




©Taha Hussein Binalialhag
2016

i



To my parents

ii



ACKNOWLEDGMENTS

All thanks to Allah almighty who gave me the ability, will, determination,

knowledge, and patience to complete my thesis.

I would like to acknowledge, with deepest appreciation and gratefulness, the

support, encouragement, valuable time and guidance given to me by Dr.

Jameleddine Hussine, who served as my major advisor and mentor. Thereafter, I

am deeply indebted and grateful to Dr. Mohammad Alshayeb, and Dr. Sami

Zhioua, my committee members, for their guidance, and support. I am grateful

to Dr. Daniel Aymot for his valuable support and cooperation.I would like to

thank KFUPM and Hadramout Establishment of Human Development for giving

me the opportunity to pursue my M.S. degree. I would like thank my friends

Majdi Bin Salman, Hassan Alkaf, and Omar Jafar for the great support they

gave me. My sincere thanks to my precious family for the support, and prayers

during my academic journey.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENT iii

LIST OF TABLES vii

LIST OF FIGURES viii

ABSTRACT (ENGLISH) x

ABSTRACT (ARABIC) xii

CHAPTER 1 INTRODUCTION 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Validation of Thesis Approach . . . . . . . . . . . . . . . . 8

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Contribution 1: Design of a static slicing approach for UCM 9

1.5.2 Contribution 2: Implementation of the slicing algorithm

within jUCMNav framework . . . . . . . . . . . . . . . . . 9

1.5.3 Contribution 3: Empirical Evaluation and Validation . . . 9

1.5.4 Contribution 4: Publication . . . . . . . . . . . . . . . . . 10

1.6 Issues not Addressed in this thesis . . . . . . . . . . . . . . . . . . 10

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

iv



CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 11

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Program slicing . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Model-based Slicing . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 3 USE CASE MAPS STATIC SLICING APPROACH 23

3.1 UCM Slicing Algorithm . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Code Expressions and Extraction of Slicing Criterion Variables . . 27

3.3 Dependencies Computation . . . . . . . . . . . . . . . . . . . . . 29

3.4 Backward UCM Traversal . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Handling responsibility references . . . . . . . . . . . . . . 35

3.4.2 Handling OR-Forks, waiting places, and timers . . . . . . . 37

3.4.3 Handling OR-Joins . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4 Handling loops . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.5 Handling StartPoints . . . . . . . . . . . . . . . . . . . . . 44

3.4.6 Handling stubs . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Handling Concurrency . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Final Dependency Re-computation . . . . . . . . . . . . . . . . . 56

3.7 Slice generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.1 Executable Slice . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.2 Closure Slice . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 4 EVALUATION AND VALIDATION OF THE SLIC-

ING APPROACH 71

4.1 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Mock System . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.3 Characterization of the reduction rates . . . . . . . . . . . 87

4.2 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . . 95

v



4.2.1 Experiment planning . . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Data analysis and interpretation . . . . . . . . . . . . . . . 99

CHAPTER 5 DISCUSSION 103

5.1 General benefits of the approach . . . . . . . . . . . . . . . . . . . 103

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Comparison with related work . . . . . . . . . . . . . . . . . . . . 108

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 113

REFERENCES 114

VITAE 126

vi



LIST OF TABLES

3.1 List of RespRefs with their referenced expressions . . . . . . . . . 28

3.2 Stack of R18 code statements used to compute dependencies . . . 33

4.1 Case studies characteristics . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Plug-in bindings of stubs in Fig. 4.1 . . . . . . . . . . . . . . . . . 73

4.3 Ordering System: model elements that have code expressions . . . 88

4.4 Plug-in bindings of stubs in Ordering System . . . . . . . . . . . . 89

4.5 Adverse Event Management System: model elements that have

code expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Reduction rates of original models after generating executable slices 89

4.7 Experiment Material . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8 Set of hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Slicing * Correctness cross tabulation . . . . . . . . . . . . . . . . 100

4.10 Test differences between means with respect to correctness (t-test) 101

4.11 Means of the time taken to perform the tasks with/without slicing 102

4.12 Test differences between means with respect to the time spent to

perform a task (t-test) . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Comparison of model based slicing approaches . . . . . . . . . . . 110

vii



LIST OF FIGURES

2.1 A simple program and its corresponding static and dynamic slices [1] 15

3.1 UCM Backward Slicing Approach . . . . . . . . . . . . . . . . . . 25

3.2 Handling respRefs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 UCM Slicing: Handling OR-Forks . . . . . . . . . . . . . . . . . . 39

3.4 UCM Slicing: Handling Timers . . . . . . . . . . . . . . . . . . . 40

3.5 UCM Slicing: Handling WaitingPlaces . . . . . . . . . . . . . . . 40

3.6 Example of handling OR-Joins . . . . . . . . . . . . . . . . . . . . 42

3.7 UCM Slicing: Handling Loops . . . . . . . . . . . . . . . . . . . . 43

3.8 A scenario with stubs in UCM . . . . . . . . . . . . . . . . . . . . 48

3.9 Output slice of the scenario in Fig. 3.8 with SC = (R1, x) in root

map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Example of an AND-Join handling . . . . . . . . . . . . . . . . . 52

3.11 UCM Slicing: Handling AND − Fork . . . . . . . . . . . . . . . 55

3.12 Handling Inconsistent respRefs in UCM slicing . . . . . . . . . . 60

3.13 Impact of removing path nodes that have consequent child

nodes/branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.14 UCM slicing using closure slice approach . . . . . . . . . . . . . . 66

3.15 Closure Slice approach with different UCM constructs as SC . . . 67

3.16 UCM slicing command included in command menu of jUCMNav

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.17 Slicing Options window, jUCMNav framework . . . . . . . . . . . 69

4.1 UCM Mock model . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



4.2 Executable slices for many slicing criteria . . . . . . . . . . . . . . 76

4.3 Executable slice when SC=(R2 in map Fig. 4.1(d), x) . . . . . . . 76

4.4 Executable slice when SC=(R1 in map Fig. 4.1(a), (x,y) . . . . . 77

4.5 Executable slice when SC=(R5 in map Fig. 4.1(a), x) . . . . . . . 77

4.6 Executable slice when SC=(R15 in map Fig. 4.1(a), x) . . . . . . 78

4.7 Closure slice when SC=(R17 in map Fig. 4.1(a), (x,j,k)) . . . . . 79

4.8 Closure slice when SC=(R9 in map Fig. 4.1(b), y) . . . . . . . . . 79

4.9 Closure slice when SC=(R14 in map Fig. 4.1(c), x) . . . . . . . . 79

4.10 Executable slice when SC=(R2 in map Fig. 4.1(d), x) . . . . . . . 80

4.11 Closure slice when SC=(R1 in map Fig. 4.1(a), (x,y) . . . . . . . 81

4.12 Closure slice when SC=(R5 in map Fig. 4.1(a), x) . . . . . . . . . 82

4.13 Closure slice when SC=(R15 in map Fig. 4.1(a), x) . . . . . . . . 83

4.14 Discharge Model: an executable slice,

SC=(evaluatePatientCondition, evaluationOfImplemntationPassed) 85

4.15 Discharge Model: executable slice,

SC=(RecievedByCommunityProviders,admittedByHospital) . . . 86

4.16 Ordering Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.17 Ordering Model: executable slice, SC=(ShipOrder,ProductShipped) 91

4.18 Ordering Model:executable slice, SC=(SubmitFinalOrder,-) . . . . 91

4.19 Ordering Model:executable slice, SC=(ProcessOrder,OrderToProcess) 92

4.20 Adverse Event Management System . . . . . . . . . . . . . . . . . 93

4.21 Adverse Event Management System: executable slice,

SC=(WarnObserver, EventReady) . . . . . . . . . . . . . . . . . . 94

4.22 Adverse Event Management System: executable slice, SC=(AEMS-

CreateVisit, -) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.23 Overview of the experimental plan . . . . . . . . . . . . . . . . . 96

5.1 Ordering model: scenario start points within InfinitLoop scenarioDef106

ix



THESIS ABSTRACT

NAME: Taha Hussein Binalialhag

TITLE OF STUDY: Applying Static Slicing to UCM Requirements Specifica-

tions

MAJOR FIELD: Software Engineering

DATE OF DEGREE: December 2016

Requirement Specification is getting more attention as a crucial stage in software

development life cycle. As requirements descriptions evolve, they become more

sophisticated. Hence they rapidly become difficult to understand and to maintain.

Therefore, developing methods to assist the comprehension, and maintenance of re-

quirements specification has gained more importance. The Use Case Maps (UCM)

language, part of the standard ITU-T User Requirements Notation (URN), is a

visual modelling notation that aims at describing requirements at a high-level of

abstraction. A UCM specification is used to integrate and capture both functional

(based on causal scenarios that represent behavioral aspects of a system) and ar-

chitectural (system components bound to functional scenarios) aspects. As UCM

models evolve, they rapidly become hard to understand and to maintain. In this

x



thesis, we propose a slicing technique for the Use Case Maps language. The goal

of the proposed work in this thesis is to assist maintainers in understanding a

UCM requirements specification with respect to a particular maintenance task.
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CHAPTER 1

INTRODUCTION

Program Slicing, proposed by Weiser [2], is a reduction technique used to decrease

the size of a program source code by keeping only the lines within a program that

are related to the execution of a specific slicing criterion specified by the user.

Program slicing has been initially used as a debugging approach in order to en-

hance software comprehension [3, 4]. Furthermore, slicing has been used in other

applications such as testing [5, 6, 1], program integration and differencing [7],

reverse engineering [3], software maintenance [8], dead code removal [9, 10], in-

tegration [7], program segmentation [11], model checking [12], and garbage col-

lection [13]. The large number of techniques for program slicing has led to many

surveys [14, 15, 1, 16, 17, 18, 19]. As software modeling gained in popularity

and became a well-accepted practice in industry in many application domains,

researchers have refined reduction techniques and moved from focusing only on

reducing source code to applying reduction techniques to software models. Models

are used to describe different facets of a system, e.g., static structure, dynamic be-
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havior, etc., at various levels of abstraction, throughout the system development

life cycle. As models grow in size, they become difficult to understand, debug,

and maintain, hence impractical [20]. To address a maintenance task, it may be

required to analyze a model with respect to one specific functionality, feature,

scenario, etc. [21]. Therefore, reduction techniques are required in order to reduce

and simplify models with respect to an element of interest. Various types of slicing

techniques and criteria are needed because there can be various applications that

need slices with different properties. In the recent years, the application of slicing

techniques has been extended to include diverse software artifacts [22] includ-

ing requirements models [23, 24, 25], formal specifications [26, 27], and software

architecture [28].

1.1 Motivation

The estimated cost of software maintenance ranges from 50% to 80% of the overall

software budget [29, 30]. The tasks applied during software maintenance can be

categorized into four types: adaptive, perfective, preventive, and corrective [31].

One of the most vital facets of software maintenance is to comprehend the soft-

ware in order to apply changes to it. Understanding a program requires study-

ing its documentation and source code in order to achieve an adequate level of

comprehension for a particular maintenance task [32]. The process of program

comprehension is time-consuming, and during the maintenance phase, program

comprehension consumes between 62% and 47% of the overall time for corrective
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and adaptive tasks, respectively [33], and overall, it is reported that understanding

the software at hand can take up to 60% of the effort of software engineering [34].

Consider that we want to maintain the C-program taken from [35] and shown

in figure 1 to be maintained.The program is used to read the marks of an exam

and produce the number of passed scores, number of failed scores, rate of passes

, rate of excellent, very good, and good scores, and average score. However, when

executing the program, the output of average score is extremely low.

At this point, the developer is required to review the code and understand the

reason of this unexpected output. This maintenance task might be time consuming

since the developer will have to read many lines of code which are not related to

the bug. Obviously, the effort spent on inspecting lines of code that do not have

any impact on average value is a wasted effort. Slicing can reduce the size of the

program so that inspection is limited to only those lines of code that have impact

on the value of average. The generated slice is shown in figure 2 where the size

of the slice is one third of the original program. Reviewing the program code can

be faster after eliminating the unrelated lines. Quicker than reading all lines of

code, the developer can detect the bug located in line8 in figure 1 (line4 in figure

2) where variable TotalMarks is initialized inside the while loop instead of being

initialized before it.
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Requirements gathering and elicitation represent a crucial step in the software

system development life cycle. Requirements specifications are getting more

attention as new requirements description languages emerged, introducing new

analysis techniques. The Use Case Maps (UCM) language, part of the ITU-T

standard User Requirements Notation (URN) [36], is a visual modeling technique

used to integrate and capture functional requirements as causal scenarios that

represent behavioral facets at a high level of abstraction. A UCM model inte-

grates the behavioral view as well as the architectural view of a system. As UCM

models evolve over time, they will integrate dozens of maps that are themselves

composed of hundreds of constructs, which make such amount of information

humanly unmanageable even by notation experts, as stated by Genon et al. [37].

According to the authors [37], one of the main reasons causing this issue is the

language lack of horizontal decomposition.

In this Thesis, we aim at helping maintainers understand large and complex

UCM requirements specifications. More specifically, we are interested in develop-

ing a slicing algorithms for the UCM language in order to help software engineers

understand complex UCMs prior to performing a maintenance task; hence in-

creasing their productivity and reducing the cost of typical maintenance tasks.

4



C-Program 1: A program to be maintained

1- Pass = 0 ;
2- Fail = 0;
3- Count = 0;
4- Excellent = 0;
5- V eryGood = 0;
6- Good = 0;
7- while(!eof()){
8- TotalMarks=0;
9- scanf(”%d”,Marks);
10- if(Marks> = 40)
11- pass = pass + 1;
12- if(Marks<40)
13- Fail = Fail + 1;
14- if(Marks> = 35)
15- Excellent = Excellent + 1;
16- elseif(Marks> = 35)
17- V eryGood = V eryGood + 1;
18- else 19- Good = Good + 1;
20- Count = Count + 1;
21- TotalMarks = TotalMarks + Marks;
22- }
23- printf(”Out of %d, %d passed and %d failed”,Count, Pass, Fail);
24- PassRate = Pass/Count ∗ 100 ;
25- printf(”Pass rate is %d”,PassRate);
26- average = TotalMarks/Count;
27- /* point of interest */
28- printf(”Average= %d”,average);
29- ExcellentRate = Excellent/Count ∗ 100;
30- V goodRate = V eryGood/Count ∗ 100;
31- GoodRate = Good/count ∗ 100;
32- printf(”Excellent rate=%d, VeryGood rate=%d, Good
rate=%d”,ExcellentRate,V goodRate,GoodRate);

C-Program 2: Backward slice with respect to Line 28, variable:average

1- Count = 0;
2- while(!eof()){
3- scanf(”%d”,Marks);
4- TotalMarks=0;
5- Count = Count + 1;
6- TotalMarks = TotalMarks + Marks;
7- }
8- average = TotalMarks/Count;
9- printf(”Average= %d”,average);

5



1.2 Problem Statement

Having sketched the background of our research, we now formulate the problem

statement and the main goal of this thesis proposal. The problem statement is

denoted as follows:

”As Use Case Maps requirements specifications evolve, they become very complex

to comprehend and to maintain. The actual UCM framework tool (jUCMNav)

lacks features that facilitate the understanding of selected parts of interest within

a UCM specification.”

Therefore, the goal of our research is denoted as follows: ”The goal of our research

is to help the comprehension of complex UCM specifications. More particularly,

our goal is to investigate the use of reduction techniques in order to help require-

ments engineers comprehend models written using the UCM notation.”

1.3 Research Hypothesis

Although much work has been done in the use of reduction techniques at the

program [15] and the model level [20], applying such techniques to requirements

models, remains an open research subject. In this thesis, we apply the well-known

program slicing technique to the Use Case Maps language.

The research hypothesis is denoted as follows:

”Slicing techniques can be applied effectively to requirements specifications de-

scribed using the Use Case Map scenario notation”.

6



1.4 Thesis Approach

We plan to solve the problem by designing a static backward slicing algorithm

for the UCM language. The inputs for the algorithm are: a) A particular UCM

specification file, and b) Any UCM construct that defines/uses data that will serve

as a slicing criterion. The output of the algorithm is a valid UCM specification

having all the constructs that affect the selected slicing criterion. The algorithm is

implemented within the jUCMNav, the UCM framework tool, which is an Eclipse

plugin developed using the Eclipse Modelling Framework (EMF), and the Graph-

ical Editing Framework (GEF).

The implementation of the slicing approach on jUCMNav requires full understand-

ability of the source code of the framework, which is over 150 thousands lines of

code.

The implementation of the slicing approach consists of the following seven steps:

1. Define the slicing criterion.

2. Develop the backward traversal mechanism.

3. The traversal mechanism should deal with concurrency(AND-fork and AND-

join constructs).

4. The traversal algorithm should deal with hierarchy: The slicing algorithm

should be able to traverse plug-ins and stubs at different decomposition

levels.

5. The traversal algorithm should be able to identify the related/unrelated

7



variables within responsibilities, start/end points, OR-forks, timers, and

waiting-places.

6. Two types of outputs should be supported, marked UCM and a reduced

UCM.

1.4.1 Validation of Thesis Approach

Theoretical Validation

We theoretically validated the research hypothesis by implementing the proposed

approach as proof of concept on JUCMNav framework. Moreover, we conducted

an experiment to study the impact of using the proposed slicing technique on

understandability of UCM specifications.

Evaluation

We evaluated our methodology through its application to many specifications of

different sizes and exhibiting large and various sets of UCM constructs as well as

implementing the approach on three case studies plus a mock-up system. The

resulting slices were valid UCM specifications.

1.5 Contributions

This thesis has the following contributions:
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1.5.1 Contribution 1: Design of a static slicing approach

for UCM

This thesis proposes a static slicing approach for the UCM language. The proposed

approach covers all UCM language constructs. The presented slicing approach also

provides the following features:

� It handles model hierarchy presented by UCM stubs.

� It solves loops and inconsistencies within UCM.

� It handles concurrent scenarios.

� It supports two types of outputs: an executable and a marked slice.

1.5.2 Contribution 2: Implementation of the slicing algo-

rithm within jUCMNav framework

The proposed slicing approach is implemented within the jUCMNav tool [38] as

a proof of concept.

1.5.3 Contribution 3: Empirical Evaluation and Valida-

tion

The slicing approach is evaluated using 3 case studies and one mock model. We

have shown that the slicing approach can be applied to UCM specifications with

different sizes and structures, and it proved its effectiveness as a reduction tech-
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nique. The approach is validated by conducting an experiment to prove the impact

of using UCM slicing on understandability of UCM specifications.

1.5.4 Contribution 4: Publication

journal paper is in preparation and will be submitted to SoSyM.

1.6 Issues not Addressed in this thesis

We applied backward static slicing technique on UCM. The Other slicing tech-

niques such as dynamic, conditioned, chopping etc. [15, 20] are not considered.

1.7 Outline

The thesis as organized as follows:

Chapter 2: presents the background and related work as well as an overview

of Use Case Maps language.

Chapter 3: Describes the presented slicing approach in details.

Chapter 4: Describes how the slicing approach works in jUCMNav tool.

Chapter 5: Discuss the empirical evalutaion of the presented approach.

Chapter 6: Discuss the advantages and shortcomings of the approach.

Chapter 7: States the conclusion and future work.

10



CHAPTER 2

BACKGROUND AND

LITERATURE REVIEW

In this section, we present a brief background of this research. We start by briefly

presenting the Use Case Maps language then reviewing existing slicing techniques.

2.1 Background

In the early stages of common development processes, system functionalities are

defined in terms of informal requirements and visual descriptions. Although Semi-

formal, scenario driven approaches, however, have raised the awareness and use

of requirements engineering techniques, mostly because of their intuitive syntax

and semantics. The Use Case Maps (UCM) language, part of the ITU-T User

Requirements Notation (URN) standard [36], is a high-level visual scenario-based

modeling language that has gained momentum in recent years within the software

requirements community. Use Case Maps can be used to capture and integrate

11



functional requirements in terms of causal scenarios representing behavioral as-

pects at a high level of abstraction, and to provide the stakeholders with guidance

and reasoning about the system-wide architecture and behavior. UCMs have been

successfully used in describing and validating a wide range of systems [39].

UCMs expressed by a simple visual notation allow for an abstract descrip-

tion of scenarios in terms of causal relationships between responsibilities (  , i.e.,

the steps within a scenario describing operations, functions, tasks, actions, etc.)

along paths allocated to a set of components. UCMs help in structuring and

integrating scenarios (in a map-like diagram) sequentially, as alternatives (with

OR-forks/joins;  /  ), or concurrently (with AND-forks/joins;  /  ).

One of the strengths of UCMs resides in their ability to bind responsibilities to

architectural components. Several kinds ot UCM components allow system enti-

ties (  ) to be differentiated from entities of the environment (  ). Components can

be organized hierarchically, i.e., vertical decomposition, through the component

containment mechanism.

UCM scenarios can be integrated together, yet individual scenarios are

tractable through scenario definitions based on a simple data model. Scenario

definitions make use of path variables and conditions to identify individual sce-

narios in an integrated collection of UCMs. Conditions allow the explicit definition

of otherwise hidden causal dependencies of path segments. A scenario definition

may define the desired start points of the scenario, the end points (where the sce-

nario should end), variables’ initialization values in the shared data model of the

12



URN specification, preconditions, and postconditions that have to be met [36].

When maps become too complex to be represented as one single UCM, a

mechanism for defining and structuring sub-maps becomes necessary. Path details

can be hidden in sub-diagrams called plug-in maps, contained in stubs (presented

as diamonds) on a path. A plug-in map is bound (i.e., connected) to its parent

map by binding the in-paths of the stub with start points (  ) of the plug-in map

and by binding the out-paths of the stub to end points (  ) of the plug-in map.

There are four types of stubs: (1) static stub (solid diamond  ) can have only one

plug-in map, (2) dynamic stub (dashed diamond ) may contain multiple plugin-

in maps, whose selection can be determined at run-time according to a selection

policy, (3) synchronizing stub (rendered with the letter S inside the dynamic stub

symbol ) is a dynamic stub that synchronizes its plug-in maps before the traversal

of the UCM path is allowed to continue past the stub, (4) blocking stub (rendered

with the letter B in subscript to the symbol of the synchronizing stub ) is a

synchronizing stub that does not allow its plug-in maps to be visited more than

once at the same time. For a complete description of the Use Case Maps language,

interested readers are referred to the ITU-T standard [36].

The most comprehensive UCM tool available to date is the Eclipse plug-

in jUCMNav [38], a full graphical editor and analysis tool for UCM models. jUCM-

Nav is developed using the Eclipse Modeling Framework (EMF), and the Graphi-

cal Editing Framework (GEF). In this thesis, we propose to implement our slicing

feature within the jUCMNav framework.
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2.2 Literature Review

2.2.1 Program slicing

Program slicing [2] represents an approach to reduce the size of a particular source

code by only locating the portions of the program code related to the execution of

a targeted output or function. A slice P’ is produced from the original program P

by eliminating the code statements that do not contribute to the computation of

a specific variable V at some location S, called the slicing criterion. The produced

slice can give answer to the question: ”what program statements potentially affect

the value of variable V at statement S?”. The observer may not be able to

differentiate between the execution of the slice and the execution of the original

program since the focus is on the value of the variable V in the statement S.

An important feature of program slicing is that the resulting slice preserves the

semantics of the original program [2].

Consider the source code of Fig. 2.2.1, calculates the sum s and the product

p of a set of integer numbers. The program executes until an upper bound n

is reached. Let the slicing criterion be (10, p), i.e., our interest is only in the

calculation of the product p in line 10). Fig. 2.2.1(b) illustrates the resulting

slice.

Many program slicing techniques have been introduced in the literature [40,

15]. In what follows, we briefly introduce them.
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(a) Original program

1. read(n)

2. i := 1

3. s := 0

4. p := 1

5. while (i < n)

6. s := s+ i

7. p := p ∗ i
8. i := i+ 1

9. write(s)

10. write(p)

(b) Static slice for (10, p)

1. read(n)

2. i := 1

3.

4. p := 1

5. while (i < n)

6.

7. p := p ∗ i
8. i := i+ 1

9.

10. write(p)

(c) Dynamic slice for (10, p, n=0)

1.

2.

3.

4. p := 1

5.

6.

7.

8.

9.

10.

Figure 2.1: A simple program and its corresponding static and dynamic slices [1]

Static vs. Dynamic slicing

Program slicing, introduced by Weiser [2], is considered as static since it does not

consider any specific input for the target program to be sliced. The produced

slice preserves the behavior of the program for all possible inputs. Korel and

Laski [41] proposed the notion dynamic slicing, that preserve the behavior of

a program not only with respect to the slicing criterion but also with respect

to a particular input, i.e., particular runtime execution of the program. Hence,

the slicing criterion is extended by a third item, representing the value of the

input. The size of a dynamic slice is considerably reduced compared with the one

produced by applying static slicing.Fig. 2.2.1(b) illustrates the resulting dynamic

slice based on the slicing criterion (10, p, n=0). Only one statement contributes

to the computation of the output in statement 10.

The produced slice of 2.2.1(b) can be considered as a static slice since it is
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independent from inputs of the program and correctly calculates p given any

possible execution. On the other hand, if the focus is on the statements having

an effect on the slicing criterion for a specific execution only, then a dynamic slice

is computed. A third item is then extended to the selected slicing criterion, that

is, the program inputs. A dynamic slice (see Fig. 2.2.1(c)) shows the program

execution when the input of the variable is n = 0.

Forward slicing vs Backward slicing

Having selected a slicing criterion, forwards or backwards traversal can then be

applied on the program starting from that slicing criterion. The result of forward

slicing technique is a slice containing code statements of the original program

that are affected by the slicing criterion whereas the result of backward slicing

technique is a slice containing all code statements of the original program that

have an effect on the selected slicing criterion. The original slicing approach by

Weiser [2] is a static backward slicing approach. Backward slices can be used to

assist developers identify the portions of the program susceptible to contain bugs.

Forward slicing techniques may assist maintainers in predicting those portions of

the program possibly affected after a maintenance task is performed [10].

Hybrid slicing

Static slicing technique suffers from the imprecision problem while dynamic slic-

ing targets one specific execution only. To help improve the quality and precision

of the produced slices, Gupta and Soffa [42] proposed the notion of hybrid slic-
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ing. Hybrid slicing aims at incorporating dynamic information into static slices.

Takada et al. [43] and Umemori et al. [44] have introduced Dependence-cache

which is another type of slicing that combines both dynamic and static informa-

tion.

Quasi-static slicing

Venkatesh [45] introduced the quasi-static slicing technique. A quasi-static slice

is built based on an initial prefix of a sequence of input to the original program.

Quasi-static slice can be used to study the program behavior when some variables

of the input have fixed values while others vary. The quasi-static slice is considered

to be the same as a static slice if the values of all variables have no fixed values,

whereas, it can be considered to be the same as a dynamic slice if the values of

all input variables are fixed.

Conditioned slicing

Conditioned program slicing, introduced by Canfora et al. [46], aims to preserve

the original program behavior based on a given slicing criterion for a specified

group of execution paths. A group of program’s initial states characterizing those

paths is identified on the input variables as a first order logic formula. Given a

program along with its group of initial states, a symbolic executor is initially used

by the slicing algorithm in order to reduce the program by excluding the paths

that are infeasible according to those initial states. Next, slicing is applied on

the reduced version of the program. As the infeasible paths are eliminated, the
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resulting slice is more precise than those slices that are produced by traditional

slicing techniques.

Chopping

Program chopping is a related slicing operation [47, 48]. A chop contains all the

points of a program that are influenced between two locations in the program,

called chop source and chop target. A chop can answer the following form of

questions: which elements of the program can contribute to transfer effects from

the known element (chop source) S to the known target (chop target) T?.

Other types of slicing include, relevant slicing, inter and intra procedural slic-

ing, object-oriented slicing, call mark slicing, interface slicing, pre/post condition

slicing, amorphous slicing. For a detailed survey on program slicing, the reader is

invited to consult [14, 15, 1, 16, 18, 17].

2.2.2 Model-based Slicing

Slicing has been extended to cover other software artefacts [22] such as software ar-

chitecture [28], formal specification languages [26, 27, 49] and requirements mod-

els [25, 23, 24]. Different types of models require different slicing criteria and

produces slices with different properties.

Heimdahl et al. [23] proposed a slicing technique for the Requirements State

Machine Language (RSML) specification language. Given a targeted scenario,

their proposed technique reduces an RSML specification by keeping only behav-

iors satisfying the operating conditions of the chosen scenario. The result of this
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reduction is called specification interpretation. Then, the resulting interpretation

is reduced/sliced further, based on various elements within the target model, in

order to identify the specification portions that affect a specific transition or an

output variable. This is achieved via analysis of control and data flow information.

Finally, the produced slices are combined arbitrarily through a set of standard op-

erations in order to create a combined slice that contains the needed information.

Korel et al. [24] proposed a slicing technique for Extended Finite State Machines

(EFSM) models that is based on dependencies analysis. Non-deterministic slicing

may be applied on the resulting slice so that it may be sliced further through

merging transitions and states to build a non-deterministic EFSM. For a detailed

survey about State-based Model slicing, the reader is referred to Androutsopoulos

et al. [20].

Zhao [28] proposed a new slicing approach to assist architectural reuse and un-

derstanding, called Reuse Architectural Slicing. He applied this technique to a

system’s architectural specification that was written in the architectural descrip-

tion language WRIGHT. To generate a slice of the architecture, information flow

graph of the architecture is created and traversed. The result is an architectural

description that is reduced and contains lines of ADL code only, which may be

relevant to a specific slicing criterion. The used slicing criterion used in [28] is ei-

ther a group of component ports or a group of connector roles. Stafford et al. [50]

proposed an approach, called chaining, for dependency of software architecture.

The chaining technique extracts a dependency chain, called links, from specifica-
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tion elements based on the slicing criterion. The slicing criterion of this technique

is a collection of component ports.

Kim et al. [51] proposed a dynamic slicing approach for software architectures in

order to improve their understandability. The dynamic architecture slice shows

the behavior of the selected parts of the architecture at run-time based on a slic-

ing criterion of interest such as a group of events or resources. The approach

was illustrated via an E-commerce system and the run-time execution of its ar-

chitecture. The software architecture was designed using architectural description

language(ADL) of choice. However, the main focus was on event-driven ADLs,

particularly, RAPIDE language.

Samuel et al. [52] proposed a dynamic slicing technique for UML activity dia-

grams used in generating test cases. The first step is creating a flow dependency

graph from the input activity diagram. Slices are generated for each predicate

residing within the edges of activities, and then test cases are generated for each

produced slice. Furthermore, Ray et al. [53] described a conditioned-based slicing

technique as a method to generate test cases from UML activity diagrams. The

flow dependence graph is constructed from a given UML activity diagram and

then conditioned slicing is applied based on a predicate node within the graph, in

order to generate test cases. The goal is to reduce the number of generated test

cases while preserving all the practically useful ones.

Bouras et al. [54] proposed an approach to assist software merging by slicing

sequence diagrams. The approach uses slicing to capture all differences and map-
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pings between elements of the sequence diagrams in order to generate a new version

of sequence diagram. The slice is generated by transforming the sequence diagram

into a Model Flow Graph (MFG) from which dependencies between elements are

identified. The slices are generated for each model element in order to identify all

differences when map the slice with MFGs of variants of the original sequence di-

agram. The result is an MFG that conatins all changes from all diagram variants,

and then a new sequence diagram is generated based on the resulted MFG.

Lity et al. [55] applied an incremental slicing technique on delta-oriented software

product line (SPL) as a mechanism to identify the impact of changes applied to

the model and determine the potential retests required for these changes. Delta

modeling is a technique used to model various artifacts of SPL such as finite

state machines. The proposed technique detects the differences between slices

by identifying the new or changed dependencies which facilitates retesting. Best

and Rakow [56] presented a slicing technique for Petri nets model. Petri nets are

business process model (BPM) used to model work-flow and business processes

the the presented slicing techniques aims to reduce their size to smaller nets with

less number of states in order to facilitate validation of business processes.

In an early work, Hassine et al. [25] have proposed a UCM-based static slicing

algorithm that produces UCM slices given a specific slicing criterion (end/start

point or responsibility). Their approach does not cover all UCM constructs (e.g.,

different types of stubs such as synchronizing stubs). The slicing criteria in [25]

are relaxed in [57] by considering any UCM construct or component. Although
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the feasibility of the resulting slices is investigated, both approaches [25, 57] are

static and do not consider the UCM data flow model.
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CHAPTER 3

USE CASE MAPS STATIC

SLICING APPROACH

Before presenting the details of our proposed UCM slicing approach, we provide

the definitions of UCM slicing criterion and UCM slices:

Definition 3.1 (UCM Slicing criterion) Let U be a UCM Specification. A

slicing criterion SC for U is defined as a couple ( Target, Var) where:

� Target may be a start point, a responsibility reference(respRef), an OR-Fork

branch, a Timer branch, a Waiting-Place branch, or an end point.

� Var represent a set of one or many variables defined or used in Target.

In a UCM specification, variables reside in responsibilities (executable source

code), OR-Fork branches (Boolean conditions containing variables), timers (nor-

mal and timeout paths have Boolean conditions containing variables) start points

(preconditions expressions containing variables), and end points (postconditions
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expressions containing variables). The other UCM constructs, such as OR-Joins,

AND-Forks, AND-Joins, etc., cannot be chosen as a slicing criterion because they

don’t contain variables.

Definition 3.2 (UCM Slice) Let U be a UCM Specification and SC a given

slicing criterion for U. A UCM slice U’ is a reduced UCM that is produced from

U by keeping only the UCM parts affecting SC.

3.1 UCM Slicing Algorithm

Figure 3.1, described as a UCM scenario, illustrates the proposed slicing algorithm,

and it is mapped into Algorithm 3. The slicing algorithm has several parts; it

starts in Algorithm 3 in which it invokes all other algorithms discussed in the

next sections. The input of the slicing feature is a UCM specification file and a

slicing criterion.

As shown in Fig. 3.1, the scenario starts by selecting a UCM construct (illus-

trated by start point SelectUCMConstruct), then invoking the UCM slicing feature

(represented by the responsibility InvokeUCMSlicingFeature). Figure 3.16 illus-

trates a snapshot of the menu showing the UCM slicing invocation feature. Next,

the user is asked to select the slicing criterion (responsibility ChooseSlicingCri-

terion). The variables enclosed within the selected UCM construct, are then

extracted and the user can select zero, many, or all listed variables. Once the

slicing criterion is chosen, the three responsibilities BackwardTraversal (referring

to the UCM backward traversal algorithm), DependenciesComputation (referring
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to the dependencies computation algorithm), and IdentifyRelevancy (referring

to the identification of retained UCM construct) are performed in parallel (en-

closed between an AND-Fork and an AND-Join in Fig.3.1). During the backward

traversal, various model elements are visited and data/control flow dependencies

are computed based on the selected slicing criterion (see Sect. 3.3). While these

dependencies are computed, the set of related/unrelated UCM constructs is being

constructed. Once the backward traversal is complete along with the computa-

tion of dependencies and the identification of related/unrelated UCM constructs

with respect to the slicing criterion, another dependency computation (responsi-

bility FinalDependenciesRecomputation) is performed. The aim of this step is to

resolve issues related to misidentification of relevant constructs, which is mainly

caused by the presence of concurrency between different paths (see Sect. 3.5).

The last step consists of producing the output slice. Using the feature GUI

(see Sect. 3.8), the user may choose either a marked slice (also known as closure

slice approach) or a reduced slice. A closure slice is displayed by marking the

related constructs and paths within the original UCM, while a reduced slice is

a new executable UCM obtained after removal of unrelated constructs, paths,

components, and scenarios. A discussion about the benefits of each type of output

is discussed in Sect. 3.8.In what follows, we detail the aforementioned steps.
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Algorithm 3: Slicing Algorithm
Input : UCM model
Output: UCM slice model
stubStack:stack(Stub);
visitedJoins:List(PathNode);
SCNode= select target construct as a SC ;
startingLink= get predecessor link of SCNode;
expression= retrieve code expression from SCNode;
variables= Extract variables from expression;
criterionV ariables= get selected variables;
sliceType= get selected slice output type;
invoke backwardTraversal(startingLink, criterionVariables, stubStack,
visitedJoins) (see Algorithm 6) ;
{Handling Concurrency problem before generating the output slice}
invoke finalComp (see Algorithm 14) ;
if (sliceType == ”Remove”) then
{when removal option is chosen}
invoke RemoveElements() (see Algorithm 16);

else
{otherwise slice-marking option is selected}
invoke colorSlice(startingLink) (see Algorithm 17) ;

end

3.2 Code Expressions and Extraction of Slicing

Criterion Variables

UCM Responsibilities (known as responsibility definitions) define the scenario ac-

tivities, e.g., actions, operations, or functions to be performed. They can be reused

in many places as responsibility references (refereed to them as RespRef ). The

most important attribute of a responsibility definition is the expression attribute,

which is defined via the URN action language. Expressions define the effect of

responsibilities on the global data model of a URN specification. Responsibilities

expressions are used to compute data flow dependencies when traversing the UCM

model at hand.
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RespRef Expression
R1 x=y;
R2 x=10;
R3 x=y+z;
R4 x=k;
R5 x=j;
R6 j=10;
R7 y=z;
R8 z=1;
R9 z=y+k;
R10 i=10;
R11 k=k+1;
R12 bool var =false;

R13
if(bool var)
bool var2 =false;

R14

if(a>b)
{
x=0;
m=m-1;
}
else
a=a+1;

R15

x=x+1;
if(y>z && z<10)
m=10;
else
{
l=j;
}

RespRef Expression

R16

m=10;
if(z<10)
{
m=k;
}
else if(l==k)
k=10;

R17

j=k;
if(j>=10)
x=10;
else
x=0;
k=k+1;

R18

y=y+1;
if(x>y)
{
i=j+k;
if(bool var)
a=b;
}
else
x=z;

R19 -
R20 -

Table 3.1: List of RespRefs with their referenced expressions
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Expressions are written in the form of C-like code strings. An expression can

be one simple statement having an assignment, or it can have multiple statements

guarded by predicates in the form of if-else conditions, making the expression look

more like a function. A list of responsibility expressions are shown in Table 3.1.

These Responsibilities are used throughout thesis work to illustrate different sce-

narios. Expressions vary from a simple assignment statements such as R1, and R2

(where x and y are Integer variables) to more complex expressions where multiple

statements and predicates are used such as R13 (where bool var and bool var2

are boolean variables). The UCM language supports Integer, Boolean, and Enu-

meration data types.

Once a RespRef is selected as a slicing criterion, the expression that corre-

sponds to its responsibility definition is captured as a string, then the comments,

if any, are removed. Next, the expression is read and variables are extracted from

code statements and predicates. The user can then select the slicing variables

from the extracted list.

Figure 3.17 shows a snapshot of the variable extraction GUI, where R15 is

selected as a slicing criterion. The extracted variables are l, j, y, z, m, and x.

3.3 Dependencies Computation

The slicing process consists of a backward traversal of path nodes and tracking

dependencies to identify those path nodes within UCM model that may impact

the slicing criterion. In our proposed technique, Data and control dependencies
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are computed directly while traversing the path nodes of the UCM model.

Definition 3.3 (Control flow dependency) A control flow dependency exists

between statements T and T̄ if T decides whether T̄ is executed or not.

A control flow dependency is determined by the following path nodes: OR-

Forks, Timers, Waiting-places, Start points, and End points. These path nodes

affect control dependencies by having conditions that determine whether the sub-

sequent paths are executed or not. In addition, responsibility definitions can also

impact the control flow by having conditions within their expressions in the form

of if-else conditions, e.g., responsibility R14 in Table 3.1 has the condition if(a>b)

that determines whether the statements x=0, and m=m-1 are executed or not.

Similarly, a start point can control the execution of all subsequent path nodes by

having a precondition that determines whether the path is executed or not.

Definition 3.4 (Data flow dependency) A data dependency exists between

statements T and T̄ , if statement T̄ references a variable assigned to or defined

in T.

A data flow dependency is controlled by responsibility definitions via their

expressions that impact the global data model when the statements within the

expression are executed.

Figures 4 and 5 illustrate the algorithms used to compute the data and control

flow dependencies. The algorithm starts by reading and extracting the code within

responsibility definitions. Code statements must be read top-down to extract their
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left- and right- side variables. Since we propose a backward slicing technique, the

parsed statements are stacked in a reverse order similar to an ordinary program-

based backward slicing approach.

To handle assignments that reside within if-else blocks, procedure Analyze-

Condition (see Fig. 5) is invoked, in order to save the condition(s) to which the

statement belongs and to add the predicate variables to the list of relevant vari-

ables. It is worth noting that our alogrithm handle infinite number of inner if-else

blocks. Table 3.2 shows the stack corresponding to the definition of responsibil-

ity R18.

Once the statements are in the stack, the left hand side variable of each state-

ment is checked against the criterion variables to determine whether the respRef

having that expression is relevant to the slicing criterion or not. The criterion

variables are updated accordingly.

Other conditions from path nodes, e.g., OR-Forks, start points, etc., impact-

ing the control flow of their successor model elements, are handled the same way.

The variables within those conditions are added to the set of as dependency vari-

ables. Finally, based on whether dependencies are detected or not, the predecessor

respRef(s) are considered either relevant or irrelevant to the slicing criterion.

3.4 Backward UCM Traversal

Figure. 6 depicts the main steps of the UCM backward traversal algorithm.

The algorithm requires the following parameters:
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Algorithm 4: Dependency Computation Algorithm-Part I
Input : Expression of responsibility definition as a string and a list of slicing

criterion variables
Output: True if the RespRef is relevant, false if it’s not
Remove comments from the code string;
isRelevant = false;
while Expression string is not empty do

if (expression starts with an if condition) then
call AnalayzeCondition algorithm;

else
{Otherwise it is a statement}
statement= tokenize expression and extract the statement ;
statementVariables list=extract variables from statement ;
{left side variable is added at index(0) in statementVariables list }
if (condition stack is not empty) then
{statement within if-else block(s)}
foreach condition c ∈ condition stack do

extract variable(s) from c and add them to
statementVariables list

end

end
Add statementV ariables list to AllStatements stack ;
{statements(formed as a list of variables) are added to this stack
}

end

end
{after all statments are stacked bottom-up as variable lists form, they are
analyzed to compute dependencies}

while AllStatements stack is not empty do
statementV ariables list= get the top element in AllStatements stack ;
remove the top element of AllStatements stack ;
if (statementV ariables list(0) is included in criterionVariables ) then
{index(0) stores the left side variable of the assignment }
isRelevant = true;
{Add right side variables and condition variables to the
criterionV ariable list}

for (i = 1, i<size of statementVariables list, i=i+1) do
add statementV ariables list(i) in to criterionV ariable;

end

end

end
return isRelevant ;
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Algorithm 5: AnalyzeCondition-Dependency Computation Algorithm-Part
II
Input : Expression of RespRef as a string, List of Criterion variables
condition= extract condition ;
push condition to condition stack ;
while condition block is not empty do

if (expression starts with an if condition) then
{recursive call}
call AnalayzeCondition algorithm;

else
{Otherwise it is a statement}
Handle statement similar to 4

end

end
if there is an else block then

while else block is not empty do
if (expression starts with an if condition) then
{recursive call}
call AnalayzeCondition algorithm;

else
{Otherwise it is a statement}
Handle statement similar to 4

end

end

else
{if condition has no else block}
remove the top condition from condition stack ;

end

statement left Var Right Var Cond-var
x=z x z x, y
a=b a a bool var, x, y
i=j+k i j, k x,y
y=y+1 y y -

Table 3.2: Stack of R18 code statements used to compute dependencies
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Algorithm 6: Backward Traversal Algorithm
Input : startingLink, criterionVariables, stubStack, visitedJoins
Output: updated criterionVariables
currentLink=startingLink currentNode=getSource(currentLink)
while (currentNode 6= StartPoint OR stubStack not empty) do

switch currentNode do
case RespRef do

HandleRespRef(currentNode) (see Algorithm 7) ;
end
case OrFork do

HandleOrFork Timer(currentNode) (see Algorithm 8) ;
end
case Timer do

HandleTimer(currentNode) (see Algorithm 8)
end
case WaitingPlace do

HandleWaitingPlace(currentNode) (see Algorithm 8) ;
end
case OrJoin do

HandleOrJoin(currentNode) (see Algorithm 9) ;
end
case StartPoint do

HandleStartPoint (see Algorithm 10) ;
end
case Stub do

{Any stub type }
HandleStub (see Algorithm 11) ;

end
case AndFork do

{Handling Concurrency}
HandleAndFork (see Algorithm 12) ;

end
case AndJoin do

{Handling Concurrency}
HandleAndJoin (see Algorithm 9) ;

end
otherwise do

{path nodes requiring no action}
if (VisitedNodes does not contain currentNode) then

Add(currentNode) to VisitedNodes;
end

end

end
{continue backward traversal}
currentLink= getPredecessorLink(currentNode);
currentNode= getSource(currentLink) ;

end
{Reaching a StartPoint with empty stubStack}
if (VisitedNodes does not contain currentNode) then

Add(currentNode) to startPoints list ;
Add(currentNode) to VisitedNodes;

condition=get StartPoint′s Precondition;
ConditionV ariables= getVariables(condition);
Add(ConditionV ariables) to criterionV ariables;

end
return criterionV ariables;
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� startingLink is the predecessor link of the selected SC. If SC is a respRef or

an end point construct, StartingLink will be the direct predecessor link of

this selected construct. However, when the SC is a branch (a link), such as

an OR-Fork branch, StartingLink will be the predecessor link of the branch’s

source, that is, the predecessor link of the OR-Fork, Timer etc.

� The chosen slicing criterion variables.

� VisitedJoins is a list of all visited OR-Join path nodes during backward

traversal. Each path has its own list, and they are used to detect loops as

explained in the following sections.

� StubStack represents a stack of stubs that are visited within a particular path

during traversal and it is used when traversing plug-in maps, as explained

in Sect. 3.4.6.

Since each encountered path node requires a particular procedure, we present

each case as a separate algorithm invoked during the backward traversal. Traversal

terminates when a startPoint is encountered and the stubStack, which shows the

level of abstraction, is empty.

3.4.1 Handling responsibility references

When a respRef is encountered during backward traversal, the expression refer-

enced by this respref is analyzed and data dependency is calculated using the

dependency algorithm presented earlier. As a result, the respRef is considered
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either relevant or irrelevant with respect to the slicing criterion. Algorithm 7

describes the handling of responsibility references.

Algorithm 7: Handling RespRefs
Input : A respRef within UCM
Output: True if respRef is relevant to SC, false otherwise
if (respRef 6= SC) then

if (respref not in visitedNodes list) then
Add(respRef) to visitedNodes list ;

end
respDef= getDefinition(respRef);
expression=getExpression(respDef) ;
if (expression is not empty) then

isRelevant= dependencyAlg(expression,criterionVariables) Fig. 4;
if (isRelevant == true) then

Add(respRef) to relevantResp list ;
else

Add(respRef) to irrelevantResp list ;
end

else
{Otherwise it’s an empty respRef}
Add(respRef) to emptyResp list ;

end

else
{reaching SC, means a loop }
return;

end

If a resRef is relevant to the slicing criterion, variables appearing in the right

hand side of assignment statements and the ones appearing in the conditions

may be added to the set of relevant variables. Figure 3.2 shows a UCM with

various responsibility references (Fig. 3.2(a)) and its reduced slice (Fig. 3.2(b))

with respect to the slicing criterion SC= (R2, x).

The referenced expression of R3, i.e., x=y+z, impacts the data flow of x, mak-

ing R3 relevant to the SC. Dependency variables y and z are added to the depen-

dency variables list. Consequently, R8 is considered relevant since its expression
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(a) Scenario with several respRefs

(b) Reduced UCM with SC=(R2, x)

Figure 3.2: Handling respRefs

defines the variable z. Responsibilities R10 and R11 are considered as irrelevant

since they do not impact R2. Generating an executable slice also requires the

removal of all forward path nodes that come after SC, e.g., R1.

3.4.2 Handling OR-Forks, waiting places, and timers

OR-Forks, Timers, and WaitingPlaces are model elements that affect the control

flow of their subsequent branches. They may contain conditions that determine

whether the subsequent branches will be executed or not. The difference between

these constructs is the number of branches attached to them, which serve as

alternative flows executed according to the truth and falsity of the condition [36].

An OR-Fork has at least two outgoing branches, a Timer has two branches at

maximum, and a WaitingPlace has only one outgoing branch. From dependency

computation perspective, the three model elements are handled similarly, as shown

in Algorithm 8. The variables enclosed within their conditions are extracted and

added to the set of dependency variables. In addition, the algorithm keeps track

of the un-traversed OR-Fork branches, so that they can be either deleted if the
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user opts for a reduced executable slice or unmarked if the user chooses the closure

slice approach.

Algorithm 8: Handling Orfork,Timer, and WaitingPlace
Input : OrFork, Timer, or WaitingPlace within UCM
{Avoid loop when SC is a branch of orfork, timer, or waiting-place construct}
If(currentLink == SC)
return;
condition= getcondition(Input);
if condition 6= empty then

conditionV ariables=getVariables(condition) ;
Add(conditionV ariables) to criterionV ariables;

end
if (InputNode not in visitedNodes) then
{encounter the node for the first time}
Add(InputNode) to visitedNodes ;
foreach (link l ∈ successorLinks(InputNode) do

Add(l) to unrelatedBranches list;
end
{exclude the current link}
remove(currentLink) from unrelatedBranches list ;

else
{it’s already been visited}
remove(currentLink) from unrelatedBranches list ;

end

Figure 3.3 illustrates an example of handling OR-Forks with respect to the

slicing criteria SC1=(R1, (x,y)) (see Fig. 3.3(b)) and SC2=(OR-Fork branch(i

>10), i) (see Fig. 3.3(c)). Figure 3.3(a) shows a UCM with an OR-Fork having

two outgoing branches.

With respect to SC1 and since the branch to which R1 belongs requires the

condition (i>10) to be true in order to be executed, the variable i is added as a

dependency variable, and all respRefs that define i are considered as relevant to

the slice (i.e., responsibility R10 ). As a result and in addition to R3 and R7

(computing x and y), R10 is kept in computing the slice of Fig. 3.3(b). How-
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(a) A UCM scenario with an OR-Fork

(b) Executable UCM slice with SC1=(R1, (x, y))

(c) Executable slice with
SC2=(Orfork branch(i>10),i)

Figure 3.3: UCM Slicing: Handling OR-Forks

ever, only R10 is kept in computing the slice of Fig. 3.3(c) since it is the only

responsibility updating the value of i.

Likewise, figures 3.4 and 3.5 are examples of scenarios containing a timer and

a waitingPlace respectively. In Fig. 3.4, the execution of the timer continuation

path, to which the SC belongs, depends on the condition aequalsb. Similarly, the

condition, k>1, determines the execution of the SC in Fig. 3.5.

Similar to handling OR-Fork branches as slicing criteria, Fig. 3.4(c) and

Fig. 3.5(c) show executable slices when SC are branches of a timer and a waiting-

place respectively. Likewise, figure 3.5(d) illustrates the executable slice resulting

from applying slicing with the slicing criterion being the end point End and the

variable i.
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(a) A scenario with a timer in UCM

(b) Executable UCM slice with SC=(R5, (x, j))

(c) Executable UCM slice with SC=(Branch of
a timer (a = b),a)

Figure 3.4: UCM Slicing: Handling Timers

(a) A scenario with a waitingPlace in UCM

(b) Executable UCM slice with SC=(R3, z)

(c) Executable UCM slice with
SC=(Branch of a waiting-place (k>1),k)

(d) Executable UCM slice with SC=(End, i)

Figure 3.5: UCM Slicing: Handling WaitingPlaces
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3.4.3 Handling OR-Joins

When an OR-Join is encountered during backward traversal, the incoming prede-

cessor branches are traversed separately. The backward traversal algorithm (see

Fig. 6) is invoked recursively for each branch of the OR-Join with the following

parameters:

� startLink is the branch link.

� criterionV ariables is the set of dependency variables computed before

reaching the OR-Join node.

� stubStack is the list of stacked stubs that have been encountered before

reaching the OR-Join node.

� visitedJoins is the list of the OR-Joins visited before reaching the OR-Join

node, used to detect loops within branches.

For each branch, the backward traversal algorithm computes its own depen-

dencies and identifies relevancy based on its local dependency variables. When

a branch encounters internal OR-Joins, sub-branches are handled in a recursive

manner, forming a tree of child branches. Once a branch traversal is finished, it

returns the computed dependency variables, to its parent branch. Finally, all sets

of variables emanating from the child branches are merged. Algorithm 9 illustrates

the handling of the OR-Join node.

Figure 3.6 describes an example of handling OR-Joins. Responsibilities R8,

R10, and R12 are irrelevant with respect to the slicing criterion (R2, x).
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Algorithm 9: UCM slicing: Handling OR-Joins
Input : OrJoin
if (visitedjoins Not contain(OrJoin)) then

Add(OrJoin) to visitedjoins ;
if (visitedNodes not contain (OrJoin)) then
{Add the node to the global list} Add(OrJoin) to visitedNodes ;

end
{get all dependency variables}
criV ar= criterionV ariables;
V isJoin= visitedjoins ;
stubs= stubStack ;
foreach (link l ∈ PredeccessorLinks(OrJoin) do

result= invoke BackwardTraversal(l,criV ar, stubs, V isJoin) ;
Add(result) to criterionV ariables ;
return;

end

else
{otherwise it’s a Loop }
return;

end

(a) A scenario with an OR-Join in UCM

(b) Executable UCM slice with SC=(R2, x)

Figure 3.6: Example of handling OR-Joins
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3.4.4 Handling loops

Several forms of loops can exist within an UCM such as the loop in the UCM

scenario shown in Fig. 3.7 where it is formed by connecting an OR-Join and

OR-Fork. The execution of the loop depends on the evaluation of the OR-Fork

condition x>10.

(a) A scenario with a loop in UCM

(b) Executable UCM slice with SC=(R2, x)

Figure 3.7: UCM Slicing: Handling Loops

The backward traversal algorithm requires detecting these kinds of loops in

order to avoid infinite backward traversal of path nodes. The list visitedjoins,

used as a parameter in main backward traversal algorithm in Fig. 6, is a branch-

specific list that is used to keep track of the visited branches. The first time an
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OR-Join is encountered, it will be added to the list. The second time the same

OR-Join is encountered, the loop will be detected and the algorithm will stop

traversing the loop branch again. Checking whether a loop exists or not is shown

in the part responsible for handling orjoin in Algorithm 9.

3.4.5 Handling StartPoints

A start point is similar to an OR-Fork, a timer, or a waiting place path nodes

with respect to control flow dependency since it may contain a pre-condition that

determines the execution of its entire path. Moreover, encountering a startpoint

does not mean that we have reached the end of the traversal since the current

map might be part of a plug-in map, which requires resuming the traversal of its

parent UCM. Algorithm 10 illustrates the handling of start points.

3.4.6 Handling stubs

When a stub is encountered during backward traversal, the PluginBinding are

used to access the lower-level UCM map(s) connected to this stub. Two types

of plugin bindings can be distinguished:(a) InBinding which binds the stub’s in-

path (i.e., a link) with a startPoint on the plug-in UCM map, and (b) OutBinding

which binds the stub’s out-path with an end point on the plug-in UCM map.

PluginBinding can bind more than one UCM maps to the same stub (e.g.,, syn-

chronizing stubs [36]), and this requires traversing more than one plug-in UCM

map. In addition, the data flow dependency computation is performed on the
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Algorithm 10: Handling StartPoint
Input : startPoint within the UCM
condition= getcondition(startPoint);
if condition 6= empty then

conditionV ariables=getVariables(condition) ;
Add(conditionV ariables) to criterionV ariables;

end
if (visitedNodes Not contain(startPoint)) then

Add(startPoint) to visitedNodes ;
end
if (stubStack Not empty) then

stub=get the top element in stubStack ;
remove the top element in stubStack ;
foreach (PluginBinding binding ∈ getBindings(stub)) do
{get IN binding}
foreach (InBinding In ∈ getIN(binding)) do

if (startPointOf(In)== startPoint ) then
{get the link that enters the stub}
stubEntry=getStubEntryOf(In) ;
{unrelatedIN stores unrelated branches}
remove(stubEntry) from unrelatedIN list ;
criV ar= criterionV ariables;
V isJoin= visitedjoins ;
stubs= stubStack ;
{resume traversal of parent map} result= invoke
BackwardTraversal(stubEntry,criV ar,

stubs, V isJoin) ;
Add(result) to criterionV ariables ;

end

end

end

end
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plug-in map and it is propagated to the parent map(s). To handle multiple levels

of stubs (stubs within plug-ins), StubStack is used to store such an hierarchy.

Handling stubs is performed in two main steps: (a) Enter the plug-in maps

via OutBinding (see Algorithm 11), and (b) Exit the stub when reaching its

start point(s) and resume the traversal of stub’s parent map using its InBinding

(explained in handling start points in Algorithm 10). For both steps, we search for

all bindings that match: (a) the reached start points and all stub-entry links bound

to it, and (b) the reached out-path links with all stub exit end points bound to it.

Two lists, unrelatedIN and unrelatedOUT are used to store those branches that

are not traversed. These lists are essential when generating the output slice since

they are used to eliminate the unrelated stub branches. In addition, end point

path nodes are handled in Algorithm 11 since the only case where end points

are encountered is when the traversal reaches a stub and enters the plug-in map

via its bound end-point. End points impact control flow, so its post-condition is

extracted and the condition variables are added to the criterionV ariables list.

Figure 3.8 illustrates a UCM scenario with stubs. Fig. 3.9 shows the output

slice with respect to SC = (R1, x). While computing the slice, the following

points are handled during the traversal:

� Traversing more than one plug-in map. The root map (Fig. 3.8(a)) con-

tains a dynamic stub DynStub that is bound to two different plug-in maps,

Fig. 3.8(b) and Fig. 3.8(c).

� Handling end-points by extracting their post conditions and add their vari-
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Algorithm 11: Handling Stub
Input : startPoint within UCM
if (visitedNodes Not contain(stub)) then

Add(stub) to visitedNodes ;
foreach (link l ∈ successorLinks(stub) do

Add(l) to unrelatedOUT list;
end
foreach (link l ∈ predecessorLinks(stub) do

Add(l) to unrelatedIN list;
end

else
{otherwise it’s already been visited} remove(currentLink) from
unrelatedOUT ;

end
Add(stub) to the top of stubStack ;
{Enter the plug-in map(s)}
foreach (PluginBinding binding ∈ getBindings(stub)) do
{get OUT bindings}
foreach (OUTBinding OUT ∈ getOUT(binding)) do

if (exitLinkOf(OUT)== currentLink) then
{get the end-Point}
stubExit=getEndPointOf(OUT ) ;
{Add endPoint to visitedNodes}
if (visitedNodes not contain stubExit) then

Add(stubExit) to visitedNodes ;
end
{get the condition of the ednPoint}
condition= getcondition(stubExit);
if (condition 6= empty) then

conditionV ariables=getVariables(condition);
Add(conditionV ariables) to criterionV ariables;

end
link=getPredecessorLinkOf(stubExit);
criV ar= criterionV ariables;
V isJoin= visitedjoins ;
stubs= stubStack ;
{start traversal of plug-in map}
result= invoke BackwardTraversal(link,criV ar,stubs, V isJoin) ;
Add(result) to criterionV ariables ;

end

end

end
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(a) Root map with a dynamic stub in UCM

(b) loop map bound to DynStub

(c) Plug-in map bound to DynStub

(d) WaitingPlace map bound to InnerStub

Figure 3.8: A scenario with stubs in UCM
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ables as criterion variables (see Fig. 3.9(d) where R10 is considered relevant

to the slicing criterion since it assigns the variable i, which is used in the

condition of the end-point).

� Handling many levels of abstraction. Fig. 3.8(c) shows a plug-in map,

bound to DynStub, which contains InnerStub bound to WaitingP lace map

(Fig. 3.8(d)). This represents three levels of abstraction, that is handled us-

ing Stubstack, which is used to stack the stubs during backward traversal

and control the levels that are being traversed upwards and downwards.

(a) Output slice of root map

(b) Output slice of loop map bound to DynStub

(c) Output slice of Plug-in map bound to DynStub

(d) Output slice of WaitingPlace map bound to
InnerStub

Figure 3.9: Output slice of the scenario in Fig. 3.8 with SC = (R1, x) in root map
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3.5 Handling Concurrency

In the previous sections, we have discussed the backward traversal of sequential

path nodes. The AND-Fork construct allows many paths to execute concurrently.

An AND-Join is a path node that is used to synchronize and merge at least two

incoming parallel branches. The execution of concurrent UCM paths may conform

to either one of the two following semantic models:

� An interleaving semantics model, i.e., concurrency is reduced to non-

determinism, where the behavior of a system that performs two actions a

and b concurrently is considered to be the same as the behavior of a system

that either does an a followed by b, or a b followed by a. In interleaving

semantics model, responsibilities represent atomic actions, not to be decom-

posable, and their execution is not interruptible. The interleaving variation

is based on a single execution thread, where only one single construct can

be executing at any given time.

� A true concurrency semantics model, where more than one responsibility

can take place at the same time.

It is worth noting that our slicing approach does not dependent on the chosen

concurrency semantics.

Unlike OrJoin and OrFork branches, concurrent branches are executed in-

dependently from each other. However, the order of execution of these branches

would have an impact on the UCM global data; hence, it represents a challenge
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when computing data dependencies. For example, suppose we have the UCM

shown in Fig. 3.10(a) and SC=(R2,x). When reaching the AND-Join during back-

ward traversal, the three concurrent incoming branches will be traversed. The or-

der of traversal of these branches can affect the data and control flow dependencies

substantially so that each order can have different impact on both, data and con-

trol flow. For example, if StartBranch 1 is traversed first , then StartBranch 2,

and finally StartBranch 3, R10 will be relevant to the slice because it assigns vari-

able i, which is used in the condition (i> = 10) of StartBranch 1. In addition, R7

is relevant to the slice because StartBranch 1 is executed before StartBranch 2

and R1 has the assignment x = y; hence y has already been included as a cri-

terion variable before traversing StartBranch 2, and then R8 is relevant to the

slice since StartBranch 3 is traversed after StartBranch 2. However, if the or-

der of traversal is as follows: StartBranch 2, StartBranch 1, StartBranch 3, in

this case R7, R8, and R10 will not be relevant to the slicing criterion. Since our

proposed technique is a static slicing approach, we take a conservative approach

by considering all possible executions. Therefore, having SC= (R2,x) will result

in a UCM slice with all relevant resRefs from all possible orderings such as in

Fig. 3.10(b) where all respRefs are considered relevant to the SC. SC=(R5,x) in

Fig. 3.10(c) shows a different situation, that is, it shows the SC inside an AND-

Join concurrency branch. The slicing algorithm moves forward before running

the backward traversal, after SC, to check whether SC resides within a concur-

rency branch and if it does, it catches all the concurrent branches so that backward
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traversal is applied to them independently. Also, nodes between SC and the AND-

Join are removed,e.g., R8, as well as the nodes coming after the AND-Join itself,

e.g., R2. This is different from having the SC residing within AND-Fork concur-

rent branch such as the one in Fig. 3.11 where the algorithm performs backward

traversal normally and when the AND-Fork is encountered, it moves forward and

catches Branch 2 and Branch 3. Our proposed solution to deal with concurrency

is based on three main steps:

(a) Three concurrent paths synchronizing at
an AND-Join

(b) UCM slice with respect to SC = (R2, x)

(c) SC within AndJoin concurrent branch:
UCM slice with respect to SC = (R5, x)

Figure 3.10: Example of an AND-Join handling
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1. First, construct a tree structure list for each concurrent branch. This tree

structure list has three main responsibilities :

� It stores only the unrelated respRefs corresponding to its path.

� It stimulates the structure of the branch by having child sub-paths

attached to their parent path (i.e., when the branch has an OR-Join

the incoming paths are children to the path that is past the OR-Join).

� The construction of the tree is performed during backward traversal,

when a unrelated respRef is identified, it is added to the tree at the

corresponding path/or child path.

2. When a concurrency path node is encountered the concurrent branches are

grouped together, and each branch executes the backward traversal algo-

rithm independently using the the set of dependency variables computed

before reaching the concurrency node.

3. Once the backward traversal of the concurrent branches is finished, depen-

dencies are computed, and unrelated respRefs are identified and stored in

each branch’s tree list. Then, a final re-computation of dependencies takes

place. This algorithm performs the following:

� Generates all possible sequences of the concurrent branches.

� Executes traversal for each sequence using its corresponding tree. No

traversal is performed on the UCM itself.
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� Dependency re-computation is performed by considering the depen-

dency list (already computed as part of the backward traversal algo-

rithm) of the first branch in the sequence as the initial dependency list.

This list is applied on the rest of the branches based on their order in

the sequence.

� It only analyzes the unrelated respRefs for each branch’s tree list.

� Once a respRef is considered relevant, it is removed from the unrelated

list, and it is not re-analyzed any more.

� The process is performed for each possible execution order covering all

possible sequences.

The algorithm shown in Algorithm 12 is invoked when an AND-Fork is encoun-

tered. GetEndLink(l) is used to move forward starting from the l as a parameter.

This is needed since all branches of AND-Fork must be included in the backward

traversal.

Suppose that the slicing criterion is SC = (R2, x), which resides within the

first Branch 1, as shown in Fig. 3.11. When the AND-Fork is encountered,

getEndLink(l) is invoked to traverse Branch 2, and Branch 3 in a forward man-

ner to reach the links of their end-points. Once these links are caught, the

slicing algorithm is executed for Branch 2, and Branch 3 independently with

the caught links as startingLink parameters, and initial criterionVariables={x}.

The criterionV ariables of Branch 1 when AND-Fork is encountered={x,y}.

However, since each branch is independent, the slicing algorithm, executed for
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Algorithm 12: Handling AND-fork
Input : AND-Fork within UCM
if (visitedNodes not contain(AndFork)) then

Add(AndFork) to visitedNodes list ;
foreach (Link(l) ∈ SuccessorLinksOf(AndFork)) do

if (l 6= currentLink ) then
endLink=TraverseForward and getEndLink(l) ;
Add(endLink) to forwardLinks list ;

end

end
criV ar= criterionV ariables;
V isJoin= visitedjoins ;
stubs= stubStack ;
foreach (Link(l) ∈ forwardLinks) do

slice=create new instance of slicingAlgorithm ;
slice(invoke BackwardTraversal(l,criV ar, stubs,V isJoin) ;
Add(slice) to group list ;

end
Add(group) to Groups;

end

(a) A scenario with AndFork in UCM

(b) Output slice with SC = (R2, x)

Figure 3.11: UCM Slicing: Handling AND − Fork
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Branch 2 and Branch 3, will start with the initial criterionVariables={x}. The

variable slice is an instance that contains all data including the unrelated repRefs

tree, and the criterionVariables which consists of the initial variable x and all de-

pendency variables computed when backward traversal is performed on the corre-

sponding branch. For example, unrelated respRefs of Branch1= (R6, R6), and

its criterionV ariables = {x, y}. Unrelated respRefs of Branch2= (R7, R10, R6),

and its criterionV ariables = {x}. Finally, Unrelated respRefs of Branch3=

(R8), and its criterionV ariables = {x, j}. All the concurrent branches grouped

in one list in order to execute final re-computation of dependencies. This part

is discussed in Sect. 3.6 where it explains how dependency re-computation of all

possible sequences is performed.

Similarly, handling AND-Joins is shown in Fig. 3.10 with SC = (R5, x). In

this example, the selected slicing criterionR5 resides within a concurrent branch 3.

Therefore, the two branches are also included in the slicing process. The proposed

technique always moves forward starting from the selected respRef before exe-

cuting the backward traversal. If an AndJoin is encountered, the other branches

are also included in the slicing process.

3.6 Final Dependency Re-computation

In order to solve the dependency issue, explained in the previous section, caused

by the concurrency, we add a dependency re-computation step.

Algorithms 14 and 15 are used to recompute all possible sequences. The idea
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Algorithm 13: Handling AND-Join
Input : AND-Join within UCM
if (visitedNodes not contain(AndJoin)) then

Add(AndJoin) to visitedNodes list ;
criV ar= criterionV ariables;
V isJoin= visitedjoins ;
stubs= stubStack ;
foreach (Link(l) ∈ PredecessorLinksOf(AndJoin)) do

slice=create new instance of slicingAlgorithm ;
slice(invoke BackwardTraversal(l,criV ar, stubs,V isJoin) ;
Add(slice) to group list ;

end
Add(group) to Groups;

else
{Otherwise it’s a loop}
return;

end

Algorithm 14: Final Dependency Computation-Get Sequences
Input : Groups of concurrent branches
for (List (gr) ∈ Groups list ) do

foreach (combination (sequence) ∈ getAllCombination(gr)) do
branchSlice= get First branch in sequence(sequence) ;
sequenceV ariables= get criterion variablesOf(branchSlice) ;
foreach (Element (branch)∈ sequence) do

branchTree= get the unrelatedRespRef of(branch);
{call Algorithm 15}
sequenceV ariables= invoke
recompute(branchTree,sequenceV ariables);

end

end

end
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Algorithm 15: Final Dependency Computation-Recompute Branch
Input : branchTree, criterionV ariables
Output: criterionV ariables
root=getRootOf(branchTree) ;
unrelatedResp= getUnrelatedListOf(root);
foreach (Element (respref) ∈ unrelatedResp ) do

respDef= getDefinition(respRef);
expression=getExpression(respDef) ;
isRelevant= dependencyAlg(expression,criterionV ariables) Fig. 4;
if (isRelevant == true) then

Add(respRef) to relevantResp list ;
Remove(respRef) from irrelevantResp list;
Add the new dependency variables to criterionV ariables list;

end

end
foreach Element childBranch ∈ getChilrenOf(root) do

criterionV ariables= invoke recompute(childBranch,criterionV ariables);
end
return criterionV ariables;

is to take one sequence at a time, fetch the criterionV ariables list of the first

branch in the sequence, and apply it as initial dependency variables against all

other branches sequentially.

The tree of each branch contains a list of all irrelevant respRef related to

this particular branch. Dependency Algorithm 4 is invoked to calculate relevance

against the variables passed to it. If the respRef found to be relevant, it is

added to the relatedResp list and removed from unrelatedResp list. The process

continues until all possible sequences are computed. The presented solution of

concurrency is effective as it covers all possible situations. However, it suffers from

overhead computation. We tried to alleviate this limitation by (a) constructing

a tree structure in which irrelevant respRef are stored instead of re-traversing

the UCM concurrent branches, (b) Only the unrelated respRefs are re-computed
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(the related ones are excluded), and (c) Once a respRef is found relevant, it is

removed from the tree list of the branch to which it belongs so that it will not be

re-computed again, and this can reduce the number of re-computations.

Furthermore, the dependency re-computation helps solve inconsistencies in

scenarios where branches of an OR-Fork are merged to an OR-Join forming a

circle as shown in Fig. 3.12(a). The inconsistency issue happens when executing

UCM slicing with SC = (R2, x). The set of dependency variables of branch 1,

branch 2 are {x, k}, {x, y, z} respectively. R7 is considered irrelevant to branch 1,

while it is relevant to branch 2. Similarly, R11 is relevant to branch 1, but it is

irrelevant to branch 2. This makes the respRefs R7 and R11 stored in both

lists, the relevant repsRefs as well as the irrelevant respRefs list making them

inconsistent. Before generating the output slice, this inconsistency is solved by

comparing the two lists and removing any respRef that is stored as relevant from

the irrelevant list.

3.7 Slice generation

Our proposed slicing technique produces either a reduced slice or a closure slice.

In this section, we describe how the final slice is generated.

3.7.1 Executable Slice

The UCMs used in previous sections are reduced slices, where all SC unrelated

parts are removed and the output is shown a new valid UCM specification. Pro-
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(a) A scenario with ORFork −ORJoin circle in UCM

(b) Output slice with SC = (R2, x)

Figure 3.12: Handling Inconsistent respRefs in UCM slicing

ducing an executable slice is more complex that producing closure slice since it is

subject to the following challenges:

� Preserving graph connectivity and generating a valid UCM specification.

The removal of unrelated repRefs as well as un-traversed path branches

must not cause the map elements to be disconnected.

� The jUCMNav [38] framework does not provide complete path removal when

removing path nodes having subsequent child nodes/paths, e.g., remov-

ing OR-Forks, OR-Joins, and stubs. Instead, model transformations are

automatically created. This is a challenging task since in most cases some

transformations involve the creation of new separated paths that are difficult

to access. Figure 3.13 illustrates few examples.
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� Backward slicing considers what comes after the slicing criterion as irrele-

vant. Therefore, all model elements past the target, i.e., respref , must be

removed when generating the output slice. However, in some scenarios, the

slicing criterion resides within a loop, which means that the path nodes past

the slicing criterion might be relevant to the output slice. Moreover, the

loop structure must be preserved and not disconnected such as the one in

Fig. 3.7, where model elements are removed and the loop structure is not

disconnected. Similarly, when the slicing criterion resides within a concur-

rent branch that is merged to an AND − Join, the elements between SC

and the AND − Join path nodes must be removed while preserving the

concurrent branch connected to its AND−Join and then remove all model

elements past the AND − Join node such as the one in Fig. 3.10.

Algorithm 16 handles the removal of unrelated elements while keeping map

structure and graph connectivity. The lists of all path modes that should be

removed are passed as input to the algorithm. These lists are collected during

backward traversal, as shown in the aforementioned algorithms handling different

kinds of path nodes, e.g., visitedNodes and unrelatedOrForkBranches lists.

The list visitedNodes is used to exit a loop, if any, and then remove all path

nodes past the slicing criterion. To solve the issue of removing path nodes hav-

ing subsequent child paths/nodes, shown in Fig. 3.13, we traverse the unrelated

branches forward and backward to collect each path node and then remove it from

UCM. The removal algorithm performs the following actions when generating the
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(a) A scenario in UCM

(b) Impact of removing an OrJoin

(c) Impact of removing a Stub

(d) Impact of removing an AndFork

Figure 3.13: Impact of removing path nodes that have consequent child
nodes/branches
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output slice:

� Removes the unrelated respRefs stored in unrelatedRespRef list from UCM

model.

� Removes unrelated stubs’IN branches stored in unrelatedStubINs list along

with their contained path nodes.

� Removes unrelated stubs’OUT branches stored in unrelatedStubOUTs list

along with their contained path nodes.

� Removes unrelated OR-Fork branches stored in unrelatedOrforkBranches

list along with their contained path nodes.

� Removes unrelated Timer branches stored in unrelatedTimerBranches list

along with their contained path nodes.

� Removes un-traversed maps from URN.

� Removes unrelated scenario start-Points from UCM scenario definitions.

� Removes unrelated Component references.

3.7.2 Closure Slice

Closure slice is an easier alternative to the reduced slice, since it only marks the

related as well as the unrelated parts with respect to SC within the original UCM

without having to remove or make changes on the model. The related respRefs
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Algorithm 16: Remove unrelated model elements
Input : visitedNodes,unrelatedRespRefs unrelatedOrforkBranches,unrelatedStubINs,

unrelatedStubOUTs,UnrelatedTimerBranches
Output: UCMslice
foreach (Element (respRef) ∈ unrelatedRespRefs) do

remove(respRef) from UCM ;
end
if SC resides within a concurrent OrJoin branch then

remove all path nodes between SC and AndJoin node;
remove all path nodes past the AndJoin node;

end
{check if criterion resides within a loop}
currentLink=getSuccessorLinkOf(SC);
currentNode=getTargetOf(currentLink);
{Move Forward}
while (currentNode is included in visitedNodes) do

currentLink=getSuccessorLinkOf(currentNode);
currentNode=getTargetOf(currentLink);

end
{reached the first link out of loop}
unrelatedNodes=move forward and collect all nodes starting from link(currentLink);
remove all path nodes in unrelatedNodes list from UCM ;
{remove unrelated OrFork branches}
foreach (Element (branchLink) ∈ unrelatedOrforkBranches) do

unrelatedNodes=move forward and collect all nodes starting from Link(branchLink);
remove all path nodes in(unrelatedNodes) list from UCM model ;

end
{remove unrelated Stub IN branches}
foreach (Element (StubINLink) ∈ unrelatedStubINs) do

unrelatedNodes=move forward and collect all nodes starting from Link(StubINLink);
remove all path nodes in(unrelatedNodes) list from UCM model ;

end
{remove unrelated Stub OUT branches}
foreach (Element (StubOUTLink) ∈ unrelatedStubOUTs) do

unrelatedNodes=move forward and collect all nodes starting from Link(StubOUTLink);
remove all path nodes in(unrelatedNodes) list from UCM model ;

end
{remove unrelated Timer branches}
foreach (Element (TimerLink) ∈ UnrelatedTimerBranches) do

unrelatedNodes=move forward and collect all nodes starting from Link(TimerLink);
remove all path nodes in(unrelatedNodes) list from UCM model ;

end
{remove unrelated maps}
foreach (Element (map) ∈ getAllMaps(URN −Def)) do

if (map is not in traversedMaps list) then
remove(map) from URN −Def ;

end

end
{remove unrelated scenario start-points}
foreach (Element (scenarioStartPoint) ∈ UnrelatedScenarioStartPoint) do

remove(scenarioStartPoint) from its UCM scenario definition;
end
remove unrelated component-references ;
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are marked with green color, while the unrelated ones are marked with red color.

The constructs that do not contain any code are marked with gray color. The

entire paths leading to the SC are marked with green color to show the output

slice entirely. Algorithm 17 shows how a closure slice is generated, and examples of

marked slices generated from the previous scenarios are illustrated in figures 3.14

and 3.15. As shown in Fig. 3.14(d), the marking of the concurrent branch to

which SC belongs starts from SC since the path nodes past SC are not part of

the output slice.

Algorithm 17: Slice Marking

Input : relevantResp:List(respRef),irrelevantResp:List(respRef),
emptyResp:List(respRef),visitedNodes:List(PathNode)

Output: A UCM marked slice
predLinks:List(link);
currentNode:PathNode;
foreach (PathNode node ∈ visitedNodes) do

if (relevantResp contains(node)) then
mark node(green);

else
if (irrelevantResp contains(node)) then

mark node(red);
else

if (emptyResp contains(node)) then
mark node(grey);

else
{Otherwise it is not a repRef node}
mark node(green);

end

end

end
{mark predecessor links with green color}
predLinks= get predecessor links of node;
foreach (link l ∈ predLinks) do

mark l(green);
end

end
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(a) Closure slice of Fig. 3.2 with SC = (R2, x)

(b) Closure slice of Fig. 3.3with SC =
(R1, (x, y))

(c) Closure slice of Fig. 3.6 with SC = (R2, x)

(d) Closure slice of Fig. 3.10(a) with SC =
(R5, x)

Figure 3.14: UCM slicing using closure slice approach

66



(a) closure slice of scenario Fig. 3.3 (a) with SC=(Orfork
branch(i>10),i).

(b) closure slice of scenario Fig. 3.4 (a) with SC=(Branch of a
timer (a = b),a).

(c) closure slice of scenario Fig. 3.5 (a) with SC=(Branch of a
waiting-place (k>1),k).

(d) closure slice of scenario Fig, 3.5 (a) with SC=(End ,i).

Figure 3.15: Closure Slice approach with different UCM constructs as SC
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3.8 Tool Support

Our proposed UCM slicing approach is implemented within the jUCMNav frame-

work [38]. To exercise this feature, the user starts by selecting a UCM construct

within the set of supported constructs (see Definition 3.1), then right-clicks and

chooses the Static Slicing command from the menu, as shown in Fig. 3.16. The

slicing command is only available for the supported constructs. The expressions

enclosed within the construct are then read and all its variables are extracted.

Figure 3.17 illustrates the slicing criterion selection GUI. The user may choose

zero or many variables to constitute the slicing criterion. When the user does not

select any variable the slicing algorithm will generate a slice without computing

data flow dependencies. The resulting slice is produced by eliminating all nodes

past the chosen slicing criterion, unrelated respRefs within the slice path, and the

un-traversed branches.

In addition to the choice of variables, the user can choose the type of the

computed slice. The tool offers two output options, namely, Marked Slice and Re-

duced Slice (the user is asked to chose the new UCM file name). One advantage

of producing a reduced UCM slice is that the slice can be saved in a different file,

allowing for further reduction and producing smaller slices. Applying repetitive

UCM slicing on already stored slices, known as incremental model slicing, may be

used to determine the potential required regression tests [58, 55]. The closure slice

approach marks the SC-related UCM constructs within the original model, which

is a temporary coloring and cannot be saved as a separate UCM specification
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Figure 3.16: UCM slicing command included in command menu of jUCMNav
framework

Figure 3.17: Slicing Options window, jUCMNav framework
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file. However, this approach allows the maintainer to visualize the affected paths

and constructs within the original specification. Hence, help him choose different

slicing criteria and observe what parts get colored in green color (retained con-

structs), gray (constructs having no code), and red color (discarded constructs).

Using the reduced slice option, the maintainer cannot identify which parts are re-

moved unless he matches the slice with the original specification, which can be a

time consuming and error prone activity in large and complex UCM specifications.
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CHAPTER 4

EVALUATION AND

VALIDATION OF THE

SLICING APPROACH

4.1 Empirical Evaluation

In this section, we evaluate our proposed UCM slicing approach using a mock

example and three publicly available UCM case studies of different sizes and com-

plexity. Table 4.1 provides some informations about the used case studies in terms

of:

� The number of UCM maps, representing root maps and plugins.

� The total number of nodes.
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Model Number
of
maps

Number
of
nodes

Mock 5 86
Discharging Man-
agement system

43 257

Ordering System 4 82
Adverse Event
Management Sys-
tem

2 43

Table 4.1: Case studies characteristics

4.1.1 Mock System

In this section a mock example is presented to evaluate our proposed static slicing

approach. The need to create this mock system was prompted by the necessity

of slicing a UCM that contains the entire UCM notational constructs. Such a

requirement was not satisfied by any system available online or in the literature.

The designed UCM specification has the following features:

� It contains all UCM constructs.

� It contains scenarios with loops and concurrency. Such scenarios require

special care when computing dependencies.

� It contains an OR-Fork OR-Join circles that might cause the aforementioned

inconsistency case.

� It contains hierarchical map structures with the presence of many levels of

stubs and plugins.

� The mock example is designed to show the accuracy of the proposed slicing
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algorithm with respect to dependency computation when handling hierarchy

as well as concurrency.

It is worth noting that from a slicing perspective, synchronizing and blocking

stub constructs are similar to the dynamic stub construct with respect to the

number of plug-in maps allowed. In this mock example, we use dynamic stubs

only. All complexity facets that have been discussed are put together within the

mock UCM specification in order to check the validity of the proposed slicing

algorithm.

Stub Plug-in Map IN Bindings OUT Bindings

DStub Fig. 4.1(b) IN1<—>StartPoint IN
OUT1<—>EndPoint OUT1
OUT2<—>EndPoint OUT2

DStub Fig. 4.1(c) IN1<—>StartPoint IN
OUT1<—>EndPoint OUT1
OUT2<—>EndPoint OUT2

SStub Fig. 4.1(d)
IN1<—>StartPoint IN1
IN2<—>StartPoint IN2

OUT1<—>EndPoint OUT1

SStub2 Fig. 4.1(e) IN1<—>StartPoint IN1 OUT1<—>EndPoint OUT

Table 4.2: Plug-in bindings of stubs in Fig. 4.1

The mock system has five maps shown in Fig. 4.1. The main map is shown

in Fig. 4.1(a), and it contains a static stub (SStub) and a dynamic stub (DStub).

The plug-in map bound to (SStub), shown in Fig. 4.1(d), also contains a static

stub, (SStub2) that is bound to the map in Fig. 4.1(e). This forms three levels

of hierarchy where the top level is in Fig. 4.1(a) and the lowest level is the map

in Fig.4.1(e). (DStub) in Fig. 4.1(a) is bound to two different maps Fig. 4.1(b)

and 4.1(c). The plug-in bindings of these stubs are shown in Table. 4.2. Every

stub has one or more stub entries (INs) and one or more stub exit node con-

nections (OUTs). Plug-in bindings connect INs node connections in the parent
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(a) Mock system: Main Map

(b) Mock system: Dynamic Stub plug-in map 1

(c) Mock system: Dynamic Stub plug-in map 2

(d) Mock system: Static Stub plug-in map 1

(e) Mock system: Static Stub plug-in map 2

Figure 4.1: UCM Mock model
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map to start points in the plug-in map whereas end points within the plug-in

map are connected to (OUTs) node connections in the parent map. For exam-

ple, DStub in Table. 4.2 has two plug-in maps since it is a dynamic stub. The

first binding is in Fig. 4.1(b) where IN1 is bound to a start point called Start-

Point IN. DStub has two OUTs, OUT1 and OUT2, where they are bound to end

points in map Fig. 4.1(b), EndPoint OUT1 and EndPoint OUT2 respectively.

We used the respRefs, described in Fig. 3.1, to evaluate the accuracy of the pro-

posed slicing approach with intensive use of data and control flow and different

slicing criteria. The Output slices are generated based on different slicing crite-

ria within different maps. For each example, we specify the map in which the

selected respRef resides. Evaluation examples with several slicing criteria are

shown in figures 4.2(a), 4.2(b), 4.2(c), 4.3, 4.4, 4.5, 4.6 using executable slice

approach. The same output slices using closure slice approach are shown in fig-

ures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13.

4.1.2 Case Studies

In addition of the Mock model, we also implemented the slicing approach on

three publicly available case studies that vary in size and complexity, as shown in

Table 4.1.

Case Study 1: Discharge Process Management System

This case study describes a discharge process management at the Ottawa hospital,

designed by Pourshahid et al. [59]. Due to the large size of the UCM specifica-
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(a) Executable slice when SC=(R17 in rootmap
Fig. 4.1(a), (x, j, k))

(b) Executable slice when SC=(R9 in map Fig. 4.1(b),
y)

(c) Executable slice when SC=(R14 in map
Fig. 4.1(c), x)

Figure 4.2: Executable slices for many slicing criteria

(a) Part of output slice: map Fig. 4.1(d)

(b) Part of output slice: map Fig. 4.1(e)

Figure 4.3: Executable slice when SC=(R2 in map Fig. 4.1(d), x)
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(a) Part of output slice: map Fig. 4.1(a)

(b) Part of output slice: map Fig. 4.1(b)

(c) Part of output slice: map Fig. 4.1(c)

Figure 4.4: Executable slice when SC=(R1 in map Fig. 4.1(a), (x,y)

(a) Part of output slice: map Fig. 4.1(a)

(b) Part of output slice: map Fig. 4.1(d)

(c) Part of output slice: map Fig. 4.1(e)

Figure 4.5: Executable slice when SC=(R5 in map Fig. 4.1(a), x)
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(a) Part of output slice: map Fig. 4.1(a)

(b) Part of output slice: map Fig. 4.1(b)

(c) Part of output slice: map Fig. 4.1(c)

(d) Part of output slice: map Fig. 4.1(d)

(e) Part of output slice: map Fig. 4.1(e)

Figure 4.6: Executable slice when SC=(R15 in map Fig. 4.1(a), x)
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Figure 4.7: Closure slice when SC=(R17 in map Fig. 4.1(a), (x,j,k))

Figure 4.8: Closure slice when SC=(R9 in map Fig. 4.1(b), y)

Figure 4.9: Closure slice when SC=(R14 in map Fig. 4.1(c), x)
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(a) Part of output slice: map Fig. 4.1(d)

(b) Part of output slice: map Fig. 4.1(e)

Figure 4.10: Executable slice when SC=(R2 in map Fig. 4.1(d), x)
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(a) Part of output slice: map Fig. 4.1(a)

(b) Part of output slice: map Fig. 4.1(b)

(c) Part of output slice: map Fig. 4.1(c)

Figure 4.11: Closure slice when SC=(R1 in map Fig. 4.1(a), (x,y)
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(a) Part of output slice: map Fig. 4.1(a)

(b) Part of output slice: map Fig. 4.1(d)

(c) Part of output slice: map Fig. 4.1(e)

Figure 4.12: Closure slice when SC=(R5 in map Fig. 4.1(a), x)

82



(a) Part of output slice: map Fig. 4.1(a)

(b) Part of output slice: map Fig. 4.1(b)

(c) Part of output slice: map Fig. 4.1(c)

(d) Part of output slice: map Fig. 4.1(d)

(e) Part of output slice: map Fig. 4.1(e)

Figure 4.13: Closure slice when SC=(R15 in map Fig. 4.1(a), x)
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tion (contains 43 maps) and because of the lack of space, we only illustrate the

generated slices. The reader is referred to [59] to consult the original UCM maps.

Two executable slices were producd. The first executable slice

is shown in Fig. 4.14, where SC = ( evaluatePatientCondition,

evaluationOfImplementationPassed). The selected respref, evaluatePatient-

Condition, resides within CarePlanImplementation map while the selected

variable, evaluationOfImplementationPassed, is one of the variables used within

the expression of evaluatePatientCondition. The resulting slice is an executable

UCM model that contains only 10 out of 43 maps in the original discharge model.

The reason behind having 10 maps is that the dynamic stub DifferentPatients-

GroupsProcesses, in Fig. 4.14(a), has plug-in bindings to 7 different maps, while

PerformConsultationPlanService stub in Fig. 4.14(b) is bound to 2 different

maps.The second evaluation example in the Discharge process model is illustrated

in Fig. 4.15, where SC=(recievedByCommunityProviders, admittedByHospital).

The selected respref resides within DictateProcess map, and it contains the

variable addmittedByHospital within its expression.

Case Study 2: On-line Ordering System

The second case study is an on-line ordering system which consists of 4 maps

illustrated in Fig. 4.16. The plug-in bindings of the stubs and the list of model

elements that have code expressions are shown in Tables 4.4 and 4.3 respectively.

Three executable slices are shown in figures 4.17, 4.18, and 4.19 associated with

the slicing criteria ShipOrder, SubmitFinalOrder,and ProcessOrder respectively.
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(a) Part of executable slice, map: CarePlanIm-
plementation

(b) Part of executable slice, map:
ConsultationPlanService

(c) Part of executable slice, map:
LaboratoryTests

(d) Part of executable slice, map:
Medicating

(e) Part of executable slice, map:
OccupationalTherapy

(f) Part of executable slice, map:
PhysicalTherapy

(g) Part of executable slice, map:
Procedures

(h) Part of executable slice, map:
RadiologyTests

(i) Part of executable slice, map:
Rehabilitant

(j) Part of executable slice, map:
AlliedHelp

(k) Part of executable slice, map:
RadiologyTests

(l) Part of executable slice, map:
Rehabilitant

(m) Part of executable slice, map:
AlliedHelp

Figure 4.14: Discharge Model: an executable slice,
SC=(evaluatePatientCondition, evaluationOfImplemntationPassed)
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(a) Part of executable slice, map: DictateProcess

(b) Part of executable slice, map: Transmission

(c) Part of executable slice, map: Tran-
scription

(d) Part of executable slice, map: Tran-
scription

Figure 4.15: Discharge Model: executable slice,
SC=(RecievedByCommunityProviders,admittedByHospital)
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In Fig. 4.18, no variables are selected along with SubmitFinalOrder since it

contains no code within its expression, and the result is a reduced model with

no data dependency computation. This means that only un-traversed branches

and model elements are removed from the executable slice, and if there were any

respRef(s) that resides within the slice path, it would have been kept since there

is no computation of data dependencies.

Case Study 3: Adverse Event Management System

The third case study describes an adverse event management system (AEMS)

that consists of two UCM maps illustrated in Fig. 4.20. The model elements that

contains code expressions are shown in Table 4.5. Two executable slices generated

with different slicing criteria are illustrated in Figures 4.21 and 4.22.

4.1.3 Characterization of the reduction rates

Table 4.6 shows the reduction rates for the mock system and the three case studies.

The reduction rate of each executable slice, generated by the slicing approach, is

calculated with respect to the original model size and considering different slicing

criteria. The sizes of UCM specification are computed in terms of number of

nodes.

Depending on the location of the slicing criterion within the specification,

different reduction rates may be obtained. The average model reduction of each

model is as follows: Mock (73% ), Discharge system (89.5% ), Ordering system

(59% ) and AEMS (60.5% ). The overall average reduction of the slicing approach
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Stub name plug-in Map IN-bindings OUT-bindings

Wait for supplier Backordered IN1<–>Back Brdered
OUT1<–>Ship Order
OUT2<–>notify user delays
OUT3<–>Cancelled

Wait for Order WaitForOrder IN2<–>Wait
OUT1<–>Recieved
OUT2<–>Shop Elsewhere

shop Shop IN1<–>Shop
OUT1<–>Product Available
OUT2<–>Product not available

Table 4.4: Plug-in bindings of stubs in Ordering System

Element Name Type Map Expression
EditEventForVisit RespRef Process ExistingEvent = false;

WarnObserver RespRef Process
ExistingEvent= true;
EventComplete = true;
EventReady = true;

Event Not Complete Orfork Node Connection Process ! EventComplete
Event Complete Orfork Node Connection Process EventComplete
Event Not Ready Orfork Node Connection Process ! EventReady
Event Ready for Review Orfork Node Connection Process EventReady
Patient Gone Orfork Node Connection Process Discharged
Patient Not Discharged Orfork Node Connection Process ! Discharged
EventComplete Orfork Node Connection Process EventComplete
Event Not Complete Orfork Node Connection Process ! EventComplete
AEMS-CreateEvent RespRef PrepareEvent EventsCreated = EventsCreated + 1;
DischargePatient RespRef PrepareEvent Discharged = true;
New Event Orfork Node Connection PrepareEvent (EventsCreated <NumEvents) && !Ex-

istingEvent
Existing Event Orfork Node Connection PrepareEvent else
Patient Present Orfork Node Connection PrepareEvent (NumEvents >EventsCreated) || ExistingEvent
Patient Gone Orfork Node Connection PrepareEvent else

Table 4.5: Adverse Event Management System: model elements that have code
expressions

Model Executable
Slice

Slice
Size

Original
Spec
Size

Reduction
Rate

Mock Fig. 4.2(a) 6 86 93%
Mock Fig. 4.2(b) 9 86 89.5%
Mock Fig. 4.2(c) 7 86 92%
Mock Fig. 4.3 23 86 73%
Mock Fig. 4.4 24 86 72%
Mock Fig. 4.5 35 86 59%
Mock Fig. 4.6 56 86 35%
Discharge Fig. 4.14 37 257 85%
Discharge Fig. 4.15 15 257 94%
Ordering Fig. 4.17 57 82 30%
Oredring Fig. 4.18 6 82 93%
Ordering Fig. 4.19 38 82 54%
AEMS Fig. 4.21 30 43 30%
AEMS Fig. 4.22 4 43 91%

Table 4.6: Reduction rates of original models after generating executable slices
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(a) Order map

(b) Backordered map

(c) WaitForOrder map

(d) Shop map

Figure 4.16: Ordering Model
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(a) Part of executable slice, map: Order

(b) Part of executable slice, map: Backordered

(c) Part of executable slice, map: WaitForOrder

(d) Part of executable
slice, map: Shop

Figure 4.17: Ordering Model: executable slice, SC=(ShipOrder,ProductShipped)

(a) Part of executable slice, map: Order (b) Part of executable
slice, map: WaitForOrder

Figure 4.18: Ordering Model:executable slice, SC=(SubmitFinalOrder,-)
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(a) Part of executable slice, map:Order

(b) Part of executable slice, map: Backordered

(c) Part of executable slice, map:
WaitForOrder

Figure 4.19: Ordering Model:executable slice,
SC=(ProcessOrder,OrderToProcess)
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(a) Process map

(b) PrepareEvent map

Figure 4.20: Adverse Event Management System
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(a) Part of executable slice, map: Process

(b) Part of executable slice, map:
PrepareEvent

Figure 4.21: Adverse Event Management System: executable slice,
SC=(WarnObserver, EventReady)
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Figure 4.22: Adverse Event Management System: executable slice, SC=(AEMS-
CreateVisit, -)

on the four models is 70.5%. In summary, the slicing approach can reduce UCM

specification from 30% to 94%. An average reduction rate of 70% is obtained for

the four case studies.

4.2 Empirical Validation

This section describes the experiment carried out to provide empirical evidence

with regard to the potential benefits of the UCM-based static slicing feature in

facilitating the understandability of UCM models.

Part of the UCM understandability process is to be able to identify which

UCM paths are executed to reach a specific construct in the specification. Such

paths may visit many plugin-maps, follow a branch based on some conditions,

enter loops, execute concurrent paths, etc. Furthermore, in presence of variables

within a UCM model, some responsibilities (having embedded code) may not

contribute to the reachability of some parts of the UCM specification. Discarding
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such unrelated responsibilities would help understand which responsibilities really

influence a certain scenario execution.

The main goal of this experiment is to ascertain whether the use of slicing

improves the understandability of UCM models. The research question can be

stated as follows: “Does the use of UCM-based static slicing facilitate the

understandability of UCM models?”

Subjects
M.Sc/Ph.D students from two universities
(divided into two groups A and B)

Learning Documentation 
(~30 minutes)

Contents:
- Introduction to jUCMNav Static Slicing feature
- Solved example about UCM understandability 

using slicing.

Material

Experimental Tasks
Two UCM specifications of comparable complexity
For each UCM spec:
- Answer a set of seven questions about the UCM 
model comprehension (with and without the use 
of slicing)

Measurement and Analysis 
Dependent variables for measuring 
understandability
- Understandability effort measured in terms of 
the time taken to complete the task
- Correctness

Figure 4.23: Overview of the experimental plan
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4.2.1 Experiment planning

The general goal of the empirical study is derived as follows: “To analyze the

impact of using UCM-based static slicing in improving the understandability of

UCM models.”

In order to test the proposed hypotheses (see Sect. 4.2.1), an experiment was

designed and conducted. This is achieved by following the templates and recom-

mendations presented in Wohlin et al. [60], Juristo and Moreno [61], Kitchenham

et al. [62], and Jedlitschka and Ciolkowski [63]. Figure 4.23 shows an overview of

the experimental plan. Each of the steps of this experimental plan is explained in

greater detail in the following sections.

Subjects

The subjects of the experiment were 8 members of two universities from different

countries. The group of subjects was chosen for their strict compliance with the

following characteristics:

� M.Sc/Ph.D students in computer science or software engineering.

� Their experience with modeling and more specifically their experience with

the UCM language and their familiarity with the jUCMNav tool.

� Their lack of knowledge of the new UCM-based slicing feature.

Material

The material given to the subjects was composed of two parts:
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Learning Documentation: this part of the material was prepared to provide

subjects with the information needed to carry out the experimental tasks. This

documentation was planned to be read in about 30 minutes on average and it was

composed of the following parts:

� An introduction to the UCM slicing feature.

� An introduction to the jUCMNav slicing feature.

� Instructions that subjects should follow to carry out the experimental tasks.

� A solved example of the understandability tasks using the jUCMNav slicing

feature.

Experimental Tasks (Understandability Tasks): The material given to

each subject is summarized in Table 4.2.1. Case studies 1 and 2 have a total

of 7 questions of very similar complexity, as assured by three UCM experts.

Group A
Case study 1: Ordering system. Three questions
about understandability of the model to be answered
without using the slicing feature.
Case study 2: Adverse event management sys-
tem. Four questions about understandability of the
model to be answered using the slicing feature.

Group B
Case study 1: Adverse event management sys-
tem. Four questions about understandability of the
model to be answered without using the slicing fea-
ture.
Case study 2: Ordering system. Three questions
about understandability of the model to be answered
using the slicing feature.

Table 4.7: Experiment Material
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Variables

We measure understandability by means of the following dependent variables: (1)

the time spent by the subjects in answering the seven questions, (2) the correctness

of the obtained answers. The independent variable is the performed understand-

ability tasks.

Hypotheses

The experiment is planned with the purpose of testing the hypotheses stated

in Table 4.8 which, for each set of hypotheses, details the null and alternative

hypothesis formulation and the dependent variables. The first hypothesis tests

whether the use of slicing improves the understandability of UCM specifications,

assessed by checking the correctness of the comprehension tasks. The second

hypothesis tests whether the use of slicing facilitates the understandability of

UCM specifications, assessed by measuring and comparing the time that it takes

to complete a comprehension task with and without the use of the slicing feature.

4.2.2 Data analysis and interpretation

Once the experiment had been carried out, we collected the forms filled in by the

subjects and we have discarded the unanswered questions. We have used SPSS

to test our hypotheses. For the correctness variable, correct answers are coded as

”1”, while incorrect ones are coded as ”0”. The use of the slicing feature is coded

as ”1”, while manual execution of the task is coded ”0”.
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Hypotheses

Hypothesis 1
Null hypothesis–H0− 1: There are no dif-
ferences in UCM spec understandability with
or without using slicing.
Alternative hypothesis–H1−1: There are
differences in UCM spec understandability
with or without using slicing.
Dependent variable: Correctness

Hypothesis 2
Null hypothesis–H0 − 2: There are no
differences in the time taken to understand
UCM specs, with or without using slicing.
Alternative hypothesis–H1−2: There are
differences in the time taken to understand
UCM specs, with or without using slicing.
Dependent variable: Time taken to per-
form the task

Table 4.8: Set of hypotheses

10 Total

Correctness

Count

% within Slicing

% within Correctness

Count

% within Slicing

% within Correctness

0

1

Count

% within Slicing

% within Correctness

Total

Slicing

100.0%100.0%100.0%

100.0%76.5%23.5%

513912

60.8%71.8%25.0%

100.0%90.3%9.7%

31283

39.2%28.2%75.0%

100.0%55.0%45.0%

20119

Page 1

Table 4.9: Slicing * Correctness cross tabulation
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To test the first hypothesis H0 − 1, we have computed a cross tabulation

analysis on the use of slicing versus the correctness of the obtained answers. As

shown in Table 4.9, using the slicing feature, we obtained 28 correct answers

(90.3%) versus only 3 incorrect answers (9.66%), while the manual execution of

the tasks produced 11 correct answers (55%) versus 9 incorrect answers (45%).

These results show that the understandability of the UCM specs has improved

substantially by using the slicing feature. To prove that this improvement is

significant, we have conducted Independent samples t-test with the correctness

as test variable and the use of slicing as grouping variable. Table 4.10 illustrates

the obtained results. The Levenes test shows that the equality of variances is not

assumed (Sig. equal to 0.000 which is less than α:0.05). Based on the significance

value 0.009 (which is less than 0.05), we can conclude that there is a significant

difference between both the correctness of both groups (with and without use of

slicing). Thus, we reject the null hypothesis H0 − 1 and accept the alternative

hypothesis H1 − 1.

F Sig. t df
Sig. (2-
tailed)

Mean 
Difference

Std. Error 
Difference

t-test for Equality of Means

Levene's Test for 
Equality of 
Variances

Equal variances 
assumed
Equal variances 
not assumed

Correctness

.12625-.35323.00927.576-2.798

.11340-.35323.00349-3.115.00033.706

Page 1

Table 4.10: Test differences between means with respect to correctness (t-test)

To test the second hypothesis, we have discarded incorrect answers and con-

ducted an independent samples t-test with the time spent to conduct a task as

test variable and the use of slicing as grouping variable. The means of the time
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taken to perform the tasks with/without slicing is shown in Table 4.11. The mean

times of completing a task are 102.86sec and 370.91sec, with and without using

slicing, respectively.

Grouped 
Median

Std. 
DeviationNMean

0

1

Total 110.53179.90939178.46

76.67103.53428102.86

320.00193.15611370.91
SlicingSlicing

Report

Time

Page 1

Table 4.11: Means of the time taken to perform the tasks with/without slicing

The t-test results are illustrated in Table 4.12. The Levenes test shows that

the equality of variances is not assumed (Sig. equal to 0.006 which is less than

α:0.05). Based on the significance value 0.001 (which is less than 0.05), we can

conclude that there is a significant differences between the time taken to perform

the understandability tasks with and without the use of slicing. Hence, we reject

the null hypothesis H0 − 2 and accept the alternative hypothesis H1 − 2.

F Sig. t df
Sig. (2-
tailed)

Mean 
Difference

Std. Error 
Difference

t-test for Equality of Means

Levene's Test for 
Equality of 
Variances

Equal variances 
assumed
Equal variances 
not assumed

Time

61.437268.052.00112.3274.363

47.616268.052.000375.629.0068.670

Page 1

Table 4.12: Test differences between means with respect to the time spent to
perform a task (t-test)
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CHAPTER 5

DISCUSSION

In what follows, we discuss the benefits and shortcoming of our proposed slicing

approach. We also compare it with related work and present potential threat of

validity.

5.1 General benefits of the approach

The presented slicing approach have the following advantages:

� Model reduction: The first advantage of the presented slicing approach

is model reduction. Reducing the size of a given UCM specification by

eliminating unrelated model elements will enhance manual review of large

UCM specifications, and will save the time that is usually spent on reviewing

unrelated model elements. Consequently, large UCM specifications may be

easier to comprehend and maintain using our slicing approach.

� Supports UCM abstraction mechanism: UCM specifications can be
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composed of hierarchical structures expressed by UCM stubs, defining mul-

tiple levels of abstractions. Our UCM slicing approach can handle all levels

of abstraction starting from the root map, where the slicing criterion resides,

traverse the lower level maps, compute dependencies, and resume traversing

the upper-level maps (parent maps).

� Completeness: Our slicing approach covers all UCM language constructs.

� Generated slices: Two types of slices are generated, namely, a closure slice

and an executable slice. The characteristics of each type of slice is presented

in Sect. 3.7.

� Loop recognition: Traversing loops represent one important challenge in

our slicing approach, since a loop should be detected in order to prevent

infinite traversal.

� Preserve semantics: Graph connectivity of the executable slice is a known

issue in State Based Model (SBM) slicing since removal of unrelated model

elements can cause the rest of graph elements to be unreachable or discon-

nected [20]. Our presented slicing approach preserves the original structure

of the executable slice. The produced slice is a valid and fully executable

UCM specification, where all constructs are reachable. This was achieved

by handling all effects of removing unrelated elements and un-traversed

branches, e.g., preserving the loop structure after removing an OR-Fork.

The later example is tricky because the removal of an OR-Fork will break
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the loop structure (by definition an OR-Fork must have at least two outgo-

ing branches otherwise [36]). In order to avoid such scenario, the algorithm

first checks whether the slicing criterion resides within a loop and whether

removing the unrelated branches will cause the loop to be disconnected. If

so, the algorithm will create an empty OR-Fork branch, then eliminate the

irrelevant OR-Fork branch. Another example of preserving connectivity is

when we have to remove model elements past the slicing criterion. The al-

gorithm first cuts the slicing criterion’s successor node connection, and then

removes all nodes. However, this will produce an invalid UCM, since the

map must have an end point attached to the target side of slicing criterion

successor link. Therefore, a new end point node is created and linked to the

map in order to have a valid UCM slice. Another more complex example of

preserving connectivity is when we have to remove model elements between

the slicing criterion and an AND-Join node, where the slicing criterion is

on a concurrent branch. We have to delete path nodes between SC and the

AND-Join without deleting the concurrent node. This is achieved by cut-

ting the links (successor link of SC and predecessor link of the AND-Join),

remove the path nodes in the middle,and finally, reconnect the two links

again, such as in Fig. 3.10.

� Handling concurrency: Handling concurrency is required since UCM

share a global data model among all elements and different execution or-

ders can influence the data and control flow. Slicing concurrent programs
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or state-based models (SBM) requires the computation of special kind of

dependency called interfere dependence [15, 20]. Handling such dependen-

cies is complex and require the order of execution to be taken into account

to guarantee precise slices. Our adopted solution consists of examining all

possible orders of execution and compute dependencies for each possible

sequence, as explained in Sect.3.5. In order to obtain precise slices, the re-

computation step is preformed on tree structures of each concurrent branch

instead of re-traversing the UCM map.

� Removal of infeasible scenarios: The removal of irrelevant UCM parts

(with respect to the slicing criterion) may remove start points. The irrel-

evant start points may be part of predefined scenario definitions (Scenari-

oDef ). Once the slice is produced and these start points are deleted, the

scenario definitions become infeasible; hence, they are removed.

Figure 5.1: Ordering model: scenario start points within InfinitLoop scenarioDef
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For example, the ordering model case study contains six scenario defini-

tions. The sixth scenario definition,Infinite loop: wait but never arrives (see

Fig. 5.1), contains three scenario start points which reside within Order

map in Fig. 4.16: Start Shopping, Order to process, and Product to recep-

tion. When generating the executable slices in figures 4.17, 4.19, and 4.18,

the scenario start points Order to process and Product to reception become

infeasible and, consequently, they are removed from the slice.

5.2 Limitations

The UCM slicing approach is subject to the following limitations:

� Irrelevant code statements within RespRefs are not removed: Our

slicing approach considers a respRef relevant to the slicing criterion when

there is one or more code statements defining a variable in the Dependent-

Variables list. However, the slicing approach does not remove the unrelated

code statements within related respRefs. The main reason for not removing

code statements in respRef’s expression is to avoid syntactic errors resulting

from the removal of statements contained within if-else blocks. For example,

suppose R18 is to be examined during backward traversal, while the selected

variable of an SC is x. The statements ”x=z” and ”y=y+1 ” are relevant

while the rest of code statements is not. However, statements within if-else

blocks cannot be removed since it will cause the if-condition to be empty,

and the code checker of the framework will trigger a syntax error even when
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writing symbol ”;” instead of the code statements, so R18 is considered rel-

evant to the slice without cleaning the unrelated code statements within its

expression. Nevertheless, this limitation can be considered minor since at

the requirements level the focus is more on finding relevant/irrelevant model

elements, rather than refined code statements.

� Complexity of concurrency solution: In order to solve the concurrency

challenge where the order of executing concurrent paths can have an impact

on dependency, we had to consider all possible sequences and re-calculate

dependencies accordingly. This results in precise slices, but it is computa-

tionally expensive. We have tried to alleviate this limitation and minimize

the cost of re-calculating concurrent branches, as explained in Sect. 3.5.

� Choice of the slicing criterion: The slicing criterion (SC) can be chosen

from any UCM map and would produce a valid slice. However, if the SC

is part of a plugin map, its parent map cannot be traversed because (1) a

plug-in may be bound to more than one stub (2) such information can only

be known at run time in case we have dynamic or synchronizing stubs.

5.3 Comparison with related work

In what follows, we survey and compare existing model based slicing approaches

with respect to the following criteria:

� Model refers to the target state-based model.

108



� Type is the type of slicing approach: A-Amorphous, C-Conditioned, D-

Dynamic, E-Environment-based, P-Proposition-based, R-Reactive, and S-

Static. Definitions of these slicing approaches are explained in [20].

� Dir is the direction of traversal where B is forward and F is forward.

� E/C : is the type of output slice where E is executable and C is closure slice.

� Dep: is the type of computed dependency where D is data flow, and C is

control flow. Some approaches support either data flow or control flow, while

most of them support both types. There are other types of dependencies,

but in this comparison, we focus only on whether or not these two depen-

dencies are supported. In some approaches such as the slicing approach by

Ganapathy and Ramesh [64], dependencies are not defined explicitly, they

are denoted by ”-”.

� Purpose refers to the objective/use of the approach.

As shown in Table 5.1, our slicing approach (last row in the table), has the ad-

vantage of providing both output approaches, executable and closure slice. More-

over, not all approaches provide both data and control flow dependency com-

putations. Another advantage of UCM slicing approach, not mentioned in the

table, is producing precise slices while preserving graph connectivity when using

executable slice approach. Executable slice involves removal of unrelated parts

from the target model. Most approaches in model based slicing only remove the

unrelated parts (e.g., states or transitions) that do not impact the reachability of
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other model elements. In other words, the unrelated states/transitions that cause

unreachability of other parts are kept in order to preserve graph connectivity.

However, this will result in bigger and less precise slices. Only the amorphous

slicing approach presented by Korel et al. [24] showed a mechanism to remove

unrelated transitions and reconnect state machines in order to preserve model

reachability of the produced slice. This was achieved by combining states based

on two merging rules. However, these rules cannot be generalized to handle all

possible cases. Our slicing approach generate precise executable slices by removing

unrelated parts while preserving reachability of model elements.

With respect to model reduction,various model based slicing techniques have

been presented in order to assist overall model comprehension, review, or analysis

by reducing its size. Heimdahl et al. [78] assessed the slicing effectiveness on TCAS

II models, a group of airborne devices used to avoid collision for commercial

aircraft protection. It contains 650 transitions and more than 300 states. The

model reduction rates found by Heimdahl et al. [78] range from 68% to 90%.

The slicing techniques explained by Androutsopoulos et al. [68] and Korel et

al.[24] are developed to improve model comprehension of EFSM specifications by

reducing the size of these models via slicing. The empirical results of Androut-

sopoulos et al. [79], reported 38.42% as the smallest average size of backward

slice. Their empirical study covered more than 10 EFSM models and all possi-

ble transitions. It should be noted that the slice based on Androutsopoulos et

al. [68] approach contains unmarked and marked transitions and the size of the
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slice, with respect to total the number of states and number of transitions, is not

reduced. Korel et al. [24] did not present explicitly the set of used examples with

their produced slices, but they stated that using their slicing tool they were able

to achieve reduction rates between 55% to 80% when implementing amorphous

slicing technique on a number of EFSM specifications. Fox and Luangsodsai [65]

and Labbe and Gallois [67] described other slicing techniques to enhance model

comprehension. The produced slices were sub-models of the original. However, no

data about the size of the slices were provided neither in Fox and Luangsodsai [65]

nor in Labbe and Gallois [67].

In Sect. 4.1.3, we calculated the reduction rate of our slicing technique based

on 14 slices from three case studies and a Mock system and we found that the

average reduction rate is 70% and UCM slicing algorithm can reduce the model

size from 30% to 94%. However, compared to the model size used by Heimdahl

et al. [78], we still need to test our approach on larger models.
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CHAPTER 6

CONCLUSIONS AND FUTURE

WORK

In this thesis, we have presented a UCM static slicing technique that would help

requirements engineers reduce UCM specifications according to a slicing criteria

of interest in order to improve their comprehension of the UCM model. Our ap-

proach is implemented within jUCMNav framework, and it produces both closure

and executable slices. The proposed approach has been tested and evaluated us-

ing three case studies and one mock model. Results showed that UCM slicing

approach can reduce UCM specifications up to 93% and the average reduction

rate is 70%. We showed that UCM slicing approach also has the ability to keep

graph connectivity and produces precise slices.

In future work, we will test the effectiveness of our slicing algorithms on larger

models. We plan also to investigate the implementation of other UCM-based

slicing techniques such as conditioned slicing, and dynamic slicing.
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