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ABSTRACT 

 

Full Name : Tamim Salah Abdallah Alnethary 

Thesis Title : Morphological Analysis-based Arabic Spell Checking and Correction 

Major Field : Computer Science 

Date of Degree : January 2017 

 

Spell checking is the process of locating spelling errors and possibly correcting them. The 

need for automatic spell checking detection and correction capabilities is vital in most state 

of the art text editing related applications. In this thesis, we address the problem of Arabic 

spell checking detection and correction for non-word and real-word errors. This is 

accomplished through the development of a morphological analyzer, an error patterns 

model and a hidden Markov Model (HMM) based language model.  

A morphological analyzer that is based on the Sliding Window Asynchronous Matching 

(SWAM) algorithm was fully implemented and extended to provide morphological 

features for a running text. The morphological analyzer uses HMMs to disambiguate 

morphological features of the analyzed word based on context. The morphological analyzer 

functionalities are used to develop an error patterns model. The error model learns the error 

patterns of the Arabic language based on an already annotated error corpora. The error 

model generates and ranks candidate corrections for wide ranges of Arabic errors. It can 

also be used for analyzing error types for any error annotated corpora. These systems have 

been integrated into a general spell-checker prototype system that is capable of handling 

non-word and real-word-errors. In addition, previously developed non-word and real-word 

error detection and correction systems have also been integrated into the prototype system. 

The results of the morphological analyzer reported an accuracy of 97.13% for roots, 
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98.20% for stems and 95.80% for lemmas, based on NEMLAR corpus. In the case of the 

error model, the effectiveness of using the error model were evaluated using QALB error 

corpus. The results show that the model can help in the correction process for any spelling 

correction system with more than 84% coverage; this effectiveness can be improved by 

including more corpora in the learning process. The general spellchecker was evaluated 

using QALB and KFUPM corpora. Results of the general spellchecker are analyzed and 

future directions to improve the spellchecking detection and correction are provided.  
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 ملخص الرسالة

 

 تميم صلاح عبدالله النظاري :الاسم الكامل
 

 حليل الصرفيوالتصحيح الإملائي للنص العربي باستخدام التالتدقيق  :عنوان الرسالة

 

 علوم الحاسب الآلي التخصص:
 

 2017 يناير :تاريخ الدرجة العلمية

 

 

لتدقيق ا. وتعد الحاجة إلى تصحيحها مع إمكانيةالأخطاء الإملائية  اكتشافالتدقيق الإملائي هو عملية 

 . ر النصوصبتحري المتعلقةتلك من الوظائف المهمة في كثير من التطبيقات وخاصة  الإملائي التلقائي

 .الأخطاء الإملائية وأخطاء الكلمات الحقيقيةمشكلة اكتشاف وتصحيح  حاولنا تناول في هذه الأطروحة

: التحليل الصرفي و نموذج الأخطاء ونموذج وهي دوات طورت لهذا الغرضعدة أويتم ذلك باستخدام 

للنص  (SWAM) قمنا بتطوير وتوسيع محلل صرفي. د على نماذج ماركوف المخفيةمالمعت اللغة

ف للسياق بالإعتماد على نماذج ماركو وفقا   المحلل الصرفي باختيار التحليل المناسب يقومالعربي. 

نموذج  يعتمد  . خطاءتم توظيف إمكانيات المحلل الصرفي لتطوير وبناء نموذج للأ .(HMM) المخفية

وليد تيستطيع نموذج الأخطاء . الأخطاء أنماط من خلالها يتعلم العربية للغة مكانزعلى عدة الأخطاء 

لأخطاء نواع األ ومعرفة لتحلي , وكذلك يمكن استخدامه أخطاء اللغةمن نطاق واسع ل مقترحاتوترتيب 

الأخطاء. المدقق الإملائي هو قتراح مدقق لمعالجة انواع متعددة من ا تم كذلكولأي مكنز. اللغوية 

عبارة عن دمج للمحلل الصرفي ونموذج الأخطاء بالإضافة إلى خوازمية للتصحيح تعتمد على نماذج 

شاف الأخطاء الإملائية وأخطاء السياق تكتم دمج نظامين لاوبالإضافة إلى ذلك,  ماركوف المخفية.

   ليتم مقارنتهما مع المدقق الإملائي المقترح.

 % 95.80للجذوع و  %98.20للجذور و  %97.13 دقةنسبة وقد أظهرت نتائج التحليل الصرفي 

بالنسبة لنموذج الأخطاء فقد أظهرت النتائج   .(NEMLAR) المكنزباستخدام   بالنسبة للمصادر

 ه, وتزداد هذ%84بنسبة وذج على مساندة عملية تصحيح الأخطاء مقدرة النQALB باستخدام المكنز 

تقييم أداء المدقق الإملائي باستخدام   كذلك تم  لتعلم الأخطاء. المستخدم المكنزالنسبة بزيادة حجم 

ألية تطويرها في المستقبل.تم مناقشة النتائج وتوضيح و KFUPMو   QALBالمكانز 
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1 CHAPTER 1 

INTRODUCTION 

1.1 Spell Checking and Correction 

The problem of error detection and correction have been studied for decades. Many 

techniques were developed to solve this problem for English language. The area of Arabic 

Spell checking is not mature yet and no system achieved high error correction accuracy 

efficiently, including Microsoft word, which is the most widely used Arabic spell 

correction system [1, 2].   

Spell checkers are classified into interactive and automatic systems [3]. Interactive systems 

include spell checkers that are able to detect and correct errors with the help of a user. Users 

are supposed to select the most accurate correction from a system-generated list of 

candidate corrections. Automatic systems on the other hand, include spell checkers that are 

able to detect and correct error words automatically without any user intervention.  

The main components for any spell checking systems are: error detection, candidates' 

generation and error correction. The error detection component is responsible for detecting 

suspected errors in the input text. The candidates' generation component is responsible for 

generating a list of all probable corrections for each of the detected errors. The error 

correction component is responsible for selecting the most appropriate correction from the 

list of the generated candidates. The effectiveness of the whole system is highly affected 
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by the effectiveness of these components. The more accurate the detection process, the 

more likely that the errors will be corrected. On the other hand, the detected errors will be 

more probably corrected if the generated candidates are more likely to have the correct 

word. Any improvements in any component of the spell checking system can lead to 

significant cumulative improvements of the whole system. 

The detection and correction process may differ based on the used evidences for achieving 

each component's task. The evidences are either to use the word form only, in the case of 

non-word errors, or to also consider the word context in the case of real-word errors. The 

simplest approach to use the word form is to use a dictionary or reference lists; any word 

that has no entry in the dictionary is flagged as non-word error. On the other hand, the 

simplest approach for using both the word form and context is to use n-gram statistics; if 

the inspected word does not usually appear in the current context surroundings words, it is 

flagged as probable error.   

Correction candidates' generators calculate a set of similarity scores that helps in judging 

the similarity between two strings. The most commonly used approach for generating 

correction candidates is the edit distance [4]. The edit distance provides a measure of how 

two strings are similar. The similarity is defined by the minimum basic editing operations 

(insertion, deletion, substitution, and transposition) needed to transform an incorrect word 

into the correct word. The approach works by recursively calculating the edit distance 

between different substrings of an M  N matrix of the compared strings. This process is 

applied to all words in the used dictionary, although the dictionary may not cover all the 

words. It is a brute-force process that ends with a huge list of candidates with many possible 

repetitions and with no ordering of candidates having the same edit distance [5, 6] 
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Different types of errors can be detected and corrected by spell checkers viz. non-word and 

real-word errors [4, 7]. Non-word errors constitute words that do not exist in the dictionary 

of the spell checker such as “كتابب” for “كتاب”.  Real-word errors on the other hand are 

dictionary words that have been mistakenly used in non-appropriate context, such as using 

the word “قيل” instead of “قتل” in the sentence “ أكثر من عشرة أشخاص في هذا الهجوموقد قيل  ”.  

Arabic spelling errors arise from character changes that occur to the correct word. The 

source of these change operations is either typing errors or spelling errors.  Typing errors 

(or typos) are errors that exist when the writer/typist erroneously presses different keyboard 

keys other than the intended one (الرحمان, الرحان). Spelling errors, on the other hand, are 

errors that exist as a result of the writer's ignorance of the correct spelling of the word. The 

main causes of this ignorance are phonetic similarity (ظباب, ضباب), semantic similarity 

سيخسر, ) or dialect writing ,(سبع احجار, سبعة احجار) lack of grammatical rules ,(كبير, كثير)

 .(حيخسر

The errors may result in character insertions, deletions, substitutions, and transposition. 

Character insertion which occurs when an extra character is inserted into the intended 

word. For example, the letter ‘ت’ is inserted into the word ‘مكتتوب’; where the intended 

correct word is ‘مكتوب’. In Character deletion a character is deleted from the intended 

correct word. For example, the letter ‘ت’  is deleted from the word ‘استخدم’resulting in a  

 In character substitution a letter in the intended word is mistakenly substituted with .’اسخدم‘

another letter. For example, the letter  ‘ش’  in the word ‘مدرشة’, erroneously substitutes the 

letter ‘س’ in the intended word ‘مدرسة’. The last change is character transposition, where 

two letters are swapped in the intended word. For example, in the word ‘اسختدم’, the letter 

 If a single .’استخدم‘ in the intended word ,’خ‘ is erroneously swapped with the letter ’ت‘
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character change is applied to the intended word, the error is called a simple error. 

Otherwise the error is called a complex error [4, 7].  

1.2 Morphological Analysis 

Morphological analysis is an important pre-processing step for Natural Language 

Processing (NLP) applications. The main goal of morphological analysis is to define words 

in terms of their morphsyntactic information such as word structure and part-of-speech 

(POS) [8]. This information is useful for many NLP applications such as parsing, POS 

tagging, spell checking and machine translation.   

Word structure information includes the knowledge of the stem, the root, and the affixes. 

For English language, the terms stem and root are used interchangeably. The stem represent 

the part of the word that remains after removing the affixes. Affixes include prefixes and 

suffixes. Prefixes are attached to the beginning of the stem, while suffixes are attached to 

the end of the stem with some orthography rules. For example, the word improperness has 

the prefix "im" and the suffix "ness", and the stem "proper" [9, 10].  The word structure 

information for Semitic languages (like Arabic) includes the root, the stem, the lemma, the 

pattern and the affixes. The root of a word consists of the original letters from which the 

word is derived; while the lemma represents the dictionary form for a set of words. In [11], 

lemma is differentiated from the stem, although many researchers use them 

interchangeably. In our case, we also differentiate between a lemma and a stem, but only 

for the words that have some of their original letters deleted or transformed. For example, 
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the word كتابان share the same lemma and stem, while the word المهتدون has the stem مهتد and 

the lemma مهتدي. 

A stem in Arabic can either be pattern-based (مشتق) or static (جامد). Pattern-based stems 

represent words that can be derived from a root following specific morphological pattern 

(rhyme). For example, the stem 'مرتبط' is derived from the root ’ربط’  following the 

morphological pattern ’مفتعل’  as shown in Table 1-1  

Table 1-1  pattern based stem extraction 

Word ا ل م ر ت ب ط و ن 

Pattern   م ف ت ع ل   

Affixes ا ل      و ن 

Root   ر  ب ط    

Stem   م ر ت ب ط   

The number of morphological patterns in Arabic is around 900 excluding their 

combinations with pronouns and external affixes. The number of Arabic roots is over 

11000; apparently, 70% of which are Arabic roots that are tri-literal while the rest are quad-

literal, [12]. 

A static stem represents the part of the word that is not derived using morphological 

patterns. It has one form in all its inflected words. It can be a nominal term like 

demonstrative, conditional, and circumstantial nouns such as ’إذا, من, فلان’ , etc..., or it can 

be verbal terms like ’عسى, ليس’ . 

Arabic is considered a morphologically-complex highly-inflectional language. Its root-

pattern non-concatenative morphology makes computational processing expensive [13].  

Some Arabic words may undergo certain character transformations during the derivation 
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process of their stem. This is quite common problem with words that belong to defective1 

and hamzated2 roots. Almost 35% of Arabic words have roots that are defective and/or 

hamzated[8]. The root extraction process of such words has higher error rates than words 

belonging to the intact3 root category[8].   

Moreover, there are many idiosyncrasies in Arabic. Some words do not follow the usual 

pattern formation process4, as in the case of Arabic broken plurals. This makes the lemma 

extraction process more difficult and requires the use of a dictionary in most cases.   

Furthermore, the underspecified Arabic orthography may create a high degree of ambiguity 

for processing Arabic text [13]. The ambiguity may also be a result of the implicit 

vocalization in Arabic. For example, when segmenting a word like ’عدتهم’ ; all the following 

segmentations ( ’عدَّة + هم’ ’عدَّت + هم’ , and ’عدت + هم’ ) are valid. 

1.3 Problem Statement 

The need for automatic spell checking detection and correction capabilities is vital in most 

state of the art text editing related applications. They are also important in correcting errors 

of Optical Character Recognition (OCR) output and on-line text recognition. The problem 

in Arabic language is the absence of a general system for detection and correction of Arabic 

spelling errors. Moreover, there is a lack of an automatic spelling corrector without the 

                                                 
1 Defective roots are roots that contain one or more of the short vowel letters (’)(’حروف العلة )ا, و, ي 

like ’قول’,’وعد’,’رمي’ , etc.   
2 Hamzated root are roots that have Hamza like , ’قرأ’, ’سأل’,’أكل’ …etc. 
3 Intact roots are roots for the intact verbs (الأفعال الصحيحة) which are not defective verbs (الأفعال المعتلة) 
4 For example, adding ’ات’ to the noun ’معلم’ give the noun female plurals ’معلمات’ , however with broken 

plurals this rule does  not apply, e.g. the plural of the word ’كتاب’  is ’كتب’ . 
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need for human intervention, and without wasting much efforts and time when correcting 

in the traditional method. 

1.4 Thesis Objectives and Outcomes 

In this thesis, an Arabic morphological analyzer and disambiguater is developed to support 

the spell checking detection and correction process. The morphological analyzer provides 

a set of morphological features: the root, the stem, the lemma, the morphological pattern 

and the affixes. The morphological analyzer functionalities are utilized to build a novel 

error model prototype of Arabic errors. The error model prototype is able to generate and 

rank candidate corrections for wide range of Arabic errors. A general spell checker 

framework (GSpeller) is also proposed. The spell checker handle wide range of Arabic 

error types. This was achieved through an integration of the system components, a 

morphological analyzer, an error model, and a language model (HMM). 

The outcomes of this thesis can be utilized in many scientific researches such as 

information retrieval (in the case of the morphological analyzer), spell checking (in the 

case of the error model), machine translation (in the case of the spell checker) etc. The 

main outcomes of this thesis are as follows: 

- Arabic morphological analyzer and disambiguater: 

A lexicon based broad coverage Arabic morphological analysis and 

disambiguation tool is developed. The tool can be used to support many 

NLP applications. In this work, the developed morphological analyzer and 
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disambiguater were used to support the Arabic spelling detection and 

correction process. 

- A novel error model for generating and ranking correction candidates: 

A data driven error model prototype that exploits morphological error 

patterns at the morphemes or the word levels is developed. The model learns 

the Arabic language error patterns from an already annotated error corpora. 

The model can be used to support the candidate's generation task for 

spelling correction system. 

- A proposed general spell checking framework: 

A spell checking prototype that handle wide range of Arabic error types is 

devloped. The spell checker is developed through an integration between 

the system components, a morphological analyzer, an error model, and a 

HMM model. 

- Building a Baseline system 

Two previously implemented systems [4, 7] for spell checking detection 

and correction are integrated into a single system. The integrated system 

provides detection and correction of non-word and real-word errors.    

- Possible Publications: The developed work is a result of research activities which 

have been integrated into different prototypes. The information reported in Chapter 

3, Chapter 4 and Chapter 5 are suggested to be reported in papers for possible 

publication.  
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1.5 Thesis Outline  

This thesis is organized as follows. The introduction with problem definition, research 

objectives and outcomes are discussed in the previous sections. The rest of the thesis is 

organized as follows. Chapter 2 presents a literature review of morphological analysis and 

spell checking detection and correction. In Chapter 3, the developed morphological 

analyzer and disambiguater is described. Chapter 4 presents the details of the error model 

prototype. Chapter 5 presents the details of the proposed general spell checking system. 

Finally, Chapter 6 concludes this thesis and summarizes the outcomes and future 

directions.  
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2 CHAPTER 2 

LITERATURE REVIEW 

The problems of error detection and correction have been studied for decades. Many 

techniques were developed to solve the problem for English language. The area of Arabic 

spell checking is not mature yet and no system achieved high results efficiently.   

In this chapter, the currently existing work related to this thesis is surveyed. The chapter is 

divided into two parts. The work related to morphological analysis and disambiguation is 

presented in Section2.1. The work related to spell checking detection and correction is 

presented in Section 2.2.  

2.1 Morphological Analysis 

 

Different Arabic morphological analyzers with different methodologies and tasks were 

developed to support Arabic NLP applications. Morphological analyzers can be classified 

into general purpose morphological analyzers, stemmers, and lemmatizers.  General 

purpose Arabic morphological analyzers generate most possible analyses of the words out 

of their contexts. The most known Arabic general purpose morphological analyzers are: 

Buckwalter Morphological Analyzer (BAMA) [14] [15] and Alkhalil Morph System[16]. 

BAMA is a simple rule based morphological analyzer that depends on a set of lexicon lists. 

The lexicon lists include Arabic stems and stem-affixes compatibility tables. 

Morphological patterns are not included in BAMA.   Alkhalil morphological system 

applies a set of morphsyntactic rules with the help of a set of linguistic resources to extract 
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more detailed morphological features. The generated morphological features include the 

word root, stem, affixes, possible patterns and vocalizations.  

An open source morphological analyzer and POS tagger called Qutouf was developed by 

Altabba et al. [17]. This morphological analyzer modified and enriched Alkhalil 

morphsystem database. It was used for root extraction, pattern matching, morphological 

feature and POS assignment, and nouns list generation. A set of state machine automata 

was developed for fine-grain cliticalization. A modification to Standard Arabic Language 

Morphological Analysis (SALMA) tagset[18] was designed and incorporated in the system 

to provide POS tagging using a rule based expert system.    

Pasha et al. presented MADAMIRA, a morphological analysis and disambiguation tool 

that takes advantage of two previously existing tools MADA and AMIRA [19]. The tools 

use different language models with support vector machines (SVM). MADAMIRA can be 

used for stemming and POS tagging of large Arabic corpora.  

Bounhas et al. presented an approach for disambiguating Arabic non-vocalized 

morphological features by combining Arabic classifiers and linguistic rules [20] . They 

perform unsupervised training for a set of unlabeled Arabic corpora. They provided two 

approaches for handling ambiguous features. A probabilistic classifier that directly handles 

the ambiguous features and a data-transformation classifier that allows converting 

ambiguous datasets into non-ambiguous ones. The linguistic rules are used to reduce the 

number of ambiguous features. The authors have suggested a method for handling out of 

vocabulary words with the help of the Levenshtein edit distance. The experiments show 

that the probabilistic approach performs better than the data-transformation approach. This 
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is because the associated morphological features with probabilistic approach have few (less 

than 6) class (POS) values.  

Most existing Arabic morphological analyzers are just stemming algorithms 

(Stemmers)[8]. Stemmers extract stems/roots of the analyzed words according to their 

context, light stemmer extract the stem by direct stripping of affixes . Existing stemming 

algorithms fail to achieve accuracy rates of more than 75% [8]. They can be suitable for 

information retrieval applications where their accuracy do not affect their overall 

performance. However, accuracy is vital for other natural language processing applications 

such as spell checking and machine translation. The most known effective Arabic stemmers 

are  Khoja [21]  and   Boudlal et al.  [22]. Khoja stemmer is lexicon and rule-based stemmer 

that is designed as part of Khoja POS tagger. The stemmer removes the longest affixes and 

matches the remaining word with verbal and nominal patterns to extract the root. Khoja 

reported 96% stemming accuracy using newspaper text. Boudlal et al. used a data driven 

technique with statistical approach (HMM and Viterbi algorithm) for the root extraction 

process [22]. Accuracy of 98.31% is reported using NEMLAR Arabic writing corpus, [23] 

which is a manually annotated corpus  

Ababneh et al. [12] used lists of affixes and patterns (with singular and plural patterns lists). 

Using samples from a list of terms, they compared their algorithm with the root-extraction 

stemmer (Khoja stemmer) and light stemmer (Larky stemmer). Their algorithm starts by 

matching the word with stored patterns to ensure that no affixes related to the word were 

removed. If there is no match with the pattern list, compatible affixes are truncated.  

Finally, the algorithm uses the list of singular and plural patterns to solve the problem of 

stemming plural forms of irregular nouns such as "مصانع" to "مصنع".  According to the 
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authors, the stemmer was able to remove all affixes effectively without removing any part 

of the original word. 

El-Defrawy et al. [24] described a context based Arabic stemmer (ABAS). They used a 

distributional semantics co-occurrence model for the task of selecting the most appropriate 

root. The distributional semantics utilize the Smoothed Pointwise Mutual Information 

(SPMI) to improve the disambiguation process. They reported 81% root extraction 

accuracy on a dataset of 10,302 words of the International Corpus of Arabic (ICA) [25]. 

 Hadni et al.[26]  used a mix of root-based, light and statistical stemming approaches. After 

normalizing the input, affixes were removed; then the results were matched against the 

stored patterns to extract the stem according to the word length. The resulting stem was 

then partitioned into bi-grams. The similarity between this and the bi-grams of all stored 

roots were computed. The most similar root was returned as the result. They used a list of 

9000 roots, and other lists for affixes and patterns. Their experiment was conducted on the 

Corpus of Contemporary Arabic (CCA) [27]. They used 1450 Arabic words for testing. 

The reported average accuracies are: 74.41% for Khoja, 59.71% for light stemming, 

48.17% for n-grams, and 82.33% for their method. 

The much less studied Arabic morphological analyzers are the lemmatizers; Lemmatizers 

are responsible for extracting the lemma rather than the stem of the words. Among the 

works on Arabic lemmatizers is the one conducted by Aliwy [11]. Aliwy used a rule-based 

and statistical method with dictionary lookup for the lemma extraction. He reported 

99.67% accuracy over his manually annotated corpus of 16K words. 
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The summary of the conducted studies on morphological analysis and disambiguation are 

shown in Table 2-1. 

Table 2-1 summary of morphlogical analysis and Disambiguation studies  

Study Technique Disambiguation Data Results 

(Buckwalter 2002, 2004) 

[14] [15] 
Lexicon Driven approach No NA NA 

(Boudlal 2010) [16] Lexicon Driven approach No NA NA 

Qutouf [17] 

(Altabba et al. 2010)  
Lexicon Driven approach No NA NA 

MADAMIRA 

(Pasha 2014) [19] 
Support Victor machine Yes NA NA 

(Sawalha 2011) [8] Lexicon Driven approach No 

A gold standard of 

Quran’s 

(78,004 words) 

NA 

(Khoja 2002, 2004)[21]  lexicon and rule-based No newspaper text 96% 

(Boudlal et al.2010)  [22] 

Data driven technique, 

HMM and Viterbi 

algorithm 

Yes NEMLAR 98.31% 

Context based root-based 

stemmer 

(El-Defrawy 2015)[24] 

distributional semantics 

co-occurrence model 
Yes 10302 words 81% 

2.2 Spell Checking Detection and Correction 

The methods and approaches used for the spell checking task may differ based on the used 

evidences. The evidences are either to use the word form only, in the case of non-word 

errors, or to also consider the word context in the case of real-word errors. The simplest 

approach that use the word form is to use a dictionary or reference lists; any word that has 

no entry in the dictionary is flagged as non-word error. On the other hand, the simplest 

approach for using both the word form and context is to use n-gram statistics; if the 

inspected word does not usually appear in the current context surroundings words, it is 

flagged as probable error.   
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Correction candidates generator provides a list of suggested corrections for the suspected 

error words. The most commonly used approach for generating correction candidates is 

employing the edit distance. The edit distance provides a measure of how two strings are 

similar; the similarity is defined by the minimum basic editing operations (insertion, 

deletion, substitution, and transposition) needed to transform an incorrect word into the 

correct word. The approach works by recursively calculating the edit distance between 

different substrings of an M  N matrix of the compared strings. This process is applied to 

all words in the used dictionary, although the dictionary may not cover all the words. It is 

a brute-force process that ends with a huge list of candidates with many possible repetitions 

and with no ordering of candidates having the same edit distance  [5, 6]   . 

Deorowicz and Marcin [28]  apply a set of ranked string substitutions rules to generate the 

candidate corrections [28] for English language. The candidate's generation process was 

maintained with the help of acyclic deterministic finite automaton (ADFA) which allows 

quick rejection of nonsense corrections. Their method was compared with the correction 

list of Ispell, GNU Aspell and Microsoft Word built-in spellcheckers. Based on aspell5 and 

wikipedia6 datasets, they show that their method provide more accurate results for the first 

top-5 correction candidates.  

Hamza, et al. proposed the use of a small size dictionary of stems to use in correcting 

spelling errors, instead of using a large dictionary[29]. This dictionary is similar to the one 

used by Buckwalter Aramorph morphological analyzer [14, 15]. For every input word that 

is not in the dictionary, a distance measure between the morphemes (prefix, stem and 

                                                 
5 A collection of hard-to-correct errors used for testing GNU Aspell. 
6 A data set of typical spelling errors made by the editors of the Wikipedia Project. 
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suffix) of the analyzed word and the Aramorph lexicon tables is computed and the 

suggested correction is determined based on the minimum distances. Using a corpus of 

2784 misspelled words, the authors reported that their method outperformed the classical 

Levenshtein approach in terms of the average time (0.10 and 0.19 for their method and 

Levenshtein approach respectively) and the correction rate (85% and 50% for their method 

and Levenshtein approach respectively).  

Nejja and Abdellah [5] used the concept of surface patterns and roots with the Levenshtein 

minimum edit distance to generate corrections of the error word. He provides a correction 

process using three approaches that are mainly based on selecting the surface pattern of 

minimum edit distance with the correct word. The approaches were compared to the 

Levenshtein edit distance. By using a dictionary of 10000 automatically generated 

misspelled words. The system reported 94.42, 95.42% and 93.34% correction rates and 

0.1418ms, 0.1659ms, and 0.1519ms execution times which is better than Levenshtein edit 

distance correction rate and execution time (77.38% and 0.1953ms). 

Zaghouani et al. [30] used regular expressions with a set of hand written linguistic rules for 

the correction process. The approach works by replacing a predefined set of errors with 

their suggested corrections based on a set of rules. The rules are built based on manual 

inspection of the nature of native and non-native errors. Using a test data provided from 

QALB shared task, the authors reported F1 measure correction accuracy of 66.9% for 

native speaker's data and 31.72% for non-native speaker's data.  

Hicham et al.[31] introduced an approach for correcting errors that result from insertion, 

deletion and substitution operations. When ranking candidates, they used the frequency of 
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change operations with the Levenshtein distance. Using a list of 190 error words, they 

reported a correction accuracy of 62.63% and 10% for their method and Levenshtein 

distance respectively. 

Mays et al. [32] proposed an unsupervised technique for real word error detection and 

correction based on word tri-grams. They used a word vocabulary of 20,000 words. For 

each word in their word vocabulary, they generated a confusion set. For training, they used 

word tri-gram probabilities provided by IBM speech recognition project. For testing, they 

selected randomly 100 valid sentences from the AP newswire and transcript of the 

Canadian Parliament. These 100 sentences are used to generate a group of 8628 sentences 

with a single real-word error in each sentence. They reported that their technique achieved 

a precision of 76% for detection and 73% for correction. 

Wilcox-O’Hearn et al [33] evaluated the advantages and limitations of Mays [32] 

technique. Based on the evaluation, they proposed an improved version of the technique. 

In their version, they increased the vocabulary of the tri-gram model and shortened 

sentence window size. Besides that, multiple errors rather than single error in each sentence 

are considered. The obtained results show that the improved version preformed poorer than 

their original technique. 

Islam et al. [34] suggested the use of Google Web IT 3-grams dataset for multiple real word 

errors detection and correction. In their technique, a group of 500 articles is used to evaluate 

the performance of their technique. These articles are collected from Wall Street Journal 

corpus.  They reported a recall of 89% for detection and 76% for correction. They stated 

that Google 3-grams are proved useful for real-word error detection and correction. 
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Three different techniques were proposed for error detection and correction by Majed [7]. 

Two of these techniques were supervised techniques, context was considered based on 

word co-occurrence method and the n-gram language model. The third one was 

unsupervised technique. The unsupervised technique was based on N-grams languages 

models. This technique was developed to exploit N-grams language models to compute 

their probability for the error detection and correction. 

A multi agent system for semantic errors detection was introduced by Zerbi at. el. [35]. 

The system combined co-occurrence, co-occurrence collocation, vocabulary vector, and 

latent semantic analysis. Four contextual methods were used to represent words within 

sentences in terms of their contexts. Then, a voting procedure was used to select the most 

probable error. A corpus extracted from the Egyptian newspaper Al-Ahram was used for 

training and testing. They reported an accuracy of 86.46%, 82.95%, 81.96%, 72.30% and 

62.12% for Voting, co-occ-collecation, Latent Semantic Analysis (LSA), co-occurrence 

and vocabulary vector, respectively. 

In Tomeh  et al. [36], an approach that pipelined character and word-level translation model 

with re-ranking and punctuation insertion model  were used for the correction of QALB 

corpus as part of the first Arabic shared task for error detection and correction. They 

reported 58.6% error correction F1 score with 76.9% and 47.3% recall and precision, 

respectively.   

A set of correction rules that maximized the overall F-score was calculated from the 

training data was presented Nawar  and  Ragheb [37]. The system was developed for the 
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EMNLP2014 shared task for Arabic automatic error correction. They reported 65% error 

correction F-score on the provided QALB test data. 

Shaalan et al. [38] used Buckwalter morphological analysis results as an error detection 

component in their system.   A rule-based and distance based mechanisms are then used to 

help in the correction process. A set of 190 misspelled words were used for testing the 

system. They reported 80% and 90% recall and precision respectively. 

Hassan et al. [1]  proposed a system that targets the detection and correction of several 

error types of QALB shared task corpus, including edit, add before (punctuations), merge 

and split errors. The system detect erroneous words by applying Buckwalter morphological 

analyzer. For each detected “Edit” and “add before” errors, classifiers with contextual 

features are used to correct them. A random insertion and omitting of a space were 

maintained to correct merge and split errors. They reported 58% F1 error correction score 

with 59% and 58% recall and precision, respectively. 

Shaalan et al. [39] created a large-coverage word list for Arabic of 13 million words, with 

9 million having fully inflected valid surface words using AraComLex7. A character-based 

tri-gram language model was created from valid and invalid forms. A context-free finite-

state automaton for measuring the edit distance between input words and the suggested 

corrections was created. Candidates were ranked based on scores generated from a noisy 

channel model trained on a corpus of one-billion words and knowledge-based rules of 

common errors. 

                                                 
7 An open-source finite-state large-scale morphological transducer. 
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Hassan et al. [40] proposed a language independent method for detecting and correcting 

spelling errors. Error detection is based on finite state automata while candidates' 

generation was handled using a Levenshtein-transducer that is compatible with the finite 

state machine. Ranking candidates was handled using the n-gram language model.  He 

reported an accuracy of 89% based on Arabic and English text. 

Rozovskaya  et al. [41]  presented an error annotation framework, as part of QALB (Qatar 

Arabic Language Bank)  joint project, that aims to build a large manually corrected Arabic 

corpus text for building automatic correction tools. This corpus is useful for spell checking 

applications. The corpus now contains 1.2 million annotated words. A portion of the corpus 

was released to the participants of the Arabic error correction shared task at the EMNLP 

2014 Arabic NLP workshop[41].  

A context-based system was suggested to automatically correct misspelled words by 

Alkanhal et al. [42]. The misspelled words are firstly ranked using the Levenshtein edit 

distance considering space insertion and space deletion errors. The most correct candidate 

for each misspelled word is then selected according to the maximum marginal probability 

via A* lattice search and N-gram probability estimation. They reported an improved 

performance reaching F-scores of 97.9% and 92.3% for detection and correction, 

respectively, based on their manually annotated corpora. 

Attia et al. [6] used Levenshtein edit distance with a knowledge-based rules to re-order the 

number of candidates. Based on his experiment, the amount of noise present in the training 

data has the potential effect in the improvement of the results. Using a test set of 2,027 
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spellings error, the presented system outperforms Ayaspell, MS Word, and Google Docs 

for the ranking of candidates in first position.  

The summary of the conducted studies on spelling detection and correction are shown in 

Table 2-2. 

Table 2-2 summary of Spelling detection and correction studies 

Work Technique 
Candidate 

Generation 
Test Data 

Target 

errors 
Results 

Hamza, et al. 2014 

[29] 

Morphological 

analysis with 

Levenshtein edit 
distance 

minimum edit distance 

for word morphemes 

2784 misspelled 

words 
Non-word 85% 

Nejja and 

Abdellah 2014 [5] 
NAN 

surface patterns and 

roots with the 

Levenshtein edit 
distance 

10,000  

misspelled words 

and 2000 random 
misspelled words 

Non-word 93% 

Zaghouani et al. 

2015 [30] 

regular expressions 

with a set of hand 
written linguistic rules 

a combination 
of pre-existing tools, 

hand written contextual 

rules and lexicons 

QALB NAN 

F1 of 66.9% for 

native speakers’ 
data and an F1 of 

31.72% for the 

non-native 

speakers’ data 

Hicham et 
al.2012[31] 

NAN 

the frequency of 

change operations with 
the Levenshtein 

distance 

190 errors of a 

typing Arabic 
documents for a 

set of users. 

Non-word 62,63% 

(Majid 2013) [7] 
Word co-occ.  and n-

gram 

Levenshtein edit 

distance 

27K from Al-

Arabiya Website 
Real-word 

Detection F-score 

20.2 

Correction F-score  
17.3 

( Zribi , Ahmed 

2013, 2007) [35] 

Voting, co-occ. 

Colloc., 

LSA, co-occ. and 
voca. vector 

NAN 

Random errors in 

Al-Ahram  

Egyptian 
newspaper corpus 

Real-word 

Detection 86.46%, 

82.95%, 81.96%, 

72.30%  and  
62.12% 

Tomeh et al. 2014 

[36] 

character and word-

level translation model 

a weighted 

finite-state transducer 
QALB NAN 

58.6% F1 , 76.9% 
recall and 47.3% 

precision 

Nawar  and 

Ragheb 2014 [37] 

probabilistic correction 
rules that maximized 

the overall F-score 

The learnt rules QALB NAN 
Correction F-score 

65.7% 

Shaalan et al. 2010 

[38] 

Buckwalter 

morphological analysis 
and semantic features 

a rule based edit 
distance and a heuristic 

rule-based 

transformation 

A set of 190 

misspelled words 

Non-word 

and Real-
word 

80% and 90% 
recall and 

precision 

respectively 

Hassan et al. 2014 

[1] 

Buckwalter and 
classifiers with 

contextual features for 

correction 

Levenshtein edit 

distance 
QALB NAN 

58% F1 ,59% 

recall and  58% 

precision 
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Shaalan et al. 2012 

[39] 

Dictionary look up and 

finite-state automaton 

and the noisy channel 
model 

finite-state automata of  

Levenshtein distance 

400,000 words 

with 6,279 
misspelled words 

by MS Spell 

Checker  

Non-word 
precision of  

98.2% at a recall of 

100% 

Hassan et al.  2008 
[40] 

finite state automata 

and n-gram language 

model 

Levenshtein-transducer 
A list of 11,000 

words 
Non-word 89% 

Alkanhal et al. 

2012 [42] 

Dictionary lookup A* 

lattice search and N-

gram probability 
estimation 

Damerau–Levenshtein 

distance 

Different 

annotated corpora 
Non-word 

97.9% detection 
92.3% correction 

F-score 

Attia et al. 2012 

[6] 

knowledge-based re-

ranking rules and 

NGrams language 
model 

Levenshtein edit 

distance 

2,027 spellings 

errors 
Non-word 82.86 % 
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3 CHAPTER 3 

ARABIC MORPHOLOGICAL ANALYSIS AND 

DISAMBIGUATION USING HMMS  

Arabic morphological analysis and disambiguation received interest as an active area of 

research. Most existing morphological analyzers are based on root or stem extraction. The 

reported results of such techniques are not satisfactory. In this chapter, a lexicon based 

morphological analyzer and disambiguater is presented. The system can be described as a 

root-based stemmer, lemmatizer, and morphological pattern extractor. The system extracts 

these features for any word by considering its context using Hidden Markov Model 

(HMM). 

3.1 Proposed Arabic Morphological Analysis Model 

The main goal of this model is to generate the most probable morphological features for 

each word in an input text. The features include the word root, stem, lemma, morphological 

pattern and affixes. The overall architecture is shown in Figure 3.1. The input text is 

preprocessed using normalization and tokenization which is described in section 3.2. The 

morphological analysis and disambiguation process is accomplished in two separate 

phases. In Phase 1, all possible morphological analyses are generated for each word in the 

input text using a data driven matching approach as described in Section 3.3. Each analysis 

consists of a tuple of features as shown in Table 3-1. In the second phase, a Markovian-
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based Viterbi algorithm selects the best tuple of features for each word in the input text 

based on its context as described in Section 3.4. 

 

Table 3-1 Example for morphological analysis and disambiguation phases. 

Word Phase 

Features 

SRoot ORoot Stem Lemma AffixSPattern AffixOPattern 

 وجدت
I 

 $ فعل$ ت $فعل$ ت وجدت وجدت وجد وجد

 و $ فعل$ ت تو $ فل$  جدد جد جدد جد

 و $ فعل$ ت و $ فل$ ت دوج جد دوج جد

 فعل$ ت $ فعل$ ت $ وجد وجد وجد وجد

II و $ فعل$ ت و $ فل$ ت وجدت وجدت وجد وجد 

 أسرتهم
I 

فعلت $ هم $ أسرة أسرت أسر أسر فعلة $ هم $   

 فعلت $ هم $ فعلت $ هم أسرت أسرت أسر أسر

 $ أفعل $ تهم $ أفع $ تهم أسرر أسر سرر سر

 $ أفعلت $ هم $ أفعت $ هم أسررت أسرت سرر سر

II فعلة $ هم $ فعلت $ هم أسرة أسرت أسر أسر  

 الدليل
I ال $ فعيل $ ال $ فعيل $ دليل دليل دلل دلل 

II ال $ فعيل $ ال $ فعيل $ دليل دليل دلل دلل 
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Figure 3.1 The Architecture of the proposed Arabic Morphological analyzer and Disambiguator model 
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3.2 Preprocessing 

 

Most NLP systems require preprocessing of the input text before applying any word-level 

NLP tasks. Two preprocessing steps are applied in this system; tokenization and 

normalization. The tokenization process refers to the assignment of each word in the input 

text to a specific class or type, called token. Hence, the input text is split into a set of 

consecutive sentences; each of which contains a sequence of tokens. In this work, the 

following tokens are considered: a word, a number, a named entity, a multiword 

expression, and punctuation marks.  

Normalization aims to remove noise that may exist in the input text, as a results of different 

writing styles. The following normalization steps are applied: 

 Removal of the elongation (Tatweel) letter 'ـ' in words. For example, 'المَــــــــــــآذِن' is 

changed to 'المَآذِن'.  

 Removal of all diacritics. For example, 'المَآذِن' is changed to 'المآذن'. 

 Replacement of Alif Madda 'آ' with two Alif 'أا'. For example, 'المآذن' is changed to 

  .'المأاذن'

It is worth mentioning that some authors use an additional normalization step where the 

letters 'أ' ,'إ' and 'آ' are changed to 'ا' ; also the letter 'ة' is normalized into 'ه' and the letter 'ى' 

is normalized into '[13] 'ي. However, we chose not to include this step as the proper 

mapping of the letters are already included in the system's lexicon list.  
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3.3 Phase I: Morphological analysis  

The objective of Phase I is to generate all the probable analyses for each word in the input 

text. Each analysis includes the following features: the root, the stem, the lemma, the 

morphological pattern and the affixes. The analyses are generated using a lexicon based 

matching algorithm, SWAM. The algorithm examines a set of lexicon lists and returns all 

the possible analyses (features tuples) that match the input word. 
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Figure 3.2 SWAM matching engine 
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SWAM uniformly processes fixed8 and variable9 words. The SWAM algorithm is based 

on the differentiation between lexical forms and surface forms.  Lexical forms refer to the 

traditional roots, variable patterns and fixed words that are usually stored in classical 

lexicons. The term “surface form” is used for the lexical forms that have possibly 

undergone changes, during the word formation process, resulting in one or more alteration 

to their letters. This differentiation provides implicit information to handle the 

idiosyncrasies of Arabic. SWAM keeps both lexical and surface forms in its lexicons using 

dictionaries. Surface forms are used as mapping keys into their corresponding lexical 

forms. SWAM includes a list of possible prefixes, e.g.   ) “ال, ف, س ” and a list of possible 

suffixes e.g.   )  Table 3-2 shows some examples of the lexical and surface  .) ”ان , ون , ين “ 

forms of sample roots, patterns of words and fixed words.  

Table 3-2 Mapping Dictionaries 

Word 
Mapping 

Surface Lexical 

Root 

 أخذ خذ

 قول قل

 قول قال

 هدي هدي

 هدي هد

Pattern 

 أفتعل أفتع

 فواعل فواع

 انفعلت انفعت

 تفتعل تفتل

 تفعل تفل

Fixed 

 ذلك ذل

 الذي الذي

 الذي من

 الذي لتي

 فلان فلان

 على على

 لو لولا

                                                 
8 A fixed word is a word that does not have a pattern-based stem, referred to as 'جامد'.    
9 A variable word is a word that has a pattern-based stem, referred to as 'مشتق'.   
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The original existing SWAM lexicon lists were not enough to do experiments, many items 

in the lists were missing. This forces us to collect all the required list in order for SWAM 

to work perfectly.  In this regards, we generated the required lists from Alkhalil 

morphological system. The generated lists were large and required an extensive revision. 

However, we handled a manual revision for the generated lexicon lists, the lists still have 

some extra elements which somehow affect the results. 

Given a particular input word, the algorithm extracts members of the above lists that 

produce an acceptable decomposition of the input word. This is achieved by sliding the 

stored surface patterns (with the same length or less than that of the input word) against the 

input word and computing the resulting decompositions at each position. A decomposition 

is acceptable if all the resulting components are valid and have compatible morphemes. At 

this point, the affixes compatibility is handled by determining the existence of at least one 

occurrence of the full pattern with compatible affixes in the lists.  

An example of the sliding window process is shown in Table 3-3 for the word ’المرتبطون ’  

with the pattern ’مفتعل’ . It is obvious that Row 3 contains the only matching pattern. The 

prefix-suffix pair (denoted by suffix$prefix), which is ال$ون, are compatible with the 

pattern. 
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Table 3-3 Sliding pattern  “مفتعل” over the input “المرتبطون” 

Sliding Window Action Matching # 

Position 9 8 7 6 5 4 3 2 1 

Input 

Word 
 ا ل م ر ت ب ط و ن

Pattern     م ف ت ع ل 

Root * * * * * * * * *  

slide Mismatch 
 

1 

Position 9 8 7 6 5 4 3 2 1 

Input 

Word 
 ا ل م ر ت ب ط و ن

Pattern    م ف ت ع ل  

Root * * * * * * * * * 
 

slide Mismatch 2 

Position 9 8 7 6 5 4 3 2 1 

Input 

Word 
 ا ل م ر ت ب ط و ن

Pattern   م ف ت ع ل   

Root * * ر * ب ط * * * 
 

extract Match 3 

Position 9 8 7 6 5 4 3 2 1 

Input 

Word 
 ا ل م ر ت ب ط و ن

Pattern  م ف ت ع ل    

Root * * * * * * * * * 
 

slide Mismatch 4 

Position 9 8 7 6 5 4 3 2 1 

Input 

Word 
 ا ل م ر ت ب ط و ن

Pattern م ف ت ع ل     

Root * * * * * * * * * 
 

End Mismatch 5 

 

Different accepted decompositions may result when applying SWAM to an input word. 

They may be generated from one or more surface patterns. Examples of multiple 

decompositions are shown in  Table 3-4 for the word 'لأسرتهم'. Note the huge difference in 

meaning for each analysis. In this case, the best decomposition can be determined through 
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the disambiguation process that comprises Phase 2 of the system, as we describe in the next 

section. 

Table 3-4 Sample SWAM analyses for the word ’لأسرتهم’ 

root Lemma 

Suffix-Pattern-

Prefix 

(Surface Form) 

Suffix-Pattern-

Prefix 

(Lexical Form) 

English meaning 

of 

the Word 

هم -فعلتـ  -ل  أسْرَة أسر هم -فعلة  -ل    family 

هم -ـ فعلـت -ل  أسَرْت   أسر هم -فعلـتـ  -ل    seize  

ةأسِرَّ  سرر هم -أفعتـ  -ل   هم( -أفعة  -ل   ) beds 

 

3.4 Phase 2: Features Disambiguation   

The features disambiguation process attempts to determine the best tuple of features that 

correspond to a word from the generated list of feature tuples produced by the matching 

algorithm in the first phase. The most appropriate feature tuple for each word in the input 

text depends highly on its context.  The best features tuple for each word is selected using 

a Markovian based Viterbi algorithm as explained in the next sections. 

3.4.1 Disambiguation Process Formulation 

Let 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑚}  represent the set of Arabic words, and let the sets 

 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑘},  𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘},  𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑙}, 𝐴𝑃 = {𝑎1, 𝑎2, … , 𝑎ℎ} and 

𝐹𝑃 = {𝑝1, 𝑝2, … , 𝑝ℎ} represent the roots, stems, lemmas, affix patterns10 and full patterns11 

of Arabic words, respectively. Given an Arabic sentence 𝑆 = (𝑤1, 𝑤2, … , 𝑤𝑛), 𝑤𝑖 ∈

                                                 
10 By affix pattern, we mean the original word pattern along with affixes separated by $, for example the 

affix pattern for the word ’المهتدون’  is ’ون$مفتعل$ال’  
11 By full pattern, we mean the original word pattern along with affixes, for example the full pattern for the 

word ’المهتدون’  is ’المفتعلون’  
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𝑊, 1 ≤ 𝑖 ≤ 𝑛, and let the set of morphological analyses generated by Phase I for each word 

𝑀(𝑤𝑖) = {𝑓𝑖1
, 𝑓𝑖2

, … , 𝑓𝑖𝑚𝑖
} where word 𝑤𝑖 has 𝑚𝑖 possible analyses. Each analysis 𝑓𝑖𝑗

 is a 

tuple of 5 features (𝑟𝑗, 𝑠𝑗 , 𝑙𝑗 , 𝑎𝑗 , 𝑝𝑗) where 𝑟𝑗 ∈ 𝑅, 𝑠𝑗 ∈ 𝑆 , 𝑙𝑗 ∈ 𝐿, 𝑎𝑗 ∈ 𝐴𝑃 and 𝑝𝑗 ∈ 𝐹𝑃. The 

goal is to find the most likely feature tuples 𝑓∗ = (𝑓∗
1

, 𝑓∗
2

, … , 𝑓∗
𝑛

) of the sentence S, 

where 𝑓∗
𝑖

∈ 𝑀(𝑤𝑖).  This can be formulated as follows:  

𝑓∗ = (𝑓∗
1

, 𝑓∗
2

, … , 𝑓∗
𝑛

) = 𝑎𝑟𝑔𝑀𝑎𝑥(𝑝((𝑓1, 𝑓2, … , 𝑓𝑛)|(𝑤1, 𝑤2, … , 𝑤𝑛))                 (2) 

According to Bayes rule: 

𝑝((𝑓1, 𝑓2, … , 𝑓𝑛)|(𝑤1, 𝑤2, … , 𝑤𝑛)) =
𝑝((𝑤1, 𝑤2, … , 𝑤𝑛)|(𝑓1, 𝑓2, … , 𝑓𝑛))×𝑝(𝑓1,𝑓2,…,𝑓𝑛)

𝑝(𝑤1,𝑤2,…,𝑤𝑛)
  (3) 

Substituting (3) in (2) we get:  

𝑓∗ = 𝑎𝑟𝑔𝑀𝑎𝑥 ( 
𝑝((𝑤1, 𝑤2, … , 𝑤𝑛)|(𝑓1, 𝑓2, … , 𝑓𝑛))×𝑝(𝑓1,𝑓2,…,𝑓𝑛)

𝑝(𝑤1,𝑤2,…,𝑤𝑛)
 )                              (4) 

The prior probability of the word sequence 𝑝(𝑤1, 𝑤2, … , 𝑤𝑛) in (4) is a positive constant 

and is independent of the features. Therefore, it has no influence on the ranking of the 

different sequences and can be ignored, this reformulates our goal as: 

𝑓∗ = 𝑎𝑟𝑔𝑀𝑎𝑥( 𝑝((𝑤1, 𝑤2, … , 𝑤𝑛)|(𝑓1, 𝑓2, … , 𝑓𝑛)) × 𝑝(𝑓1, 𝑓2, … , 𝑓𝑛) )                  (5) 
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Assuming that the probability of any word features depends only on the features that 

precede it (Markov assumption)12 , and the probability of the word depends only on its 

features (Markov output independence assumption)13, we can reformulate our goal as:  

𝑓∗ = (𝑓∗
1

, 𝑓∗
2

, … , 𝑓∗
𝑛

) = 𝑎𝑟𝑔𝑀𝑎𝑥(  ∏ 𝑝(𝑤𝑖|𝑓𝑖)
𝑛
𝑖=1 ×  ∏ 𝑝(𝑓𝑖|𝑓𝑖−1)𝑛

𝑖=1 )       (6) 

The resulting statistical model in (6) is called the Hidden Markov Model (HMM), where 

the input words represent the model observations and feature tuples represent the hidden 

states. The best features sequence in (6) is computed using the Viterbi algorithm. For 

computing the best features sequence, a supervised learning module was built for 

estimating the HMM parameters as described in the next section.  

                                                 
12 𝑝(𝑡𝑘|𝑡1 … 𝑡𝑘−1) = 𝑝(𝑡𝑘|𝑡𝑘−1)  , this follows  that 𝑝(𝑡1 … 𝑡𝑘) =  ∏ 𝑝(𝑡𝑖|𝑡𝑖−1)𝑘

𝑖=1              
13 𝑝(𝑤𝑘|𝑡𝑘, 𝑤𝑘−1, 𝑡𝑘−1, … 𝑤1, 𝑡1) = 𝑝(𝑤𝑘|𝑡𝑘) , this follow that 𝑝(𝑤1 … 𝑤𝑛|𝑡1 … 𝑡𝑛) =  ∏ 𝑝(𝑤𝑖|𝑡𝑖)

𝑛
1  
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Figure 3.3 Graph resulting from phase I for each feature separately 

3.4.2 Estimation of Parameters 

A supervised learning module was built for estimating the HMM parameters, viz., the 

transition probabilities 𝑃𝑟𝑜𝑏⟨𝑓𝑖|𝑓𝑖−1⟩ and the emission probabilities 𝑃𝑟𝑜𝑏⟨𝑤𝑖|𝑓𝑖⟩. The 

probabilities were estimated from an already-tagged corpus, using the maximum likelihood 

estimation method, in two phases. In the first phase, the probabilities (emission and 

transitions probabilities) for each feature (root, stem, lemma, affix pattern or full pattern) 

are estimated separately as shown in Figure 3.3;  zero-probabilities were smoothed using 

add-𝜆 smoothing with backoff method (Christopher and Schuetze 1999). 𝜆 was set higher 

for words or features that rarely occur, since the training data may not contain rarely-
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occuring words and/or features in the language. In the second phase, the total smoothed 

probabilities of the whole feature tuple are then estimated as the product of the probabilities 

in the first phase, as shown in Equations 11 and 12. This is done under the assumption that 

the probability given a specific feature is independent from the probability given any other 

feature. This provides a customized estimation of the parameters for any feature or 

combinations of features. 

The overall smoothed transition probabilities 𝑃𝑟𝑜𝑏⟨𝑓𝑖|𝑓𝑖−1⟩ is defined as: 

𝑃𝑟𝑜𝑏(𝑓𝑖|𝑓𝑖−1) = ∏
𝑐(𝑓(𝑖−1)𝑗 , 𝑓𝑖𝑗) + 𝜆𝑗  .  𝑃𝑟𝑜𝑏𝑓𝑓_𝑏𝑎𝑐𝑘𝑜𝑓(𝑓𝑖𝑗|𝑓(𝑖−1)𝑗)

𝑐(𝑓(𝑖−1)𝑗) + 𝜆𝑗

𝑚

𝑗=1

                      (11) 

Where  

 𝑓𝑖𝑗 represent the  𝑗𝑡ℎ morphological feature of the features tuple 𝑓𝑖 

 𝑐(𝑓(𝑖−1)𝑗 , 𝑓𝑖𝑗)  is the number of times feature 𝑓(𝑖−1)𝑗 appears in the training corpus 

followed by feature  𝑓𝑖𝑗  

 𝑐(𝑓(𝑖−1)𝑗) is the number of times the feature 𝑓(𝑖−1)𝑗 appears in the training corpus 

 𝜆𝑗 is the number of 𝑗𝑡ℎ feature types such that  𝑐(𝑓(𝑖−1)𝑗 , 𝑓𝑖𝑗) =  1 

The overall emission probabilities 𝑃𝑟𝑜𝑏⟨𝑓𝑖|𝑓𝑖−1⟩ is defined as: 

 

𝑃𝑟𝑜𝑏(𝑤𝑖 | 𝑓𝑖 ) =  ∏  
𝑐(𝑓𝑖𝑗 , 𝑤𝑖) + 𝜆𝑗  .  𝑃𝑟𝑜𝑏𝑤𝑓_𝑏𝑎𝑐𝑘𝑜𝑓𝑓(𝑤𝑖|𝑓𝑖𝑗)

𝑐(𝑓𝑖𝑗) + 𝜆𝑗

𝑚

𝑗=1

                             (12)  

where 
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 𝑐(𝑓𝑖𝑗 , 𝑤𝑖) is the number of times the word 𝑤𝑖 appears in the training corpus with 

feature 𝑓𝑖𝑗 

 𝜆𝑗 is the number of the word types such that  𝑐(𝑓𝑖𝑗 , 𝑤𝑖)  =  1 

In Equations 11 and 12, 𝑚 represents the number of features considered in the features 

tuple, where the maximum in our case is equal to 5, viz., root, stem, lemma, affix pattern 

and full pattern.  𝜆𝑗  was assigned very small number, e.g. (1𝑒 − 10), in the case when the 

number of singletons is zero (𝜆𝑗 = 0). Since the sizes of the sets of roots, stems, lemmas, 

etc. vary greatly, the best value of 𝜆𝑗 in each case is determined during the system validation 

process as described in the next section.  

The backoff estimates for each feature are defined as follows: 

𝑃𝑟𝑜𝑏𝑓𝑓_𝑏𝑎𝑐𝑘𝑜𝑓(𝑓𝑖𝑗|𝑓(𝑖−1)𝑗) =  
𝑐(𝑓𝑖𝑗)+1

𝑛𝑗
                       (13) 

𝑃𝑟𝑜𝑏𝑤𝑓_𝑏𝑎𝑐𝑘𝑜𝑓𝑓(𝑤𝑖|𝑓𝑖𝑗) =  
𝑐(𝑤𝑖) + 1

𝑛𝑗 + 𝑉
                     (14) 

The above backoff estimate uses add-one smoothing; where 𝑛𝑗  denotes the number of 𝑗𝑡ℎ 

feature that were observed in the training data, and V denote the number of words that were 

observed in the training data. Some words that does not occur in the train data may happen 

to exist in the test data as novel words; these words are treated as if they had been replaced 

in the input by an out of vocabulary word, denoted by OOV, which is added to the set V. 

On the other hand, some features that does not occur in the train data may be generated by 

the morphological analyzer in the first phase as novel features; these features are treated as 

if they had been replaced by a single special feature that we call out of state, denoted by 
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OOS, which is added to the value 𝑛𝑗 , since the features are suggested by the morphological 

analyzer, not from the training data features. 

3.5 Experimental Setup and Results 

The morphological analysis and disambiguation process was evaluated using a manually 

annotated corpus, NEMLAR14. Since stems and lemmas were not provided by NEMLAR, 

Stems were extracted by stripping off affixes from the word, and lemmas were extracted 

by matching each word against its annotated pattern.  The corpus was then partitioned into 

training and testing data. The training data contains 346298 words, 76.4% of the corpus, 

while the testing data contains 106676 words, and 23.6% of the corpus. To study whether 

the value of lambda has any effect on the performance of the system, the 10-fold cross 

validation algorithm was run on different very small values of lambda for each feature 

based on the training data. It was observed that varying lambda did not have any effect on 

the performance. Therefore, we set the value of lambda to10−10.  

In order to study how features affect generating a correct morphological analysis, different 

sets of features were tested, as shown in the tables of the Appendix. The percentages under 

Phase I column, in those tables, indicate the percentage of the existence of the correct 

morphological analysis among all generated analyses for each given word. 

Each column under Phase II corresponds to selected sets of one or more features used in 

the HMM to disambiguate one or more morphological analyses. Each set of morphological 

analyses occupies one row in the table, with the last row indicating the average 

                                                 
14 Manually annotated words from journalistic Arabic texts of different categories. Each 

word in the corpus was annotated with its prefix, root, pattern and suffix. The corpus has 

almost 500K words 
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performance of each HMM feature set in successfully selecting the right analyses.  The 

first table in the appendix was generated without consideration of affixes compatibility, 

unlike the second table, where affixes compatibility was taken into account.  The sets of 

features considered in the design of HMMs and/or the sought morphological analysis 

include one or more combinations of root, stem, lemma, Full Pattern15 and Affixes 

Pattern16.  

Table 3-5 Summary of the morphological analysis, on NEMLAR corpus (Phase I) 

Analyses 

Without Compatibility With Compatibility 

% Accuracy 
Average # 

of Analyses 
% Accuracy 

Average # 

of Analyses 

Lemma (L) 98.98 

20 

98.78 

12 

Root (R) 99.93 99.66 

Stem (S) 99.95 99.65 

Affix Surface Pattern (ASP) 98.99 98.57 

Affix Original Pattern (AOP) 98.58 98.77 

Root (R), Stem (S), Lemma 

(L), Affix Surface Pattern 

(ASP), Affix Original Pattern 

(AOP) 

97.70 97.69 

 

 Table 3-5 shows a summary of the results of Phase I with and without compatibility 

checking. In addition, the average number of generated analyses for each word in the 

testing data has been included in the table. It is clear from the table that the correct analysis 

exists among the generated set of analyses for each test word. Although the reported 

                                                 
15 By FullPattern, we mean the word pattern along with affixes ,  for example the affix pattern for the word 

’المهتدون’  is ’المفتعلون’  
16 By AffixPattern, we mean the word pattern along with affixes separated by $, for example the full pattern 

for the word ’المهتدون’  is ’ون$مفتعل$ال’  
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accuracy of the analyses without compatibility checking is slightly higher than those with 

compatibility checking, it is obvious that the average number of generated analyses using 

compatibility checking is lower than that without it, since analyses with incompatible 

affixes are not considered. This affects the disambiguation when using compatibility 

checking, as the number of possibilities to choose from is less.  

Table 3-6 shows part of the data in the tables of the Appendix corresponding to the chosen 

set of analyses. The column marked with "" shows the results without compatibility 

checking, and the column marked with "" shows the results with compatibility checking. 

For example, the third row in the table shows the accuracy of determining the right stem 

when using all the features, only the root, only the stem or only the lemma, respectively, 

in the disambiguation process. It is obvious that the best results were achieved when using 

all features. In this case, the improvement achieved when using compatibility checking was 

not that high. However, it was significantly higher in most other cases. 

Table 3-6 Summary of morphological analysis disambiguation (Phase II) 

Analyses 

AOP, SP,S,L ,R Root Stem Lemma 

        

Lemma (L) 
95.80 95.80 55.24 68.49 33.54 42.87 94.30 95.02 

Root (R) 
97.13 96.93 96.27 96.62 53.99 58.18 82.96 84.25 

Stem (S) 
98.20 98.02 75.90 87.67 97.16 97.67 85.19 89.97 

Affix Surface Pattern (ASP) 
95.13 95.20 46.99 63.13 33.88 44.70 70.57 76.55 

Affix Original Pattern (AOP) 
96.03 96.07 55.63 72.28 44.01 53.16 65.76 71.42 

Root (R)&Stem (S)&Lemma 

(L)& Affix Surface Pattern 

(ASP)&Affix Original Pattern 

(AOP) 

94.11 94.16 44.41 59.33 28.36 37.36 63.18 68.63 

  



41 

  

4 CHAPTER 4 

ERROR MODEL  

Correction candidates' generators calculate a set of similarity scores that helps in judging 

the similarity between two strings. The most commonly used approach for generating 

correction candidates is employing the edit distance [4]. The edit distance provides a 

measure of how two strings are similar; the similarity is defined by the minimum basic 

editing operations (insertion, deletion, substitution, and transposition) needed to transform 

an incorrect word into correct word. The approach works by recursively calculating the 

edit distance between different substrings of an M  N matrix of the compared strings. This 

process is applied to all words in the used dictionary, although the dictionary may not cover 

all the words. It is a brute-force process that may end with a large list of candidates with 

many possible repetitions and with no ordering of candidates having the same edit distance 

[5, 6].    

In this chapter, a data driven approach that exploits morphological error patterns at the 

morphemes or the word levels is proposed. The model is able to generate and rank 

candidates' correction for wide range of Arabic errors. 

4.1 Proposed Error Model 

Arabic is considered one of the morphologically rich languages, since many of its words 

are derived from a finite set of morphological patterns. This fact can be utilized in 

generating smarter candidate words for correcting spelling errors that may follow certain 

patterns. It is highly desirable that any such model possesses the following properties: 
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1. The correction candidates must be generated in a way where the number of 

candidates is relatively small, yet containing the correct word. 

2. The model must be general, and not specific to certain type of spelling errors. 

3. The model must provide a ranking for the correction candidates, such that the 

correct word is preferably at the top of the list.  

In order to achieve these goals, a data driven approach that exploits morphological error 

patterns at the morphemes or the word levels is proposed. The main components of the 

model are the error-correct patterns generator (ECPG), the error-correct patterns database 

(ECPD), and the correction candidates' generator (CCG). The ECPG is a module that 

generates morphological error patterns and their correction information that are used in the 

correction process. The information generated by the ECPG is used to build the ECPD 

which is used by the CCG to generate the correction candidates. The ECPG is presented in 

Section 4.2, the ECPD is described in Section 4.3 and the CCG is detailed in Section 4.4. 

4.2 Error Correction Patterns Generator (ECPG) 

The ECPG module generates all the error patterns with their correction information from 

an already annotated error corpus with the help of a morphological patterns generator.   In 

our work, we have utilized the SWAM morphological analyzer that is described in chapter 

3. The overall algorithm of ECPG is outlined in Figure 4.1 Error-Correct patterns generator 

(ECPG) algorithm flowchart shown in Figure 4.1. For any error word, the corresponding 

correction is morphologically analyzed, using SWAM, to get its morphological pattern and 

affixes. For example, given the real word error 'الرحمين' in the context of ' أسباب الرحمين من

 with 'ال$حرم$ان' is analyzed using SWAM, identifying it as 'الحرمان' The correct word .'النوم
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morphological pattern 'ال$فعل$ان'. This information and the actual error word are used to 

generate the error pattern 'ال$عفل$ين'.  

 

 

An error encoding is also generated, which is a string that specifies the positions of the 

changes and the change types in the error pattern. In our example, we have two changes: 

 

Figure 4.1 Error-Correct patterns generator (ECPG) algorithm flowchart 
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transposition of the first two characters of the surface pattern and a substitution of the first 

character in the suffix. Hence, its error encoding (EE) is '-s$-BC$--', according to the error 

types listed in Table 4-1. Finally, the corrections that need to be applied are generated, 

which specify the actual changes. These corrections are denoted by the correction codes 

(CC). In our example, the correction code is 'ا$CB$', which specifies the transposed and 

substituted characters. The ECPG algorithm is described in Figure 4.2, and the steps of the 

algorithm applied to our previous example are illustrated in Figure 4.3 and Figure 4.4, with 

Figure 4.1 showing the details of Step 4 of the algorithm.  

Table 4-1 description of error encodings 

EE (Error 

Encoding) 

CC(Correction Code) Error operation  

- '' No change 

i '' Insertion 

d 'Arabic char' Deletion 

s 'Arabic char' Substitution 

Latin characters 'Latin char' Transposition 

 

The generated error patterns, error encodings and correction codes are stored in the ECPD. 

This database will be, later, used by the CCG to generate the correction candidates. 
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Figure 4.2 Error-Correct patterns generator (ECPG) algorithm 

 

 

 

 

 

 

Algorithm  ErrorCorrectPatternGenerator: 

Input: Correct Word (CW), Error Word (EW) and Correct Pattern (CP) 

Output: Error Pattern (EP), Error Encoding (EE) and Correction Code (CC) 

 

Step 1. Label all non-overlapping Longest Common Substrings (LCS) between CW and EW 

(Choose Labels from English Alphabets A, B, C,..., Z) 

Step 2. Label CP according to CW 

Step 3. The initial EP (iEP) is the labeled EW by replacing each label with its corresponding 

char in CP 

Step 4. Loop over the whole letters of CP and iEp  

a. If  there is No Change : 

i. Add '-' to EE 

b. If  there is letter insertion: 

i. Add 'i' to EE 

c. If  there is letter deletion: 

i. Add 'd' to EE 

ii. Add the deleted letter to CC 

d. If  there is letter substitution: 

i. Add 's' to EE 

ii. Add the substituted letter to CC 

e. If  there is letter transposition: 

i. Add the transposed label to EE 

ii. Add the correct label to CC 

Step 5. Extract the final EP according to EE and iEP 
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Figure 4.3 Example of the ECPG for the words ( ' الحرمين' , 'الرحمان ') 

 

 

 

 

 

Step 1 

CW ا ل $ ح ر م $ ا ن 

EW   ا ل ر ح م ي ن 

CW Label E ا $ D C B $ A A 

EW Label   E ي D B C A A 
 

Step 2 

CW Label E ا $ D C B $ A A 

CP ا ل $ ف ع ل $ ا ن 

CP Label E ا $ D C B $ A A 

          
 

Step 3 

CP ا ل $ ف ع ل $ ا ن 

CP Label E ا $ D C B $ A A 

EW Label   E ي D B C A A 

iEP   ا ل ع ف ل ي ن 

iEP Label   E ي D B C A A 

          
 

Step 4 

CP Label E ا $ D C B $ A A 

iEP Label   E ي D B C A A 

EE - s $ - B C $ - - 

CC   ا $ C B $   

          

          
 

Step 5 

EE - s $ - B C $ - - 

iEP   ا ل ع ف ل ي ن 

EP ا ل $ ع ف ل $ ي ن 
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Figure 4.4 EE and CC extraction process (STEP 4) 

 

 

 

 

 

 

 

CP 

iEP 
A A $ B C D $ ا E 

A '-':''         

A  '-':''        

C   '$':'$' 'C':'B'      

B     'B':'C'     

D      '-':''    

  'ا':'s' '$':'$'       ي

E         '-':'' 
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Table 4-2 Examples of error patterns generated by ECPG 

Input Patterns 

Number 
Error 

Word 

Correct 

Word 

Suffix Stem Prefix 

CSP 

ESP 

CC:EE 

CPEP 

CC:EE 

CPPEPP 

CC:EE 

 المرتبطون المرتبط 1
’’ ون 

dd: ون 
 مفتعل مفتعل

-----:’’ 
 ال ال

--:’’ 

 كبير كثير 2
’’ ’’ 

:’’’’ 
 فعيل فثيل
-s--ب: 

’’ ’’ 
:’’’’ 

 الإسلام الاسلام 3
’’ ’’ 

:’’’’ 
 إفعال افعال

s----إ: 
 ال ال

--:’’ 

 الطالب فالطفالب 4
’’ ’’ 

:’’’’ 
 فاعل ففاعل
-i---’’: 

 ال فال
--i:’’ 

 ذهب هذب 5
’’ ’’ 

:’’’’ 
 فعل عفل

-BC: CB 
’’ ’’ 

:’’’’ 

 مخبر مخابر 6
’’ ’’ 

:’’’’ 
 مفعل  مفاعل
--i--: ’’ 

’’ ’’ 
:’’’’ 

 سيشرب حيشرب 7
’’ ’’ 

:’’’’ 
 يفعل يفعل

----’’: 
 س ح

s:س 

 كتاب كتابب 8
 ’’ ب
i: ’’ 

 فعال  فعال
----:’’ 

’’ ’’ 
:’’’’ 

 ممثلين ممثلي 9
 ين ي
d-: ن 

 مفعل  مفعل
----:’’ 

’’ ’’ 
:’’’’ 

 

Table 4-2 shows samples of different error patterns that affect prefixes (4 and 7), stems (2-

6) and suffixes (1, 8 and 9).  

4.3 Error-Correct Patterns Database (ECPD) 

ECPD is a database that holds the error patterns with their correction information. The 

database is created by, first, including the patterns generated by the ECPG. Then, for each 

correct stem (i.e. not containing any error), the algorithm examines all combinations of 

prefixes and suffixes, where at least one of them (the prefix or the suffix) has an error. If 

the combination satisfies the condition that the stem is compatible with the correct affixes, 
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such combination will be added to the ECPD. For incorrect stems, the same procedure 

applies with the difference that both affixes can be correct. Again, the compatibility check 

is only considered against the correct stem and correct affixes. For example, Table 4-3 

contains error patterns that are generated from the first three rows of Table 4-2.  

Table 4-3 examples of ECPD stored data 

Error pattern 

(ESP$EP$EPP)  

Correction Information 

Correct Pattern 

(CSP$CP$CPP) 
EE CC 

  $$ i--$-----$ $مفتعل$ال $مفتعل$فال

 $$ون --$-----$dd ون$مفتعل$ال $مفتعل$ال

  $$ون dd$-----$--i ون$مفتعل$ال $مفتعل$فال

 $$ $-----$i $مفتعل$ ب$مفتعل$

 $$ --$-----$i $مفتعل$ال ب$مفتعل$ال

  $$ --i$-----$i $مفتعل$ال ب$مفتعل$فال

 $$ن $-----$d- ين$مفتعل$ ي$مفتعل$

 $$ن --$-----$d- ين$مفتعل$ال ي$مفتعل$ال

  $$ن d$-----$--i- ين$مفتعل$ال ي$مفتعل$فال

 $ب$ $--s-$ $فعيل$ $فثيل$

 $ب$ --$--s-$ $فعيل$ال $فثيل$ال

  $ب$ s--$--i-$ $فعيل$ال $فثيل$فال

 $ب$ون $--dd$-s ون$فعيل$ $فثيل$

 $ب$ون --$--dd$-s ون$فعيل$ال $فثيل$ال

  $ب$ون dd$-s--$--i ون$فعيل$ال $فثيل$فال

 $ب$ن $--d$-s- ين$فعيل$ ي$فثيل$

 $ب$ن --$--d$-s- ين$فعيل$ال ي$فثيل$ال

  $ب$ن d$-s--$--i- ين$فعيل$ال ي$فثيل$فال

 $ب$ $--i$-s $فعيل$ ب$فثيل$

 $ب$ --$--i$-s $فعيل$ال ب$فثيل$ال

  $ب$ i$-s--$--i $فعيل$ال ب$فثيل$فال

 $إ$ $----s$ $إفعال$ $افعال$

 $إ$ --$----s$ $إفعال$ال $افعال$ال

  $إ$ s----$--i$ $إفعال$ال $افعال$فال

 $إ$ن $----d$s- ين$إفعال$ ي$افعال$

 $إ$ن --$----d$s- ين$إفعال$ال ي$افعال$ال

  $إ$ن d$s----$--i- ين$إفعال$ال ي$افعال$فال

 $إ$ $----i$s $إفعال$ ب$افعال$

 $إ$ --$----i$s $إفعال$ال ب$افعال$ال

  $إ$ i$s----$--i $إفعال$ال ب$افعال$فال
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The error and correct patterns information are stored using dictionaries according to the 

error pattern length. Searching for an error pattern is, therefore, started by computing the 

length of the error word and considering the dictionary corresponding to that length. 

4.4 Correction Candidates Generator (CCG) 

The correction candidates generator is a data driven module that uses error patterns to 

generate correction candidates for a given word. It simply considers the correction 

information stored at the EPCD that correspond to the error pattern. Figure 4.5 show the 

algorithm flowchart of CPG. 

 

Figure 4.5 Correction Candidates Generator (CCG) 
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Given a particular error word, e.g. ’فالمستمع’ , the algorithm matches all the morphological 

error patterns, similar in length to the input, against the input word and generate all the 

correction candidates according to the matched patterns correction information. The 

matching occurs if all the morphological pattern letters other than ( ’ل ,ع ,ف’ ) match their 

corresponding letters in the error word. Non-valid candidates are automatically rejected as 

possible candidates; a correction is valid if it has a valid root. According to the database in 

Table 4-3, only the pattern ’فالمفتعل’  provide valid candidates.  

Table 4-4 shows that only two correction patterns (المفتعل , المفتعلون) are possible based on 

the given database in Table 4-3  

 

Table 4-4 Examples of error patterns candidates' generation 

Error Word 
Correction Information  

CSP CP CPP Root Correction Valid 

EWord  ف ا ل م س ت م ع 

Pattern ف ا ل م ف ت ع ل 
 

$مستمعال$ سمع ال مفتعل   True 

نو$مستمعال$ سمع ال مفتعل ون  True 

      

      

      

 

4.5 Experimental Setup and Results 

To study how effective the suggested error model, an analysis of some well-known Arabic 

annotated corpora is conducted. The analysis is concentrated on the types and number of 

edits needed to get the correct word from the error word.  The corpus chosen for this task 

is QALB. QALB is a manually annotated errors' corpus consisting of user comments 

collected from Al-Jazeera News webpage. It is mainly written in Modern Standard Arabic 

with almost one Million words with 243,075 errors. QALB has its specific format. 

However, we converted its format into KACST format. The corpus files are then fed to the 
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morphological analyzer (SWAM) to get the morphological pattern of the corpus words. 

The corpus has different types of errors, some of errors are annotated with more than three 

words as correction. In this work we include only sentences that has, among its errors, less 

than four connected words; the reason behind this exclusion is that such errors are almost 

unique to occur and they introduce overhead over the morphological analyzer 

disambiguation process.   

 Table 4-5 shows summary of the QALB corpus errors based on the error model analysis 

result file. Need to mention that the deletion error type ratio (40.18) in Table 4-5 include 

the percentage of 'punctuation deletion'17 which is 33.45, see Appendix Table 0-3 for more 

details. 

Table 4-5 QALB corpus errors summary 

Error Type 
QALB 

Count Ratio 

Insertion 19270 7.93 

Deletion 97668 40.18 

Substitution 106702 43.90 

Transposition 530 0.22 

Mixed18 18905 7.78 

No Change 23 0.01 

Totals 243075 100 

 

Most of the errors in QALB are repeated errors, the total number of distinct corpus errors 

is 89536 as shown in  

 

 

Table 4-6. The total distinct errors are composed of uniquely occurring errors (Non-

Repeated error words, 68253) and the distinct number of repeated errors (21283).  

                                                 
17 'Punctuation deletion' refer to the error that result when the writer miss to include a punctuation after 

specific word. In QALB corpus, this type of error is called 'add before' 
18 Mixed error refer to complex error (more than one error operations) 
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Table 4-6 Corpus error words statistics 

Error Type 
QALB 

Count Ratio 

Non-Repeated Corpus Errors 68253 %76.23 

Repeated Corpus Errors (Distinct) 21283 %23.77 

Total Distinct Corpus Errors 89536 100% 

 

The summary statistics of the QALB corpus error patterns based on the error model 

analysis result file are shown in Table 4-7.  

Table 4-7 QALB error patterns summary 

Error Type 
QALB 

Count Ratio 

Insertion 6834 63.34 

Deletion 17786 39.33 

Substitution 9965 47.32 

Transposition 414 86.97 

Mixed 11130  92.83 

No Change 19 95.00 

Totals 46129  51.52 

The details of the error words and error patterns for each change operation is provided in 

Appendix Table 0-3 and Table 0-4 

Table 4-8 Corpus error patterns statistics 

Error Type 
QALB 

Count Ratio 

Non-Repeated Error Patterns 32826  36.66 

Repeated Error Patterns (Distinct) 13303 14.86 

Total Distinct Error Patterns 46129  51.52 

 

The total number of distinct generated error patterns is 46129 as shown in Table 4-8.   The 

generated total distinct error patterns are composed of uniquely generated patterns (Non-

Repeated error patterns, 68253) and the distinct number of repeated error patterns (21283). 

With the fact that the total number of the analyzed corpus errors is 243075; the statistics 

show that almost 71% (243075 - 68253 = 174822) of these errors are just a repetition of 
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only 21283 distinct errors with an average of almost 8 occurrences per error word. The 

remaining 29% of the corpus errors are singly occurred errors (non-repeated errors). This 

means that any upcoming error word should have their correction candidate in the list (if 

we use a simple non -error patterns model) with the probability of at least 71%. 

Although, the number of uniquely occurred errors in the corpus is 68253 which is almost 

triple the number of distinct repeated errors; the total number of the whole generated error 

patterns by the error model is 46129 (51.52% of the whole distinct corpus errors).  

We also conducted an analysis of the actual error model candidates' generation 

effectiveness on QALB test corpus. The experiment concentrated on the ability of the error 

model, based on the learnt error patterns, to generate the correct candidates among all the 

suggested candidates. The ranking of candidates was handled based on the error pattern 

repetition frequency.  Different training corpora were used to train the model based on 

different error patterns frequencies. For example, Table 4-9 shows that, when training the 

model with QALB training corpus and including only the error patterns repeated 3 times 

or more, 83% of the correct corrections, of QALB test corpus, does exist in the generated 

candidates. The average number of candidates is 20 and the average candidates' generation 

time is 0.11. Moreover, almost 0.17% of the corrections exist among the top correction. 
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Table 4-9 results of effectivness of the error model based on QALB test data 

Training Corpus 

Avg. # of 

generated 

candidates 

Avg. # of 

error 

correction 

to exist as 

1-Top 

candidate 

Avg. # of 

error 

correction 

to exist as 

5-Top 

candidate 

Avg. # of 

error 

correction 

to exist as 

10-Top 

candidate 

Avg. # of 

error 

correction 

to exist  in 

all 

candidates 

Avg. 

candidates 

generation 

time 

(second) 

QALB 

all 50.626 0.175 0.719 0.789 0.847 0.421 

3 20.192 0.174 0.718 0.787 0.834 0.108 

5 17.760 0.174 0.718 0.786 0.832 0.137 

10 14.650 0.174 0.717 0.770 0.812 0.098 

20 11.753 0.174 0.709 0.760 0.798 0.069 

50 8.802 0.172 0.699 0.748 0.772 0.080 

100 6.892 0.171 0.452 0.410 0.512 0.044 

KFUPM 

all 4.288 0.203 0.320 0.326 0.326 0.053 

3 1.555 0.202 0.299  0.304 0.304 0.022 

5 1.149 0.200 0.298 0.298 0.298 0.019 

10 0.817 0.186 0.271 0.271 0.271 0.021 

20 0.745 0.178 0.252 0.252 0.252 0.013 

50 0.618 0.170 0.241 0.249 0.241 0.011 

100 0.521 0.168 0.236 0.236 0.236 0.011 

QALB 

& 

KFUPM 

all 51.780 0.207 0.723 0.795 0.851 0.363 

3 20.725 0.207 0.723 0.792 0.839 0.129 

5 18.137 0.207 0.722 0.791 0.837 0.177 

10 14.990 0.206 0.722 0.775 0.818 0.120 

20 12.054 0.206 0.713 0.767 0.801 0.082 

50 8.988 0.2041 0.706 0.757 0.780 0.045 

100 7.140 0.203 0.460 0.508 0.520 0.064 

 

In the case of Levenshtein minimum edit distance, the candidates were generated using an 

edit distance of 1 and 2 as in Table 4-10. The experiment concentrated on the ability of the 

Levenshtein minimum edit distance to generate the correct candidates among all the 

suggested candidates. The candidates with the required edit distance are generated from a 

dictionary19 with 125975 words. We did not include the candidates generation within the 

edit distance of 3 since the generation time was very long (it takes more than 33 

minutes/error word) and the memory requirement were very huge (4800 candidates/error 

word).  

                                                 
19 The dictionary was generated from different corpora by including word with more than 5 occurrences 



56 

  

Table 4-10 results of effectivness of the minimum edit distance based on QALB test data 

Training Corpus 

Avg. # of 

generated 

candidates 

Avg. # of 

error 

correction 

to exist  in 

all 

candidates 

Avg. 

candidates 

generation 

time 

Edit Distance 
1 19.1279 0.817781  3.423594 

2 440.641 0.856714  9.772839 
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5 CHAPTER 5 

GENERAL SPELL CHECKING DETECTION AND 

CORRECTION  

5.1 Baseline System 

The baseline system is a combination of two previously implemented systems[4, 7] for 

spell checking detection and correction. It handles non-word and real-word spelling errors 

using different techniques. In the case of non-word, the system use the combination of 

Buckwalter Arabic Morphological Analyzer, dictionary look-up or Character N-grams. In 

the case of real-word errors the system use NGrams language model or context co-

occurrence with confusion sets. More details of the subsystems and their combinations are 

described in the Appendix D.  

5.2 System Description 

The main goal of the described prototype is to effectively detect and correct wide range of 

Arabic errors. This is achieved through an effective interaction between the system 

components (viz. a morphological analyzer, an error model, and a language model). The 

morphological analyzer generates morphological features of the running text. The used 

morphological analyzer is SWAM. SWAM morphological features include the root, the 

stem, the pattern and the affixes. The error model generates the probable corrections for 

suspected error words, the used error model is ECPD (Error Correct Patterns Database). 
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The language model provides markovian based statistical description of the language based 

on the same morphological features generated by the morphological analyzer.  

The system achieve the task of error detection and correction in two interleaved phases, 

each phase handle part of the problem as shown in  Figure 5.1 

 

Figure 5.1 GSpell Error detection and correction 
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In the first phase, the error detection and correction task start by morphologically analyzing 

all words in the input. Any word with no morphological analysis is flagged as suspected 

non-word error. The correction candidates with their morphological features are generated 

for each suspected non word using the CCG (Correct Candidates Generator). Under the 

assumption that the probability of any input word to happen in some context is highly 

related to the probability of its morphological features in the same context. The 

probabilities are computed for each word based on its morphological features. The word 

with the highest probability is selected by the correction algorithm as the best correction 

for the non-word error. 

 In the second phase, any word "with probability less" than a threshold is flagged as 

suspected real-word error. The correction candidates with their possible morphological 

features are generated for each suspected real-word error. The word with the highest 

morphological features probability is selected by the correction algorithm as the best 

correction of the real-word error.  Figure 5.2 provides an example of how the detection and 

correction process work in the two phases.  The detailed description of the algorithm is 

given in the next section. 

 

 

 

 

 



60 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Examples of error detection and correction phases 
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5.3 System Formulation 

Given (a) a set of words 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑚}  that represent Arabic words, (b) five finite 

sets of morphological sets   𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑘},  𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘},  𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑙}, 

𝐴𝑃 = {𝑎1, 𝑎2, … , 𝑎ℎ} and 𝐹𝑃 = {𝑝1, 𝑝2, … , 𝑝ℎ} that represent the roots, stems, lemmas, 

affix patterns20 and full patterns21 of Arabic words, respectively, (c) a morphological 

analysis function 𝑀(𝑤𝑖) = {𝑓𝑖1
, 𝑓𝑖2

, … , 𝑓𝑖𝑚𝑖
} that generate all possible analysis features 

tuples for any word 𝑤𝑖. Each analysis 𝑓𝑖𝑗
 is a tuple of 5 features (𝑟𝑗, 𝑠𝑗 , 𝑙𝑗 , 𝑎𝑗 , 𝑝𝑗) where 𝑟𝑗 ∈

𝑅, 𝑠𝑗 ∈ 𝑆 , 𝑙𝑗 ∈ 𝐿, 𝑎𝑗 ∈ 𝐴𝑃 and 𝑝𝑗 ∈ 𝐹𝑃, and (d) a candidate generation 

function 𝐶𝐶𝐺(𝑤) = {𝑤1
𝑐, 𝑤2

𝑐, … , 𝑤𝑚
𝑐 }, 𝑤𝑖

𝑐 ∈ 𝑊, 1 ≤ 𝑖 ≤ 𝑚  that generates the probable 

correction candidates based on ECPD.  

For any sentence  𝑆 = (𝑤1, 𝑤2, … , 𝑤𝑘, … , 𝑤𝑛−1, 𝑤𝑛)  with possible morphological 

features  𝐹(𝑆) = (𝑀(𝑤1), 𝑀(𝑤2), … , 𝑀(𝑤𝑘), … , 𝑀(𝑤𝑛−1), 𝑀(𝑤𝑛)), we need to find the 

best correction sentence 𝑆∗ = (𝑤1
𝑐, 𝑤2

𝑐, … , 𝑤𝑘
𝑐, … , 𝑤𝑛−1

𝑐 , 𝑤𝑛
𝑐), where 

𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑛 represent the sentence words; 

𝑀(𝑤𝑖), 1 ≤ 𝑖 ≤ 𝑛  represent the possible features' tuples of the word 𝑤𝑖; 

𝑤𝑖
𝑐 represents the best correction of the word 𝑤𝑖; 

𝑤𝑖
𝑐, 1 ≤ 𝑖 ≤ 𝑛 ∈ {

{𝑤𝑖 ∪ 𝐶𝐺(𝑤𝑖)}                   𝑖𝑓 𝑤𝑖 𝑤𝑎𝑠 𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑒𝑟𝑟𝑜𝑟
 

{𝑤𝑖}                                                𝑜𝑡ℎ𝑒𝑟𝑠                     
 

                                                 
20 By affix pattern, we mean the original word pattern along with affixes separated by $, for example the 

affix pattern for the word ’المهتدون’  is ’ون$مفتعل$ال’  
21 By full pattern, we mean the original word pattern along with affixes, for example the full pattern for the 

word ’المهتدون’  is ’المفتعلون’  
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The goal 𝑆∗can be achieved by finding the most likely sequence of features 𝐹∗ =

(𝑓1
∗, 𝑓2

∗, … , 𝑓𝑘
∗, … , 𝑓𝑛−1

∗ , 𝑓𝑛
∗) that most likely represent 𝑆∗ where, 𝑓𝑖

∗ represent the best 

morphological features tuple of  𝑤𝑖
𝑐. 

By assuming that the probability of any word features depends only on the features that 

precede it (Markov assumption)22 , and the probability of the next word depends only on 

its features (Markov output independence assumption)23, we can define: 

𝐹∗ = 𝑎𝑟𝑔𝑀𝑎𝑥(  ∏ 𝑝(𝑤𝑖
𝑐|𝑓𝑖) 𝑛

𝑖=1 ×  ∏ 𝑝(𝑓𝑖|𝑓𝑖−1)𝑛
𝑖=1 )    (1) 

The equation in (1) represents a maximization problem that can be solved using Viterbi 

algorithm. The algorithm was adopted to select the word in the correction candidates with 

the highest morphological features' probability in the sequence as the best correction. The 

behavior of the algorithm highly depends on the results of the error model (ECPG). For 

example, if the error model provide a space deletion correction among the generated 

candidates, the algorithm needs to consider computing two extra transitions and emissions 

in the position of the word. On the other hand, if the error model suggest the deletion of 

the suspected word, the algorithm needs to consider skipping of the current word to the 

next one.  All these behaviors were maintained by the correction algorithm with the help 

of the error model. The resulting general markov correction model is shown in Figure 5.3 

 

 

                                                 
22 𝑝(𝑡𝑘|𝑡1 … 𝑡𝑘−1) = 𝑝(𝑡𝑘|𝑡𝑘−1)  , this follows  that 𝑝(𝑡1 … 𝑡𝑘) =  ∏ 𝑝(𝑡𝑖|𝑡𝑖−1)𝑘

𝑖=1  
23 𝑝(𝑤𝑘|𝑡𝑘, 𝑤𝑘−1, 𝑡𝑘−1, … 𝑤1, 𝑡1) = 𝑝(𝑤𝑘|𝑡𝑘) , this follow that 𝑝(𝑤1 … 𝑤𝑛|𝑡1 … 𝑡𝑛) =  ∏ 𝑝(𝑤𝑖|𝑡𝑖)

𝑛
1  
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Figure 5.3 Spelling correction hmm model 
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According to the above formulations, the word 𝑤𝑖 is considered as a spelling mistake if: 

1. 𝑀(𝑤𝑖)  = ∅ (in the case of non-word error) 

2. The probability of the sequence 𝑝(𝑓𝑖, 𝑓∗|𝑓1, 𝑓2, … , 𝑓𝑖−1)   and 

𝑝(𝑓𝑖 , 𝑓∗|𝑓𝑖+1, 𝑓𝑖+2, … , 𝑓𝑛) is less than a threshold 𝜃 (in the case of real-word error). 

This means that any word will be considered as a spelling mistake if the word has no 

morphological analysis or if the morphological feature(s) of another word in the correction 

candidates has higher likelihood of fitting into the same context.  

5.4 Estimation of Parameters 

A supervised learning module was built for estimating the HMM parameters, viz., the 

transition probabilities 𝑃𝑟𝑜𝑏⟨𝑓𝑖|𝑓𝑖−1⟩ and the emission probabilities 𝑃𝑟𝑜𝑏⟨𝑤𝑖|𝑓𝑖⟩. The 

probabilities were estimated from an already-tagged corpus, using the maximum likelihood 

estimation method, in two phases. In the first phase, the probabilities (emission and 

transitions probabilities) for each feature (root, stem, lemma, affix pattern or full pattern) 

are estimated separately; zero-probabilities were smoothed using add-𝜆 smoothing with 

backoff method (Christopher and Schuetze 1999). 𝜆 was set higher for words or features 

that rarely occur, since the training data may not contain rarely-occurring words and/or 

features in the language. In the second phase, the total smoothed probabilities of the whole 

feature tuple are then estimated as the product of the probabilities in the first phase, as 

shown in Equations 11 and 12. This is done under the assumption that the probability given 

a specific feature is independent from the probability given any other feature. This provides 

a customized estimation of the parameters for any feature or combinations of features. 
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The overall smoothed transition probabilities 𝑃𝑟𝑜𝑏⟨𝑓𝑖|𝑓𝑖−1⟩ is defined as: 

𝑃𝑟𝑜𝑏(𝑓𝑖|𝑓𝑖−1) = ∏
𝑐(𝑓(𝑖−1)𝑗 , 𝑓𝑖𝑗) + 𝜆𝑗  .  𝑃𝑟𝑜𝑏𝑓𝑓_𝑏𝑎𝑐𝑘𝑜𝑓(𝑓𝑖𝑗|𝑓(𝑖−1)𝑗)

𝑐(𝑓(𝑖−1)𝑗) + 𝜆𝑗

𝑚

𝑗=1

                      (11) 

Where  

𝑓𝑖𝑗 represent the  𝑗𝑡ℎ morphological feature of the features tuple 𝑓𝑖 

𝑐(𝑓(𝑖−1)𝑗 , 𝑓𝑖𝑗)  is the number of times the feature 𝑓(𝑖−1)𝑗 appears in the training corpus 

followed by the feature  𝑓𝑖𝑗  

𝑐(𝑓(𝑖−1)𝑗) is the number of times the feature 𝑓(𝑖−1)𝑗 appears in the training corpus 

𝜆𝑗 is the number of 𝑗𝑡ℎ feature types such that  𝑐(𝑓(𝑖−1)𝑗 , 𝑓𝑖𝑗) =  1 

The overall emission probabilities 𝑃𝑟𝑜𝑏⟨𝑓𝑖|𝑓𝑖−1⟩ is defined as: 

 

𝑃𝑟𝑜𝑏(𝑤𝑖 | 𝑓𝑖 ) =  ∏  
𝑐(𝑓𝑖𝑗 , 𝑤𝑖) + 𝜆𝑗  .  𝑃𝑟𝑜𝑏𝑤𝑓_𝑏𝑎𝑐𝑘𝑜𝑓𝑓(𝑤𝑖|𝑓𝑖𝑗)

𝑐(𝑓𝑖𝑗) + 𝜆𝑗

𝑚

𝑗=1

                             (12)  

where 

𝑐(𝑓𝑖𝑗 , 𝑤𝑖) is the number of times the word 𝑤𝑖 appears in the training corpus with the feature 

𝑓𝑖𝑗 

𝜆𝑗 is the number of the word types such that  𝑐(𝑓𝑖𝑗 , 𝑤𝑖)  =  1 
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In Equations 11 and 12, 𝑚 represents the number of features considered in the features 

tuple, where the maximum in our case is equal to 5, viz., root, stem, lemma, affix pattern 

and full pattern.  𝜆𝑗  was assigned a very small number, e.g. (1𝑒 − 10), in the case when 

the number of singletons is zero (𝜆𝑗 = 0). Since the sizes of the sets of roots, stems, 

lemmas, etc. vary greatly, the best value of 𝜆𝑗 in each case is determined during the system 

validation process as described in the next section.  

The backoff estimates for each feature are defined as follows: 

𝑃𝑟𝑜𝑏𝑓𝑓_𝑏𝑎𝑐𝑘𝑜𝑓(𝑓𝑖𝑗|𝑓(𝑖−1)𝑗) =  
𝑐(𝑓𝑖𝑗)+1

𝑛𝑗
                       (13) 

𝑃𝑟𝑜𝑏𝑤𝑓_𝑏𝑎𝑐𝑘𝑜𝑓𝑓(𝑤𝑖|𝑓𝑖𝑗) =  
𝑐(𝑤𝑖) + 1

𝑛𝑗 + 𝑉
                     (14) 

Where 𝑛𝑗  denotes the number of 𝑗𝑡ℎ feature that were observed in the training data, and V 

denote the number of words that were observed in the training data. The above backoff 

estimate uses add-one smoothing; Some words that does not occur in the train data may 

happen to exist in the test data as novel words; these words are treated as if they had been 

replaced in the input by a single special word, out of vocabulary word, denoted by OOV, 

which is added to the set V. On the other hand, some features that does not occur in the 

train data may be generated by the morphological analyzer in the first phase as novel 

features; these features are treated as if they had been replaced by a single special feature 

that we call out of state, denoted by OOS, which is added to the value nj, since the features 

are suggested by the morphological analyzer, not from the training data features. 
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5.5 Experimental Setup and Results 

The general spelling detection and correction was evaluated using a manually annotated 

corpora, QALB24 and KFUPM corpora. QALB annotated corpus does not provide any 

distinction between non-word and real-word errors. It only provides the type of the 

operation that generated the error (e.g. edit, merge, split, add before, add after, etc.). This 

required us to re-annotate the corpus in order to use it in our work. We handled a manual 

revision for the corpus after a preprocessing step. The preprocessing step was carried out 

with the help of Alkhalil, SWAM, Aramorph and the dictionary. Any word suggested to 

be a non-word error by all the aforementioned methods is annotated as non-word. On the 

other hand, any word suggested to be a real-word error by all these methods is annotated 

as real-word.  Otherwise, if there is any conflict between the methods, the word is manually 

checked and annotated.  

5.5.1 Handling Non-word Errors 

The experiments concentrated on the ability of the system to detect and correct non-word 

errors compared to the other techniques. In order to have a good evaluation, three types of 

experiments were maintained. The first set of experiments concentrated on the problem of 

detecting non-word errors. The second set of experiments targeted the correction process, 

under the assumption of correct detection of errors. In the third set of experiments, 

detection and correction of Arabic text has been tested.  

The results of non-word detection are shown in Table 5-1 using different corpora. SWAM 

non-word errors detection achieved around 65% F1-measure in the case of QALB corpus, 

                                                 
24 QALB is a manually annotated errors corpus consisting of user comments collected from Al-Jazeera 

News webpage. It is mainly written in Modern Standard Arabic with almost one Million words with 

243,075 errors.  
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and around 45% in the case of KFUPM corpus. It is clear from the results that SWAM non-

word errors detection accuracies are lower as compared to Aramorph. The main reason for 

this is related to the lexicon lists used by SWAM. However, the results can be improved if 

SWAM’s lexicon lists have been revised by an Arabic expert.  

Table 5-1 Non-word error detection results  

Corpus 

Name 

Detection 

Method 

Total 

errors 

Detection 

Recall Precision F1 

QALB 

SWAM 

6205 

53.17 86.50 65.85 

Aramorph 78.97 85.16 81.95 

Dictionary 52.94 64.32 58.08 

charNgrams 27.54 22.20 24.58 

KFUPM 

SWAM 

90215 

56.39 37.85 45.30 

Aramorph 66.65 44.26 53.19 

Dictionary 35.40 17.50 23.42 

charNgrams 24.32 4.71 7.88 

 

In the case of correction process using HMM, the HMM model was built using a manually 

annotated corpus, NEMLAR25 based on different features. The features are Root, Stem, 

Lemma, AffixSPattern, AffixOPattern, FSPattern and FOPattern. In order to determine the 

best HMM model features and the best window size, we used random set of sentences as 

validation set and maintained different experiments with different window sizes and 

features. The experiments employ the error patterns method for generation of candidates. 

Table 5-2 Sample experiments with different window size and different model features 

Model Features 
Window 

Size 

Top1  Top5 Top10 

R P F1 R P F1 R P F1 

R&S&L 3 5.21 5.95 5.56 39.58 45.24 42.22 50.00 57.14 53.33 

R&S 3 4.17 4.88 4.49 39.58 46.34 42.70 58.33 68.29 62.92 

R&S&ASP&AOP 3 15.62 16.67 16.13 51.04 54.44 52.69 71.88 76.67 74.19 

R&S&FSP&FOP 3 6.25 7.32 6.74 52.08 60.98 56.18 72.92 85.37 78.65 

R&S&L&ASP&AOP 3 17.71 19.32 18.48 50.00 54.55 52.17 67.71 73.86 70.65 

R&S&L&ASP&AOP 3 7.29 8.54 7.87 54.17 63.41 58.43 66.67 78.05 71.91 

                                                 
25 Manually annotated words from journalistic Arabic texts of different categories. Each 

word in the corpus was annotated with its prefix, root, pattern and suffix. The corpus has 

almost 500K words 
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S&ASP&AOP 3 13.54 14.44 13.98 51.04 54.44 52.69 73.96 78.89 76.34 

S&FSP&FOP 3 7.29 8.43 7.82 52.08 60.24 55.87 73.96 85.54 79.33 

S&L&ASP&AOP 3 17.71 19.32 18.48 53.12 57.95 55.43 67.71 73.86 70.65 

R 5 3.12 3.66 3.37 27.08 31.71 29.21 41.67 48.78 44.94 

R& FSP&FOP 5 9.38 10.84 10.06 38.54 44.58 41.34 62.50 72.29 67.04 

R&S 5 4.17 4.88 4.49 40.62 47.56 43.82 56.25 65.85 60.67 

R&S&ASP&AOP 5 15.62 16.85 16.22 48.96 52.81 50.81 67.71 73.03 70.27 

R&S&L 5 6.25 7.32 6.74 32.29 37.80 34.83 50.00 58.54 53.93 

R&S&L&ASP&AOP 5 16.67 18.18 17.39 50.00 54.55 52.17 63.54 69.32 66.30 

R&S&L&FSP&FOP 5 6.25 7.32 6.74 53.12 62.20 57.30 64.58 75.61 69.66 

S&FSP&FOP 5 7.29 8.43 7.82 47.92 55.42 51.40 73.96 85.54 79.33 

R 7 3.12 3.66 3.37 29.17 34.15 31.46 42.71 50.00 46.07 

R&ASP&AOP 7 12.50 13.48 12.97 40.62 43.82 42.16 62.50 67.42 64.86 

R&FSP&FOP 7 7.29 8.54 7.87 38.54 45.12 41.57 60.42 70.73 65.17 

R&S 7 4.17 4.88 4.49 40.62 47.56 43.82 56.25 65.85 60.67 

R&S&ASP&AOP 7 14.58 15.56 15.05 52.08 55.56 53.76 69.79 74.44 72.04 

R&S&L&ASP&AOP 7 17.71 19.32 18.48 50.00 54.55 52.17 64.58 70.45 67.39 

R 9 3.12 3.61 3.35 22.92 26.51 24.58 39.58 45.78 42.46 

R&S&ASP&AOP 9 15.62 16.67 16.13 50.00 53.33 51.61 70.83 75.56 73.12 

Based on the experiments in Table 5-2 the next experiments are carried out using a window 

of size 3 and the features of Root, Stem, Lemma, AffixSPattern and AffixOPattern.  

In order to have a clear indication about the correction accuracies, experiments were 

maintained with the assumption that the detection results are 100%. The non-word errors 

were manually tagged as suspected errors. Table 5-3 shows the results of the correction 

process of HMM compared to other techniques. 

Table 5-3 Non-word error correction results (100% Detection) 

C
o

rp
u

s 

Correction 

Method 

Candidate 

Generation 

Method T
o

ta
l 

Correction 

Top1 Top5 Top10 

P P P 

Q
A

L
B

 

HMM EP 

6
2

0
5
 

18.66 47.33 60.34 

HMM ED 27.16 49.46 59.27 

NGRAMS EP 30.51 63.38 69.14 

NGRAMS ED 31.54 61.06 64.61 

HMM&Ngrams EP 37.20 68.80 73.15 

HMM&Ngrams ED 43.55 63.88 65.71 

K
F

U
P

M
 

HMM EP 

9
0

2
1
5
 

17.84 54.34 70.14 

HMM ED 34.37 62.18 72.19 

NGRAMS EP 37.78 75.09 79.09 

NGRAMS ED 42.04 74.66 76.96 

HMM&Ngrams EP 45.36 77.94 81.52 

HMM&Ngrams ED 56.64 76.53 77.98 
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For testing the detection and correction accuracies, another experiments were conducted 

using QALB and KFUPM corpora.  Table 5-4 shows the experimental results comparing 

the different used techniques.  

Table 5-4 Non-word error correction results 

C
o

rp
u

s 

 Detection 

Method 

Correction 

Method 

Cand.  

Gen. 

Method T
o

ta
l 

 

Correction 

Top1 Top5 Top10 

R P F1 R P F1 R P F1 

Q
A

L
B

 

SWAM HMM EP 

6
2

0
5
 

10.51 17.09 13.02 25.64 41.71 31.76 31.89 51.89 39.50 

SWAM HMM ED 15.33 24.93 18.98 26.51 43.13 32.84 30.57 49.74 37.87 

SWAM NGRAMS EP 15.65 25.46 19.38 32.70 53.20 40.50 35.39 57.58 43.84 

SWAM NGRAMS ED 16.66 27.11 20.64 32.34 52.62 40.06 33.46 54.43 41.44 

Aramorph NGRAMS EP 23.35 25.18 24.23 51.25 55.27 53.18 55.92 60.31 58.03 

Aramorph NGRAMS ED 24.38 26.29 25.30 49.91 53.82 51.79 52.86 57.00 54.85 

SWAM 

HMM 

& 

NGrams 

EP 19.39 31.54 24.01 35.20 57.26 43.60 37.47 60.96 46.41 

SWAM 

HMM 

& 

NGrams 

ED 23.06 37.52 28.57 33.07 53.80 40.96 33.67 54.77 41.70 

K
F

U
P

M
 

SWAM HMM EP 

9
0

2
1
5
 

11.41 7.66 9.17 33.43 22.44 26.86 41.78 28.04 33.56 

SWAM HMM ED 21.81 14.64 17.52 38.25 25.67 30.72 42.63 28.62 34.25 

SWAM NGRAMS EP 22.40 15.04 18.00 43.91 29.47 35.27 46.25 31.05 37.15 

SWAM NGRAMS ED 24.53 16.47 19.71 43.65 29.30 35.07 44.55 29.90 35.79 

Aramorph NGRAMS EP 29.56 19.35 23.39 57.79 37.83 45.73 61.03 39.95 48.29 

Aramorph NGRAMS ED 32.75 21.44 25.91 58.01 37.97 45.90 59.63 39.03 47.18 

SWAM 

HMM 

& 

NGrams 

EP 27.90 18.72 22.41 45.53 30.56 36.57 47.70 32.02 38.32 

SWAM 

HMM 

& 

NGrams 

ED 21.85 14.67 17.55 38.25 25.67 30.72 42.67 28.64 34.28 

 

The results in Table 5-3 and Table 5-4 are relatively low compared to other systems. This 

is due to several factors. The morphological analysis lexicon lists need more revision for 

improving the detection results, as mentioned earlier. In addition, a larger corpus should 

be used by the error model to improve the coverage of candidates' generation. Finally, a 

larger annotated corpus should be used by the HMM model to improve the correction 

accuracy. 
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5.5.2 Handling Real-word Errors 

The task of real-word error detection was not easy to handle using the suggested model and 

the existing data.  The main problem was determining the threshold that should be used for 

the detection of real-word errors. A set of experiments were developed to extract the 

threshold ranges to be used for the task of detection of the real-word errors. The 

experiments were mainly based on QALB corpus. A set of 350 sentences were selected, 

each having a single real-word error within a window size of 11. Moreover, two other sets 

of sentences were generated from the selected sets. The first set contains error free 

sentences, where each error word (real-word or non-word) was replaced with its correction. 

The second set of sentences contain real word errors only. This was achieved by replacing 

any non-word error in these sentences with their correction. The distributions of forward, 

backward and forward-backward probabilities for each set were generated. Sample results 

of the probabilities distribution are shown in Table 5-5. The remaining results are provided 

in Appendix C. It is clear that there are overlapping areas between the probabilities of the 

real-word errors of the selected set (Red color) and the two generated sets: error-free set 

(Blue color) and only real-word error set (Green color). This overlapping introduces a 

problem in the decision of whether a detected error is considered real-word or not. 
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Table 5-5 Real-word error probabilities distribustion 

W Features Forward Backward Forward-Backward 

3 R 

   

3 

R 

& 

ASP 

& 

AOP 
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6 CHAPTER 6 

CONCLUSIONS AND FUTURE WORK  

This chapter concludes and summarizes the main contributions and outcomes of this thesis. 

The main goal of this research is to support spell checking detection and correction for 

Arabic text. This chapter also discusses the main conclusions, the limitations, the possible 

enhancement and the future research directions 

6.1 Conclusions 

Spell checking detection and correction capabilities are vital in most state of the art text 

editing related applications. They are also important in correcting errors of Optical 

Character Recognition (OCR) output including offline and on-line text recognition 

systems. In this thesis, we designed and implemented a set of tools for supporting the task 

of error detection and correction. The developed tools are integrated into a single prototype 

system for error detection, correction candidates' generation and error correction. 

A morphological analyzer that uses a Sliding Window Asynchronous Matching (SWAM) 

approach has been developed and extended to include an additional disambiguation process 

and bigrams compatibility checking for morphological analysis. SWAM is a lexicon driven 

approach that uses morphological derivational forms (window patterns) to extract the 

probable morphological feature tuples for any given input word. The morphological feature 

tuple includes the root, the stem, the lemma, the pattern, and the affixes. The original 

existing SWAM lexicon lists were not enough to run the experiments, as many mapped 
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roots and patterns were not present in the lists. This forced us to develop our own lists in 

order for SWAM to work.  In this regards, we generated the required lists from Alkhalil 

morphological system. The generated lists were large and required an extensive revision, 

which we partially did. However, the lists still have some extra elements which negatively 

affect the results accuracy. Hence, the help of an expert in the Arabic language is vital for 

revising those lists and improving the system’s performance. SWAM was also extended to 

perform affixes compatibility checking in order to reject all non-compatible patterns. 

Features disambiguation was handled using a Markovian based Viterbi algorithm. This 

morphological analysis and disambiguation system can be described as a root-based 

stemmer, lemmatizer, and morphological pattern extractor which can be used to serve 

different NLP applications. The morphological analyzer is used here to support the error 

model and the error detection process. The results of the morphological analyzer reported 

an accuracy of 97.13% for roots, 98.20% for stems and 95.80% for lemmas, based on 

NEMLAR corpus. 

We designed and implemented a novel data driven error model that is based on the 

morphological patterns. The error model learns the types and forms of the language 

patterns from an already annotated corpora. SWAM was used in building the model. The 

model supports the candidate's generation and ranking task for any spelling correction 

system. Based on QALB and KFUPM corpora, the error model effectiveness was 

evaluated. The results show that the error model can support the correction process with 

almost 85% coverage; this ratio can be improved by including more corpora in the learning 

process. Moreover, the error model provides a simple way of analyzing the types of errors 

for any annotated corpora. It generates a set of reports that can provide an indication of the 
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complexity of corpus errors, which assists in attempting to better understand the types of 

generated errors.  

A spell checking prototype that handles different error types was investigated. The spell 

checker was developed through an integration between the system components, the 

morphological analyzer, the error model, and the HMM model. The general spelling 

detection and correction was evaluated using a manually annotated corpora, viz.,  QALB26 

and KFUPM corpora. The results are relatively low compared to the other systems. This is 

due to several factors. The morphological analysis lexicon lists contain extra entries that 

affect the detection accuracy, as the lexicon lists are not completely verified. The error 

model does not provide the correct correction candidates for all the errors, it has a limited 

coverage. Moreover, the HMM model was trained with a limited size dataset. 

6.2 Future Directions 

The morphological analysis lexicon lists need more revision by experts in the Arabic 

language for improving the detection results. Also, a larger corpus should be used by the 

error model to improve the coverage of candidates generation and a larger dataset should 

be used by the HMM model to provide more accurate probabilities and improve the 

correction process. 

The morphological analysis and disambiguation system can be extended by incorporating 

more functionalities. For example, the POS tagging feature can be integrated with SWAM 

existing features.  

                                                 
26 QALB is a manually annotated errors corpus consisting of user comments collected from Al-Jazeera 

News webpage. It is mainly written in Modern Standard Arabic with almost one Million words with 

243,075 errors.  
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The spell correction component of the spell checker can be investigated by applying 

features generated from another system, rather than SWAM. For example, Alkhalil system 

can be used for annotating any plain corpus and the generated features can then be used by 

the HMM model for the correction process. 

Different smoothing techniques for HMM parameters estimation can be used. Such 

techniques may positively influence the model probabilities and hence may provide better 

disambiguation or correction accuracies. 
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APPENDICES 

Appendix A. The Details Results of Morphological Analysis and Disambiguation 

 

Table 0-1 Result of morphological analysis using NEMLAR corpus 

 (Variable and Fixed words) 

Without affixes compatibility 

 

 Phase I Phase II 

  

AOP, 

ASP,S

,L ,R 

Root Stem Lemma 
R&FS

P 

R&FO

P 

S , L , 

R 

ASP 

&R 

R&S&

FSP 

Affix Original Pattern (AOP) 98.58 95.13 46.99 33.88 70.57 56.00 79.21 91.72 73.15 72.25 

Affix Surface Pattern (ASP) 98.99 96.03 55.63 44.01 65.76 75.13 74.78 86.15 96.35 95.26 

Full  Original Pattern (FOP) 98.70 95.46 55.39 34.23 71.09 66.80 94.48 92.33 73.47 72.90 

Full Surface Pattern (FSP) 99.08 96.74 72.16 44.89 74.96 96.95 89.21 87.38 96.88 96.89 

Lemma (L) 98.98 95.80 55.24 33.54 94.30 64.04 79.69 94.63 73.21 72.78 

Original Pattern (OP) 98.94 95.95 54.93 34.45 81.54 64.20 80.14 93.00 73.41 73.03 
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Root (R) 99.93 97.13 96.27 53.99 82.96 97.20 97.33 96.38 97.14 97.08 

Root (R),  Affix Original Pattern (AOP) 98.44 94.72 46.73 30.15 68.84 55.74 78.73 91.38 72.78 71.90 

Root (R), Affix Surface Pattern (ASP) 97.98 94.83 55.21 38.12 63.71 74.19 74.31 85.38 94.96 93.90 

Root (R), Full  Original Pattern (FOP) 98.55 95.02 55.04 30.47 69.29 66.45 93.86 91.92 73.09 72.51 

Root (R), Full Surface Pattern (FSP) 98.19 95.48 71.56 38.89 72.58 95.56 88.61 86.53 95.47 95.43 

Root (R), Lemma (L) 98.97 95.57 55.06 30.89 81.13 63.82 79.59 94.35 72.91 72.53 

Root (R), Lemma (L), Affix Original Pattern (AOP) 98.20 94.62 46.65 30.07 68.84 55.59 78.57 91.38 72.56 71.69 

Root (R), Lemma (L), Full  Original Pattern (FOP) 98.20 94.62 46.65 30.07 68.84 55.59 78.57 91.38 72.56 71.69 

Root (R), Stem (S) 99.84 96.18 74.01 52.76 71.53 75.28 81.04 94.76 96.22 95.31 

Root (R), Stem (S), Affix Original Pattern (AOP) 98.44 94.72 46.73 30.15 68.84 55.74 78.73 91.38 72.78 71.90 

Root (R), Stem (S), Affix Surface Pattern (ASP) 97.98 94.83 55.21 38.12 63.71 74.19 74.31 85.38 94.96 93.90 

Root (R), Stem (S), Full  Original Pattern (FOP) 98.44 94.72 46.73 30.15 68.84 55.74 78.73 91.38 72.78 71.90 

Root (R), Stem (S), Full Surface Pattern (FSP) 97.98 94.83 55.21 38.12 63.71 74.19 74.31 85.38 94.96 93.90 

Root (R), Stem (S), Lemma (L) 98.80 95.01 47.23 30.53 70.49 55.75 78.92 93.53 72.70 71.90 

Root (R), Stem (S), Lemma (L),  

Affix Surface Pattern (ASP), Affix Original Pattern (AOP) 

97.70 94.11 44.41 28.36 63.18 55.33 73.39 84.81 72.22 71.37 

Root (R), Stem (S), Lemma (L) 

, Full Surface Pattern (FSP), Full  Original Pattern (FOP) 

97.70 94.11 44.41 28.36 63.18 55.33 73.39 84.81 72.22 71.37 
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Table 0-2 Result of morphological analysis using NEMLAR corpus 

Stem (S) 99.95 98.20 75.90 97.16 85.19 76.84 82.73 96.93 98.45 97.37 

Stem (S), Affix Original Pattern (AOP) 98.58 95.13 46.99 33.88 70.57 56.00 79.21 91.72 73.15 72.25 

Stem (S), Affix Surface Pattern (ASP) 98.99 96.03 55.63 44.01 65.76 75.13 74.78 86.15 96.35 95.26 

Stem (S), Full  Original Pattern (FOP) 98.58 95.13 46.99 33.88 70.57 56.00 79.21 91.72 73.15 72.25 

Stem (S), Full Surface Pattern (FSP) 98.99 96.03 55.63 44.01 65.76 75.13 74.78 86.15 96.35 95.26 

Stem (S), Lemma (L) 98.84 95.22 47.39 33.12 82.20 55.93 79.02 93.78 72.98 72.07 

 ( Variable and Fixed words ) 

With affixes compatibility 

 Phase II Phase II 

  

AOP, 

ASP,S

,L ,R 

Root Stem Lemma 
R&FS

P 

R&FO

P 

S , L , 

R 

ASP 

&R 

R&S&

FSP 

Affix Original Pattern (AOP)  98.57 95.20 63.13 44.70 76.55 69.72 90.03 93.22 76.46 76.59 



83 

  

Affix Surface Pattern (ASP)  98.77 96.07 72.28 53.16 71.42 87.44 84.74 87.49 96.49 95.88 

Full  Original Pattern (FOP)  98.63 95.52 65.68 44.96 76.92 72.65 94.60 93.60 76.72 76.92 

Full Surface Pattern (FSP)  98.82 96.76 79.88 53.92 76.99 96.93 89.17 88.32 96.92 96.87 

Lemma (L)  98.78 95.80 68.49 42.87 95.02 74.43 90.43 95.20 76.57 76.93 

Original Pattern (OP)  98.81 95.98 68.38 45.41 83.73 74.63 90.95 94.26 76.80 77.27 

Root (R)  99.66 96.93 96.62 58.18 84.25 96.98 97.16 96.50 96.96 96.89 

Root (R),  Affix Original Pattern (AOP)  98.44 94.79 62.69 39.74 74.68 69.37 89.48 92.80 76.04 76.20 

Root (R), Affix Surface Pattern (ASP)  97.98 94.89 71.70 48.11 69.26 86.31 84.22 86.72 95.14 94.54 

Root (R), Full  Original Pattern (FOP)  98.49 95.08 65.22 39.97 75.01 72.27 93.99 93.13 76.29 76.51 

Root (R), Full Surface Pattern (FSP)  98.05 95.51 79.22 48.80 74.65 95.55 88.59 87.47 95.54 95.45 

Root (R), Lemma (L)  98.76 95.58 68.28 40.46 82.78 74.17 90.32 94.94 76.26 76.68 

Root (R), Lemma (L), Affix Original Pattern (AOP)  98.20 94.69 62.58 39.62 74.63 69.22 89.32 92.70 75.82 75.99 

Root (R), Lemma (L), Full  Original Pattern (FOP)  98.20 94.69 62.58 39.62 74.63 69.22 89.32 92.70 75.82 75.99 

Root (R), Stem (S)  99.53 96.03 85.74 57.24 76.85 87.34 91.72 95.41 96.26 95.78 

Root (R), Stem (S), Affix Original Pattern (AOP)  98.44 94.79 62.69 39.74 74.68 69.37 89.48 92.80 76.04 76.20 

Root (R), Stem (S), Affix Surface Pattern (ASP)  97.98 94.89 71.70 48.11 69.26 86.31 84.22 86.72 95.14 94.54 

Root (R), Stem (S), Full  Original Pattern (FOP)  98.44 94.79 62.69 39.74 74.68 69.37 89.48 92.80 76.04 76.20 

Root (R), Stem (S), Full Surface Pattern (FSP)  97.98 94.89 71.70 48.11 69.26 86.31 84.22 86.72 95.14 94.54 
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Root (R), Stem (S), Lemma (L)  98.63 95.03 63.19 40.08 75.91 69.42 89.66 94.33 75.98 76.25 

Root (R), Stem (S), Lemma (L),  

Affix Surface Pattern (ASP), Affix Original Pattern (AOP) 

97.69 94.16 59.33 37.36 68.63 68.89 83.27 85.98 75.43 75.61 

Root (R), Stem (S), Lemma (L) 

, Full Surface Pattern (FSP), Full  Original Pattern (FOP)  

97.69 94.16 59.33 37.36 68.63 68.89 83.27 85.98 75.43 75.61 

Stem (S)  99.65 98.02 87.67 97.67 89.97 89.13 93.52 97.57 98.44 97.84 

Stem (S), Affix Original Pattern (AOP) 98.57 95.20 63.13 44.70 76.55 69.72 90.03 93.22 76.46 76.59 

Stem (S), Affix Surface Pattern (ASP)  98.77 96.07 72.28 53.16 71.42 87.44 84.74 87.49 96.49 95.88 

Stem (S), Full  Original Pattern (FOP)  98.57 95.20 63.13 44.70 76.55 69.72 90.03 93.22 76.46 76.59 

Stem (S), Full Surface Pattern (FSP)  98.77 96.07 72.28 53.16 71.42 87.44 84.74 87.49 96.49 95.88 

Stem (S), Lemma (L)  98.66 95.24 63.37 42.45 87.04 69.62 89.77 94.57 76.26 76.44 
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 Appendix B. The Error Model Statistics Details 

The generated error model analysis statistics are based on QALB manually annotated 

corpus, the statistics are as follows: 

- A detailed corpus errors with their frequencies and the number of distinct corpus 

word errors is shown in Table 0-3. We represent the number of distinct corpus errors 

as the number of non-repeated word errors plus the number of repeated word errors.  

For example, almost 44% of the QALB corpus are a result of substitution error; 

more than 95% of the errors are a result of single letter substitution. 

- Detailed corpus error patterns with their frequencies are shown in Table 0-4.  The 

statistics include the ratios of the model generated error patterns based on the 

number of distinct errors in the corpus. This analysis gives us an indication of how 

effective the suggested error model will be in providing correction candidates for 

each types of spelling errors.  
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Table 0-3 QALB Annotated Corpus Errors Statistics 

Change Type 
 

 

#
 C

h
an

g
es

 

# Error Words 

# Error Words 
(%) T

o
ta

l Non Repeated Repeated 

#  (%) Total (%) # (%) Total (%) 

In
se

rt
io

n
 

Space 

1 

9233(3.80) 

13958(5.74) 

1
9
2
7

0
(7

.9
3

) 

3606(78.46) 

6314 

9
0
2
5

(8
3

.6
4

) 

990(21.54) 

1376 

1
7
6
5

(1
6

.3
6

) 

Punctuation    

Other Char 4725(1.94) 2708(87.52) 386(12.48) 

Space 

2 

147(0.06) 

914(0.38) 

84(92.31) 

702 

7(7.69) 

54 Other Char 572(0.24) 459(92.35) 38(7.65) 

Mixed 195(0.08) 159(94.64) 9(5.36) 

Space 

3 

40(0.02) 

1454(0.60) 

38(97.44) 

212 

1(2.56) 

38 Other Char 82(0.03) 82(100.00) 0(0.00) 

Mixed 1332(0.55) 92(71.32) 37(28.68) 

Any Char >3 2944(1.21)  1797(85.82)  297(14.18)  

D
el

et
io

n
 

Space 

1 

5184(2.13) 

14237(5.86) 

9
7
6
6

8
(4

0
.1

8
) 

2492(82.35) 

6849 

3
3
8
6

1
(7

4
.8

7
) 

534(17.65) 

1632 

1
1
3
6

4
(2

5
.1

3
) 

Punctuation 358(0.15) 0(0.00) 9(100.00) 

Other Char 8695(3.58) 4357(80.00) 1089(20.00) 

Space 

Punctuation 
2 

79971(32.90) 

81320(33.45) 

24926(72.46) 

25849 

9472(27.54) 

9585 
Other Char 1046(0.43) 670(87.35) 97(12.65) 

Mixed 303(0.12) 253(94.05) 16(5.95) 

Punctuation 

3 

 

962(0.40) 

 

499 

 

69 Other Char 473(0.19) 108(77.70) 31(22.30) 

Mixed 489(0.20) 391(91.14) 38(8.86) 

Any Char >3 1149(0.47) 664(89.49) 78(10.51) 

S
u

b
st

it
u
ti

o
n
 

Hamza 

1 

69321(28.52) 

103058(42.40) 
1

0
6
7

0
2

(4
3

.9
0

) 

5723(61.30) 

13113 

1
4
4
4

6
(6

8
.6

0
) 

3613(38.70) 

6274 

6
6
1
1

(3
1

.4
0

) 

Taamarbota 10263(4.22) 2154(61.37) 1356(38.63) 

Yaa 6035(2.48) 739(66.28) 376(33.72) 

Other  17439(7.17) 4497(82.88) 929(17.12) 

HamzaHaa 
2 

1037(0.43) 
3492(1.44) 

257(69.46) 
1218 

113(30.54) 
325 

Others 2455(1.01) 961(81.93) 212(18.07) 

Any Char 3 123(0.05) 89(89.00) 11(11.00) 

Any Char >3 29(0.01) 26(96.30) 1(3.70) 

T
ra

n
sp

o
si

ti
o

n
 

Space 
1 

51(0.02) 
448(0.18) 

5
3
0

(0
.2

2
) 

47(95.92) 
372 

4
5
4
 

2(4.08) 
22 

2
2
 

Other 390(0.16) 324(94.46) 19(5.54) 

NoSpace Chars 
2 

23(0.01) 
30(0.01) 

23(100.00) 
30 

0(0.00) 
0 

Mixed 7(0.00) 7(100.00) 0(0.00) 

NoSpace Chars 
3 

2(0.00) 
20(0.01) 

2(100.00) 
20 

0(0.00) 
0 

Mixed 18(0.01) 18(100.00) 0(0.00) 

Any Char >3 32(0.01) 32(100.00) 0(0.00) 
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M
ix

ed
 

Two Operations 

2 3207(1.32) 

16646(6.85) 

1
8
9
0

5
(7

.7
8

) 

2087(88.81) 

8888 

1
0
4
6

7
(8

7
.3

0
) 

263(11.19) 

1385 

1
5
2
3

(1
2

.7
0

) 

3 6085(2.50) 2692(84.79) 483(15.21) 

>3 7354(3.03) 4109(86.54) 639(13.46) 

Three 

Operations 

3 331(0.14) 

2171(0.89) 

243(92.40) 

1497 

20(7.60) 

136 4 420(0.17) 332 29 

>4 1420(0.58) 922(91.38) 87(8.62) 

Four 
Operations 

4 7(0.00) 

64 

7(100.00) 

63 

0(0.00) 

1 5 7(0.00) 7(100.00) 0(0.00) 

>5 51(0.02) 49(98.00) 1(2.00) 

No Change 23(0.01) 19(95.00) 1(5.00) 

Totals 243075 68253 [ 76.23 ] 21283 [ 23.77 ] 
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Table 0-4 The statistics of QALB distinct error patterns 

Change Type 

 

 

 

# Distinct Error Words  

( DEW) 
# Error Patterns 

# DEW 

TEP: Total Error Patterns| NREP Non-repeated EPattern| REP Repeated EPattern 

TEP 

(%) 

NREP 

(%) 

REP 

(%) 

TEP 

(%) 

NREP 

(%) 

REP 

(%) 

TEP 

(%) 

NREP 

(%) 

REP 

(%) 
In

se
rt

io
n
 

Space 

1 

4596 

7690 

1
0
7
9

0
 

1624 
(35.34) 

924 
(20.10) 

700 
(15.23) 

3906 
(50.79) 

2693 
(35.02) 

1213 
(15.77) 

6834 

(63.34) 

5184 

(48.04) 

1650 

(15.29) 

Punctuation     

Other Char 3094 
2282 

(73.76) 

1769 

(57.18) 

513 

(16.58) 

Space 

2 

91 

756 

76 

(83.52) 

66 

(72.53) 

10 

(10.99) 

602 

(79.63) 

513 

(67.86) 

89 

(11.77) 
Other Char 497 

367(73.84

) 

304 

(61.17) 

63 

(12.68) 

Mixed 168 
159 

(94.64) 

143 

(85.12) 

16 

(9.52) 

Space 

3 

39 

250 

30 

(76.92) 

23 

(58.97) 

7 

(17.95) 

237 

(94.80) 

189 

(75.60) 

48 

(19.20) 
Other Char 82 

80 

(97.56) 

78 

(95.12) 

2 

(2.44) 

Mixed 129 
127 

(98.45) 

88 

(68.22) 

39 

(30.23) 

Any Char >3 2094 
2089 

(99.76) 

1789 

(85.43) 

300 

(14.33) 
 

D
el

et
io

n
 

Space 

1 

3026 

8481 

4
5
2
2

5
 

1865 

(61.63) 

1449 

(47.88) 

416 

(13.75) 

4730 
(55.77) 

3455 
(40.74) 

1275 
(15.03) 

17786 

(39.33) 

11391 

(25.19) 

6395 

(14.14) 

Punctuation 9 
9 

(100.00) 
0 

(0.00) 

9 

(100.00

) 

Other Char 5446 
2856 
(52.44) 

2006 
(36.83) 

850 
(15.61) 

Space 
Punctuation 

2 

3439
8 

35434 

11249 
(32.70) 

6473 
(18.82) 

4776 
(13.88) 

11959 

(33.75) 

7032 

(19.85) 

4927 

(13.90) Other Char 767 
461 

(60.10) 

337 

(43.94) 

124 

(16.17) 

Mixed 269 
249 

(92.57) 
223 

(82.90) 
26 

(9.67) 

Punctuation 

3 

 

568 

   

491 

(86.44) 

406 

(71.48) 

85 

(14.96) 

Other Char 139 
124 

(89.21) 

88 

(63.31) 

36 

(25.90) 

Mixed 429 
367 

(85.55) 

318 

(74.13) 

49(11.4

2) 

Any Char >3 742 
606 

(81.67) 

497 

(66.98) 

109 

(14.69) 
 

S
u

b
st

it
u
ti

o

n
 

Hamza 

1 

9336 

19387 

2
1
0
5

7
 

3432 

(36.74) 

1773 

(18.98) 

1659 

(17.76) 
8545 

(44.08) 

5305 

(27.36) 

3240 

(16.71) 

9965 

(47.32) 

6414 

(30.46) 

3551 

(16.86) Taamarbota 3510 
648 

(18.46) 
285 

(8.12) 
363 

(10.34) 

Yaa 1115 450 209 241 
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27 Two operations means a mixing of any two change operations(Insertion, Deletion, Substitution or transposition) 

(40.36) (18.74) (21.61) 

Others  5426 
4015 

(74.00) 

3038 

(55.99) 

977 

(18.01) 

HamzaHaa 

2 

370 

1543 

223 

(60.27) 

138 

(37.30) 

85 

(22.97) 1293 

(83.80) 

994 

(64.42) 

299 

(19.38) 
Others 1173 

1070 

(91.22) 

856 

(72.98) 

214 

(18.24) 

Any Char 3 100 
100 

(100.00) 

89 

(89.00) 

11 

(11.00) 
 

Any Char >3 27 
27 

(100.00) 

26 

(96.30) 

1 

(3.70) 
 

T
ra

n
sp

o
si

ti
o

n
 

Space 

1 

49 

394 

4
7
6
 

46 

(93.88) 

42 

(85.71) 

4 

(8.16) 333 

(84.52) 

280 

(71.07) 

53 

(13.45) 

414 
(86.97) 

360 
(75.63) 

54 
(11.34) 

Others 343 
285 

(83.09) 
237 

(69.10) 
48 

(13.99) 

NoSpace 

Chars 
2 

23 

30 

23 

(100.00) 

23 

(100.00) 

0 

(0.00) 30 

(100.00) 

30 
(100.0

0) 

0 

(0.00) 
Mixed 7 

7 
(100.00) 

7 
(100.00) 

0 
(0.00) 

NoSpace 

Chars 
3 

2 

20 

2 

(100.00) 

2 

(100.00) 

0 

(0.00) 19 

(95.00) 

18 

(90.00) 

1 

(5.00) 
Mixed 18 

17 
(94.44) 

16 
(88.89) 

1 
(5.56) 

Any Char >3 32 
32 

(100.00) 

32 

(100.00) 

0 

(0.00) 
 

M
ix

ed
 

Two Operations27 

2 2350 

10273 

1
1
9
9

0
 

2104 
(89.53) 

1791 
(76.21) 

313 
(13.32) 

9434 

(91.83) 

7933 

(77.22) 

1501 

(14.61) 

11130 

(92.83) 

9477 

(79.04) 

1653 

(13.79) 

3 3175 
2657 

(83.69) 

2125 

(66.93) 

532 

(16.76) 

>3 4748 
4673 

(98.42) 
4017 

(84.60) 
656 

(13.82) 

Three 
Operations 

3 263 

1633 

250 

(95.06) 

222 

(84.41) 

28(10.6

5) 

1613 
(98.78) 

1464 
(89.65) 

149 
(9.12) 

4 361 
355 

(98.34) 
323 

(89.47) 
32 

(8.86) 

>4 1009 
1008 

(99.90) 

919 

(91.08) 

89 

(8.82) 

Four 

Operations 

4 7 

64 

7 
(100.00) 

7 
(100.00) 

0 
(0.00) 

64 

(100.00) 

63 

(98.44) 

1 

(1.56) 5 7 
7 

(100.00) 

7 

(100.00) 

0 

(0.00) 

>5 50 50 49 1 
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(100.00) (98.00) (2.00) 

NO Change 20  
19 

(95.00) 

17 

(85.00) 

2 

(10.00) 

Totals 
89536 

 [ 36.83 ] 
 

46129  

[ 51.52 ] 

32826  

[ 36.66 ] 

13303 

 [ 14.86 ] 
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Appendix C. The GSpell Error Probability Distributions 

 
Table 0-5 Complete real-word error probabilities distribustion 

W Features Forward Backward Forward-Backward 

3 R 

   



92 

  

5 R 

   

7 R 

   



93 

  

9 R 

   

11 R 

   



94 

  

3 

R 

& 

ASP 

& 

AOP 

   

5 

R 

& 

ASP 

& 

AOP 

   



95 

  

7 

R 

& 

ASP 

& 

AOP 

   

9 

R 

& 

ASP 

& 

AOP 

   



96 

  

11 

R 

& 

ASP 

& 

AOP 

   

3 

R 

& 

S 

& 

L 

& 

ASP 

& 

AOP 

   



97 

  

5 

R 

& 

S 

& 

L 

& 

ASP 

& 

AOP 

   

7 

R 

& 

S 

& 

L 

&    



98 

  

ASP 

& 

AOP 

9 

R 

& 

S 

& 

L 

& 

ASP 

& 

AOP 

   



99 

  

11 

R 

& 

S 

& 

L 

& 

ASP 

& 

AOP 

   

 



100 

  

 Appendix D. The Overall System GUI Description 

To run the system you need the following: 

1. Python 2.7 release; it can be downloaded from the following link 

https://www.python.org/download/releases/2.7/ 

Make sure to install 64 bit software on 64bit platform if you will use the system 

for tagging large data.  

2. Run the system directly by clicking the system main file 'src/MainGUI.py' 

3. The system parameters can be adjusted from the GUI options or from the system 

settings file 'src/Resources/setting.txt' as described below. 

 

 

The system main GUI is shown in Figure 0.1. This GUI provide access to the three 

developed NLP subsystems: 'the morphological analysis and disambiguation', 'the error 

model', and 'the general spell checking detection and correction'. 

 

 

 

Figure 0.1 The System main GUI 

https://www.python.org/download/releases/2.7/
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The Morphological analyzer and Disambiguater 

 

Figure 0.2 shows the morphological analyzer and disambiguation system's main GUI. The 

system has three running modes: testing, evaluation and validation modes. In the testing 

mode, the system is used for tagging Arabic texts with a custom set of morphological 

features. The morphological features include the root, the stem, the lemma, the pattern and 

the affixes. The raw input text can be directly inserted to the GUI text area or loaded from 

a text file. The types of the output generated features and the output directory are 

determined using the setting window in Figure 0.3.  

 

   
Figure 0.2 The morphological analyzer main GUI 

 

 

 

In the evaluation mode, a morphologically tagged text file(s) should be used to evaluate 

the morphological analysis and disambiguation process. An analysis and summary reports 
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will be generated in this mode. The types of the output generated features and the output 

directory are determined using the setting window in Figure 0.4. 

 

 

 

 
Figure 0.3 the MA output features and output directory 

 

 

 

 
Figure 0.4 the MA output features 

 

In this mode, the evaluation files should be formatted so that, each line should have a single 

word-features separated by the | character. The features should be ordered as 

Root(#)Stem(#)Lemma(#)AffixSPattern(#)AffixOPattern(#)FSPattern(#)FOPattern. A 

special word ###|### should be used for sentences boundaries. For improvement purpose, 

the system are implemented to generate the list of all non-recognized words with their 

context, this lists can be used to enrich the system lexicon data files to increase its coverage. 
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In the validation mode, the 10 fold cross validation algorithm, based on training corpus, is 

used to provide the best parameters values for the system (lambda). A report will be 

generated in this mode to show the best parameter values to be used. 

The morphological analyzer use HMM model with Viterbi algorithm for features 

disambiguation. The model can run based on different feature(s)/states. The types of the 

features with their parameters are adjusted from the hmm window as shown in Figure 0.5. 

Lambda ranges are to be used for evaluation mode only. 

 

 

 
Figure 0.5 the HMM model setup 

 

According to the morphological analyzer settings, the analysis results will be generated in 

the specified output directory. The generated files include: the result summary file, the 

input words with all their possible analysis (morphological_analysis_details.xml), and the 

input words with their best analysis only 

(morphological_analysis_with_disambiguation_details.xml). The analysis files in xml 

format as shown in Figure 0.6. 
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Figure 0.6 the morphological analysis result file 

 

 

The Error Model 

The GUI in Figure 0.7 shows the error model main GUI. The error model generates 

candidates' corrections for any word based on an already learnt error patterns. 
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Figure 0.7 the error model 

 

The error model has two running modes: training and testing modes. In the training mode, 

all the needed correction information will be learned from an already tagged error corpora. 

The statistics of the training corpora will be generated in this mode, the statistics can 

provides detailed analysis of the corpus errors as explained in the error model report (see 

the error model theory report). The training file's input and output directories are 

determined through the GUI in Figure 0.8.  
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Figure 0.8 the error model train files and output directories 

 

 

The input train files should be formatted28 so that, each line should have the error word, 

the affix correct word and the correct word's affix pattern separated by the | character, a 

special word ### should be used for paragraphs boundaries.  

The learnt error patterns will be saved in XML files. The xml files stores error patterns 

based on their length, each file correspond to the error patterns with specific length. Each 

file store the error patterns along with all their correction information. A simple snapshot 

of the result file is shown in Figure 0.9. 

 

 
Figure 0.9 the error patterns result file snapshot 

 

 

 

                                                 
28 To generate the error model input format for QALB corpus, you should separately run the file 

views/analyzeQALBData.py. 
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In the testing mode, the list of correction candidates are displayed for any input word based 

on the leant error patterns of the training mode. The function in the testing mode can be 

used by any spelling correction for generating correction candidates. 

The error model works at word and morphemes level. In the word level, the error pattern 

of the whole word is generated and considered in the candidate's generation process. In the 

morphemes level, all the possible morphemes error patterns are generated and considered 

in the candidates' generation process. 

The General Spell Checking Detection and Correction 

Figure 0.10 shows the main GUI of the general spell checker. The main components for 

the system are: errors' detection and error correction.  Error detection component is 

responsible for detecting suspected errors in the input text. Error correction component is 

responsible for generating a list of all probable corrections for each of the detected errors 

and then selects the most appropriate correction from the list of the generated candidates. 

The system handles non-word and real-word spelling errors using different techniques.  It 

also has three running modes: testing, evaluation and validation modes. In the testing mode, 

the system is used for the detection and correction of Arabic text errors. The input text can 

be directly inserted to the GUI text area or loaded from a text file.   In the evaluation mode 

an error annotated text files are used to evaluate the spell checking detection and correction 

techniques. The input files should be formatted so that, each line has a single word-

annotation separated by the | character (word|correction|errortype), a special word ### 

should be used for sentences boundaries. The system, in the evaluation mode, is able to 

deal with two different annotated formats: KFUPM or KACST format. In the validation 
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mode, a 10-fold cross validation algorithm is used to generate the best parameters values 

for the system (lambda, window sizes and thresholds). 

The input and output setting are determined using the window in Figure 0.11 . 

 

Figure 0.10 The GSpell main GUI 
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Figure 0.11 input/output setting of error text 

 

In the validation mode, a validation algorithm is used to generate the best parameter's 

values for the system (lambda, window sizes and thresholds). A report will be generated in 

this mode to show the best parameter's values to be used in the testing and evaluation mode. 

In the case of HMM method, the model settings can be set using the window in Figure 0.12. 

 

 
Figure 0.12 HMM method setting 

The provided threshold value should be the log of the threshold probability. 

The system can handle different types of errors: non-word and real-word spelling errors. 

Different methods can be used to handle each type of spelling errors. 

Non-word Errors Detection 
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To detect the erroneous words in the input text, the error detection module implements the 

following techniques: morphological analyzers (SWAM and Aramorph), dictionary look-

up, and language model (character N-grams). The system is implemented to allow using 

these techniques individually or in combinations.  

SWAM 

A morphological analyzer that uses a Sliding Window Asynchronous Matching (SWAM) 

approach has been implemented. SWAM is a lexicon driven approach that uses 

morphological derivational forms (window patterns) to extract the probable morphological 

feature tuples for any given input word. The generated morphological features include the 

root, the stem, the lemma, the morphological pattern and the affixes. Disambiguation and 

ambiguity are resolved a markovian based Viterbi algorithm. Any word in the input text 

that has no morphological analysis is considered as Non-word error. 

Buckwalter Arabic Morphological Analyzer  

Buckwalter Arabic Morphological Analyzer is rule-based morphological analyzer that 

depends on a set of lexicon lists. It depends on three main elements: the data, the 

compatibility tables and the morphological analysis algorithm. The data is composed of 

three lexicon files: prefixes, suffixes and stems. It contains three morphological 

compatibility tables to validate prefix-stem, stem-suffix, and prefix-suffix combinations.  

Any word in the input text that has no morphological analysis is considered as Non-word 

error. 
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Dictionary look-up 

A dictionary look-up technique is used for validating input words. Input word is looked up 

in the dictionary. If that word is in the dictionary, then it is assumed as a correct word. 

Otherwise, it is considered as an erroneous word. 

A set of dictionaries is generated from a set of collected corpora that covers different 

subjects. The dictionaries are generated based on a different the word frequencies which 

are then validated using SWAM. Table 0-6 shows the corpora used for generating the 

dictionary. These corpora are not used in the manually annotated project corpus. 

Table 0-6 Collected and used corpora 

Corpus Size Source 

Health 28.8 MB Al-Riyadh 

Sport 129.8 MB Al-Riyadh 

Economics 7.13 MB Al-Riyadh 

Collection1 127 MB (Mahdi 2012) 

Collection2 4.2 MB 
(Yemeni 

Newspapers) 

General 296.93 MB  

Table 0-7 show the statistics of the generated dictionaries after they are morphologically 

checked by SWAM. The currently used dictionary in the system is Dictionary 3. 

Table 0-7 Statistics of dictionaries 

Dictionary Minimum # 

of 

occurrences 

Dictionary 

size in 

words 

Dictionary 1 1 376116 

Dictionary 2 2 234728 

Dictionary 3 5 125975 

Dictionary 4 10 95273 

Dictionary 5 20 64751 

Dictionary 6 50 36498 

Dictionary 7 100 23275 

 Character N-Grams 

Character N-grams is another technique that is provided by the system to detect non-word 

errors.  Character n-grams are a subsequence of n characters of a word. This technique 
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works as follows: for each character n-gram in an input word, a pre-compiled table of n-

gram statistics is searched to determine its existence. Building language model of character 

n-grams requires a large, verified corpus of texts. In this work, an n-gram (n=2-4) model 

is generated for this purpose.  

The statistics of the generated character bi-grams, tri-grams and quad-grams by (Mahdi, 

2012) are shown in Table 0-8.  

Table 0-8 Character N-grams 

n-gram Token 
Type 

(Distinct) 

Bi-grams 2,634,535 1,110 

Tri-grams 2,276,731 18,633 

Quad-

gram 
1,918,927 129,053 

 

Real word spell checking  

Ngrams 

The problem of real-word errors in Arabic text is addressed using an unsupervised 

technique in which n-gram language models are used to detect and correct real-word errors. 

For the detecting real-word error, the system finds suspicious words in a given text by 

checking the availability of tri-grams in a sentence. If not found the module further checks 

for the availability of the two bi-grams in the three words trigram. If not found, the word 

in the middle is considered suspicious. In order to check whether the suspicious word is an 

error, all its spelling variations are retrieved and put in the sentence. If the probability of 

the word in the sentence is high, the suspicious word is an error. Table 3 shows the statistics 

of the corpus used to generate the language models. 
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Table 0-9 LMs statistics of the corpus 

Number of 

words 

Uni-

grams 
Bi-grams Tri-grams 

26,879,902 507,722 9,139,710 2,345,283 

 

HMM 

The probability of the inspected word to happen in some context is highly related to the 

probability of its morphological features in the same context. This probability is computed 

for each word based on its morphological features using a markovian based Viterbi 

algorithm.  Any word with morphological features probability “less than a threshold” is 

flagged as suspected real-word error. 

The supervised technique 

The problem of real-word errors in Arabic text is implemented using context words and n-

gram language models using collection of confusion sets. 

The probabilities of the context words of the confusion sets are estimated using a window-

based technique. N-gram language models are used to detect real-word errors and to choose 

the best correction for the errors once found. The two prototypes were implemented in 

Python in addition to the baseline module to compare with. 

Context words method 

This method uses the context words surrounding the target words from predefined 

confusion sets. We identify words that are semantically unrelated to their context. Then, 

we find which of the word variations, from the confusion set, is more related to that context 

and could be the best replacement for the erroneous word. Maximum likelihood estimate 

is used to estimate the probabilities of the context words surrounding the target word. The 

probabilities for every word in the confusion set are calculated. The word in the confusion 
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set with the highest probability is chosen. It should be mentioned this part is implanted and 

evaluated separately. 

 N-Gram Method: 

N-gram language models were used to disambiguate words of the confusion sets using the 

sequence of the words in the context in which they appear. For each target word in the 

confusion set, the words surrounding it are used to predict the proper word in that sentence. 

For each word in the confusion set, a new sentence will be generated by placing the 

confusion set word in place of the target word. The probabilities of all the sentences with 

respect to the confusion set words are calculated. In case that the tri-gram is not found, bi-

grams back off is used and uni-gram back off is used when a bi-gram is not found. The 

sentence that gives the highest probability is considered as the correct one indicating that 

the confusion set member in that sentence is a better choice and hence more likely to be 

the correct word. 

Error Correction Techniques 

To correct the errors detected by the aforementioned error detection techniques for an input 

text. The correction prototype is implemented to include: generating a list of candidate 

words and ranking the candidate words.  

Candidates generation techniques 

Two different techniques are used for candidates’ generation namely minimum edit 

distance and error pattern. 

Minimum Edit Distance 

This technique is also called, Damerau-Levenshtein distance. Damerau-Levenshtein 

algorithm computes the minimum number of editing operations (adding, replacing or 
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deleting) required to change one word into another. The system is implemented to add, 

replace or delete n-characters (n=1 or 2) to the misspelled words. The correctness of the 

generated words is checked; i.e., if a generated word is in the dictionary it will be taken as 

a candidate word.  

Error Pattern 

A data driven system that exploits morphological error patterns at morphemes or word 

levels is implemented. Its main components are the error-correct patterns generator 

(ECPG), the error-correct patterns database (ECPD) and the correction candidates' 

generator (CCG). The ECPG is a module that generates morphological error patterns and 

their correction information to be used for the correction process. The information 

generated by the ECPG is used to build the ECPD so that it will be later used by the CCG 

to generate the correction candidates. 

Ranking Candidates Techniques 

The system provides different methods to rank the candidates based on their probabilities 

which are HMM or/ and N-grams.  

HMM 

After the correction candidates with their possible morphological features are generated 

for each suspected error word. The word with the highest morphological features 

probability in the context is selected by the correction algorithm as the best correction. It 

should be mentioned that this technique works only if SWAM is selected among a detection 

techniques. 
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N-grams 

After the correction candidates are generated, the correction that gives the highest 

probability in the context is compared with the original suspect word. If the correction 

probability in the context is higher than the original probability (with respect to a threshold 

value), then the correction is more likely to be the intended word and the original word is 

replaced with that variation.  

HMM and N-grams 

Both techniques can be used for ranking candidates based on a ranking mechanism. This 

mechanism works as follow. After generating the candidates of each technique separately; 

the candidates are given a rank in descendent order. The new combined ranked candidates 

are now ordered based on the weighted total sum of ranks in each technique. The weight 

of each technique are evaluated from validation set. In our case, the weights for HMM 

techniques is 0.2230 and the weight of NGrams techniques is 0.3128. 

It needs to be mentioned that, the system is implemented to allow the user to determine the 

number of candidates that the system should present. The effectiveness of the system can 

be evaluated using different candidates. 

The Representation of the Results 

The system provides three formats for the outputs:  

1. Text file: when this option is selected the system generates the text file with format 

of “.txt” which contains the corrected text with selecting the top one candidate. 

HTML: when this option is selected the system creates HTML file with format of 

“.html” which contains the corrected text with presenting different candidates. The 

number of candidates is determined by the user. 
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2. XML: when this option is selected the system creates XML file with format of 

“.xml” which contains the corrected text with presenting different candidates. The 

number of candidates is determined also by the user. 

Additionally, a summary.txt file is generated to report the results. It is essential for the 

evaluation mode and it contains several evaluation metrics including number of errors, 

Detection/Correction true Positives (DTP, CTP), Detection/Correction False Positives 

(DFP, CFP), Detection/Correction False Negative (DFN, CFN), Recall, precision and F1-

measure which are the common natural language processing measures. The correction 

measures are computed for different number of corrections (the n-top candidates) 

determined by the user. Moreover, the list of error words are generated in a separate file 

named “detectedwords.txt”. 

The options in the morphological analyzer GUI can also be adjusted using the system 

setting file 'src/Resources/settings.txt', the setting file has a set of variable that control the 

system functions. The following are a short description of the system variables. 

SWAM_DB_FILES_DIR=./Inputs/SWAM/DB/NewTextFiles/ 

The directory of the SWAM lexicon files, the lexicon files includes: Prefixes, 

Suffixes, SurfaceRoots, OrignalRoots, SurfacePatterns, OrignalPatterns, 

SurfaceInvaraibles, OrignalInvaraibles, SurfaceOrignalRoots, 

SurfaceOrignalPatterns, and SurfaceOrignalInvariables. 

SWAM_AFFIXES_TRAIN_FILES_DIR=Outputs/SWAM/AffixCompatability/Patt

ernsAffixCompatability.xml 

The patterns' affixes compatibility file path, it is an xml file that store all the 

templatic and non-templatic patterns with their compatible affixes. 
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SWAM_TestFiles_Dir=Inputs/SWAM/EvaluationData/ 

The directory of the evaluation file(s), the evaluation file should be formatted so 

that, each line has a single word-features separated by the | character. The features 

should be ordered as Root(#)Stem(#)Lemma(#)AffixSPattern(#)AffixOPattern. A 

special word ###|### should be used for sentences boundaries.   

SWAM_OUTPUT_Dir=Outputs/SWAM/MorphologicalAnalyzer/ 

The system output directory. 

ANALYZED_FEATURES_TYPES=Templatic,NonTemplatic 

This specify the types of features that the system will provide the results for (It is 

used only in evaluation mode). In this mode, the evaluation file should be formatted 

so that, each line has a single word-featureType-features separated by the | 

character. The features should be ordered as 

Root(#)Stem(#)Lemma(#)AffixSPattern(#)AffixOPattern. A special word ###|### 

should be used for sentences boundaries.   

  

SWAM_OUTPUT_FEATURES=ROOT,SPATTERN,OPATTERN,FSPATTERN,F

OPATTERN,STEM,LEMMA,AFFIXSPATTERN,AFFIXOPATTERN,ROOT&AF

FIXSPATTERN,ROOT&AFFIXOPATTERN,ROOT&FSPATTERN,ROOT&FOP

ATTERN 

The set of features and features combinations that the system will provide for 

system improvement. 

HMM_TRAIN_FILES_Dir=Outputs/NEMLAR/Train/ 
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The directory of the model train file(s), the train file should be formatted so that, 

each line has a single word-features separated by the | character. The features should 

be ordered as Root(#)Stem(#)Lemma(#)AffixSPattern(#)AffixOPattern . A special 

word ###|### should be used for sentences boundaries. 

HMM_USED_FEATURES=ROOT,STEM,LEMMA,AFFIXSPATTERN,AFFIXOP

ATTERN,FSPATTERN,FOPATTERN 

The features that the model will use for disambiguation process. 

HMM_USED_ADD_ONE_LAMBDA=1e-20,1e-20,1e-20,1e-20,1e-20 

The corresponding lambda values for the HMM_USED_FEATURES. 

HMM_LAMBDA_RANGES=1e-20,2e-20,3e-20 

The list of lambda values to be used in the validation modes, the reported best 

lambda parameter should be used in the evaluation and testing phases. 

ERROR_MODEL_RUNING_MODE=TESTING 

The error model running mode. The system can run in either TRAINING or 

TESTING modes. 

ERROR_MODEL_EPATTERNS_LEVEL=FULL_EPATTERN_LEVEL 

The level of the error patterns. Two levels are supported by the system: 

FULL_EPATTERN_LEVEL and MORPHEMES_EPATTERNS_LEVEL.  

ERROR_MODEL_ERROR_ANNOTATED_TRAINFiles_Dir 

=Inputs/ERROR_MODEL/QALB/Dev/ 

The directory of the train file(s), the train file should be formatted so that, each line 

has a single word-annotation separated by the | character, a special word ### should 

be used for sentences boundaries. This files are generated using a separate module. 
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ERROR_MODEL_MORPHOLOGICAL_ERROR_PATTERNS_Dir 

=Inputs/ErrorModel/ErrorPatterns/ 

The directory of the already built error patterns in xml format, the system will load 

all the files and will be ready for testing mode. 

ERROR_MODEL_OUTPUT_DIR =Outputs/ErrorModel/ 

The output directory of the learnt error patterns and statistics 

GSPELL_TestFiles_Dir=Inputs/GSpell/evaluation/ 

The directory of the test file(s), the test file should be formatted so that, each line 

in the file has a single word-annotation separated by the | character, (input word 

|correct word error type), a special word ### was used for paragraph boundaries. 

GSPELL_INPUT_DATA_FORMAT=KACST_TXT 

The format of the input files. Tow formats are supported by the system: 

KACST_TXT or KFUPM_XSL 

GSPELL_OUTPUT_Dir=Outputs/GSPELL/ 

The output directory of the result files; three files are generated: summary, 

result.xml, result.html 

GSPELL_RUN_MODE=TESTING 

The system running mode. The system can run in TESTING ,EVALUATION and 

VALIDATION. The default is the TESTING mode. 

GSPELL_ENABLE_PROCESSING_REALWORD_ERRORS=1 

1 to enable processing real-word errors, 0 to disable 

GSPELL_ENABLE_PROCESSING_NONWORD_ERRORS=1 

1 to enable processing non-word errors, 0 to disable 
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GSPELL_NONWORD_ERRORS_DETECTION_METHOD=SWAM 

Specify the non-word detection method: SWAM, Aramorph, Dictionary or 

CharNgrams 

GSPELL_REALWORD_ERRORS_DETECTION_METHOD=HMM 

Specify the non-word detection method: HMM, NGRAMS  

GSPELL_ERRORS_CORRECTION_METHOD=HMM 

Specify the error correction method: HMM or NGRAMS.  

GSPELL_ERROR_MODEL_TYPE=ERROR_PATTERNS 

Specify the type of the used error model: ERROR_PATTERNS or minimum edit 

distance 

GSPELL_NUMBER_OF_RESULT_CORRECTIONS=TOP_1 

Specify the number of the corrections to consider for each error word: Top_1, 

Top_5, Top_10 or Top_x. Top_X means all the corrections list. 

GSPELL_HMM_DETECTION_THRESHOLD=-44 

Specify the HMM detection threshold, this threshold are used for the detection of 

real word errors. 

GSPELL_HMM_DETCETION_WINDOW_SIZE=3 

Specify the HMM detection window size, this window specify how many context 

words to consider in the left and right of the error word. 

GSPELL_HMM_CORRECTION_WINDOW_SIZE=3 

In the ranking of candidates' correction, this value specify how many context words 

to consider in the left and right for ranking each candidate. 
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