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Chapter 1 : INTRODUCTION

Micro-Electro-Mechanical-Systems (MEMS) or sometime called micro-systems or
micro-machines are devices and structures of distinguished properties and unique characteristics
such as small size and low cost of manufacturing [1]. These tiny devices were first invented in
the 20™ century and then from that time and forward, MEMS designers are improving those tiny
devices due to the sudden increase of their reputation. The reason behind this rapid and
increasing interest are many such as, their superior electrical and mechanical properties, compact
size, low cost of fabrication and can applied in many domains. The domains of such devices are
tremendous in all life aspects such as thermal, fluidic, electrical, mechanical, medical, etc... [2-
4]. These tiny devices can be practical in many applications such as in sensors and transducers
[1, 2], inkjet printers [5], cell phones [6], modern TV's [7], transportation machines (cars,
airplanes, etc...) [8], navigation GPS devices [9], micro-pumps [10] and so on... Moreover,
because of the fast development and ease in fabrication of such devices, their applications will
see more room in our daily life use. MEMS devices fabrication processes consist of numerous
methods, such as top-down process and bottom-up method [3, 4]. Nonetheless, and in general,
they undergo many processes, and to cite few: the successive deposition, and the doping and
etching of thin materials [11]. These processes can be made in term of large batches at once and
therefore make their effective cost much lower.

As mechanical engineers, we should consider several other factors that may influence the
operation of these MEMS devices during their manufacturing process or even when designing
them, such as their materials selection, their actuating forces (electromechanical), the

surrounding un-controlled vibration, as well as their resultant reliability and durability. Other



significant factors can be the surface forces such as adhesion, friction, meniscus forces, and the
viscous damping forces. These are mainly due to their large surface to volume ratios [3]. In

addition that these small devices do not use any traditional lubrication [12].

1.1 Motivation

MEMS devices can undergo high sensitivity by changing some of their key design
parameters. These parameters depend mainly on the basic structures from which MEMS devices
are made of such as microbeams. For example using MEMS in applications such as resonant
sensor [13] and RF switcher and filters [14] require high sensitive components such as
microbeams. This can be achieved through having a higher natural frequency, which mainly
depends on the material property of these micro-structures, its initial condition and its boundary
conditions. In general, clamped-clamped boundary conditions for microbeams have high natural
frequencies in comparison to other designs such as clamped-free (cantilever) beams, and pinned-
pinned beams. Moreover, microbeams form the basic elements in building MEMS device. They
can have different structural types such as clamped-clamped and clamped-free [1]. Each type
will have its own properties that make it best fit in its respective application. Such properties are
their high or low power consumption, their switching time, their pull-in voltage and their
response under different loads. Furthermore, more complicated shapes can be considered such as
double or triple microbeams on top or aside each other. Other types can be designed by attaching
rigid paddle or mass at the tip of cantilever this will lead to different properties and natural
frequency [15, 16]. Others can also be realized via using composite material layers to build some

basic microbeams based MEMS devices [17].



One of the most interesting structures in numerous MEMS applications are shallow
arches. These shapes are either made intentionally or in most cases due to some imperfections in
the manufacturing that result into an initial curvature in straight microbeams [18]. Unexpected
initial curvature in straight microbeams can lead to many problem such as low reliability, stiction
and undesired failure. Therefore, studying carefully the reliability of MEMS arches can represent
a key point of correctly designing them to be robust and reliable. The main objective of this
research is to investigate mathematically and numerically the reliability phenomena that MEMS
arches can undergo under several forces such as mechanical shock load as electric actuating
forces. In the following section, few published investigations will be discuss regarding the

response of arched micro clamped-clamped beam under different types of loading.
1.2 Literature Review

The importance of investigating both the linear and the nonlinear dynamics of MEMS
based microbeams will help engineers to establish optimum operating linear regimes
applications. Moreover, nonlinear behavior became important because of the potential for new
applications that needs nonlinear phenomena. This unpredictable response mare mainly
influenced by many factors such as high shock load, large actuating forces and geometric
nonlinearity along the clamping boundaries. This will be a consequence for a nonlinear damping

that makes the problem much difficult to be described [19, 20].

1.2.1 Common Reliability Issues in MEMS

The definition of reliability of a designed mechanism is its adequacy or state of being
trustworthy to perform its tasks without any possible failure. Furthermore, it is the aptitude to
produce same result in certain test or experiment on repeated trials without undergoing any

failure state. Accordingly, reliability is one of the key factors in evaluating any future products.
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In general, MEMS reliability can be affected by many factors such as any assumed
temperature gradient, any presumed relative humidity, the types of actuation (electric, magnetic,
piezoelectric, thermal), the packaging and material selection, etc... Although MEMS are similar
to the integrated circuits (ICs) in their manufacturing processes with only few differences in their
3D drawings features in MEMS while 2D drawings are assumed in ICs. Packaging process for
ICs is well established and developed nowadays. On the other hands, MEMS packing is still
under development due to their complex structures and specific performances. Material selection
for packing these micro devices is also a major concern in the MEMS reliability where undesired
stresses can be developed in the process. In addition, vacuum packaging is advisable to prevent
any cause of moist absorption, which can cause failure. Relative humidity in both manufacturing
and operating environment can affect MEMS reliability by causing delamination and failure at
the end. Failure can be categorized into fracture, creep, stiction, electro migration, wear and
pitting of contacting surfaces, etc... [21, 22]. Reliability of MEMS devices can also be affected
by their actuating forces type. For example, operating MEMS at high resonant frequencies can
cause mechanical fatigue for the different components, which can hence result in cracks
initiation and propagation. Thermal fatigue can also play central role against thermal reliability
of MEMS devices. MEMS devices subjected to relevant temperature gradient will result in a
thermal cycling with high temperature profile leading to the creep of the device [23]. Stiction is
an important design factor because it is unavoidable in numerous MEMS applications relying on
parallel-plates electric force as actuating technique. In fact, in smaller scale devices surface
forces become increasingly dominant and can hence cause stiction of the structure in the micro
and nano scales. These surface forces consist mainly of capillary forces, the molecular Van Der

Waals forces, and the electrostatic forces which were reported by several research groups such as



[21, 22]. Some of these forces, such as the capillary forces, are introduced during certain

processes such as during dry processes [24, 25].

Concerning the wear reliability of MEMS devices, adhesive wear was identified as a
major cause of failure for silicon based micro-systems in comparison with abrasive and corrosive
wear. This wearing problem is mainly due to some broken asperities accumulated at the MEMS
surfaces as wear debris particles. An analytical model has been developed to predict the number
of cycles to failure of certain tested MEMS devices as a function of actuating voltage and

frequency [26].

Finally and regarding the general reliability issues that may influence the effectiveness of
MEMS devices, we propose next to discuss the environmental effects on the MEMS devices
reliability. Principally we will limit our subsequent discussion on the temperature gradient and
relative humidity effects. It is worth mentioning that some military applications require reliable
sensors under huge thermal storage conditions along with high-g environments. Such application
are missiles, space sensors and automotive airbags [27]. It was found that creep phenomena
could occur in MEMS sensors at these huge temperature situations. This temperature gradient
depends on the material type of the used MEMS sensor. Creep is one of the major concerns in
RF MEMS and micro-mirror devices [28]. Former investigations showed that RF switches
having high moment of inertia could withstand higher thermal stress. Thus they are sensitive in
high frequency and power situations [29]. Most of the MEMS applications are not operating
under vacuum conditions, thus relative humidity cannot be ignored. Studies showed that relative
humidity resulted in anodic oxidation, which expands, delaminates and pushes against the
bottom of the suspended beams. Moreover mechanical failures resulted from the initiated cracks

formed by such oxidation transformation [30].



1.2.2 Reliability of MEMS under Mechanical Shock Waves

Reliability of MEMS under vibratory and shaking environments was investigated up to
couple of thousand time of the gravitational acceleration constant g. In this regards, several
studies modeled these tiny structures as microstructures attached to elastic substrates with
applied shocks assumed as pulses of acceleration with finite time duration. It was concluded that
if shock duration longer than few millisecond, the MEMS structure will behave as rigid body
with low probability to be affected by stress-wave-induced damage [31]. Moreover, MEMS were
shown not to be significantly affected by air-damping or squeeze-film damping. It was
demonstrated that MEMS failure can be caused either in terms of a critical stress or by any sever

displacement [31].

Another valid failure process that can MEMS device undergoes is the quasi-static fracture
even in atypical dynamic environments experienced [31]. Furthermore, efficient computational
models has been developed to study the dynamic response of microbeams using Galerkin-based
reduced-order model and a hybrid approach for spring mass damper system with static and
dynamic combination of shock load [29]. The outcomes of these numerical models were then
compared with finite element, analytical models and experimental data [29, 32]. It was
concluded that these numerical models represent was an efficient method to describe the

behavior of microbeams under quasi-static and dynamic loading conditions [29].

To cite an actual example of a MEMS device, the reliability of micro-gyroscopes was
investigated under different type of shock loads with varying duration, magnitude of the load and
damping conditions by both numerical and experimental methods. The result was highly

dependent on the MEMS devices natural frequencies and more importantly air-damping (vacuum



condition). It was notable that changing the direction of the shock load resulted in different

failure mechanisms [33].

Other scientists [34] tested bi-stable switch devices under temperature shock, humidity
and ballistic shock after packaging. The device was able to resist ballistic shock to max value of
30,000g and humidity test, until it was reported physically broken. Then, shock impact reliability
and failure for MEMS micro-gyroscope was tested at three different impact orientations and
various acceleration magnitude of shock impact, ranging from 1,500g to 15,000g [35]. The
experimental observations shows two type of failures, package failure and functional failure was
noticed around 4,000g and 8,000g respectively [35]. Furthermore, simulation investigations of
the stress distribution and deformation of the structure were used to predict both potential failure
and possible stiction locations inside the MEMS [35]. Certain MEMS devices were also tested
under in situ impact with acceleration over 120,000g. The reported results showed a linear

relationship with respect to the traditional drop testing [36].

A new method was developed in order to protect MEMS devices from shaking
environments [37]. This new reported technique showed more efficient reliability of MEMS
devices in comparison with the old protective techniques such as hard stopper and compliant
spring stopper [38, 39]. This new method consists of compliant latching stopper mainly designed
to reduce the impact force applied on the microstructures. In addition, its effectiveness was
verified experimentally. This design works simply by dissipating large amounts of energy via a
latching mechanism. Moreover, this compliant latching stopper does not requires extra
fabrication process. It can be manufacturing along with the movable structures of the main
devices [37]. In addition, experimental and theoretical work has been performed on testing the

connection between the motion of the printed circuit board (PCB) and the MEMS devices [40].
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Low pulses were assumed to simulate table drop, applied on the base of MEMS-PCB assembly.
Simulation data showed the effects of the natural frequency for both MEMS and PCB along with
duration of shock pulse [40]. The result displayed that poor PCB design will lead to more
dynamical instabilities and therefore squeeze film damping would have more effect on the

mechanical shock load and hence stabilizing the MEMS device [40].

1.2.3 MEMS Shallow Arches

MEMS shallow arches has been one of the important design in the micro scaled devices
community for several reasons. One of them is because when fabricating microbeams curvature
is almost inevitable which is caused mainly because of the imperfections that arise during
MEMS micro-fabrication processes. Therefore, several research studies [41-49] investigated the
effect of initial curvature on the structural and dynamical behavior of MEMS arches. In fact, the
nonlinear structural and dynamical behavior of MEMS arches was theoretically modeled through
numerous discretization techniques such as the Galerkin reduced order modeling, finite-
difference models, finite-elements models, the differential-quadrature method, etc... [50, 51].
Experimental works showed interesting softening and hardening behavior of arched microbeams
near the first and third natural frequencies, respectively [41-49]. A two dimensional high order
expression was developed out of elasticity equations into Legendre’s polynomials series. These
equations were used to study the pull-in instability and stress—strain state of fixed—fixed and
simply supported arched micro-beams. To insure their model validation, a comparison with a
COMSOL Multiphysics finite-element analysis was assumed. The comparison showed an

excellent matching between the two approaches [52].

Furthermore, the static and dynamic behavior of an electrostatically actuated clamped—

clamped curved microbeam were studied [53]. It was concluded that curved deformations were
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mainly caused due to stress gradient of the microbeam and its flexible anchors. The experimental
data revealed several nonlinear phenomena such as jumps, hysteresis, and softening behaviors
[53]. Reduced order models (ROMs) were constructed to investigate the static behavior of
clamped-clamped arched microbeam under small DC electric load and an AC harmonic load. On
the other hand, perturbation method was used to simulate dynamic response under different DC
and curvature values [54]. Effective non-linearity and non-linear resonance frequencies are
calculated as function of initial curvature [54]. The results shows softening for all loads and
initial rise values [54]. A multi-modes Galerkin based reduced order modeling was developed to
examine the nonlinear behavior of arched double clamped microbeam excited by DC
electrostatic load superimposed to an AC harmonic load [55]. The result come out to have
softening and hardening behavior when it is close to the first and third resonance frequency
respectively. The developed model predicted these behaviors perfectly with slight discrepancies
[55]. Pull-in characteristics for arched microbeam actuated by harmonic AC along with DC
voltage was investigated numerically by using ROM. The result showed increase of pull-in at
high DC voltage and it's amplitude if width is increased or by decreasing the height of the

microbeam [56].

Additionally, electric fringing-fields effects were studied using ROM for clamped-
clamped arched microbeam [57]. The developed model was numerically solved assuming
Newton—Raphson method and compared to experimental data as well as finite element program
(ANSYS). It was reported that if the fringing-fields effects was not included it will caused
significant errors in static deflection and snap-through and pull-in voltages [57]. Additionally,
the combined effect of curved geometry and fluid squeeze-film damping (SQFD) is investigated

using ROM. The result shown the effect of SQFD on convex and concave microbeams. It was



noticeable that frequency response and the snap-through values were changing in case of convex,
while it was less in case of concave type microbeam. Moreover, peak resonant values was

affected by air micro-gap [58].

According to the above-discussed literature, reliability represents a crucial issue in the
design process of MEMS devices, which mainly motivated many researchers to study these
aspects and how they can help improving their overall robustness. However, most of the
available studies focused on varying one external load force for instance temperature, pressure
difference, humid conditions, etc... without focusing on any kind of simultaneous effect.
Therefore, in order to enrich the state of the art, we propose in this work to investigate the
combined effect of different loads at the same time on the reliability of MEMS devices. Our
main focus will be on the combined effect of electrostatic DC actuation along with a mechanical

shock wave on the structural response of a MEMS shallow arch.

1.3 Thesis Objectives and Organization

The objectives of this thesis are the following:

v" To summarize previous numerical investigations on the structural behavior of MEMS
based shallow arches.

v' To derive the equation of motion using the extended Hamilton principle and establish the
continuum model to simulate the behavior of shallow arches under the combined effect of
mechanical shock waves and electrostatic forces.

v To develop a reduced-order model using a modal decomposition method and derive a set
of ordinary differential equations and solve them numerically using a 4™ order Runge-

Kutta scheme.
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v To simulate the same model using finite element methods (FEM) under different shock
and electric loads.

v" To investigate, through a detailed parametric study (force and shock spectrum analysis),
the nonlinear vibrational behavior of MEMS shallow arches under mechanical shock and

electric loads.

Consequently, the organization of this thesis is as follows. In the second chapter, we will
present a brief background on the beam model problem formulation of micro shallow arches,
then introduce the different types of external forces which will be considered on this
investigation. Chapter 3 will focus on presenting the Galerkin reduced-order model (ROM)
modal decomposition technique as applied to discretize the shallow arch nonlinear beam
equation of motion. In the same chapter, we will also expose some details on how to solve the
shallow arch linearized eigenvalue problem, ascertain the convergence of the modal expansion
technique, and finally validate the numerical results of the modal analysis. Next, in Chapter 4,
we will examine the response of clamped-clamped shallow micro-arch beam under pure
mechanical shock wave and electrostatic DC load independently. Chapter 5 will summarize,
through a comprehensive parametric study, the results of the combined effect of mechanical
shock waves and electrostatic loads on the structural behavior of shallow arch microbeam.
Finally, some conclusions and recommendations for future work will be summarized in Chapter

6.
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Chapter 2 : BACKGROUND

The purpose of this chapter is to derive the equation of motion of arched microbeam
under half sine shock load. Then, a reduced-order model (ROM) discretization technique
assuming a Galerkin based modal decomposition technique will be carried out. Next the outcome
of the ROM will be used to numerically solve the shallow arch nonlinear Euler Bernoulli

microbeam equation of motion.

2.1 Nonlinear Structural Euler Bernoulli Beam Model

This section focus on deriving the equation of motion (EOM) of initially curved clamped-
clamped beam along with its boundary conditions using Hamilton's principle. The theory
assumed for modeling the beam structural behavior as the Euler-Bernoulli beam theory. This
assumption has been made while bearing in mind that the beam cross-sectionals planes will
remains parallels even after deformations. Figure 2.1 shows the assumed initially curved

microbeam with an initial shape designated by its first Euler buckling instability shape function
W, (X)=d, (1 —cos(27%/ L))/ 2, where the arch maximum (mid-point) initial rise d,, a length
L, width b, thickness 4 and distance from the electrode of value d. In addition, by assuming that

the beam posses a cross section area 4 = bh, a Young's modules E, a mass density of p and a

second moment area of = bk’ /12 . Also assuming that the arched beam is subjected to constant

axial force of magnitude N as shown below in Figure 2.2. While considering the function
v?/(fc,f ) to represent the transverse displacement of the beam from its initial position profile
W, (fc) Furthermore, the function ﬁ()%,f ) is considered to represents the axial displacement of
the arched beam.
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Figure 2.2: 2D (Side view) schematic of a MEMS arched beam showing all forces acting on it.

2.2 External Forces

Here we will provide a brief description on the external forces assumed in this investigation for
actuation (the electric force) and the mechanical shock pulse to model a sudden drop test.
Additionally, two main structural instabilities of electrically actuated MEMS shallow arches will

be discussed: the snap-through and the pull-in instabilities.

2.2.1 Electrostatic Actuating Force

Electrical actuation of MEMS devices is one of the common used method. It relies on parallel
plate capacitors. Where voltage source, low power consumption and rapid actuation are the main
characteristics for such capacitors. Figure 2.3 shows the schematic view of electrically actuated

microbeams.
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Figure 2.3: 3D schematic of a shallow micro-arch beam displaying its assumed parallel-plates electrosttic actuation
technique.

Several studies [50, 51, 59] showed that the initial gap size (d) is non-linearly proportional to the
magnitude of the attractive forces in between capacitor plates. The mathematical formulation of
electro static force per unit length, assuming rectangular cross section of parallel plates, can be
represented as [1]:

&b [VDC +V,cos (a)ff)]z

F, (%,1)= —
2[d = W&, D) £ (D) ]

2.1)

where &, =8.854x107"? F.m™ is the permittivity electrical of air and ¢, is harmonic frequency.

Vpe and V¢ are direct and alternating currents amplitudes respectively. (+/-) are picked based on

the concavity of the curved beam (+ concave up, - concave down).

2.2.2 The Snap-through and Pull-in Instabilities in MEMS shallow Arches

AC and DC voltages are the main components of electrical actuation as applied in many
parallel-plates based capacitors. When a DC load is applied, it causes deflection of plates into a
new equilibrium position. A structural instability can be initiated if the applied DC load is
exceeding a threshold value, above which the restoring force of the MEMS device cannot
anymore withstand the actuating electric force. Consequently, the parallel plates would collapse
leading to a short circuit and hence to the device failure. This phenomena is a main failure in

electrically actuated MEMS devices and is called static pull-in instability. Figure 2.4-(a) shows
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the stages for a pull-in instability as the DC voltage is varied [60]. Similarly, dynamic pull-in can
be realized when assuming dynamic harmonic AC voltages in MEMS devices [61].

Moreover, Figure 2.4-(b) illustrates another type of structural instability that a MEMS
shallow arch can undergo: the snap-through instability. Similar to the pull-in instability, snap-
through can be caused by static or dynamic loading. Snap-through appears if the disturbance of
the bi-stable microbeams exceeds the initial rise or if it vibrates in between original and

symmetric configuration [41].

- -
”~ ~
Q : \

VDC =0 VDC 2 pull—in
(a)

VDC :0 VDC 2 V;nap—through
(b)

Figure 2.4: Illustration of instabilities scenarios in an electrically actuated shallow micro-arch (dashed line is the
original configuration at zero load) (a) Pull-in (b) Snap-through.

2.2.3 Mechanical Shock Waves

A mechanical shock wave can be defined as a suddenly applied stress, velocity,
acceleration or displacement over short period of time relative to the natural period of the
considered micro-structure. A mechanical shock pulse is characterized by its maximum value
(amplitude), duration, and shape (half-sine, unit-step, and saw-teeth, etc...). Mechanical shocks

usually cause rapid transformation of energy to the impacted device. The profile of a mechanical
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shock force as function of time can have various forms depending on shock source, and material
properties of the system. For instance, after many experiments on bombs and explosion, the
resultant shock profile can be approximated as initial peak right triangle pulse. Moreover,
hammer hit can be assumed as impulse profile whereas shock profile due to dropping can be
assumed as half sine profile. In the upcoming sections we will use various type of shock profiles
such as half sine, step and saw-tooth, Figure 2.5, to observe the difference in response of the

clamped-clamped microbeam [1, 32, 62].

h) hit) i)

N

1 1 1

-

-
-

T, T, T
(a) (b) ()

Figure 2.5: Simple shock pulse models. (a) half sine wave (b) unit step wave (c) saw-tooth wave.

v

The following analytical expressions are representing step, half sine and saw-tooth respectively:

h(@)=F [sin(@)U () +sin(o @ ~T )U (¢ -T,) | 2.1)
h(i)=FU@)-UG-T,)] (2.3)

~ oAl (=T /2),  ~ (=T )
h(()=F TS/Z—z{ =) jU(t —TS/2)+[TS/ZJU(t —TS)} (2.4)

where, U(7) and U(f —T) are unit step functions, I, represents the shock period, @ = 7/T, is

N

forcing frequency and F is its respective amplitude. In this thesis, we will mainly focus on half

sine representation of the shock wave and its influence on the behavior of MEMS arches.
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2.3 Shallow Arch Nonlinear Beam Model

In order to derive the equation of motion of a shallow arch beam in Figure 2.6, by

considering the initial position of a point on the beam as A, in which it have the coordinates of
x, in the axial direction and z, be the transverse coordinate, as shown in Figure 2.7. The final
position of the same point after deforming is 4, with coordinates x,and z, in the axial and
transverse coordinate. Now by consider a differential element of length dx, at point 4,. The

point is displaced a distance # and w in the axial and transverse direction respectively. The
element getting deformed to dx , and dz, axially and transversely.

Using the parameters displayed in Figure 2.7, we can mathematically write that:

X,=x+Uu=xX+1u
A (2.5)
Z,=Z,tW=Ww,+ W
Through applying the Pythagoras theorem using Figure 2.7, we can derive:
ds = \|(dx,)’ +(dz,)’ (2.6)

Figure 2.6: Schematic of a clamped-clamped arch beam under a compressive axial load.
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Figure 2.7: A segment of the micro-arch beam after deformation.

Consequently, and using Equation (2.5), we can re-write Equation (2.6) as follows:

d5 = (5 +dit)’ +(div+ i) =J(1+8) +(W + ) d Q2.7

where “'” denotes the first derivative with respect to x.

Then expanding Equation (2.7) we get:

d§ = 1420+ + W + 20 d} 2.8)

Assuming a shallow arch arrangement, the initial curvature rise slope would be small compared

to unity, i.e., (w(') )2 << 1, therefore the deformed element strain becomes:

ds —dx
&= -
dx

= J1+ 20+ + 3 + 20 — 1 (2.9)

Formerly the stretch ratio for the beam element can be calculated as:

z=%=ﬁ+2a'+ﬁ'2+w2+zww(; (2.10)

Consequently the angle of rotation in Figure 2.7 is given as:

18



N Ay
dz, _Wy+w

sin@ = —= ,
ZS | ’1” (2.11)
cosf = xf _ T ,
ds A
Afterward by differentiating Equation (2.11) yields:
;o (1+a")(wy+w")—a" (wy +w'
where “"” denotes the second derivative with respect tox.
The mid-plane curvature for the arched beam can then be computed as:
_do _dods _ (L+a") (g +W") —a" (W + W) 3 (L+a") (W +W") —a" (W + W) 2.13)

T A T T A A 3/2 A N Ay nr oy )32
ds dx ds A (1+2u'+u2+w2+2ww0)
Using a Taylor Series expansion to for Equation (2.9) up to the quadratic terms for small
u' and w' we get:

~f

AIAT

gzﬁ'+%+wwo+--- (2.14)

Therefore, the total axial strain of the beam at a distance z from mid-plane line of the beam is
given by:

& RE—IW +-+- (2.15)

By using Taylor series expansion for small #" andw’ up to quadratic terms the mid-plane beam

curvature given by Equation (2.13) can be simplified as:
k= (W +W")—a" (W, +W') - 2(v”v(')’ + WA+ (2.16)
2.3.1 The Potential Energy

The beam potential energy due to its elastic deformation and its mid-plane stretching is given by:
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L di2 b2
1

v==[ [ [ (Es)adt

2 0 —d/2 -b/2
1 L d/2 b2 W 2 W =0
zzj [ J|E (ﬁ’+?+wng 2|l + 22" L dp d df,
0 —-d/2 -b/2 (217)
L Ay 2 L
_HA (ﬁ'+l+wwj di+ 2 [iras
29 2 29
2.3.2 The Kinetic Energy
By ignoring the axial strain, beam’s kinetic energy is given as follows [63]:
l
T =ﬂjw°2df (2.18)
2 0

where the dot denotes partial derivative with time 7.

2.3.3 The Hamilton Principle

The equation of motion of continuous systems and it's boundary condition can be
obtained with numerous methods. The Hamilton Principle is one of these methods. It stipulates
that for a conservative mechanical system at particular period of time the integral of the
Lagrangian (difference between the Kinetic and the Potential energy) of the system is stationary.

The principle can be extended to non-conservative systems in the following manner [64, 65]:

famf:f(ar-amam)df:o (2.19)

4 4

where the non-conservative work done by the external force denoted by W, , the elastic potential
energy denoted by V', the kinetic energy denoted by 7' and the Lagrangian of the system
denoted by L. The initial and final value of time are #,,t, respectively. Integrating by parts over

time Equation (2.17), the potential energy variational operator would be:
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Ay L L A
EAK&’+%+W%J8&} —EAj(a'+K+ wwoj oi di +

0 0

o)

tjawf:j

4 4 ~y L L N
+EAKL?'+%+WWJ% afv} —EA_[(&’+%+W%)%]&W&+
0

0

Ap L L ~y
+EA Ka'+%+ wwojw afv} —EA| ((ﬁ'+%+ wwj WJ oW di +
0

0

g (220)

L
+EI[W" W] - EI[W" W], + EI [ 4" divds
0

Integrating by parts over time Equation (2.18), the kinetic energy variational operator can be

expressed as follows:

t t A N2 I n
! oTdi = %A | aﬁ(%"j d)‘c}‘ = pAZ[ {‘;—V:(gawﬂcﬁ dz,

4 4

H=t,
ow T £O*W LMW
= pA| —Ww —pA owds =— pA owdx
p M p {aﬁ p !aﬁ

2.3.4 Non-conservative Work

2.21)

The variation of non-conservative work done by external force can be expressed as:

I t
[ow.di = [(F(%,0)o0—éi)di (2.22)
i 4

where F is the transversely and uniformly distributed external applied force and ¢ is the

viscous damping coefficient. Substituting Equation (2.20-2.22) into the Hamilton Principle

equation, Equation (2.19), and grouping the terms with coefficient “ Ou  we obtain:
[ﬁ'ﬂ%mng =0 (2.23)

The elongation of the beam in the axial direction can be obtain by integrating Equation (2.23)

over the beam length as follows:
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a(L,7)-a(0,7)= (u +%+ wngL j.(u +%+w’ﬁz{)jdfc (2.24)
0

where, u (O,f ) and u (L,f ) denote the axial displacements of both boundaries X=0 and x =L of

the shallow arch beam. As shown in Figure 2.6, a fixed boundary condition at x =0 is assumed

while a compressive load N is assumed at the other boundary at X = L. Therefore:

NL (2.25)

Substituting Equation (2.25) into Equation (2.24), we get:

u”+— =—j +—+m9'v19' @i - (2.26)
EA

Subsequently, substituting Equations (2.20-2.22) in the Hamilton Principle Equation (2.19) and

collecting the terms with coefficient “Ow ” we get:

!

A

pA{'v+EW”+@fv=EA(a'+%+w%j (12/0+W)+EA(&’+%+W%)(%+W’)+F(£,?) (2.27)

Then, the nonlinear equation of motion of the shallow arch beam after substituting Equations

(2.23-2.26) into Equation (2.27) we get:

L
paivs o1 = A a saiipion (o) o (51) @29

0

To conclude, Equation (2.28) represents the displacement in the transverse direction for shallow

arch beam displaced from its initial position that denoted by W, (%) in Figure 2.2.
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Chapter 3 : ARCHED BEAM STRUCTURAL
RESPONSE USING REDUCED ORDER
MODELING

In this chapter, we propose to derive the final form of equation of motion and their
respective boundary condition of clamped-clamped arched microbeam. Then, the MEMS arch
structural static and eigenvalue problems will be developed to compute its static deflection,
natural frequencies and the corresponding modeshapes. We propose also to construct a Galerkin
based reduced-order model and verify its integrity through comparison with experimental data

and few ANSYS based finite-elements method simulations.

3.1 Equation of Motion

We consider a clamped-clamped curved microbeam of initial curvature v, (%) and with
dimension of the microbeam as described in Section 2.1. The initial elevation of the beam
midpoint is d . The micro arch beam is exposed to half sine shock force at the midpoint of the
arched beam along with electrostatic force of direct current only. The non-linear equation of

motion of the arch assuming Euler-Bernoulli beam model for the transverse elevation W()?, { ) is

o'W 0*W . oW R . R
8)24_'_ pAW"' CE = Fy (X)) +F (X)) + Fg,(7) (3.1)

EI

where the mid-plane term, electrostatic and shock force is given by the following analytical

expression:

23



EA[ L (awY  _owow Aot d*w
Fo(5)=24 ) o |az [+ K 4% 32
(%) [ZL (![(ax) % 6)%] x} ]{a&z e } (3-2)

&b (VDC)2

F (%)= - — (3.3)
2[d = (W) + ()]
Fyy () =F, [ sin(@)U @) +sin(o ( ~T,)U(f -T,)] (3.4)
Next and for convenience, we assume the following non-dimensional parameters:
~ ~ ~ t"\
w:vi, wozu, xzi; t=—; (3.5
d d L T

64(dw) 82(dw) w
oLy Py aur)

N Ea[H(a(@w)Y La(@w)a(dw,) o |[ O (dw) d*(dw,) .
B Z{IH@(L,C)} _28(Lx) 8(Lx)}d(Lx)]+N L(Lx)z_d(Lx)2 }F o

0

&b (Ve )2
2[d —~@dw)+@dw)]

+F, [sin(@ ¢ T WU (t T)+sin(@ (¢ T)-T)HU (@ T)-T,)]+
Simplifying Equation (3.6), we get:

A 1 A
El dw""+'0ALW' +ﬂw ={—E§L I((W ')2—2w'w{))a’x +N}<%[w "—w |+
0

L T? T
3.7)
&b (Ve )2

2d*[1-w)+w,)]

+ F[sin(@ T)U T )+sin(o (¢ T)-T,))U (¢ T)-T,)]+

where ‘dots’ denote derivatives with respect to time variable ¢ and ‘primes’ denote derivatives

with respect to space variable x. Next, multiplying Equation (3.7) by L' / El d we get:
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ALY LY 44 || , o ) o N L', )
" +/;IT2W+21TW T 21 M((w )2_2WW°)dx}[W il gl il

5 4

Eﬂ}z [sin(a) tTYU@T )+ sin(w ((tT)—TS))U((tT)—TS)]+ (3.8)

+ L'sb _ (Voc)
2ELd’ [1-w +w,]

Finally simplifying Equation (3.8), we get:

1
W W Few =a{f((w ') = 2w v Jdx }[W "—w ]+ N " -w ]
0

(Voe )

[1 -w +w 0]2

(3.9)

+F[sin(a) tTHYU@T)+ sin(a)((z‘T)—TS))U((tT)—TS)]+052

4

while considering that ? ;4;[ =1 and wo(x ) :j—z(l—cos(Zﬂx )) , and where the various non-

dimensional parameters of Equation (3.9) are summarized in Table 3.1:

Table 3.1: Non-Dimensional Parameters for Parallel Plates Actuated Arch.

4
Time Constant: T= pAL
EI
L 4
. c=c
Damping Parameter: EI'T
Ad> bhd? (df
al = = 1 = 6 —_—
Stretching Parameter: 21 2-_bh’ h
12
~ L*
: N =
Axial Force Parameter: Eld*
L3
Shock Force Parameter: F= o
Eld
@
Excitation Frequency Parameter: W, = T
_L'gb  Ligb i L' g,
Electric Force Parameter: @ = YE[dE ) ib WE d° W AdCE
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3.2 Galerkin based Reduced-Order Modeling

The equation of motion of the shallow arch, Equation (3.9), is a nonlinear partial
differential equation and therefore cannot be solved analytically. In the other hand, it can be
solved numerically using a discretization technique such as the so-called Galerkin expansion
method. This method will make things easy to obtain a reduced order model (ROM) [66].
Essentially, this technique would help to decuple a nonlinear partial differential equation (PDE)
to a simplified ordinary differential equations (ODEs). This approach and all its details can be

found in several nonlinear structural related books [1, 67].

The solution by separation of variables start by assuming the transverse response of the

microbeam to be combination function in the following form:

w(x,t) = Zu ¢(x (3.10)

where, @ (x) represent the modeshapes functions of the clamped-clamped microbeam and u; (¢)

are its modal coordinates. The trail (admissible) functions for the clamped-clamped beam

modeshapes are selected to be orthonormal functions so that:

] L
j¢g(x)¢j(x)dx=(zj={o iij (3.11)

In which (0, ) stands for the Kronecker delta operator. These modeshape equations are
normalized if needed to satisfy the condition of Equation (3.10). Moreover, after further

derivation we obtain [1]:

1

[(40) 8" x))dx =0, (3.12)

0
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Next, multiply Equation (3.9) by (I-w +w )’ to lower the numerical integration time [66, 68].

Then, by substituting Equation (3.10) into the resultant expression and multiply by ¢ (x)and

integrating the outcome from 0 to 1, and keeping in mind the conditions of Equations (3.11) and
Equation (3.12), we obtain ordinary differential equations in term of modal coordinates functions

as follow [54]:

7 i iy

M i (£)+C i, (1) +K, u, (1) =Fy +Fy, (t)+aT, +Nj¢i(x)[w "—w][l-w +w,[dx (3.13)
where:

M, =j¢i(x)¢/(x)[1—w +w | dx
C,, :cj-qbi(x)qéj(x)[l—w +wo]2 dx
K, =Jl.¢l.(x )p" (2 )[1-w +w, ] dx

Fy =, (Ve ) [ (x)dx

Fo, (1)=F|[sin(w tT) U@ T)+ sin(w(tT)-T,)U((tT)-T,)]
[0 {l_i“" (t)gé.(x)+wo} dx

And the nonlinear mid-plane term is given as follows:

r - mem - dxm& u, (1) (x)jz 2w’ngdx} (3.14)

As a special case for linear model the mid-plane terms are terminated by taking (I', =0) in

Equation (3.14).
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3.3 Eigenvalue Problem
In order to derive modeshapes of arched beam it requires finding the natural frequencies.
These frequency can be obtained by solving the eigenvalue problem by assuming a solution of

modeshapes in term of natural frequencies as follow:
w(x,t) = ¢(x) e’ (3.15)

To get the linearized eigenvalue problem equation, we first linearize the equation of motion,
Equation (3.13), set all damping and forcing terms equal to zero. The outcome of the linearized

un-damped and un-forced equation is:

W +Ww=q, w(’)’(

o t—

(2w w(’))de (3.16)

Substituting the function w, (x) , Equation (3.15) into Equation (3.16), yields:

non

¢+’ p=4ar @—OJ cos(27x ) j sin(27x )¢'(x ) dx (3.17)

Solution for Equation (3.17) consists of two parts, particular and homogenous solutions as

follow:
Px)=¢,(x)+¢,(x) (3.18)

Next, by assuming the homogenous and particular solutions respectively as:

@, (x)=4 cos(\Jw,,,x )+ B sin(\Ja,,,x )+C cosh(y/w,,, x)+D sinh(y/w,,,x) (3.19)

¢,(x)=E cos(27x )
where 4, B, C, D and E are constants.
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Now, we substitute the particular solution into Equation (3.17) and solving will give the constant

E[53]:

4o, (‘;0] ! sin(27x)¢', (x) dx

E= (3.20)

non

2
l67* -’ +4or (Cj;)

It's clear that the constant £ depend on the constants 4, B, C and D, which can be determined by

applying following boundary conditions of a clamped-clamped microbeam after normalization.

w(0,0)=0; 2%(0.1)=0; w(L)=0; ‘Z—W(l,t):o; (3.21)
X X

Now, to examine the change of the natural frequencies and modeshapes of the arch microbeam

with various non dimensional rise levels. We introduce new parameter d, = to represent the non

non

dimensional initial rise as [53, 69]:

234,

d non
h

(3.22)

where, d,and h are mid-point initial rise and thickness in micro meters respectively.

Substituting Equations (3.22) into Equations (3.20) and the resultant with Equation (3.21) into
Equation (3.18) will result into five algebraic equations that can be re-written into the following

matrix form [69]:
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) 4”4 d2 a)l/Z Sin a)l/Z
1 0 cos(w?) —sin(w?) - ho o (@)
4'7T __a%mn
4 2 1/2 1/2 4 2 1/2
0 1 Sin(a)l/z) cos(wI/Z) 4 T dnon a)m,n COS(a)mm) _ 4 U dnun a)nun A O
" non Ar'—w Ar'—w B 0
non non
. 4t d> @ sinh(w” Cr=40p (3.23)
1 0 cosh(a),i/jz) sznh(a)ﬁ) o — ot (@)
A7+, D 0
4 2 1/2 1/2 4 2 1/2
| sink(@l3)  cosh(ol) T Con COMO) ATl |1E) 0
47[ _a)non 47[ +a)non
4 4 2 2
1 0 1 0 lor"+27n°d,, -,

In order to find a non-trivial solution for the above equation, the determinant of the matrix in
Equation (3.23) should be equated to zero. This yields the following nonlinear equation function

of the shallow arch natural frequencies (the characteristic equation):

%[2567:8 +3272%d: -327 @,
67" —w

non

—cosh(@"*)(cos (0216 * -’

nhon non non

+16 70 d. @) sin(w)? /2) sinh(0!>)+ o) 1=0

non non non non

1/2

4 72 2 4 72 3/2 .
-27'd, o, +8r'd, w. sin(w,, )+

non non

2t ®+d.,)) -

hon

V+87td] @) sin(w!2)+ (3.24)

non non

The above equation is a multi-valued nonlinear equation function of the non-dimensional
frequency, therefore it should be numerically solved with initial guesses for every assumed initial
rise. Then, after acquiring each frequency as function of the beam initial rise, we can substitute
its value into Equation (3.23), to solve for the five constants of integration 4, B, C, D and E, to

get the corresponding modeshapes expression using Equation (3.18).

It is worth mentioning that the obtained modeshapes expressions and their respective
non-dimensional frequencies are valid for the case of straight beams when assuming dy=0 which
results into a zero particular solution, i.e. E=0, and a non-zero homogenous solution depicting

the modeshapes of straight beams [70].
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3.4 Shallow Arch Natural Frequencies and Modeshapes
In this section, we propose to derive mathematical expressions of the modes shapes of a
straight clamped-camped beam by setting w (x ) =0 in Equation (3.16) and assuming solution

of homogenous type. To this end, solving Equation (3.24) for the first four modes yields

modeshape equations in form of [1]:

¢ (x)=| cosh(\Ja,, , x) - cos([a,, ) |-, | sinh( s, ,¥) - sin(w,, . ¥) | (3.25)

where, Table 3.2 represent the corresponding normalized frequencies and constant of
integrations in Equation (3.25).

Table 3.2: Respective modeshape normalized frequencies w,,, and its respective constant of integration 0,

Mode =1 =2 =3 =4

@ni | 22.3733 | 61.6728 | 120.9033 | 199.8594

(o 0.98250 | 1.00078 | 0.99997 1

1

Plotting Equation (3.25) for the first four mode-shapes we get the following plots:

2 2
-~ -~
35;1 iiw 0
NS <
0 ‘ 2 ‘
0 0.5 1 0 0.5 1
X X
(a) (b)
2 ; 2 T
—-><\ -~
< 0 <0
NN NS
-2 -2
0 0.5 1 0 0.5 1
X X
(©) (d)

Figure 3.1: (a) First (b) Second (c¢) Third (d) Fourth modeshapes of a straight clamped-clamped microbeam.
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Solving Equation (3.24) at different values of d,,, and plotting the resultant first
modeshape, Figure 3.2. We can conclude that as we increases the initial rise the first modeshape

tend to deviate from the straight beam modeshape.

1.5+

4,5

0.5

0% : 1 1 1 I | B
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 3.2: First arch modeshape as function of its normalized initial rise level.

Figure 3.3 represent the first five natural frequencies as the initial rise change. Moreover, it
appears that there is multiple crossing between odd and even natural frequencies. This can lead

to internal resonances [59]. Furthermore, even frequencies are constant for all the value of rise.
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Figure 3.3: Variation of the shallow arch first five natural frequencies as function of its normalized initial rise.
The following table summarizes first, second, third, fourth and fifth modes shape for
varying dyo,

Table 3.3: The shallow arch simulated first five modeshapes as function of its normalized initial rise.

yon . Di(x) Dy(x) Dy(x) Py(x) Ds(x)

10 | | A 0 ' f W L - .

20 [ N i L=
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3.5 Code Validation

In this section, we will use Equation (3.13) to derive un-coupled ODEs in order to
investigate the dynamic responses of a straight microbeam under different mechanical shock
loads with profiles of half sine, unit-step and saw-tooth with varying amplitude and durations.
First, the outcome will be compared to previously published results. The second comparison will
be conducted using electrostatic force for a shallow arched microbeam. Lastly, the combined
effect of shock and electrostatic forces will be verified with previously published experimental

data along with an ANSYS based finite element simulations.

3.5.1 Dynamic Response of Straight Microbeams under Mechanical Shock Loads

The response of a mechanical system to mechanical shock can be determined through
various ways: a shock response spectrum (frequency domain approach: where the steady-state
maximum response of the system is determined function of a given shock duration), or a time
history of the system (time domain approach: by plotting the dynamic response of the structure
function of time which represent its transient and steady state dynamic responses). We propose
formerly to use both approaches in order to compare with previously published results and to
perform a parametric study on the effect of the mechanical shock load shape, amplitude and
duration on its shock spectrum as well as on its dynamical response. In this regards, we propose
to use Equation (3.13) and solve it with respect to time. Assuming the material properties of the

considered microbeam are summarized in Table 3.4:

Table 3.4: Extracted straight microbeam geometrical and material properties used for ROM verification [72] .

Length (L) 900 pm Width (b) 100 pm

Thickness (/) 1.5 um | Initial rise (dy) 0 um

Young's Modulus (E) | 169 GPa | Density (p) 2332 kg/m’
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The non-linear ODEs equations are numerically solved using a numerical tool in
Mathematica® [71] software. First, we compare our numerical simulations of a straight beam
under a half sine response to previously published results [72]. Figure 3.4 displays the time
history of the normalized maximum deflection of the straight beam under the effect shock
amplitude of 1000g half sine shockwave for two distinct shock durations. The blue circled solid
line are the results from [72], and black solid line represent the results of this investigation. We
can see from the figure that the comparison is showing an excellent agreement and hence

validating our numerical code.

Figure 3.5 shows the variation of the normalized maximum response of the straight beam
with different shock amplitudes graph and for a shock durations of 1ms and 0.1ms as follow. We
can clearly see from figure 3.5 that for small amount of shock amplitudes, the response is nearly
linear and then switch to be nonlinear for higher amplitudes. This is obvious since we are
considering here a nonlinear beam model (with mid-plane stretching term) undergoing nonlinear

behavior for higher deflections.

0.6 ‘ 0.8 .
° Result from [72] * Result from [72]
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0.4
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0 2 4 6 8
Time Time
(a) (b)

Figure 3.4: Half sine wave response assuming 1000g amplitude and two shock durations of (a) 1 ms and (b) 0.1 ms.
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Figure 3.5: Straight normalized microbeam's maximum response values vs. the shock amplitude for two shock
durations of (a) 1 ms and (b) 0.1 ms.

In the results of both Figures 3.1 and 3.2, we assumed a non-damped system. In the

following results, we propose to add damping to the system through a damping ratio of 0.1.

Figures 3.6 and 3.7 represent the straight beam dynamic response under both unit-step and saw-

teeth respectively. And assuming a shock amplitude of 1,000g and a shock duration of 1ms.
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Figure 3.6: The unit step wave response for 1000g amplitude and assuming two shock durations of (a) 1 ms and
(b) 0.1 ms.
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From the unit-step response of Figure 3.6, we can comprehend that the beam settling time
is proportional to the shock duration. It can also be noted that in case of 1ms shock duration there
is an initiation of two disturbances: the first due to a sudden increase in the shock amplitude and

the second is due to sudden decrease in the shock amplitude.

0.5 ‘ i i 06 ‘ : .
e Result from [72] e Result from [72]
04l Current work 05" — Current work
03! 0.4+
] T 03
g 0.2} g
0.2+
0.1
0.1
0 0
-0.1 : ‘ : : -0.1 : ‘ ‘ :
0 2 4 6 8 0 0.2 0.4 0.6 0.8
Time Time
(a) (b)
Figure 3.7: The saw-tooth wave response at 1,000g amplitude and assuming two shock durations of (a) 1 ms and (b)
0.1 ms.

3.5.2 Static Response of Arched Beam Under Electro-static Force

In addition, the code will be verified with experimental results represented in [73] under
electrostatic force only. The code uses four odd (symmetric) arched and straight modeshapes for
simulation. Unless stated otherwise, the following assumed material properties given in Table
3.5 will be used throughout this work. Later, we will study the effect of numbers of assumed
modes and the difference between both straight and arched modes in the upcoming subsection.

Table 3.5: Assumed shallow micro-arch MEMS geometrical and material properties for ROM validation.
Length (L) 1000 pm Width (b) 30 um

Thickness (/) 2.4 um | Initial rise (dy) 3 um

Young's Modulus (£) | 166 GPa | Density (p) 2332 kg/m’
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Figure 3.8 represents the experimental results from [73] represented by black dots, blue triangles
are the simulated data using four arched modeshapes and red circles are the simulated data using
four straight modeshapes. We can see clearly an acceptable match between all the data and thus

validating the numerical code with DC voltages applied on the structure.

10

® Experimental result [73]
)= > Four arched modes
O Four straight modes
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Figure 3.8: Comparison between the ROM results while considering both straight beam and arched beam odeshapes
in the Galerkin decompsoition with published experimental data of the maximum static deflection of a shallow arch
under various DC voltages.

3.5.3 Response of Arched Beam under Combined Loading

Further verification to the code will be conducted by comparing it with the ANSYS®™ [74]
Finites Element Method (FEM) simulations under combined loading of half sine shock wave and
a DC electrostatic load. We used for this comparison the geometrical and material properties of
the shallow arch of Table 3.5, a DC load of 50 Volt, a damping ratio of 0.5 along with four

modeshapes in the ROM.

Figure 3.9 shows the implemented ANSYS based FEM model consisting of two nodes

TRANS126 element: one is assumed for the electrical potential deference and the second is for
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the structural degree of freedom. Which was assumed as the element in ANSYS. This
TRANSI26 element is mainly used as a good candidate for problem involving electrostatic-
structural coupling. The attractive force caused by the voltage deference across the element is

resisted by the stiffness of the microbeam with both ends fixed.

After running several FEM simulations for various shock amplitudes, we plot the shallow arch
maximum dynamic response considering two shock durations of 20 millisecond (represented by
cross symbols) and 100 millisecond (represented by dots) respectively in Figure 3.10. In the
same figure, ROM simulations are also shown by diamonds and circles for the shock duration of
20 and 100 millisecond respectively. It's clear that both sets of produced results matching with
these from ANSYS. The shock spectrum was also generated in Figure 3.11, using both FEM and
ROM simulations when assuming zero damping, shallow arch length of 500 um, initial rise of 10
um and a shock amplitude of 1,000g, and both numerical approaches are showing an excellent

agreement.

D ANSYS
ELEMENTS R15.0
TYPE HUM MAR 10 2017

17:15:29

Figure 3.9: ANSYS model of clamped-clamped shallow arch microbeam.
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Figure 3.10: Comparison between the ROM and FEM-ANSY'S results showing the variation of the
shallow arch mid-point defclection with the shock load amplitude, for Vpc =50 Volt, and for two shock
durations of 20 and 100 ms, respectively.
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Figure 3.11: Comparison between the ROM and FEM-ANSYS results showing the variation of the shock
spectrum under 1,000-g's shock amplitude and zero damping ratio.
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3.6 Reduced Order Model Convergence Analysis

In this section we will investigate the reduced-order modeling when assuming straight and then
arched modeshapes in the modal Galerkin decomposition. Moreover, we will examine the
influence of including the even (ant-symmetric) and odd (symmetric) modeshapes in the ROM
process. Finally, we will study the needed number of modes to ascertain the convergence of the

ROM numerical results.

3.6.1 Assuming Straight and Arched Beam Modeshapes

Re-calling Equation (3.19) we can see that the difference between straight and arched
modeshape is the constant £. Where this constant is equal to zero in case of straight modeshapes,
while in arched modeshape it's different than zero [70]. Now, considering the following case
study of microbeam response under mechanical shock of amplitude of 6500g and 16500g which
represent the case of without/with snap-through respectively for shock duration of 0.4 7, and 4
T, to represent dynamic and quasi-static ranges. It's clear from both Figure 3.12 and Figure 3.13
that using six arched (circles) or six straight (solid line) modeshape will lead to the same result in
any combined case of snap-through or without snap-through and dynamic or quasi-static ranges.
Thus, in the upcoming results, we will assume arched modes as basic functions in simulating the

ROM equations.
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Figure 3.12: Beam responce under half sine shock of amplitude 6500g (a) Dynamic range (b) Quasi-static range.
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Figure 3.13: Beam response under half sine shock of amplitude 16500g (a) Dynamic range (b) Quasi-static range.

3.6.2 Even Modeshapes Effects

In this section we will study if even modeshape is playing a significant role, or can it be
neglected and consider only the odd number of modeshape in the assumption of Equation (3.19).
Considering the following case study of clamped-clamped microbeam at x=L/2 under Vpc= 30

Volt and half sine shock with varying amplitude with two shock duration 0.4 7, and 4 7, in both
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Figures 3.14-(a) and (b), while T, is the micro-arch first natural period evaluated in this case as
0.0284 ms. In the onset of each figure, we show two time responses of the shallow arch to the
mechanical shock pulse at two different amplitudes 6500g and 16500g, respectively, and for both

duration 0.47, and 47,,.

It can be seen that the shallow arch experiences the shock pulse as a quasi-static load, i.e.
the time response looks similar to the shock wave pulse, for the case of 7; =4T,, however it
experiences the same wave as a dynamic load, for the case of 7; =0.47,. This is mainly because
the first natural period of the shallow arch is much smaller than the shock wave duration in the
quasi-static case and close to the shock pulse duration for the other dynamic load case. It can also
be noticed from both figures that the maximum deflection of the micro-arch in the case of quasi-
static is larger than that one in the dynamic case. The first case is showing a sudden dynamic
snap-through motion whereas the second is showing a completely different behavior where the
snap-through motion is not happening suddenly but in a more continuous manner. These
sensitivity of the structural behavior of MEMS arches to the shock profiles has to be taken into
account when assuming them in MEMS devices. A final conclusion about this figure that the
results when considering even modes in constructing the ROM equations are perfectly coinciding
with those when odd modes are involved. Hence, even modes have lower effect on the ROM
solutions as compared to odd modes. To insure this results, relative error will be calculated in

Table 3.6 for both shock duration cases at F;= 18,000g throw the following equation:

R, (3.26)

where, RE is relative error and R; is the response value using ROM i"™ mode.
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Figure 3.14: Beam response vs. shock amplitude and Vp=30 Volt at shock duration (a) 0.4 7, and
b)4T,.

Table 3.6: Relative error comparison between the assumed ROM number of modes for two shock
durations (a) 0.4 7, and (b) 4 T,.

(a) (b)
Reference i" mode | Relative Error (%) Reference i" mode | Relative Error (%)
1 2.2x10™ 1 1.1x10"
2 2.43 2 4.22
3 3.6x10°° 3 6.3x10°
4 1.03 4 1.40
5 6.9x10°° 5 3.2x10°

It appears from the Table 3.6 that the relative error for even modeshapes are zero. To
further investigate this latter observation, we propose to plot the maximum values of the first six

ROM modal coordinates u;-u¢ using a log-log scale in Figure 3.15. It's again clear from the
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figure that even modes has the low contribution in the all assumed shock amplitudes and for both
assumed shock durations, Figures 3.15-(a) and (b). This figure can also illuminate on the
contribution of the lower and higher-order modes in the overall dynamic response of shallow
arches. For example, when comparing Figure 3.15-(a), where the response is dynamic, to Figure
3.15-(b), where the response is quasi-static, we can clearly see that all odd frequencies seem to
participate and only the fundamental first mode seem to be responsible of the sudden initiation of
the snap-through motion (see red circle in Figure 3.15-(b)). Therefore, neglecting the odd higher
order terms in the Galerkin expansion in such cases may affect the accuracy of the predicted
behavior, and consequently, from now on, only odd modeshape will be considered in simulating

the ROM results in the coming sections.
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Figure 3.15: Comparison of the six modal ROM coordniates for shock duration (a) 0.4 7, and (b) 4 T,,.

In Figure 3.16, we propose to investigate the effect of changing where to evaluate the
shallow arch dynamic response trough considering different beam span positions as follows: x=
L/A, L/3 and L/2. We can conclude from the figure that the even modes are still obsolete in
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contributing in the calculation of the maximum dynamic response of the shallow arch at different
beam span positions. The only change can be noticed is the beam maximum deflection

amplitude, but the main trend is approximately common at any beam span positions.
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Figure 3.16: Beam response vs. shock amplitude and V=20 Volt at x = L/4, L/3 and L/2 for shock duration of
(a) 0.4 T, and (b) 4 T,.

3.6.3 Number of Assumed Modes in the Galerkin Decomposition

Investigating the required number of modes needed in the Galerkin decomposition for
convergence of the ROM multi-modes results. As previously admitted in numerous previous
investigations such as [1], in such modal decomposition approach, a single mode assumption
cannot accurately capture the dynamic behavior of continuous systems. Therefore, we display the
variation of the maximum mid-point shallow arch static deflection with the DC load in Figure
3.17, while considering 1 up to 6 odd modes in the Galerkin decomposition. The figure shows

that when considering only one mode the pull-in voltage is around ~95Volt, whereas when
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increasing to six modes, the pull-in voltage converged to a value of =107Volt. Using Equation
(3.26) to show the variation of the relative error in the calculation of the pull-in voltage for
various number considered modes in the ROM process is demonstrated in Table 3.7. The results
of the table shows that retaining only 4 modes in the ROM process is enough to capture the
dynamical response of the shallow arch within an acceptable error of =3%. In addition, Figure
3.17 is demonstrating that this bi-stable system structural response can be categorized into three
main comportments: For low DC voltages, the system is deflecting around its initial shape. Then
for some DC voltage values greater than a certain threshold, the system is undergoing a
hysteretic type of behavior showing bi-stable states where the shallow arch can deflect around its
natural shape, or around its symmetric inverted shape, or in moving in large deflection between.
Finally for higher DC loads that are below the pull-in voltage onset, the system is gaining again a

mono-stability regime by bending around only the inverted symmetric shape.
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Figure 3.17: Shallow arch maximum static deflection versus the DC voltage assuming up to six symmetric
modeshapes in the ROM based Galerkin decomposition.
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Table 3.7: Relative error calculation of the pull-in voltage calculations while assuming different modes in the ROM
at Vpe= 95 Volt

Reference i" mode | Relative Error (%)
1 11.62
2 2.28
3 0.42
4 0.13
5 0.03

Thus, in the upcoming chapters four odd arched modeshapes will be adopted in the
assumed solution for analyzing the considered problem.
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Chapter 4 : ARCH RESPONSE UNDER
MECHANICAL SHOCK WAVES AND
ELECTRIC LOADS INDEPENDENTLY

In this chapter, the effect of the initial rise is studied in shallow arched microbeam under
pure mechanical shock then under V¢ load only. Response, shock spectrum and deflection vs.
shock amplitude will be established for various initial rise values. Unless stated otherwise, four
symmetric (odd) arched modeshapes will be used at x=L/2 with defaults microbeam material

properties (Table 3.5) with damping ratio of 0.1 and initial rise dy= 4 um.

4.1 Response Under Mechanical Shock Loads Only

Mechanical shock load can affect the microbeams in dynamic or quasi-static depending
on the natural period of the forcing. In case of dynamic behavior, the response will be amplified
as the shock period reaches or near the natural frequency of the structure. As the shock period
increases beyond natural frequency of the system, the response will act as in quasi-static
behavior. Figure 4.1 shows the difference between the two behaviors in case of snap-through and

without snap for different shock durations.
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Figure 4.1: Time response for different shock period under pure half sine shock load (a) without snap-through
(b) with snap-though.

4.1.1.1 Effect of Initial Rise on Force Response

Next, we propose to investigate the variation of the shallow arch of Table 3.5 maximum
dynamic displacement while varying the shock wave amplitude and assuming two different
shock durations, Figures 4.2-(a) and (b). To better understand the shallow arch different
nonlinear structural scenarios under the effect of shaking environment only, we assumed in the
same comparing figure four different values of the its initial rise. Moreover, since in almost all
the subsequent simulations we will assume different values of DC load and micro-arch initial
rises, and as we will undertake variation of the shock wave durations as function of the shallow
arch natural periods, Table 4.1 summarizes all the considered shallow natural period cases.

Table 4.1: The calculated natural periods (in ms) of all considered below case studies of the micro-arch
initial rise and respective DC loading conditions.

It follows from Figure 4.2 that the initiation of the dynamic snap-through motion is totally

Voc=0 Volt | Vpc=30 Volt | V=60 Volt | Vpc=90 Volt
di=0 um 0.048 0.0475 0.035 0.0261
dy=2 uym 0.0344 0.038 0.0883 0.0283
dy=3 um 0.0278 0.0292 0.0365 0.0276
dy=4 uym 0.0235 0.0241 0.0265 0.036
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different when we considered lower shock duration and then a higher value. The arch showed,
for the case of 7,=0.47, and for all assumed values of its initial rise, only one continuous
solution for the entire range of shock loading amplitudes and therefore suppressing any abrupt
bi-stability hysteretic possibility, Figure 4.2-(a). This behavior is mainly attributed to the fact that
the arch is recognizing the shaking wave as a dynamic load and then the beam would not have
any stationary process to initiate an immediate snap-through motion. On the other hand, for the
case of 7,=4T, and for non-zero initial rises, the bi-stable system experienced an abrupt change
in its maximum dynamic deflection from lower value to higher value at certain shock loads thus
illustrating a dynamic bi-stable behavior, Figure 4.2-(b). The main reason of this different
comportment is that the arch is identifying here the shaking wave as a quasi-static load and then
the beam would have two discontinuous behavior and offering the possibility of a two stable
switch states. In this latter case, we can also understand from Figure 4.2-(b) that if we increase
the arch initial rise, i.e, increase its natural frequency and therefore decrease its natural period,
the bi-stable regime become more noticeable and the system would have more clear stable dual

states.
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Figure 4.2: Variation of the shallow arch maximum dynamic response with the shock load amplitude
considering different beam initial rise, with zero DC load, and for two different shock durations of (a)
0.47, (b) 4T,
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Furthermore, another interesting structural comportment one can comprehend from the
above figures that as the arch initial rise value increase, the shallow arch maximum dynamic
deflection shows its nonlinear relationship with the shock loads changing from being of
hardening type (curve concave down) to a softening type (curve concave up). This is mainly due
to the fact that there is two main nonlinear components competing in this problem: the geometric
mid-plane stretching nonlinearity which is mostly of a hardening nature and the geometric initial
curvature nonlinearity which is essentially of a softening nature. We can also understand that this
behavior is totally different before and after the initial of the snap-through instability as shown in

the onset of both Figures 4.2-(a) and (b).

4.1.1.2 Effect of Damping

Next, It's well known that damping ratio is one of the important factors in microbeams
behaviors. Thus, in this part we will investigate the effects of damping on microbeam response
for both dynamic and quasi-static behaviors. Figure 4.3 shows the maximum deflection as shock
amplitude varying for several damping ratios. We can notice that increasing the damping of a
system will result in delay the snap-through point if there is any. Also, it will allow us to operate
the system beyond pull-in voltage as damping increases as compared to low damping ratio

values.
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Figure 4.3: Maximum deflection versus shock amplitude for different damping ratio for shock duration of (a) 0.4 T,
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4.1.1.3 Effect of Initial Rise on Shock Spectrum

Now, inspecting the influence of shock duration on the maximum response of the
microbeam is also considered. Figure 4.4 shows shock spectrum of the considered microbeam
for low to high range of shock duration for shock amplitudes of 6,500g and 16,500g. It's clear
that as shock period gets near or equal to structural natural frequency the response is getting
amplified compared to higher ranges of shock, which correspond to dynamic and quasi-static
respectively. Moreover, in Figure 4.4-(a) we can clearly see that at initial rise dy = 4 wum the
response is lower than the other rise values. This is caused by the low shock amplitude as
discussed in Figure 4.2. On the other hand, Figure 4.4-(b) shows pull-in behavior for initial rise
of dy = 4 um for shock period from 0.57 T, to 3.1 7, . But for higher shock values the system is
critical stable. Thus, using lower shallowed arched beam rise will be efficient in case of high
shock loads. And in case of low response application increasing the initial rise will cause lower

response for low shock amplitudes.
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Figure 4.4: Shock spectrum for variety of inital rise values and V=0 Volt (a) 6,500g (b) 16,500g.

4.2 Response Under Electrostatic DC Loads Only

DC voltages is one of the main causes of motion in MEMS devices. Thus, study their
effects will be beneficial in increasing the efficiency and reliability of the devices. Figure 4.5

shows the steady state response under several Vpc load. Clearly, increasing the electrostatic load

lead to higher steady state value.

.A..VDC=30 Volt

-B-V,=60 Volt |
V=90 Volt

-©-V,=100 Volt

Figure 4.5: Clamped-clamped microbeam stady state response under different V¢ loads
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In Figure 4.6, we propose to investigate the effect of the initial rise of the shallow arch of
Table 3.5 on its maximum steady state static deflection under DC load only. It is well know that
the electrostatic actuation technique is one of the best method to trigger the motion in numerous
MEMS devices. Thus, studying its effect would be advantageous in increasing the efficiency and
reliability of such devices. We can see from the figure that increasing the shallow arch initial rise
is promoting a delay in the initiation of the bi-stability regime, i.e the snap-through instability
(characterized as the first slope going to infinity in Figure 4.6) and at the same time it rushes an
earlier occurrence of the pull-in instability (described as the second slope going to infinity in the
same figure). This actually demonstrates that the stiffness of the initially curved beam rises
before the snap-through instability and then decreases in the post-snapped position with the
increase of the beam initial rise value. This consequence would be very essential in the upcoming
sections when investigating the influence of the beam initial rise on its structural response under

the combined effect of the DC load and mechanical shaking waves.

To
Pull-in

w max ('um)

0 20 40 60 80 100 120

Figure 4.6: Variation of the shallow arch maximum static deflection with the DC voltagres and for different beam
initial rise.
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Chapter 5 : MEMS ARCH RESPONSE UNDER
COMBINED EFFECTS OF MECHANICAL
SHOCK WAVE AND ELECTROSTATIC LOAD

In this chapter, the effects of changing the initial rise of shallow arched microbeams on
the behavior of the structure under combined of mechanical sock and electrostatic loads will be
investigated. First, we will observe the of response of microbeams under constant half sine shock
force at two shock durations for range of Vp¢ loads at varying initial rise. Second, the microbeam
behavior under constant electrostatic loads with range of half sine shock force with two shock
durations will be studied. Shock durations will be representing dynamic and quasi-statics reigns.
Next, some plots representing shock spectrum under different electrostatic load and variety of
initial rise values will be established. Finally, stability plots will be generated to show the
maximum allowable combination of shock and electrostatic loads before the system fails due to

stiction or short circuit and snap-though appearing points.

5.1 Analysis of Initial Rise Value with Combined Load

In this section, we investigate in-depth the dynamic response of the shallow arch when
subjected simultaneously to a DC load and a mechanical shock wave as it is the case in
numerous operating MEMS devices under a sudden drop. The motivation behind this is that it
represents a good numerical tool for the improvement and optimization of MEMS arches to be
used as bi-stable shock sensors or even to make them more and more reliable to shaking
environments. Figures 5.1-5.4 is displaying the shallow arch maximum mid-point dynamic

deflection for various initial rise values, respectively. All the figures are assuming a combined
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effect of an actuating DC load along with a shock wave of various amplitude and considering
two shock pulse durations of 0.47, and 47,,. Figure 5.1-(a) and (b) show the case of a straight
microbeam. Clearly from the figure shows that the straight microbeam deflection shows only one
stable state and it changes nonlinearly with the shock amplitude for both assumed cases of shock
durations. Also, we can say that operating the straight microbeam at low DC voltages promotes
larger beam deflection without any possibility of pull-in instability, except at higher DC load
voltage, example the 90 Volt, the beam experiences a dynamic pull-in instability under the effect
of both DC voltage and shock loads. This instability is happening earlier and for low values of
shock loads for the case of shock duration near the natural period of the micro-structure (case of
T= 0.4T,). This is mostly due to the fact that the mechanical shock load with lower duration has
shorter-time effect on the system mostly owning high stiffness, i.e. low natural period, and then

intense vibration would be more prominent.

On the other hand, when assuming an initial curvature, the combined effect of both
excitations is showing more exciting structural behaviors, Figures 5.2 and 5.4. For example,
when observing carefully these figures which are all assuming non-zero initial rise values, one
can conclude that increasing the DC electrostatic force further while assuming low shock
amplitudes can lead to an earlier dynamic snap-through sudden instability. From the same
figures, we can realize that the arch beam undergoes a sudden snapping instability for the case of
T~4T,, Figures 5.2-(b), 5.3-(b) and 5.4-(b), and in contrary, when assuming 7,=0.4T,, the
shallow arch experience a continuous snap-through instability with the increase of the shock load
amplitude, Figures 5.2-(a), 5.3-(a) and 5.4-(a). These results indicate that initially curved
structures respond to mechanical shock waves in two different manners: either quasi-statically

for the case of 7,=4T, as shown in Figures 5.2-(b), 5.3-(b) and 5.4-(b), making them more
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prominent to be used as bi-stable g-sensors, or dynamically for the case of 7,=0.47, as shown in
Figures 5.2-(a), 5.3-(a) and 5.4-(a), endorsing them to more suitable in certain applications

requiring large stroke for high g-sensing purposes.
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Figure 5.1: Static deflection versus shock amplitude for different electrostatic loads at dy= 0 m for shock duration
of (a) 0.4 T, (b) 4 T,.
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Figure 5.4: Static deflection versus shock amplitude for different electrostatic loads at dy= 4 m for shock duration
of (a) 0.4 T, (b) 4 T,.

In addition, Figures 5.2-5.4 shows that increasing the shock wave amplitude assuming
high DC voltages can cause a sudden collapse of the system in the dynamic case, where on the
other hand the system operates steadily in the quasi-static case for high DC and shock wave
amplitudes. Commonly in MEMS devices, it was previously demonstrated that adding
electrostatic force to a shock wave lead systematically to the initiation of an earlier pull-in
instability in both dynamic and quasi-static regimes. Furthermore, Figures 5.2-5.4 are showing

that increasing both DC and shock amplitudes, for both cases of shock durations, the shallow
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arch is experiencing the dynamic snap-through instability more earlier when decreasing its initial

rise.

5.1.1.1 Effect of Initial Rise on Force Response

Now we propose to investigate the same combined behavior of the previous plots but
while comparing the effect of initial rise values and assuming a constant DC load in each case.
Accordingly, Figures 5.5-5.7 is displaying the variation of the shallow arch beam maximum
dynamic deflection with the shock wave amplitude, for various initial rises and considering three
different DC voltages of 30, 60 and 90 Volt, respectively, and two shock wave durations of 0.47,
, and 47,. We can evidently see from Figures 5.5-(a) and (b) that increasing the rise value for
small shock load amplitude and DC voltage cause a lower deflection of the shallow arch. That’s
is mainly attributed to the fact that more rise would result into more stiffness and hence more
robustness against external excitations mostly before undergoing the snap-through behavior. In
the other hand, the system is showing a different behavior when assuming higher shock loads
where a micro-arch with bigger initial rise is experiencing more deflection for higher exciting
loads. The reason for this is that once the arch experiences the snap-through motion, the
softening effects of both beam curvature and the electrostatic forces are dictating the structural
behavior of the shallow arch and hence a bi-stable system with extra initial curvature would be
more closer to the lower actuating electrode and hence more prominent for higher deflection and
consequently would experience first the dynamic pull-in instability. Moreover, when assuming a
60 Volt DC load, Figures 5.6-(a) and (b) show a clear correlation among the shallow arch initial
rise value and the initiation of the snap-through instability. Both plots show that increasing the
beam initial rise, the arch behavior is changing from experiencing a continuous snap-through

process to a sudden snap-through occurrence. Increasing the DC load further to 90 Volt, Figures
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5.7-(a) and (b), the results are indicating that increasing both arch initial rise value and DC load
can cause the system to systematically undertake a pull-in stiction instability without even any
possibility of a bi-stable behavior. Same figure show also that the pull-in collapse instability is
arising for lower values of shock amplitudes in the dynamic case, Figure 5.7-(a) as compared to
quasi-static case, Figure 5.7-(b). In conclusion, the preceding results are demonstrating that
increasing both the shallow arch initial rise can cause lower maximum deflection for low shock
amplitudes and could result to an earlier system snap-through and pull-in collapse instabilities.
Moreover, the initially curved system is showing two fancy bi-stable behavior: a continuous and
a sudden snap-through, which were shown all to be function of the DC load, the shock amplitude

and duration, and essentially the beam effective stiffness i.e. its initial shape.
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Figure 5.5: Static deflection versus shock amplitude and V= 30 Volt for different beam initial rise for shock
duration of (a) 0.4 7, (b) 4 T,
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Figure 5.7: Static deflection versus shock amplitude and V= 90 Volt for different beam initial rise for shock
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5.2 Analysis of Initial Rise Value on Shock Spectrum Response

In this section we propose to analyze the effect of the shallow arch initial rise on its shock
spectrum response (SSR). The SSR is a famous diagram demonstrating the variation of a
system’s peak dynamic response to shock load as a function of the ratio between the shock wave

duration 7 to the system first natural period 7, [75]. The diagram is acquired by solving for the
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maximum transient response of the investigated system while varying either the shock wave

duration while keeping the system natural period constant or vice versa.

In our case, we will consider four different arch initial rise values, thus four different
natural periods which are all summarized in Table 4.1. Then we vary the shock pulse duration to
generate the SSR of the shallow arch of Table 3.5 assuming two different values of the shock
amplitudes (Fy; =6,500g and F, =16,500g respectively) in each case, Figures 5.8-5.11. Starting
with the straight beam case, Figures 5.8-(a) and (b), when the microbeam is subjected to a shock
amplitude of 6,500g and for various DC loads, we can note from the figure that, as we raise the
electrostatic voltage, the dynamic deflection of the structure considerably increases and its
respective SSR peak shifts to the left. This comportment demonstrates that the mid-plane
geometric stretching of the straight beam as triggered by the DC load acts here as a hardener to
the microstructure. Furthermore, we can discern from Figure 5.8-(b) when we amplified the
shock pulse amplitude to 16,500g, and for high DC load of 90 Volt, the microbeam experiences a
dynamic pull-in for certain range of shock durations. This can be depicted as a dynamic pull-in
zone or a failure zone. This comportment demonstrates that the actuating electrostatic load acts

here as a softener to the microstructure.

Next we examine the effect of increasing the micro-arch initial rise from 0 um, to 2 um
and 3 um in Figures 5.9-5.10, respectively. We observe here a dissimilar behavior as for the
straight beam case regarding the influence of the DC load in the lower range of shock durations.
In fact, in these non-zero initial rise cases, as we increase the DC voltage, the dynamic deflection
of the shallow arch considerably increases and its respective SSR peak shifts to the right. This
performance demonstrates that the initial shape geometric nonlinearity acts here as a softener to

the microstructure whose fundamental frequency is decreasing accordingly. In addition, the bi-
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stable structural behavior of the shallow arch is showing to be supporting more the symmetric
shape state, except for very small values of shock durations, and thus depicting a band of snap-
through motion as shown by the blue arrows in Figures 5.9 and 5.10. Furthermore, as both the
DC load and initial rise are increased further, the micro-arch is undergoing the pull-in instability
even faster and for higher range of shock pulse durations, as exposed by the red arrows in

Figures 5.9 and 5.10.

Finally, increasing further the shallow arch initial rise to 4 um, as portrayed in Figure
5.11, what is interesting to realize is that for the case of high initial rise and with limited gap size,
the arch would not have enough room to move from one state to the other and the arch response
under high shock load is showing almost inevitable pull-in band all the way and for almost all
shock durations values, Figure 5.11-(b). Whereas, for lower shock wave amplitude, Figure 5.11-
(a), the arch SSR is showing three different scenarios: for zero DC load that would not initiate
any static snap-through motion, the SSR is only displaying a mono-stable response of the arch
for all values of shock durations. For higher DC load of 30 Volt, the arch SSR is showing a two
snap-through responses for lower and then higher shock durations. Increasing the DC load
further to 60 Volt, a single snap-through motion is depicted for all consider shock wave
durations. Finally, for a DC value close to the pull-in instability and with the shock load
amplitude, the arch doesn’t have enough room to vibrate and therefore it dynamically pulls-in
even for tiny shock durations, as exhibited in Figure 5.11-(a). In fact and it this regime of high
initial rise, the system’s response was shown to be highly sensitive to any load amplitude (shock

or DC voltage), or even any variations of the shock durations.
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Figure 5.10: Shock spectrum for different values of Vpc with dy = 3 um and shock amplitude (a) 6,500g (b) 16,500g
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Figure 5.11: Shock spectrum for different values of Vpc with dy = 4 um and shock amplitude (a) 6,500g (b) 16,500g.

5.2.1.1 Effect of Initial Rise on Shock Spectrum

Afterward, we propose to analyze the effect of changing the shallow arch initial rise on
its SSR, Figures 5.12-5.14. In each diagram we assume a constant DC voltage and two distinct
shock amplitudes of 6,500¢g and 16,500g respectively. Figures 5.12, 5.13 and 5.14 show the SSR
curves for a DC load of 30 Volt, 60 Volt, and 90 Volt, respectively, and with various arch initial
rise values. Observing from all figures that increasing the initial rise at high shock amplitude
would increase the probability of observing a dynamic snap-through instability for any value of
the wave durations. Although, for a higher values of the rise, for example for the initial rise of 4
um, the arch tend to have lower dynamic deflections for low shock pulse durations and higher
deflections for higher values of shock durations, as compared to the other initial rise values. This
mainly attributed to the fact that arch possessing higher curvature would have enough band of
jump between the first natural shape and its second symmetric shape as discussed previously in

the static analysis. In the other hand and for high shock load, the arch would not have enough
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range of travel for deflection, and therefore it would snap for low values of initial rises of pull-in

for an additional shock load amplitude values.
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Figure 5.12: Shock spectrum for different values of beam rise under combined load of V¢ = 30 Volt and shock
amplitude (a) 6,500g (b) 16,500g.

It can also be concluded that assuming an extra DC load of 60 Volt and 90 Volt, as
illustrated in Figures 5.13-5.14 respectively, assuming high shock amplitudes would upsurge the
system instability by causing it to either snap-through for almost all values of assumed shock
durations. Nevertheless, as the ratio of 7/T, is converging toward the quasi-static regime, any
lower initial rise values tend to show a dynamically stable state. Consequently, increasing the
initial curvature of the shallow arch can cause the system to behave in a bi-stable manner
(vibrating in between its two symmetric stable states), mono-stable mode (vibrating in either

stable positions) or could collapse through a pull-in instability under the combined effect of

shock wave duration and amplitude and the DC voltage.
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Figure 5.13: Shock spectrum for different values of beam rise under combined load of V¢ = 60 Volt and shock
amplitude (a) 6,500g (b) 16,500g.
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Figure 5.14: Shock spectrum for different values of beam rise under combined load of V¢ = 90 Volt and shock
amplitude (a) 6,500g (b) 16,500g.

5.3 Limitation Analysis of Microbeam Under Combined Load

In this section, we propose to study the structural instability limitation curves of the
shallow arch microbeam by investigating its maximum electrostatic/shock amplitudes that the bi-

stable structure can withstand before collapsing. It is worth mentioning that the shallow arch can
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either undergo a dynamic snap-through motion which represents the bi-stability or it can touch
dynamically the lower electrode which characterizes the structural stiction instability. In this
regards, three different values of initial rises were taken into consideration to establish the
limitation curves, do= 2, 3 and 4um. Figure 5.15 shows the limitation curves assuming two shock
durations representing the dynamic and quasi-static regions, respectively. We can clearly
comprehend from the figure the effect of increasing the initial rise which is causing the system to

stick to its lower electrode (pulls-in) for low values of shock/DC amplitudes.

Furthermore, we can understand from the limitation curves for cases of dy= 2 and 3 um,
that both cases are showing higher range of instability in the quasi-static regime, Figure 5.15-(b),
as compared to their dynamic regime, Figure 5.15-(a). In contrary, the case of dp= 4 um is
showing a differing behavior. This is mainly attributed to the assumed shock durations that
depend on the natural period of the shallow arches which also vary with the beam initial rise. The
more the beam initial rise increases, the more the arch will have higher frequency, and therefore
the structure would feel both assumed shock durations in the dynamic regime. The same figure
shows also that increasing the shallow arch initial rise can cause an early occurrence of a

dynamic pull-in instability.
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Figure 5.15: Electrostatic force versus shock amplitude depicting the dynamic pull-in instability for the MEMS arch
with several initial rise and for two differentshock durations of (a) 7,=0.01347 ms and (b) 7,=0.1347 ms.

5.3.1.1 Snap-through Instability Limits

Finally, we investigate the dynamic snap-through instability occurrence with the
combined effect of the DC and the mechanical shock loads and compare it with the previously
reported dynamic pull-in limitation curves in order to understand the dynamic bi-stability
behavior of the shallow MEMS arches. Figures 5.16-(a) and (b) display the MEMS arch
limitation curves depicting both the snap-through and pull-in instability occurrence for two
different initial rises of dp= 3 and 4 um, respectively. It is clear from both graphs that increasing
the amplitude of one of both combined loads, i.e, the DC or shock loads, will result in an early
dynamic snap-through instability. Furthermore, operating the system at high DC load can cause
instantaneous snap-through of the system even with very small shock load. In addition, it is
observed that there is small range of values that will keep the system stable after the snap-

through instability. This is essentially due to the fact that the dynamic snap-through voltage for a
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MEMS shallow arch is always lower than or equal to the dynamic pull-in voltage as it was

previously reported in [41, 44].
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Figure 5.16: Electrostatic force versus shock amplitude depicting both dynamic snap-through and pull-in instabilities
for the MEMS arch for a shock duration 7,=0.1347 ms, and for two initial rises: (a) d;= 3 um and (b) dj=4 um.
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Chapter 6 : SUMMARY, CONCLUSIONS AND
FUTURE RESEARCH

6.1 Summary and Conclusions

To summarize the current thesis work, we first highlighted the importance of studying the
reliability of MEMS based devices. Results of other researchers on the reliability of MEMS
under humid condition, temperature and pressure difference were discussed. Moreover, it was
found that the reliability of MEMS devices can be affected by uncontrollable factors such as the
manufacturing imperfections in the micro scale which can lead to shallow arched microbeam

structures.

Therefore, in this thesis, we proposed an efficient computational study/approach to
simulate the vibrational response of a shallow MEMS arch under the combined effect of DC
actuating load and mechanical shock waves. The numerical method was based on a Galerkin
based modal reduced-order modeling (ROM). The modeshapes of a shallow arch beam are used
as basis functions in the Galerkin discretization technique. We validated the ROM approach by
comparing its converged results (with enough number of modes) to an ANSYS based finite
element method as well as formerly published experimental data and the approach showed an
excellent agreement. Also, it was demonstrated that this ROM numerical model is capable of
capturing the dynamic response of shallow micro-arched under shock wave of various
amplitudes and durations, in DC actuating conditions, and can consequently capture its nonlinear

bi-stable structural behavior.
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Moreover, a thorough examination of the effect of the initial rise value on the structural
stability of clamped-clamped shallow MEMS arches under shock waves was carried out. In
addition, a comprehensive parametric study was established by varying the electrostatic force
value, shock amplitude and duration as the initial beam rise changes. In fact, we provided
numerical solutions for the shock wave problem of electrostatically actuated shallow arches for
the cases of small and large DC and shock amplitudes and assuming the dynamic (shock duration
close to the system first natural period) and quasi-static (shock duration greater than its first
natural period) cases. We found that higher order modes are triggered and mainly responsible for
the micro-arch large deflection and therefore bi-stability nature. Moreover, it was demonstrated
that adding a DC load to a shock wave would lead to the initiation of an earlier dynamic snap-
through and pull-in stiction instabilities in both the dynamic and quasi-static regimes. We also
showed that increasing both DC and shock amplitudes, the shallow arch might experience the
dynamic snap-through instability more earlier when decreasing its initial rise and vice versa.
Afterward, we investigated the micro-arch shock spectrum response (SSR), a diagram perceived
as an intuitive and essential for numerous MEMS designers. We have established that increasing
the shallow arch initial curvature can cause the system to behave in a bi-stable manner (vibrating
in between its two symmetric stable states), mono-stable mode (vibrating in either stable
positions) or could collapse through a pull-in instability under the combined effect of shock wave
duration and amplitude and the DC voltage. Finally, limitation graphs were developed to show
the maximum shock amplitude can be reached without causing the system to collapse

considering both scenarios of dynamic pull-in or dynamic snap-through instabilities.
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6.2 Future Work

There is still plenty of exploration to be discovered regarding the reliability of MEMS bi-
stable based structures. Forthcoming investigations, essentially along this road, need to be
established including modeling the effects impulsive shock waves on the bi-stability behavior of
electrically actuated MEMS shallow arches. Therefore, in the design of such designs, both
effects have to be taken into account, even if the shallow arch experiences small deflection and
operates within a small range of the electrostatic voltages, to make use of or even avoid any

dynamic instabilities (such as the snap-through and the pull-in), as illustrated in Figure 6.1.
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Figure 6.1: Diagram demonstrating that the association of a mechanical shock load and a nonlinear electric actuating
force can be protruding some earlier structural instabilities such as snap-through and pull-in in a MEMS shallow
arches.

L]

Therefore, this work can be extended through the following proposed research ideas:
v Investigate more on the arched beam limitation as function of shock duration vs.
electrostatic force.
v" Study the effect of adding axial force (V) along with the arch initial curvature.
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Study the behavior of the limitation graphs using different shock profile such as saw
tooth or step shock.

Establish the limitation graph as function of the beam's initial rise dj.

Study the behavior of two arched micro beam on top of each other.

Study the influence of arches microbeams concave downward.
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