e3¢ 3ol 3 3l Sl el el el el

3 %
L 7>
g MORPHOLOGICAL ANALYSIS-BASED i
——3 :}*_
Y 5+
:%‘ ARABIC SPELL CHECKING AND CORRECTION %‘;
= Ke

3
M BY o
% TAMIM SALAH ALNETHARY 2{:
& A Thesis Presented to the i
:;(\C DEANSHIP OF GRADUATE STUDIES %
- C o
i KING FAHD UNIVERSITY OF PETROLEUM & MINERALS §
3 DHAHRAN, SAUDI ARABIA Qﬁ;
Mo e
X oo
;),g In Partial Fulfillment of the %{0
;%L Requirements for the Degree of %.:
o e
L 1 &
ic MASTER OF SCIENCE o
g QN
RS In 5
< COMPUTER SCIENCE Lo
< X,
:;; January 2017 3‘2"
xS e
3 %
K %

\

SEIESEEIE P SE SE S UE S SE ISP 9P 9P SE 9P L SESESE SE SE S

A\Y)
A&
Q

9

.9

7
o

-~

DEANSHIP OF GRADUATE STUDIES

This thesis, written by TAMIM SALAH ABDALLAH ALNETHARY under the
direction of his thesis advisor and approved by his thesis committee, has been presented
to and accepted by the Dean of Graduate Studies, in partial fulfillment of the
requirements for the degree of MASTER OF SCIENCE IN UTE‘(SCIENCE.

g
Dr. Wasfi G. Al-Khatib
(Advisor)

2 / w
Dr. Khalid A. Al-Jasser

‘ Prof Sabri A. Mahmoud
Department Chairman (Co-Advisor)

A

Dr. Lahouari Ghouti
(Member)

<[+l 12 ‘
Date Dr. Salahadin A. Mohammed
! (Member)

4
Prof Salam A. Zummo
Dean of Graduate Studies

Dr. Marwan Abu- Ama‘ra
(Member)

© Tamim Salah Abdallah Alnethary

2017

DEDICATED TO

| dedicate this dissertation with all of my love to my
parents, my lovely wife, my daughters, my brothers

and sisters.

Vi

ACKNOWLEDGMENTS

First and foremost | want express my deepest thanks to Allah who gave me strength,
patience and ability to accomplish this thesis.

| wish to express my appreciation to Dr. Wasfi G. Al-Khatib and Prof. Sabri A.
Mahmoud, who served as my major advisor and co-advisor, for their guidance and patience
through the thesis, their support and encouragement can never be forgotten. Thanks are due
to my thesis committee members Dr. Lahouari Ghouti , Dr. Salahadin A. Mohammed and
Dr. Marwan Abu-Amara for their cooperation, comments and support. Thanks are also due
to the Chairman of Information and Computer Science Department Dr. Khalid A. Al-Jasser
for providing all the available facilities.

| would like to thank King Fahd University of Petroleum & Minerals (KFUPM) for
supporting this research and providing the computing facilities. This work was supported
by KACST NSTIP project 11-INF2159-04 “Arabic Spell Checking detection and
correction”.

| also would like to thank Taiz University, which gave me the opportunity for
completing my M.Sc. degree in KFUPM. | owe thanks to my colleagues and my friends

for their motivation and pivoted support.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... oiiicirimssssscsssssssssmssssssnssssssssssssssssmsssssssssassssssnssnsssassmssssssmssnssnssns VII
TABLE OF CONTENTS ...ciioitiimininmsamssnissmsssssssssssssssssssssssssasssssssssssssssssssnsssassnsssnssasssnssnssans VIII
LIST OF TABLES ... crsrcrrsssensmssssssmssssssssssssssssmsssssssssmsssnssmssnsssessmssssssmssasssnssmsssnssnsnanssns XI
LIST OF FIGURES. ... s sisscssssssmssssssmsssssssssmssssssnssmsssnssmssnsssmssmssssssmssssssnssmsssnssnsnassses IV
LIST OF ABBREVIATIONS......coomimnnnsniemssnissssssssssssssssssssssssssasssssssssasssnssssssssssssssssnssas IV
ABSTRACT ... ceeeerrerrsessssessessssssssssssssssmsssssssssmssssssmssssssessmssssssassssssnesmsssssnssasssessmsssnssmssassanesassns \"
AL 1) GO3LA e eeesssssssssseseessssssssssss e sssssss AR RASS R AR RS RS RS VIl
CHAPTER 1 INTRODUCTION.......ccoiercrrercrsmssssssmsssssssssssssessmssssssssssssssesasssssssssassssssnssssssnssnses 1
1.1 Spell Checking and COrrection........ccccviiiiiiiiiiiiiiiiiiiiiiiiissnns 1
1.2 Morphological ANAlYSISccoiiiieimmeiiiiiiiiiiiccicerireerneeseees s e reennssssesssesesnnssssssssssesnnnsssssssssesnnnsssssssnnees 4
0 T o 0] ¢ (=T 44 T T =T 0 =T 4N 6
1.4 Thesis Objectives and OULCOMES........cciiiieeeeeiiiiiiiieenneiieerieeennnesseessssesnnnssssessssesnnsssssssssssssnnsssssssseees 7
1.5 Thesis OULINE ..cccoviiiiiiiiiiiiiiii s 9
CHAPTER 2 LITERATURE REVIEWinnnsnessnsssessssssssssssssssssssssssssssssssasans 10
2.1 Morphological ANAlYSiSccciieeeeeiiiiiiiiieiiiiiieireeeneseer s rreesessssessesennnssssssssesesnnssssssssssesnnnsssssssneees 10
2.2 Spell Checking Detection and COrrection............eeeeeeeeeeeeeeeeeeeeeeeeeeeemsssnns 14

CHAPTER 3 MORPHOLOGICAL ANALYSIS & DISAMBIGUATION USING HMMS .23

3.1 Proposed Arabic Morphological Analysis Modelceeeeeeeeeeeeeeeeeeeenmennmemnmeeeeemmmmseessssssssssessssssnne 23
3.2 PrePrOCESSING....cceeiireeeenneeirrieeeennssieesseerennssssssssserennmssssssssesesnmsssssssssesennssssssssseeesnnnssssssssessnnnnsssssnsenes 26
3.3 Phase |: Morphological analysiseeeeeeeeeeeeeeeeeeeeeeenmnemmmemmmsmsmssssmsmssnnns 27

3.4 Phase 2: Features DisSambigUationeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseemsesssssssssssssssssssssssssssssssssssssnns 32

3.4.1 Disambiguation Process FOrmulationcccccceeeiiiiiiiiiienieiiiiiinineneessseeeesssesseee s 32
3.4.2 Estimation of Parameters..........ceviiiiiiiiiniiniiiniieiiniinirnrenne s sesss e s 35
3.5 Experimental Setup and ReSUILS.........ceeveereemeeeemmmmmmneemmmmmmmmmmmmmmemmsemss 38
CHAPTER 4 ERROR MODEL.....cciusmmsmmsmmsmssmsssssssassessssssssssssssssnsssssassassssssssssssssssnsssssnssssssssssns 41
4.1 Proposed Error MOdEl.......ccceeiiiiiiiiiiiiiiiiiiiiiisiississs 41
4.2 Error Correction Patterns Generator (ECPG)ccccccceeierrrrissnsnnssnnnnnns 42
4.3 Error-Correct Patterns Database (ECPD)......ccccceeererrrrrrrrrrssnssnssnnns 48
4.4 Correction Candidates Generator (CCG)ccoerrrrrrrrrrrssnns 50
4.5 Experimental Setup and RESUILS........cccciiiiiiiiiiiiiiiiiiiiiiisiiississs 51
CHAPTER 5 GENERAL SPELL CHECKING DETECTION AND CORRECTION........... 57
5.1 Baseline SYStEMccceeeeeeeeeieeieeeeeeemeeemmmeeeeeeeessnss 57
LT I VES =1 04 T 0 T=TY o]]] T o N 57
5.3 System FOrmulation........cccoiiiiiiieeiiiiiiiieeiiccccerrrreenessssesseseennnsssseessesennnssssssssesesnnssssssssssssnnnnsssssssnnes 61
5.4 Estimation of Parameters........cceiieiiiiiiiiiiiiiniienieiieiinsssesiessessssssssssssessssessssesessssssanes 64
5.5 Experimental Setup and RESUIES......ccciieereeiiiiiiiiiiicccirtireereesses s reeerneesssse e s s e ennnsssssssssssennnnsssssssenes 67
5.5.1 Handling NON-WOId EFTOrS........cceeeeeeeeeeeememeeemmmeemsesmssnnss 67
5.5.2 Handling Real-Word Errors.........ccciiiieeeeeiiiiiiiiieennniiiesiieeenmsssssssssesesnnssssssssssssnnssssssssssssnnnsssssssssses 71
CHAPTER 6 CONCLUSIONS AND FUTURE WORKccocssmsumsemsusssssmssssssssssassassassasssssnnns 73
200 R 0T Tl [T T o TP 73
20 N V1 {1 N 0 11Tt d o T U 75
REFERENCES......oioiiiiminimsnismississmsssisssssssssssssssssssssssssssssssss sssssassssssssssssssssnssnsssasssnssnssasssnssnsas 77
APPENDICEScoiiiitimnmssmssnsasssssesssasssssssssssssssssssssssssassnssnsssssssans 80

Appendix A. The Details Results of Morphological Analysis and Disambiguation...........cccccceeveiiennccnnne. 80

Appendix B. The Error Model Statistics Detailsccoceiiiiiiiiiiiniiiiisiiiisiissnes 85
Appendix C. The GSpell Error Probability Distributionscccceeviriiiiiiiiiiiiiiincrcccccccrccrrcrrrsss e 91
Appendix D. The Overall System GUI Description........cccceeiiiiiiiiiiiiississnes 100
The Morphological analyzer and DisambigUAtErccccvviiiiiiiiiiiiiiiiiiiii e e 101
LI L= o1 TN 104
The General Spell Checking Detection and Correction........cceeveiiiiiiiiiiiiiiiiiiiiineiieeeeee e seeeeseeeens 107
4 - 122

LIST OF TABLES

Table 1-1 pattern based SteM XIraCtIONcooiiiiiiiiieiie e 5
Table 2-1 summary of morphlogical analysis and Disambiguation Studies..............cccceevervennnns 14
Table 2-2 summary of Spelling detection and correction StUdIEScccvereeriiiniiiine e 21
Table 3-1 Example for morphological analysis and disambiguation phases.ccccccovvreennnne 24
Table 3-2 Mapping DICHIONAIIES.ccueiieieiiese e e et aeresnaesreeneeas 29
Table 3-3 Sliding pattern “d=is” over the input “Oshas 3l i 31
Table 3-4 Sample SWAM analyses for the WOrd *agiswy’ ...ovviveeeciieeeeeees e 32
Table 3-5 Summary of the morphological analysis, on NEMLAR corpus (Phase I)................... 39
Table 3-6 Summary of morphological analysis disambiguation (Phase I1)cccccoceviiirinnnnne 40
Table 4-1 description Of Error ENCOUINGSoveriiriiiiiiiieeeie e 44
Table 4-2 Examples of error patterns generated by ECPG ..o 48
Table 4-3 examples 0f ECPD StOred dataccoeiiriiiriniiienie e 49
Table 4-4 Examples of error patterns candidates’ generation............cccceevevveveeresiieseeseseeseenns 51
Table 4-5 QALB COrpuS €IrOrS SUMIMAIYccveiueieeitrerresseesreesteseesseessesssesseessesseesseessesssessesssens 52
Table 4-6 Corpus error WOrds SEAtISTICS.........ccveiiveieiic e 53
Table 4-7 QALB error patterns SUMMAIYccccoiiiieiieiieiieseesie e seesee e e steseesre e sraesreeneeas 53
Table 4-8 Corpus error Patterns StAtISTICS........civeiiiie e 53
Table 4-9 results of effectivness of the error model based on QALB test dataccccceevenene 55
Table 4-10 results of effectivness of the minimum edit distance based on QALB test data........ 56
Table 5-1 Non-word error deteCtion rESUILScocvvieeiiee e 68
Table 5-2 Sample experiments with different window size and different model features........... 68
Table 5-3 Non-word error correction results (100% Detection)cccecveveeveiiieiiccecicceens 69
Table 5-4 Non-word error COrreCtion rESUILS.oiiiiiirieieee e e 70
Table 5-5 Real-word error probabilities diStribuStioNn............cccceoviiiiiiic e 72
Table 7-1 Result of morphological analysis using NEMLAR COIpuUS..........ccceevvvieiiereiieieenns 80
Table 7-2 Result of morphological analysis using NEMLAR COIPUS.........ccovierenenenciesienenn 82
Table 7-3 QALB Annotated Corpus Errors StatiStiCS..........cceverereneiininieieieese e 86
Table 7-4 The statistics of QALB diStinCt error Patternsccoveveiiienieieieese e 88
Table 7-5 Complete real-word error probabilities distribuStion............ccocvviiiiieniiee 91
Table 7-6 Collected and USEA COMPOTA........eciuiiiiieiieiie e sraeara e 111
Table 7-7 StatistiCS Of AICHIONAITESoiiiiieie e e 111
Table 7-8 CharaCter N-gramsSccuiiiieiiieiie et e e saaeabeesraeereeas 112
Table 7-9 LMSs statistiCS Of the COMPUSooiviiiiicic it 113

Xi

LIST OF FIGURES

Figure 3.1 The Architecture of the proposed Arabic Morphological analyzer and Disambiguator model .25

Figure 3.2 SWAM MatChING ENGINEociiiieieiie ittt e et e e e sraesreeresneessaeeeas 28
Figure 3.3 Graph resulting from phase | for each feature separatelyccovveveiienieenie i 35
Figure 4.1 Error-Correct patterns generator (ECPG) algorithm flowchartcccoocoveiiiiiiiiniiiiee 43
Figure 4.2 Error-Correct patterns generator (ECPG) algorithm..........ccoooveiiiiiiieie e 45
Figure 4.3 Example of the ECPG for the words ("oseoall' ¢ "glea 1) i 46
Figure 4.4 EE and CC extraction ProCess (STEP 4)ociiiiiiiiieiecie e s 47
Figure 4.5 Correction Candidates Generator (CCG)oiveiiiiiiiieiieiie et e e sia e sra e 50
Figure 5.1 GSpell Error detection and COMTECLION..........c.civeiieiieieeie et ra e 58
Figure 5.2 Examples of error detection and COrrection Phases............ccccvvevviiieiiere s s 60
Figure 5.3 Spelling correction hmm mModelcoooiiiiiieie e 63
Figure 7.1 The System Main GUIL.........ooiiiiiiiiiiee et 100
Figure 7.2 The morphological analyzer main GUIL...........cccooiiiiiiiiiiic e 101
Figure 7.3 the MA output features and OUEPUL AIFTECTOTYcoeiiriiieieieicse e 102
Figure 7.4 the IMA OULPUL TEALUIES.oouiieiiiiiiieiieiee et bbbttt bbb 102
Figure 7.5 the HMM MOEl SELUDooivieiiiicee ettt nre e 103
Figure 7.6 the morphological analysis reSUIt FIlec.cooeiiiiiic e 104
Figure 7.7 the €rror MOENocviiieii ettt e e sreeneenee e 105
Figure 7.8 the error model train files and oUtPUL dIr€CtONIESeevvveiiiieieee e 106
Figure 7.9 the error patterns result file SNAPSNOLccooeiiiiiiiii e 106
Figure 7.10 The GSPell Main GUIooiiiiiiiiiiieee et 108
Figure 7.11 input/output SEttiNg OF EITON TEXTeiueiieieieiee e 109
Figure 7.12 HMM MEtNOA SEILING.......coueiuiiiiiiiiiieie ittt 109

LIST OF ABBREVIATIONS

NLP : Natural Language Processing

ECPD : Error-Correct Patterns Database

ECPG : Error Correction Patterns Generator
CCG Correction Candidates Generator
SWAM : Sliding Window Asynchronous Matching
POS Part Of Speech

HMM Hidden Markov Model

ABSTRACT

Full Name : Tamim Salah Abdallah Alnethary

Thesis Title : Morphological Analysis-based Arabic Spell Checking and Correction

Major Field : Computer Science

Date of Degree : January 2017

Spell checking is the process of locating spelling errors and possibly correcting them. The
need for automatic spell checking detection and correction capabilities is vital in most state
of the art text editing related applications. In this thesis, we address the problem of Arabic
spell checking detection and correction for non-word and real-word errors. This is
accomplished through the development of a morphological analyzer, an error patterns

model and a hidden Markov Model (HMM) based language model.

A morphological analyzer that is based on the Sliding Window Asynchronous Matching
(SWAM) algorithm was fully implemented and extended to provide morphological
features for a running text. The morphological analyzer uses HMMs to disambiguate
morphological features of the analyzed word based on context. The morphological analyzer
functionalities are used to develop an error patterns model. The error model learns the error
patterns of the Arabic language based on an already annotated error corpora. The error
model generates and ranks candidate corrections for wide ranges of Arabic errors. It can
also be used for analyzing error types for any error annotated corpora. These systems have
been integrated into a general spell-checker prototype system that is capable of handling
non-word and real-word-errors. In addition, previously developed non-word and real-word
error detection and correction systems have also been integrated into the prototype system.

The results of the morphological analyzer reported an accuracy of 97.13% for roots,

Vv

98.20% for stems and 95.80% for lemmas, based on NEMLAR corpus. In the case of the
error model, the effectiveness of using the error model were evaluated using QALB error
corpus. The results show that the model can help in the correction process for any spelling
correction system with more than 84% coverage; this effectiveness can be improved by
including more corpora in the learning process. The general spellchecker was evaluated
using QALB and KFUPM corpora. Results of the general spellchecker are analyzed and

future directions to improve the spellchecking detection and correction are provided.

Vi

Al Jaidla
w\)ﬂ\ AJJ\.J.K; C)\.\a (“M: :Jalsd) ?“"N‘
) Jalail) alasiinly el Gaill SN i) (G8) rAla o) sie

Y sl o le s panadl

YOO il el G 0

Gl) Aalal) aad s Lgamaal 30180 ae ApSleYl slad) CLES) dlee ga DY) Gl
oasaill et Aalaid) olli dals g il (o i 8 degall il gl (e RN SSY)
Agiiall LS eUadf s 400y Ui s 5 Colins) A 5l Wl gla da gyl o2a b
Zasais elad¥) il 5 A all Jalaill ;& 5 o jadl 1] @ sk @l ol Bac aladiuly @lld iy
u=ill (SWAM) (& e Jlas arugiy nshaiy Lad duddall € jle il e adiad) 22
CisS e zila e slaie YU Bl (a5 auliall Jilaill Hialy o peal) Jladll o sty 2 52
Zhsa dainy | eladd 3 gai sl g ghail A jeall Jlaal) cililSa) Cada 53 3 (HMIM) 4l
A g5 eUad) 23 e padiiay e UadY) Lalail LedDIA (e alahy 4y el A3l JilSa 50 o cladY)
laal) o1 631 48 yra 5 Jalail daladiin ¢Sy S g ¢ Aalll gUaal (e aosl 5 Bl il i (gl i
s AOY! @l cUadY) (e saaeie £l i) dallaad (3800) 81 XS 3y 30 Y 4 gl
zila o adiad aaill 4aa) &) ALYl eUadY) 23 gai 5 A el Jlaall ad (e 3 e
) eladl g AdaY) eUad¥) LAY (pallal rad &3 el) AilaYl s Auidall (o oS e
) OleY) 38aall pe Laghi jlie ot

% 40,A+ & sl 94aA, Y0 5 55l 044V,) Y Ay Lo A juall Judaill il < yedal 8
il o yelal a8 cUadY) 23 sail iy (NEMLAR) 3Sall aladinly jaleadll dully
038 213 3 5 (A § dpuiy Ul i dlee 3ailias e 23 50l 3,08 QALB Sl alasiiuly
Aaaiuly SOLY) @adl el ansi A 5 pUadY) aledl aadiiall 3SAN aaa 3l 3 Al
Sl 8 W o ok A rania 53 5 eilial] 238l i s KFUPM 5 QALB Sl

vii

CHAPTER 1

INTRODUCTION

1.1 Spell Checking and Correction

The problem of error detection and correction have been studied for decades. Many
techniques were developed to solve this problem for English language. The area of Arabic
Spell checking is not mature yet and no system achieved high error correction accuracy
efficiently, including Microsoft word, which is the most widely used Arabic spell

correction system [1, 2].

Spell checkers are classified into interactive and automatic systems [3]. Interactive systems
include spell checkers that are able to detect and correct errors with the help of a user. Users
are supposed to select the most accurate correction from a system-generated list of
candidate corrections. Automatic systems on the other hand, include spell checkers that are

able to detect and correct error words automatically without any user intervention.

The main components for any spell checking systems are: error detection, candidates'
generation and error correction. The error detection component is responsible for detecting
suspected errors in the input text. The candidates' generation component is responsible for
generating a list of all probable corrections for each of the detected errors. The error
correction component is responsible for selecting the most appropriate correction from the

list of the generated candidates. The effectiveness of the whole system is highly affected

1

by the effectiveness of these components. The more accurate the detection process, the
more likely that the errors will be corrected. On the other hand, the detected errors will be
more probably corrected if the generated candidates are more likely to have the correct
word. Any improvements in any component of the spell checking system can lead to

significant cumulative improvements of the whole system.

The detection and correction process may differ based on the used evidences for achieving
each component's task. The evidences are either to use the word form only, in the case of
non-word errors, or to also consider the word context in the case of real-word errors. The
simplest approach to use the word form is to use a dictionary or reference lists; any word
that has no entry in the dictionary is flagged as non-word error. On the other hand, the
simplest approach for using both the word form and context is to use n-gram statistics; if
the inspected word does not usually appear in the current context surroundings words, it is

flagged as probable error.

Correction candidates’ generators calculate a set of similarity scores that helps in judging
the similarity between two strings. The most commonly used approach for generating
correction candidates is the edit distance [4]. The edit distance provides a measure of how
two strings are similar. The similarity is defined by the minimum basic editing operations
(insertion, deletion, substitution, and transposition) needed to transform an incorrect word
into the correct word. The approach works by recursively calculating the edit distance
between different substrings of an M x N matrix of the compared strings. This process is
applied to all words in the used dictionary, although the dictionary may not cover all the
words. Itis a brute-force process that ends with a huge list of candidates with many possible

repetitions and with no ordering of candidates having the same edit distance [5, 6]

2

Different types of errors can be detected and corrected by spell checkers viz. non-word and
real-word errors [4, 7]. Non-word errors constitute words that do not exist in the dictionary
of the spell checker such as “uliS” for “2Uis”, Real-word errors on the other hand are
dictionary words that have been mistakenly used in non-appropriate context, such as using

the word “J#” instead of “J¥” in the sentence “asaedl 13 (& (alails yic (o S J8 287,

Arabic spelling errors arise from character changes that occur to the correct word. The
source of these change operations is either typing errors or spelling errors. Typing errors
(or typos) are errors that exist when the writer/typist erroneously presses different keyboard
keys other than the intended one (o= 1 «olesJll). Spelling errors, on the other hand, are
errors that exist as a result of the writer's ignorance of the correct spelling of the word. The
main causes of this ignorance are phonetic similarity («= «Lk) semantic similarity
(U8 < 2S), lack of grammatical rules (Ulsa) 4z < jlaal aau), or dialect writing (¢ omsaw

A,

The errors may result in character insertions, deletions, substitutions, and transposition.
Character insertion which occurs when an extra character is inserted into the intended
word. For example, the letter ‘=’ is inserted into the word ‘< siS<’¢ where the intended
correct word is ‘<sS<’. In Character deletion a character is deleted from the intended
correct word. For example, the letter ‘< is deleted from the word a233u’resulting in a
‘a23ul’ In character substitution a letter in the intended word is mistakenly substituted with
another letter. For example, the letter ‘%’ in the word ‘44_x’, erroneously substitutes the
letter ‘+” in the intended word ‘4w ,2", The last change is character transposition, where

two letters are swapped in the intended word. For example, in the word ‘axisu)’, the letter

‘@’ is erroneously swapped with the letter ‘Z’, in the intended word ‘a233u) If a single

3

character change is applied to the intended word, the error is called a simple error.

Otherwise the error is called a complex error [4, 7].

1.2 Morphological Analysis

Morphological analysis is an important pre-processing step for Natural Language
Processing (NLP) applications. The main goal of morphological analysis is to define words
in terms of their morphsyntactic information such as word structure and part-of-speech
(POS) [8]. This information is useful for many NLP applications such as parsing, POS

tagging, spell checking and machine translation.

Word structure information includes the knowledge of the stem, the root, and the affixes.
For English language, the terms stem and root are used interchangeably. The stem represent
the part of the word that remains after removing the affixes. Affixes include prefixes and
suffixes. Prefixes are attached to the beginning of the stem, while suffixes are attached to
the end of the stem with some orthography rules. For example, the word improperness has
the prefix "im™ and the suffix "ness"”, and the stem “proper™ [9, 10]. The word structure
information for Semitic languages (like Arabic) includes the root, the stem, the lemma, the
pattern and the affixes. The root of a word consists of the original letters from which the
word is derived; while the lemma represents the dictionary form for a set of words. In [11],
lemma is differentiated from the stem, although many researchers use them
interchangeably. In our case, we also differentiate between a lemma and a stem, but only

for the words that have some of their original letters deleted or transformed. For example,

the word LS share the same lemma and stem, while the word sl has the stem xie< and

the lemma (sig.

A stem in Arabic can either be pattern-based (iiv) or static (\»). Pattern-based stems
represent words that can be derived from a root following specific morphological pattern
(rhyme). For example, the stem ‘ks ' is derived from the root 1k following the

morphological pattern *J=i’ as shown in Table 1-1

Table 1-1 pattern based stem extraction

Word ¢ s < o J)
Pattern & a
Affixes o

s Jd !
Root
Stem & a
The number of morphological patterns in Arabic is around 900 excluding their
combinations with pronouns and external affixes. The number of Arabic roots is over

11000; apparently, 70% of which are Arabic roots that are tri-literal while the rest are quad-

literal, [12].

A static stem represents the part of the word that is not derived using morphological
patterns. It has one form in all its inflected words. It can be a nominal term like
demonstrative, conditional, and circumstantial nouns such as *o& << ¢13°, etc..., or it can

be verbal terms like > s ¢ e,

Arabic is considered a morphologically-complex highly-inflectional language. Its root-
pattern non-concatenative morphology makes computational processing expensive [13].

Some Arabic words may undergo certain character transformations during the derivation

process of their stem. This is quite common problem with words that belong to defective!
and hamzated? roots. Almost 35% of Arabic words have roots that are defective and/or
hamzated[8]. The root extraction process of such words has higher error rates than words

belonging to the intact® root category[8].

Moreover, there are many idiosyncrasies in Arabic. Some words do not follow the usual
pattern formation process®, as in the case of Arabic broken plurals. This makes the lemma
extraction process more difficult and requires the use of a dictionary in most cases.
Furthermore, the underspecified Arabic orthography may create a high degree of ambiguity
for processing Arabic text [13]. The ambiguity may also be a result of the implicit
vocalization in Arabic. For example, when segmenting a word like ’a¢32”; all the following

segmentations (" + 33, > + de’and " + <ixe”) are valid.

1.3 Problem Statement

The need for automatic spell checking detection and correction capabilities is vital in most
state of the art text editing related applications. They are also important in correcting errors
of Optical Character Recognition (OCR) output and on-line text recognition. The problem
in Arabic language is the absence of a general system for detection and correction of Arabic

spelling errors. Moreover, there is a lack of an automatic spelling corrector without the

! Defective roots are roots that contain one or more of the short vowel letters (*(cs ¢) Aall 35 27)
like’d & ¢’ ac 9°¢> oa y, etC.

2 Hamzated root are roots that have Hamza like , *JsP’Jlw 218 | etc.

3 Intact roots are roots for the intact verbs (4saall J=i¥1) which are not defective verbs (il Jli¥))

4 For example, adding *<" to the noun *al=’ give the noun female plurals <= however with broken
plurals this rule does not apply, e.g. the plural of the word >l js i€,

6

need for human intervention, and without wasting much efforts and time when correcting

in the traditional method.

1.4 Thesis Objectives and Outcomes

In this thesis, an Arabic morphological analyzer and disambiguater is developed to support
the spell checking detection and correction process. The morphological analyzer provides
a set of morphological features: the root, the stem, the lemma, the morphological pattern
and the affixes. The morphological analyzer functionalities are utilized to build a novel
error model prototype of Arabic errors. The error model prototype is able to generate and
rank candidate corrections for wide range of Arabic errors. A general spell checker
framework (GSpeller) is also proposed. The spell checker handle wide range of Arabic
error types. This was achieved through an integration of the system components, a

morphological analyzer, an error model, and a language model (HMM).

The outcomes of this thesis can be utilized in many scientific researches such as
information retrieval (in the case of the morphological analyzer), spell checking (in the
case of the error model), machine translation (in the case of the spell checker) etc. The

main outcomes of this thesis are as follows:
- Arabic morphological analyzer and disambiguater:

A lexicon based broad coverage Arabic morphological analysis and
disambiguation tool is developed. The tool can be used to support many

NLP applications. In this work, the developed morphological analyzer and

disambiguater were used to support the Arabic spelling detection and

correction process.

- Anovel error model for generating and ranking correction candidates:

A data driven error model prototype that exploits morphological error
patterns at the morphemes or the word levels is developed. The model learns
the Arabic language error patterns from an already annotated error corpora.
The model can be used to support the candidate's generation task for

spelling correction system.

- A proposed general spell checking framework:

A spell checking prototype that handle wide range of Arabic error types is
devloped. The spell checker is developed through an integration between
the system components, a morphological analyzer, an error model, and a

HMM model.

- Building a Baseline system

Two previously implemented systems [4, 7] for spell checking detection
and correction are integrated into a single system. The integrated system

provides detection and correction of non-word and real-word errors.

- Possible Publications: The developed work is a result of research activities which
have been integrated into different prototypes. The information reported in Chapter
3, Chapter 4 and Chapter 5 are suggested to be reported in papers for possible

publication.

1.5 Thesis Outline

This thesis is organized as follows. The introduction with problem definition, research
objectives and outcomes are discussed in the previous sections. The rest of the thesis is
organized as follows. Chapter 2 presents a literature review of morphological analysis and
spell checking detection and correction. In Chapter 3, the developed morphological
analyzer and disambiguater is described. Chapter 4 presents the details of the error model
prototype. Chapter 5 presents the details of the proposed general spell checking system.
Finally, Chapter 6 concludes this thesis and summarizes the outcomes and future

directions.

CHAPTER 2

LITERATURE REVIEW

The problems of error detection and correction have been studied for decades. Many
techniques were developed to solve the problem for English language. The area of Arabic
spell checking is not mature yet and no system achieved high results efficiently.

In this chapter, the currently existing work related to this thesis is surveyed. The chapter is
divided into two parts. The work related to morphological analysis and disambiguation is
presented in Section2.1. The work related to spell checking detection and correction is

presented in Section 2.2.

2.1 Morphological Analysis

Different Arabic morphological analyzers with different methodologies and tasks were
developed to support Arabic NLP applications. Morphological analyzers can be classified
into general purpose morphological analyzers, stemmers, and lemmatizers. General
purpose Arabic morphological analyzers generate most possible analyses of the words out
of their contexts. The most known Arabic general purpose morphological analyzers are:
Buckwalter Morphological Analyzer (BAMA) [14] [15] and Alkhalil Morph System[16].
BAMA is a simple rule based morphological analyzer that depends on a set of lexicon lists.
The lexicon lists include Arabic stems and stem-affixes compatibility tables.
Morphological patterns are not included in BAMA. Alkhalil morphological system

applies a set of morphsyntactic rules with the help of a set of linguistic resources to extract

10

more detailed morphological features. The generated morphological features include the

word root, stem, affixes, possible patterns and vocalizations.

An open source morphological analyzer and POS tagger called Qutouf was developed by
Altabba et al. [17]. This morphological analyzer modified and enriched Alkhalil
morphsystem database. It was used for root extraction, pattern matching, morphological
feature and POS assignment, and nouns list generation. A set of state machine automata
was developed for fine-grain cliticalization. A modification to Standard Arabic Language
Morphological Analysis (SALMA) tagset[18] was designed and incorporated in the system

to provide POS tagging using a rule based expert system.

Pasha et al. presented MADAMIRA, a morphological analysis and disambiguation tool
that takes advantage of two previously existing tools MADA and AMIRA [19]. The tools
use different language models with support vector machines (SVM). MADAMIRA can be

used for stemming and POS tagging of large Arabic corpora.

Bounhas et al. presented an approach for disambiguating Arabic non-vocalized
morphological features by combining Arabic classifiers and linguistic rules [20] . They
perform unsupervised training for a set of unlabeled Arabic corpora. They provided two
approaches for handling ambiguous features. A probabilistic classifier that directly handles
the ambiguous features and a data-transformation classifier that allows converting
ambiguous datasets into non-ambiguous ones. The linguistic rules are used to reduce the
number of ambiguous features. The authors have suggested a method for handling out of
vocabulary words with the help of the Levenshtein edit distance. The experiments show

that the probabilistic approach performs better than the data-transformation approach. This

11

is because the associated morphological features with probabilistic approach have few (less

than 6) class (POS) values.

Most existing Arabic morphological analyzers are just stemming algorithms
(Stemmers)[8]. Stemmers extract stems/roots of the analyzed words according to their
context, light stemmer extract the stem by direct stripping of affixes . Existing stemming
algorithms fail to achieve accuracy rates of more than 75% [8]. They can be suitable for
information retrieval applications where their accuracy do not affect their overall
performance. However, accuracy is vital for other natural language processing applications
such as spell checking and machine translation. The most known effective Arabic stemmers
are Khoja[21] and Boudlal etal. [22]. Khoja stemmer is lexicon and rule-based stemmer
that is designed as part of Khoja POS tagger. The stemmer removes the longest affixes and
matches the remaining word with verbal and nominal patterns to extract the root. Khoja
reported 96% stemming accuracy using newspaper text. Boudlal et al. used a data driven
technique with statistical approach (HMM and Viterbi algorithm) for the root extraction
process [22]. Accuracy of 98.31% is reported using NEMLAR Arabic writing corpus, [23]

which is a manually annotated corpus

Ababneh et al. [12] used lists of affixes and patterns (with singular and plural patterns lists).
Using samples from a list of terms, they compared their algorithm with the root-extraction
stemmer (Khoja stemmer) and light stemmer (Larky stemmer). Their algorithm starts by
matching the word with stored patterns to ensure that no affixes related to the word were
removed. If there is no match with the pattern list, compatible affixes are truncated.
Finally, the algorithm uses the list of singular and plural patterns to solve the problem of

stemming plural forms of irregular nouns such as "aglbas" to "2uas". According to the

12

authors, the stemmer was able to remove all affixes effectively without removing any part

of the original word.

El-Defrawy et al. [24] described a context based Arabic stemmer (ABAS). They used a
distributional semantics co-occurrence model for the task of selecting the most appropriate
root. The distributional semantics utilize the Smoothed Pointwise Mutual Information
(SPMI) to improve the disambiguation process. They reported 81% root extraction

accuracy on a dataset of 10,302 words of the International Corpus of Arabic (ICA) [25].

Hadni et al.[26] used a mix of root-based, light and statistical stemming approaches. After
normalizing the input, affixes were removed; then the results were matched against the
stored patterns to extract the stem according to the word length. The resulting stem was
then partitioned into bi-grams. The similarity between this and the bi-grams of all stored
roots were computed. The most similar root was returned as the result. They used a list of
9000 roots, and other lists for affixes and patterns. Their experiment was conducted on the
Corpus of Contemporary Arabic (CCA) [27]. They used 1450 Arabic words for testing.
The reported average accuracies are: 74.41% for Khoja, 59.71% for light stemming,

48.17% for n-grams, and 82.33% for their method.

The much less studied Arabic morphological analyzers are the lemmatizers; Lemmatizers
are responsible for extracting the lemma rather than the stem of the words. Among the
works on Arabic lemmatizers is the one conducted by Aliwy [11]. Aliwy used a rule-based
and statistical method with dictionary lookup for the lemma extraction. He reported

99.67% accuracy over his manually annotated corpus of 16K words.

13

The summary of the conducted studies on morphological analysis and disambiguation are

shown in Table 2-1.

Table 2-1 summary of morphlogical analysis and Disambiguation studies

Study Technique Disambiguation Data Results
(Buckwalter 2002, 2004) . .
[14] [15] Lexicon Driven approach No NA NA
(Boudlal 2010) [16] Lexicon Driven approach No NA NA
Qutouf [17] . .
(Altabba et al. 2010) Lexicon Driven approach No NA NA
MADAMIRA . .
(Pasha 2014) [19] Support Victor machine Yes NA NA
A gold standard of
(Sawalha 2011) [8] Lexicon Driven approach No Quran’s NA
(78,004 words)
(Khoja 2002, 2004)[21] lexicon and rule-based No newspaper text 96%
Data driven technique,
(Boudlal et al.2010) [22] HMM and Viterbi Yes NEMLAR 98.31%
algorithm
Context based root-based distributional semantics
stemmer Yes 10302 words 81%

(El-Defrawy 2015)[24]

co-occurrence model

2.2 Spell Checking Detection and Correction

The methods and approaches used for the spell checking task may differ based on the used

evidences. The evidences are either to use the word form only, in the case of non-word

errors, or to also consider the word context in the case of real-word errors. The simplest

approach that use the word form is to use a dictionary or reference lists; any word that has

no entry in the dictionary is flagged as non-word error. On the other hand, the simplest

approach for using both the word form and context is to use n-gram statistics; if the

inspected word does not usually appear in the current context surroundings words, it is

flagged as probable error.

14

Correction candidates generator provides a list of suggested corrections for the suspected
error words. The most commonly used approach for generating correction candidates is
employing the edit distance. The edit distance provides a measure of how two strings are
similar; the similarity is defined by the minimum basic editing operations (insertion,
deletion, substitution, and transposition) needed to transform an incorrect word into the
correct word. The approach works by recursively calculating the edit distance between
different substrings of an M x N matrix of the compared strings. This process is applied to
all words in the used dictionary, although the dictionary may not cover all the words. It is
a brute-force process that ends with a huge list of candidates with many possible repetitions

and with no ordering of candidates having the same edit distance [5, 6] .

Deorowicz and Marcin [28] apply a set of ranked string substitutions rules to generate the
candidate corrections [28] for English language. The candidate's generation process was
maintained with the help of acyclic deterministic finite automaton (ADFA) which allows
quick rejection of nonsense corrections. Their method was compared with the correction
list of Ispell, GNU Aspell and Microsoft Word built-in spellcheckers. Based on aspell® and
wikipedia® datasets, they show that their method provide more accurate results for the first

top-5 correction candidates.

Hamza, et al. proposed the use of a small size dictionary of stems to use in correcting
spelling errors, instead of using a large dictionary[29]. This dictionary is similar to the one
used by Buckwalter Aramorph morphological analyzer [14, 15]. For every input word that

is not in the dictionary, a distance measure between the morphemes (prefix, stem and

3 A collection of hard-to-correct errors used for testing GNU Aspell.
¢ A data set of typical spelling errors made by the editors of the Wikipedia Project.

15

suffix) of the analyzed word and the Aramorph lexicon tables is computed and the
suggested correction is determined based on the minimum distances. Using a corpus of
2784 misspelled words, the authors reported that their method outperformed the classical
Levenshtein approach in terms of the average time (0.10 and 0.19 for their method and
Levenshtein approach respectively) and the correction rate (85% and 50% for their method

and Levenshtein approach respectively).

Nejja and Abdellah [5] used the concept of surface patterns and roots with the Levenshtein
minimum edit distance to generate corrections of the error word. He provides a correction
process using three approaches that are mainly based on selecting the surface pattern of
minimum edit distance with the correct word. The approaches were compared to the
Levenshtein edit distance. By using a dictionary of 10000 automatically generated
misspelled words. The system reported 94.42, 95.42% and 93.34% correction rates and
0.1418ms, 0.1659ms, and 0.1519ms execution times which is better than Levenshtein edit

distance correction rate and execution time (77.38% and 0.1953ms).

Zaghouani et al. [30] used regular expressions with a set of hand written linguistic rules for
the correction process. The approach works by replacing a predefined set of errors with
their suggested corrections based on a set of rules. The rules are built based on manual
inspection of the nature of native and non-native errors. Using a test data provided from
QALB shared task, the authors reported F1 measure correction accuracy of 66.9% for

native speaker's data and 31.72% for non-native speaker's data.

Hicham et al.[31] introduced an approach for correcting errors that result from insertion,

deletion and substitution operations. When ranking candidates, they used the frequency of

16

change operations with the Levenshtein distance. Using a list of 190 error words, they
reported a correction accuracy of 62.63% and 10% for their method and Levenshtein

distance respectively.

Mays et al. [32] proposed an unsupervised technique for real word error detection and
correction based on word tri-grams. They used a word vocabulary of 20,000 words. For
each word in their word vocabulary, they generated a confusion set. For training, they used
word tri-gram probabilities provided by IBM speech recognition project. For testing, they
selected randomly 100 valid sentences from the AP newswire and transcript of the
Canadian Parliament. These 100 sentences are used to generate a group of 8628 sentences
with a single real-word error in each sentence. They reported that their technique achieved

a precision of 76% for detection and 73% for correction.

Wilcox-O’Hearn et al [33] evaluated the advantages and limitations of Mays [32]
technique. Based on the evaluation, they proposed an improved version of the technique.
In their version, they increased the vocabulary of the tri-gram model and shortened
sentence window size. Besides that, multiple errors rather than single error in each sentence
are considered. The obtained results show that the improved version preformed poorer than

their original technique.

Islam et al. [34] suggested the use of Google Web IT 3-grams dataset for multiple real word
errors detection and correction. In their technique, a group of 500 articles is used to evaluate
the performance of their technique. These articles are collected from Wall Street Journal
corpus. They reported a recall of 89% for detection and 76% for correction. They stated

that Google 3-grams are proved useful for real-word error detection and correction.

17

Three different techniques were proposed for error detection and correction by Majed [7].
Two of these techniques were supervised techniques, context was considered based on
word co-occurrence method and the n-gram language model. The third one was
unsupervised technique. The unsupervised technique was based on N-grams languages
models. This technique was developed to exploit N-grams language models to compute

their probability for the error detection and correction.

A multi agent system for semantic errors detection was introduced by Zerbi at. el. [35].
The system combined co-occurrence, co-occurrence collocation, vocabulary vector, and
latent semantic analysis. Four contextual methods were used to represent words within
sentences in terms of their contexts. Then, a voting procedure was used to select the most
probable error. A corpus extracted from the Egyptian newspaper Al-Ahram was used for
training and testing. They reported an accuracy of 86.46%, 82.95%, 81.96%, 72.30% and
62.12% for Voting, co-occ-collecation, Latent Semantic Analysis (LSA), co-occurrence

and vocabulary vector, respectively.

In Tomeh etal. [36], an approach that pipelined character and word-level translation model
with re-ranking and punctuation insertion model were used for the correction of QALB
corpus as part of the first Arabic shared task for error detection and correction. They
reported 58.6% error correction F1 score with 76.9% and 47.3% recall and precision,

respectively.

A set of correction rules that maximized the overall F-score was calculated from the

training data was presented Nawar and Ragheb [37]. The system was developed for the

18

EMNLP2014 shared task for Arabic automatic error correction. They reported 65% error

correction F-score on the provided QALB test data.

Shaalan et al. [38] used Buckwalter morphological analysis results as an error detection
component in their system. A rule-based and distance based mechanisms are then used to
help in the correction process. A set of 190 misspelled words were used for testing the

system. They reported 80% and 90% recall and precision respectively.

Hassan et al. [1] proposed a system that targets the detection and correction of several
error types of QALB shared task corpus, including edit, add before (punctuations), merge
and split errors. The system detect erroneous words by applying Buckwalter morphological
analyzer. For each detected “Edit” and “add before” errors, classifiers with contextual
features are used to correct them. A random insertion and omitting of a space were
maintained to correct merge and split errors. They reported 58% F1 error correction score

with 59% and 58% recall and precision, respectively.

Shaalan et al. [39] created a large-coverage word list for Arabic of 13 million words, with
9 million having fully inflected valid surface words using AraComLex’. A character-based
tri-gram language model was created from valid and invalid forms. A context-free finite-
state automaton for measuring the edit distance between input words and the suggested
corrections was created. Candidates were ranked based on scores generated from a noisy
channel model trained on a corpus of one-billion words and knowledge-based rules of

common errors.

7 An open-source finite-state large-scale morphological transducer.

19

Hassan et al. [40] proposed a language independent method for detecting and correcting
spelling errors. Error detection is based on finite state automata while candidates'
generation was handled using a Levenshtein-transducer that is compatible with the finite
state machine. Ranking candidates was handled using the n-gram language model. He

reported an accuracy of 89% based on Arabic and English text.

Rozovskaya et al. [41] presented an error annotation framework, as part of QALB (Qatar
Arabic Language Bank) joint project, that aims to build a large manually corrected Arabic
corpus text for building automatic correction tools. This corpus is useful for spell checking
applications. The corpus now contains 1.2 million annotated words. A portion of the corpus
was released to the participants of the Arabic error correction shared task at the EMNLP

2014 Arabic NLP workshop[41].

A context-based system was suggested to automatically correct misspelled words by
Alkanhal et al. [42]. The misspelled words are firstly ranked using the Levenshtein edit
distance considering space insertion and space deletion errors. The most correct candidate
for each misspelled word is then selected according to the maximum marginal probability
via A* lattice search and N-gram probability estimation. They reported an improved
performance reaching F-scores of 97.9% and 92.3% for detection and correction,

respectively, based on their manually annotated corpora.

Attia et al. [6] used Levenshtein edit distance with a knowledge-based rules to re-order the
number of candidates. Based on his experiment, the amount of noise present in the training

data has the potential effect in the improvement of the results. Using a test set of 2,027

20

spellings error, the presented system outperforms Ayaspell, MS Word, and Google Docs

for the ranking of candidates in first position.

The summary of the conducted studies on spelling detection and correction are shown in

Table 2-2.
Table 2-2 summary of Spelling detection and correction studies
Work Technique Candlde_ite Test Data Target Results
Generation errors
Morphological
Hamza, et al. 2014 analysis with minimum edit distance 2784 misspelled Non-word 85%
[29] Levenshtein edit for word morphemes words
distance
surface patterns and 10,000
Nejja and roots with the misspelled words } 0
Abdellah 2014 [5] NAN Levenshtein edit and 2000 random Non-word 93%
distance misspelled words
F1 of 66.9% for
reqular expressions a combination native speakers’
Zaghouani et al. V\?ith a setpof hand of pre-existing tools, QALB NAN data and an F1 of
i 0,
2015 [30] written linguistic rules hand written coptextual 31.72% fo_r the
rules and lexicons non-native
speakers’ data
the frequency of 190 errors of a
Hicham et change operations with typing Arabic ; 0
al.2012[31] NAN the Levenshtein documents for a Non-word 62,63%
distance set of users.
Detection F-score
. Word co-occ. and n- Levenshtein edit 27K from Al- 20.2
(Majid 2013) [7] gram distance Arabiya Website Real-word Correction F-score
17.3
Voting, co-occ. Random errors in Detection 86.46%,
(Zribi , Ahmed Colloc., NAN Al-Ahram Real-word 82.95%, 81.96%,
2013, 2007) [35] LSA, co-occ. and Egyptian 72.30% and
voca. vector newspaper corpus 62.12%
0, 0,
Tomeh et al. 2014 character and word- a weighted QALB NAN Ei,ggﬁ);ld‘ 47763%2’
[36] level translation model finite-state transducer R
precision
probabilistic correction . g
Ra Nh?ﬂofﬁsn rules that maximized The learnt rules QALB NAN Correcégo;]o/l: score
9 the overall F-score A
a rule based edit 80% and 90%
Shaalan et al. 2010 BUCk.W alter . distance and a heuristic A set of 190 Non-word recall and
morphological analysis . and Real- .
[38] . rule-based misspelled words precision
and semantic features - word -
transformation respectively
Buckwalter and 58% F1,59%
ifi 1 i I 0,
Hassan et al. 2014 classifiers with Levenshtein edit QALB NAN recall and 58%

(1

contextual features for
correction

distance

precision

21

Dictionary look up and

400,000 words

Shaalan et al. 2012 | finite-state automaton | finite-state automata of - with 6,279 precision of
. i misspelled words Non-word | 98.2% at a recall of
[39] and the noisy channel Levenshtein distance
by MS Spell 100%
model
Checker
Hassan et al, 2008 | [inite state automata Alist of 11,000
' and n-gram language Levenshtein-transducer ’ Non-word 89%
[40] words
model
Dictionary lookup A* 0 .
Alkanhal et al. lattice search and N- Damerau-Levenshtein Different 97.9% detectl_o n
- . Non-word 92.3% correction
2012 [42] gram probability distance annotated corpora =
e -score
estimation
knowledge-based re-
Attia eEGaiI. 2012 ranking rules and Levenshtein edit 2,027 spellings Non-word 82.86 %

NGrams language
model

distance

errors

22

CHAPTER 3

ARABIC MORPHOLOGICAL ANALYSIS AND

DISAMBIGUATION USING HMMS

Arabic morphological analysis and disambiguation received interest as an active area of
research. Most existing morphological analyzers are based on root or stem extraction. The
reported results of such techniques are not satisfactory. In this chapter, a lexicon based
morphological analyzer and disambiguater is presented. The system can be described as a
root-based stemmer, lemmatizer, and morphological pattern extractor. The system extracts
these features for any word by considering its context using Hidden Markov Model

(HMM).

3.1 Proposed Arabic Morphological Analysis Model

The main goal of this model is to generate the most probable morphological features for
each word in an input text. The features include the word root, stem, lemma, morphological
pattern and affixes. The overall architecture is shown in Figure 3.1. The input text is
preprocessed using normalization and tokenization which is described in section 3.2. The
morphological analysis and disambiguation process is accomplished in two separate
phases. In Phase 1, all possible morphological analyses are generated for each word in the
input text using a data driven matching approach as described in Section 3.3. Each analysis

consists of a tuple of features as shown in Table 3-1. In the second phase, a Markovian-

23

based Viterbi algorithm selects the best tuple of features for each word in the input text

based on its context as described in Section 3.4.

Table 3-1 Example for morphological analysis and disambiguation phases.

Features
Wword | Phase SRoot | ORoot | Stem | Lemma AffixSPattern AffixOPattern
2 Ay | Caag | Qaag $ $d $O §dad
2 S 2 S SN G §dad§
coms | [Tm [aa | = | s | SSBES, | oSk
AN AN AN AN SRS G §dad §
I AN Ay | GQaay | Qaag QPSS Qi §
il Sl |l 3l an §led § ad §dlad §
| il il Q}:‘i U_z).uj eﬁ$¢\.‘aﬁ$ (-;A$¢\.\::_54
e B BETI IS ool AR pei § Jadl §
B Do | Coml [l ob § cundl § ob § ciladl §
T il sl |l | sl s § ilad ad §dlad §
o | ST IO IS RTR IUFE $ i § J $ i § J
i I SO SR IPURTR AR $ i § i $ i § i

24

Language model

SWAM database

N
Preprocessing

!

Input sentence
(wl,w2,..,wn) ﬁ
©
e 3
& SWAM @ Viterbi
o o
(=Y N
4) 4 N
words possible features tuples The best words features tuple
wl w2 wn wl w2 wn
Fi{r,s,p)1 F2(r,s,p)1 Fn(r,s,p)1
Fi(r,s5,p)2 F2(r,s,p)2 Fn{r,s,p)2 Fi{r,s,p) F2(r,s,p) Fnlr,s.p)
Flrspimt | | e20rsp)m2 Fnfr.s,p)mm L)
\. J
|

Figure 3.1 The Architecture of the proposed Arabic Morphological analyzer and Disambiguator model

25

3.2 Preprocessing

Most NLP systems require preprocessing of the input text before applying any word-level
NLP tasks. Two preprocessing steps are applied in this system; tokenization and
normalization. The tokenization process refers to the assignment of each word in the input
text to a specific class or type, called token. Hence, the input text is split into a set of
consecutive sentences; each of which contains a sequence of tokens. In this work, the
following tokens are considered: a word, a number, a named entity, a multiword

expression, and punctuation marks.

Normalization aims to remove noise that may exist in the input text, as a results of different

writing styles. The following normalization steps are applied:

e Removal of the elongation (Tatweel) letter ' in words. For example, 'c3t——4l' is
changed to 'c3&r,

e Removal of all diacritics. For example, '3 is changed to o3,

e Replacement of Alif Madda " with two Alif II'. For example, ‘o3 is changed to
o,

It is worth mentioning that some authors use an additional normalization step where the
letters 'I', 'I"and " are changed to "' ; also the letter 's' is normalized into "' and the letter '’
is normalized into 's' [13]. However, we chose not to include this step as the proper

mapping of the letters are already included in the system's lexicon list.

26

3.3 Phase I: Morphological analysis

The objective of Phase 1 is to generate all the probable analyses for each word in the input
text. Each analysis includes the following features: the root, the stem, the lemma, the
morphological pattern and the affixes. The analyses are generated using a lexicon based
matching algorithm, SWAM. The algorithm examines a set of lexicon lists and returns all

the possible analyses (features tuples) that match the input word.

27

()
L]

Fetch all patterns <= length(input)

All fetched pattern
are processed

Input End Reached

Ye

v

SWAM
Lexicon List
Variable-Patterns
N_Non-variable-Patterns__~J

Output
Result

Match current pattern against input

Slide the current pattern

A

N Matched

Yes
1

Extract features

L]

N Estimate probabilities

Affixes

Bigrams Model
Affixes compatibility

Valid Yesd

orphems,

Add the features
to the output list

Figure 3.2 SWAM matching engine

28

SWAM uniformly processes fixed® and variable® words. The SWAM algorithm is based
on the differentiation between lexical forms and surface forms. Lexical forms refer to the
traditional roots, variable patterns and fixed words that are usually stored in classical
lexicons. The term “surface form” is used for the lexical forms that have possibly
undergone changes, during the word formation process, resulting in one or more alteration
to their letters. This differentiation provides implicit information to handle the
idiosyncrasies of Arabic. SWAM keeps both lexical and surface forms in its lexicons using
dictionaries. Surface forms are used as mapping keys into their corresponding lexical
forms. SWAM includes a list of possible prefixes, e.g. (“w+ <« <«J " and a list of possible
suffixese.g. (“w¢0s¢). Table 3-2 shows some examples of the lexical and surface

forms of sample roots, patterns of words and fixed words.

Table 3-2 Mapping Dictionaries

Mapping
Word Surface | Lexical
3 Al
s Js
Root Ja Js
(S (S
A L,SJ-“
il Jaiél
g Jel s
Pattern Candi) Gladf
JA IR
P &l
e Lw;hl\
Fixed < @
oo\ o
s s
Yl 5

8 A fixed word is a word that does not have a pattern-based stem, referred to as 'xla".
° A variable word is a word that has a pattern-based stem, referred to as 'Giix',

29

The original existing SWAM lexicon lists were not enough to do experiments, many items
in the lists were missing. This forces us to collect all the required list in order for SWAM
to work perfectly. In this regards, we generated the required lists from Alkhalil
morphological system. The generated lists were large and required an extensive revision.
However, we handled a manual revision for the generated lexicon lists, the lists still have

some extra elements which somehow affect the results.

Given a particular input word, the algorithm extracts members of the above lists that
produce an acceptable decomposition of the input word. This is achieved by sliding the
stored surface patterns (with the same length or less than that of the input word) against the
input word and computing the resulting decompositions at each position. A decomposition
is acceptable if all the resulting components are valid and have compatible morphemes. At
this point, the affixes compatibility is handled by determining the existence of at least one

occurrence of the full pattern with compatible affixes in the lists.

An example of the sliding window process is shown in Table 3-3 for the word ¢ shsi »l\’
with the pattern *J=i«’, It is obvious that Row 3 contains the only matching pattern. The
prefix-suffix pair (denoted by suffix$prefix), which is ¢s$J), are compatible with the

pattern.

30

Table 3-3 Sliding pattern “Jaiia” over the input “(sk)

Sliding Window Action | Matching | #
Position |98 (7|6 |5[4[3]2]|1
Input
RIS J |))
Word |° 2 slide | Mismatch 1
Pattern e | - !
Root * * % % * * % * %*
Position | 9187|6543 (2]1
Input 5 . |
word || [E[=]=] 2] 7|9 slide | Mismatch | 2
Pattern 5d!:
Position | 9187|654 13[2]1
Input
Oleld|e|<|u d|!
Word f extract | Match |3
Pattern dlg e«
Root |*|*|d|a|* |2 w
Position | 918|765 43|21
Input | . 1 . |
word |°|° =le]o|e]d slide | Mismatch | 4
Pattern Je B < |
Root * * * % * % % % %*
Position | 9181716514 (3]2(1
Input
Sleld|e|ely J[) i
word | © f End | Mismatch | 5
Pattern | J 8.]‘-‘.
Root * * % * * * * * %

Different accepted decompositions may result when applying SWAM to an input word.
They may be generated from one or more surface patterns. Examples of multiple
decompositions are shown in Table 3-4 for the word ‘a3 ~Y'. Note the huge difference in

meaning for each analysis. In this case, the best decomposition can be determined through

31

the disambiguation process that comprises Phase 2 of the system, as we describe in the next

section.

Table 3-4 Sample SWAM analyses for the word ’agi =Y’

Suffix-Pattern- Suffix-Pattern- English meaning
root | Lemma Prefix Prefix of
(Surface Form) (Lexical Form) the Word
s s aa - i s il - family
il & s - ilad - s - ilad seize
Dm 37l ob - Jiadl (o - 4ail -) beds

3.4 Phase 2: Features Disambiguation

The features disambiguation process attempts to determine the best tuple of features that
correspond to a word from the generated list of feature tuples produced by the matching
algorithm in the first phase. The most appropriate feature tuple for each word in the input
text depends highly on its context. The best features tuple for each word is selected using

a Markovian based Viterbi algorithm as explained in the next sections.

3.4.1 Disambiguation Process Formulation

Let W = {w;,wy, ... represent the set of Arabic words, and let the sets

) Wi}

Sk L={l, L, ..., ;}, AP ={ay,a,,...,a,} and

R={r,nr,....1}, S=1{s1,52
FP = {py,p,, ..., by} represent the roots, stems, lemmas, affix patterns!'® and full patterns'!

of Arabic words, respectively. Given an Arabic sentence S = (wq,wy, ..., W,), W; €

10 By affix pattern, we mean the original word pattern along with affixes separated by $, for example the
affix pattern for the word ¢ sigel” is 058 J=iaa$

11 By full pattern, we mean the original word pattern along with affixes, for example the full pattern for the
word * o ssigall” is ¢ slatiall”

32

W,1 < i < n,and let the set of morphological analyses generated by Phase I for each word
M(w;) = {fil,fiz, ...,fimi} where word w; has m; possible analyses. Each analysis fij isa
tuple of 5 features (7j, s;,l;, a;, p;) wherer; ER,s; €S ,1; € L,a; € AP and p; € FP. The
goal is to find the most likely feature tuples f* = (f*l,f*z, ...,f*n) of the sentence S,

where f*, € M(w;). This can be formulated as follows:
f* = (f*lJf*zJ '"'f*n) = argMax(p((flle' "'rfn)I(Wl'WZ' "'rWn)) (2)
According to Bayes rule:

p((Wll WZ; (LN] Wn)|(f11 fZl :fn))Xp(fl'fz’---rfn)

p((fl'fZJ ""fn)l(wllWZi ---;Wn)) = D(W1,WayeoWn) (3)
Substituting (3) in (2) we get:

" p((Wlﬁ WZ) ey Wn)|(f1ﬁ fZI ey fn))Xp(fler:---:fn)
f - argMax(p(wq,Wa,..,Wp) (4)

The prior probability of the word sequence p(wy, ws, ..., w,,) in (4) is a positive constant
and is independent of the features. Therefore, it has no influence on the ranking of the

different sequences and can be ignored, this reformulates our goal as:

f* = argMax(p((wy, wa, .., W) |(fo, for s 2)) X D(f1 fo e)) ()

33

Assuming that the probability of any word features depends only on the features that
precede it (Markov assumption)!'? , and the probability of the word depends only on its

features (Markov output independence assumption)'?, we can reformulate our goal as:
fr=fuf) = argMax(I pwilf) x Tk p(filfiz)) (6)

The resulting statistical model in (6) is called the Hidden Markov Model (HMM), where
the input words represent the model observations and feature tuples represent the hidden
states. The best features sequence in (6) is computed using the Viterbi algorithm. For
computing the best features sequence, a supervised learning module was built for

estimating the HMM parameters as described in the next section.

2 o(telty v trer) = p(tkltr—1) , this follows thatp(t1 o te) = 15 p(tiltiy)
B oWylte Wi—1, teei, - Wy, t1) = p(Wi|ty) , this follow that p(w; ... w,|t; ... t,) = [1F p(w;lt;)

34

@ & © @ & ©
Root-Based HMM Stem-Based HMM

r1 r s1

r1 o sl P s1
2 > 2 o0 82 ? s2 2
(k1) k2) r(km) o skl X su2 s(km)
T ®
Lemma-Based HMM
1 1 11
12 12 > 12
I(k1) Itk2) I(km)
_’ /\@ /\@
AffixPattern-Based HMM FullPattern-Based HMM
al al at o pl p1 p1
a2 a2 a2 o p2 p2 = p2
a(k1) alk2) a(km) o plk1) plk2) plkm)

Figure 3.3 Graph resulting from phase | for each feature separately

3.4.2 Estimation of Parameters

A supervised learning module was built for estimating the HMM parameters, viz., the

transition probabilities Prob(f;|f;—,) and the emission probabilities Prob{w;|f;). The

probabilities were estimated from an already-tagged corpus, using the maximum likelihood

estimation method, in two phases. In the first phase, the probabilities (emission and

transitions probabilities) for each feature (root, stem, lemma, affix pattern or full pattern)

are estimated separately as shown in Figure 3.3; zero-probabilities were smoothed using

add-4A smoothing with backoff method (Christopher and Schuetze 1999). A was set higher

for words or features that rarely occur, since the training data may not contain rarely-

35

occuring words and/or features in the language. In the second phase, the total smoothed
probabilities of the whole feature tuple are then estimated as the product of the probabilities
in the first phase, as shown in Equations 11 and 12. This is done under the assumption that
the probability given a specific feature is independent from the probability given any other
feature. This provides a customized estimation of the parameters for any feature or

combinations of features.

The overall smoothed transition probabilities Prob(f;|f;_,) is defined as:

m

Prob(f|f_,) = nc(f(i—l)j:fij) + 4 - Probyy packor (fijfii-1))

i1 c(fa-vi) + 4

(11)

Where

e f;j represent the jt" morphological feature of the features tuple f;

. c(f(l-_l)j,fij) is the number of times feature f(;_1); appears in the training corpus
followed by feature f;;

o c(f(i_l)j) is the number of times the feature f;_1); appears in the training corpus

e J; is the number of ;" feature types such that c(fj;—1y;, f;j) = 1

The overall emission probabilities Prob(f;|f;—,) is defined as:

probtu)= [| T et) a2
j=1 ij i)

where

36

o c(fl-j,wi) is the number of times the word w; appears in the training corpus with
feature f;;

e J; is the number of the word types such that c(f;;,w;) = 1

In Equations 11 and 12, m represents the number of features considered in the features
tuple, where the maximum in our case is equal to 5, viz., root, stem, lemma, affix pattern

and full pattern. 4; was assigned very small number, e.g. (1e — 10), in the case when the
number of singletons is zero (4; = 0). Since the sizes of the sets of roots, stems, lemmas,
etc. vary greatly, the best value of A; in each case is determined during the system validation

process as described in the next section.

The backoff estimates for each feature are defined as follows:

clfij)+1
Probys packor (fijl fi-1) = % (13)
cwy) +1
Probuy packorr(Wilfiy) = ——~— (14)
wj_backo Lyt n] + V

The above backoff estimate uses add-one smoothing; where n; denotes the number of jt*
feature that were observed in the training data, and V denote the number of words that were
observed in the training data. Some words that does not occur in the train data may happen
to exist in the test data as novel words; these words are treated as if they had been replaced
in the input by an out of vocabulary word, denoted by OOV, which is added to the set V.
On the other hand, some features that does not occur in the train data may be generated by
the morphological analyzer in the first phase as novel features; these features are treated as

if they had been replaced by a single special feature that we call out of state, denoted by

37

OOS, which is added to the value n;, since the features are suggested by the morphological

analyzer, not from the training data features.

3.5 Experimental Setup and Results

The morphological analysis and disambiguation process was evaluated using a manually
annotated corpus, NEMLAR!. Since stems and lemmas were not provided by NEMLAR,
Stems were extracted by stripping off affixes from the word, and lemmas were extracted
by matching each word against its annotated pattern. The corpus was then partitioned into
training and testing data. The training data contains 346298 words, 76.4% of the corpus,
while the testing data contains 106676 words, and 23.6% of the corpus. To study whether
the value of lambda has any effect on the performance of the system, the 10-fold cross
validation algorithm was run on different very small values of lambda for each feature
based on the training data. It was observed that varying lambda did not have any effect on

the performance. Therefore, we set the value of lambda to1071°,

In order to study how features affect generating a correct morphological analysis, different
sets of features were tested, as shown in the tables of the Appendix. The percentages under
Phase I column, in those tables, indicate the percentage of the existence of the correct

morphological analysis among all generated analyses for each given word.

Each column under Phase Il corresponds to selected sets of one or more features used in
the HMM to disambiguate one or more morphological analyses. Each set of morphological

analyses occupies one row in the table, with the last row indicating the average

14 Manually annotated words from journalistic Arabic texts of different categories. Each
word in the corpus was annotated with its prefix, root, pattern and suffix. The corpus has
almost 500K words

38

performance of each HMM feature set in successfully selecting the right analyses. The
first table in the appendix was generated without consideration of affixes compatibility,
unlike the second table, where affixes compatibility was taken into account. The sets of
features considered in the design of HMMs and/or the sought morphological analysis

include one or more combinations of root, stem, lemma, Full Pattern15 and Affixes

Patternl6.
Table 3-5 Summary of the morphological analysis, on NEMLAR corpus (Phase I)
Without Compatibility With Compatibility
Analyses Average # Average #
% A % A
o Accuracy of Analyses o Accuracy of Analyses
Lemma (L) 98.98 98.78
Root (R) 99.93 99.66
Stem (S) 99.95 99.65
Affix Surface Pattern (ASP) 98.99 98.57
20 12
Affix Original Pattern (AOP) 98.58 98.77
Root (R), Stem (S), Lemma
(L), Affix Surface Pattern
(ASP), Affix Original Pattern 9110 91.69
(AOP)

Table 3-5 shows a summary of the results of Phase | with and without compatibility
checking. In addition, the average number of generated analyses for each word in the
testing data has been included in the table. It is clear from the table that the correct analysis

exists among the generated set of analyses for each test word. Although the reported

15 By FullPattern, we mean the word pattern along with affixes , for example the affix pattern for the word
? O s3gall” 8 7 slatidall?

16 By AffixPattern, we mean the word pattern along with affixes separated by $, for example the full pattern
for the word * ¢ s3igall” is * () 5§ J=ida$)

39

accuracy of the analyses without compatibility checking is slightly higher than those with
compatibility checking, it is obvious that the average number of generated analyses using
compatibility checking is lower than that without it, since analyses with incompatible
affixes are not considered. This affects the disambiguation when using compatibility

checking, as the number of possibilities to choose from is less.

Table 3-6 shows part of the data in the tables of the Appendix corresponding to the chosen
set of analyses. The column marked with "x" shows the results without compatibility
checking, and the column marked with " v " shows the results with compatibility checking.
For example, the third row in the table shows the accuracy of determining the right stem
when using all the features, only the root, only the stem or only the lemma, respectively,
in the disambiguation process. It is obvious that the best results were achieved when using

all features. In this case, the improvement achieved when using compatibility checking was

not that high. However, it was significantly higher in most other cases.

Table 3-6 Summary of morphological analysis disambiguation (Phase 11)

AOP,SPS,L R Root Stem Lemma
Analyses
X v X v X v X v
Lemma (L) 95.80 | 95.80 | 55.24 | 68.49 | 33.54 | 42.87 | 94.30 | 95.02
Root (R) 97.13 | 96.93 | 96.27 | 96.62 | 53.99 | 58.18 | 82.96 | 84.25
Stem (S) 98.20 | 98.02 | 75.90 | 87.67 | 97.16 | 97.67 | 85.19 | 89.97

Affix Surface Pattern (ASP) | o513 | 9520 | 46.99 | 63.13 | 33.88 | 44.70 | 70.57 | 76.55

Affix Original Pattern (AOP) | 9503 | 06,07 | 55.63 | 72.28 | 4401 | 53.16 | 65.76 | 71.42

Root (R)&Stem (S)&Lemma
(L)& Affix Surface Pattern
(ASP)&Affix Original Pattern | 94.11 | 94.16 | 44.41 | 59.33 | 28.36 | 37.36 | 63.18 | 68.63

(AOP)

40

CHAPTER 4

ERROR MODEL

Correction candidates' generators calculate a set of similarity scores that helps in judging
the similarity between two strings. The most commonly used approach for generating
correction candidates is employing the edit distance [4]. The edit distance provides a
measure of how two strings are similar; the similarity is defined by the minimum basic
editing operations (insertion, deletion, substitution, and transposition) needed to transform
an incorrect word into correct word. The approach works by recursively calculating the
edit distance between different substrings of an M x N matrix of the compared strings. This
process is applied to all words in the used dictionary, although the dictionary may not cover
all the words. It is a brute-force process that may end with a large list of candidates with
many possible repetitions and with no ordering of candidates having the same edit distance

[5, 6].

In this chapter, a data driven approach that exploits morphological error patterns at the
morphemes or the word levels is proposed. The model is able to generate and rank

candidates' correction for wide range of Arabic errors.

4.1 Proposed Error Model

Arabic is considered one of the morphologically rich languages, since many of its words
are derived from a finite set of morphological patterns. This fact can be utilized in
generating smarter candidate words for correcting spelling errors that may follow certain

patterns. It is highly desirable that any such model possesses the following properties:

41

1. The correction candidates must be generated in a way where the number of
candidates is relatively small, yet containing the correct word.
2. The model must be general, and not specific to certain type of spelling errors.
3. The model must provide a ranking for the correction candidates, such that the
correct word is preferably at the top of the list.
In order to achieve these goals, a data driven approach that exploits morphological error
patterns at the morphemes or the word levels is proposed. The main components of the
model are the error-correct patterns generator (ECPG), the error-correct patterns database
(ECPD), and the correction candidates' generator (CCG). The ECPG is a module that
generates morphological error patterns and their correction information that are used in the
correction process. The information generated by the ECPG is used to build the ECPD
which is used by the CCG to generate the correction candidates. The ECPG is presented in

Section 4.2, the ECPD is described in Section 4.3 and the CCG is detailed in Section 4.4.

4.2 Error Correction Patterns Generator (ECPG)

The ECPG module generates all the error patterns with their correction information from
an already annotated error corpus with the help of a morphological patterns generator. In
our work, we have utilized the SWAM morphological analyzer that is described in chapter
3. The overall algorithm of ECPG is outlined in Figure 4.1 Error-Correct patterns generator
(ECPG) algorithm flowchart shown in Figure 4.1. For any error word, the corresponding
correction is morphologically analyzed, using SWAM, to get its morphological pattern and
affixes. For example, given the real word error 'Gses V' in the context of ' (e Cres il il

254, The correct word 'ca" is analyzed using SWAM, identifying it as '0$»~$J" with

42

morphological pattern 'o!$J=$J"". This information and the actual error word are used to

generate the error pattern 'cx$Jse $J0,

((Error Word (EW))

Correct Word (CW) : prefix$stemS$suffix
Correct Pattern (CP) : prefixSpattern$suffix
Error Word (EW)

Error Pattern (EP)

Error Encoding(EE)

Correction Code (CC)

Longest Common SubString(LCS) ST ! P2
Correct Pattern (CP) Label CP according to CW's label]
§'I‘i;: 3

Initial Error Pattern (iEP) is the labeled EW
by replacing each label with its
corresponding char in the CP

. (Add charCP corresponding
char in CW to CC *
: T~
- STEP4 N\

T = Add ‘d’ to EE '/ For each char in the \
‘s"to laholod
P CP and each '<
¥Mr in the labeled iEP 7,

Yes {Deletion) (add 5" toEEand cC) L T

CharkP is LabeD

Label all non-overlapping LCS
between CW and EW
(Labels are ‘A’ , ‘B’ ,...,'Z')

Process next char

No(Substitution)

Add ‘¥’ to CC
Yes Process next label
ST*P 5
Extract the final EP according to EE and iEP
CAdd { EP= (EE,CC)) to Ecm)
€harCP == charEP
No(Insertion)

Yes(No change)
‘es(Transposition): Add charCP to CC Aﬁi::i;’"'::;:::‘z"::‘

Figure 4.1 Error-Correct patterns generator (ECPG) algorithm flowchart

An error encoding is also generated, which is a string that specifies the positions of the

changes and the change types in the error pattern. In our example, we have two changes:

43

transposition of the first two characters of the surface pattern and a substitution of the first
character in the suffix. Hence, its error encoding (EE) is '-s$-BC$--', according to the error
types listed in Table 4-1. Finally, the corrections that need to be applied are generated,
which specify the actual changes. These corrections are denoted by the correction codes
(CC). In our example, the correction code is '"CB', which specifies the transposed and
substituted characters. The ECPG algorithm is described in Figure 4.2, and the steps of the
algorithm applied to our previous example are illustrated in Figure 4.3 and Figure 4.4, with

Figure 4.1 showing the details of Step 4 of the algorithm.

Table 4-1 description of error encodings

EE (Error CC(Correction Code) Error operation
Encoding)
- ! No change
i ! Insertion
d ‘Arabic char' Deletion
S ‘Arabic char' Substitution
Latin characters ‘Latin char' Transposition

44

The generated error patterns, error encodings and correction codes are stored in the ECPD.

This database will be, later, used by the CCG to generate the correction candidates.

Algorithm ErrorCorrectPatternGenerator:
Input: Correct Word (CW), Error Word (EW) and Correct Pattern (CP)
Output: Error Pattern (EP), Error Encoding (EE) and Correction Code (CC)

Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

Label all non-overlapping Longest Common Substrings (LCS) between CW and EW
(Choose Labels from English Alphabets A, B, C,..., Z)
Label CP according to CW
The initial EP (iEP) is the labeled EW by replacing each label with its corresponding
char in CP
Loop over the whole letters of CP and iEp
If there is No Change :
i. Add'-'to EE
If there is letter insertion:
i. Add'i"'to EE
If there is letter deletion:
i. Add'd'to EE
ii. Add the deleted letter to CC
If there is letter substitution:
i. Add's'to EE
ii. Add the substituted letter to CC
If there is letter transposition:
i. Add the transposed label to EE
ii. Add the correct label to CC
Extract the final EP according to EE and iEP

Figure 4.2 Error-Correct patterns generator (ECPG) algorithm

45

Ccw
EW
CW Label
EW Label

CP
CP Label
EW Label

iEP

iEP Label

CW Label E ! $ A A
CP o ! $ J !
CP Label E ! $ A A

CP Label
iEP Label

EE

CcC

EE

iEP

EP

o

Figure 4.3 Example of the ECPG for the words ("gsauall ¢ "glaa i)

46

o

iE A A $ B C D $) E
A | ="
A
C '$'$ 'C":'B"
B '‘B':'C’
D
¢ '$$ st
E

Figure 4.4 EE and CC extraction process (STEP 4)

47

Table 4-2 Examples of error patterns generated by ECPG

Input Patterns
Suffix Stem Prefix
Number Svr;‘r’dr Cv‘zlrorfgt éc:gp CP<EP | CPP<EPP
CCEE CC:EE CC:EE
Lol s ol Os €7 Jalde & Jrida J&Jd
1 o)AS U)L"")‘d 1 dd v ”:__
. ” é!! d:}’.é éd:ﬂé LR} é”
2)#S)HS H:” ;.I:-S-- ”:H
3 Sy Sy T & Jlad) & Jlad) BRSS!
B l’:’! “:—S——— 7!:__
4 il Ll T & Jeld &Jclid J €Ja
. g 39,99 ”:'I"' H:i__
5 u& ‘_‘AJ 1 é!! ‘M é‘_}é& LR} é”
j CB:BC-
1 é” ‘_MA éd&u.& 1 é”
L)
6)é _)-‘M l’:’! LR :_i___ H:l!
7 e Lo T & dady & 28y o €z
0 J‘““.‘.‘; 0 J“"":““’ l’:’) n:____ L)‘“S
8 S S R e Jdd &Jld V&
— 12} i ”:____ ”:H
" - o€ Jria €& (J2da " &
9 (EA"'AA UJ"M u _d ”:____ ”:H

Table 4-2 shows samples of different error patterns that affect prefixes (4 and 7), stems (2-

6) and suffixes (1, 8 and 9).

4.3 Error-Correct Patterns Database (ECPD)

ECPD is a database that holds the error patterns with their correction information. The
database is created by, first, including the patterns generated by the ECPG. Then, for each
correct stem (i.e. not containing any error), the algorithm examines all combinations of
prefixes and suffixes, where at least one of them (the prefix or the suffix) has an error. If

the combination satisfies the condition that the stem is compatible with the correct affixes,

48

such combination will be added to the ECPD. For incorrect stems, the same procedure
applies with the difference that both affixes can be correct. Again, the compatibility check
is only considered against the correct stem and correct affixes. For example, Table 4-3

contains error patterns that are generated from the first three rows of Table 4-2.

Table 4-3 examples of ECPD stored data

Error pattern Correction Information

(ESPSEPSEPP) fgsrggcéﬁ;‘ggg; EE cc
P $J~isa$J) i--$-----$ $3
$d~ia$Jl Gsdd=isgd) --$-----$dd $Ss
P Os$d=isgJ) i--$-----$dd 80
CPJxiia $J~isa$ $-----%i $%
C§d=iGd) $xiia$J) --$-----$i $5
Sl) i--$-----$i $3
PG RPUxiaeS $-----$-d 3¢
PG RPJiagd) --$-----$-d $%¢
PG Ju P diagd) i--$-----$-d $%¢
$J% d $-s--$ $-$
$JgJ) $digJ) --$-5--$ $-$
$JlugJe $JigJl i--$-s--$ $-%
$J8$ O5$J28$ $-s--$dd $%us
JiJ) 059G --$-s--$dd $%us
$J8gJu Os$di$dJ) i--$-s--$dd $-%us
5 T $-s--$-d $-%¢
$$J:$J) BRELiN] --$-s--$-d $=%0
g il i--$-s--$-d =80
<$J8$ $d23$ $-s--3i $-5
<$JEgJ) $Ji3J) --$-s5--$i $-%
<$JagJu $J=i3J) i--$-s--$i $-%
$Jilp $J=i1$ $-5---% $'%
g $algJ) --$-5---$ 3%
$JaIgJu $algJ) i--$-5---$ 3%
Sl PJdl$ $-s---$-d $15¢
PG P J=il$J) --$-s---$-d $15¢
$SJ=aIFJu P J=il$J) i--$-s---$-d 3150
S $J81$ $-s---Si 3%
<P JLiigd) $algJ) --$-s5---9i 3%
P JRilpJa $J815J) i--$-s---$i 3

49

The error and correct patterns information are stored using dictionaries according to the
error pattern length. Searching for an error pattern is, therefore, started by computing the

length of the error word and considering the dictionary corresponding to that length.

4.4 Correction Candidates Generator (CCG)

The correction candidates generator is a data driven module that uses error patterns to
generate correction candidates for a given word. It simply considers the correction
information stored at the EPCD that correspond to the error pattern. Figure 4.5 show the

algorithm flowchart of CPG.

=)
¥

Fetch all error patterns with length = len(input)

Yes

Y

Generate candidates

v

Add valid candidates to the result

|

Figure 4.5 Correction Candidates Generator (CCG)

50

Given a particular error word, e.g. *e<isdl®’ the algorithm matches all the morphological
error patterns, similar in length to the input, against the input word and generate all the
correction candidates according to the matched patterns correction information. The
matching occurs if all the morphological pattern letters other than (*J «¢ «”) match their
corresponding letters in the error word. Non-valid candidates are automatically rejected as
possible candidates; a correction is valid if it has a valid root. According to the database in
Table 4-3, only the pattern’J=34> provide valid candidates.

Table 4-4 shows that only two correction patterns (osl=iaall ¢ J=3iall) are possible based on

the given database in Table 4-3

Table 4-4 Examples of error patterns candidates’ generation

Correction Information

Error Word CSP| CP | CPP | Root | Correction | Valid
Jaide | JI e | $eainedd) | True
EWord [g|e [<|w|e|J \u| Os | dxie | J o | O0sbasina$d) | True

Pattern [d | g |@ |« [a]|d \d|

4.5 Experimental Setup and Results

To study how effective the suggested error model, an analysis of some well-known Arabic
annotated corpora is conducted. The analysis is concentrated on the types and number of
edits needed to get the correct word from the error word. The corpus chosen for this task
is QALB. QALB is a manually annotated errors' corpus consisting of user comments
collected from Al-Jazeera News webpage. It is mainly written in Modern Standard Arabic
with almost one Million words with 243,075 errors. QALB has its specific format.

However, we converted its format into KACST format. The corpus files are then fed to the

51

morphological analyzer (SWAM) to get the morphological pattern of the corpus words.
The corpus has different types of errors, some of errors are annotated with more than three
words as correction. In this work we include only sentences that has, among its errors, less
than four connected words; the reason behind this exclusion is that such errors are almost
unique to occur and they introduce overhead over the morphological analyzer
disambiguation process.

Table 4-5 shows summary of the QALB corpus errors based on the error model analysis
result file. Need to mention that the deletion error type ratio (40.18) in Table 4-5 include
the percentage of 'punctuation deletion'!” which is 33.45, see Appendix Table 0-3 for more

details.

Table 4-5 QALB corpus errors summary

QALB
Error Type Count Ratio
Insertion 19270 7.93
Deletion 97668 40.18
Substitution 106702 43.90
Transposition 530 0.22
Mixed'® 18905 7.78
No Change 23 0.01
Totals 243075 100

Most of the errors in QALB are repeated errors, the total number of distinct corpus errors

is 89536 as shown in

Table 4-6. The total distinct errors are composed of uniquely occurring errors (Non-

Repeated error words, 68253) and the distinct number of repeated errors (21283).

17 'Punctuation deletion' refer to the error that result when the writer miss to include a punctuation after
specific word. In QALB corpus, this type of error is called ‘add before'
18 Mixed error refer to complex error (more than one error operations)

52

Table 4-6 Corpus error words statistics

QALB
Error Type Count Ratio
Non-Repeated Corpus Errors 68253 %76.23
Repeated Corpus Errors (Distinct) 21283 %23.77
Total Distinct Corpus Errors 89536 100%

The summary statistics of the QALB corpus error patterns based on the error model
analysis result file are shown in Table 4-7.

Table 4-7 QALB error patterns summary

QALB
Error Type Count Ratio
Insertion 6834 63.34
Deletion 17786 39.33
Substitution 9965 47.32
Transposition 414 86.97
Mixed 11130 92.83
No Change 19 95.00
Totals 46129 51.52

The details of the error words and error patterns for each change operation is provided in
Appendix Table 0-3 and Table 0-4

Table 4-8 Corpus error patterns statistics

QALB
Error Type Count Ratio
Non-Repeated Error Patterns 32826 36.66
Repeated Error Patterns (Distinct) 13303 14.86
Total Distinct Error Patterns 46129 51.52

The total number of distinct generated error patterns is 46129 as shown in Table 4-8. The
generated total distinct error patterns are composed of uniquely generated patterns (Non-
Repeated error patterns, 68253) and the distinct number of repeated error patterns (21283).
With the fact that the total number of the analyzed corpus errors is 243075; the statistics
show that almost 71% (243075 - 68253 = 174822) of these errors are just a repetition of

53

only 21283 distinct errors with an average of almost 8 occurrences per error word. The
remaining 29% of the corpus errors are singly occurred errors (non-repeated errors). This
means that any upcoming error word should have their correction candidate in the list (if
we use a simple non -error patterns model) with the probability of at least 71%.

Although, the number of uniquely occurred errors in the corpus is 68253 which is almost
triple the number of distinct repeated errors; the total number of the whole generated error
patterns by the error model is 46129 (51.52% of the whole distinct corpus errors).

We also conducted an analysis of the actual error model candidates' generation
effectiveness on QALB test corpus. The experiment concentrated on the ability of the error
model, based on the learnt error patterns, to generate the correct candidates among all the
suggested candidates. The ranking of candidates was handled based on the error pattern
repetition frequency. Different training corpora were used to train the model based on
different error patterns frequencies. For example, Table 4-9 shows that, when training the
model with QALB training corpus and including only the error patterns repeated 3 times
or more, 83% of the correct corrections, of QALB test corpus, does exist in the generated
candidates. The average number of candidates is 20 and the average candidates' generation

time is 0.11. Moreover, almost 0.17% of the corrections exist among the top correction.

54

Table 4-9 results of effectivness of the error model based on QALDB test data

Avg. #0of | Avg.#of | Avg.#of | Avg. # of Avg
Avg. # of error error error error candidétes
- ' correction | correction | correction | correction .
Training Corpus | generated 0 exist 10 exist as | o exist as | to exist in generation
candidates 01e>_<|_|s as time
-Top 5-Top 10-Top all (second)
candidate | candidate | candidate | candidates
all 50.626 0.175 0.719 0.789 0.847 0.421
3 20.192 0.174 0.718 0.787 0.834 0.108
5 17.760 0.174 0.718 0.786 0.832 0.137
QALB 10 14.650 0.174 0.717 0.770 0.812 0.098
20 11.753 0.174 0.709 0.760 0.798 0.069
50 8.802 0.172 0.699 0.748 0.772 0.080
100 6.892 0.171 0.452 0.410 0.512 0.044
all 4.288 0.203 0.320 0.326 0.326 0.053
3 1.555 0.202 0.299 0.304 0.304 0.022
5 1.149 0.200 0.298 0.298 0.298 0.019
KFUPM | 10 0.817 0.186 0.271 0.271 0.271 0.021
20 0.745 0.178 0.252 0.252 0.252 0.013
50 0.618 0.170 0.241 0.249 0.241 0.011
100 0.521 0.168 0.236 0.236 0.236 0.011
all 51.780 0.207 0.723 0.795 0.851 0.363
3 20.725 0.207 0.723 0.792 0.839 0.129
QALB [5 | 18137 0.207 0.722 0.791 0.837 0.177
& 10 14.990 0.206 0.722 0.775 0.818 0.120
KFUPM | 20 12.054 0.206 0.713 0.767 0.801 0.082
50 8.988 0.2041 0.706 0.757 0.780 0.045
100 7.140 0.203 0.460 0.508 0.520 0.064

In the case of Levenshtein minimum edit distance, the candidates were generated using an
edit distance of 1 and 2 as in Table 4-10. The experiment concentrated on the ability of the
Levenshtein minimum edit distance to generate the correct candidates among all the
suggested candidates. The candidates with the required edit distance are generated from a
dictionary'® with 125975 words. We did not include the candidates generation within the
edit distance of 3 since the generation time was very long (it takes more than 33
minutes/error word) and the memory requirement were very huge (4800 candidates/error

word).

1 The dictionary was generated from different corpora by including word with more than 5 occurrences

55

Table 4-10 results of effectivness of the minimum edit distance based on QALB test data

Avg. # of
error Avg.
Avg. # of . . g
.. correction | candidates
Training Corpus generated . .
; to exist in | generation
candidates .
all time
candidates
1 19.1279 0.817781 3.423594
Edit Distance
2 440.641 0.856714 9.772839

56

CHAPTER 5

GENERAL SPELL CHECKING DETECTION AND

CORRECTION

5.1 Baseline System

The baseline system is a combination of two previously implemented systems[4, 7] for
spell checking detection and correction. It handles non-word and real-word spelling errors
using different techniques. In the case of non-word, the system use the combination of
Buckwalter Arabic Morphological Analyzer, dictionary look-up or Character N-grams. In
the case of real-word errors the system use NGrams language model or context co-
occurrence with confusion sets. More details of the subsystems and their combinations are

described in the Appendix D.

5.2 System Description

The main goal of the described prototype is to effectively detect and correct wide range of
Arabic errors. This is achieved through an effective interaction between the system
components (viz. a morphological analyzer, an error model, and a language model). The
morphological analyzer generates morphological features of the running text. The used
morphological analyzer is SWAM. SWAM morphological features include the root, the
stem, the pattern and the affixes. The error model generates the probable corrections for

suspected error words, the used error model is ECPD (Error Correct Patterns Database).

57

The language model provides markovian based statistical description of the language based

on the same morphological features generated by the morphological analyzer.

Input sentence
(wl,w2,..,wn)

I Morphological Analysis I \ _A l Error Correction |
(SWAM) | angusgeTiodel)

(Viterbi Algorithm)
I I

Sentence words with their possible features tuples 5
Non-word error free words with features and probabilille%
wl w2 wn
5P | 5P Fn(r,s,p)1 wl w2 wh
F1(r,s,p)2 F2(r,5,p)2 Fn(r,s,p)2
; 2 i (: o 2 Fi{r,s,p) F2(r,s,p) Fn(r,s,p)
,]) probl prob2 probn
Fi{r,s,p)m1 || F2(r,s,p)m2 Fn(r,s,p)mm
- * _J
- ,"— -~
—” For each word wi D’For each word wi
R 4 X 4
7 7
b e

No
(process next word)

All words
processed

All words
processed

No

(process next word)

P(wi) < threshold
No

Error Correction
(Viterbi Algorithm)

Yes Yes

(Detected non-word error) (Detected real-word error) Output

Result

enerate correction candidates wit
their morphological features

(cclg

{
their morphological features
{CCG)

S

S

Figure 5.1 GSpell Error detection and correction

The system achieve the task of error detection and correction in two interleaved phases,

each phase handle part of the problem as shown in Figure 5.1

58

In the first phase, the error detection and correction task start by morphologically analyzing
all words in the input. Any word with no morphological analysis is flagged as suspected
non-word error. The correction candidates with their morphological features are generated
for each suspected non word using the CCG (Correct Candidates Generator). Under the
assumption that the probability of any input word to happen in some context is highly
related to the probability of its morphological features in the same context. The
probabilities are computed for each word based on its morphological features. The word
with the highest probability is selected by the correction algorithm as the best correction

for the non-word error.

In the second phase, any word "with probability less" than a threshold is flagged as
suspected real-word error. The correction candidates with their possible morphological
features are generated for each suspected real-word error. The word with the highest
morphological features probability is selected by the correction algorithm as the best
correction of the real-word error. Figure 5.2 provides an example of how the detection and
correction process work in the two phases. The detailed description of the algorithm is

given in the next section.

59

Best correction

real-word error non-word error (Viterbi sequence Phase)

Al
(| odotaysanis

sl

EREREIL AN

e ke [545 el xie$

:.".. B ‘.'1-.-.

Best correction
(Viterbi sequence Phase 2)

Jalsas | G

o))

Correction candidatesi_
(Phase Il)

B s u:-alom$dxé$u C i i
a —==— ¢ Y i orrection candidates
% u|_\..ula|$._l=h$ (Phase)

Figure 5.2 Examples of error detection and correction phases

60

5.3 System Formulation

Given (a) a set of words W = {w;,w,, ..., wp,} that represent Arabic words, (b) five finite
sets of morphological sets R = {ry, 13, ...,7%}, S ={51,52,...,Sk}, L={lL, 15 ...},
AP ={ay,ay, ...,an} and FP = {p,,p,, ..., px} that represent the roots, stems, lemmas,

affix patterns®® and full patterns®! of Arabic words, respectively, (c) amorphological
analysis function M(w;) = {fil,fiz, ""fimi} that generate all possible analysis features
tuples for any word w;. Each analysis fij is a tuple of 5 features (7, s;, [j, a;, pj) where r; €
R, s;€S , €L, aj€AP andp; € FP, and (d) a candidate generation

function CCG(w) = {wy{, w3, ..., wi},wf € W, 1 <i < m that generates the probable

correction candidates based on ECPD.

For any sentence S = (wy, Wy, ..., Wy, ..., Wo_1,W,) With possible morphological
features F(S) = (M(wy), M(wy), ..., M(wy), ..., M(w,,_1), M(wy,)), we need to find the

best correction sentence S* = (Wi, ws, ..., Wi, ..., W5_1, Wy), Where

w;, 1 < i < nrepresent the sentence words;

M(w;), 1 < i < n represent the possible features' tuples of the word w;;
w{ represents the best correction of the word w;;

{w; U CG(w;)} if w; was suspected as error
wi,1<i<n €
{w;} others

20 By affix pattern, we mean the original word pattern along with affixes separated by $, for example the
affix pattern for the word ¢ sigel” is 058 J=iaa$

21 By full pattern, we mean the original word pattern along with affixes, for example the full pattern for the
word * o ssigall” is ¢ slatiall”

61

The goal S*can be achieved by finding the most likely sequence of features F* =
(55 o o for o fa—1, fn) that most likely represent S* where, f;* represent the best

morphological features tuple of wy.

By assuming that the probability of any word features depends only on the features that
precede it (Markov assumption)?? , and the probability of the next word depends only on

its features (Markov output independence assumption)?*, we can define:

F* = argMax([T{.;p(wilf) x [lisip(filfi-1)) 1)

The equation in (1) represents a maximization problem that can be solved using Viterbi
algorithm. The algorithm was adopted to select the word in the correction candidates with
the highest morphological features' probability in the sequence as the best correction. The
behavior of the algorithm highly depends on the results of the error model (ECPG). For
example, if the error model provide a space deletion correction among the generated
candidates, the algorithm needs to consider computing two extra transitions and emissions
in the position of the word. On the other hand, if the error model suggest the deletion of
the suspected word, the algorithm needs to consider skipping of the current word to the
next one. All these behaviors were maintained by the correction algorithm with the help

of the error model. The resulting general markov correction model is shown in Figure 5.3

2 p(telty v tr—1) = p(tr|tr—1) , this follows thatp(t1 o te) = 15 p(tiltiy)
B o(Wilte Wi—1, t1, - Wi, t1) = p(Wi|t) , this follow that p(w; ... w,|t; ... t,) = [T p(w;lt;)

62

Correction candidateq list
Of wi

erged with next
delete

splitted

W2 features tuples Correction candidates' features

Of Wi
f(2)1 o f-1n (1)1 o
22 - © fli-1)2 f(1)2 > o f1)2
. o o
f(2m2 2 o f(1)m1

Figure 5.3 Spelling correction hmm model

63

According to the above formulations, the word w; is considered as a spelling mistake if:
1. M(w;) = @ (in the case of non-word error)
2. The probability of the sequence p(fi, f*Ifi for o) fi1) and
p(fi, f ¥ fiz1s fivzr r fr) 1S less than a threshold € (in the case of real-word error).
This means that any word will be considered as a spelling mistake if the word has no
morphological analysis or if the morphological feature(s) of another word in the correction

candidates has higher likelihood of fitting into the same context.

5.4 Estimation of Parameters

A supervised learning module was built for estimating the HMM parameters, viz., the
transition probabilities Prob(f;|f;—,) and the emission probabilities Prob{w;|f;). The
probabilities were estimated from an already-tagged corpus, using the maximum likelihood
estimation method, in two phases. In the first phase, the probabilities (emission and
transitions probabilities) for each feature (root, stem, lemma, affix pattern or full pattern)
are estimated separately; zero-probabilities were smoothed using add-A smoothing with
backoff method (Christopher and Schuetze 1999). A was set higher for words or features
that rarely occur, since the training data may not contain rarely-occurring words and/or
features in the language. In the second phase, the total smoothed probabilities of the whole
feature tuple are then estimated as the product of the probabilities in the first phase, as
shown in Equations 11 and 12. This is done under the assumption that the probability given
a specific feature is independent from the probability given any other feature. This provides

a customized estimation of the parameters for any feature or combinations of features.

64

The overall smoothed transition probabilities Prob(f;|f;_1) is defined as:

11
c(fuenj) +4 (v

m
Prob(filf._y) = 1_[c(fu-njofir) + 2% - Probyy vackor (fis|fii-1;)
j=1
Where

fij represent the jt" morphological feature of the features tuple f;

c(f(l-_l)j,fij) is the number of times the feature f;_;); appears in the training corpus

followed by the feature f;;
C(f(i—l)j) is the number of times the feature f(;_,); appears in the training corpus
A; is the number of j*" feature types such that c(fji—1y;, fi;) = 1

The overall emission probabilities Prob(f;|f;—,) is defined as:

m

Prob(w;1 fi) = | |

j=1

c(fij,wi) + 4 - Proby packorr(wilfij)
c(fy) +4

(12)

where

c(fij, wl-) is the number of times the word w; appears in the training corpus with the feature

fij

2; is the number of the word types such that c(f;;, w;) = 1

65

In Equations 11 and 12, m represents the number of features considered in the features
tuple, where the maximum in our case is equal to 5, viz., root, stem, lemma, affix pattern
and full pattern. A; was assigned a very small number, e.g. (1e — 10), in the case when
the number of singletons is zero (4; = 0). Since the sizes of the sets of roots, stems,
lemmas, etc. vary greatly, the best value of 4; in each case is determined during the system

validation process as described in the next section.

The backoff estimates for each feature are defined as follows:

c fi' +1
Probys packor (fijl fi-1) = % (13)
C(Wi) +1
Probys packorr(Wilfij) = ———— (14)
wf_backo ilJij n TV

Where n; denotes the number of jt" feature that were observed in the training data, and V
denote the number of words that were observed in the training data. The above backoff
estimate uses add-one smoothing; Some words that does not occur in the train data may
happen to exist in the test data as novel words; these words are treated as if they had been
replaced in the input by a single special word, out of vocabulary word, denoted by OOV,
which is added to the set V. On the other hand, some features that does not occur in the
train data may be generated by the morphological analyzer in the first phase as novel
features; these features are treated as if they had been replaced by a single special feature
that we call out of state, denoted by OOS, which is added to the value nj, since the features

are suggested by the morphological analyzer, not from the training data features.

66

5.5 Experimental Setup and Results

The general spelling detection and correction was evaluated using a manually annotated
corpora, QALB?* and KFUPM corpora. QALB annotated corpus does not provide any
distinction between non-word and real-word errors. It only provides the type of the
operation that generated the error (e.g. edit, merge, split, add before, add after, etc.). This
required us to re-annotate the corpus in order to use it in our work. We handled a manual
revision for the corpus after a preprocessing step. The preprocessing step was carried out
with the help of Alkhalil, SWAM, Aramorph and the dictionary. Any word suggested to
be a non-word error by all the aforementioned methods is annotated as hon-word. On the
other hand, any word suggested to be a real-word error by all these methods is annotated
as real-word. Otherwise, if there is any conflict between the methods, the word is manually

checked and annotated.

5.5.1 Handling Non-word Errors

The experiments concentrated on the ability of the system to detect and correct non-word
errors compared to the other techniques. In order to have a good evaluation, three types of
experiments were maintained. The first set of experiments concentrated on the problem of
detecting non-word errors. The second set of experiments targeted the correction process,
under the assumption of correct detection of errors. In the third set of experiments,

detection and correction of Arabic text has been tested.

The results of non-word detection are shown in Table 5-1 using different corpora. SWAM

non-word errors detection achieved around 65% F1-measure in the case of QALB corpus,

24 QALB is a manually annotated errors corpus consisting of user comments collected from Al-Jazeera
News webpage. It is mainly written in Modern Standard Arabic with almost one Million words with
243,075 errors.

67

and around 45% in the case of KFUPM corpus. It is clear from the results that SWAM non-
word errors detection accuracies are lower as compared to Aramorph. The main reason for
this is related to the lexicon lists used by SWAM. However, the results can be improved if

SWAM’s lexicon lists have been revised by an Arabic expert.

Table 5-1 Non-word error detection results

Corpus Detection Total Detection

Name Method errors | Recall Precision F1
SWAM 53.17 86.50 65.85
Aramorph 78.97 85.16 81.95
QALB Dictionary | %% [5204 [6432 | 58.08
charNgrams 27.54 22.20 24.58
SWAM 56.39 37.85 45.30
Aramorph 66.65 44.26 53.19
KFUPM Dictionary 90215 35.40 17.50 23.42
charNgrams 24.32 471 7.88

In the case of correction process using HMM, the HMM model was built using a manually
annotated corpus, NEMLAR?® based on different features. The features are Root, Stem,
Lemma, AffixSPattern, AffixOPattern, FSPattern and FOPattern. In order to determine the
best HMM model features and the best window size, we used random set of sentences as
validation set and maintained different experiments with different window sizes and

features. The experiments employ the error patterns method for generation of candidates.

Table 5-2 Sample experiments with different window size and different model features

del Window Topl Top5 Topl0
Model Features Size R | P F| R P F | R P | F1
R&S&L 3 521 | 595 | 556 | 39.58 | 45.24 | 42.22 | 50.00 | 57.14 | 53.33
R&S 3 417 | 488 | 449 | 3958 | 46.34 | 42.70 | 58.33 | 68.29 | 62.92
R&S&ASP&AOP 3 | 1562 | 16.67 | 16.13 | 51.04 | 54.44 | 52.60 | 71.88 | 76.67 | 74.19
R&S&FSP&FOP 3 6.25 | 7.32 | 6.74 | 52.08 | 60.98 | 56.18 | 72.92 | 85.37 | 78.65
R&S&L&ASP&AOP | 3 | 17.71 | 19.32 | 18.48 | 50.00 | 54.55 | 52.17 | 67.71 | 73.86 | 70.65
R&S&L&ASP&AOP | 3 729 | 854 | 7.87 | 54.17 | 63.41 | 58.43 | 66.67 | 78.05 | 71.91

25 Manually annotated words from journalistic Arabic texts of different categories. Each
word in the corpus was annotated with its prefix, root, pattern and suffix. The corpus has
almost 500K words

68

S&ASP&AOP 3 13.54 | 14.44 | 13.98 | 51.04 | 54.44 | 52.69 | 73.96 | 78.89 | 76.34
S&FSP&FOP 3 7.29 | 843 | 7.82 | 52.08 | 60.24 | 55.87 | 73.96 | 85.54 | 79.33
S&L&ASP&AOP 3 17.71 1 19.32 | 18.48 | 53.12 | 57.95 | 55.43 | 67.71 | 73.86 | 70.65
R 5 312 | 3.66 | 3.37 | 27.08 | 31.71 | 29.21 | 41.67 | 48.78 | 44.94

R& FSP&FOP 5 9.38 | 10.84 | 10.06 | 38.54 | 44.58 | 41.34 | 62.50 | 72.29 | 67.04
R&S 5 417 | 4.88 | 449 | 40.62 | 47.56 | 43.82 | 56.25 | 65.85 | 60.67
R&S&ASP&AOP 5 15.62 | 16.85 | 16.22 | 48.96 | 52.81 | 50.81 | 67.71 | 73.03 | 70.27
R&S&L 5 6.25 | 7.32 | 6.74 | 32.29 | 37.80 | 34.83 | 50.00 | 58.54 | 53.93
R&S&L&ASP&AOP 5 16.67 | 18.18 | 17.39 | 50.00 | 54.55 | 52.17 | 63.54 | 69.32 | 66.30
R&S&L&FSP&FOP 5 6.25 | 7.32 | 6.74 | 53.12 | 62.20 | 57.30 | 64.58 | 75.61 | 69.66
S&FSP&FOP 5 7.29 | 843 | 7.82 | 47.92 | 55.42 | 51.40 | 73.96 | 85.54 | 79.33

R 7 312 | 3.66 | 3.37 | 29.17 | 34.15 | 31.46 | 42.71 | 50.00 | 46.07
R&ASP&AOP 7 12.50 | 13.48 | 12.97 | 40.62 | 43.82 | 42.16 | 62.50 | 67.42 | 64.86
R&FSP&FOP 7 7.29 | 854 | 7.87 | 38.54 | 4512 | 41.57 | 60.42 | 70.73 | 65.17
R&S 7 417 | 4.88 | 449 | 40.62 | 47.56 | 43.82 | 56.25 | 65.85 | 60.67
R&S&ASP&AOP 7 14.58 | 15.56 | 15.05 | 52.08 | 55.56 | 53.76 | 69.79 | 74.44 | 72.04
R&S&L&ASP&AOP 7 17.71 | 19.32 | 18.48 | 50.00 | 54.55 | 52.17 | 64.58 | 70.45 | 67.39
R 9 3.12 | 3.61 | 3.35 | 22.92 | 26.51 | 24.58 | 39.58 | 45.78 | 42.46
R&S&ASP&AOP 9 15.62 | 16.67 | 16.13 | 50.00 | 53.33 | 51.61 | 70.83 | 75.56 | 73.12

Based on the experiments in Table 5-2 the next experiments are carried out using a window

of size 3 and the features of Root, Stem, Lemma, AffixSPattern and AffixOPattern.

In order to have a clear indication about the correction accuracies, experiments were

maintained with the assumption that the detection results are 100%. The non-word errors

were manually tagged as suspected errors. Table 5-3 shows the results of the correction

process of HMM compared to other techniques.

Table 5-3 Non-word error correction results (100% Detection)

. Correction
2 Correction g::g;;?;?] S| Topl | Top5 | Topl0
3 Method S
(&} Method P P P
HMM EP 18.66 | 47.33 60.34
o HMM ED 27.16 | 49.46 59.27
- NGRAMS EP 8| 3051 | 63.38 69.14
g NGRAMS ED ©| 3154 | 61.06 64.61
HMM&Ngrams EP 37.20 | 68.80 73.15
HMM&Ngrams ED 4355 | 63.88 65.71
HMM EP 17.84 | 54.34 70.14
s HMM ED 3437 | 62.18 72.19
% NGRAMS EP g 37.78 | 75.09 79.09
L NGRAMS ED S| 42.04 | 74.66 76.96
< HMM&Ngrams EP 4536 | 77.94 81.52
HMM&Ngrams ED 56.64 | 76.53 77.98

69

For testing the detection and correction accuracies, another experiments were conducted

using QALB and KFUPM corpora. Table 5-4 shows the experimental results comparing

the different used techniques.

Table 5-4 Non-word error correction results

Correction
é Detection | Correction %a::' g Topl Tops Top10
g| Method | Method | yieoq (FIl R | p | A | R| P | R | R | P | R
SWAM HMM EP 10.51| 17.09 | 13.02 |25.64|41.71| 31.76 | 31.89 |51.89|39.50
SWAM HMM ED 15.33| 24.93 | 18.98 |26.51|43.13| 32.84 | 30.57 |49.74|37.87
SWAM | NGRAMS EP 15.65| 25.46 | 19.38 |32.70|53.20| 40.50 | 35.39 |57.58|43.84
SWAM | NGRAMS ED 16.66| 27.11 | 20.64 |32.34|52.62| 40.06 | 33.46 |54.43|41.44
o Aramorph | NGRAMS EP 23.35| 25.18 | 24.23 |51.25|55.27| 53.18 | 55.92 |60.31|58.03
— | Aramorph | NGRAMS ED & [24.38] 26.29 | 25.30 [49.91|53.82| 51.79 | 52.86 |57.00|54.85
S HMM S
SWAM & EP 19.39| 31.54 | 24.01 |35.20|57.26| 43.60 | 37.47 |60.96|46.41
NGrams
HMM
SWAM & ED 23.06| 37.52 | 28.57 |33.07[53.80| 40.96 | 33.67 |54.77|41.70
NGrams
SWAM HMM EP 11.41| 7.66 9.17 |33.43|22.44| 26.86 | 41.78 |28.04|33.56
SWAM HMM ED 2181| 14.64 | 1752 |38.25|25.67| 30.72 | 42.63 |28.62|34.25
SWAM | NGRAMS EP 22.40| 15.04 | 18.00 [43.91|29.47| 35.27 | 46.25 |31.05|37.15
SWAM | NGRAMS ED 2453| 16.47 | 19.71 |43.65|29.30| 35.07 | 44.55 |29.90|35.79
s Aramorph | NGRAMS EP o 29.56| 19.35 | 23.39 |57.79(37.83| 45.73 | 61.03 |39.95|48.29
% Aramorph | NGRAMS ED N 32.75| 21.44 | 25,91 |58.01|37.97| 45.90 | 59.63 |39.03|47.18
T HMM S
X SWAM & EP 27.90| 18.72 | 22.41 |45.53[30.56| 36.57 | 47.70 |32.02|38.32
NGrams
HMM
SWAM & ED 21.85| 14.67 | 17.55 |38.25|25.67| 30.72 | 42.67 |28.64|34.28
NGrams

The results in Table 5-3 and Table 5-4 are relatively low compared to other systems. This

is due to several factors. The morphological analysis lexicon lists need more revision for

improving the detection results, as mentioned earlier. In addition, a larger corpus should

be used by the error model to improve the coverage of candidates' generation. Finally, a

larger annotated corpus should be used by the HMM model to improve the correction

accuracy.

70

5.5.2 Handling Real-word Errors

The task of real-word error detection was not easy to handle using the suggested model and
the existing data. The main problem was determining the threshold that should be used for
the detection of real-word errors. A set of experiments were developed to extract the
threshold ranges to be used for the task of detection of the real-word errors. The
experiments were mainly based on QALB corpus. A set of 350 sentences were selected,
each having a single real-word error within a window size of 11. Moreover, two other sets
of sentences were generated from the selected sets. The first set contains error free
sentences, where each error word (real-word or non-word) was replaced with its correction.
The second set of sentences contain real word errors only. This was achieved by replacing
any non-word error in these sentences with their correction. The distributions of forward,
backward and forward-backward probabilities for each set were generated. Sample results
of the probabilities distribution are shown in Table 5-5. The remaining results are provided
in Appendix C. It is clear that there are overlapping areas between the probabilities of the
real-word errors of the selected set (Red color) and the two generated sets: error-free set
(Blue color) and only real-word error set (Green color). This overlapping introduces a

problem in the decision of whether a detected error is considered real-word or not.

71

Table 5-5 Real-word error probabilities distribustion

Features

Forward

Backward

Forward-Backward

Histogram of multiple variables
R30.sta 45v*10000c

W_F1_Correct = 9812*10* normal(x, -10.2548; 10.2018)
W_F1_SingleE_Real = 372%10Fnormal (x, -22 8534, 15.79)

Histogram of multiple variables

R20.sta 45v10000¢
[_B1_Correct = 981210 narmal(x, -9.6816,
B1_SingleE_Real = 372*10*normallx; -11

10.2455)
12.2437)
100215, 10.8326)

Histograrn of multiple variables
R30.sta 45w 10000c
W_FB1_Correct = 9812"20"nomal(x; - 11.9358; 15.9422)

W_FB1_SingleE_Real = 272720 normal(x; - 16 2295; 19.34)
W_FB1_SingleE_Correct = 9441* 20" normalix; -12 2711, 16.33586)

W_F1_SingleE_Correct = 944171 0*normalix; -10 165: 10.2025) W_B_SingleE_Comect = 944110 normal(x;
7000 00 — - 8000
7000
6000 6000
6000
5000 5000
R 5000
£ 4000 24000 @
S = 8
2 - 5 4000
2 3000 2 3000 8
3000
2000 2000
2000
1000 1000
W_F1_Correct) W_B1_Correct oo
0 W_F1_SingleE_Real 0 ﬁ w,m ?mg}eEjea\ 0 w{glig‘oﬂg%& ot
o E E W_F1_SingleE_Correct S0 .0 70 _B1_SingleE_Correct /_FB1_: |
M 2 P BB g B g BT 00 80 -60 40 00 60 200 20 60 W_FB1_SingleE_Correct
-120 -80 -40 0 40 80
Histogram of multiple variables Histogram of multiple variables
Histogram of multiple variables R10_ASF20. AOP30 5ta 45 10000¢ R10_ASP20_AOP30 sta 45v*10000c
R10_ASPI0_AOP30 sta 45v"10000¢ W_B1_Correct = 981250 normal(x -79 7914 74 3127) W_FB1_Correct = 9812750 normal(x -113 7831; §2.1209)
R W_F1_Correct = 981250 normall, -75.7202; 67 5123) W B1_SingleE_Real = 372507 nomalp -85 7348, 74 3095) W_FB1_SingleE_Real = 372"50"ormal(x; -172.3785; 110 4367)
W_F1_SingleE_Real = 27250 normal(x; -160.3408; 112.7227) T S e A =507 i] W_FB1_SingleE_Correct = 944150 normal(x, - 117 928; 951429
W FSingleE Correct = 8441°3Crnormaltc -76 741 67 8764) WW_B1_SingleE_Comect = 9441%50%normal(x, -83.3346; 77.7333) _FB1_=inglek_| [)
6000 6000
6000
& 5000 5000 5000
4000 4000 4000
ASP s s 5
5 3000 5 3000 ‘5 3000
2 9 o
z =
& 2000 2000 D
1000 a
L 1000 1000
7]
AO P 7 é W_F1_Correct
0 W_F1_SingleE_Real W_B1_Correct 7 \W_FB1_Correct
-450 350 -250 -150 -50 50 W_F1_SingleE_Correct 0 N W_B1_SingleE_Real W_FB1_SingleE_Real

-400 -300 -200 -100 0

B
450 3500 250 150 50 50 [[H W_B1_SingleE_Correct
0

-400 3000 200 -100

S W
200 [W_FB1_SingleE_Correct

-300 -200 -100 0 100
-150 500 500 150

-600 -500 -400
-550 450 -350 -250

72

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter concludes and summarizes the main contributions and outcomes of this thesis.
The main goal of this research is to support spell checking detection and correction for
Arabic text. This chapter also discusses the main conclusions, the limitations, the possible

enhancement and the future research directions

6.1 Conclusions

Spell checking detection and correction capabilities are vital in most state of the art text
editing related applications. They are also important in correcting errors of Optical
Character Recognition (OCR) output including offline and on-line text recognition
systems. In this thesis, we designed and implemented a set of tools for supporting the task
of error detection and correction. The developed tools are integrated into a single prototype

system for error detection, correction candidates' generation and error correction.

A morphological analyzer that uses a Sliding Window Asynchronous Matching (SWAM)
approach has been developed and extended to include an additional disambiguation process
and bigrams compatibility checking for morphological analysis. SWAM is a lexicon driven
approach that uses morphological derivational forms (window patterns) to extract the
probable morphological feature tuples for any given input word. The morphological feature
tuple includes the root, the stem, the lemma, the pattern, and the affixes. The original

existing SWAM lexicon lists were not enough to run the experiments, as many mapped

73

roots and patterns were not present in the lists. This forced us to develop our own lists in
order for SWAM to work. In this regards, we generated the required lists from Alkhalil
morphological system. The generated lists were large and required an extensive revision,
which we partially did. However, the lists still have some extra elements which negatively
affect the results accuracy. Hence, the help of an expert in the Arabic language is vital for
revising those lists and improving the system’s performance. SWAM was also extended to
perform affixes compatibility checking in order to reject all non-compatible patterns.
Features disambiguation was handled using a Markovian based Viterbi algorithm. This
morphological analysis and disambiguation system can be described as a root-based
stemmer, lemmatizer, and morphological pattern extractor which can be used to serve
different NLP applications. The morphological analyzer is used here to support the error
model and the error detection process. The results of the morphological analyzer reported
an accuracy of 97.13% for roots, 98.20% for stems and 95.80% for lemmas, based on

NEMLAR corpus.

We designed and implemented a novel data driven error model that is based on the
morphological patterns. The error model learns the types and forms of the language
patterns from an already annotated corpora. SWAM was used in building the model. The
model supports the candidate's generation and ranking task for any spelling correction
system. Based on QALB and KFUPM corpora, the error model effectiveness was
evaluated. The results show that the error model can support the correction process with
almost 85% coverage; this ratio can be improved by including more corpora in the learning
process. Moreover, the error model provides a simple way of analyzing the types of errors

for any annotated corpora. It generates a set of reports that can provide an indication of the

74

complexity of corpus errors, which assists in attempting to better understand the types of

generated errors.

A spell checking prototype that handles different error types was investigated. The spell
checker was developed through an integration between the system components, the
morphological analyzer, the error model, and the HMM model. The general spelling
detection and correction was evaluated using a manually annotated corpora, viz., QALB?¢
and KFUPM corpora. The results are relatively low compared to the other systems. This is
due to several factors. The morphological analysis lexicon lists contain extra entries that
affect the detection accuracy, as the lexicon lists are not completely verified. The error
model does not provide the correct correction candidates for all the errors, it has a limited

coverage. Moreover, the HMM model was trained with a limited size dataset.

6.2 Future Directions

The morphological analysis lexicon lists need more revision by experts in the Arabic
language for improving the detection results. Also, a larger corpus should be used by the
error model to improve the coverage of candidates generation and a larger dataset should
be used by the HMM model to provide more accurate probabilities and improve the

correction process.

The morphological analysis and disambiguation system can be extended by incorporating
more functionalities. For example, the POS tagging feature can be integrated with SWAM

existing features.

26 QALB is a manually annotated errors corpus consisting of user comments collected from Al-Jazeera
News webpage. It is mainly written in Modern Standard Arabic with almost one Million words with
243,075 errors.

75

The spell correction component of the spell checker can be investigated by applying
features generated from another system, rather than SWAM. For example, Alkhalil system
can be used for annotating any plain corpus and the generated features can then be used by

the HMM model for the correction process.

Different smoothing techniques for HMM parameters estimation can be used. Such
techniques may positively influence the model probabilities and hence may provide better

disambiguation or correction accuracies.

76

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]
[8]
[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

Y. Hassan, M. Aly, and A. Atiya, "Arabic Spelling Correction using Supervised
Learning," presented at the Proceedings of the EMNLP 2014 Workshop on
Arabic Natural Language Processing (ANLP), Doha, Qatar, 2014.

T. Zerrouki, Alhawaity, K., & Balla, A., "Autocorrection Of Arabic Common
Errors For Large Text Corpus,” presented at the In Proceedings of EMNLP
Workshop on Arabic Natural Language Processing: QALB Shared Task, Doha,
Qatar, 2014.

K. Kukich, "Technique for automatically correcting words in text,” ACM
Computing Surveys 1992.

A. Mahdi, "Spell Checking and Correction for Arabic Text Recognition,"
Master’s thesis, KFUPM University, 2012.

M. Nejja and Y. Abdellah, "Correction of the Arabic derived words using surface
patterns,” presented at the 2014 5th Workshop on Codes, Cryptography and
Communication Systems (WCCCS), El Jadida, Morocco, 2014.

M. Attia, Pecina, P., Samih, Y., Shaalan, K. F., & Van Genabith, J., "Improved
Spelling Error Detection and Correction for Arabic.," presented at the Coling
2012, Mumbai, India, 2012.

M. Al-Jefri, "Real-word error detection and correction in Arabic text," Master
thesis, King Fahd University of Petroleum and minerals, 2013.

M. Sawalha, "Open-source Resources and Standards for Arabic Word Structure
Analysis.," PhD, University of Leeds, 2011.

J. Mayfield and P. McNamee, "Single n-gram stemming," presented at the
Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval - SIGIR '03, Toronto, Canada, 2003.

I. A. Al-Sughaiyer and I. A. Al-Kharashi, "Arabic morphological analysis
techniques: A comprehensive survey,” Journal of the American Society for
Information Science and Technology, vol. 55, 2004.

A. H. Aliwy, "Arabic Morphosyntactic Raw Text Part of Speech Tagging System.
," PhD , University of Warsaw, 2013.

M. Ababneh, et al. , "Building an effective rule-based light stemmer for arabic
language to improve search effectiveness.,” Int. Arab J. Inf. Technol. , 2012.

N. Y. Habash, "Introduction to Arabic Natural Language Processing," Synthesis
Lectures on Human Language Technologies, vol. 3, pp. 1-187, 2010/01 2010.

T. Buckwalter, "Buckwalter {Arabic} Morphological Analyzer Version 1.0.,"
Linguistic Data Consortium (LDC), University of Pennsylvania,2002. Catalog
No:LDC2002L49., 2002.

T. Buckwalter, "Buckwalter Arabic Morphological Analyzer Version 2.0,"
Linguistic Data Consortium (LDC), Philadelphia,2004. Catalog
No:LDC2004L02., 2004.

A. Boudlal, A. Lakhouaja, A. Mazroui, A. Meziane, M. Bebah, and M. Shoul,
"Alkhalil morpho sysl: A morphosyntactic analysis system for arabic texts," in
International Arab conference on information technology, Benghazi Libya, 2010.

77

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

M. Altabba, A. Al-Zaraee, and M. A. Shukairy, "An Arabic morphological
analyzer and part-of-speech tagger.,” A Thesis Presented to the Faculty of
Informatics Engineering, Arab International University, Damascus, Syria, 2010.
M. Sawalha, Eric Atwell, and Mohammad AM Abushariah., "SALMA: standard
Arabic language morphological analysis.,” Communications, Signal Processing,
and their Applications (ICCSPA), 2013.

M. A.-B. Arfath Pasha, Mona Diab, Ahmed El Kholy, Ramy Eskander, Nizar
Habash, Manoj Pooleery, Owen Rambow, and Ryan M. Roth "Madamira: A fast,
comprehensive tool for morphological analysis and disambiguation of Arabic.,"”
Proceedings of the Language Resources and Evaluation Conference (LREC),
Reykjavik, Iceland. , 2014.

I. Bounhas, R. Ayed, B. Elayeb, and N. Bellamine Ben Saoud, "A hybrid
possibilistic approach for Arabic full morphological disambiguation,” Data &
Knowledge Engineering, vol. 100, 2015.

S. Khoja, "APT: Arabic Part-of-Speech Tagger. ," presented at the Proceedings of
the Student Workshop at NAACL, Pittsburgh, PA, USA, 2001.

A. Boudlal, Bebah, M. O. A. O., Lakhouaja, A., Mazroui, A., & Meziane, A., "A
Markovian approach for arabic root extraction.,”" The International Arab Journal
of Information Technology, 2011.

Y. Attia. M., M., and Choukri., K., "Specifications of the Arabic Written Corpus
produced within the NEMLAR project;," http://www.nemlar.org/, 2005.

M. El-Defrawy, Y. EI-Sonbaty, and N. A. Belal, "CBAS: Context Based Arabic
Stemmer," International Journal on Natural Language Computing (IJNLC), vol.
4, 2015.

S. Alansary, Magdy Nagi, and Noha Adly., "Building an international corpus of
Arabic (ICA): Progress of compilation stage.," presented at the 7th International
conference on language engineering, Egypt, 2007.

M. Hadni, A. Lachkar, and S. A. Ouatik, "A new and efficient stemming
technique for Arabic Text Categorization,” presented at the Multimedia
Computing and Systems (ICMCS), 2012 International Conference on IEEE,
Tangiers, Morocco, 2012.

L. Al-Sulaiti, and Eric Steven Atwell., "The design of a corpus of contemporary
Arabic.," International Journal of Corpus Linguistics, 2006.

S. Deorowicz, and Marcin G. Ciura. , "Correcting spelling errors by modelling
their causes.,” International journal of applied mathematics and computer science
2005.

B. Hamza, et al., "For an Independent Spell-Checking System from the Arabic
Language Vocabulary," International Journal of Advanced Computer Science and
Applications, 2014.

W. Zaghouani, Taha Zerrouki, and Amar Balla. , " A Rule-Based Correction
Method of Common Arabic Native and Non-Native Speakers’ Errors.," presented
at the In Proceedings of ACL Workshop on Arabic Natural Language Processing,
Beijing, China, 2015.

G. Hicham, Y. Abdallah, and B. Mostapha, "Introduction of the weight edition
errors in the Levenshtein distance,” International Journal of Advanced Research
in Artificial Intelligence, vol. 1, 2012.

78

http://www.nemlar.org/

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

E. Mays, Damerau, F. J., & Mercer, R. L., "Context based spelling correction,"
Information Processing & Management, 1991.

A. Wilcox-O’Hearn, Hirst, G., & Budanitsky, A. , "Real-word spelling correction
with trigrams: A reconsideration of the Mays, Damerau, and Mercer model.,"
Computational Linguistics and Intelligent Text Processing, 2008.

A. Islam, and Diana Inkpen. , "Real-word spelling correction using Google Web
IT 3-grams,” presented at the Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing Stroudsburg, PA, USA, 2009.

C. Ben Othmane Zribi, and Mohamed Ben Ahmed, "Detection of semantic errors
in Arabic texts,” Artificial Intelligence, vol. 1, 2013.

N. Tomeh, et al "A Pipeline Approach to Supervised Error Correction for the
QALB-2014 Shared Task," presented at the In Proceedings of EMNLP
Workshop on Arabic Natural Language Processing: QALB Shared Task, Doha,
Qatar, 2014.

M. N. Nawar, & Ragheb, M. M. , "Fast and Robust Arabic Error Correction
System," presented at the In Proceedings of EMNLP Workshop on Arabic
Natural Language Processing: QALB Shared Task, Doha, Qatar, 2014.

K. Shaalan, Rana Aref, and Aly Fahmy., "An approach for analyzing and
correcting spelling errors for non-native Arabic learners,” presented at the
Informatics and Systems (INFOS), The 7th International Conference on. IEEE,
Cairo University, Egypt, 2010

K. F. Shaalan, Attia, M., Pecina, P., Samih, Y., & van Genabith, J., "Arabic Word
Generation and Modelling for Spell Checking," presented at the The eighth
international conference on Language Resources and Evaluation (LREC),
istanbul, turkey, 2012.

A. Hassan, Sara Noeman, and Hany Hassan. , "Language Independent Text
Correction using Finite State Automata,” presented at the The Third International
Joint Conference on Natural Language Processing (IJCNLP), Hyderabad, India,
2008.

B. Mohit, Rozovskaya, A., Habash, N., Zaghouani, W., & Obeid, O., "The first
QALB shared task on automatic text correction for Arabic,” presented at the In
Proceedings of EMNLP Workshop on Arabic Natural Language Processing:
QALB Shared Task, Doha, Qatar, 2014.

M. I. Alkanhal, M. A. Al-Badrashiny, M. M. Alghamdi, and A. O. Al-Qabbany,
"Automatic stochastic Arabic spelling correction with emphasis on space
insertions and deletions," IEEE Transactions on Audio, Speech, and Language
Processing, 2012.

79

APPENDICES
Appendix A. The Details Results of Morphological Analysis and Disambiguation
Table 0-1 Result of morphological analysis using NEMLAR corpus

(Variable and Fixed words)

Without affixes compatibility

Phase | Phase 11

:S?DPS Root Stem Lemma R&FS | R&FO | S,L, | ASP | R&S&

L R P P R &R FSP

Affix Original Pattern (AOP) 98.58 95.13 | 46.99 | 33.88 70.57 56.00 | 79.21 | 91.72 | 73.15 | 72.25
Affix Surface Pattern (ASP) 98.99 96.03 | 55.63 | 44.01 65.76 75.13 | 74.78 | 86.15 | 96.35 | 95.26
Full Original Pattern (FOP) 98.70 95.46 | 55.39 | 34.23 71.09 66.80 | 94.48 | 92.33 | 73.47 | 72.90
Full Surface Pattern (FSP) 99.08 96.74 | 72.16 | 44.89 74.96 96.95 | 89.21 | 87.38 | 96.88 | 96.89
Lemma (L) 98.98 95.80 | 55.24 | 33.54 94.30 64.04 | 79.69 | 94.63 | 73.21 | 72.78

Original Pattern (OP) 98.94 95.95 | 54.93 | 34.45 81.54 64.20 | 80.14 | 93.00 | 73.41 | 73.03

80

Root (R) 99.93 97.13 | 96.27 | 53.99 82.96 97.20 | 97.33 | 96.38 | 97.14 | 97.08
Root (R), Affix Original Pattern (AOP) 98.44 94.72 | 46.73 30.15 68.84 55.74 | 78.73 | 9138 | 72.78 | 71.90
Root (R), Affix Surface Pattern (ASP) 97.98 94.83 | 55.21 | 38.12 63.71 7419 | 7431 | 8538 | 94.96 | 93.90
Root (R), Full Original Pattern (FOP) 98.55 95.02 | 55.04 | 3047 69.29 66.45 | 93.86 | 9192 | 73.09 | 7251
Root (R), Full Surface Pattern (FSP) 98.19 95.48 | 71.56 38.89 72.58 95.56 | 88.61 | 86.53 | 95.47 | 95.43
Root (R), Lemma (L) 98.97 95.57 | 55.06 30.89 81.13 63.82 | 7959 | 9435 | 7291 | 7253
Root (R), Lemma (L), Affix Original Pattern (AOP) 98.20 94.62 | 46.65 | 30.07 68.84 55,59 | 78.57 | 9138 | 7256 | 71.69
Root (R), Lemma (L), Full Original Pattern (FOP) 98.20 94.62 | 46.65 | 30.07 68.84 55,59 | 78,57 | 91.38 | 72.56 | 71.69
Root (R), Stem (S) 99.84 | 96.18 | 7401 | 52.76 | 7153 | 7528 | 81.04 | 94.76 | 96.22 | 95.31
Root (R), Stem (S), Affix Original Pattern (AOP) 98.44 94.72 | 46.73 30.15 68.84 55.74 | 78.73 | 91.38 | 72.78 | 71.90
Root (R), Stem (S), Affix Surface Pattern (ASP) 97.98 94.83 | 55.21 38.12 63.71 7419 | 7431 | 85.38 | 94.96 | 93.90
Root (R), Stem (S), Full Original Pattern (FOP) 98.44 94.72 | 46.73 30.15 68.84 55.74 | 78.73 | 91.38 | 72.78 | 71.90
Root (R), Stem (S), Full Surface Pattern (FSP) 97.98 94.83 | 55.21 38.12 63.71 7419 | 7431 | 85.38 | 94.96 | 93.90
Root (R), Stem (S), Lemma (L) 98.80 95.01 | 47.23 | 30.53 70.49 55.75 | 78.92 | 93.53 | 72.70 | 71.90

Root (R), Stem (S), Lemma (L),
97.70 94.11 | 4441 28.36 63.18 55.33 | 73.39 | 84.81 | 7222 | 71.37

Affix Surface Pattern (ASP), Affix Original Pattern (AOP)

Root (R), Stem (S), Lemma (L)

97.70 94.11 | 44.41 28.36 63.18 55.33 | 73.39 | 8481 | 72.22 | 71.37

, Full Surface Pattern (FSP), Full Original Pattern (FOP)

81

Stem (S) 99.95 98.20 | 75.90 | 97.16 85.19 76.84 | 82.73 | 96.93 | 98.45 | 97.37
Stem (S), Affix Original Pattern (AOP) 98.58 95.13 | 46.99 | 33.88 70.57 56.00 | 79.21 | 91.72 | 73.15 | 72.25
Stem (S), Affix Surface Pattern (ASP) 98.99 96.03 | 55.63 | 44.01 65.76 75.13 | 7478 | 86.15 | 96.35 | 95.26
Stem (S), Full Original Pattern (FOP) 98.58 95.13 | 46.99 | 33.88 70.57 56.00 | 79.21 | 91.72 | 73.15 | 72.25
Stem (S), Full Surface Pattern (FSP) 98.99 96.03 | 55.63 | 44.01 65.76 75.13 | 74.78 | 86.15 | 96.35 | 95.26
Stem (S), Lemma (L) 98.84 95.22 | 47.39 | 33.12 82.20 55.93 | 79.02 | 93.78 | 7298 | 72.07
Table 0-2 Result of morphological analysis using NEMLAR corpus
(' Variable and Fixed words)
With affixes compatibility
Phase 11 Phase 11
:SL,-I)DPS Root Stem Lemma R&FS | R&FO | S,L, | ASP | R&S&
L ,I'? P P R &R FSP
Affix Original Pattern (AOP) 98.57 95.20 | 63.13 | 44.70 76.55 69.72 | 90.03 | 93.22 | 76.46 | 76.59

82

Affix Surface Pattern (ASP) 98.77 96.07 | 72.28 53.16 71.42 87.44 | 84.74 | 87.49 | 96.49 | 95.88

Full Original Pattern (FOP) 98.63 95.52 | 65.68 | 44.96 76.92 72.65 | 9460 | 93.60 | 76.72 | 76.92

Full Surface Pattern (FSP) 98.82 96.76 | 79.88 | 53.92 76.99 96.93 | 89.17 | 88.32 | 96.92 | 96.87

Lemma (L) 98.78 95.80 | 68.49 42.87 95.02 7443 | 90.43 | 95.20 | 76.57 | 76.93

Original Pattern (OP) 98.81 95.98 | 68.38 45.41 83.73 7463 | 90.95 | 94.26 | 76.80 | 77.27

Root (R) 99.66 96.93 | 96.62 58.18 84.25 96.98 | 97.16 | 96.50 | 96.96 | 96.89

Root (R), Affix Original Pattern (AOP) 98.44 9479 | 62.69 | 39.74 74.68 69.37 | 89.48 | 92.80 | 76.04 | 76.20
Root (R), Affix Surface Pattern (ASP) 97.98 9489 | 71.70 | 48.11 69.26 86.31 | 84.22 | 86.72 | 95.14 | 94.54

Root (R), Full Original Pattern (FOP) 98.49 95.08 | 65.22 | 39.97 75.01 7227 | 9399 | 93.13 | 76.29 | 76.51

Root (R), Full Surface Pattern (FSP) 98.05 95.51 | 79.22 48.80 74.65 9555 | 88.59 | 87.47 | 9554 | 9545

Root (R), Lemma (L) 98.76 95.58 | 68.28 40.46 82.78 74.17 | 90.32 | 9494 | 76.26 | 76.68

Root (R), Lemma (L), Affix Original Pattern (AOP) 98.20 94.69 | 62.58 39.62 74.63 69.22 | 89.32 | 92.70 | 75.82 | 75.99
Root (R), Lemma (L), Full Original Pattern (FOP) 98.20 94.69 | 62.58 39.62 74.63 69.22 | 89.32 | 92.70 | 75.82 | 75.99
Root (R), Stem (S) 9953 | 96.03 | 85.74 | 57.24 | 76.85 | 87.34 | 91.72 | 9541 | 96.26 | 95.78

Root (R), Stem (S), Affix Original Pattern (AOP) 98.44 94.79 | 62.69 | 39.74 74.68 69.37 | 89.48 | 92.80 | 76.04 | 76.20
Root (R), Stem (S), Affix Surface Pattern (ASP) 97.98 9489 | 71.70 | 48.11 69.26 86.31 | 84.22 | 86.72 | 95.14 | 94.54
Root (R), Stem (S), Full Original Pattern (FOP) 98.44 94.79 | 62.69 39.74 74.68 69.37 | 89.48 | 92.80 | 76.04 | 76.20
Root (R), Stem (S), Full Surface Pattern (FSP) 97.98 94.89 | 71.70 48.11 69.26 86.31 | 84.22 | 86.72 | 95.14 | 94.54

83

Root (R), Stem (S), Lemma (L) 98.63 95.03 | 63.19 | 40.08 75.91 69.42 | 89.66 | 94.33 | 7598 | 76.25
Root (R), Stem (S), Lemma (L),
97.69 94.16 | 59.33 | 37.36 68.63 68.89 | 83.27 | 8598 | 75.43 | 75.61
Affix Surface Pattern (ASP), Affix Original Pattern (AOP)
Root (R), Stem (S), Lemma (L)
97.69 94.16 | 59.33 | 37.36 68.63 68.89 | 83.27 | 8598 | 7543 | 75.61
, Full Surface Pattern (FSP), Full Original Pattern (FOP)
Stem (S) 99.65 98.02 | 87.67 | 97.67 89.97 89.13 | 9352 | 9757 | 98.44 | 97.84
Stem (S), Affix Original Pattern (AOP) 98.57 95.20 | 63.13 | 44.70 76.55 69.72 | 90.03 | 93.22 | 76.46 | 76.59
Stem (S), Affix Surface Pattern (ASP) 98.77 96.07 | 72.28 | 53.16 71.42 87.44 | 84.74 | 87.49 | 96.49 | 95.88
Stem (S), Full Original Pattern (FOP) 98.57 95.20 | 63.13 | 44.70 76.55 69.72 | 90.03 | 93.22 | 76.46 | 76.59
Stem (S), Full Surface Pattern (FSP) 98.77 96.07 | 72.28 | 53.16 71.42 87.44 | 84.74 | 87.49 | 96.49 | 95.88
Stem (S), Lemma (L) 98.66 95.24 | 63.37 | 42.45 87.04 69.62 | 89.77 | 94.57 | 76.26 | 76.44

84

Appendix B. The Error Model Statistics Details

The generated error model analysis statistics are based on QALB manually annotated
corpus, the statistics are as follows:

- A detailed corpus errors with their frequencies and the number of distinct corpus
word errors is shown in Table 0-3. We represent the number of distinct corpus errors
as the number of non-repeated word errors plus the number of repeated word errors.
For example, almost 44% of the QALB corpus are a result of substitution error;
more than 95% of the errors are a result of single letter substitution.

- Detailed corpus error patterns with their frequencies are shown in Table 0-4. The
statistics include the ratios of the model generated error patterns based on the
number of distinct errors in the corpus. This analysis gives us an indication of how
effective the suggested error model will be in providing correction candidates for

each types of spelling errors.

85

Table 0-3 QALB Annotated Corpus Errors Statistics

Error Words

Change Type 8
D
‘:% # Error Words s Non Repeated Repeated
© (%) P
** # (%) Total (%) # (%) Total (%)
Space 9233(3.80) 3606(78.46) 990(21.54)
Punctuation 1 13958(5.74) 6314 1376
Other Char 4725(1.94) 2708(87.52) 386(12.48)
< Space 147(0.06) @ 84(92.31) 3 7(7.69) 3
£ Other Char 2 572(0.24) 914(0.38) = | 459(92.35) 702 o 38(7.65) 54 <
8 Mixed 195(0.08) & | 159(94.64) o 9(5.36) reg
= Space 40(0.02) 2] 38(97.44) =] 1(2.56) ~
Other Char 3 82(0.03) 1454(0.60) 82(100.00) 212 0(0.00) 38
Mixed 1332(0.55) 92(71.32) 37(28.68)
Any Char >3 2944(1.21) 1797(85.82) 297(14.18)
Space 5184(2.13) 2492(82.35) 534(17.65)
Punctuation 1 358(0.15) 14237(5.86) 0(0.00) 6849 9(100.00) 1632
Other Char 8695(3.58) 4357(80.00) 1089(20.00)
c o fgﬁgfion 79971(32.90) @ | 24926(72.46) S | 9472(27.54))
2 2 81320(33.45) | 25849 | X 9585 | 9
g Other Char 1046(0.43) % | 670(87.35) = | 97(12.65) T
a Mixed 303(0.12) S | 253(94.05) 8 16(5.95) 3
Punctuation @ Rt A
Other Char 3 473(0.19) 962(0.40) 108(77.70) 499 31(22.30) 69
Mixed 489(0.20) 391(91.14) 38(8.86)
Any Char >3 1149(0.47) 664(89.49) 78(10.51)
Hamza 69321(28.52) 5723(61.30) 3613(38.70)
Taamarbota 10263(4.22) ~ | 2154(61.37) | 1356(38.63)
§ Yaa ! 6035(2.48) 103058(42.40) § 739(66.28) 13113 3 | 376(33.72) 6274 =)
2 Other 17439(7.17) < | 4497(82.88) & | 929(17.12) =
7 HamzaHaa 1037(0.43) S | 257(69.46) © | 113(30.54) =1
E Others 2 [~ 2455(1.01) 34920144 | 5 [op1(groy) | ‘*%8 I [2naso) | *® | 8
Any Char 3 123(0.05) = 89(89.00) 11(11.00)
Any Char >3 29(0.01) 26(96.30) 1(3.70
Space 51(0.02) 47(95.92) 2(4.08)
s Other ! 390(0.16) 448(0.18) _|__324(94.46) 372 19(5.54) 22
= NoSpace Chars 23(0.01) N 23(100.00) 0(0.00)
é; Mixed 2 7(0.00) 30(0.01) % 7(100.00) 30 § 0(0.00) 0 N
g NoSpaf:e Chars 3 2(0.00) 20(0.01) @ 2(100.00) 20 0(0.00) 0
[Mixed 18(0.01) 18(100.00) 0(0.00)
Any Char >3 32(0.01) 32(100.00) 0(0.00)

86

2 3207(1.32) 2087(88.81) 263(11.19)
Two Operations 3 6085(2.50) 16646(6.85) 2602(84.79) | 8888 483(15.21) | 1385
>3 7354(3.03) o [_4109(8654) = [639(13.46) -
- 3 331(0.14) = [243(92.40) R 20(7.60) ~
5 Three = @ S
X Operations 4 420(0.17) 2171(0.89) s 332 1497 = 29 136 (;f",
= >4 1420(0.58) S [922(91.38) Q 87(8.62) &
Four 4 7(0.00) = [7(100.00) S 0(0.00) S
Operations 5 7(0.00) 64 7(100.00) 63 0(0.00) 1
>5 51(0.02) 49(98.00) 1(2.00)
No Change 23(0.01) 19(95.00) 1(5.00)
Totals 243075 68253 [76.23] 21283[23.77]

87

Table 0-4 The statistics of QALB distinct error patterns

Distinct Error Words

Error Patterns

Change Type (DEW)
TEP: Total Error Patterns| NREP Non-repeated EPattern| REP Repeated EPattern
#DEW TEP NREP REP TEP NREP | REP TEP NREP REP
(%) (%) (%) (%) (%) (%) (%) (%) (%)
1624 924 700
Space 4596
P . (534) | (20.10) | (1523) 3906 2693 1213
Punctuation 1 7690 e s — (50.79) (35.02) (15.77)
Other Char 3094 (73.76) (57.18) (16.58)
76 66 10
Space o1 ©352) | (7253) | (10.99)
367(73.84 | 304 63 602 513 89
Other Char 2 497 756
5 5) (61.17) | (1268) | (79.63) | (67.86) | (11.77) c834 5184 1650
3 i = 159 143 16 6334) | (4804) | (15.29)
2 Mixed 168 S 9464) | (85.12) | (9.52) (3. : :
Space 39 30 23 !
(76.92) | (58.97) | (17.95)
80 78 2 237 189 48
Other Char 3 | 82 | 250 9756) | (9512) | (244) | (9480) | (75.60) | (19.20)
. 127 88 39
Mixed 129 ©9845) | (68.22) | (30.23)
2089 1789 300
Any Char >3 2094 99.76) | (85.43) | (14.33)
1865 1449 416
Space 3026 (61.63) | (47.88) | (13.75)
9
. 9 0 4730 3455 1275
Punctuation 1 9 8481 100.00 0.00 (100.00 55.77 4074 15.03
)
2856 2006 850
Other Char 5446 (52.44) (36.83) (15.61)
Space 3439 11249 6473 4776
- Punctuation 8 (32.70) (18.82) (13.88)
o n
S 11959 | 7032 | 4927 17786 11391 6395
= 2 35434 q 461 337 124
z Other Char 767 @ 6010) | (4394) | (16.47) | (33.75) | (19.85) | (13.90) | (3933) | (25.19) | (14.14)
Mixed 269 249 223 26
(9257) | (82.90) | (9.67)
Punctuation
124 88 36
Other Char 3 139 568 (89.21) (63.31) (25.90) 491 406 85
(86.44) | (71.48) | (14.96)
Mixed 429 367 318 49(11.4
(85.55) | (74.13) 2)
606 497 109
Any Char >3 742 8167) | (66.98) | (14.69)
3432 1773 1659
2 Hamza 9336
2 1 19387 5 (3(%4) (1;3;;8) (1376736) 8545 5305 3240 9965 6414 3551
Z Taamarbota 3510 S (18.46) 612) | (0sa | (@408 | (2736) | (167) | (4732) | (3046) (16.86)
@ Yaa 1115 450 209 241

88

@036) | (18.74) | (2L61)
4015 3038 977
Others 5426 7400) | (55.99) | (18.01)
223 138 85
HamzaHaa) 370 i ©027) | (37.30) | (22.97) | 1293 994 299
Store 173 1070 856 214 | (8380) | (64.42) | (19.38)
©122) | (7298 | (18.24)
100 89 11
Any Char 3 100 (100.00) | (89.00) | (11.00)
27 26 1
Any Char >3 27 (100.00) | (96.30) | (3.70)
Space 49 46 42 4
p . 504 9388) | (85.71) | (8.16) 333 280 53
otere ™ 285 237 48 ©452) | (72.07) | (13.45)
(83.09) | (69.10) | (13.99)
- NoSpace 23 23 23 0 30
s Chars , % (100.00) | (100.00) | (0.00) 0 | 00| O
3 e ; o 7 7 0 10000) | U0 | (0.00) 414 360 54
& = (100.00) | (100.00) | (0.00) ©697) | (7563) | (11.34)
|‘_E NoSpace 2 2 2 0
Chars . 2 (100.00) | (100.00) | (0.00) 19 18 1
Vied ” 17 16 1 (95.00) | (90.00) | (5.00)
(94.44) | (8889) | (556)
32 32 0
Any Char >3 32 (100.00) | (100.00) | (0.00)
2104 1791 313
2 | 2350 8953) | (7621) | (1332)
. 2657 2125 532 9434 | 7933 | 1501
Two Operations™ | 3 | 3175 | 10273 8369) | (66.93) | (16.76) | (91.83) | (77.22) | (14.61)
4673 4017 656
>3 | 4748 98.42) | (84.60) | (13.82)
5 | 268 250 222 | 28(10.6
- o (95.06) | (84.41) 5)

2 Three o | o1 | 163 3 355 323 32 1613 | 1464 | 149 élzlgg) (?ga) (1136%
= Operations — (98.34) (89.47) (8.86) (98.78) (89.65) (9.12) ’ ‘ ‘
1008 919 89

>4 | 1009 99.90) | (91.08) | (8.82)
2| 7 7 0
cour . (10(;.00) (103.00) (o.go) o o .
Operations 5 7 (100.00) (100.00) (0.00) (100.00) | (98.44) (1.56)
>5 | 50 50 49 1

27 Two operations means a mixing of any two change operations(Insertion, Deletion, Substitution or transposition)

89

(100.00) | (98.00) | (2.00) |

19 17 2
NO Change 20 95.00) | (85.00) | (10.00)
. 89536 46120 | 32826 | 13303
[36.83] [5152] | [36.66] | [14.86]

90

Appendix C. The GSpell Error Probability Distributions

Table 0-5 Complete real-word error probabilities distribustion

Features

Forward

Backward

Forward-Backward

No of obs

Histogram of multiple variables
R30.5ta 45v"10000c

WW_F1_Correct = 9812*10* normal(x, -10.2548; 10.2018)
W_F1_SingleE_Real = 372%10Fnormal (x, -22 8534, 15.79)
W_F1_SingleE_Correct = 944171 0Fnormalix; -10.165; 10.2025)
7000

6000

5000

4000

3000

2000

1000

W_F1_Correct
W_F1_SingleE_Real
[HH] W_F 1_SingleE_Correct

1100 290 700 500 300 10 10
-100 -80 -60 -40 -20 0 20

No of obs

Histogram of multiple variables
R30.sta 45v710000¢
W_B1_Correct = 9812%10%normal(x, -9.68186, 10.2455)
W_B1_SingleE_Real = 372*10%normallx; -11 12.3437)
W_B1 SingleE_Comedt = 9441"10normal(x; - 100215, 10 8326)
7000

6000

5000

4000

3000

2000

1000

_Coirect
SingleE_Real
_SingleE_Correct

-110 -a0 =70
-100

No of obs

Histogram of multiple variables
R30.sta45v"10000¢

W_FB1_Correct = 98127 20" normal(x; - 11.9358; 15.9422)
W_FB1_SingleE_Real = 272720 normal(x, - 16.229%; 19.34)
W_FB1_SingleE_Correct = 9441*20%normalix -12.2711; 16.3356)
8000

7000
6000
5000
4000
3000

2000

1000
0

-140 -100 -60 -20 20 60
-120 -80 -40 0 40

W_FB1_Correct

&Y w_FB1_SingleE_Real
100 [W_FB1_SingleE_Correct

0

91

No of obs.

Histogram of multiple variables
R30 sta 45v"10000c

W_F2_Correct = 9812*20%normal(x, -20.3065; 15 7424y
F2_SingleE_Real = 372°20*normal(x; -31.9905, 19.145)

W 3
W_F2_SingleE_Correct = 84417207 normal(x, -20.6599; 16.32025)
7000

6000
5000
4000
3000
2000

1000

No of obs

-220 -180 -14
-200 -160

Histogram of multiple variables
R30 sta 45v*10000c
W_B2_Correct = 9812720 normalfx; -18.9412: 16.3692)
W_B2_SingleE_Real = 372* 20" normal(x; -20.5824; 16.1088)
W_F2_SingleE_Corract = 944 1*20%normal(x, -20 6599; 16.3025)
6000

5000

4000

3000

2000

1000

0
-220 -180 -140 -100
-200 -160 -120 -80 -40

W_B2_Correct
W_B2_SingleE_Real

S VY |
20 [ffH] ¥W_F2_SingleE_Correct

Mo of obs

Histogram of multiple variables
R30 sta 45y 10000c
W_FB2_Correct = 981250 normal(x; -31.2472; 23.7701)

W_FB2_SingleE_Real = 372*507normal(x, -34 88086, 24.7957)
W_FB2_SingleE_Correct = 9441750 normal(x; -32.4035; 24 8227)

9000

8000

7000

6000

5000

4000

3000

2000

1000

=250 -200 150

|_FB2_Correct
|_FB2_SingleE_Real

[l W_FB2_SingleE_Correct

No of abs

Histogram of multiple variables
R30 sta 45v*10000c

W_F3_Correct = 981250 normal(x, -29.7972; 19.9931)
W_F3_SingleE_Real = 372*50 normal(x, -41.3212, 21.115)
W_F3_SingleE_Correct = 9441*50 normal {x, -30 554, 20.9028)
10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

-350 -300 -250 -200 -150 -100 -50 0

Mo of obs

Histogram of multiple variables
R30 sta 45+10000c

W_B3_Correct = 9812750%normal(x, -27 7726; 21.2818)
W_B3_SingleE_Real = 372*50 normal(x -29 2289, 18 4075)
W_B3_SingleE_Corsct = 9441750 normallx;, -28 8721 22 4764)
9000

8000

7000

6000

5000

4000

3000

2000

1000

-350 -300 -250 -200 -150 -100 -50 a 50

WW_B3_Correct
W_B3_SingleE_Real
[[0 W _B3_SingleE_Corract

No of obs

Histogram of multiple variables
R30 sta 45/*10000c

W_FB3_Correct = 9812"50"narmal(x; -49.5693; 29.869)
W_FB3_SingleE_Real = 372507 normal(x, -52 8578; 27.3004)
W_FB2_SingleE_Comect = 944150 normal{x; -51.5107; 31.3795)
6000

5000

4000

3000

S

2000

1000

T T

P

4] 2
-400 -350 -300 -250 -200 -150 100 -50 0 50 100

FB3_Correct

W_t
W_FB3_SingleE_Real
W_t

FB3_SingleE_Correct

92

Histogram of multiple variables
R30 sta 45v"10000c

W_F4_Correct = 9812*50* normal(x; -38 8592, 23.79)
W_F4_SingleE_Real = 372*5(Fnomal {x; -50 4356, 24.8992)

Histogram of multiple variables
R30 sta 45v*10000¢

W_B4_Correct = 98127507 normal(x, -36 1725; 25 6636)
W_B4_SingleE_Real = 372750 normalfx, -38 6374; 22 1629)
W_B4_SingleE_Comect = 944150 normal(x, -37 5954, 27 0832

Histogram of multiple variables
R30 sta 45y 10000c

W_FB4_Correct = 981250 normal(x; -67.0312; 35.5498)
W_FB4_SingleE_Real = 372507 normal(x, -714308; 32.9834)
W_FB4_SingleE_Correct = 9441750 normal(x, -69.672; 37.3229)

gggﬁF{Smg\eEfcwrect = 94415 (Fnormal {x, -39.9921; 24.908) 3000 7000
8000 7000 6000 Z
]
a
L0 6000 o
5000 7
6000 i
9 5000 i
£ 5000 2 @ 4000
= S]
5 5 4000 5
2 4000 o °
= Z 3000
3000 3000
2000 2000 2000
1000 W_F4_Correct 1000 ., 1000
|_F4_SingleE_Real P74 W _B4_Correct W_FB4_Carrect
T W_F4_SingleE_Correct W_B4_SingleE_Real W_FB4_SingleE_Real
350 -300 250 -200 T [l W_B4_SingleE_Correct @ et Al Tl W FEA4"SingleE Correct
-350° -800 250 -200 180 100 50 O 50 -400 -350 -300 -250 -200 1150 2100 50 0 50 100
Histogram of multiple variables Histogram of multiple variables
Histogram of multiple variables R0 sta 45+10000c R30 sta 45v*10000¢c
R30.5ta 45v°10000 e 9 '
| e eta AR W_B5_Correct = 9812750 normel(x, -44.1496; 29.7746) WV\;EZBSS;%?;?%Eji‘g,g?ag?:‘rﬂ,‘(f‘:'é?,agégoéﬁ% 4
V(81 o= ENZ e e 7 200 A5 W_E5_SingleE_Real = 372750 normalix -47 0604; 26 9718) W_FB5. SingleE, Correct= 9441°50"normai(x. -86 9292. 43.0247)
o e), W_B5_SingleE_Comect = 9441°50mormal(x, -45.9131; 31.3727) St = i i
7006 _SingleE_Correct= ﬂOrma(Xr 3) 7000
6000 6000 goo0 il
5000 5000 5000
f
11 © 4000
g 4000 5 4000 3
~g . 5 o
Z 3000 g 2 3000 =3 €Y
i
2000 g SE0 //; 2000
1000 | V 1000
é F5_Correct 1000 é
e F5_SingleE_Real é W B5 Correct 5 W_FB5_Correct
350 300 -250 20? W:5 10 50 50 e e m. A é m%ggé‘“}eg?a‘ t 0 o LG | 5] W_FB5_SingleE_Real
= E B B B B 4 = _B5_SingleE_Correc -450 -350 -250 -150 -50 50 [l W_FB5_SingleE_Correct
350 300 -250 -200 -150 100 .50 O 50 400 a0 200 100 s 100

93

Histogram of multiple variables
R10_ASP20_AOP30 .sta 45" 10000c
W_F1_Correct = 9812750 normal(x, -75.7202, 67.5123)

W_F1_SingleE_Real = 372750 normal(x, -160.3408; 112.7227)
W_F1_SingleE_Correct = 9441%5(Fnormal(x, -76 741, 67.8784)

Histogram of multiple variables
R10_ASP20_AOP30 sta 45v*10000c
W_B1_Correct =9812"50"normal(x, -79.7914; 74.3127)
W_B1_SingleE_Real = 372750 normalfx, -95.7348; 74 3995
W_B1_SingleE_Comect= 9441*50*normal(x, -63.32346; 77.7333)
6000

Histogram of multiple variables
R10_ASP20_AOP30 sta 45v" 10000c
W_FB1_Correct = 9812750 normalix -113.7831; 92.1209)

WW_FB1_SingleE_Real = 372*30"normal(x; -172.3785; 1104367)
W_FB1_SingleE_Correct = 9441750 normal(x, -117.928; 95.1429)

6000

6000
& 5000 5000 5000
4000 4000 4000
ASP |, .
8
E 3000 “5 3000 5 3000
z 2 2
& 2000 5000 2000
1000 7
% 1000 1000
AO P 7 . W_F1_Correct N
0 W_F1_SingleE_Real PZ W_B1_Correct W_FB1_Carrect
-450 350 2250 150 50 50 W_F1_SingleE_Correct 0 By W _B1_SingleE_Real 7! J Y W_FB1_SingleE_Real
400 -300 200 -100 0 450 350 250 150 50 50 [l W_B1_SingleE_Correct 600 -500 400 -300 -200 -100 0 100 200 [FHl W_FE1_SingleE_Correct
400 -300 -200 -100 0O 550 450 -350 -250 -150 50 50 150
Histogram of multiple variables Histogram of multiple variables
Histogram of muliple variables R10_ASP20_AOP30.5t 45v* 10000C R10_ASP20_AOP30 sta 45v*10000c
NULAEREL ARSI W_B2_Carrect = 9512*100normalfx, -154.7479; 118.3253) W FB2_Correct = 9812"100"nomal(x, -254 7858, 1506895
R WS w0 5% S Rel= ool 173035, 1) WA e iy,
= 30 S = =1 007 i 7 W_B2_SingleE_Correct = 944171007 normal(x, -162.1054; 122.7406) |_FB2_S%ingleE_Correct = normal(x; - A
\/;/aggfsmg\eEf(:orrect-gMﬂ 100" narmal (x, - 146 8845, 106 4004} 5000 2600
2400
4500 4500
& 2200
4000 4000 2000
3500 3500 1800
ASP
, 3000 ., 3000 2
< 2500 S g 1400
5 5 2500 2 1200
=z
E 2000 < 000 1000
1500 %0 300
1000 8o
1000 400
AO P 500 W_F2_Correct
W_F2_SingleE_Real 500 W_B2_Correct 200 W_FB2_Correct
’ 800 -700 -600 -500 -400 -300 -200 -100 0 100 i A e = = mw’gg’glﬂglig’mw © a0 X W*FBZ*SWIQE*R%‘
-800 -700 -600 -500 400 -300 -200 - : B2 - S1200 -1000 -800 -B00 400 -200 0 200 W_FBZ_SingleE_Correct
-800 -700 -600 -500 -400 -300 -200 -100 O 100 1100 -900 -700 -500 -300 100 100

94

Histogram of multiple variables
R10_ASP20_AOP30 .sta 45" 10000c
WW_F3_Correct = 9812"100"normal(x, -205 2926, 132 8256)

W_F2_SingleE_Real = 372"100%normal(x; -292.3871, 168 .6524)
W_F3_SingleE_Correct = 8441%100"normal (x; -214 8507, 138 7439)

Histogram of multiple variables
R10_ASP20_AOP30 sta 45v*10000c
WW_B2_Correct = 98127100 normalfx; -227 6302; 146 4745)
W_B3_SingleE_Real = 372100 narmal(x; -245 7766; 1517152)
W_B3_SingleE_Correct = 9441*100%normal{x, -238.8706; 151.5679)

Histogram of multiple variables
R10_ASP20_AOP30 sta 45v" 10000c
W_FB3_Correct = 98127200"normalfx; -391.2942; 165.3967)

WW_FB3_SingleE_Rea = 372" 200 normal(x -454 466 7; 199.7945)
W_FB3_SingleE_Comect = 34417200 normai(x, -411 5737; 203.0021)

4500

e 2800
2600
4000 7
& e 2400 /%
2200 3500 %\
2500 2000 %
o 3000 Z
ASP g 2000 2 60 2 2500 Z
2
s 5 1400 5 g
2 1500 2 1300 2 2000 Z
%
& 1000 - |
iy 500 "
|
w0 600 1000 2
400 é
AO P W _F3_Correct - _ 500 U \\
il W_F2_SingleE_Real B2 W _B3_Correct .) ' \W_FB3_Correct
-1100 -900 -7 W_F3_SingleE_Correct 0 i B W_B3_SingleE_Real Q 4 = [\/\fp53igmg|eg Real
1000 -800 0 S100 900 700 500 3000 100 100 [MHW_B3_SingleE_Comect S1800 1400 -1000 d 200 [W_FB2_SingleE_Corract
210000 -800 -600 400 200 0 001200800 400 9 - -
Histogram of multiple variables Histogram of multiple variables
Histogram of mutiple variables R10_ASP20_ AOP30 512 45 10000¢ R10_ASP20_AOP30.5ta 45 10000¢
R10_ASP20_AOP30 sta 45v10000c W B4_Cormect = 9812 100"normal: -208.0005: 167 7631) W_FB4_Correct = 98127200 normaly; -523 1200; 234 2665)
R W_FA_Correct = 98127100 normalix; -266 849, 158 277) B4 SingleE Real = 372+ 00%namalbe 321 3157 170 012) WW_FB4_SingleE_Real = 372°200Pnormal(x -567 7045, 229 6775)
\W_F4_SingleE_Real = 372*100°nomal(x; -350 0858, 186 8267) 7 o rrect = GA41T1007 e : W FB4_SingleE_Correct = 9441° 200 normalix -551 0183; 243 5142)
W_F4_SingleE_Correct = 844171 00°normal (x 260 5005; 165 6764) %géﬁmgbi&med 944100 nomell; -312.8654, 173.5245) 2000
3500
2400
& 3500
3000 2300
2000 3000
2500 1800
ASP
2 2000 2 2
s 8 1400 2
H B 5 2000
= 1500 S 2
& 1000 1500
1000 800
600 1000
500 400
AO P W_F4_Correct 200 500
0 W_F4_SingleE_Real W_B4_Correct 7 i W_FB4_Correct
1400 1200 -1000 500 600 -400 200 0 [H W F4_SingleE_Correct 0 s W B4_SingleE_Real o et W_FB4_SingleE_Real
1300 1100 900 FOO 500 -300 100 100 400 1200 1000 600 600 400 200 0 [W_B4_SingleE_Correct 3400 2000 1600 1200 300 <00 0 Tl W FB4SingleE Comrect
13000 1100 900 700 500 300 100 100 9000 1800 1400 1000 600 200 200 -0 -

95

Histogram of multiple variables
R10_ASP20_AOP30 sta 45" 10000c

W_F5_Correct = 8812*200%normal(x, -325 6871, 183.0408)

Histogram of multiple variables
R10_ASP20_AOP30.sta 45v*10000c

WW_BS_Correct = 981272007 normalfx; -365 4476; 186 6637)
W_B5_SingleE_Real = 372*200"ormal(x; -394 9092; 190 3608)
5

Histogram of multiple variables
R10_ASP20_ACP30.sta 45v*10000¢c
W_FB5_Correct = 9812"200"normal(x; -649.4061; 269.8683)
W_FB5_SingleE_Real = 372°200"normal(x; -719.1465; 261.4372)
W_FB5_SingleE_Correct = 9441*200*normal(x; -684.4442; 281.1761)

W_F5_SingleE_Real = 372 200Fnormall; -407.9343; 201 0389) B St 8
W_F5_SingleE_Correct = 644 17300%normal (< -34% 2401; 192 0848) \:1\/60% LieglEl=, Ceea = i ablieme iy <Rl (M) 3500
4500
& 4000 3500 3000 n
3500 A Il
3000 2800 h
3000
11 ASP 5 | g 2 2000
£ 2500 b 2 -]
< % 5 2000]
S
£ 2000 é 2 2 1500
& 1500 Z 1500
l
1000 é 1000 1ooo0
é
500 | 500 500 {
AO P | W_F5_Correct _
tzé=l L, W_F5_SingleE_Real N BZ W _B5_Correct I [W_FB5_Correct
1200 - W_F5_SingleE_Correct 0 &Y w B5_SingleE_Real 0 i iBllNgs 5] W_FB5_SingleE_Real
-1400 -1000 -600 -200 200 -1800 1400 1000 -600 -200 200 [w_B5_SingleE_Correct 2800 -2400 -2000 -1600 -1200 -800 -400 O (&) W_FBS_SingleE_Correct
-0 200 o800 400 2600 -2200 -1800 -1400 -1000 600 -200 200
Histogram of multiple variables Histogram of multiple variables
Histogra o tple varibis R10.520. 130, ASPAD_AOPS0 sta 451 0000C R10_520_L30_ASP40_ACP50.sta 45v"10000¢
AL LSS VTS0 WW_B1_Correct = 81271007 nomaly - 144 5036; 132 5463) Wi F81_Cormect = 9812"100%nomal(x. -210 6365 163.0037)
S e R) SR e S IC By
Cfs e S g W_B1_SingleE_Correct = 94417100 normailx, 151 3344; 140 2636) _FB1_SingleE_Correct = normal(x, - :
V[\i/agﬂtswng\eEf(:orrect =9441"100"normal (x, - 140 2888; 124 3463) 6000 5000
& 4500
5000 S 4000
3500
4000 4000
3 I_ 2 P 5 3000
2 3
5 3000 5 3000 = 2500
2 2 2
- 2000
& 2000 2000
1500 i
1000 i 1000 . 1000
2] 4
ASP g WW_F1_Correct Z 500 i
0 W_F1_SingleE_Real 4 Madla W_B1_Correct 7 \W_FB1_Correct
900 700 500 -300 W_F1_SingleE_Corract 0] W_B1_SingleE_Real i W_FB1_SingleE_Real
0

AOP

-100 100
-800 -600 -400 -Z00 0

-90 0 -100 100
00 0

0 700 500 -20
-800 600 400 -2

8
[W _B1_SingleE_Correct

-1100 -900 -700 -500 -300 -100 100 300
-1000 -800 -BOO -400 -200 O 200 400

N w_|
[W_FB1_SingleE_Correct

96

Histogram of multiple variables Histogram of multiple variables
Histogram of muliple variables R10 500 150 ASPAD AOPS0 st 45v*10000c R10_S20_L30_ASP40_ACPS50 sta 45v*10000¢
IR =l TEEL RSIRTN) ORI STITEN \W_B2_Correct = 9812200 normal(x 280 525, 213 6317) W_FB2_Correct = 9312°200* nomaltx; -468 0853; 274.9172)
S W_F2_Correct = 9812200 nomm l(x -259 4073 193 7587) W E?2 SingleE. Real = 372200 normal, -336 555, 295 5858) W_FB2_SingleE_Real = 372°200*normal(x, -604.754; 307 2031)
W_F2_SingleE_Real = 372" 200"normal(x; -442.7676, 270 4764) 2 Sir 0 = 2007 o WW_FB2_SingleE_Correct = 944172007 normal(x, -493.8512; 286.7592
W _F2 SingieE._Correct = 94417200¢normal(x; - 270455, 202.0691) Vgaggﬁ‘”g‘eico"w L e) 3000 S ()
5000
2800
& 2600
4000 4000 2400
2200
2000
L , 3000 , 3000 ., 1800
5 4 5 1600
5 pe 2
2 § ;’ 1400
2000 2000 1200
& 1000
300
1000 o a0
A S P W_F2_Correct 4ip
0 W_F2_SingleE_Real Z3 W _B2_Correct 200 W FB2 Correct
0 [0 W_F2_SingleE_Correct 0 = S W_B2_SingleE_Real a N W_FB2_SingleE_Real
200 -1600 -1200 0 [HD W_B2_singleE_Correct 2400 2000 1600 1200 -800 400 0O 400 [H W FB2_SingleE_Correct
-1400 -1000 -600 -200 200 2200 -1800 -1400 -1000 -BOO -200 200
Histogram of multiple variables Histogram of multiple variables
R Histogram of muliple variables R10 520 130 ASPAD AOPS0 sta 45v+10000c R10_520_L30_ASP40_ACPS50 sta 45v*10000¢
RSP [EEL SRR (OIS PITEE W B3 Cofract = 93712°200°normalix 412 7279: 266 1246) W FB3_Correct = 98127500 nomalix -717.1111; 358 9822)
W_F3_Correct = 9812200 normal(x -376 2303; 246 5598) W BB SingleE_Real = 37272007 normal, 465 0812, 275 2804) WW_FB3_SingleE_Real = 3727500 normallx; -843 9511; 370 4262)
W_F2_SingleE_Real = 372* 200" normal{x; -553.4386; 307.9681) 33 &) 5 = +300% e - 3 W_FB3_SingleE_Correct = 94417500 normal(x, -760.2862; 3758692
& W F2. SingleE Comect = 644 1730070l o< -396 23542 250 9337) VggEoigiSmg\eEjZorrect 9441*200%normal(x, -436.1235; 277 .8271) A gl ()
3500
3000 3000 5000
S 2500 2500
4000
£ 2000 22000 @
2 c 2
5 5
‘5 3000
& 2 1500 2 1500 S
=z
1000 1000 2000
I— 500 00
W_F3_Correct 1000
0 = W_F3_SingleE_Real WW_B3_Correct W_FB3_Carrect
22400 -2000 -1600 -1200 -800 -400 0 [W_F3_SingleE_Correct 0 W_B3_SingleE_Real W_FB3_SingleE_Real
& -2200 -1800 -1400 -1000 -600 -200 200 22400 -2000 1600 1200 -800 -400 0 [iiH W_B3_SingleE_Correct [l W_FB3_SingleE_Correct
2200 -1800 -1400 -1000 600 200 200 - -

97

ASP

AOP

ASP

AOP

No of abs

Histogram of multiple variables
R10_S20_L30_ASP40_AOPS0 sta 45v"10000¢
W_F4_Correct = 9812"200"normal(x, -488 9993, 294 8676)

W_F4_singleE_Real = 372* 200" normal(x; -660.4409; 342 3213)
W_F4_SingleE_Correct = 9441*200*normalfx, -517 8207, 311.0049)
3

3000

2500

2000

1500

1000

500

W_F4_Correct

0 =
-2800 -2400 -2000 -1600 -1200 -800 -400 0
-2600 -2200 -1800 -1400 -1000 -600 -200 200

W_F4_SingleE_Real
[[F] W_F4_SingleE_Correct

No of obs

Histogram of multiple variables
R10_S20_L30_ASP40_AOPS0 sta 45v*10000c
W¥_B4_ Correct = 88127200 normalfx; -540.2861; 306 8529)

W_B4_SingleE_Real = 372*200" normal(x, -603.348, 311.1725)
W_B4_SingleE_Comect = 94417200™normal(x, -571.036, 320 2474)

2600
2400
2200
2000
1800
1600
1400
1200
1000
800
600
400
200

0 -
-2800 -2400 -2000 -1600 -1200

-800 -400 0
-2600 -2200 -1800 -1400 -1000 -800 -200 200

W_B4_SingleE_Real
[¥v_B4_SingleE_Correct

Histogram of multiple variables
R10_S20_L30_ASP40_AOPS50 .sta 45+ 10000c
W_FB4_Correct = 981275007 normal(x; -857 4283, 432 .0344)

W_FB4_SingleE_Real = 372500 normal(x. -1089.2202; 430 8271)
W_FB4_SingleE_Comect = 34417500%normai(x, -1016 6653; 452 9836)

5000

4000
., 3000
Z
g
5
E

2000

1000

iy ‘|| W_FB4_ Correct
0 — et LA] 5] W_FB4_SingleE_Rea
4500 3500 2500 1500 500 500 [H] W_FB4_SingleE_Corect
4000 -3000 -2000 -1000

98

11

Mo of obs

Histogram of multiple variables
R10_S20_L30_ASP40_AOPS0 sta 45" 10000¢

W_F5_Correct = 9812°500°normal (x -596 8696; 3411782)
W_F5_SingleE_Real = 372500 normal(x 769 5078, 368.0077)

W_F5_SingleE_Cormect = 844 17500%normal(x, -633 6976; 360.7864)

5000

4500

T

4000

3500

3000

2500

2000

1500

1000

500

)

-3000 -2500 -2000 -1500 -1000 -500 0 500

W_F5_Correct
W_F5_SingleE_Real
W_F5_SingleE_Correct

Histogram of multiple variables
R10_S20_L30_ASP40_AOPS0 sta 45v*10000c
W¥_BS5_Correct = 981275007 normalfx; -662.55489; 343 4912)

W_BS_%ingleE_Real = 372*500" normal(x, -737.5082; 350.737)
W_BS_SingleE_Correct = 94417500 normal(x, - 700 2878, 358.8922)

6000
5000 A
4000 I
|
3 |
g %
5 3000 I
5 %
7
2000 é
%
V
V
1000 é
é W_B5_Correct
. i; N Y W B5_SingleE_Real
N ZBlIn RS [v_B5_singleE_Correct

0
-3500 -3000 -2500 -2000 -1500 -1000 -500 0O 500

No of obs

Histogram of multiple variables
R10_S20_L30_ASP40_AOP50 sta 45v*10000c
W_FB5_Correct = 9812500 normal(x; - 1187.5775; 499.5378)
W_FBS5_SingleE_Real = 372"500"normal(x; -1332.4473; 489.8106)
W_FB5_SingleE_Correct = 9441*500* normal(x; -1261.794; 525 544)
4000

3500 it

3000

2500

2000

1500

1000

500

=

1]
-5000 -4000 -3000 -2000 -1000 0
-4500 -3500 -2500 -1500 -500 500

Ew_F
B WF
[W_F

B5_Correct
B5_SingleE_Real
B5_SingleE_Correct

99

Appendix D. The Overall System GUI Description

To run the system you need the following:
1. Python 2.7 release; it can be downloaded from the following link

https://www.python.org/download/releases/2.7/

Make sure to install 64 bit software on 64bit platform if you will use the system
for tagging large data.

2. Run the system directly by clicking the system main file 'src/MainGUI.py'

3. The system parameters can be adjusted from the GUI options or from the system

settings file 'src/Resources/setting.txt' as described below.

@ Arabic Natural Language Tools o -[8[x]
Systems

Morphological Analysis
Error Model

Spell Checking

Figure 0.1 The System main GUI

The system main GUI is shown in Figure 0.1. This GUI provide access to the three
developed NLP subsystems: ‘the morphological analysis and disambiguation’, 'the error

model’, and 'the general spell checking detection and correction'.

100

https://www.python.org/download/releases/2.7/

The Morphological analyzer and Disambiguater

Figure 0.2 shows the morphological analyzer and disambiguation system's main GUI. The
system has three running modes: testing, evaluation and validation modes. In the testing
mode, the system is used for tagging Arabic texts with a custom set of morphological
features. The morphological features include the root, the stem, the lemma, the pattern and
the affixes. The raw input text can be directly inserted to the GUI text area or loaded from
a text file. The types of the output generated features and the output directory are

determined using the setting window in Figure 0.3.

@ Arabic Morphological Analysis and Disambiguation -0 ﬂ

Load text from file

Run options Running Mode Running
Outputs files type

W Enable Affix Compatability | D i " Testing - XML Analyse

™ Disambigunate Features " HMM " Evaluation
I~ GUf -
" Walidation

Results

g

STATUS -l

Figure 0.2 The morphological analyzer main GUI

In the evaluation mode, a morphologically tagged text file(s) should be used to evaluate

the morphological analysis and disambiguation process. An analysis and summary reports

101

will be generated in this mode. The types of the output generated features and the output

directory are determined using the setting window in Figure 0.4.

@ Settings -\d ﬂ
Directories
Outputs Dir Outputs/SWAM/MorphologicalAnalyzer/
yenerated Features
W SROOT ¥ OROOT [~ STEM [~ LEMMA
I~ SPATTERN I~ OPATTERN [~ FSPATTERN | FOPATTERN
W AFFIXSPATTERN |v AFFIXOPATTERN

Figure 0.3 the MA output features and output directory

@ Settings i | &
Directories

TestFiles Dir| Inputs/SWAM/EvaluationData/

Outputs D"-’l Qutputs/SWAM/MorphologicalAnalyzer/
generated Features
[~ SROOT ¥ OROOT [~ STEM I~ LEMMA
[~ SPATTERN [~ OPATTERN [~ FSPATTERN | FOPATTERN
W AFFIXSPATTERN [~ AFFIXOPATTERN

.ﬁvel discard |

Figure 0.4 the MA output features

In this mode, the evaluation files should be formatted so that, each line should have a single
word-features separated by the | character. The features should be ordered as
Root(#)Stem(#) Lemma(#) AffixSPattern(#) AffixOPattern(#)FSPattern(#)FOPattern. A
special word ###[### should be used for sentences boundaries. For improvement purpose,
the system are implemented to generate the list of all non-recognized words with their

context, this lists can be used to enrich the system lexicon data files to increase its coverage.

102

In the validation mode, the 10 fold cross validation algorithm, based on training corpus, is
used to provide the best parameters values for the system (lambda). A report will be
generated in this mode to show the best parameter values to be used.

The morphological analyzer use HMM model with Viterbi algorithm for features
disambiguation. The model can run based on different feature(s)/states. The types of the
features with their parameters are adjusted from the hmm window as shown in Figure 0.5.

Lambda ranges are to be used for evaluation mode only.

@ Disambiguation Method Settings nglﬂ
Model Features
enable Feature add one Lambda enable Feature add one Lambuda
¥ ROOT 1e-20 v PATTERN 1e-20
v FPATTERN 1e-20 v AFFIXPATTERN 1e-20
v STEM 1e20 [~ LEMMA 1e20

Lambda Ranges{E nabled in Validation Mode):
1e-20,2e-20,3e-20

save | discardl

Figure 0.5 the HMM model setup

According to the morphological analyzer settings, the analysis results will be generated in
the specified output directory. The generated files include: the result summary file, the
input words with all their possible analysis (morphological_analysis_details.xml), and the
input words with their best analysis only
(morphological_analysis_with_disambiguation_details.xml). The analysis files in xml

format as shown in Figure 0.6.

103

<?xml version="1.0" encoding="utf-8" 2>

<Text>
<Sentence Cext="lgis wtlin 431 L% Lwls I dogtddl s Bl s @il Judsl Il dade ... "
«<Word hasMi="True' nurberCfPossiblelnalyses="1" wvalus=" Jui">
=] <analysis type="1">
<feature orignalRooc="Juwus"/>
<feature suffix=""/>
«<feature surfaceRoot="Jsd"/>
<feature orignalPattern="J=i"/>
gfeature SurfacePattern="J=i"f>
<feature lemna="Lad"/>
<feature prefix=""/»
<feature stem="kad" />
E </analysis:>
E </ Word>
= <Word hasMi="True' nurberOfPossiblelnalyses="1" wvalue="Joluifls">
g <analysis type="1">
<feature orignalRooc="Jl="/>
<feature suffix=""/>
<feature surfaceRoot="Jl-"/>
«<feature orignalPattern="Jusis"/>
<feature SurfacePattern="Jusis"/>
<feature lemma="Jalno"/>
<feature prefix="JuL"/>
<feature stew='"Jualxs"/>
] </analysis>
E </ Word>
= <Word hasNi="True' nunberOfPossiblelnalyses="7" wvalue=',gold1">
S <analysia type="1">
«feature orignalRooc=" gafl/s
<feature suffix=""/»
<festure surfacsRoot=" J"/>
<feature orignalPattern="J sad"/>
et P R W i
ale Markup Language file length @ 25057 lines: 742 Ln:10 Col:

The Error Model

Figure 0.6 the mdrphological analysis result file

The GUI in Figure 0.7 shows the error model main GUI. The error model generates

candidates' corrections for any word based on an already learnt error patterns.

104

@Error Model ﬂ -0 ﬁ
input
Error Patterns type Running Mode Running
- Outputs files Mode
CihulllcRaten: " Training Analyse |
T Morphemes ePattern | Testing LI X
[
Results
STATUS |
Figure 0.7 the error model

The error model has two running modes: training and testing modes. In the training mode,
all the needed correction information will be learned from an already tagged error corpora.
The statistics of the training corpora will be generated in this mode, the statistics can
provides detailed analysis of the corpus errors as explained in the error model report (see
the error model theory report). The training file's input and output directories are

determined through the GUI in Figure 0.8.

105

@ Settings ﬂ ;IEIE

Directories

TminFi.'esDirl Inputs/ErrorModel/TrainFiles/
Outputs D""'l Outputs/ErrorModel/

save | discard |

Figure 0.8 the error model train files and output directories

The input train files should be formatted®® so that, each line should have the error word,
the affix correct word and the correct word's affix pattern separated by the | character, a
special word ### should be used for paragraphs boundaries.

The learnt error patterns will be saved in XML files. The xml files stores error patterns
based on their length, each file correspond to the error patterns with specific length. Each
file store the error patterns along with all their correction information. A simple snapshot

of the result file is shown in Figure 0.9.

<Error_Pattern valus='§56 ">

<Correc tion correc t_Pattern="§58Jeiu" error Code Chars="§8" error_code='§---s$—' error_pattern freguency="34"/>
</Error_Pattern>
<Error Pattern value='Jus|§8">

<Correction correct_Patterns="Jusd§,$" error_Code_Chars="$1%" error_code='-$s---§" error_pattern_freguency='1784"/>
</Error_Pattern>
<Error_Pattern valus="§ofleis">

<Correction correct Pattern='§ifideis' error_Code_Chars="§:§§" srror_code="§---s§s" error pattern frequency='3'/>
</Error_Pattern>
<Error Pattern valus='"§ifdsd'>

<Correc tion correc t_Pattern="§58Js1s" error Code Chars="§:§" error_code='§--s-$-' error_pattern freguency="75'/>
</Error_Pattern>
<Error_Pattern val

<Correc tion co
</Error_Pattern>
<Error_Pattern values=' J=i515">

<Correction correct Patteran="Jad§i§" error Code Chars="i§§' error_code="s§---i§" error pattern frequency="49"/»

<Correc tion correc t_Pattern=" l=i$31§" error_Code Chars="j$$§" error_code="-d$----§' error_pattern freguency="60"/>
</Error_Pattern>
<Error Pattern value='; si8J1866">

ECBErEEtion correct_FPatterns='ge$01§ §-§" error_Code_Chars="%$§ $-%' error_code="--$---$d§d§" error_pattern_frequency='"186"{3

<Correction correct Pattern="4§ §5,-45418" error Code Chars="§§ §Y§' error_code='"--§-—-5d§ddS" error pattern freguency="1'/>
</Error Patterns

"Bog gt
ct_Pattern="$ofdsl " error_Code_Chars="$$' error_code="$---i$-* error_pattern frequency='"194'/s

Figure 0.9 the error patterns result file snapshot

28 To generate the error model input format for QALB corpus, you should separately run the file
views/analyzeQALBData.py.

106

In the testing mode, the list of correction candidates are displayed for any input word based
on the leant error patterns of the training mode. The function in the testing mode can be
used by any spelling correction for generating correction candidates.

The error model works at word and morphemes level. In the word level, the error pattern
of the whole word is generated and considered in the candidate's generation process. In the
morphemes level, all the possible morphemes error patterns are generated and considered

in the candidates' generation process.

The General Spell Checking Detection and Correction

Figure 0.10 shows the main GUI of the general spell checker. The main components for
the system are: errors' detection and error correction. Error detection component is
responsible for detecting suspected errors in the input text. Error correction component is
responsible for generating a list of all probable corrections for each of the detected errors
and then selects the most appropriate correction from the list of the generated candidates.

The system handles non-word and real-word spelling errors using different techniques. It
also has three running modes: testing, evaluation and validation modes. In the testing mode,
the system is used for the detection and correction of Arabic text errors. The input text can
be directly inserted to the GUI text area or loaded from a text file. In the evaluation mode
an error annotated text files are used to evaluate the spell checking detection and correction
techniques. The input files should be formatted so that, each line has a single word-
annotation separated by the | character (word|correction|errortype), a special word ###
should be used for sentences boundaries. The system, in the evaluation mode, is able to

deal with two different annotated formats: KFUPM or KACST format. In the validation

107

mode, a 10-fold cross validation algorithm is used to generate the best parameters values
for the system (lambda, window sizes and thresholds).

The input and output setting are determined using the window in Figure 0.11 .

o Arabic Spell Checking ﬂl ;Iglil
|-input Text

. - |

=

Load text from file | Clear Text Area Reset A."."l

| ¥ Enable Processing Non-Word Errors v Enable Processing Real-Word Errors

~Detection Method

~Number of C ctions-
~Monword——~Real-word umber of Corrections

Correction Method | & Top 1
I SWAM ™ HMM Error Model— Ranking Candidates
I~ AraMorph ¥ NGrams || © Minimum edit distance | ¥ HMM ® T
" Dictionary Lookup & Error patters I MGrams " Top 10
Al

[T CharNgrams

Running Mode--Outputs Mode- A
@ Testing V TXT LD |
 Ewvaluation | v HTML [

 Validation | XML

STATUS

Figure 0.10 The GSpell main GUI

108

@ Settings ﬂ -|d ﬁ

Directories

Testfiles Dir| |inputsrkFUPM/

Outputs D*'rl Outputs/GSPELL/

" in KACST format (TXT) © in KFUPM format (XSL)

save | discard |

Figure 0.11 input/output setting of error text

In the validation mode, a validation algorithm is used to generate the best parameter's
values for the system (lambda, window sizes and thresholds). A report will be generated in
this mode to show the best parameter's values to be used in the testing and evaluation mode.

In the case of HMM method, the model settings can be set using the window in Figure 0.12.

@ Disambiguation Method Settings — |0 ﬂ

Directories
Train Files Df'rl Inputs’!HMM TrainFiles/

Model Features

enable Feature add one Lambda enable Feature add one Lambda
¥ ROOT 1e-10 v STEM 1e-20
v LEMMA 1e-30 v AFFIXSPATTERNM 1e-40
v AFFIXOPATTERN 1e-50 v FSPATTERN 1e60
W FOPATTERN 1e70
Parameters
Threshold Window Size

44 3

save | discard

Figure 0.12 HMM method setting

The provided threshold value should be the log of the threshold probability.
The system can handle different types of errors: non-word and real-word spelling errors.

Different methods can be used to handle each type of spelling errors.

Non-word Errors Detection

109

To detect the erroneous words in the input text, the error detection module implements the
following techniques: morphological analyzers (SWAM and Aramorph), dictionary look-
up, and language model (character N-grams). The system is implemented to allow using
these techniques individually or in combinations.

SWAM

A morphological analyzer that uses a Sliding Window Asynchronous Matching (SWAM)
approach has been implemented. SWAM is a lexicon driven approach that uses
morphological derivational forms (window patterns) to extract the probable morphological
feature tuples for any given input word. The generated morphological features include the
root, the stem, the lemma, the morphological pattern and the affixes. Disambiguation and
ambiguity are resolved a markovian based Viterbi algorithm. Any word in the input text
that has no morphological analysis is considered as Non-word error.

Buckwalter Arabic Morphological Analyzer

Buckwalter Arabic Morphological Analyzer is rule-based morphological analyzer that
depends on a set of lexicon lists. It depends on three main elements: the data, the
compatibility tables and the morphological analysis algorithm. The data is composed of
three lexicon files: prefixes, suffixes and stems. It contains three morphological
compatibility tables to validate prefix-stem, stem-suffix, and prefix-suffix combinations.
Any word in the input text that has no morphological analysis is considered as Non-word

error.

110

Dictionary look-up

A dictionary look-up technique is used for validating input words. Input word is looked up
in the dictionary. If that word is in the dictionary, then it is assumed as a correct word.
Otherwise, it is considered as an erroneous word.

A set of dictionaries is generated from a set of collected corpora that covers different
subjects. The dictionaries are generated based on a different the word frequencies which
are then validated using SWAM. Table 0-6 shows the corpora used for generating the

dictionary. These corpora are not used in the manually annotated project corpus.

Table 0-6 Collected and used corpora

Corpus Size Source
Health 28.8 MB Al-Riyadh
Sport 129.8 MB Al-Riyadh

Economics 7.13 MB Al-Riyadh
Collectionl 127 MB (Mahdi 2012)
Collection2 4.2 MB (Yemeni
Newspapers)
General 296.93 MB

Table 0-7 show the statistics of the generated dictionaries after they are morphologically

checked by SWAM. The currently used dictionary in the system is Dictionary 3.

Table 0-7 Statistics of dictionaries

Dictionary Minimum # Dictionary
of size in
occurrences words
Dictionary 1 1 376116
Dictionary 2 2 234728
Dictionary 3 5 125975
Dictionary 4 10 95273
Dictionary 5 20 64751
Dictionary 6 50 36498
Dictionary 7 100 23275

Character N-Grams

Character N-grams is another technique that is provided by the system to detect non-word

errors. Character n-grams are a subsequence of n characters of a word. This technique

111

works as follows: for each character n-gram in an input word, a pre-compiled table of n-
gram statistics is searched to determine its existence. Building language model of character
n-grams requires a large, verified corpus of texts. In this work, an n-gram (n=2-4) model
is generated for this purpose.

The statistics of the generated character bi-grams, tri-grams and quad-grams by (Mahdi,

2012) are shown in Table 0-8.

Table 0-8 Character N-grams

Type
n-gram Token (Disz?nct)
Bi-grams 2,634,535 1,110
Tri-grams 2,276,731 18,633
Quad- 1,918,927 129,053
gram

Real word spell checking
Ngrams

The problem of real-word errors in Arabic text is addressed using an unsupervised
technique in which n-gram language models are used to detect and correct real-word errors.
For the detecting real-word error, the system finds suspicious words in a given text by
checking the availability of tri-grams in a sentence. If not found the module further checks
for the availability of the two bi-grams in the three words trigram. If not found, the word
in the middle is considered suspicious. In order to check whether the suspicious word is an
error, all its spelling variations are retrieved and put in the sentence. If the probability of
the word in the sentence is high, the suspicious word is an error. Table 3 shows the statistics

of the corpus used to generate the language models.

112

Table 0-9 LMs statistics of the corpus

Number of Uni-
words grams

26,879,902 507,722 9,139,710 2,345,283

Bi-grams Tri-grams

HMM

The probability of the inspected word to happen in some context is highly related to the
probability of its morphological features in the same context. This probability is computed
for each word based on its morphological features using a markovian based Viterbi
algorithm. Any word with morphological features probability “less than a threshold” is
flagged as suspected real-word error.

The supervised technique

The problem of real-word errors in Arabic text is implemented using context words and n-
gram language models using collection of confusion sets.

The probabilities of the context words of the confusion sets are estimated using a window-
based technique. N-gram language models are used to detect real-word errors and to choose
the best correction for the errors once found. The two prototypes were implemented in
Python in addition to the baseline module to compare with.

Context words method

This method uses the context words surrounding the target words from predefined
confusion sets. We identify words that are semantically unrelated to their context. Then,
we find which of the word variations, from the confusion set, is more related to that context
and could be the best replacement for the erroneous word. Maximum likelihood estimate
is used to estimate the probabilities of the context words surrounding the target word. The

probabilities for every word in the confusion set are calculated. The word in the confusion

113

set with the highest probability is chosen. It should be mentioned this part is implanted and
evaluated separately.

N-Gram Method:

N-gram language models were used to disambiguate words of the confusion sets using the
sequence of the words in the context in which they appear. For each target word in the
confusion set, the words surrounding it are used to predict the proper word in that sentence.
For each word in the confusion set, a new sentence will be generated by placing the
confusion set word in place of the target word. The probabilities of all the sentences with
respect to the confusion set words are calculated. In case that the tri-gram is not found, bi-
grams back off is used and uni-gram back off is used when a bi-gram is not found. The
sentence that gives the highest probability is considered as the correct one indicating that
the confusion set member in that sentence is a better choice and hence more likely to be
the correct word.

Error Correction Techniques

To correct the errors detected by the aforementioned error detection techniques for an input
text. The correction prototype is implemented to include: generating a list of candidate
words and ranking the candidate words.

Candidates generation techniques

Two different techniques are used for candidates’ generation namely minimum edit
distance and error pattern.

Minimum Edit Distance

This technique is also called, Damerau-Levenshtein distance. Damerau-Levenshtein

algorithm computes the minimum number of editing operations (adding, replacing or

114

deleting) required to change one word into another. The system is implemented to add,
replace or delete n-characters (n=1 or 2) to the misspelled words. The correctness of the
generated words is checked,; i.e., if a generated word is in the dictionary it will be taken as
a candidate word.

Error Pattern

A data driven system that exploits morphological error patterns at morphemes or word
levels is implemented. Its main components are the error-correct patterns generator
(ECPG), the error-correct patterns database (ECPD) and the correction candidates'
generator (CCG). The ECPG is a module that generates morphological error patterns and
their correction information to be used for the correction process. The information
generated by the ECPG is used to build the ECPD so that it will be later used by the CCG
to generate the correction candidates.

Ranking Candidates Techniques

The system provides different methods to rank the candidates based on their probabilities
which are HMM or/ and N-grams.

HMM

After the correction candidates with their possible morphological features are generated
for each suspected error word. The word with the highest morphological features
probability in the context is selected by the correction algorithm as the best correction. It
should be mentioned that this technique works only if SWAM is selected among a detection

techniques.

115

N-grams

After the correction candidates are generated, the correction that gives the highest
probability in the context is compared with the original suspect word. If the correction
probability in the context is higher than the original probability (with respect to a threshold
value), then the correction is more likely to be the intended word and the original word is
replaced with that variation.

HMM and N-grams

Both techniques can be used for ranking candidates based on a ranking mechanism. This
mechanism works as follow. After generating the candidates of each technique separately;
the candidates are given a rank in descendent order. The new combined ranked candidates
are now ordered based on the weighted total sum of ranks in each technique. The weight
of each technique are evaluated from validation set. In our case, the weights for HMM
techniques is 0.2230 and the weight of NGrams techniques is 0.3128.

It needs to be mentioned that, the system is implemented to allow the user to determine the
number of candidates that the system should present. The effectiveness of the system can
be evaluated using different candidates.

The Representation of the Results

The system provides three formats for the outputs:

1. Text file: when this option is selected the system generates the text file with format
of “.txt” which contains the corrected text with selecting the top one candidate.
HTML.: when this option is selected the system creates HTML file with format of
“ html” which contains the corrected text with presenting different candidates. The

number of candidates is determined by the user.

116

2. XML: when this option is selected the system creates XML file with format of
“.xml” which contains the corrected text with presenting different candidates. The
number of candidates is determined also by the user.
Additionally, a summary.txt file is generated to report the results. It is essential for the
evaluation mode and it contains several evaluation metrics including number of errors,
Detection/Correction true Positives (DTP, CTP), Detection/Correction False Positives
(DFP, CFP), Detection/Correction False Negative (DFN, CFN), Recall, precision and F1-
measure which are the common natural language processing measures. The correction
measures are computed for different number of corrections (the n-top candidates)
determined by the user. Moreover, the list of error words are generated in a separate file
named “detectedwords.txt”.
The options in the morphological analyzer GUI can also be adjusted using the system
setting file 'src/Resources/settings.txt', the setting file has a set of variable that control the
system functions. The following are a short description of the system variables.
SWAM_DB_FILES_DIR=./Inputs/fSWAM/DB/NewTextFiles/

The directory of the SWAM lexicon files, the lexicon files includes: Prefixes,

Suffixes, SurfaceRoots, OrignalRoots, SurfacePatterns, OrignalPatterns,

Surfacelnvaraibles, Orignallnvaraibles, SurfaceOrignalRoots,

SurfaceOrignalPatterns, and SurfaceOrignallnvariables.
SWAM_AFFIXES_TRAIN_FILES_DIR=Outputs/SWAM/AffixCompatability/Patt
ernsAffixCompatability.xml

The patterns' affixes compatibility file path, it is an xml file that store all the

templatic and non-templatic patterns with their compatible affixes.

117

SWAM_TestFiles_Dir=Inputs/SWAM/EvaluationData/
The directory of the evaluation file(s), the evaluation file should be formatted so
that, each line has a single word-features separated by the | character. The features
should be ordered as Root(#)Stem(#)Lemma(#)AffixSPattern(#) AffixOPattern. A
special word ###[### should be used for sentences boundaries.

SWAM_OUTPUT_Dir=Outputs/SWAM/Morphological Analyzer/
The system output directory.

ANALYZED FEATURES_TYPES=Templatic,NonTemplatic
This specify the types of features that the system will provide the results for (It is
used only in evaluation mode). In this mode, the evaluation file should be formatted
so that, each line has a single word-featureType-features separated by the |
character. The features should be ordered as
Root(#)Stem(#)Lemma(#) AffixSPattern(#) AffixOPattern. A special word ###[###

should be used for sentences boundaries.

SWAM_OUTPUT_FEATURES=ROOT,SPATTERN,OPATTERN,FSPATTERN,F
OPATTERN,STEM,LEMMA AFFIXSPATTERN,AFFIXOPATTERN,ROOT&AF
FIXSPATTERN,ROOT&AFFIXOPATTERN,ROOT&FSPATTERN,ROOT&FOP
ATTERN
The set of features and features combinations that the system will provide for
system improvement.

HMM_TRAIN_FILES_Dir=Outputs/NEMLAR/Train/

118

The directory of the model train file(s), the train file should be formatted so that,

each line has a single word-features separated by the | character. The features should

be ordered as Root(#)Stem(#)Lemma(#) AffixSPattern(#)AffixOPattern . A special

word ###{### should be used for sentences boundaries.
HMM_USED_FEATURES=ROOT,STEM,LEMMA, ,AFFIXSPATTERN,AFFIXOP
ATTERN,FSPATTERN,FOPATTERN

The features that the model will use for disambiguation process.
HMM_USED_ADD_ONE_LAMBDA=1e-20,1e-20,1e-20,1e-20,1e-20

The corresponding lambda values for the HMM_USED_FEATURES.
HMM_LAMBDA RANGES=1e-20,2e-20,3e-20

The list of lambda values to be used in the validation modes, the reported best

lambda parameter should be used in the evaluation and testing phases.
ERROR_MODEL_RUNING_MODE=TESTING

The error model running mode. The system can run in either TRAINING or

TESTING modes.
ERROR_MODEL_EPATTERNS LEVEL=FULL_EPATTERN_LEVEL

The level of the error patterns. Two levels are supported by the system:

FULL EPATTERN_LEVEL and MORPHEMES EPATTERNS_ LEVEL.
ERROR_MODEL_ERROR_ANNOTATED_TRAINFiles_Dir
=Inputs/ERROR_MODEL/QALB/Dev/

The directory of the train file(s), the train file should be formatted so that, each line

has a single word-annotation separated by the | character, a special word ### should

be used for sentences boundaries. This files are generated using a separate module.

119

ERROR_MODEL_MORPHOLOGICAL_ERROR_PATTERNS_Dir
=Inputs/ErrorModel/ErrorPatterns/
The directory of the already built error patterns in xml format, the system will load
all the files and will be ready for testing mode.
ERROR_MODEL_OUTPUT_DIR =Outputs/ErrorModel/
The output directory of the learnt error patterns and statistics
GSPELL_TestFiles_Dir=Inputs/GSpell/evaluation/
The directory of the test file(s), the test file should be formatted so that, each line
in the file has a single word-annotation separated by the | character, (input word
|correct word error type), a special word ### was used for paragraph boundaries.
GSPELL_INPUT_DATA FORMAT=KACST_TXT
The format of the input files. Tow formats are supported by the system:
KACST_TXT or KFUPM_XSL
GSPELL_OUTPUT _Dir=Outputs/GSPELL/
The output directory of the result files; three files are generated: summary,
result.xml, result.html
GSPELL_RUN_MODE=TESTING
The system running mode. The system can run in TESTING ,EVALUATION and
VALIDATION. The default is the TESTING mode.
GSPELL_ENABLE_PROCESSING_REALWORD_ERRORS=1
1 to enable processing real-word errors, O to disable
GSPELL_ENABLE_PROCESSING_NONWORD_ERRORS=1

1 to enable processing non-word errors, O to disable

120

GSPELL_NONWORD_ERRORS DETECTION_METHOD=SWAM
Specify the non-word detection method: SWAM, Aramorph, Dictionary or
CharNgrams
GSPELL_REALWORD _ERRORS DETECTION METHOD=HMM
Specify the non-word detection method: HMM, NGRAMS
GSPELL_ERRORS _CORRECTION_METHOD=HMM
Specify the error correction method: HMM or NGRAMS.
GSPELL_ERROR_MODEL_TYPE=ERROR_PATTERNS
Specify the type of the used error model: ERROR_PATTERNS or minimum edit
distance
GSPELL_NUMBER_OF RESULT_CORRECTIONS=TOP_1
Specify the number of the corrections to consider for each error word: Top_1,
Top_5, Top_10 or Top_x. Top_X means all the corrections list.
GSPELL HMM DETECTION_THRESHOLD=-44
Specify the HMM detection threshold, this threshold are used for the detection of
real word errors.
GSPELL_HMM_DETCETION_WINDOW _SIZE=3
Specify the HMM detection window size, this window specify how many context
words to consider in the left and right of the error word.
GSPELL_ HMM_CORRECTION_WINDOW SIZE=3
In the ranking of candidates’ correction, this value specify how many context words

to consider in the left and right for ranking each candidate.

121

Vitae

Name :Tamim Salah Abdallah Alnethary

Nationality :Yemeni

Date of Birth :1/1/1984

Email -alnetharytamim@yahoo.com

Address ‘Taiz - Yemen

Academic Background :BS degree in information technology, Taiz University,
Yemen ,2008

PUBLICATIONS:

- Morphological Analysis and Disambiguation Using HMMs, paper accepted for

SSCY7 student conference 2016.

122

