00
Z} 0.175 3.14 3.03  1.00 4.00 9.00 1.18 0.50  1.00 1.00 2.00
= 0.200 2.17 1.90  1.00 3.00 6.00 1.06 0.25  1.00 1.00 2.00
0.225 1.64 1.20  1.00 2.00 4.00 1.01 0.12  1.00 1.00 1.00

0.250 1.34 0.80  1.00 1.00 3.00 1.00 0.05  1.00 1.00 1.00

0.000 206.14  211.34 57.00 292.00 627.00 194.50 197.06 54.00 270.00 591.05

0.025 151.13 154.54 41.00 210.00 459.00 103.19 102.88  29.00 146.00 304.00

3 0.050  75.24 77.39 20.00 103.00 229.00 30.44 31.21  8.00 42.00  95.00

€ 0.075  34.13 3594 8.00 48.00 106.00 10.05 10.36 3.00 14.00  31.00
i 0.100  16.32 16.98  4.00 23.00 52.00 4.31 412 1.00 6.00 13.00

f:: 0.125 8.40 8.74 200 12.00 26.00 2.25 1.90 1.00 3.00 6.00
) 0.150 4.77 4.88  1.00 7.00 15.00 1.48 097  1.00 2.00 3.00
& 0.175 3.01 292  1.00 4.00 9.00 1.16 0.46  1.00 1.00 2.00
- 0.200 2.08 1.77  1.00 2.00 6.00 1.06 0.26  1.00 1.00 1.00
0.225 1.61 1.20  1.00 2.00 4.00 1.01 0.11  1.00 1.00 1.00

0.250 1.31 0.75 1.00 1.00 3.00 1.00 0.05 1.00 1.00 1.00

0.000 204.11 209.24 55.00 286.00 624.00 203.73  208.07 55.00 283.00 621.00

0.025 148.51 154.89 39.00 205.00 455.00 148.33 150.14 41.00 206.00 449.00

2 0.050  73.84 77.19 19.00 102.00 231.00  74.25 77.39 19.00 104.00 224.00

lcj 0.075  32.93 34.65 8.00 46.00 101.05  32.98 35.01 8.00 47.00 102.00
3 0.100  15.62 16.67  3.00 22.00 50.00  15.58 16.52  4.00 22.00 48.00

&; 0.125 8.01 851 200 11.00  25.00 8.04 8.56 2.00 11.00 25.00
) 0.150 4.67 481 1.00 6.00  14.00 4.59 4.75  1.00 6.00 14.00
§ 0.175 2.90 2.84 1.00 4.00 9.00 2.93 2.85  1.00 4.00 9.00
0.200 2.05 1.81  1.00 2.00 6.00 2.03 1.77  1.00 2.00 6.00

0.225 1.54 1.09  1.00 2.00 4.00 1.56 1.13  1.00 2.00 4.00

0.250 1.27 0.68  1.00 1.00 3.00 1.28 0.71  1.00 1.00 3.00
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Table 3.8: Performance of Shewhart —3yss) in the presence of shifts in the slope
of original model parameter at fixed ¢=3

Schemes  § "ART ™ SDRL Qo2 Qors Qoss ARL SDRL Qozs Qors  Qoos
0.000 206.15 212.78 53.00 289.00 639.00 202.97 208.73 55.00 280.00 609.05
0.025 153.63 158.54 40.00 216.00 470.00 100.28 101.84 27.00 140.00 302.00

pE 0.050  76.37 79.49 20.00 106.00 233.00 29.80 31.17  8.00 42.00 91.00
2 0.075  34.82 37.07  8.00 49.00 109.00 9.96 10.39  2.00 14.00 30.05

< 0.100  16.90 1795 4.00 24.00 52.00 4.20 4.33  1.00 6.00  13.00
§ 0.125 8.82 947 200 12.00 28.00 2.23 1.98  1.00 3.00 6.00
e 0.150 5.11 5.51  1.00 7.00 16.00 1.45 097 1.00 2.00 3.00

0[05 0.175 3.16 3.31  1.00 4.00  10.00 1.16 0.49  1.00 1.00 2.00
= 0.200 2.19 211 1.00 3.00 7.00 1.05 026  1.00 1.00 1.00
0.225 1.64 1.34  1.00 2.00 4.00 1.01 0.12  1.00 1.00 1.00

0.250 1.32 0.86 1.00 1.00 3.00 1.00 0.05 1.00 1.00 1.00

0.000 205.97  214.10 53.00 287.25 632.00 205.08  207.42 54.00 290.00 627.00

- 0.025 149.15 157.12 37.00 210.00 462.05 102.87  105.94 28.00 144.00 313.00

é 0.050  73.13 77.71 17.00 104.00 223.00 29.26 30.72  7.00 41.00 92.00
2 0.075  32.28 35.73  7.00 46.00 101.00 9.58 10.09  2.00 13.00  29.00

< 0.100  15.23 16.78  3.00 22.00  50.00 4.03 4.07  1.00 5.00 12.00
§ 0.125 8.01 9.07  1.00 11.00  27.00 2.12 1.84  1.00 3.00 6.00
x 0.150 4.69 5.26  1.00 6.00 15.00 1.41 0.90  1.00 1.00 3.00

g;; 0.175 2.90 3.03  1.00 4.00 9.00 1.14 0.46  1.00 1.00 2.00
= 0.200 2.02 1.98  1.00 2.00 6.00 1.04 0.23  1.00 1.00 1.00
0.225 1.52 1.21  1.00 2.00 4.00 1.01 0.10  1.00 1.00 1.00

0.250 1.26 0.76  1.00 1.00 3.00 1.00 0.05  1.00 1.00 1.00

0.000 203.12  215.52 48.00 287.00 630.00 198.12  204.56 53.00 276.00 608.05

. 0.025 144.19 154.78 33.00 202.00 457.00 95.21 99.81 25.00 133.00 293.00

e 0.050  65.97 72.81 13.00 94.00 213.00 27.63 29.31  6.00 39.00 85.05
2 0.075  28.21 32.14  5.00 40.00 91.00 9.03 9.53 2.00 13.00 28.00

< 0.100  13.16 1524 2.00 18.00 45.00 3.81 3.92  1.00 5.00  12.00
§ 0.125 6.81 8.02  1.00 9.00  23.00 2.00 1.72 1.00 2.00 6.00
e 0.150 3.93 4.52  1.00 5.00  13.00 1.37 0.85  1.00 1.00 3.00

glj 0.175 2.51 2.69 1.00 3.00 8.00 1.12 042  1.00 1.00 2.00
= 0.200 1.77 1.62  1.00 2.00 5.00 1.04 0.22  1.00 1.00 1.00
0.225 1.40 1.03  1.00 1.00 3.00 1.01 0.10  1.00 1.00 1.00

0.250 1.20 0.63 1.00 1.00 2.00 1.00 0.04 1.00 1.00 1.00

0.000 206.24  222.07 47.00 290.00 649.00 205.07  211.94 54.00 288.00 629.10

3 0.025 137.13 149.25 28.00 195.00 445.00 100.49 106.34 24.00 142.00 317.00

< 0.050  60.00 67.46 10.00 86.00 194.00 27.66 29.76  6.00 39.00 88.00
g 0.075  25.22 29.83  3.00 36.00 86.00 8.76 9.63 2.00 12.00 28.00
3 0.100  11.78 1452 2.00 17.00 41.00 3.62 3.80  1.00 5.00  11.00

£ 0.125 5.98 737 1.00 8.00  21.00 1.98 1.73  1.00 2.00 6.00
U;Q 0.150 3.46 413  1.00 4.00  12.00 1.33 0.78  1.00 1.00 3.00
2 0.175 2.28 2.39  1.00 3.00 7.00 1.12 0.43  1.00 1.00 2.00
= 0.200 1.63 1.40  1.00 2.00 4.00 1.03 0.19  1.00 1.00 1.00
= 0.225 1.32 0.89  1.00 1.00 3.00 1.01 0.09 1.00 1.00 1.00
0.250 1.16 0.56  1.00 1.00 2.00 1.00 0.04 1.00 1.00 1.00

0.000 186.02  211.88 31.00 266.00 613.00 197.65  205.69 51.00 278.00 611.00

" 0.025 118.26 138.38 17.00 171.00 393.00 97.44 105.26  22.00 135.00 310.00

& 0.050  49.69 60.96 6.00 72.00 173.00 26.48 29.44 5.00 37.00 86.00
E 0.075 2091 26.22  2.00 30.00 72.00 8.54 949 2.00 12.00 28.00

Q;: 0.100 9.76 12.62 1.00 13.00 37.00 3.52 3.67  1.00 5.00 11.00
5- 0.125 5.09 6.58  1.00 6.00  18.00 1.94 1.73  1.00 2.00 5.00
i 0.150 2.99 3.59  1.00 3.00  10.00 1.33 0.78  1.00 1.00 3.00

g)) 0.175 1.99 2.05  1.00 2.00 6.00 1.11 0.39  1.00 1.00 2.00
= 0.200 1.49 1.22 1.00 1.00 4.00 1.03 0.18  1.00 1.00 1.00
0.225 1.25 0.72  1.00 1.00 3.00 1.01 0.08  1.00 1.00 1.00

0.250 1.12 0.45 1.00 1.00 2.00 1.00 0.02  1.00 1.00 1.00
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Figure 3.3: ARL curves of Shewhart — 3 chart under different sampling schemes
for slope shifts (51 to B1 + B (oepmss)/ vV Sxx))

3.2.4 Shifts in error variance of disturbance term:

Tables 3.2,3.9 and 3.10 are about the results for shifted error variance parameter
in Shewhart — 3(srs) chart, Shewhart — 3[y55) charts at fixed ¢=2 and 3 respec-
tively. Which reveals that (60%) upward shift in error variance parameter, may
decrease 97.19% and 97.79% ARL; of Shewhart—3srs) chart, 97.12% and 97.16%

ARL, of Shewhart — 3[MSS ] chart and 97.84% and 97.91% ARL, of

n,2,P0.40, Po.60
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Shewhart — 3[ MSS ] chart for n=5 and 7 respectively. However, the

n,3,P0.40:0.5+ P0.60
curves for shifted error variance parameter are plotted in Figure 3.4, which shows
that Shewhart — 3(yrss) charts have relatively better performance as compared to
Shewhart — 3sgrs) chart. Specifically,Shewhart — 355 chart under percentile
choices (Py4s, Poss) and (Poas, Poso, Poss) outperforms all others while in case

of n=7 and c¢=2,Shewhart — 3jpg5) chart under percentile choice (P40, Fo.60)

have relatively good performance among all others.
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Figure 3.4: ARL curves of Shewhart — 3 chart under different sampling schemes

for error variamce shifts (O’S[MSS] to ’YUS[MSS})
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Table 3.9: Performance of Shewhart — 3555 in the presence of shifts in the error
variance parameter at fixed c=2

n=>5 n="7
Schemes v "ART SDRL Qozs Qors Qoos ARL SDRL Qozs Qors  Qoos
1.00 196.15 204.03 48.00 280.00 606.05 205.80 209.06 57.00 285.00 620.00
1.20 36.36 38.51 8.00 51.00 113.05 35.51 36.91 9.00 50.00 110.00
1.40 11.69 12.50 2.00 17.00 37.00 10.13 10.94 2.00 14.00 32.00

< 1.60 5.55 5.79  1.00 8.00 17.00 4.32 4.56  1.00 6.00  14.00
g 1.80 3.31 3.34  1.00 4.00  10.00 2.53 242 1.00 3.00 8.00
i 2.00 2.33 2.19  1.00 3.00 7.00 1.81 1.51  1.00 2.00 5.00
) 2.20 1.83 1.53  1.00 2.00 5.00 1.44 0.97  1.00 1.00 3.00
t@ 2.40 1.55 1.13  1.00 2.00 4.00 1.29 0.72  1.00 1.00 3.00
= 2.60 1.39 0.89  1.00 1.00 3.00 1.18 0.53  1.00 1.00 2.00
2.80 1.27 0.70  1.00 1.00 3.00 1.12 0.42  1.00 1.00 2.00

3.00 1.19 0.57  1.00 1.00 2.00 1.07 0.32  1.00 1.00 2.00

1.00 203.32  204.20 55.00 287.00 620.05 204.05  207.67 57.00 284.00 607.00

1.20 3947 4141 10.00 56.00 122.00  35.78 36.99  9.00 50.00 109.00

° 1.40  12.50 13.44  3.00 17.00 40.00 9.60 10.11 2.00 13.00  30.00
£ 1.60 5.75 6.31  1.00 8.00  19.00 4.28 437  1.00 6.00 13.00
2 1.80 3.43 3.55  1.00 5.00 11.00 2.54 242 1.00 3.00 7.00
f\,:: 2.00 2.37 227 1.00 3.00 7.00 1.83 1.51  1.00 2.00 5.00
) 2.20 1.85 1.60  1.00 2.00 5.00 1.46 0.99 1.00 2.00 3.00
2 2.40 1.56 1.18  1.00 2.00 4.00 1.28 0.71  1.00 1.00 3.00
= 2.60 1.36 0.90  1.00 1.00 3.00 1.17 0.52  1.00 1.00 2.00
2.80 1.26 0.71  1.00 1.00 3.00 1.12 0.41  1.00 1.00 2.00

3.00 1.19 0.58  1.00 1.00 2.00 1.07 0.30  1.00 1.00 2.00

1.00 201.74  204.08 55.00 282.00 609.00 205.80  209.06 57.00 285.00 620.00

1.20  40.10 41.95 10.00 56.00 123.00  35.51 36.91  9.00 50.00 110.00

2 1.40 12.84 13.98 2.00 18.00 41.00 10.13 1094 2.00 14.00 32.00
< 1.60 5.98 6.62  1.00 8.00  19.00 4.32 456  1.00 6.00  14.00
2 1.80 3.50 3.75  1.00 5.00 11.00 2.53 242 1.00 3.00 8.00
f: 2.00 2.42 242 1.00 3.00 8.00 1.81 1.51  1.00 2.00 5.00
) 2.20 1.85 1.62  1.00 2.00 5.00 1.44 0.97  1.00 1.00 3.00
2 2.40 1.56 1.22 1.00 2.00 4.00 1.29 0.72  1.00 1.00 3.00
= 2.60 1.37 0.93  1.00 1.00 3.00 1.18 0.53  1.00 1.00 2.00
2.80 1.26 0.74  1.00 1.00 3.00 1.12 0.42  1.00 1.00 2.00

3.00 1.18 0.58  1.00 1.00 2.00 1.07 0.32  1.00 1.00 2.00

1.00 203.73  208.43 56.00 285.00 624.00 197.02 198.10 54.00 279.00 589.05

1.20  39.50 42.16  9.00 56.00 122.00 34.22 36.04 8.00 48.00 106.00

2 1.40  12.65 14.06  2.00 18.00  41.00 9.97 10.63  2.00 14.00 31.00
£ 1.60 5.86 6.55  1.00 8.00 19.00 4.26 447 1.00 6.00 13.00
s 1.80 3.39 3.66  1.00 4.00  11.00 2.51 2.45  1.00 3.00 8.00
f\,:: 2.00 2.37 242 1.00 3.00 7.00 1.81 1.51  1.00 2.00 5.00
oy 2.20 1.84 1.70  1.00 2.00 5.00 1.42 0.96 1.00 1.00 3.00
t@ 2.40 1.54 1.20  1.00 2.00 4.00 1.27 0.73  1.00 1.00 3.00
- 2.60 1.37 0.93  1.00 1.00 3.00 1.16 0.51  1.00 1.00 2.00
2.80 1.25 0.70  1.00 1.00 3.00 1.11 0.39  1.00 1.00 2.00

3.00 1.18 0.56  1.00 1.00 2.00 1.07 0.32  1.00 1.00 2.00

1.00 201.22  206.64 54.00 279.00 609.00 206.29  212.88 55.00 287.00 622.00

1.20  40.69 43.64 9.00 58.00 127.00  40.55 4311 9.00 57.00 127.00

2 1.40  13.20 15.01  2.00 18.00 43.00 12.95 14.54  2.00 18.00 42.00
‘f; 1.60 5.87 6.65 1.00 8.00 19.00 6.00 6.80  1.00 8.00  20.00
3 1.80 3.37 3.68  1.00 4.00 11.00 3.44 3.79  1.00 4.00 11.00
i}i 2.00 2.31 2.36  1.00 3.00 7.00 2.38 240  1.00 3.00 7.00
) 2.20 1.80 1.63  1.00 2.00 5.00 1.80 1.63  1.00 2.00 5.00
g 2.40 1.51 1.14  1.00 2.00 4.00 1.51 1.18  1.00 1.00 4.00
2.60 1.36 0.91  1.00 1.00 3.00 1.35 0.92  1.00 1.00 3.00

2.80 1.24 0.70  1.00 1.00 3.00 1.24 0.70  1.00 1.00 3.00
3.00 1.19 0.61  1.00 1.00 2.00 1.18 0.58  1.00 1.00 2.00
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Table 3.10: Performance of Shewhart — 3[5s) in the presence of shifts in the
error variance parameter at fixed ¢=3

n==4 n="7
Schemes v "ART SDRL Qozs Qors Qoos ARL SDRL Qozs Qors  Qoos
1.00 210.29 218.85 55.00 294.00 650.00 201.79 207.27 55.00 279.00 605.05
1.20  41.69 4597  8.00 59.00 134.00  36.10 38.54 8.00 50.00 115.00

Qg 1.40 1317 15.66 2.00 19.00 45.00 10.20 11.30  2.00 14.00  34.00
2 1.60 6.14 741  1.00 9.00 21.00 4.45 4.89  1.00 6.00  14.00
! 1.80 3.57 4.25  1.00 5.00 13.00 2.54 2.63  1.00 3.00 8.00
é 2.00 2.45 276 1.00 3.00 8.00 1.80 1.60 1.00 2.00 5.00
5 2.20 1.88 1.89  1.00 2.00 6.00 1.45 1.08  1.00 1.00 4.00
é’g 2.40 1.55 1.36  1.00 1.00 4.00 1.26 0.74  1.00 1.00 3.00
= 2.60 1.37 1.06  1.00 1.00 3.00 1.16 0.55  1.00 1.00 2.00
2.80 1.26 0.82  1.00 1.00 3.00 1.10 0.41  1.00 1.00 2.00

3.00 1.18 0.67  1.00 1.00 2.00 1.07 0.33  1.00 1.00 2.00

1.00 207.19  215.18 53.00 293.00 639.00 20543  205.62 57.00 290.00 618.05

. 1.20  41.79 46.40  8.00 60.00 135.00 35.98 38.84 800 51.00 115.00
,:'é 1.40  14.01 16.71  2.00 20.00 48.00 10.41 1216 1.75 15.00  35.00
2 1.60 6.25 8.00  1.00 8.00  23.00 4.50 5.13  1.00 6.00 15.00
= 1.80 3.49 4.39  1.00 4.00  13.00 2.52 2.68  1.00 3.00 8.00
g 2.00 2.37 2.81  1.00 3.00 8.00 1.75 1.60  1.00 2.00 5.00
= 2.20 1.81 1.85  1.00 2.00 6.00 1.45 1.11  1.00 1.00 4.00
gg 2.40 1.53 1.42  1.00 1.00 4.00 1.27 0.78  1.00 1.00 3.00
= 2.60 1.34 1.04  1.00 1.00 3.00 1.14 0.51  1.00 1.00 2.00
2.80 1.22 0.78  1.00 1.00 3.00 1.10 0.43  1.00 1.00 2.00

3.00 1.17 0.66  1.00 1.00 2.00 1.07 0.33  1.00 1.00 1.00

1.00 202.30  211.20 48.75 285.00 630.05 200.14  203.33 54.00 281.00 605.00

1.20 41.42 47.95 6.00 60.00 139.05 35.63 38.63 7.00 51.00 112.00
g 1.40  13.54 17.81  1.00 19.00 50.00 10.41 1229 1.00 15.00 35.00
2 1.60 6.01 8.03  1.00 8.00  22.00 4.41 521  1.00 6.00 15.00
s 1.80 3.49 4.57  1.00 4.00  13.00 2.48 2.72  1.00 3.00 8.00
é 2.00 2.30 2.85 1.00 2.00 8.00 1.77 1.66  1.00 2.00 5.00
5 2.20 1.75 1.82  1.00 2.00 6.00 1.41 1.08  1.00 1.00 4.00
g}j‘ 2.40 1.45 1.25  1.00 1.00 4.00 1.23 0.72  1.00 1.00 3.00
= 2.60 1.31 1.00  1.00 1.00 3.00 1.15 0.54  1.00 1.00 2.00
2.80 1.20 0.73  1.00 1.00 2.00 1.09 0.39  1.00 1.00 2.00

3.00 1.14 0.58  1.00 1.00 2.00 1.06 0.29  1.00 1.00 1.00

1.00 199.41 219.38 44.00 279.00 634.05 211.07  216.12 55.00 299.25 642.00

. 1.20  39.52 47.63  5.00 56.00 138.00  36.87 40.86  7.00 53.00 119.00
e 1.40 12.62 1648 1.00 18.00 48.00 10.48 1248 1.00 15.00 36.00
2 1.60 5.65 770  1.00 7.00 22.00 4.41 5.27  1.00 6.00 15.00
= 1.80 3.20 4.17  1.00 4.00  12.00 2.48 2.76  1.00 3.00 8.00
g 2.00 2.16 2.63  1.00 2.00 7.00 1.72 1.61  1.00 2.00 5.00
= 2.20 1.71 1.78  1.00 1.00 5.00 1.41 1.07  1.00 1.00 4.00
g}f 2.40 1.42 1.24  1.00 1.00 4.00 1.22 0.70  1.00 1.00 3.00
= 2.60 1.29 0.96 1.00 1.00 3.00 1.14 0.51  1.00 1.00 2.00
2.80 1.21 0.77  1.00 1.00 3.00 1.09 0.38  1.00 1.00 2.00

3.00 1.13 0.55 1.00 1.00 2.00 1.06 0.31  1.00 1.00 1.00

1.00 182.04  209.76 30.00 259.00 605.00 195.21 200.87 52.00 271.00 601.00

m_ 1.20  35.92 46.76  3.00 51.00 132.05 35.99 40.48 6.00 51.00 119.05
& 1.40  11.00 1541 1.00 14.00 43.00 10.13 12.09  1.00 14.00 35.00
g 1.60 4.99 7.16  1.00 6.00 19.00 4.33 526  1.00 6.00  15.00
i 1.80 2.91 3.85  1.00 3.00 11.00 2.45 2.69  1.00 3.00 8.00
g 2.00 2.07 2,52 1.00 2.00 7.00 1.76 1.69 1.00 2.00 5.00
gl 2.20 1.65 1.70  1.00 1.00 5.00 1.39 1.02  1.00 1.00 4.00
% 2.40 1.41 1.19  1.00 1.00 4.00 1.23 0.73  1.00 1.00 3.00
= 2.60 1.26 0.89  1.00 1.00 3.00 1.14 0.54  1.00 1.00 2.00

2.80 1.19 0.70  1.00 1.00 2.00 1.09 0.40  1.00 1.00 2.00
3.00 1.14 0.57  1.00 1.00 2.00 1.06 0.32  1.00 1.00 1.00
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3.3 A case study

Generally, electrical engineers are engaged to monitor the variations of voltage in
the system. As discussed in Section 2.1 that capacitance (C) has inverse relation
with voltage (V) at fixed charge (Q)). So, we used 75456 sample values of V' against
each level of C (i.e. C' = 50uF, 100uF, 150pF, 200uF, 2500 F, 300 F and 350uF)
reported in [94]. In this study, we consider (V) as dependent variable and (C)
as an explanatory variable. The implementation of Shewhart — 3srs) chart and
Shewhart — 3[rss) chart on the real data set is discussed with the following steps;
Step 1: For the IC regression model, we run 75456 sample values of V against

fixed values of C' and get a following model

A

V = 402.3512 — 0.01983691 C'

Further, the properties of aforementioned linear regression model are reported in
Appendix A.6.

Step 2: For the analysis, we have fixed overall ARL (i.e. ARLy = 200) to obtain
the charting constants of the Shewhart — 3|ggs) chart and Shewhart — 355
chart. These constants are computed by an extensive Monte Carlo simulation

study with 10° iteration. The control limits are

LCL; =764.6225 UCL; = 827.4706

For Shewhart — 3isrs):  { LCOLg = —0.2972 UCLg = 0.2877

LCLp =35.7496 UCLpg = 1873.7680

\
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LCL; =769.1012 UCL; = 823.3839
For Shewhart — 3psg) LCLg =—0.2462 UCLg = 0.2440

LCLg =13.5944 UCLg = 1294.5400

\

Step 3: Once, we estimate the control limits, we used only 100 profiles as IC
profiles shaded pink in Figures 3.5 and 3.6 for Shewhart — 3srs) chart and
Shewhart — 3[y15s) chart. Further, following phases for several shifts are made by

using the data perturbation approach later discussed in Section A.7:

i For the detection of shifts in intercept, we wused C* =
—350, —300, —250, —200, —150, —100 and — 50 against 25 sets of
V' and the resulted 25 profiles with index 101 to 125 for Shewhart — 3|sgrs

chart and Shewhart — 3(ys5) chart are portrayed in Figures 3.5 and 3.6.

ii For the detection of shifts in slope parameter, we used C* =
—12.5, =25, =37.5, =50, —62.5, —75 and — 87.5 against 25 sets of
V' and the resulted 25 profiles with index 126 to 150 for Shewhart — 3(srg

chart and Shewhart — 3[yrs5) chart are portrayed in Figures 3.5 and 3.6.

iii For the detection of shifts in variance of disturbance term, we multiply 25
sets of V with v/2.25 and the resulted 25 profiles with index 151 to 175
for Shewhart — 3srs) chart and Shewhart — 3555 chart are portrayed in

Figures 3.5 and 3.6.

For Shewhart — 3(srs) chart and Shewhart — 3yrss) chart, the number of OOC

profiles with their index are reported in Table 3.11. In the presence of shifts
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Figure 3.5: Shewhart — 3|sgrs) chart for different phases of illustrative example

in linear profile parameters such as intercept, slope and error variance, the find-
ings reveal that Shewhart — 3[yrs5) chart have better detection ability relative to
Shewhart — 3srs) chart. In precise, the implementation of modified successive
sampling in Shewhart—3 chart enhanced its performance for the detection of OOC
linear profile parameters. In grid-connected PV system, the Shewhart — 355
appeared as efficient chart to detect the variations in the voltage which is linearly

associated with capacitance. Moreover, it may be useful for the practitioners who
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Figure 3.6: Shewhart — 3|pss) chart for different phases of illustrative example

are engaged in the monitoring of simple linear profile parameters.

3.4 Special case of simple linear profiles

In the literature, many studies based on statistical quality control charts are de-
signed to monitor the mean and variability of a single study variable. In simple
linear profiles, control charts are used to monitor the study variable which is

linearly associated with explanatory variable. The monitoring of mean and vari-
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Table 3.11: The number of OOC profiles (indez) with respect to different phases

Phases
Parameters  Shewhart-3 77700 101-125 126-150 151-175
3 2 27
SRS O 08,114,117 130,136 149-175
Int t ? 26
ntercep MSS o 104,105,107, 0 150-175
110,113,114,
120,122,125
7 1
SRS 0 0 126,130,151,
136,138,149,150 166
Slope 5 9 5
MSS 0 131,136,137,140, 152,153,
1,88 141,144,146,148,149 159,166,168
10
151,152,154,163,
_ SRS 0 0 0 164,167,168,
Error variance 170,173-174
12
MSS 0 0 0 151,152,154,155,161,163,

164,167,168,170,171,174

ability may say a special case of simple linear profiles when the slope of the simple
linear profile model is zero (i.e. §; = 0). The IC simple linear profile model given

in equation (1.1) with 8; = 0 is defined as:

Yiagr = Bo + € (3.1)

where 3; = 0 is the arithmetic mean of Y while the variance of error term (o?)

is the simple variance of Y. In literature, Y control chart is a famous technique
used for the monitoring of process mean while S? chart is a well-known method
for the monitoring of process variability. Further, these two classical charts under

modified successive sampling are discussed in following subsections.
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3.4.1 Y control chart under MSS

The Shewhart type charts are widely used to monitor the location in many man-
ufacturing processes. Many of the researchers are still engaged to improve these
control charts. The location charts under different sampling plans are discussed
in [85, 86, 95] while some studies on other type of modifications are discussed
by [96-100].

Recently, [93] used a cost efficient sampling strategy (Modified successive sam-
pling (MSS)) to design Shewhart chart to monitor the shifts in location parameter.
The plotting statistic and control limits of the Shewhart chart under MSS are de-

fined as:

27;:1 Yi,j
n

0-2 0'2
LCLyss—m = po — Lass—m\f go; UCLyss—m = po — Larss—nr/ EO

where i is the population mean,o7 is the variance of the population and Lysss— s

Y, =

is the charting constant on the specific IC average run length (ARLg). They have
proposed four Shewhart charts based on MSS scheme and the performance of
proposed chart is measured using average run length. The findings of their study
depicts that the proposed scheme outperforms the existing scheme (Shewhart Y
control chart under SRS) in the presence of both positive and negative amount of

shifts in location parameter of the process.
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3.4.2 S? control chart under MSS

Dispersion charts are used to monitor with in samples variability while location
charts are used to monitor between samples variability. Sometime practitioners
are unable to interpret an OOC signal in location chart due to instability in the
variance of process. Moreover, variance is also the part of the control limits for
location chart that is why it is preferable to monitor the process dispersion before
location of the process.

The Shewhart type charts such as S, R and S? charts are widely used to mon-
itor the dispersion in many manufacturing processes. Many of the researchers are
still engaged to improve these control charts. The dispersion charts under differ-
ent sampling plans are discussed in [101-105] while other type of modifications are
studied by [42,106-113]. In this subsection, we have designed a study to improve
the existing S? chart by implementing successive sampling technique (cf. [88]).

The plotting statistic and control limits of the Shewhart S? chart under MSS are

defined as:
n T\ 2
SP = Zj:liyijl_ X (3.2)
LCLyss = fis2 — Lss6s2 = Ss2 — LyyssM SEge (3.3)
UCLyss = fisz + Lyssdsz = Sz + LyssM S Ege (3.4)

where Ljss is the charting constant on the specific IC average run length
(ARLy),Ss> and MSEg: are the mean and mean square error of S? under MSS

(cf. Table 3.12).
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Performance evaluation and comparisons

Design of proposed control chart depends on the sample size (n), number
of observations from previous sample (¢) and percentile function (P,V ¢ =
1,2,3,...... ,¢) which are used to pick observations from previous sample. We
consider the samples of size n=>5 and 7 while ¢=2 and 3 for the current study.
The prefixed ARLy = 370 is used to search the appropriate Lj;ss values which

are given in Table 3.12.

Table 3.12: Properties of S? under MSS

c Scheme n=35 n=7
Sgz2 MSEg2 Lyss Sgz2 MSEg: Lyss
MSSpy,s, pys  1.084  0.3678 4.29 0.9731 0.258 4.13
MSSpy 4, Py 0.8552  0.3415 4.39 0.8608  0.2604 4.07

2 MSSp, o me 07204 03758 416 0.7972 02775  3.92
MSSp, ., 0.6689  0.4004 4.006 0.7601  0.2922  3.83

» Po.so
MSSp, .. poss 0.6397 04159  3.92 07417 02992  3.78
MSSpy 0o Pose Pons 07565 02996 4.16 0.7768  0.2533  3.86
MSSp, b P 05514 04035 349 0.6827 02917  3.55
3 MSSpsroe e 046 04823 315 0.6277  0.3247  3.34
MSSp, w0 Pow. Pos 04201 05059 3.045 0.6016  0.342  3.25

MSSpyoboso Poee 04126 05211 297 05901  0.3499  3.21

The dispersion charts such as S? chart are important and applicable to detect
the degree of change in the variation of process. Along with explaining the IC
properties of the charts, it is useful to examine the OOC performance of the
charts. The OOC average run length (ARL,), standard deviation of run length
SDRL and different percentiles (25, 75" and 95") of run length distribution
are given in Tables 3.13-3.15 for S? chart under SRS and MSS respectively. To

check the OOC performance of the proposed charts, shifts of different size are
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introduced in dispersion parameter. That shift parameter is denoted by v and is
equal to v = Z where oy is the OOC process standard deviation. The run length
study for S? chart under SRS is reported in Table 3.13. The findings indicate
that an upward shift (20%) in dispersion parameter from the in-control situation
resulted about 55.04% and 60.36% decrease in (ARL;) of S? chart under SRS for

both cases (i.e.n=>5 and 7) respectively.

Table 3.13: Run length properties of S? chart under SRS

n=4§ n=7

7 "ARL SDRL Qo2 Qoms  Qoss ARL SDRL Qs  Qors  Qoss
1.00 369.90 370.87 106.00 513.00 1110.00 373.15 374.60 108.00 516.00 1119.00
1.10 253.75 253.87  73.00 353.00 758.05 245.81 244.15 71.00 342.00 732.00
1.20 166.31 166.58  48.00 231.00 497.00 14792 147.50 43.00 205.00 443.00
1.30 109.23 108.91  32.00 151.00 325.00 90.80 90.53 26.00 125.00 271.00
1.40 74.33 73.69 22.00 103.00 222.00 59.09 58.74 17.00 82.00 176.00
1.50 52.68 52.23 15.00 73.00 157.00  40.15 39.65 12.00 56.00  119.00
1.60 38.86 38.56 11.00 54.00 115.00  28.57 28.14 8.00 39.00 85.00
1.70 29.79 29.36 9.00 41.00 89.00 21.22 20.72 6.00 29.00 62.00
1.80 23.43 22.87 7.00 32.00 70.00 16.61 16.11 5.00 23.00 49.00
1.90 18.93 18.46 6.00 26.00 56.00 13.21 12.76 4.00 18.00 39.00
2.00 15.58 15.00 5.00 21.00 46.00 10.78 10.32 3.00 15.00 31.00

The results for S? chart under MSS at fixed ¢=2 are given in Table 3.14. If the
choice of percentiles pair is (Fya5, Pors) then (30%) upward shift in dispersion
parameter, may decrease 80.47% and 83.83% ARL; of said S? chart for both
cases i.e. n=>b and 7 respectively. Moreover, if the choice of percentiles pair
is then upward shift in dispersion parameter, may decrease 88.42% and 91.73%
ARL; of S?% chart for both cases i.e. n=5 and 7 respectively. Finally, the run
length study for S? chart under MSS at fixed ¢=3 is reported in Table 3.15. If the
choice of percentiles is (P30, Poso, Fo.70) then an upward 40% shift in dispersion
parameter decreases the ARL; of said S? chart for both cases (n=>5 and 7) to 61.64
and 45.49 respectively. Further, when choice of ercentiles is (Fy40, Poso, Fo.co)
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then an upward 60% shift in dispersion parameter may decrease up to 36.65 and
24.51 ARL, of the said S? chart for both cases i.e. n=5 and 7 respectively.
Considering the different sample sizes (i.e. n=5and 7 ), number of observations
from previous sample (i.e. ¢=2 and 3), shifts in dispersion parameter v (on
horizontal axis) and log average run length (In (ARL)) (on vertical axis), we have
portrayed the display in Figure 3.7. The results depict that the performance of
charts increase with the increase of shift in dispersion parameter # = 1.00 up to
2. It is also observed that S? chart under MSS with choice of percentile pairs
(Poas, Pors) and (Pyos, Poso, FPors), outperforms then the other S? charts

under different schemes.

Illustrative example

Nowadays, electrical engineers take interest in the Z-source inverter for a grid
connected PV system instead of conventional voltage source inverter (VSI) and
conventional current source inverter (CSI) (for more detail see Section 2.1). For an
illustrative example, we get 75456 sample values of Voltage (V) against each level
of Capacitance (C) given in [94]. In the stated study, we consider 75455 values of
Voltage (V) against 150 , 250 and 350 capacitance level which are further divided
into 15091 subgroups each of size 5.

For the classical Shewhart S? chart, we estimate sample variance of each sub-
group belongs to 350uF" capacitance level and through it we calculate the lower
control limit LC' Lgrg = 0.0144 and upper control limit UC Lgrg = 2.463. On the

other hand, for the Shewhart S? chart under (M.SS5 2.0, 25, Qo5 ), We estimate sam-
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Table 3.14: Run length properties of S? chart under MSS at fixed ¢ = 2

n=>5 n="7
Schemes v "ART SDRL Qozs Qors Qoss ARL SDRL Qozs Qors Qoos
1 369.56 369.08 106 513 1109  369.21  371.56 105 511.25 1110
1.1 193.53 194.28 55 269 579 177.7 177.88 51 247 536
2 1.2 113.28 113.41 32 157 340 97.62 97.61 28 136 292
Q? 1.3 7218 72.09 21 100 217 59.7 60.09 17 83 179
Lﬁ 1.4 49.45 49.48 14 69 148 39.16 39.31 11 54 118
ij 1.5 35.53 35.46 10 49 106 27.24 27.26 8 38 81
w 1.6 2697 26.9 8 37 81 20.18 20.37 6 28 61
C§ 1.7 21.23 21.13 6 29 63 15.36 15.33 4 21 46
1.8 17.04 16.96 5 24 51 12.23 12.15 3 17 37
1.9 14.09 14 4 19 42 9.94 9.81 3 14 30
2 11.88 11.78 3 16 35 8.32 8.22 2 11 25
1 371.31 371.98 106 514 1110 371.72  375.07 105 515.25 1120
1.1 200.19 202.15 56 278 607 183.68 185.5 52 255 551
g 1.2 119.88 121.58 33 166 362 102.47  103.13 29 143 309
“? 1.3 7733 78.68 21 108 234 62.62 63.46 17 87 189
§ 1.4 53.3 54.19 14 74 161 41.59 42.56 11 58 126
S\}j 1.5 38.63 39.71 10 54 118 29.24 29.94 8 41 89
o 1.6 29.29 30.11 8 41 89 21.33 21.85 6 30 65
c§ 1.7 22.69 23.32 6 32 70 16.33 16.61 4 23 50
1.8 18.49 19.18 5 26 57 12.93 13.27 3 18 39
1.9 15.15 15.69 4 21 46 10.51 10.77 3 15 32
2 12.7 13.19 3 18 39 8.65 8.82 2 12 26
1 37412 375.77 106 521 1122 365.67 367.15 104 509 1096
1.1 206.36 208.55 57 288 623 184.49  185.84 52 256 558
2 1.2 124.14 126.43 34 173 376 103.32  105.21 29 143 313
f 1.3 81.44 83.01 22 114 246 63.94 65.25 17 89 194
i? 1.4 56.46 58.17 15 79 173 42.17 43.11 11 59 128
i: 1.5 41.1 42.65 11 58 126 29.71 30.59 8 42 91
uw 1.6 31.1 32.49 8 44 96 22.06 22.76 6 31 68
§ 1.7 24.32 25.58 6 34 76 16.7 17.38 4 23 52
1.8 19.49 20.61 5 27 61 13.2 13.84 3 18 41
1.9 16 16.99 4 23 50 10.63 11.12 3 15 33
2 13.4 14.31 3 19 42 8.89 9.28 2 12 27
1 376.03 379.63 106 521 1134 375.33 378.75 105 522 1129
1.1 20791 211 57 290 628 189.03 191.7 53 262 573
2 1.2 12741 129.93 35 178 386 107.02  108.71 29 149 324
f 1.3 84.13 86.42 22 118 257 66.26 67.76 18 92 202
§ 1.4 58.41 60.58 15 82 179.05 44.02 45.16 12 61 134
i 1.5 4251 44.1 11 60 131 30.86 31.93 8 43 95
b 1.6 32.41 34.13 8 45 101 22.66 23.57 6 32 70
§ 1.7 2532 26.93 6 36 79 17.35 18.33 4 24 54
1.8  20.21 21.49 5 28 63 13.68 14.42 3 19 42
1.9 16.72 17.94 4 24 53 11.1 11.72 3 16 35
2 14.02 15.26 3 20 45 9.09 9.62 2 13 29
1 371.87 373.74 105 518 1122 376.04 377.2 107 525 1120
1.1 208.89 211.68 58 291 637 188.64 190.19 53 262 570
2 1.2 12823 131.36 35 179 390 107.9 109.52 30 150 327
’-f; 1.3 85.32 88.56 22 120 261 66.78 68.19 18 93 201
g 1.4  59.26 61.36 15 83 182 44.49 46.04 12 62 136
i‘ 1.5 43.07 45.14 11 60 134 31.1 32.17 8 44 96
9 1.6 32.6 34.48 8 46 102 23.1 24.01 6 32 71
E 1.7 2561 27.48 6 36 81 17.55 18.42 4 25 55
1.8  20.54 22.18 4 29 65 13.87 14.59 3 19 43
1.9 16.79 18.27 3 24 54 11.22 11.9 3 16 35
2 14.06 15.44 3 20 45 9.22 9.81 2 13 29
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Table 3.15: Run length properties of S? chart under MSS at fixed ¢ = 3

n=5 n=7
Schemes v “ART SDRL Qozs Qors Qoss ARL SDRL Qozs Qors  Qoos
1 373.83 379.94 102 520 1134 374.13 377.8 105 521 1129
. L1 20843 213.7 56 290 636 187.6 191.13 52 260 571
E 1.2 126.35 130.14 33 177 386 106.39  108.87 29 149 322
s 1.3 8262 85.98 21 116 254 65.75 68.32 17 92 203
QE 1.4 58.02 61.31 14 81 182 43.29 45.25 11 61 134
Qg 1.5 4232 45.48 10 60 133 30.7 32.42 7 43 95
§ 1.6 31.92 34.57 7 45 101 22.47 23.8 5 32 71
Eg 1.7 25.01 27.42 5 35 80 17.15 18.35 4 24 54
= 1.8 20.22 22.22 4 29 65 13.51 14.64 3 19 43
1.9 16.63 18.44 3 24 54 10.92 11.96 2 15 35
2 13.88 15.63 2 20 45 9.09 9.88 2 13 29
1 368.52 376.5 99 515 1121 374.1 379.64 104 522 1129
. L1 211.02 219.56 55 296 650 190.71 195.74 51 265 580
5 1.2 131.91 139.26 32 186 409  108.75  112.75 28 152 335
s 1.3 87.46 93.8 20 123 276 68.32 71.99 17 96 212
“Z 1.4 61.64 66.89 13 87 196 45.49 48.13 11 64 141
g 1.5 45.13 50.2 9 64 145 32.17 34.72 7 46 102
C;‘ 1.6 34.21 38.58 6 49 112 23.62 25.91 5 33 75
% 1.7 26.68 30.66 4 38 88 17.98 19.77 3 26 57
= 1.8 21.61 25.21 3 31 73 14.12 15.83 2 20 46
1.9 17.65 20.85 2 25 60 11.36 12.81 2 16 37
2 14.78 17.64 2 21 50 9.4 10.69 1 13 31
1 37511 385.43 99 524 1151  367.13  372.65 102 511 1111
. L1 21749 22807 55 306 673 190.47 195.58 51 265 582
Q§ 1.2 135.84 145.65 32 191 428  110.47 114.5 29 155 340
s 1.3 91.23 99.84 19 129 292 69.39 73.47 17 97 216
“2 1.4 64.46 71.81 12 92 209 46.38 49.53 11 66 146
Q; 1.5 47.28 53.58 8 67 155 32.68 35.63 7 47 105
C;‘ 1.6 35.71 41.39 5 51 119 24.33 26.87 5 34 78
((g 1.7 28.14 33.37 4 40 95 18.45 20.73 3 26 60
= 1.8 22.69 27.22 3 32 78 14.44 16.4 2 21 47
1.9 18.46 22.64 2 26 65 11.61 13.32 2 16 39
2 15.32 19.01 1 22 54 9.58 11.14 1 14 32
1 376.46 388.17 98 529 1151 368.15  375.18 101 512 1116
. L1 219.78 232.8 53 308 685 193.73 198.72 52 269.25 592
Q§ 1.2 138.21 149.28 31 195 438  112.05 116.81 28 157  345.05
s 1.3 92.89 101.98 19 132 297 70.82 74.91 17 100 219
“z 1.4  65.66 73.55 12 93 213 47.19 50.86 10 67 149
Q%? 1.5 48.34 55.43 8 69 159 33.43 36.61 7 48 107
‘;ﬁ 1.6 36.65 43.04 5 53 123 24.51 27.41 4 35 79
Eg 1.7 28.73 34.63 3 41 98 18.72 21.27 3 27 62
= 1.8 2288 28.14 2 33 80 14.62 16.8 2 21 48
1.9 18.65 23.12 2 27 65 11.83 13.71 2 17 40
2 15.66 19.72 1 22 55 9.68 11.36 1 14 33
1 370.2 386.05 94 519 1144 369.79  376.85 101 517 1123
. L1 2153 229.16 51 304 675 193.1 197.78 51 271 588
Q:g 1.2 136.48 148.08 29 194 432 113.43 118.53 29 159 350
s 1.3 91.67 102.09 17 131 297 71.11 75.48 17 101 222
“E 1.4  65.05 73.81 11 93 214 47.94 51.99 10 68 152
é‘ 1.5 47.89 55.95 7 69 161 33.56 36.85 7 48 107
‘;ﬁ 1.6 36.22 43.49 5 52 124 24.99 27.98 5 35 81
% 1.7 28.32 34.58 3 40 99 18.88 21.49 3 27 62
= 1.8 2261 28.12 2 32 80 14.85 17.18 2 21 49
1.9 18.39 23.37 1 26 66 11.85 13.94 1 17 40
2 15.15 19.54 1 21 55 9.73 11.51 1 14 33
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Figure 3.7: Comparative analysis of S? charts under different schemes

ple variances of subgroups after implementing the modified successive sampling
on existing subgroups and calculate the control limits (i.e. LCLygs = 0.0183
and UCLy;ss = 1.9868 ). Further, if plotting statistic SZpq or S3,4¢ fall outside
of their corresponding limits then the process is declared OOC. This could imply
that the generation of voltage has been disturbed and engineers have to look for
the factor(s) behind OOC condition.

For the diagnosis purpose, we select first 100 in-control subgroups from 350uF,
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second 100 shifted subgroups from 250 F and finally last 100 shifted subgroups
from 150pF. We calculate sample variances (Szpe and S3,44) of selected 300
subgroups which are plotted against the control limits in Figures 3.8 and 3.8. The
classical Shewhart S? chart depicts that there exist no OOC point in first 100
subgroups, in next 100 subgroups 10 OOC signals are received and in last 100
subgroups 70 points are declared OOC. However, the Shewhart S? chart under
MSS reveals no OOC point in first 100 subgroups, 14 OOC points in the next 100
subgroups and 76 OOC signals in last 100 samples. This shows that our proposed
schemes perform well in the detection of voltage converted by Z-source inverter

in 3-¢ grid connected PV system.
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Figure 3.8: Shewhart S%grg) chart for the detection of voltage in 3-¢ grid con-

nected PV system
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3.5 Concluding Remarks

In any process, when the study variable is linearly associated with a single ex-
planatory variable then the monitoring of such process is known as simple linear
profiling. In simple linear profiling three parameters (slope, intercept and error
variance) are considered for the monitoring purpose. Most of the recent literature
on simple linear profiling has been done under simple random sampling but in this
chapter, we implemented modified successive sampling to enhanced the existing
Shewhart chart. Moreover, the monitoring of mean and variability may say a spe-
cial case of simple linear profiles when the slope of the simple linear profile model is
zero (i.e. 1 = 0). Practically, detection of dispersion shift is important before the
detection of location shift in the process. The classical S? chart is the best choice
from the literature for the monitoring of dispersion parameter. This chapter also
proposes an improved S? chart by using modified successive sampling. The run
length properties are used for performance measure which indicates that all the

proposed charts under MSS outperforms the classical charts which are based on

SRS.
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CHAPTER 4

AN ALTERNATIVE

APPROACH TO

SIMULTANEOUS

MONITORING OF LINEAR

PROFILE PARAMETERS

Often control charts are designed to monitor single parameter of the process but
very few studies are available related to simultaneous and joint monitoring of
the process parameters. In simultaneous monitoring, parameters are monitored
through separate plotting statistics plotted against distinct pair of control limits
while joint monitoring is a term that alludes to monitoring parameters through a

single plotting statistic plotted against a pair of control limits. One may see brief
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literature on simultaneous and joint monitoring in Section 1.3.2. In this chap-
ter, we have designed joint structures for the monitoring of simple linear profile
parameters and discussed the special case of joint linear profiling and EWMA

structure.

4.1 Joint monitoring of linear profile parameter

The recent studies for simple linear profiles (given in Section 1.3.1) are based on
simultaneous structure which is a tedious method such as distinct pair of control
limits required individual charting constants. For example, in case of linear profile
parameters such as slope, intercept and error variance, on fixed overall average
run length 200, one my need 584.7 average run length for each individual chart of
simultaneous structure which is a tedious method for the practitioner. EWMA-3
chart proposed by [22] is well-known methodology based on simultaneous structure
for the monitoring of linear profile parameters (i.e. intercept, slope and error
variance). In this study, we have designed new control charts based on joint
structures for the monitoring of simple linear profile parameters which is a simple

procedure and easy to applicable.

4.1.1 Simple linear profile structures

In this subsection, we provide the theoretical structure of our proposed joint
methodologies and the existing charts such as Hoteling T2 chart, EWMA /R chart,

Shewhart-3 chart and EWMA-3 chart.
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Proposed control charts

Control chart based on simple linear profiles play a key role in any process where
the study variable is linearly associated with another explanatory variable. The
simple linear model given in equation (1.1) is a basic model used in linear profiling
but due to the limitation (e.g. independence of parameters) model (1.2) (trans-
formed model) was preferred in many studies. The least square estimates of the
parameters of transformed model are represented by 130, b, and MSE. For the

joint monitoring, we transformed the estimates to get the normality such as:

bo — By
Zy =

o? <l/nm>

b, — B,
Zy, = ———

("2/511)

3 (n—2) MSE
Zrmr = @71 [H{—z;n—Q

70
where &1 [.] is inverse standard normal distribution function and H {.; (n — 2)}
is termed as chi-square distribution function having (n — 2) degree of freedom. In
recent literature, two more transformations are used for the dispersion parameter
to gain approximate normal results such as three-parameter logarithmic transfor-
mation (cf. [114]) and Johnson SB transformation (cf. [115]). The description of

these two transformations for mean square error is
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T—5+ = ar + brln (]\TS\E + cT)

MSE
]\75\15’— Cy )

Ues = ay + bUln —
MSE (dU +cy — MSE

where ar = AT (TL) — 2BT (n) lnao,bT = BT (n) ,CT = CT (n) O'S,CLU =
Ay (n),by = By (n),cy = Cy (n)o? and dy = Dy (n)o?. The values of these

constants are reported in Table 4.1 forn =3, 4, 5,...., 15 .

Table 4.1: Constant for transformations (three-parameter logarithmic transfor-
mation and Johnson Sp transformation)

n ar bT Ct agr bU Cy dU
3 -0.6627 1.8136 0.6777 3.1936 1.1952 -0.2588 15.0770
4 -0.7882 2.1089 0.6261 3.3657 1.3983 -0.2438 12.5910
5 -0.8969 2.3647 0.5979 3.5402 1.5727 -0.2352 11.3120
6
7
8

-0.9940 2.5941 0.5801 3.7111 1.7281 -0.2295 10.5300
-1.0827 2.8042 0.5678 3.8768 1.8698 -0.2254 10.0000
-1.1647  2.9992 0.5588 4.0369 2.0010 -0.2224  9.6180

9 -1.2413 3.1820 0.5519 4.1918 2.1238 -0.2200  9.3280
10 -1.3135 3.3548 0.5465 4.3417 2.2396 -0.2181  9.1000
11 -1.3820 3.5189 0.5421 4.4869 2.3495 -0.2166 8.9170
12 -1.4473 3.6757 0.5384 4.6279 2.4544 -0.2152  8.7660
13 -1.5097 3.8260 0.5354 4.7648 2.5549 -0.2141  8.6400
14 -1.5697 3.9705 0.5327 4.8981 2.6515 -0.2132  8.5320
15 -1.6275 4.1100 0.5305 5.0279 2.7446 -0.2123  8.4400

The Max-EWMA-3 charting structures

The exponentially weighted moving average chart (EWMA) was firstly originated
by [10] which is an effective technique to monitor small or moderate shifts in

the process. Further, [12] proposed a modified EWMA chart termed as Max-
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EWMA for the joint monitoring of two parameters (location and scale). We have
used similar Max-EWMA approach to monitor the linear profile parameters (i.e.
intercept, slope and error variance) which is further referred as Max-EWMA-3
chart. The structure of Max-EWMA-3 depends on EWMA statistics which are

based on Z; , Z; and transformed mean square error (Z iise Lisp and U m) ,

M;=XZ;, + (1= \) M,

N; = )‘Zﬁl + (1 =X N,
0, = )\Zm +(1=X)0;

P= ATz + (1= A) Py

Qi =Nz + (1= Qi

where My, Ngy, Oy, Py and @y are used as initial values and A is a smoothing
(weight) parameter having range (0 < A < 1). As discussed above that there exist
three transformations to obtain the normality of error variance. So, based on these
three transformations, three separate Max-EWMA-3 charts with their limits are
given below:

Statistic Max (|M;|,|Ni|,04]),
Max — EWMA -3 — A, :

UCLyo; /525 (1.32639 + 0.5859607 Lz )
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Statistic Mazx (|M;|, |N:|, |Bi),
Mar — EWMA—-3—-B,;:

UCLyp, /525 (1.32639 + 0.5859607 Lyzqs)
\

(

Statistic Max (|M;|, |N:],|Qil),
Mar — EWMA—-3—-C;:

UCLuo, +/525 (1.32639 + 0.5859607 Lsas)
\

where L., 18 the control limits coefficient that is used to control the IC run

length behavior of the chart.

The SS-EWMA-3 charting structures

Another approach for the joint monitoring of process parameters based on sum
of square of EWMA statistics was proposed by [26]. We used this concept
for the monitoring of linear profile parameters and referred as SS-EWMA-3
chart. The structure of SS-EWMA-3 chart depends on aforementioned EWMA
statistics which are based on Z; , Z; and transformed mean square error

(Z3ise Thrse and Usrsg)

Statistic M? + N? + O?

SS— EWMA—3—A;: {

)‘(3+LSS\/6)
2-x

UCLsso,

Statistic M? + N? + P?

SS—EWMA—-3—DB;:

)‘(3+LSS\/6)
2-

UCLSSPZ-

\

Statistic M? + N? + Q?

SS—EWMA—-3—-C;:

A(3+Lssx/é)
Y

UCLSSQi
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where Lgg is the control limits coefficient that is used to control the IC run length

behavior of the chart.

Existing control charts

For the comparison, we have considered several existing simple linear profile meth-
ods such as Shewhart-3 chart, EWMA-3 chart, 72 chart and EWMA /R chart.
The Shewhart-3 chart was proposed by [21] while EWMA-3 chart was originated
by [22] which are already discussed in Section 1.2. Further, the structures of 7%

chart and EWMA /R chart are given below.

The T2 chart

[31] proposed a multivariate control chart for the monitoring of slope and inter-

cept. The ;™ statistic of T2 control chart is estimated by
T} = (2, -U)'s7" (2, - U)

where

T

Zj = <30j> Blj) ;U= (Bo, )"

02[1+ XQ} _g2 X
=

n Sxx

2 X o2
_0’_
Sxx Sxx

The T? statistic follows y? distribution with 2 degree of freedom and the upper
control limit (UCLy = x?%,,) is the o™ quantile of x? distribution while lower

control limit (LCLy = 0). When process is unstable then the T statistic follows
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non-central x? distribution with non-centrality parameter (7), which is obtain as:

T = n(gpa + 50)_()2 + (ﬁJ)ZSXX

where ¢ is the amount of shift in intercept for model (1.1) and § is the measure

of shift in the slope of model (1.2).

The EWMA /R chart

[31] also proposed a combined structure based on EWMA and R chart for the
monitoring of linear profile parameters. Basically, EWMA chart has some limita-
tions which are covered by incorporating the R chart. The j** statistic of EWMA

chart is estimated by

ZZL:1 €ij

n

where, A is the smoothing parameter which ranges from 0 to 1, €; = and
the initial value of EWMA statistic is zero. (i.e. Zy = 0). The process is said to be
out-of-control (OOC) when Z; is less than LCL or greater than UCL. The control
limits (LCL and UCL) based on charting constant (LgR) for EWMA chart are

given as follow:

[ A 1 A 1
LCLE = —LERO' (2 — )\) |:ﬁ:| 3 UCLE = LERO' (2 — )\) |:ﬁ:|

There exist two causes to combine R chart with EWMA chart, (i) to detect shifts

in error variance under model (1.1) and (ii) to tackle the unusual situation of error
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variance. Further, the j statistic and control limits of R chart are defined as

Rj = max; (67;]') — man (eij)

LOLR =0 (dg — LERdg) ) UCLR =0 (dg —|- LERdg)

where dy and ds are unbiased constants reported in [1].

4.1.2 Performance evaluations

In this subsection, we provide a brief discussion on the IC parameters of proposed

charts. Moreover, we will discuss the performance evaluation of the stated study.

Designing of in-control parameters and control limits

For the original IC simple linear model given in equation (1.1), we assumed 5y = 3
and fy = 2 by following [22] (i.e. Y;; = 3+ 2X, +¢;;). Where the fixed values of
explanatory variable are X; = 2, 4, 6, and 8, sample size (n = 4) and the error
term is g;; ~ N (s; ps =0, 0, =1). Moreover, the transformed model given
in equation (1.2) is obtained by substituting the By = 3 + 2X + (B0) X and
By = (2+ o) X}. whereas, the fixed transformed values of explanatory variable
are X = —3, —1, 1, and 3 with average equals to zero.

The performance of proposed charts is evaluated in terms of average run length
(ARL) which is defined as the number of samples until a signal occurs.(ARL)
is categorized into two types, in-control average run length (ARLg) and out-of-
control average run length (ARL;). For the fixed overall ARLqy = 200, we need

108



to set the control limits coefficients including Lysq., Lss, La/2 , Ly, Ls and

Ly which are reported in Table 4.2. For computations, we used Monte Carlo

simulation study with 10° iterations.

Table 4.2: In-control design parameters for each chart at fixed ARLy = 200

Parameters Max-EWMA-3 SS-EWMA-3 Shewhat_3 EWMA_3 EWMA/R
Intercet Lotew =291 Lgs = 3.63 Zojs = 314 L; = 3.0156 Lgg — 3.1151
Lytew =291 Lgg = 3.63 Zojy = 314 Lg=3.0109 Lgg—3.1151

Slope LCLy = 0.001
Error variance Lyrar =291 Lgs = 3.63 UCLy — 1417 Lp=13723 Lgg=3.1151
Smoothing parameter A=0.2 A=0.2 - A=02 A=0.2

Shifts for performance evaluation

In order to evaluate the performance of charts under consideration, we have con-
sidered several amounts of shifts in linear profile parameters. The description of

shifts in linear profile parameters are given as follows:
(i) Shifts in intercept parameter (By to By + 6 (0./4/n))
(ii) Shifts in slope parameter (51 to 81+ (ae/\/S_XX))
(iii) Shifts in slope parameter (B; to By + ¢ (0e/v/Six))
(iv) Joint shifts in intercept (By to By + 6 (0./+/n)) and slope parameter
(31 to By + 6 (oe/\/S_XX))
(v) Shifts in error variance (02 to yo?2)

It is noted that process is said to be IC when A\,  and § are equal to zero and

~v = 1 otherwise, process is said to be OOC.
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4.1.3 Comparative analysis

In this section, we discuss the comparative results of proposed and existing charts
in terms of average run length (ARL). Further, the performance of charts under
consideration is discussed in terms of percentage change in the (ARL;) which is

obtained as:

ARL, — ARL,
ARL,

Percentage change =

Shifts in intercept parameter

The results for charts under consideration at shifted intercept parameter are re-
ported in Table 4.3. Which shows that (40%) upward shift in intercept parameter
(6 = 0.40), may decrease 68.3% and 61.1% ARL; of T? and Shewhart-3 charts
while all other charts have approximately 92.0% decrease in the ARL;. Moreover,
the ARL curves for shifted intercept parameter are plotted in Figure 4.1(A), which
reveals that joint (Max-EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-
3) charts have similar performance but they have better performance as compared
to EWMA/R, T? and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-

EWMA-3-C charts outperforms all others charts under consideration.

Shifts in slope parameter of original model

The Table 4.4 is about the results for shifted slope parameter of original model
given in equation (1.1). Which reveals that upward shift in slope parameter
of original model (5 = 0.075), may decrease 90.1%, 69.7% and 60.4% ARL; of

EWMA /R, T? and Shewhart-3 charts while 92.0% decrease in ARL; was reported
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Table 4.3: ARL comparison of control charts under intercept shifts

0
Chart 02 04 06 08 1 12 14 16 18 2
EWMA/R 6650 17.70 840 540 390 320 270 230 2.10 1.90

T? 137.70 63.50 28.00 13.20 6.90 4.00 2.60 1.80 1.50 1.20
Shewhart-3 151.40 7790 33.80 1550 7.70 4.30 2.70 1.90 1.50 1.20
EWMA-3 59.10 16.20 790 5.10 3.80 3.10 2.60 2.30 2.10 1.90

Max-EWMA-3-A  61.29 16.69 7.99 514 3.84 3.10 2.60 228 2.07 1.90
Max-EWMA-3-B 60.89 16.33 798 5.16 3.83 3.09 263 229 2.08 1.89
Max-EWMA-3-C 5887 16.17 789 5.13 3.80 3.06 259 226 2.04 1.89
SS-EWMA-3-A 5999 17.07 849 551 413 333 281 244 220 203
SS-EWMA-3-B 59.17 1751 845 556 4.14 332 2.82 245 219 203
SS-EWMA-3-C  61.34 1738 848 552 413 331 281 244 219 203

in EWMA-3, Max-EWMA-3 and SS-EWMA-3 charts. However, the ARL curves
for shifted slope parameter of original model are plotted in Figure 4.1(B), which
shows that joint (Max-EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3)
charts have similar performance but they have better performance as compared
to EWMA/R, T? and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-

EWMA-3-C charts outperforms all others charts under consideration.

Table 4.4: ARL comparison of control charts under shifts in slope of orignal model

B
Chart 0025 0.05 0075 01 0125 015 0175 02 022 02

EWMA/R 119.00 4390 1980 11.30 7.70 580 470 3.90 3.40 3.00

T? 166.00 105.60 60.70 34.50 20.10 1220 780 5.20 3.70 2.70
Shewhart-3 178.30 125.00 79.20 46.70 27.90 17.10 10.90 7.10 5.00 3.60
EWMA-3 101.60 36.50 17.00 10.30 7.20 550 4.50 3.80 3.30 2.90

Max-EWMA-3-A 107.27 37.50 17.39 10.30 723 558 449 377 326 291
Max-EWMA-3-B  104.17 37.38 1747 1027 719 551 449 379 329 293
Max-EWMA-3-C  102.87 3590 17.02 10.16 7.06 542 443 373 325 288
SS-EWMA-3-A 9817 35.01 1643 9.87 698 536 435 370 321 288
SS-EWMA-3-B 101.11 3539 1643 9.89 690 5.33 436 3.72 3.23 2.87
SS-EWMA-3-C  101.03 34.78 16.66 9.89 6.94 535 436 3.69 3.22 287
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Figure 4.1: ARL curves of control charts with respect to different shifts in param-
eters

Shifts in slope parameter of transformed model

The results for charts under consideration at shifted slope parameter of trans-
formed model are reported in Table 4.5. Which shows that downward shift in
slope parameter of transformed model (6 = —0.4), may decrease 92.4%, 95.2%
and 94.5% ARL; of EWMA/R, T? and Shewhart-3 charts. However, the joint

(Max-EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3) charts have ap-
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proximately 97.7% decrease in ARL;. Moreover, the ARL curves for shifted slope
parameter of transformed model are plotted in Figure 4.1(C), which reveals that
Max-EWMA-3, SS-EWMA-3 and EWMA-3 charts have similar performance but
they have better performance as compared to EWMA/R, T? and Shewhart-3
charts. Specifically, Max-EWMA-3-C and SS-EWMA-3-C charts outperforms all

others charts under consideration.

Table 4.5: ARL comparison of control charts under shifts in slope of transformed
model

5
Chart 1 09 08 07 -06 -05 04 03 02
EWMA/R 120 140 1.80 2.60 420 7.50 1530 33.70 76.70
T2 110 1.20 1.50 1.90 2.90 4.90 9.60 21.20 52.20
Shewhart-3  1.10 1.23 149 2.03 3.07 540 1093 25.65 63.87
EWMA-3 171 1.87 2.06 2.32 2.73 3.32 439 670 12.90

Max-EWMA-3-A 1.73 1.89 208 234 274 336 448 6.71 13.52
Max-EWMA-3-B  1.73 1.89 2.08 233 273 334 446 6.76 13.36
Max-EWMA-3-C  1.71 1.88 2.06 2.31 271 331 437 6.60 13.18
SS-EWMA-3-A 1.89 2.03 221 250 293 361 4.7 713 14.04
SS-EWMA-3-B 1.89 2.02 220 249 295 3.61 4.77 7.21 14.27
SS-EWMA-3-C  1.88 2.02 221 250 293 3.61 474 7.18 13.93

Shifts in error variance of disturbance term

The Table 4.6 is about the results for shifted error variance pa-
rameter in charts under consideration. Which reveals that up-
ward shift in error variance parameter (v =1.6), may decrease
97.0%, 96.1%, 96.8%, 96.4%, 96.2%, 96.6%, 96.6%, 96.5%, 96.8% and
96.7% ARL; of EWMA/R, T? Shewhart-3, EWMA-3, Max-EWMA-3-A,
Max-EWMA-3-B, Max-EWMA-3-C, SS-EWMA-3-A, SS-EWMA-3-B and
SEWMA-3-C charts respectively. However, the ARL curves for shifted error
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variance parameter are plotted in Figure 4.1(D), which shows that joint (Max-
EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3) charts have similar
performance but they have better performance as compared to EWMA/R, T2
and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-EWMA-3-C charts

have relatively good performance among all others.

Table 4.6: ARL comparison of control charts under shifts in error variance

v
Chart 1.2 14 1.6 1.8 2 22 24 26 28 3
EWMA/R 34.30 12.00 6.10 3.90 290 230 190 1.70 1.50 1.40
T2 39.60 14.90 7.90 5.10 3.80 3.00 2.50 2.20 2.00 1.80

Shewhart-3 40.10 13.50 6.50 4.00 2.80 2.20 1.80 1.60 1.50 1.40

EWMA-3 33.50 1270 7.20 5.10 3.90 3.20 2.80 250 2.30 2.10
Max-EWMA-3-A  37.33 13.28 7.70 535 4.12 3.40 2.87 252 226 206
Max-EWMA-3-B  29.11 11.53 6.77 4.86 3.81 3.13 272 241 217 197
Max-EWMA-3-C  30.86 11.68 6.86 4.92 3.82 3.16 2.68 236 214 194
SS-EWMA-3-A  33.07 12.09 7.09 490 3.81 3.10 2.67 231 2.08 1.90
SS-EWMA-3-B 2798 10.53 6.32 4.52 3.53 291 252 223 201 1.83
SS-EWMA-3-C 2955 11.08 6.55 4.63 3.57 298 2.52 222 201 1.82

Joint shifts in intercept and slope of transformed model

The Table 4.7 is about the results of all charts under consideration for the joint
shifts in intercept and slope of transformed model. As discussed above that joint
and simultaneous charts have similar performance but Max-EWMA-3-C and SS-
EWMA-3-C charts have relatively good performance as compared to others. At
fixed shift in slope of transformed model (6 = 0.1), shift in intercept parameter
(0 = 0.05) may resulted 29.6%, 30.1%, 75.9%, 76.0% and 75.5% decrease in the
ARL; of EWMA/R, T?, Shewhart-3, EWMA-3, Max-EWMA-3-C, SS-EWMA-

3-C charts respectively. At fixed shift in intercept parameter (0 = 0.25), shift in
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slope of transformed model (§ = 0.15), may resulted 80.8%, 61.0%, 91.1%, 91.3%
and 92.1% decrease in the ARL; of EWMA /R, T?, Shewhart-3, EWMA-3, Max-
EWMA-3-C, SS-EWMA-3-C charts respectively. In conclusion, the joint (Max-
EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3) charts have similar
performance but they have better performance as compared to EWMA/R, T2
and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-EWMA-3-C charts

have relatively good performance among all others.

Table 4.7: ARL comparison of control charts under shifts in error variance

0 Chart 9
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25
EWMA/R 179.10 169.90 156.60 140.80 123.20 105.10 88.80 73.40 60.20 49.60
Shewhart-3 193.18 180.64 162.76 139.73 119.05 98.79 79.91 63.73 50.47 40.90
0.05 EWMA-3 157.60 114.70 74.80 48.30 3220 22,50 16.90 13.20 10.70 8.90

Max-EWMA-3-C  156.63 113.18 73.85 48.06 31.53 2240 16.70 13.13 10.55 8.77
SS-EWMA-3-C 157.46 109.89 75.16 49.01 33.63 2330 17.74 1396 11.36 9.44

EWMA/R 139.50 133.60 125.76 115.50 103.50 90.40 78.30 65.70 55.60 46.30
Shewhart-3 184.63 17296 154.66 137.51 115.32 9528 77.85 62.38 50.83 40.31
0.1 EWMA-3 122.10 94.60 66.40 4490 30.70 21.90 16.60 13.10 10.60 8.90

Max-EWMA-3-C 118.71 94.15 64.80 44.09 30.10 21.96 16.28 12.74 10.57 8.74
SS-EWMA-3-C 118.33 90.65 62.10 43.18 30.03 2250 17.05 13.39 10.98 9.32

EWMA/R 96.80 9420 90.30 85.10 7850 70.90 63.00 55.30 47.70 40.90
Shewhart-3 165.25 160.43 143.16 128.64 109.11 91.59 74.65 60.80 49.55 39.75
0.15 EWMA-3 84.60 70.80 54.50 39.60 2850 20.90 16.10 12.80 10.40 8.80

Max-EWMA-3-C  83.85 69.37 5443 38.85 2813 2098 1590 12.71 10.24 8.75
SS-EWMA-3-C 83.70  67.61 49.40 36.63 26.81 20.51 1594 12.78 10.71 9.03

EWMA/R 64.80 63.80 62.10 59.70 56.60 52.90 48.50 44.00 39.20 34.60
Shewhart-3 148.30 143.85 132.16 116.66 101.51 87.21 70.79 57.63 47.31 38.28
0.2 EWMA-3 57.10  51.10 4240 3330 2540 19.50 15.40 1240 10.20 8.70

Max-EWMA-3-C  56.41 50.39 41.34 3261 25.06 19.41 1527 1231 10.21 8.57
SS-EWMA-3-C 56.89 48.89 38.62 30.20 2291 1834 14.39 12.00 10.09 8.60

EWMA/R 4430  43.80 4290 41.80 40.30 38.40 36.10 33.60 30.80 28.10
Shewhart-3 130.54 125.22 114.09 103.59 91.89 78.02 67.20 55.43 45.70 36.84
0.25 EWMA-3 39.50 36.50 3230 2710 22.00 17.80 14.40 11.90 10.00 8.50

Max-EWMA-3-C  39.34 3599 31.89 26.62 21.71 1744 1430 11.68 9.96 8.43
SS-EWMA-3-C 40.08 3529 2926 2428 1945 1585 13.19 11.10 9.57 8.27

EWMA/R 31.00 30.80 30.50 29.90 29.20 2830 27.10 25.70 24.20 22.50
Shewhart-3 112.33 107.85 100.24 91.56 81.92 71.51 61.72 50.87 42.88 35.20
0.3 EWMA-3 2820  26.90 24.70 22.00 1880 15.70 13.20 11.20 9.60 8.30

Max-EWMA-3-C 2785 26.03 2431 21.52 18.66 1543 13.26 11.12 9.48 8.18
SS-EWMA-3-C 28.78  26.37 2281 19.61 16.56 13.92 11.97 10.18 886 7.78
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4.2 Special case of joint linear profiling

As discussed in Section 3.4 that the monitoring of mean and variability may say
a special case of simple linear profiles when the slope of the simple linear profile
model (given in equation 1.1) is zero (i.e. £y = 0). In literature there exist several
methods (discussed in Section 1.3.2) for the joint or simultenious monitoring of
process parameters. Max-EWMA and SS-EWMA are well-known methods used
for the joint monitoring of process parameters (location and dispersion).
Recently, [116] proposed a new memory-type procedure named progressive
mean (PM) control chart. PM chart is a special case of EWMA chart [117] which
is not only simple but also dominates existing memory-type charts and most of
their modifications. In this study, we have proposed a new memory-type control
chart based on progressive mean under max statistic, namely Max-P chart, for

the joint monitoring of location and dispersion parameters.

4.2.1 Control charts for joint monitoring of location and
dispersion

Let Y be the quality characteristic of a process which is used to monitor the
parameters of stated process (e.g. location (o) and scale (67)). Assume, Y;; ~
N (po + 009, yo2) where subgroup number and sample size of each subgroup are
represented by ¢ = 1,2,3,...., mand j =1,2,3,...., nrespectively. The process
is said to be stable or IC if § = 0 and v = 1. However, if § # 0 and v >

1, the process is deemed OOC or unstable. Generally, Y; = Z?:l Yi;/n is used
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to monitor the location parameter and S;> = Z;'L:1 (Yij — Yz-)z/n —1 is used
to monitor variations in the process. The estimator Y, is a complete sufficient
statistic and (n — 1)S izis an ancillary statistic because its distribution is free from
parental parameters. Hence, by the use of Basu’s theorem (given in Appendix A.3)
both Y; and S;? are independent (for more details see, [118]). These two statistics
have their own different sampling distributions namely: Y; ~ N (ug,02/n ) and

Si? ~ (02/(n —1))x%_, . However, we can transform them to a single distribution

using the following transformations:

U = 10 (4.1)

V=t [H{(n_o_—?si?;n—l}], (4.2)

where ®~1[.] is inverse standard normal distribution function and H{.; (n — 1)}
is termed as chi-square distribution function having (n — 1) degree of freedom.
The statistics Y; and S;%are independent and U; and V; respectively are their one-
to-one transformation so this implies that U; and V; are also independent. Here,
both U; and V; follow a standard normal distribution.

Based on the above mentioned equations (4.1) and (4.2), we provide math-
ematical structures of some existing and the proposed charting structures. We
have covered four existing and one new proposed Max Progressive (Max-P) con-

trol charts in this study.
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Existing control charts

This subsection provides some memory type control charts that are used to mon-
itor small or transient shifts in the process parameters. We have covered Max-

EWMA, Max-DEWMA, SS-EWMA and SS-DEWMA charts for our study pur-

poses.

The Max-EWMA chart

A memory type control chart named as exponentially weighted moving average
(EWMA) control chart was proposed by [10]. Later, [12] proposed a modified
EWMA chart termed as Max-EWMA for the joint monitoring of location and
scale parameters. The structure of Max-EWMA depends on two EWMA statistics

which are based on U; and V; given in equation (4.1) and (4.2),
Wi = AU+ (1=A\)Wi_1, (4.3)

Z; = AVitr(1=X\) Zi_1, (4.4)

where Uy and V; are used as initial values and A is a smoothing (weight) parameter

having range (0 < A < 1). The structure of Max-EWMA chart is given as:

Max — EWMA; = Mazx(\W;|, |Zi]),
UCLyaz—EwmA; = w (1.128379 + 0.602810L3),

UC Lyfaz—pwnma, = 1/ 525 (1.128379 4 0.602810Ls),
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where L3 is the control limits coefficient that is used to control the IC run length

behavior of the chart.

The SS-EWMA chart

For the joint monitoring of process parameters (location and scale), [26] proposed
a scheme based on classical EWMA chart named as SS-EWMA. The structure of
SS-EWMA depends on two EWMA statistics W; and Z; given in equation (4.3)

and (4.4). The SSSEWMA statistic and its UCL are defined as:

SS— EWMA; = W2 + 77

2A[1—(1—-N)%
UCLss—pwnma, = # (1+ Ly)

UCLss—pwuma;, = 525 (1+ La),

where L, is the control limits coefficient that is used to control the IC run length

behavior of the chart.

The Max-DEWMA chart

[119] proposed an extended version of EWMA chart named as double exponen-
tially weighted moving average (DEWMA) control chart. [58] developed a modifi-
cation in DEWMA chart named as Max-DEWMA. The Max-DEWMA technique
is very useful for the joint monitoring of location and scale. The structure of

Max-DEWMA depends on two new EWMA statistics S; and T; that depend on
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two EWMA statistics W; and Z; given in equation (4.3) and (4.4).

Sy = AWi+(1-X1)Si 1, (4.5)

T; = AXi+(1=-N\)T; -, (4.6)

Further, the Max-DEWMA statistic and its UCL are defined as:

Maz — DEWMA; = Mazx(|S;|, |T.]),

UCLMax—DEWMAi =
r \

1+ (1—))?
— (2 +2i+1) (1 -\
(1.128379 + 0.602810Ls) m )
\ — () (1 2
\ Ve

where L5 is the control limits coefficient that is used to control the IC run length
behavior of the chart.
The SS-DEWMA chart

[60] proposed a new SS-DEWMA chart (similar to Max-DEWMA chart) used
for the joint monitoring of process parameters. The structure of SS-DEWMA
depends on two DEWMA statistics S; and T; (cf. (4.6) and (4.6)). The plotting

statistic and UCL of SS-DEWMA are defined as:

SS — DEWMA; = S? + T?
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1+ (1-))?

\ —(2+2i+1)(1 =N
UCLss—pewma, =2 (1+ Lg) m .
+ (2% 4+ 20 — 1) (1= N>

| -@a-t

where Lg is the control limits coefficient that is used to control the IC run length

behavior of the chart.

A new max progressive (Max-P) control chart

[116] used a statistic for control charting named as progressive mean (PM) which

is defined as;

Py
par, — 2=t Ve (4.7)
2

where PM; is an unbiased estimator of population mean pg and its variance for
a given i is given as oj /ni. If we consider n = 1 then the progressive mean can

be viewed as a cumulative average of samples and (4.7) reduces to
et Vi
PM; = 2 Vi (4.8)
i

The PM statistics based on U/s and V}/s given in (4.1) and (4.2) can now be defined

as:

1

PMo; = 21 Vi (4.10)

l
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The mean and the variance of PM statistics in (4.9) and (4.10) are given as:

WPy, = HpMy =0 (4'11)

1

Further, the aforementioned progressive mean statistics are plugged into Max
statistic which is the plotting statistic of our new proposed charting scheme.

Mathematically, it is given as,

The independence of U; and V; also ensures that PMq; and PM,;are indepen-
dent. Hence, the cumulative distribution function (CDF) of Max — P; under IC

situation is derived as:
F(g;0pm,;) = P(MazP; <g),

= P(|[PMy| < g.|PMy| < g),

= P(|PMy| < g).P(|[PMy| < g),

= {2@ (apih-) }2;9 >0 (4.14)
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and the probability density function (pdf) of Max — P; is derived as,

f<g;opMu>=d¥‘;F<g;a%Mu>= = ¢>( g ){2@( g )—1} (4.15)

OpMy; OPM;y; OPMa;

where ®(.) and ¢ (.) are known as standard normal CDF and standard normal
pdf respectively. Moreover, by using the numerical computation, mean and the

variance of Max — P; are defined as,
o0 2
posas-r, = [0 (G507 dg == (e, (1.16)
0 VT

> 2
U?V[aat—Pi = / 92 f(g7O-PM12) d.g == (1 - %) (J%Mli) (417)
0

Finally, based on (4.15) and (4.16), the control limits of the proposed chart can

be defined as:

UC Ly Mawp;=FMaz—P; + L O%an_p, (4.18)

where L is the constant that determines the width of control limits. For a fixed
value L, (4.18) produces fairly wide control limits for large values of ¢ which may
cause the deprivation in false alarm rate (FAR). To overcome such problem, [120]
introduced a penalty function which results into narrower limits. The updated
UC L1 prag—p,is given as:

Ly

1
UCLyaz—pP,=HMaz—pP; + L 0-]2\4a$—PiZ~_q = [iMaz—P; + Lo O-%/laz—Pii_q (4.19)

123



where Ly (= L * Ly ) is the control limits coefficient that is used to control the
IC run length behavior of the proposed Max-P chart using penalized limits and
f (i) =i9 is treated as penalty function. It is to be noted that the performance of
proposed chart is affected (positively or negatively) by any change in the value of

q. Also, ¢ = 0 leads us back to un-panelized limits given in (4.18).

4.2.2 Performance evaluations

In this section, we will discuss various performance measures used in this study
to evaluate the ability of different charting structures. For the proposed chart, we
will also derive the charting constants and evaluate the performance ability of the

proposed Max-P chart.

Performance measures

The performance of a control chart is measured through run length (RL) that is
defined as the number of samples until an OOC signal is received. The RL prop-
erties are summarized using some useful properties including average run length
(ARL), standard deviation of run length (SDRL), relative average run length
(RARL), extra quadratic loss (FQL) and performance comparison index (PCT).
ARL is a well-known measure which is defined as the average number of plotting
statistics until process is declared as OOC. We denote ARL by ARLy (when the
process parameters are IC) while for case of OOC situation it is denoted by ARL;.

SDRL is defined as the standard deviation of the run length distribution. Further,
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RARL, EQL and PCI are defined as follow (for more details see [121-123]).

1 Ymar  ARL(W)

RARL=———— ————dV 4.20
Wonae— Yinin [pmm AR Ly (V) ’ ( )

1 Yinaz
EQL:—/ \IJ2ARL(\IJ)d\IJ, (4.21)

\Pmax_ \Ijmzn Vonin

EQL
PCI ¢ (422)

=,
EQLbest chart

where ARL(V) is the ARL, of a particular chart at shift ¥ (i.e. § and v) and
AR Ly (V)is the ARL; of the benchmark chart (we consider Max-P as a bench-

mark for our study purposes) at shift W.

Charting constants for the proposed Max-P chart

As mentioned above, the UCL of Max-P chart depends on control limits coeffi-
cient parameter Ly and panelizing function f (i) =i?. We have to carefully choose
the values of L, in order to fix ARLg at a pre-specified level. We have tested
several choices of ¢ and found that the optimal value is ¢ = 0.1 (we will use this
choice through this study i.e. f (i) =i"!).The procedure to find control charting

parameter (L,) for Max-P control chart is illustrated in the following steps:

(i) Generate a subgroup of a fixed size n from normal distribution and calculate
sample mean Y, and sample variance S?. By using the Y| and S?, calculate
U; and V] given in equation (4.1) and (4.2) and save them in respective
vectors for U; and V;. Calculate the progressive means PM,based on U;

and P M4, based on V; using equations (4.9) and (4.10) respectively. Further,
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(i)

(iii)

for the calculation of first Max progressive Max — p, plotting statistic, find
the maximum of the absolute PM;; and absolute PMy; using equations

(4.13).

Plot Maz — p, against a preset control limit (UC Ljja,—p,) using an arbi-
trary value of Ly. If Max — p, exceeds UCLjpq,—p, then the process is
declared OOC and the corresponding subgroup number is saved as a run
length. On the other hand, we proceed to next step (iii), if the Max — p,

remains inside the zero and UC Lysqq—p, -

We keep doing these iterations, as demonstrated in (i)-(ii), until a value of
Max — p; exceeds from UC Lyjq,—p, and the process is declared OOC. The
corresponding sample number (which is the minimum value of ¢ for which

the process goes OOC is saved as a value of run length.

Repeat steps (i)-(iii) a large number of times in order to get a complete
empirical behavior of distribution of run lengths and calculate the average

of that distribution. That is our observed ARLy.

Following steps (i)-(iv), we search the value of Ly such that our observed ARL

is equal to the prefixed ARLy. We have carried out extensive Monte Carlo simu-

lations to work out the values of L, at prefixed choices of ARLy.

For our study purposes we have derived the values of Ly for n =5 and ¢ = 0.1 at

some useful choices of ARLg such as 168, 250 or 370, as given below:

L, =2.16 at prefixed ARLy = 168;
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L, =2.33 at prefixed ARLy = 250;

Lo, = 2.52 at prefixed ARLy = 370;

For other combinations of ARLy and n one may follow the same lines as above to

derive the appropriate values of control limits coefficient L.

Performance evaluation for the proposed Max-P chart

In order to examine the OOC performance of the proposed Max-P control chart,
we have considered several amounts of shifts in location and scale parameters.

The specific choices are listed as:

= 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00;

~=0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00.

In the presence of different shifts in the process parameters, performance of the
proposed Max-P chart, at prefixed ARLjs, is evaluated in the form of ARL and
SDRL and is reported as a tabular display (cf. Table 4.8). We have used the
same design parameters as finalized in above section. The results show that the
proposed Max-P chart exhibits attractive detection ability in presence of shifts in
location and/or scale parameter as may be seen form Table 4.8.

For a quantitative discussion of the ARL results, we define a measure referring

to the percentage change in ARL, relative to the prefixed ARLg, mathematically
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given as:

ARLO—ARL1> 100

Percentage change = ( ARL

Using this measure we can discuss the results in terms of percentage gain (decrease
in in ARL; relative to the prefixed ARLg). For instance, at ARLy = 370, the

results of the proposed Max-P chart revealed that:

e when =0, 25% increase in scale parameter (i.e. y= 1.25) produces
97.48% decrease in the ARLy; 75% increase in scale parameter

(i.e. y= 1.75 ) produces 99.35% decrease in ARL;.

e when ~= 1, 25% increase in location parameter ( = 1.25) produces

96.41% decrease in ARLy; T75% increase in location parameter

( 0= 1.75 ) produces 99.21% decrease in ARL;.

e when 6= 0.25, 75% increase in scale parameter (i.e. y= 1.75 ) produces

99.37% decrease in the ARL;;

e when ~= 1.25, 75% increase in location parameter ( #= 1.25 ) produces

99.25% decrease in ARLq;

e when 6 = 0.25 and = 1.25, 25% increase in both parameters causes 98.09%

decrease in the ARL;.

The similar findings may be observed at other combinations of the design param-

eters (n, i, L) for our proposed Max-P chart.
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4.2.3 Comparative analysis

In this section, we provide a comparative analysis of the proposed Max-P chart
with some other competing counterparts namely Max-EWMA, Max-DEWMA |
SS-EWMA and SS-DEWMA charts. We have evaluated the performance of all
the said charts at several combinations of # and v using their respective design
parameters. For comparison purposes, the specific design parameters of different

charts used in this study are listed below:

Maz-EWMA: X =0.10, Ly = 2.79, n = 5, ARLy = 250;
SS-EWMA: X =0.10, Ly = 3.57, n =5, ARLy = 250;
Maz-DEWMA: X\ = 0.10, Ly = 2.082, n =5, ARLy = 250;
SS-DEWMA: X\ = 0.10, L¢= 2.348, n = 5, ARLy = 250;

Maz-P:i = 0.10, Ly = 2.33, n =5, ARLy = 250;

The results obtained at these design parameters are shown in the form of table and
graph (cf. Table 4.9 and Figure 4.2). The comparative reveals that the proposed
Max-P chart offers better run length features relative to other competing charts in
the presence of shifts in scale and/or location parameter(s), as may be seen from
Table 4.9 and Figure 4.2. Moreover, the DEWMA version based on both Max
and SS charts perform better than their corresponding EWMA version based on
Max and SS charting schemes. Some specific observations at the above mentioned

design parameters are listed below:

e when 6 = 0, 50% increase in scale parameter ( y= 1.50 ) causes 98.66%
decrease in the ARL; for Max-P chart while 97.08%, 97.06%, 98.23% and
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98.29% decreases are observed in the ARL;s for Max-EWMA, SS-EWMA,

Max-DEWMA and SS-DEWMA charts respectively.

e when y= 1, 50% increase in location parameter (# = 0.50) causes 95.44%,
90.00%, 89.76%, 92.52% and 92.53% decrease in ARL;s of Max-P, Max-

EWMA, SS-EWMA, Max-DEWMA and SS-DEWMA charts respectively.

e when 0 = 0.25, 50% increase in scale parameter ( y= 1.50 ) causes 98.74%
decrease in the ARL, of Max-P chart while 97.25%, 97.32%, 98.40% and
98.46% decrease reported in the ARL;s of Max-EWMA, SS-EWMA, Max-

DEWMA and SS-DEWMA charts respectively.

e for 25% shift in scale parameter (y= 1.25) and 75% increase in location
parameter (§ = 0.75), we observe 99.01%, 97.93%, 97.94%, 98.84% and
98.89% reductions in the ARLs of Max-P, Max-EWMA, SS-EWMA, Max-

DEWMA and SS-DEWMA charts respectively.

e In case of 50% increase in both parameters (§ = 0.5 and ~= 1.5), the
reductions in ARL;s of Max-P, Max-EWMA, SS-EWMA, Max-DEWMA
and SS-DEWMA charts are respectively 98.95%, 97.68%, 97.82%, 98.73%

and 98.82%.

It is obvious from the analysis of our results that the proposed Max-P chart offers
relatively better ARL properties and outperforms the other competing charts for

varying amounts of shifts in location and/or scale parameter(s).
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In addition, we have also evaluated the overall performances, in the form of
EQL, RARL and PCI, of all the charts (under discussion in this study) using
equations (4.20)-(4.22). These performance measures are reported in Table 4.9.
The smaller values of EQL, RARL and PCI for the proposed Max-P chart relative
to other competing counterparts also advocates the superiority of the proposal of

this study.

Table 4.9: Comparative analysis of Max-P chart with existing charts at ARLy =
250

Max-P Max-EWMA SS-EWMA Max-DEWMA SS-DEWMA
K ’ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
(o] 1.48 0.51 3.22 0.46 3.47 0.53 1.36 0.5 1.53 0.54
0.25 1.48 0.51 3.23 0.47 3.38 0.51 1.37 0.5 1.47 0.52
0.5 1.47 0.5 3.22 0.46 3.15 0.4 1.36 0.5 1.31 0.47
0.75 1.47 0.5 3.23 0.46 2.96 0.25 1.36 0.49 1.12 0.32
0.25 1 1.41 0.49 3.18 0.43 2.77 0.42 1.26 0.44 1.01 0.11
1.25 1.07 0.25 2.98 0.15 2.28 0.45 1.02 0.13 1 0.01
1.5 1 0.02 2.58 0.49 2.01 0.08 1 0 1 0
1.75 1 0 2 0.04 2 0 1 0 1 0
2 1 0 2 0 2 0.01 1 0 1 0
EQL 1.66 3.78 3.36 1.62 1.56
RARL 1 2.3 2.06 0.95 0.9
PCI 1 2.28 2.02 0.97 0.94
o 2.98 1.19 5.89 1.43 6.36 1.54 3.44 1.65 3.83 1.77
0.25 2.99 1.18 5.9 1.43 5.87 1.31 3.44 1.64 3.4 1.51
0.5 2.78 1 5.78 1.28 4.88 0.94 3.18 1.42 2.56 1.08
0.75 2.23 0.68 4.85 0.8 3.98 0.66 2.33 0.91 1.87 0.74
0.5 1 1.71 0.53 3.74 0.57 3.29 0.5 1.61 0.61 1.39 0.52
1.25 1.28 0.45 3.03 0.34 2.89 0.37 1.19 0.39 1.11 0.32
1.5 1.05 0.21 2.55 0.5 2.44 0.5 1.02 0.15 1.02 0.12
1.75 1 0.05 2.07 0.26 2.06 0.24 1 0.03 1 0.03
2 1 0 2 0.04 2 0.04 1 0 1 0.01
EQL 1.88 4.13 3.89 1.86 1.75
RARL 1 2.18 2.01 1.02 0.93
PCI 1 2.19 2.07 0.99 0.93
o 9.04 5.52 18.37 9.94 19.86 11.01 13.44 8.23 14.37 8.64
0.25 7.24 4.05 15.76 7.29 13.06 5.66 10.91 6.31 9.17 5.3
0.5 4.13 1.94 8.47 2.68 7.48 2.25 5.29 2.91 4.66 2.55
0.75 2.54 1.06 5.23 1.29 5.06 1.19 2.82 1.47 2.67 1.39
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1 1.78 0.7 3.81 0.8 3.82 0.78 1.78 0.84 1.76 0.83

1.25 1.37 0.51 3.04 0.56 3.12 0.55 1.32 0.53 1.32 0.53
1.5 1.13 0.34 2.54 0.52 2.65 0.52 1.1 0.3 1.1 0.31
1.75 1.03 0.18 2.17 0.37 2.24 0.43 1.02 0.14 1.02 0.15
2 1 0.07 2.02 0.15 2.04 0.2 1 0.05 1 0.06
EQL 2.04 4.36 4.39 2.1 2.05
RARL 1 2.13 2.1 1.08 1.03
PCI 1 2.13 2.15 1.03 1
o 254.47 995.59 252.32 245.61 247.07 239.23 251.32 271.24 252.95 268.67
0.25 11.59 9.28 25.22 16.84 25.3 16.97 18.8 14.62 18.88 14.8
0.5 4.53 2.81 8.84 3.75 9.1 3.82 5.95 4.09 6.11 4.24
0.75 2.68 1.42 5.33 1.72 5.54 1.75 3.04 1.97 3.08 2.03
1 1 1.86 0.88 3.85 1.03 4.03 1.06 1.93 1.1 1.97 1.15
1.25 1.45 0.61 3.07 0.74 3.22 0.74 1.43 0.68 1.45 0.71
1.5 1.21 0.42 2.56 0.58 2.69 0.6 1.18 0.42 1.19 0.44
1.75 1.08 0.28 2.22 0.44 2.34 0.5 1.07 0.25 1.07 0.26
2 1.03 0.16 2.04 0.29 2.1 0.32 1.02 0.13 1.02 0.15
EQL 2.17 4.47 4.66 2.27 2.3
RARL 1 2.05 2.14 1.11 1.12
PCI 1 2.06 2.15 1.04 1.06
o 8.2 7.4 17.61 11.44 17.24 11.02 13.01 11.69 12.95 11.67
0.25 6.17 5.12 13.2 7.44 12.14 6.7 9.26 8.07 8.63 7.45
0.5 3.76 2.69 7.96 3.63 7.43 3.29 4.96 4.07 4.6 3.73
0.75 2.51 1.51 5.23 1.99 5.08 1.84 2.9 2.16 2.8 2.09
1.25 1 1.86 0.99 3.88 1.25 3.88 1.2 1.99 1.31 1.94 1.27
1.25 1.49 0.69 3.11 0.89 3.14 0.86 1.49 0.81 1.47 0.79
1.5 1.27 0.49 2.61 0.68 2.66 0.68 1.24 0.53 1.23 0.52
1.75 1.14 0.36 2.27 0.52 2.33 0.53 1.11 0.34 1.11 0.34
2 1.06 0.23 2.06 0.42 2.11 0.41 1.04 0.21 1.05 0.21
EQL 2.17 4.43 4.46 2.25 2.21
RARL 1 2.07 2.04 1.11 1.07
PCI 1 2.04 2.05 1.04 1.02
o 3.42 2.58 7.38 3.52 7.26 3.44 4.45 3.93 4.32 3.92
0.25 3.2 2.38 6.93 3.18 6.61 3.06 4.03 3.53 3.89 3.45
0.5 2.66 1.85 5.86 2.48 5.39 2.27 3.2 2.73 2.98 2.5
0.75 2.12 1.32 4.67 1.77 4.28 1.59 2.42 1.89 2.24 1.72
1.5 1 1.74 0.96 3.75 1.31 3.49 1.18 1.85 1.29 1.73 1.14
1.25 1.46 0.71 3.09 0.99 2.96 0.91 1.48 0.85 1.43 0.81
1.5 1.28 0.53 2.63 0.78 2.56 0.71 1.26 0.58 1.23 0.54
1.75 1.16 0.4 2.29 0.61 2.28 0.58 1.14 0.4 1.12 0.37
2 1.09 0.29 2.06 0.51 2.08 0.49 1.07 0.27 1.06 0.26
EQL 2.08 4.28 4.14 2.13 2.06
RARL 1 2.1 2 1.07 1.02
PCI 1 2.05 1.99 1.02 0.99
o 2.2 1.48 4.78 2.01 4.72 1.97 2.51 2.08 2.4 2.04
0.25 2.16 1.45 4.65 1.91 4.51 1.85 2.41 1.99 2.34 1.96
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0.5 1.96 1.23 4.35 1.7 4.08 1.63 2.17 1.73 2.07 1.63

0.75 1.74 1.03 3.87 1.44 3.57 1.33 1.89 1.42 1.78 1.29

1 1.54 0.82 3.38 1.19 3.11 1.07 1.61 1.08 1.53 0.97

1.25 1.37 0.64 2.94 0.98 2.72 0.87 1.4 0.8 1.34 0.72

1.5 1.26 0.52 2.57 0.81 2.43 0.72 1.25 0.59 1.22 0.53

1.75 1.16 0.4 2.29 0.68 2.2 0.61 1.15 0.43 1.13 0.4

2 1.1 0.31 2.07 0.59 2 0.54 1.08 0.3 1.07 0.29
EQL 1.97 4.05 3.82 2 1.94

RARL 1 2.12 1.99 1.04 1

PCI 1 2.05 1.94 1.01 0.98

o 1.68 0.99 3.62 1.42 3.57 1.41 1.8 1.32 2.42 2.06

0.25 1.65 0.98 3.58 1.39 3.5 1.34 1.73 1.24 2.32 1.93

0.5 1.61 0.92 3.45 1.3 3.29 1.24 1.67 1.18 2.08 1.64

0.75 1.49 0.79 3.23 1.17 3.04 1.11 1.54 1.01 1.77 1.28

2 1 1.4 0.69 2.98 1.05 2.75 0.96 1.4 0.83 1.53 0.96

1.25 1.29 0.58 2.71 0.92 2.51 0.84 1.31 0.69 1.34 0.71

1.5 1.21 0.48 2.44 0.8 2.27 0.72 1.21 0.53 1.21 0.53

1.75 1.14 0.39 2.22 0.7 2.08 0.65 1.13 0.41 1.13 0.4

2 1.09 0.31 2.03 0.63 1.92 0.58 1.09 0.32 1.07 0.28
EQL 1.88 3.77 3.52 1.88 1.93
RARL 1 2.07 1.95 1.01 1.11
PCI 1 2.01 1.88 1 1.03

4.2.4 Diagnostic ability of charts

Usually, when the process is declared OOC then it is important to diagnose
the source of shift (e.g. due to location parameter, dispersion parameter or
with respect to both parameters). For the diagnostic analysis we choose three
charts namely Max—P;, Mar—FEW MA; and Mar—DEW M A; charts. The
specific symbols we will use in this diagnostic analysis are reported in the
form a table (cf. Table 4.10). The structure of the stated diagnosis anal-
ysis is given as: Plot the plotting statistics (i.e. Max—P;, Max—EW M A;
and Maxr—DEWMA;) against their respective control limits UC Ly, p,,

UCLyraz—wma, and UC Lyra,—pEwma,- Plot a dot against ¢ when plotting statis-
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Figure 4.2: ARL curves (on logarithmic scale) for the proposed and some coun-
terpart charts under (a) shifts in scale parameter at fixed IC location parameter;
(b) shifts in location parameter at fixed IC scale parameter; (c) shifts in scale
parameter at a shifted location parameter; (d) shifts in location parameter at a
shifted scale parameter.

tics do not exceed their limits, otherwise, label the plotted points accordingly
using the symbols shown in Table. In case of Max-P chart, when the plotting
statistic Maxz—P; exceeds UCLyrq,—p,, check both |PM;y;| and |PM;|against
UCLprgz—p,. If U; > 0 and only |PMy;| is greater than UC Lps,—p, then label it

with symbol “m+" which indicates that only process mean increased. However,
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decrease in the process mean will be shown when U; < 0 and only |PM;y;| is
greater than UC L4, p, which is labeled by “m—". On the other hand, in case
of increase in process dispersion, symbol “v+” can be assigned when V; > 0 and
only |PMy;| is greater than UC Lyyqq—p, whereas, when V; < 0 and only |PMy;|
is greater than UC Lys.,—p, then label with symbol “v—" indicates a deprivation
in process dispersion. Further, when both |PM ;| and |PMy;| exceedUC Lysgn—p,
and U;, V; > 0, the symbol ” 4+ +” depicts a positive shift in both parameters.

7

Similarly, symbol ” — —” shows a decreasing shift in both parameters, ” + —" de-
picts an increasing shift in location and decreasing shift in dispersion and symbol
7 — 47 shows an increasing shift in dispersion parameter and decreasing shift in
location parameter. A similar structure may also be used to analyze the diagnosis
ability of other competing Max-EWMA and Max-DEWMA charts.

The results obtained for the diagnostic abilities of Max-P, Max-EWMA and
Max-DEWMA control charts are reported in a tabular form (cf. Table 4.11).
The results advocate that the proposed Max-P chart outshines the competing
Max-EWMA and Max-DEWMA charts, in general, in diagnosing location and/or
dispersion shifts. For instance, when v = 0.25 and 6 = 1 (for the case of m+) the
proposed Max-P chart produces 63 signals, whereas 45 and 6 signals are reported
in Max-EWMA and Max-DEWMA charts respectively. Moreover, when v = 0.25
and € = 1 (for the case of +—) the proposed Max-P chart produces 448 signals,

whereas 297 and 470 signals are reported in Max-EWMA and Max-DEWMA

charts respectively. Furthermore, when v = 0.25 and 6 = 2 (for the case of +—)
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the proposed Max-P chart produces 545 signals, whereas 15 and 0 signals are

reported in Max-EWMA and Max-DEWMA charts respectively.

Table 4.10: Assignment of the symbols to different situations

|PM;|> UCLgu—p,
|Zi| > UC Lyjaa—mwma,
|T;| > UC Lpgz—DEWMA,

’PM27,’ < UCLMafoi
\Z;| < UCLpmaw—pwma, Vi>0 Vi <0
;| < UCLpjgz—pEWMA,

|PM11’ < UCLMam—Pi

|Wz| < UOLMax—EWMAi v+ v—
|Si| < UCLjjaz—pEWMA,
|PMy;| > UCLpytge—p, Ui >0 m+ T r T

(Wil > UC Lataz—ewnma,

U; <0 m— —+ —_
‘Si‘ > UCLpfaz—DEWMA,

4.2.5 A real application in electrical engineering

In this section, we describe a real phenomena related to electrical engineering and
the implementation of Max-P, Max-EWMA and Max-DEWMA charts to monitor
the voltage of the photovoltaic (PV) system in the said electrical engineering

process. The description of the PV system is already dicussed in Section 2.1.

Implementation of the proposed and existing charts

Usually, electrical engineers are engaged to monitor the variations of voltage in the
system. As discussed above that voltage (V') has inverse relation with capacitance
(C) at fixed charge (@). In this illustrative example, the monitoring of voltage
(V') generated through Z-source inverter in grid connected PV system, we get a

data set having two capacitance levels (C' = 250uF and 350uF') each of 75455
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Table 4.11: Diagnostic abilities of the proposed and some counterpart charts

Max-P Max-EWMA Max-DEWMA
N g g 0

0 0.25 0.5 1 2 0 025 0.5 1 2 0 0.25 0.5 1 2

mt 0 0 0 63 4% 0 0 0 45 98 0 0 0 6 1000
m- 0 0O 0 0O 0O 0 0 0 0 0 0 0 0 0 0
v+ 0 0 0 0 0 0O O 0 0 0 0 0 0 0 0
095 U— 1000 1000 1000 489 0 1000 1000 1000 658 O 1000 1000 1000 524 0
44 0 0 0 O 0O 0 0 ©0 0 0 0 0 0 0 0
+— 0 0 0 448 55 0 0 0 207 15 0 0 0 470 0
~+ 0 0 0 0 0 ©0O 0 0O 0 ©0 0 0 0 0 0
~—— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m+ 0 2 145 693 919 0 0 63 864 1000 0 0 35 940 1000
m- 0 0 0 O 0O 0 0 ©0 ©0 0 0 0 0 0 0
v+ 0 0 0 0 0 0O ©0O 0 0 0 6 6 5 0 0

05 U— 1000 988 705 66 0 1000 1000 864 22 0 994 994 882 4 0
44 0 0 0 O 0O 0 0O O ©0 0 0 0 0 0 0
+- 0 10 150 241 8 0 0 68 114 0 0 0 78 56 0
-+ 0 0 0 0 0 O 0 0O 0O 0 0 0 0 0 0
-~ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
m+ 257 888 043 083 089 272 076 993 1000 1000 230 852 919 990 1000
m- 218 2 0 0 0 245 0 0 0 0 255 120 76 10 0
v+ 263 45 27 4 1 238 10 4 0 0 26 11 1 0 0

L, v- 21 5 15 7 0 24 13 0 0 0 20 16 3 0 0
+4+ 0 6 10 4 8 1 0 3 0 0 0 1 0 0 0
4~ 0 1 5 2 2 0o 1 0 0 0 O O 1 0 0
~+ 1 0 0 0 0 ©0O 0 0O 0 0 0 0 0 0 0
~—~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m+ 81 270 406 671 805 27 160 405 794 077 5 72 310 843 997
m- 9 3 16 0 0 3 3 0 0 0 1 18 51 36 2
vf 775 626 448 150 23 923 788 526 120 4 884 797 476 48 0

s v— 1 3 2 0 0 0 0 0 0 0 9 8 6 8 0
++ 36 61 124 170 170 6 40 69 8 19 0 18 80 52 1
+-~ 0 0 0 0 2 0 0 0 0 0 2 0 8 10 0
~+ 6 9 4 0 0O 7 0 0O O 0 3 11 1 3 0
-~ 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0
m+ 80 142 184 330 475 20 60 150 383 758 2 14 52 310 802
m- 8 42 23 6 0 3 6 1 0 0 T 4 12 26 7T
v+ 683 674 582 374 72 910 872 74T 412 46 933 915 839 443 22

s, v— 1 0 0 0 0 0 0 0 0 0 5 48 46 20 0
++ T 98 185 288 453 14 59 100 204 96 0 9 41 165 73
4~ 0 0 0 ©0 O 0 0O ©0O 0 0 0 2 0 T 6
—+ & 4 26 2 0 16 3 2 1 0 5 T 9 20 0
~—~ 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
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values of V' reported in [94] and also used by [17].

In this study, we consider first 150 subgroups each of size n = 5 from IC
capacitance level (C' = 350uF") while next 250 OOC subgroups are taken from the
C = 250pF. By using 15091 subgroups of C' = 350uF, we compute population
mean (po = 397.0841) and variance (02 = 0.4367731). On the fixed ARLy =
250 and some specific design parameters we have computed the control limits’
coefficients for the three competing charts and the outcomes are listed below (to

be used with this dataset):

Maz-P Chart: f (i) ="' and Ly = 3.98
Maz-EWMA Chart: X = 0.1 and Lz = 4.50

Maz-DEWMA Chart: = 0.1 and Ls = 3.40

Using these quantities, we have constructed all the three charts for the aforemen-
tioned dataset. The resulting charting displays are given in graphical form in
Figures 4.3-4.5. The plots contain brown shaded points with pink background
from IC subgroups while white shaded area is the OOC area where red shaded
point are the OOC signals. The diagnostic abilities of the three charts are also
evaluated for this dataset and the results are reported in Table 4.12.

The implementation of Max-P chart (presented in Figure 4.3) reveals that
232 points are declared OOC. Out of 232 OOC (indices reported in Table 4.12)
points, 168 points are declared OOC due to increase in scale while 53 points
are declared OOC due to decrease in the scale parameter. Moreover, 5 points are

OOC due to increase in both location and scale parameters while 4 points are OOC
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due to decrease in location and increase in scale parameter. However, only one
point is declared OOC due to increase in location and decrease in scale parameter
and the same detections due to decrease in both location and scale parameters.
For Max-EWMA chart (presented in Figure 4.4), 114 points are declared OOC
(indices reported in Table 4.12). The case wise diagnosis depicts that 15 points are
declared OOC due to increase in location while only 3 points are declared OOC
due to decrease in the location parameter. However, 86 OOC points are reported
due to increase in scale parameter and only 10 OOC points are reported due to
decrease in scale parameter. For Max-DEWMA chart (shown in Figure 4.5), 132
OOC points are detected (indices stated in Table 4.12). The diagnostic analysis
shows that 16 OOC points are captured due to increase in location parameter and
only 11 OOC points are reported due to decrease in scale parameter. Moreover, 91
points are declared OOC due to increase in scale parameter while only 14 points
are declared OOC due to decrease in the scale parameter.

In precise, the implementation of our proposed chart and existing charts depict
that Max-P chart outperforms other counterparts for the detection of joint shift
in process parameters (location and scale). The proposed Max-P chart appeared
as an efficient scheme to detect the variation in voltage converted by Z-source
inverter in 3-¢ grid connected PV system and may be useful for the practitioners

who are engaged in the joint monitoring of such kind of parameters.
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Table 4.12: Indices of case wise diagnosis for the proposed and some counterpart

charts
Chart MAX-P Max-EWMA  Max-DEWMA
267-271, 269-271, 273-275,
273-275, 277-279, 281,
m+ NA 277-279, 281,  283-285, 287, 290,
283-285 293
272, 276, 280,
282, 286, 288,
m— NA 272, 280, 282 989, 291, 292,
294, 295
168, 170-174, 176, 177, 182-186,
189-196, 199-210, 213, 216, 217
2?3 292?’ 29293 234’1 2§é 22&’%—233’ 309, 306,
’ ’ ’ ’ ’ ’ 308-310, 170-174, 176, 177,
235, 237-243, 245, 247, 248, 250,
312-328, 330, 308-310, 312-328,
252, 256, 259, 261, 263, 267,
v+ 332-339, 330, 332-339,
268, 270, 271, 276-278, 281, 282,
341-345, 341-345, 348-352,
292, 293, 295, 297, 298, 301-306, 248381 254381 384-400
308-310, 312-328, 330, 332-339, 384—400’ ’
341-345, 348-352, 354-381,
384-400
175, 178-181, 187, 188, 197, 198,
211, 212, 214, 215, 218, 220,
222, 225, 227, 234, 236, 244, 307, 311, 329, 175, 178-180, 307,
o— 246, 249, 251, 253-255, 257, 258, 331, 340, 346, 311, 329, 331,
260, 262, 264-266, 269, 272- 275, 347, 353, 382, 340, 346, 347,
279, 280, 294, 296, 307, 311, 383 353, 382, 383
329, 331, 340, 346, 347, 353,
382, 383
++ 283, 284, 287, 290, 299 NA NA
+— 285 NA NA
—+ 286, 288, 289, 300 NA NA
—— 291 NA NA

*NA=not available
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Figure 4.3: Max-P chart for IC and OOC states for the illustrative example
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Figure 4.4: Max-EWMA chart for IC and OOC states for the illustrative example
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4.3 Concluding remarks

Recent literature about simple linear profiles was designed under simultaneous
structure for the monitoring of linear profile parmeters (i.e. intercept, slope and
error variance). In simulteneous methods each parameter have individual chart
with its respective pair of limits. In simultaneous monitoring of linear profile pa-
rameters three individual charts based on each parameter are designed in a mech-
anism to obtain overall performance of the process. The joint monitoring is an
alternative approch to simultaneous monitoring which has single charting methe-
dology for all parameters under consideration. In this study, we proposed joint
structures (Max-EWMA-3 and SS-EWMA-3) for the monitoring of linear profile
parameters. The results concludes that joint (Max-EWMA-3 and SS-EWMA-3)
and simultaneous (EWMA-3) charts have similar performance but joint structure
offers simple design and paractical to use. Moreover, Max-EWMA-3, SS-EWMA-
3 and EWMA-3 charts have better performance as compared to EWMA /R, T?
and Shewhart-3 charts. In precise, Max-EWMA-3-C and SS-EWMA-3-C charts
have relatively better performance (in terms of efficency and simplicity) among
all others.

The joint monitoring of location and dispersion are the special case of joint
linear profiling. In this chapter, we proposed Max-P chart to monitor both pro-
cess parameters in a single charting setup. This study comprises an extensive
comparison among Max-p chart and some existing joint monitoring schemes in-

cluding Max-EWMA, SS-EWMA, Max-DEWMA and SS-DEWMA. The study
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findings reveal that the newly proposed Max-P monitoring scheme has relatively
better performance in the presence of shifts in process parameter(s). Therefore,
it may used as a powerful tool by quality control researchers and practitioners in
the monitoring of joint shifts in manufacturing processes. A real application of
the proposed scheme has also offered attractive detection ability to monitor the
variations in the voltage of a photovoltaic (PV) system in an electrical engineering

process.
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CHAPTER 5

NON-PARAMETRIC

APPROACH FOR JOINT

MONITORING OF PROCESS

PARAMETERS

Control charts are often designed and used to monitor single process parame-
ter such as location and dispersion. There exist several studies (discussed in
Section 1.3.2) for the joint monitoring of process parameters. Usually, normal-
ity is a typical assumption needed for parametric charts while non-parametric
charts are free from any such constraints. The literature in this direction may
see in [64-66, 124]. Moreover, a traditional approach used in SPC is to monitor
each parameter separately, however simultaneous monitoring of more than one

parameters is also getting popular in industry. [62,63,69,125] and the references
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therein may be seen for literature on simultaneous charts.

Recently, [62] proposed a Shewhart type distribution free chart for joint moni-
toring of the process parameters. It is based on the Lepage test, a combination of
Wilcoxon rank sum test for location and Ansari Bradley test for scale (cf. [126])
and this chart hereafter named as Shewhart-Lepage (SL) chart. On the same
lines, [63] developed a distribution free Shewhart chart for joint monitoring that
utilizes Cucconi test proposed by [127] and hereafter referred as Shewhart Cucconi
(SC) chart. [128] provided a comparative analysis of Cucconi test versus Lepage
test under some distributional setups and favored Cucconi test over Lepage.

This study intends to investigate the impact of the light and heavy tailed
distributions on the performance of SL and SC charts. In addition, the effect of

reference/test samples is included in this study.

5.1 Description of SC and SL charts

Let Uy,Ugy oo ooooo JUpand Vi, Vo, oo , Vi, be independent random sam-
ples from their respective populations with continuous cumulative distribution
functions: F (U) = @ <UT’9> and G (V) = Q (VT’Q> ;0 € R, v > 0; where Q
is some unknown continuous functions. The constants € and v represent the un-
known location and scale parameters respectively. Let us introduce an indicator
variable I, = 0 or 1 depending on whether or not the &' order statistic of the
combined sample of N = m + n observations belongs to U or V. It is to be

mentioned that m is reference sample (phase I) and n is the test sample (phase
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IT). Further, we assume that k be the linear rank of k' order variable.
The popular nonparametric Wilcoxon rank sum (WRS) test statistic 77 is defined

asS
N
T, = Z kI,
k=1

For the equality of two scale parameters, Ansari Bradley (AB) is an efficient non-

parametric test whose statistic 75 is defined as

15

1
k=5 (N+ 1)L,

N
k=1

Consider S; as the sum of the square of the ranks of V;’s in the combined sample

ie.
N
Si =Y kI
k=1

Further, note that the quantities (N + 1 — k)1, for £ = 1,2, ..., N, may be
considered as the contrary ranks of V;’s. The sum of squares of contrary ranks of

Vi’s in the combined sample, say Ss, is given by

N
So=> (N +1-k’Li =n(N+1)’-2(N+1)T1 + &

k=1

Assuming § = 0 and v = 1 refer to IC state (F' = G), we have the following

properties (cf. Appendix A.4).

E(T, |1C) = Jn(N +1) Var(Ty| IC) = —mn (N +1)
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m(N+2)

1 when N is even

E(|10) =
% [%}2 when N is odd
mn 2_
% when N is even
Var (T, | IC) = .
%W when N 1is odd

E(51|IC’):E(S2|]C>:”(N+1)(2N+1)

mn

Var (S1 | IC)=Var(Sy | IC) = 180

(N+1) (2N +1) (8N +11)

The combination of AB and WRS is known as Lepage statistic [126] and is given

as

(- E(TIC)?  (Ty— E(TL]I0))?
L=armic) © ViR | I0) (5.1)

and Cucconi statistic [127] for testing both location and scale is defined by

C,_VV2—|—ZQ—2VVZp
2010

(5.2)

where W and Z are the standardized statistics given as

- JVAR(S, [IC) /(N +1) 2N +1)(8N +11)

- JVAR(S,|IC) /(N +1) N +1)(8N +11) '

when § > 0 and v = 1, E(W) > 0 and F(Z) < 0; when § = 0 and v > 1,
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E(W) > 0 and E(Z) > 0; and in general, when 6 # 0 and v # 1, E(W) # 0
and E(Z) # 0. Similar inequalities may be observed in other possible cases,
when either  differs from 0, or 7 differs from 1, in any direction. Also, note that
EWI|IC)= E(Z|IC) = 0and V(W|IC) = V(Z|IC) = 1 (cf. Appendix A.5).
Moreover, when F' = G, the correlation coefficient between W and Z is given
as [128]:

2(N? —4)

= Z | I1C) = -1
p=Corr(W.Z11C) = G BN £ 10)

5.2 Design of control charting constants of dis-

tribution free charts

Construction and design of both SC and SL charts depend on the distributions of
the statistics given in (5.1) and (5.2). The lower control limit of both charts is zero
as both statistics can never be negative (cf. [62,63]) and the upper control limits of
both charts, say H, used to make decision. The values of H are provided in [62,63]
for some selective values of n and m. We have covered more combinations of n and
m to find the upper control limit say H for both charts, using a simulation study
with 100,000 replicates (in R 3.1.1). We have taken the retrospective samples
i,e. m = 30, 50, 100, 150, 500 and 1000 while prospective samples i.e. n =
5, 8, 11, 16 and 25 for this study, fixing ARLy = 500. The results are reported
in Table 5.1 for SL and SC charts.

The decision procedure for the two charts is given as:
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Table 5.1: Constant H for SC and SL charts at ARLy=500

m=30 m=50 m=100 m=150 m=500 m=150

SC
n==4 4.48 5.25 2.98 6.25 6.65 6.73
n==4§ 4.31 4.77 5.56 2.91 6.42 6.54
n=11 4.45 4.8 5.34 2.67 6.29 6.42
n=16 447 4.85 5.31 5.56 6.11 6.28
n=25 4.18 4.7 0.25 5.49 6 6.16
SL
n=>5 9.4 10.32 11.25 11.5 12.02 12.14
n==§ 9.28 10.22 11.15 11.53 12.1 12.24
n=11 9.24 10.1 11.07 11.45 12.06 12.22
n=16 9.11 9.95 10.9 11.32 12.04 12.21
n=25 8.4 9.5 10.74 11.17 12.02 12.2

SL chart: The statistic L is used for plotting in SL chart. If L is greater
than H, then the process is declared OOC. For the follow up analysis, we compute
the p-values of the WRS test for location and AB test for scale with the phase I
sample and the i*" test sample and are denoted as p; and p, respectively. If p;
is very low but not p,,a shift of location is detected or if p, is very low and p; is
relatively high a shift in scale parameter is detected. When both WRS and AB
p-values are very low, a joint shift in the location and scale is considered.

SC chart: The statistic C is used for plotting in SL chart. If C exceeds H,
the process is declared OOC. For the follow up analysis, we compute the p-values
for Wilcoxon test (ps) and Mood test (p4) based on two samples (reference sample
and test sample), [63]. The shift in location is noted, when ps is very low but
not py, and if ps is relatively high but not p, then there is the indication about
shift in scale. If both p3 and ps are very low, shift is noted in both location and

scale. Sometimes neither p3 nor ps are very low though the plotting statistic C
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is high, in this situation the effect is due to the relation between location and
scale changes or due to false alarm. So to overcome this problem combine i*and

(i — 1) prospective samples and recalculate the (ps) and (p4) for further decision.

5.3 Performance analysis of SL and SC charts

In this section, we will investigate the performance of SL and SC charts under dif-
ferent distributional environments. We will also examine the effects of reference
and test samples on the performance of these charts. We will use average run
length (ARL) and standard deviation run length (SDRL) as performance mea-
sures. The ARL value is denoted by ARLg for in-control situation and ARL; for
out-of-control situation. The distributional setups covered in this study include:
Uniform: U (v/=3, v/3), Student’s t: ¢, , Lognormal: LN(1,1), Gamma: G(1,1)
, and contaminated normal (C7: with 10% contaminations; C2: with 30% con-
taminations). The first two are symmetric and light tailed, next two are skewed
and heavy tailed, and last two are contaminated distributions. [15,128-131] are
some useful references about the said distributional environments. The graphical

displays of these distributions are given in Figure 5.1.

5.4 0OOC performance

In order to examine the OOC performance of SL and SC charts, we have considered

shifts in location and scale for these choices: 8 = 0, 0.25, 0.50, 0.75, 1.00, 1.50,
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Figure 5.1: Probability density plots of different distributions

2.00 and v = 0.50, 0.75, 1, 1.25, 1.5, 1.75 and 2. We have chosen m= 30, 50, 100,
150, 500 and 1000 aand n = 5, 8, 11, 16 and 25. It makes a total of 30 pairs
(m,n). The properties of SL and SC charts, in terms of ARL and SDRL, are
evaluated for different combinations # and . These results are provided in Tables
5.2 and 5.3 under different distributions. For the sake of brevity, we only discuss
the results of the pair (100, 5). Moreover, some useful ARL curves are also
produced and are provided in Figures 5.2 and 5.3.

The useful findings about the two charts are listed as:

e In general, the run length follows right skewed distribution; the run length
distributions of both charts decrease with the increase in the location and

scale shifts; shift in the scale parameter is detected faster than the shift
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Table 5.2: ARLs of SC and SL Charts under Different Distributions using m = 100
and n =5

U (vV=3,V3) 4 LN(1,1) G(1,1) C1 c2

~ 6 SC SL SC SL SC SL SC SL SC SL SC SL
0.00 133.60 1171.98 15598.55 4741.50 1958.81 135142 14130.31 332.10 4244.22 771.56 753.65 374.45
0.25 153.60 1184.99 15053.16 4721.17 4446.38 1405.95 12805.36 2288.34 3179.54 652.55 717.98 342.99
0.50 459641 990.82 365145 6725.76 9842.98 170195 5629.85 1595.17 1644.35 479.31 655.09 314.40

0.5 075 218538 18276  271.02 3925.29 12483.72 1703.05 1238.17 296.32 62548 226.86 560.32 281.93
1.00 1618  11.66  13.11  2888.23 9251.59 118341 21856  35.65 21557 7155 453.31 238.19
1.50  1.59 1.39 114 1607.68 1044.82 164.16  3.66 132 2281 546 288.71 133.39
2.00  1.00 1.00 1.0l 79595  47.68  11.86 1.05 1.00 3.79 149 185.64 68.50
0.00 3639.70 5250.33 577659 9287.89 12139.71 1784.44 10500.39 1406.33 1497.88 692.08 631.99 360.24
0.25 10453.54 1930.49 2348.37 8441.62 6892.77 1146.05 3579.71 290.75 1198.41 535.60 612.85 345.37
0.50 201.87 122.63  285.72 6249.00 1657.41 40553  866.22  150.12 645.93 270.15 552.64 314.30
0.75 075 2575 2142 34.85 417370 269.82 10472 18301 5513  287.55 107.38 483.19 257.58

1.00 8.05 7.39 6.00 3025.55 55.96 28.35 38.16 1177 105.60  36.96 412.44 207.27
1.50 2.07 1.96 1.32 1435.98 5.97 4.12 2.86 1.43 17.23 548 27354 118.28
2.00 1.11 1.07 1.03 589.88 1.80 1.57 1.08 1.01 3.91 1.71  185.71 71.33

0.00 506.23  499.45 51147  503.09  503.04  505.16  503.96  506.55 511.82 500.85 506.78 507.24
0.25 111.64 133.09  267.71 245.33  261.97  259.18 782.65  534.14  423.98 404.52 494.57 490.28
0.50  31.67 37.89 66.51 55.74 71.47 69.17 240.77 162.23  266.94 216.13 455.29 450.29
1 0.75 13.19 15.55 16.09 13.54 20.79 20.23 72.60 53.58 133.49  96.20 411.23 387.42

1.00 6.75 7.89 5.17 4.64 7.64 7.64 22.60 16.62 63.85  39.75 359.26 321.20
1.50 2.52 2.85 1.51 1.49 2.10 2.16 3.02 2.23 13.94 8.47  260.57 207.84
2.00 1.36 1.41 1.07 1.09 1.20 1.23 1.14 1.06 4.40 2.86  190.03 139.47

0.00 2281 39.65 112.22 136.30 76.10 102.55 18.35 28.47  203.03 198.85 410.70 389.44
0.25 19.97 31.65 73.29 84.49 45.91 57.89 177.22 199.10  180.53 172.20 401.98 380.56
0.50  14.46 19.18 28.97 29.93 17.54 20.25 121.88 110.31  123.96 109.05 383.55 359.37

1.25 o.75 9.47 11.07 10.80 10.74 7.31 7.97 48.95 43.15 73.42  54.95 353.64 317.61
1.00 6.06 6.96 4.71 4.68 3.62 3.85 19.29 16.75 41.02 28,50 315.83 276.75
1.50 2.90 3.25 1.68 1.72 1.50 1.57 3.62 2.85 12.83 8.47 24472 197.99
2.00 1.66 1.81 1.14 1.17 1.09 1.11 1.26 1.14 4.65 3.24  186.30 135.86

0.00 8.09 14.67 40.09 56.25 24.25 37.13 7.06 11.07  100.81  97.56 340.70 307.79
0.25 7.83 13.64 30.78 40.54 17.07 23.69 18.87 31.48 88.99  89.52 342.21 301.97
0.50 7.01 11.14 16.53 19.25 8.28 10.24 61.19 69.09 68.48  63.88 324.87 286.24

15 o.75 6.17 8.41 8.05 9.00 4.20 4.81 38.18 37.91 46.47  38.58 301.81 268.04
1.00 5.18 6.29 4.32 4.63 2.45 2.71 18.40 17.78 29.86  22.70 281.01 238.85

1.50 3.14 3.49 1.82 1.91 1.31 1.36 4.38 3.83 11.48 8.05 229.81 181.89

2.00 1.97 2.14 1.23 1.27 1.05 1.07 1.49 1.32 5.08 3.72  186.46 135.55

0.00 4.74 8.46 19.39 28.97 11.72 18.94 4.31 6.69 59.37  55.99 288.24 250.96

0.25 4.64 8.15 16.38 23.38 9.06 13.34 7.47 12.63 50.90  54.32  283.87 246.25

0.50 4.42 7.33 10.88 13.94 5.19 6.62 15.58 25.51 4314 42.68 271.38 237.93

1.75 o.75 4.20 6.29 6.43 7.71 3.03 3.51 27.12 30.59 3222 29.04 264.18 227.34
1.00 3.80 5.29 3.96 4.50 1.97 2.18 17.83 18.30 22.62 19.19  247.84 208.32

1.50 3.12 3.60 1.92 2.08 1.21 1.26 5.24 5.07 10.84 8.22 21413 168.13

2.00 2.20 2.39 1.31 1.37 1.03 1.04 1.84 1.65 5.39 4.10  180.64 132.26

0.00 3.38 5.81 11.54 18.11 7.12 11.84 3.20 4.87 40.46  35.55 248.38 209.49

0.25 3.35 5.68 10.24 15.29 5.86 8.79 4.55 7.44 33.66  37.23  250.30 207.66

0.50 3.24 5.41 7.75 10.65 3.77 4.89 7.11 12.18 29.54  31.10 242.79 200.31

2 05 3.17 4.97 5.25 6.69 2.42 2.88 11.64 17.69 24.08  23.29 234.72 193.50
1.00 2.99 4.40 3.63 4.32 1.70 1.89 14.87 16.88 18.16 16.44  225.19 184.62

1.50 2.68 3.41 1.98 2.20 1.16 1.20 6.14 6.36 9.79 8.20 19552 153.90

2.00 2.32 2.55 1.38 1.47 1.03 1.03 2.29 2.15 5.54 451 170.17 132.57
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Table 5.3: SDRLs of SC and SL Charts under Different Distributions using
m =100 and n =5

U (V=3,V3) t4 LN(1,1) G(1,1) C1 Cc2

v 6 sC SL SC SL SC SL SC SL SC SL SC SL
0.00 1523.32 343877 2615447 1522350 10820.01 3922.19 2410439 121242 5762.79 1152.54 1165.85 462.47
0.25 3023.32 3506.40 2255220 14967.63 15555.80 3377.95 20772.47 7520.43 4863.72 973.78 1135.92 419.56
0.50 14639.87 2769.44 10064.97 14773.53 2123522 4046.90 13380.19 5877.11 3319.82 767.23 1063.13 417.88

05 075 771673  499.28 2384.35 1331589 21560.04 3839.40 5596.81 2573.27 1796.22 496.24 1013.83 394.96
1.00 2229 1520 10634 11305.25 17742.19 2831.89 1910.50 47551 818.40 281.56 823.35 410.21
1.50  1.07 0.83 0.71  8864.32 4978.54 TTT.76  35.83 247 14953 22.06  655.10 319.56
2.00 0.7 0.05 0.07 630291  408.96  41.36 0.64 0.08  30.15 289 49431 18581
0.00 13916.04 9698.16 9485.65 19606.95 17472.98 2883.92 16745.08 2724.92 2298.94 865.22 1005.81 461.84
0.25 18810.79 4380.18 5963.97 19060.68 12867.26 1896.86 8592.19 523.63 2021.06 744.40 989.55 432.95
0.50 327.14  185.02 1039.44 16231.99 498529 859.17 307542 329.09 1381.87 467.73 91859 438.71
0.75 075 3013 2454  221.31 13388.02 94235  262.07 90814 16533 907.08 363.98 859.89 395.57

1.00 8.37 7.76 17.96 11673.86  136.19 54.03 186.15 34.21 427.66  123.80 785.62 370.67
1.50 1.58 1.49 0.79 8030.86 8.67 4.79 9.81 1.87 134.33 17.72  615.42 264.77
2.00 0.36 0.29 0.17 4801.92 1.43 1.10 0.60 0.14 27.68 2.10 452.18  203.34

0.00 851.89 70226  853.95 712.30 818.90  720.95  836.01 71149 72314 804.96  827.01 729.03
0.25  134.50 162.99  535.68 417.24 461.83 42446  1915.06 1037.74 760.01 646.67 871.64 711.38
0.50  34.76 42.01 146.08 130.01 124.03 111.20  662.72  313.50  617.50 437.40 765.56 703.94
1 o715 13.56 16.23 33.98 21.43 31.48 27.53 188.94 137.30  386.99  268.98  738.65 669.15

1.00 6.61 7.78 8.02 5.66 9.10 8.94 52.61 36.38  256.72  147.65 723.87 629.51
1.50 2.04 2.42 1.04 0.95 1.70 1.76 5.61 3.76 99.17 54.36  590.70  493.13
2.00 0.73 0.79 0.29 0.32 0.51 0.55 0.69 0.39 35.49 27.53  495.19 424.78

0.00 2381 42.05 163.10 174.78 97.38 126.44 18.82 29.69  286.95 33596 728.38 570.31
0.25  20.59 33.27 109.80 123.10 59.77 72.91 281.84  283.74 32752 271.34 733.74 587.17
0.50 14.58 19.67 44.99 44.47 21.03 24.47 222.75 182.89  271.87  214.53 701.67 579.38

125 o.75 9.29 11.07 15.30 14.19 7.96 8.59 101.57 69.38  200.18 126.31 674.40 563.25
1.00 5.77 6.69 5.48 5.09 3.41 3.63 33.07 27.11 157.51 85.21  611.01 529.24
1.50 2.42 2.78 1.21 1.20 0.91 0.99 5.50 3.74 60.55 43.06  548.87 476.71
2.00 1.08 1.25 0.42 0.46 0.31 0.35 0.85 0.57 24.00 15.72  470.69 373.64

0.00 .77 14.68 51.18 67.60 27.76 41.45 6.73 10.82 138.08  168.01  686.31 478.92
0.25 7.45 13.42 41.65 51.14 19.44 26.69 20.10 33.57  160.81 137.43 601.55 485.66

0.50 6.64 10.96 21.10 23.69 8.71 10.88 84.64 96.83 167.35 113.32  668.38  463.00

15 o.75 5.79 8.12 9.63 10.33 4.00 4.58 55.69 53.46 11148 7583  576.60 472.61
1.00 4.76 5.90 4.59 4.73 1.99 2.29 26.45 25.01 97.94 53.64  547.22  470.79

1.50 2.62 3.00 1.35 1.43 0.65 0.72 5.75 4.69 55.60 21.25  511.73 434.71

2.00 1.39 1.59 0.55 0.60 0.23 0.27 1.19 0.91 27.12 8.49 493.54 391.42

0.00 4.26 8.03 22.75 32.97 12.28 19.95 3.85 6.29 80.30 97.01 568.63  394.23

0.25 4.16 7.76 19.15 26.84 9.33 13.94 7.27 12.66 95.33 76.66  506.45 404.74

0.50 3.90 6.98 12.77 16.22 5.03 6.52 16.98 28.03 93.15 69.49  487.01 398.63

175 o.75 3.71 5.85 7.11 8.44 2.59 3.11 34.93 38.86 75.73 48.14  481.79 418.78
1.00 3.31 4.83 3.93 4.47 1.43 1.65 22.75 22.82 62.09 38.74 47290 405.47

1.50 2.61 3.10 1.42 1.60 0.51 0.57 6.26 5.95 41.53 19.02  442.68 385.83

2.00 1.64 1.82 0.65 0.74 0.19 0.21 1.62 1.36 26.37 6.29 443.42  341.43

0.00 2.87 5.39 12.63 19.82 7.01 12.18 2.70 4.41 58.03 64.65  436.40 347.44

0.25 2.82 5.22 11.26 16.66 5.68 8.62 4.14 7.13 57.65 51.27 47836  342.76

0.50 2.70 4.92 8.42 11.68 3.37 4.58 6.94 12.39 53.91 46.07  449.94 332.65

2 o075 2.65 4.52 5.36 6.95 1.91 2.42 12.64 19.66 50.35 39.54  457.56  345.47
1.00 2.46 3.88 3.42 4.17 111 1.33 17.57 19.59 45.03 26.37  439.34  356.90

1.50 2.13 2.89 1.47 1.72 0.43 0.49 6.84 7.10 27.69 15.50  430.07 348.88

2.00 1.76 2.02 0.73 0.85 0.16 0.18 2.11 1.96 31.29 7.96 387.64 351.30
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Figure 5.2: ARL; curve with varying location shifts 6 and fixed 6 = 1.25

in the location parameter; both charts are sensitive to shifts in location
and scale but both charts react more quickly to detect a shift in standard

deviation rather than mean.

e For the case of uniform distribution, SC chart performs slightly better than

SL chart. For instance: when # = 0.25 and v = 1.25 ARL; values of SC and
SL charts are 19.97 and 31.espectively; when # = 0.0 and v = 1.25 ARL,

values of SC and SL charts are 22.81 and 39.65 respectively; when 6 = 0.25
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Figure 5.3: (InARL,) profile with respect to scale shift () on fixed § = 0.5

and v = 1.00 ARL; values of SC and SL charts are 111.64 and 133.009.

e The SC chart performs slightly better than SL chart under #;. For example:
when 6§ = 0.25 and v = 1.25 ARL; values of SC and SL charts are 73.29 and
84.49 respectively; when § = 0.0 and v = 1.25 ARL; values of SC and SL
charts are 112.36 and 136.30 respectively while when 6 = 0.25 and v = 1.00

ARL; values of SC and SL charts are 267.71 and 245.33.

e For the case of lognormal distribution, SC chart performs slightly better
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than SL chart. Due to an upward shift 6= 0.25 and v= 1.25 ARL; decreases
45.91 of SC and 57.89 of SL chart. when = 0.0 and y= 1.25 ARL; values of
SC and SL charts are 76.10 and 102.55 respectively while when 6= 0.25 and

v=1.00 ARL; values of both SC and SL charts decreases approximately

48%.

e Gamma (1, 1) provides substantial results when = 0.0 and y= 1.0. When
0= 0.25 and v=1.00, ARL; of both charts is greater than the intended
ARLgy, which makes both charts less effective and ARL biased for such
shift. By varying the v we observe the same effect on the results of said
charts. Moreover, having = 1.5 and 2 with y= 1.25 shows increasing trend
as compared to the results when v remains IC. Similar type of the finding

for the exponential distribution was also noted by [132].

e In contaminated environment (C1 and C2), effectiveness of detecting the
shift in location and scale is affected for both SC and SL charts as compared
to other environments. SL chart performs slightly better than SC chart. In
C1, reduction in ARL; values of SC and SL charts are reported as: 64%
and 66% on 6= 0.25 and y= 1.25, 59% and 60% on 6= 0.0 and y= 1.25
and approximately 15% and 19% on 6= 0.25 and v= 1.00. On the other
hand in C2, reduction in ARL; values of SC and SL charts are as: 20%
and 24% on 0= 0.25 and y= 1.25, 18% and 22% on #= 0.0 and y= 1.25 and

approximately 1.08% and 1.9% on 6= 0.25 and é= 1.00.

e Consider the effect of specific shift v =1.25 on the charts with respect to
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different environments. The shifts in 6 (on horizontal axis) and ARL; (on
vertical axis) are portrayed in Figure 5.2. The results revealed better per-
formance of SC and SL chart with the increase of 6. Further, results from
Figure 5.3 show better performance of SC and SL chart with increase in ~
on fixed 6= 0.5. Moreover, in light tailed distributions SC chart performs
well while in heavy tailed environments SL chart is superior, and both charts

lose their performance in case of C2.

5.5 Effect of reference sample and test sample

on the performance of charts

Control limits of nonparametric charts are estimated from reference sample (m)
and this may have a significant effect on the performance of the phase-II chart
which is reported in Table 5.4. In general, increasing m produces decreasing trend
in ARL; of both charts under all environments. Specifically, at fixed v = 1.5, the
ARL; of the SC chart under G (1,1) decreases about 44.5% due to increase in
m from 30 to 50 at fixed & = 0.75 while it decreases 64.1%, 68.4%, 70.7% and
71.8% from the 30 to 100, 150, 500 and 1000 samples respectively. On the other
hand in SL chart 23.5% , 32.9%, 36.3%, 40.1% and 40.7% fall out is reported in
ARL; from m = 30 to 1000 respectively on the fixed location parameter 8 = 0.25.
Moreover, the same findings are examined for different v at fixed 6 = 1.

The test sample (n) also exhibits significant effects on the performance of
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the phase-II chart and its profile study is given in Table 5.5. At fixed v = 1.25,
ARL, of the SC chart under ¢, environment decreases about 53.9% due to increase
in n from 5 to 8 at fixed 6 = 0.75 while it decreases 66.5%, 76.6% and 84.7% from
the 5 to 11, 16 and 25 samples respectively. On the other hand, a decrease of
39.6%, 66.4%, 74.5% and 84.7% in ARL; of SL chart is reported with n = 5 to 25
respectively on the fixed location parameter § = 0.75. The same findings are
also observed at fixed # = 1 and varying values of 7. In general, increasing
the test sample size produces decreasing trend in ARL; of both charts under all

environments.

5.6 Illustrative example

In this section, we apply our SC and SL charts on a dataset containing duration
of contract strikes in US manufacturing industries (cf. [133]). A strike is a refusal
of employees to perform work as a form of protest. In industries, strikes may
cause the losses in manufacturing and production departments. So, administra-
tion and human resource management always try to avoid it. In case of a strike
they monitor the strike duration to minimize loss. From the said data, we have
considered the data from January 1968 to October 1976. Further (following [66])
we have considered 100 observations between January 1968 and February 1969 as
a reference sample and remaining 460 data points as test samples (each of size
10). The control limits for SC and SL charts are obtained by the same simulation

procedure as mentioned for Table 5.1, and are given as: 5.37 for SC chart and 11.1
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for SL chart at ARLy = 500. The values of the plotting statistics for SC and SL
charts, along with test samples, are reported in Table 5.6 and their corresponding

control charts are given in Figure 5.4.
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Figure 5.4: Control chart displays i) SC chart, ii) SL chart

It is evident that both SC and SL charts indicate an OOC signal at 10*"point. For
the follow up diagnosis of shift by SL chart, we have computed the p-values for
Wilcoxon test (p;= 0.001684) and Ansari Bradley test (ps= 0.1267), indicating
a shift in location parameter. Similarly for SC chart, we got the p-values for
Wilcoxon test (ps= 0.001684) and Mood test (py= 0.04445), referring to locational
shift. The results of this example are also in line with [66] which concluded that

there is no scale shift in the process.
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Table 5.6: Contract strikes, test samples and corresponding SC and SL Statistics

Serial no. Test samples (n) SC SL
1 5 18 44 44 59 60 7T 14 31 32 0942 1.557
2 7 1 2 7 10 18 23 25 36 42 0466 1.361
3 46 47 B0 77 9 37 41 49 52 119 247  4.58
4 2 13 25 31 31 35 44 45 53 111 0.784 2.149
5 3 4 ) 6 7 9 14 23 26 37 2407 4.86
6 46 47 T7 2 11 16 147 2 2 4 1.745 3.181
7 6 16 18 31 42 6 7T 32 44 70 092 1.628
8 32 1 T2 14 26 4 4 43 60 0.186 0.639
9 62 64 68 82 3 13 30 154 3 17 1502 2.632
10 19 28 72 99 104 114 152 153 216 15 6.95 12.23
11 21 52 109 3 5 9 26 52 61 148 0.674 1.258
12 168 2 11 19 26 30 36 47 50 87 0416 1.124
13 3 ) 7 1v 23 30 104 108 192 18 0.326 0.129
14 40 47 57 1 5 10 15 19 28 42 0.594 1.346
15 64 148 4 6 12 12 28 105 112 163 2.12 3.774
16 11 1229 50 235 10 19 41 52 100 0.769 1.534
17 3 4 10 12 34 8 101 102 104 124 2.629 5.101
18 15 61 98 22 24 38 64 84 5 6 0.445 0.886
19 70 70 1 11 18 19 50 90 9 15 0.084 0.149
20 20 24 84 117 1 23 25 59 63 179 1.582 2.399
21 92 153 17 226 13 23 2 38 3 3 1417 1.311
22 6 139 2 25 8 13 125 4 54 91 2193 3.807
23 38 2 6 61 18 64 122 11 16 31 0.046 0.089
24 39 41 2 4 5 7 9 13 38 3 1911 3.883
25 10 4 5 22 27 28 3 39 8 191 0.119 0.7
26 5 44 56 6 21 33 109 125 127 8 0.762 1.574
27 9 13 14 15 28 50 60 135 ) 7 0.184 0.253
28 16 21 37 41 2 2 20 24 57 8 0.651 2.062
29 16 24 59 115 123 141 146 146 3 15 3952 6.63
30 15 18 20 26 34 84 122 174 4 14 0347 1.274
31 15 17 22 24 39 53 107 5 9 10 0.782 1.978
32 16 22 24 31 31 34 38 42 65 74 2706 6.862
33 101 130 1 2 2 3 4 8§ 11 22 4704 7.843
34 23 27 32 33 35 43 43 44 100 2 1.378 4.147
35 19 20 20 20 23 24 33 33 63 67 2719 8.275
36 94 116 1 § 15 15 22 23 26 27 0.176 1.844
37 55 160 ) § 13 20 42 53 59 83 0.782 1.755
38 101 g§ 11 15 22 58 60 108 31 42 0.832 1.656
39 45 50 61 106 142 36 52 99 38 47 4.435 8.895
40 62 38 51 98 133 9 86 141 9 5 2.534 5.763
41 49 8 13 2 6 37 28 36 48 136 0.07 0.118
42 139 2 14 15 33 143 42 8§ 122 56 0.886 1.503
43 14 14 106 127 131 140 141 163 22 23 4.387 7.672
44 29 99 118 2 12 12 21 21 27 38 0.247 1.458
45 42 117 2 12 19 22 75 126 8 36 0.216 0.36
46 107 5 5 29 151 9 16 29 35 65 0.137 0.274
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5.7 Concluding remarks

Control charts are often designed and used to monitor single process parameter
such as location and dispersion but an attractive approach is to monitor both
parameters together. In this study, we investigate the two nonparametric SC
and SL charts for the joint monitoring of location and scale parameters. The
performance analysis has revealed that SC takes an edge over SL under light
tailed distributions while SL is a good alternative under heavy tailed distributions.
Moreover, a reasonably larger reference and test samples produce better ARL

performance of these charts.
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CHAPTER 6

SUMMARY, CONCLUSIONS
AND FUTURE

RECOMMENDATIONS

In this chapter, the findings of this thesis along future recomendations are re-

ported. Which are given in the following sections:

6.1 Summary and conclusions

In many manufacturing/production processes, control charts are used to moni-
tor the quality characteristic of the process whereas, in some processes, quality
characteristic has relationship (linear or non-linear) with other explanatory vari-
able(s). For example, the dissolve amount of aspartame (an artificial sweetener)

is reliant on the temperature, in semiconductor manufacturing application; pres-
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sure in the chamber depends on the flow of gases in the chamber and in electrical
process; capacitance of the capacitor has inverse relation with the voltage at fixed
charge. In literature, the term simple linear profiles is referred for the methods
which are used to monitor such quality characteristic that has linear association
with another ancillary variable. Usually, in simple linear profiles, three parame-
ters are considered to study the state of any process such as slope, intercept and
error variance.

Generally, control charts are worked into two main stages named as retrospec-
tive stage (Phase I) and prospective stage (Phase II). The objective of the retro-
spective analysis is to find the optimal choice of process parameters and control
limits for the monitoring phase (Phase II). In this dissertation, we have designed
and investigated Phase I and Phase II simple linear profile methods under the
different ranked set sampling strategies such as ranked set sampling (RSS), me-
dian ranked set sampling (MRSS), extreme ranked set sampling (ERSS), double
ranked set sampling (DRSS), double median ranked set sampling (DMRSS) and
double extreme ranked set sampling (DERSS). The results indicated that the pro-
posed methods under RSS and its modified forms have superior detection ability
as compared to the existing schemes. Particularly, DMRSS and DERSS offers
superior performance as compared to the other schemes of interest. In addition to
RSS samplings, we have also used modified version of successive sampling scheme
(MSS) to enhance the performance of simple linear profiles method named as

Shewhart — 3 chart. The run length properties are used as performance measure
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which indicates that all the proposed charts under MSS outperforms the classical
chart which is based on SRS.

In literature, simple liner profiles was evaluated under simultaneous structure
for the monitoring of linear profile parmeters such as intercept, slope and error
variance. In simulteneous structure each parameter have individual chart which
consist of respective pair of limits. For example, in simultaneous monitoring of
linear profile parameters three individual charts based on each parameter are
designed in a mechanism to obtain overall performance of the process. We have
designed joint structures (which depends on single charting structure) for the
monitoring of linear profile parameters. The results reveals that the joint (Max-
EWMA-3 and SS-EWMA-3) and simultaneous (EWMA-3) charts have almost
similar performance but they have better performance as compared to EWMA /R,
T? and Shewhart-3 charts. Specifically, Max-EWMA-3-C and SS-EWMA-3-C
charts have relatively good performance among all others.

Slope is an important parameter which provides the estimate of average rate of
change between study and explanatory variable. If the slope of the simple linear
model is zero (i.e. f; = 0) then the effect of explanatory variable is eliminated
from the process and the joint monitoring of mean and variability becomes a
special case of simple linear profiles. In this dissertation, we proposed a parametric
control chart named Max progressive (Max-p) chart for joint monitoring of shifts in
process parameter(s). The results reveal that the newly proposed chart has better

performance to detect shifts in the process parameter(s) as compared to popular
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proposals such as Max-EWMA, SS-EWMA, Max-DEWMA and SS-DEWMA.
Further, we also investigate the two nonparametric SC and SL charts for the
joint monitoring of location and scale parameters. The performance analysis has
revealed that SC takes an edge over SL under light tailed distributions while SL is
a good alternative under heavy tailed distributions. Moreover, a reasonably larger

reference and test samples produce better ARL performance of these charts.

6.2 Limitations of the study

The limitations about our study are given in the following points:

(i) This dissertation is designed to monitor the parameters of simple linear

model named slope, intercept and error variance.

(ii) Generally, in simple linear profiles two well-known models are used such as
fixed effect model and random effect model. This study comprises fixed effect

model in simple linear profiles.

(iii) This study is focusing on normal distributional setups for the quality char-

acteristics of interest.

6.3 Future recommendations

The future recommendations on our proposed methods are given in the following

points:
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(i)

(iii)

The current study has investigated the impact of variant sampling schemes
in simple linear profile analysis. However, the scope of this study may be

extended to multiple linear profiles and non-linear profiles.

The complete dissertation consists of methods that are used to enhanced the
monitoring of linear profile parameters under fixed effect model. One may
use these methods to enhanced the monitoring of linear profile parameters

under random effect model.

Mostly, present study has covered the normal behavior in simple linear pro-
files. However, the scope of this study may be extended to cover non-normal

behaviors in simple linear profiles.

The Shewhart structures for simple linear profiles may be extended in other
directions such as implementation of run rules and addition of fast initial

response (FIR) feature.

Some interesting future research directions might include studying the per-
formance of these charts under multiple structural breaks and when a shift

occurs at steady-state.
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APPENDIX A

A.1 Transformed linear model

The simple linear profile model under ranked set strategies is defined as:

)/;j:60+ﬁlXi+5ij;i:172737 ........ , g j:1,2,37 ........ , M

writing the shifted 3y such as $1= (3, + fo in the linear regression model given in

above model, we obtain

Yij = Bo+ (B, + Bo)X; + &5

where (3 is the shift for slope and by adding or subtracting with (5, + Bo) X, we
get

Yij = bo+ (B, + Bo)X; +eij + (B4 + o)X — (B, + o)X

Yij = [Bo+ (B, + Bo)X] + [(B, + o) X; — (B, + Bo) X] + 5

Yij = [(Bo + $1X) + (Bo)X] + [(B, + Bo) (X — X)] + &5
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Since, average of X(;)" is zero so the covariance will be also zero and assumed Ay =

Bo+ /1 X, A1 = f and X;* = X; — X then the above equation is written as

Yb = (AO + (ﬁO') 7) + (Al + ﬁO’)Xz* + Eij

Yij = (Bo) + (B1) X" + €4

A.2 Properties of error term in different ranked

set samplings

In the simple regression, we assumed that the error term is normally distributed
having the mean zero and constant variance (i.e. € ~ N (0,02)). So the stan-

dardized form of error is defined as

In this study, we are focusing on different strategies (7) named RSS, MRSS,
ERSS, DRSS, DMRSS and DERSS so the probability density function f(.), mean
E(.) and variance Var(.) for error term under RSS (e()) and DRSS (5%) are

defined as:

n

Pt =ot I g (PG -0 1 ()]

r=1
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+oo = n!
L (5(7“)) - U/ w n! H |:(7, _ 1)' (n _ ’l“)'{F (w)}r_l{l —F (w)}n_rf (w) dw :|

o0 r=1

E (5(7.)) =0 Drl

+oo n

2 n! r—1 n—r
N w” n! g {(r—l)!(n—r)!{}ww)} {1-F(w)} f(w)dw}

T

-(E ()

osy = Var (ep)) = 0° Dys = (0 Dp1)* = 0* ( Dyy — D)

1 i) = T [ () (- r ()} 7 (2) 2]

oo & 7’L' r—1 n—r
E (ef) ZU/OO wey ol [ [(T_ i i (we) ) {1 = F(we) ) f(ww))dww)}

r=1

Uz[dr] = Var (5*r)) = o’ Dy, — (UD:1>2 =0’ (Dyy — D:f)

For odd set (n = 2m — 1), the probability density function f(.), mean E(.) and

variance Var(.) for error term under MRSS () and DMRSS (e7,,,)) are defined

o) = e (P Y (- F OG5
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e m—1) 1 m—1
B ) =0 [ w o e P @) = F ()™ f () do

[e.e]

E (e(m) = 0 D

Var ) =0* [t B ) = F ) ) b= (B )’

Og[m] = Var (5(m)> =0’ Do — (CT Dml)2 = o2 ( D, — Dfnl)

1 G = it G - ()T ()

Let £; is the error of smallest sample and ¢,, is the error of largest sample then for
odd sets, the probability density function f(.), mean F(.) and variance Var(.) for

error term under ERSS (£(1), £(n)) and DERSS (e, 7)) are defined
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+o0
E(eq)) = a/ wn {l—Fw)Y" " f(w)dw

E (ew) =0 Du
Blew) =0 [ wn (P @) @)
E(ew) =0 D
Var () = o [ wtn (1= P @)™ (whdv = (B )’
02 = Var () =0 D1y — (0 D)’ =0® ( D1z — D))
Var () = * [ :° w? n {F )} (w) dw — (E (c))*

Olten) = Var (ew)) = 0 Dnz — (0 D)’ = 0* ( Dyo — Dy

n1)
s =afi-r ()} ()
) nfr ()7 (2)



+oo

Var (&) =* | wby n {F (w0) "5 (w) du = (E (5))

— 00

2

Ug[den} = Var (grn)) = O-ZD:;Q - (O-D:;l)Q = 02 (D:LQ - D;g)

A.3 Independence of sample mean (Y) and sam-

ple variance (S?)

Let Y = (Y1,Y2,.....,Y,) be the normal random variable with parameters p and

0?. The sample mean and variance of Y are defined as

n n >\ 2
Y = Zi:lYi. 52_ Zi:l (Yz‘_Y)

n n—1

To prove the independence of Y and S2, following theorems are used.
Theorem 1: Complete sufficient statistic through exponential family distribu-
tion.

Let {fp: 0 € ©} be a k-parameter exponential family given by

foly) =exp | > Qi0T; (y) + D (0) + S (y)

i=1

where 0 = (61,0s,.....,0;) € © , an interval in Ry, 11,15, ...., T and S are
defined on R,,, T = (11,13, ...., Tx) and y = (y1,Y2,- -, Yn), k < n. Let
Q = (Q1,Q2, ...., Qr), and suppose the range of ) contains an open set in Ry,

then T'= (11 (Y), 1> (Y), ...., T, (Y)) is a complete sufficient statistic.
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Suppose Y ~ N (p, 0%) and the both parameters are unknown. We know that

the family of distribution of X = (Y, Y5,.....,Y,) is a two-parameter exponential
family with 7 (Y1,Ys,.....,Y,) = (O Y;, >_Y?). Then by the aforementioned
i=1 i=1

n
theorem )Y is a complete sufficient statistic of parameter . We also know that

i=1
any 1-1 transformation of complete sufficient statistic is also complete sufficient
statistic (i.e. Y is a complete sufficient statistic).

Theorem 2: Ancillary statistic.

A statistic B (Y') is said to be ancillary statistics if its distribution does not depend
on the under-laying model parameter 6. For example, let Y7, Y5,....., Y, be a ran-
dom sample from N (u,1). Then the statistic B(Y) = (n —1)5* =3 (Vi - Y)?
is an ancillary statistic because (n—1)S? ~ x2_, and free from parental parameter
L.

Theorem 3: Basus theorem.

Statement: if A(Y) is a complete sufficient statistic for 6, then any ancillary
statistics B (Y) is independent of A. Proof: as mentioned in Rohatgi that if B

is an ancillary statistic, then Py = {B (Y) < b} is free of 0 for all b. Let the

conditional probability g, (A) = {B(Y) <bJA(Y) = a}, then

Eg{gy (A(Y))} = B {B(Y) < b}

Thus

Ey (g5 (A) = P{B(Y) <b}) =0
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For all 6 . By completeness of A it follows that
Pp(ge(A)—P{B<b}=0)=1
That is,
Py{B(Y)<bA(Y)=a} =P{B(Y)<b}

with probability equals to 1. Hence A and B are independent.
As discussed in theorem 1 that Y is a complete sufficient statistic and S? is an
ancillary statistic (cf. theorem 2). So, by theorem 3 (Basu’s theorem) it is proved

that Y and S? are independent.

A.4 Statistical framework for Lepage

The Lepage statistic depends on two well-known test statistics namely Wilcoxon

Rank-sum (77) and Ansari Bradley (73). Which are defined as

N
T1:Zk:]K
k=1
N 1
Ty=) k=5 (N+1)|Ix
k=1

where [ is an indicator variable used to assign zero when sample belongs to

reference set (U) otherwise the value of I} is 1. The derivation of mean and
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variance of Wilcoxon Rank-sum statistic are

E(T) = kE (Ir)

-

E(Th) = N(]\;+ 1)%
E(Ty) n(N2+ 1)

N
Var (Ty) = Z k*Var (Ix)
k=1

N
mn
Var (Tl) = Z kQW
k=1
N(N+1)(2N+1)mn

Var (Tl) = 6 ﬁ

mn (N +1) (2N +1)

Var (Ty) = N

The derivation of mean and variance for Ansari Bradley statistic when total sample

size 1s even are

N
K
K=1
N (N
T(E+1)1
E(Tz):2m2(22 )N



mn N?2(N?>-1) (N 2
Var (Ty) = NT(N 1) [ 3 - (%E(TQ))
mn N2 (N?—1) N?
Var(T2) = fe v =) [ 12 (T
mn (N? — 4)
Var (1) BN

(N—1)(N+1) N+1
(e

N2+N—N—1+N+1
4 2

[N2—1 N+1}
_|_
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k=1
. mn N?2(N?—-1) (N 2
Var (Ty) = NT(N = 1) [ 1 - (EE(TQ))
mn N2(N2—-1) [(N2-1\>
Var(TQ)_NQ(N—l)[ 12 _( 4 )]
Var (Ty) = mn (N + 1) (N? + 3)

48N?

A.5 Statistical framework for Cucconi

The Cucconi statistic depends on two statistics namely W and Z. For the proper-
ties of W and 7 statistics, mean and variance of S; and S, statistics are required

which are derived as follow:

E(S))=E (Z k21k>

where [, is an indicator variable used to assign zero when sample belongs to

reference set (U) otherwise the value of I, is 1.
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as mentioned by [134] that the sum of square of first N natural number is

X, N(N+1)(2N +1)
Zk - 6

k=1

and the expected value, variance and correlation of indicator variable are

E(Ik):%, Var(fk)Z%, Cov (I, Iy) = %
E(&)Z%(N(NH)(ZNH))
E(Sl>:n(N+1)(2N+1)

6

by using similar estimation one may easily derived the mean S5 whhich is

B(5)=E (Z (N+1- k:)%) n(lV+ 1)6(2N+ )

k=1

The derivations of variances for S; and Sy are as follows:

Var(S;) = Var (Z k2lk>

N N
Var(S,) = Zk4Var () + D) Kk Couv (11, 1))

=1 j=1

Var (S)) Zk4nm+22k2k2< —m_l)>

i=1 j=1

(N—l)fozl "m—nmzz 1ZJ 1’%2]‘532

Var (S)) = NT(N 1)
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B N N N
nm
Var (Sy) NN ) _N; ; ;;kk
nm N N
4 21.2
Var (S;) NN D) N;R ; lezlk:k

Var (S)) = N2 [NZR4 ( i R§> 2]

i=j=1

Var (81) = — "™ [NN (N+1) 2N+ 1) (3N +3N —1) N*(N+1)°@2N +1)°
N2(N 1) 30 36
Var(S1) = N2nm](\f];f<4j—vlz(12)]\f +1) {3]\[2 +3:3N -1 (N+ 1)3(62N + 1)}
Var (S1) = nm(zézvl)_(zlj)vﬂ) {3N2 +53N— 1 2N’ +§N+1]
Var(S)) = nm(]\éerl)_(Qll)VJr 1) [181\/2 + 18N—63—010N2 — 15N — 5]
Var (5 = ™ (J\(szer)_(Qlj)VqL 1) {SNQ +?‘:’>é\f - 11}
Var (5 = WY +12)0(2N +1) [SNQ + 1&\7]\7_—15;1\7 - 11}
Var (5 = Y +118)0(2N+ 1) [N(8N+ tjlv) - 1)(8N+ 11)}
Var (S)) = nm (N +1?0(2N +1) [N (8N + 1]1\2 : 1)(8N + 11)}

Cum (N +1) (2N + 1) (8N +11) [(N — 1)
Var (51) = 180 {(N— 1)}
Var (S)) = nm (N +1) (2N +1) (8N + 11)

180
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by using similar estimation one may easily derived the variance of S, statistic

Var (8) = Var (Z (N+1— m) nm (N +1) <2g + 1) (8N +11)

k=1
Further, the means and variances of W and Z are derived below:

65 (00 K1) = n (N +1) (2N + 1)

\/nm(N+1)(2N+1)(8N+11)
5

EW) =

6 (“AHEN ) (N 1) (2N + 1)

\/nm(N+1)(2N+1)(8N+11)
5

E(W) =

n(N+1)2N+1)=n(N+1)(2N +1)

E(W) =
(W) \/nm(N+1)(2N+1)(8N+11)
5

0

\/nm(N+1)(2N+1)(8N+11)
5

EW) =

EW)=0
by using similar estimation one may easily derived the mean of 7 statistic

6E (zjjzl (N+1-— k)%) (N +1)(2N +1)
\/nm(N+1)(2N5+1)(8N+11)

The derivations of variances for W and Z are as follows:

6Var (zfj:l KQIk) (N +1)2N +1)

\/nm(N+1)(2N+1)(8N+11)
5

Var (W) =
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nm(N+1)(2N+1)(8N+11)
36 | ik | -0

Var (W) = nm(N+1)(2N+1)(8N+11)
5
nm(N+1)(2N+1)(8N+11)
_ 5
Var (W) = nm(N+1)(2N+1)(8N+11) ]
5

Var (W) =1
by using similar estimation one may easily derived the variance of Z statistic

6Var (zﬁjzl (N+1- k)21k> “n(N+1)2N +1)

\/nm(N+1)(2N+1)(8N+11)
5

Var(Z) = =1

A.6 Description of real data set

In grid connected PV system, parallel plate capacitors are used as a DC link
which consists of two conductive plates separated by a dielectric material (as dis-
cussed in Section 2.1). Usually, in a parallel plate capacitor, capacitance (C')
is directly related to the surface area of the conductive plates and inversely as-
sociated to the potential difference between the plates (V). For the illustrative
example, we get 75456 sample values of Voltage (V') against each level of Ca-
pacitance (C') given in [94]. There exist 7 different capacitance levels such as,
S0pF, 100pF, 150pF, 200uF, 250pF, 300uF and 250pF'. In the stated study,
we consider Voltage (V') as a dependent variable and Capacitance (C) as an in-

dependent variable. For the IC regression model, we run 75456 sample values of
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V against fixed values of C' and get a following model

~

V = 402.3512 — 0.01983691 C'

SE = (0.02465)  (0.0001102)

t = (16321.5) (—=179.9) R? = 0.5301

Based on the above simple linear regression model, as the one uF' capacitance
increases indefinitely, we expect 402.3313 Voltage in the gird PV connected system.
We used t-test approach to access that whether there is any significant relationship
between C' and V. Assuming the null hypothesis that g = 0, t-test value having
p-value less than 0.05 reveals that there is a significant relationship between the
variables used in the linear regression model. Further, R? = 0.5301 depicts that
53% variation in the Voltage (V') is explained by the capacitance (C).

The diagnosis analysis of simple linear regression is presented in Figure A.1. Nor-
mality of the residuals is an important assumption of simple linear regression. For
the normality checking, we used both graphical and testing approaches. The nor-
mal QQ plot and Lilliefors test having statistic values 0.191 (p-value = 0.2628)
shows that there is no issue with the normality of residuals. Further, the plot
about fitted values and capacitance depicts that linearity assumption is also sat-
isfied. The plots about fitted versus residuals and standardized residuals also
depicts that the residuals have constant variances while the Breusch-Pagan test

having statistic value 3.2149 (p-value = 0.07297) is also the evident that there
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Figure A.1: Diagnosis analysis of simple linear model between Voltage and Ca-
pacitance

exists no issue with the homoscedasticity of the residuals.

A.7 Data perturbation

In literature, data perturbation approaches are classified into two categories such
as value distortion approach and probability distribution approach [135,136]. In
distortion technique, data elements are perturbed by several methods that includes
additive noise, multiplicative noise, or other randomization methods [137]. The

probability distribution approach substitutes the data set with the sample from
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own distribution [138] or by another sample from same (or estimated) distribution
(cf. [139]). In linear perturbation, the additive noise method is the simplest one

perturbation method having model,

Y=X+¢

where ¢ is the random noise and independent from X, with zero mean and co-
variance matrix >... .. has non-zero diagonal terms and the off-diagonal terms
are equals to zero which is the evident that all €’s are independent for each other
(for more details see [140-145]. Further, [146] enhanced the basic additive noise

method by considering following model

Y =0 +5X+e¢

This model is like the basic additive noise model but the covariance matrix of the
noise term is defined by .. = d¥Xxx. Where d is the scaler quantity and X xx
is the covariance matrix of X. More modifications on the additive noise models
are briefly describe in [147]. Further, there exist several perturbation techniques
for non-linear models such as: multiplicative model proposed by [148], Sullivans
Model addressed by [149], Copula model initiated by [150] and data shuffling
discussed by [151]. Usually, additive and multiplicative perturbations are used
for numeric data while some perturbation techniques are also used for categorical

data set (for more detail see [152—-155]
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A.7.1 Implication of data perturbation in regression anal-
ysis

Regression is a well-known statistical tool used to estimate the association between
explained (Y') and one or more explanatory variable (X). The classical normal

linear regression model (CNLR) is defined as follow

Where ¢ is the disturbance term and the normality and independence of CNLR
model imply that

X 1 ) NG
~ N

B BY BEB+ 0

where p is the vector of means of X, ¥ is the (K x K) covariance matrix of X
and o2 is the variance of disturbance terms. Further, the masked data (M) may
be defined as

Mg x1) = Xxx1) + Nix)

where N is the vector normally distributed zero mean additive noise with covari-

ance matrix ©. Assume X and N are independent then it follows

M [ e ¥3

Y gu ) \ s p8s+ o
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It is noted that noise addition schemes may be characterized by the covariance ©
and it is defined as © = QX (cf. [146,156]. 2 is a proportionality constant and
under the assumption about the independence of noise components, €2 is a matrix.
In common practice, variances of the noise components are the proportional to the
variance of corresponding attributes then 2 may defined as © = diagonal (QX).

When the subset of sensitive attributes is masked then the noise addition scheme
may be characterized by a partitioned matrix. For the first P masked of the K

attributed the variance covariance matrix is defined as follow

where the ©1; is (P x P) sub matrix and Tendicks method required ©1; = Q1.
Moreover, independent noise components required ©1; = {2 diagonal (X;) and
Y11 is the (P x P) sub matrix of X. It is noted that when Y is regressed on true
values of the attribute X then the expected value of the regression coefficients is

£ while when masked attribute are used then it may obtained as follow

EYIM)=8[I-2=-0)"u+pfSE-0)"'M

Hence, the expected value of the coefficients for Y regressed on M is obtained
by b = (X —©)7'S3. One may obtain more details on perturbation used in

regression model in [157].
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