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The objective of this thesis is the development of model-order reduction (MOR)

techniques for class of nonlinear systems. The reduced order system can take the

role of the original system, if the difference between its output and the output of

the original system for the same input stay within the acceptable error tolerance

for a given period of time.

In particular, two MOR methods will be developed, both of the method based on the

projection technique, where the states of the original system are projected using

a projection matrix “V ”. In the developed approaches, the MOR procedures are

applied directly to the original states of the nonlinear system. In first method, the

projection matrix “V ” is obtained from the transformation matrix of the linearized

system.
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The other development is constructing the projection matrix “V ” using the Parti-

cle Swarm Optimization “PSO”, where the fitness value is the difference between

the reduced system output and the output of the complete (high order) system.

The main issue of the MOR, stability preservation, is studied. This property proof

that the reduced system obtained using the developed approaches is stable. More-

over, the PSO-based MOR method is tested for two nonlinear electrical circuits.

As observed from the results of the numerical tests, the developed approach provide

a superior accuracy results comparing with three existing MOR algorithms.
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ملخص الرسالة

سعيد سالم أحمد باريان   :الاسم الكامل

الكهربائية تصغير النماذج للأنظمة الغير خطية مع تطبيقها على الدوائر  :عنوان الرسالة

هندسة كهربائية  التخصص:

2016 ديسمبر :تاريخ الدرجة العلمية

 باستنباطقمنا من خلال دراستنا غير خطية. اللفئة من النظم  تصغير الانظمة موضوع تمت دراسة في هذه الأطروحة

الأنظمة لنظام الأصلي للحصول على لبناء على إسقاط متحولات الحالة  طريقتين لتصغير الأنظمة الغير خطية

ان . خلال التمثيل الخطي للأنظمة الغير خطية عن طريق الحصول على مصفوفة الإسقاط منيتم ذلك  .المصغرة

وليس للنظام  التقريبي لهانظام لل الاسقاط يقوم على فكرةفي مجمل الدراسات السابقة الأنظمة الغير خطية تصغير 

الأصلي. أما الغير خطي نظام ال على. ومن أجل التغلب على هذه المشكلة، نقترح تطبيق الإسقاط مباشرة الأصلي

، حيث Particle Swarm Optimizationخوارزمية الآخر هو بناء مصفوفة الإسقاط باستخدام  الاستنباط

. القضية الرئيسية النموذج المصغرالأصلي و النموذج هو الفرق بين مخرجات fitness valueملائمة ة القيم تكون

على استقراريه الأنظمة، حيث تم اثبات ان الأنظمة المصغرة اللي يتم الحصول المحافظة تصغير النظم هو في 

المقترحة لاثنين من الدوائر الكهربائية  الطرقم اختبار ت. في هذه الأطروحة، ذج مستقرةهذه النما معليها باستخدا

.سابقةدقة فائقة بالمقارنة مع ثلاثة خوارزميات  انها ذات غير الخطية. كما لوحظ من نتائج الاختبارات



CHAPTER 1

INTRODUCTION

In this chapter, a brief introduction to the Model-Order Reduction “MOR” con-

cept is presented. Also, some of the previous MOR techniques for linear and

nonlinear systems are summarized and explained. In particular, four of the main

linear MOR techniques are studied in details with application to a linear system.

These techniques are: the modal truncation, balanced truncation, Schur method,

and Hankel norm reduction.

1.1 Introduction

Model order reduction “MOR” is an important tool that is used to avoid com-

putational complexity of large systems. In MOR, the reduced-order system takes

the role of the large original system. However, the reduced system retains most

properties of the original one. Therefore, the original system can be studied by

simulating just the reduced one and thus make the design work much easier. MOR

has become a significant tool in many areas e.g. circuit simulation and feedback
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design. Whenever the order of the system is large, it becomes necessary to use

MOR to avoid computational complexity of such problems. MOR can be used in

control of large-scale dynamical systems, image processing and other engineering

fields [1, 2]. Moreover, MOR is a very interesting and meaningful mathematical

problem in its own right.

1.1.1 General Idea of the Model-Order Reduction Prob-

lem

Consider the linear system described by the following state-space form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(1.1)

where, x(t) ∈ IRn is a vector of states, u(t) ∈ IRm, y(t) ∈ IRp, A ∈ IRn×n,

B ∈ IRn×m, C ∈ IRp×n. The order of the original system (1.1) is large and the

model order reduction aims to find another system of the form:

ẋr(t) = Arxr(t) +Bru(t)

yo(t) = Crxr(t)

(1.2)

where the state variables xr is of dimension r, Ar ∈ IRr×r, Br ∈ IRr×m, Cr ∈ IRp×r

and r � n. The reduced-order system has very close behavior with the large orig-

inal system. In other words, if there exists an input u(t) to both systems, then

the reduced system (1.2) generates an output which is very close to the output
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of the original system. Thus once we have the reduced system, we can study the

interesting behavior and properties of the original system to a good precision by

just studying or simulating the reduced one.

In many engineering situations, people have to deal with nonlinear systems. Sup-

pose there exist a nonlinear system as follows:

ẋ = f(x) +Bu(t)

y = Cx

(1.3)

MOR aims to find a reduced-order nonlinear system:

ẋr = fr(xr) +Bru

yo = Crxr

(1.4)

such that its behavior is very close to the behavior of the original one, where

x ∈ IRn and xr ∈ IRr with r << n and both f(x) and fr(xr) are nonlinear

(vector) functions.

Nonlinear model order reduction is desired in areas that involve nonlinear sys-

tems such as image processing, and simulation of nonlinear circuits. However,

there are challenges encountered in nonlinear model order reduction. These chal-

lenges include the lack of a guaranteed stability and lack of error bound for the

obtained-reduced system [3]. Despite the difficulties that nonlinear model or-

der reduction contains, lots of researches have introduced reduction techniques

for nonlinear systems [4, 5, 6, 7, 8, 9]. Virous methods of model reduction for
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nonlinear systems have been developed in the last decades. The goal of these

techniques is to avoid the complexity of large nonlinear systems. One of these

methods is called linearization MOR [10]. The idea of this approach is started

by linearizing the large nonlinear system and obtain a linear system. Then, ap-

ply the reduction-order procedures to the linearized system. However, it does

not give a good approximation [11]. Another method called the quadratic MOR

[11]. In this method, the terms of the nonlinear systems are expanded using

Taylor expansion. In this method, the nonlinear systems are approximated using

the quadratic approximation, this done by deleting the parts of Taylor expansion

which are greater than two degree, i.e. this method obtains a quadratic reduced

system for the original nonlinear system. Also, it gives better accuracy than the

linearization method.Reference [12] proposed the bilinearization moder-reduction

technique. In this technique, the nonlinear system needed to be approximated

using a bilinear system, and then the procedure of MOR is applied to the bilin-

ear system [13, 14]. The accuracy of this technique is better than the quadratic

model-reduction technique [15]. Variational analysis MOR presented in [16]. In

this method, the original nonlinear system is transformed into several linear sys-

tems using variational equation theory [17], then apply the MOR on each one of

these linear systems [18]. Trajectory piecewise linear method is another MOR

method of nonlinear systems [19]. In this approach, the original nonlinear system

needed to represented by the piecewise-linear systems, then the reduction tech-

niques for linear systems are applied to theses systems [20]. Derivative matching
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method is proposed in [21]. The idea of this method is to form an orthogonal

projection matrix. The construction of this matrix depending on the derivatives

of the state variables of the nonlinear system, and then use this matrix to project

the original system. Proper orthogonal decomposition is another method of MOR

[22]. This method uses least-squares approximation to approximate the original

nonlinear system [23, 24]. Balanced truncation for nonlinear systems is another

approach that developed by Scherpen [8, 9]. Recently, the approach of convex

optimization has been introduced for MOR for nonlinear systems, and the low

order systems are obtained by solving a set of linear matrix inequalities (LMIs)

[4, 5, 25]. Nevertheless, reduction of nonlinear systems is still a hot research

area and needs to be further investigated. In this study, two new approaches of

“MOR” for a class of nonlinear systems have been developed. The main idea of

the developed approaches is applying the projection matrix directly to the states

of the original nonlinear systems to obtain the low order systems. The first al-

gorithm constructing the projection matrix by linearizing the original nonlinear

system using Jacobian method. Then, from the balanced transformation matrix,

we can get the projection matrix. The second approach uses the Particle Swarm

Optimization “PSO” to construct the projection matrix.

1.2 Literature Review

During the last decades, lots of research works have focused and investigated the

concept of MOR due to its importance in many areas such as: control design,
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circuit simulation, and image processing [1, 26, 27, 2]. The main idea of MOR

concept is to use the reduced order system, that has less dimension, instead of the

original system, that usually has a large dimension. However, the behavior of the

original system is preserved. One of the most important use of MOR techniques

is to develop a controller with a low dimension, instead of developing it with a

high dimension. There are several reduction techniques that have been introduced

during the last decades such as: balanced truncation technique [28, 29, 30, 31],

Moment matching technique [1], projection-based techniques [32, 33, 34, 35, 36,

37, 38, 39], and optimal and convex-optimization techniques [25, 4, 5, 40, 41, 42,

43, 44].

The purpose of the model-reduction techniques is to produce a system with low

order. However, the essential characteristics of the original system are preserved.

For this purpose, it is necessary to define certain indices that guarantee bounded

error approximation. The H∞ norm of the difference between the output of the

original system and the output of the reduced system is one of the most important

measures of error approximation [42]. Some model order reduction techniques have

shown good performance for a variety of dynamical systems such as Hankel norm

approximation [45, 46, 47], and H2-norm minimization-based techniques [48]. The

LMI has been introduced as “MOR” techniques in [43, 44, 49, 50, 51, 52]. For more

details on the use of model order reduction approaches using balanced truncation

and Kalman’s minimal realization techniques, the reader is referred to references

[1, 53, 54, 45, 55, 56]. More details on model order truncation techniques are
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available in [29]. Optimization techniques have been introduced to reduce the

dimension of the systems, such as genetic algorithms “GA”, and particle swarm

optimization “PSO” [57, 58, 59, 60].

In this literature review, some of model order reduction techniques are pre-

sented as follows:

1.2.1 State Truncations

Let’s consider that we have the following system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(1.5)

In this representation, x(t) ∈ IRn, where x(t) is the state variable of the linear

system. The input of the system is u, where u(t) ∈ IRm. The output of the

system is y, where y(t) ∈ IRp.

Let’s assume that x of the original system (usually with large dimension)

composed of x1 and x2;

x =

 x1

x2


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where x1 ∈ IRr, x2 ∈ IRn−r

The matrices of the original system (1.5) are partitioned as follows:

A =

 A11 A12

A21 A22

 , B =

 B1

B2

 , C =

[
C1 C2

]

here, the sub-matrix A11 ∈ IRr×r, the sub-matrix B1 ∈ IRr×m, the matrix C1 ∈

IRp×r, and the submatrix D ∈ IRp×m. Note that D matrix does not affected by

this partitioning [1].

1.2.2 Modal Truncation

Consider that we have a stable system (1.5), the transformation matrix of this

system can be define as:

x = Tx0 (1.6)

here, the matrix T is called the transformation matrix, and this matrix is non-

singular, where T ∈ IRn×n. This procedure is nothing but only to re-write the

state variable of the original system in another basis which is different from the

original one, so that, the behavior of the original system (1.5) has not affected by

this transformation.

By substituting equation (1.6) in equation (1.5), we got the following:

x0(t) = T−1ATx0(t) + T−1Bu(t)

y(t) = CTx0(t) +Du(t)

(1.7)
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In this system, the transformation matrix “T” is used to obtain the similarity

transformation of the original matrix A, this transformation can be written as

T−1AT . This transformation has a main property which is the eigenvalues of the

transformation matrix T−1AT remains the same as the eigenvalues of the main

matrix A. So, A will lead to a special format by properly choosing the similarity

transformation “T”.

For the matrix A of the original system, we can re-write the polynomial p(s) =

det(sI − A) in different format as the following:

p(s) = det(sI − A)

= p0 + p1s+ ...+ pns
n

= (s− λ1)(s− λ2)(s− λ3)...(s− λn)

(1.8)

Here, the natural frequencies λi’s of the original system for the canonical form

modal are assumed to be different from each other. Then, for each λi there exists

a different eigenvector ti that has dimension of n such that Ati = λiti. These

eigenvectors are stored in a single matrix called T , where T ∈ IRn×n:

The matrix T consist of a set of eigenvectors such as :

T =

[
t1 t2 t3 ... tn

]

where t1 is the eigenvector for the natural frequency λ1, t2 is the eigenvector of

the natural frequency λ2, and so on.

9



After we obtain the transformation matrix T , we apply the similarity transforma-

tion T−1AT .

Finally, the transformed matrix A will take the diagonal form ; i.e.

A0 = T−1AT = diag(λ1, ..., λn)

The new form of the matrix A0 is called the Jordan form. However, the modal

canonical form is the transformation of the whole system.

Definition 1.1 Modal Canonical Form The canonical form for the the linear

system (1.5) can be written as the following:

x0(t) = A0x(t) +B0u(t)

y(t) = C0x(t) +D0u(t)

(1.9)

here, A0 = T−1AT , B0 = T−1B, C0 = CT , and D0 = D.

Here, we partition the states x0 into xr and xx as the following:

x0 =


xr

xx



where xr ∈ IRr, r << n, and xx ∈ IRn−r. The idea of the reduced system is to

omit the states that have low frequencies “xx” and save the states that have high

frequencies “xr”, so that the obtained system (with low order) saved the main

properties of the original one.
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Definition 1.2 Modal Truncation: From the canonical form of the system

(1.9), the following system:

ẋr(t) = Arxr(t) +Bru(t)

yo(t) = Crxr(t) +Dru(t)

(1.10)

is called r-th order modal truncation of the original system [61].

Remark 1.1 Model truncation technique has several features which distinguish it

from other techniques. One of these features is that the eigenvalues based on this

method can be easily adapted to a more general time invariant systems, also, this

method preserves the stability, where the eigenvalues of the original system do not

change. However, there are some disadvantages for this technique, such as a lack

of computationally feasible error bound and the approximation accuracy is lower

compared with other techniques of model order reduction.

1.2.3 Balanced Truncation Methods

The second popular method of MOR is called the balanced truncation technique.

This technique requires the original system to be in the balanced state space form

before truncating the states. This form is an input-output representation of the

form in the original system (1.5), where the controllability and the observability

gramians are in diagonal form and equal to each other [62]. This method will be

presented in this section, but first, we will define the balanced state representation

of the system.
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1.2.3.1 Balanced State Space Representation

This method starts by transforming the original system to the balanced state space

representation, and then eliminate the less-affected states from the balanced rep-

resentation. The stability of the reduced system is preserved using this technique.

Suppose that we have a stable system (1.5), let’s define two matrices, P and Q as

the following: The controllability gramian “P” can be defined as follows;

P =

∫ t

t0

eAtBBT eA
T tdt (1.11)

All eigenvalues of the matrix A are negative and are real numbers. This come from

the assumption that the system (1.5) is stable, then the controllability gramian

matrix (1.11) is well defined. Here, the matrix P is real, symmetric and has a

dimension of n× n.

Also, the observability gramian “Q” can be defined as follows:

Q =

∫ t

t0

eA
T tCTCeAtdt (1.12)

The observability gramian matrix (1.12) is well defined. Here the matrix Q is real,

symmetric and has a dimension of n× n.

Theorem 1.1 If there exist a stable linear system (1.5), then there exist a solution

12



for the lyapunov equation:

AP + PAT +BBT = 0 (1.13)

where P is unique and positive definite.

Similarly, there exist a solution for the following lyapunov equation:

ATQ+QA+ CTC = 0 (1.14)

where Q is unique and positive definite.

Definition 1.3 The linear system (1.5) is called balanced, if the matrices

P and Q are diagonal and equal to each other. In other words, the representation

of the system (1.5) is called balanced if:

P = Q = Σ =



σ1 0 0 0

0 σ2 0 0

. . . . . .
. . .

...

0 0 0 σn



where P is the controllability gramian, Q is the observability gramian, and σi’s

represent the Hankel singular values. Note that σi’s are greater than zero and in

descending order i.e. σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 [63].
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1.2.3.2 Existence of Balance State Space Representations

Consider that the basis of the state space system (1.5) has been changed, the

gramians of this change will be as following:

The changes of the state parameters will be;

A0 = T−1AT

B0 = T−1B

C0 = CT

D0 = D

(1.15)

The gramian of the controllability gramian of the transformed system (balanced

form) can be written as:

P0 =

∫ t

t0

eA0tB0B0
T eA0

T tdt (1.16)

Substituting equation (1.15) in equation (1.16) yields;

P0 =

∫ t

t0

e(T
−1AT )t(T−1B)(T−1B)

T
e(T

−1AT )
T
tdt (1.17)

From linear algebra, using the following matrix properties;

e(T
−1AT ) = T−1eAT , (T−1B)T = BT (T−1)T and e(T

−1AT )T = T T eA
T
(T−1)T

We get :
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P0 =

∫ t

t0

T−1eAtTT−1BBTT−TT T eAtT−Tdt (1.18)

Finally, this equation will take the following form:

P0 = T−1P (T−1)T (1.19)

Using the same procedure for the observability transformed gramian, the observ-

ability gramian was defined as ;

Q0 =

∫ t

t0

eA
T
0 tCT

0 C0e
A0tdt (1.20)

Substituting equation (1.15) in equation (4.2) yields;

Q0 =

∫ t

t0

e(T
−1AT )T tT TCTCTeT

−1ATtdt (1.21)

Using linear algebra properties for matrices, we got the following :

Q0 =

∫ t

t0

T T eA
T

CTCeAtTdt (1.22)

Finally, this equation will take the following form:

∴ Q0 = T TQT (1.23)

15



To conclude, the gramians of both the controllability (1.19) and the observabil-

ity (1.23) depend on the basis of the original system (1.5). However, applying the

state space transformation to the original system has no effect to the eigenvalues

of PQ, i.e.

P0Q0 = T−1P (T−1)TT TQ = T−1PQT

1.2.3.3 Construction of Transformation Matrix

The following algorithm shows how to construct the transformation matrix “T”,

which is a non-singular matrix. Moreover, the transformation matrix “T” diago-

nalize the gramians P and Q.

INPUT: Consider there exist a linear system, the objective is to find another sys-

tem with low order. However, the obtained system save the main properties of the

original system. The state space parameters for the large system are (A,B,C,D).

� Step 1: The procedure started by solving the lyapunov equations and find

the gramins P and Q for the original system using the equations (1.13) and

(1.14), (this can be done in matlab using the command [lyap]).

� Step 2: Factorize the controllability gramian as P = RTR (this can be done

in matlab using the command [chol]).

� Step 3: Construct the matrix RQRT and factorize it as : RQRT = UTΣU ,

where the matrix U is a unitary matrix, and the other matrix “Σ” is diagonal

matrix, where its diagonal elements are σi, i.e. Σ = diag(σ1, σ2, · · ·, σn), and

(σi = (λi(PQ))1/2).
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� Step 4: Finally, we can defined the transformation matrix as follows:

T = RTUΣ−1/2

OUTPUT: The state parameters of the transformed system will take the following

form: A0 = T−1AT , B0 = T−1B, C0 = CT , D0 = D.

From the previous development, it’s clear that the balanced form of any linear

system can be obtained by changing its basis. However, this system must be

controllable and observable [2],[64].

1.2.3.4 Model Reduction using Balanced Truncation Technique

This technique is popular and used to reduce the large linear systems. The idea

of this technique is based on the connection between the gramians and the energy.

The gramians “P and Q” play the main rule in this technique, if the corresponding

states of the linear system needed to be moved, an amount of energy is put into

this system. The singular values of “P” correspond to this amount. Moreover,

the states of the original system generates an energy. The singular values of the

observability gramian “Q” reffering to this energy. In balanced system, the values

that give a measurement of the importance of the states is called “the Hankel

singular values”. These values are defined as the square roots of PQ and they

give an indication to the importance of the states of the system. The most affected

states in the system have the largest singular values. In model order reduction

issues, the system can dispense the states that have a small singular values and the
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new system (the reduced one) will be the best possible approximation system to

the original system that has a full states [53]. For the reduction by truncation, ones

the original system is transformed to the balanced form, the MOR by truncation

will be applied to it as showing below:

Ar = EA0E
T , Br = EB0, Cr = C0E

T , and Dr = D0

where E =

[
I(r,r) 0(r,n−r)

]
, r is the new order of the system “reduced-system

order”, and n is the old order of the system “original-system order”, which is high

and greater than the new order.

1.2.3.5 The Corresponding between Projection and Balanced Trunca-

tion

The balanced truncation explained earlier is the most popular technique of MOR.

However, this technique is a projection method. In this technique, the gramians

play the major role in the projection subspace. The corresponding between the

projection method and balanced truncation method can be explained as follows:

INPUT: The large original and stable system (1.5) that needed to be reduced,

with (A,B,C,D) as the state space parameters.

� Step 1: Assume there exist a transformation matrix “T”, where T ∈ IRn×n.

Then, we construct two matrices depending on T . Let’s call these matrices

V and U , where V = T−1ET and UT = ET . Here, E ∈ IRr×n, and E =[
I(r,r) 0(r,n−r)

]
.

� Step 2: Let x = V xr;
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where xr ∈ IRr, V ∈ IRn×r

� Step 3: Put the value of x that we got in step 2 into the original system

(1.5)

ẋ = V ẋr = Ax+Bu

yo = CV xr

(1.24)

Then,

V ẋr = AV xr +Bu

yo = CV xr

(1.25)

By multiplying the state equation from left side by UT , we got:

UTV ẋr = UTAV xr + UTBu (1.26)

where UT ∈ IRr×n

� Step 4: By multiplying equation (1.26) from left side by (UTV )−1, we got

the following:

ẋr = (UTV )−1UTAV xr + (UTV )−1UTBu

yo = CV xr

(1.27)

OUTPUT: The output of this development is the reduced system with order r:

ẋr = Arxr +Bru

yo = Crxr +Dru

(1.28)
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where: Ar = (UTV )−1UTAV , Br = (UTV )−1UTB, Cr = CV , and Dr = D.

From the previous algorithm, we conclude that the eigenvalues of the

matrices“P and Q” are invariant under the state space transformation.

Let λ1, · · · , λn are the eigenvalues of “PQ”, and the square root of these eigen-

values denoted by σi, then:

σi =
√

(λi) = λ
1/2
i (PQ).

where all λi’s are real and positive for i = 1, ..., n.

Remark 1.2 Balanced truncation technique is an important projection method,

it is idea depends on the choice of the projection subspace based on the grami-

ans P and Q. In this technique, the original system is converted to the

balanced system via the state-space transformation “T”,i.e A0, B0, C0, D0 =

(T−1AT, T−1B,CT,D). The transformation matrix has some advantages e.g.

P = TP0T
T , and Q = T−TQ0T

−1. Here, the states are arranged in descend-

ing order according to how controllable and observable the states are, and then the

discardable states are truncated. The new system, obtained by using the balanced

truncation technique, is characterized by a number of properties such as stability

preservation and the difference between its output and the output of the complete

(high order) system for the same input stay within the acceptable error and it can

be calculated using the following equation [65]:

||y − yo||∞ = 2
n∑

i=r+1

σi
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1.2.4 The Schur Method for Model Reduction

In balanced truncation method, there are some difficulties that can face when we

build the transformation matrices (e.g. when these transforming matrices are ill-

conditioning). Safonov and Chiang [66] had developed another method that can

overcome these difficulties by suggested that, “if the original system transformed

to an alternative system through the orthogonal matrices, then the reduced sys-

tem can be truncated from the new form”.

The idea of Schur method is just to replace the T and T−1 by the orthogonal

matrices. These matrices are perfectly-conditioned and have the same properties

of the transformation matrix “T” and its inverse “T−1”. The Schur method con-

structs the orthogonal matrices using the Real-Schur Form (RSF) of the gramians

P and Q.

Schur algorithm for MOR can be expressed as follows [67]:

INPUT: This algorithm is applied to the system in equation (1.5) that has the

state space parameters (A,B,C,D)

� Step 1: Solve the Lyapunov equations (1.13) and (1.14), and obtain the

gramian matrices P and Q.

� Step 2: Find the eigenvalues of the gramians PQ, and determine the largest

values of them. Determination of the number of the largest eigenvalues

helping to determine the order of the reduced system “r”. Then, find the

orthonormal bases Vp and Vq, where Vp, Vq ∈ IRn×r, this can be done using
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means of ordered Schur factorizations.

� Step 3: Find the singular value decomposition (SVD) of vectors that we

found in step 2, V T
q Vp, i.e. UqΣU

T
p = SV D(V T

q Vp)

� Step 4: Compute the transforming matrices :

Sp = VpUpΣ
−1/2, Sq = VqUqΣ

−1/2

OUTPUT: Ar = STq ASp, Br = STq B, Cr = CSp, and Dr = D

In this method, the main properties of the original system is preserved. How-

ever it does not give the balance realization, these properties showing in the

following theorem [68]:

Theorem 1.2 Assume that we used the Schur method to reduce a high order sys-

tem, then for the reduced system there exist a transfer function and it is denoted

by Gr , where Gr(s) = Cr(sI − Ar)
−1Br. It is noted that, Gr is equal to the

transfer function of the reduced system that is obtained using balanced-truncation

method. Moreover, the gramians for the new system using this algorithm can be

written as:

Pr = STq PSq, Qr = STp QSP

where Pr is controllability gramian of the reduced-system and Qr is the observabil-

ity gramian of the reduced system.

Remark 1.3 Schur MOR was developed to overcome the computational difficul-

ties that may confront us when we construct the transformation matrix due to

possibility of ill-conditioning. It is noted that, the transfer function obtained using
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this approach is the same as the transfer function obtained through the balanced

truncation method. However, the Schur method has a different computational

problem[68].

1.2.5 Hankel Norm Model Reductions

This technique distinguishes from the others by its optimal approximation model.

It is closely related to the balanced truncation technique that we discussed above.

However, for the balanced truncation we do not known whether the truncated

system (with order r) is the optimal approximation or not. In this method, the

truncated system will be the optimal approximation [69].

The idea of this technique is derived from the arguments of the energy transmis-

sion. Assume there exists a linear system “G” (with high order n) that maps the

input (u) to the output (y) as y = Gu. Then, for the reduced system we select

Gr that maps u to the new output yo, where Gr has order of r (r << n). The

error, which is defined as the difference between reduced-system output “yo” and

the output of the complete (high order) system “y” for the same inputs, can be

calculated as:

e = sup
u∈L2[0,∞)

∫∞
0

(y(t)− yo(t))T (y(t)− yo(t))∫∞
0
u(t)Tu(t)

This technique aims to obtain a transfer function Gr for the reduced system

with smaller degree than the transfer function of original system G, such that the

difference between their outputs “e” is minimized. This method is presented in

details in this section.
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1.2.5.1 Hankel Operator

For the linear system, the Hankel operator is defined as the prediction operator

that used to “ map the past input to the future output” [1], with the assumption

that the future input is zero.

Assume there exist a linear system with state space representation as in equation

(1.5). If the input to this system is u(t), where u ∈ (−∞, 0], then the output of

this system is determined by the following equation:

y(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ)dτ, t > 0

If we put v(t) = u(−t), then the output “y” will be y(t) = (ΓGv)(t), where t > 0.

Here ΓG is the Hankel operator and it defined as:

(ΓGv)(t) =

∫ 0

−∞
CeA(t+τ)Bv(τ)dτ

1.2.5.2 Hankel Norm

It can be defined as the induced norm L2[0,∞) of the Hankel operator of the

system, we can write it as ||G||H = ||ΓG||

From the definition above, we can write the Hankel norm as follows:

||G||2H = sup
u∈L2[0,∞)

∫∞
0
y(t)Ty(t) dt∫∞

0
u(t)Tu(t) dt
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or it can be written as the following:

∫ ∞
0

y(t)Ty(t) dt = ||G||2H
∫ ∞
0

u(t)Tu(t) dt

It’s clear that, the output of the linear system is nothing but the squared Hankel

norm of that system times its input. This method aims to obtain a less-order

system with a transfer function Gr of degree r, such that ||G−Gr|| is minimized

and r << n [65].

1.2.5.3 Hankel singular values and the Hankel norm

The maximum singular value of a linear system is the Hankel norm of that system.

However, these singular values are nothing but the squared-eigenvalues of PQ and

these values are in decrescent order, i.e

σ1 ≥ σ2 . . . ≥ σn ≥ 0

Theorem 1.3 If we have a linear and stable system, then:

� Denoting to the Hankel operator by H, the singular values of H is nothing

but the squared eigenvalues of the gramians “PQ”.

� The square root of the largest eigenvalue of PQ is called the Hankel norm

of that system.
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1.2.5.4 Computing the Optimal Hankel Norm Approximation

In balance truncation section, we explained how to obtain the balanced represen-

tation of the original system in order to truncate it and obtain the reduced-system

with order r (r << n). However, this technique did not obtain the optimal ap-

proximation. In other words, the reduced system obtained using the balance

truncation has not this criterion in case that the original system with order n has

a higher order than the reduced system of order r. However, the Hankel norm

reduction technique involve a criterion like this.

Assume that we have a transfer function of a stable system G. This approach

aims to find a reduced-order system with transfer function Gr, such that ||G −

Gr||H is minimized. Here, ||G − Gr||H is the error of the system [45, 70]. The

algorithm below shows that how to find the reduced system state parameters

(Ar, Br, Cr, and Dr) using the Hankel model reduction:

INPUT A large-order system G which is stable, controllable, and observable with

states (A,B,C, and D).

� Step 1: This algorithm started by computing the singular values “SVD” for

the large-order system and put them in a way such that σ1 ≥ σ2 ≥ . . . ≥

σn ≥ 0.

� Step 2: Use the transformation matrix to transform the system to the bal-
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anced form:

P = Q =


g1 0

0 g2


where g1 are the singular values of the system ordered as

diag(σ1, . . . , σr, σr+k, . . . σn) and g2 = σr+1Ik

� Step 3: According to the partitioning of the gramians, the original-system

states partitioned into the following:

A =


a11 a12

a21 a22

 ,B =


b1

b2

 ,C =

[
c1 c2

]

where a11 ∈ IR(nmin−k)×(nmin−k), b1 ∈ IR(nmin−k)×m, c1 ∈ IRP×(nmin−k)

define Γ = Σ2
1 − σ2

r+1I

� Step 4: Determine a matrix U such that this matrix should be a unitary

matrix, it satisfies that B2 + CT
2 U = 0.

� Step 5: The state space dimension of the system Ĝ with order n̂, where

n̂ = n− r, can be defined as: Â = Γ−1(σ2
r+1a

T
11 + g1a11g1 − σr+1c

T
1Ub

T
1 )

B̂ = Γ−1(g1b1 + σr+1c
T
1U)

Ĉ = c1g1 + σr+1Ub
T
1

D̂ = D − σr+1U

� Step 6 Finally, the subsystem Σ̂ is determined by selecting its state space

as showing below:
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Â =


Â−ve 0

0 Â+ve

 ,B̂ =


B̂−ve

B̂+ve

 ,Ĉ =

[
Ĉ−ve Ĉ+ve

]

where Â−ve is stable with dimension of ≤ r, while Â+ve is not stable.

OUTPUT: set

Ar = Â−ve

Br = B̂−ve

Cr = Ĉ−ve

Dr = D̂−ve

The reduced system that defined as

dζ
dt

= Arζ(t) +Bru(t)

y(t) = Crζ(t) +Dru(t)

represents the reduced system that is obtained using Hankel norm approximation,

and the error of this model reduction technique defined as ||G−Gr||H = σr+1.

1.2.6 H2-Model Reduction

The H2 model reduction problem is defined as: finding a reduced-stable system

Gr with order of r (where r � n) such that the H2-norm of the error E(s)

is small, where E(s) = ||G(s) − Gr(s)||, G(s) = C(sI − A)−1B, and Gr(s) =

Cr(sI − Ar)−1Br,

Let E(s) be the error with the realization triple (Ae, Be, Ce).
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The H2-norm is defined as the trace of the matrix.

S = ||E(s)||2H2
=

1

2π

∫ +∞

−∞
E(jw)TE(jw)dw

write the above equation in state space realization form [71]:

S =

∫ +∞

0

trace((Cee
AetBe)

T (Cee
AetBe))dt =

∫ +∞

0

trace((Cee
AetBe)(Cee

AetBe)
T )dt

Take:

S =

∫ +∞

0

trace((Cee
AetBe)

T (Cee
AetBe))dt

Then,

S = trace(BT
e (

∫ +∞

0

eA
T
e tCTCeAetdt)Be)

∴ S = trace(BT
e QeBe)

where Qe is the observability gramian and Qe =
∫ +∞
0

eA
T
e tCT

e Cee
Aet

If we take,

S =

∫ +∞

0

trace((Cee
AetBe)(Cee

AetBe)
T )dt

Then,

S = trace(Ce(

∫ +∞

0

eAetBeB
T
e e

AT
e tdt)CT

e )

∴ S = trace(CePeC
T
e )
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where Pe is the controllability gramian and Pe =
∫ +∞
0

eAetBeB
T
e e

AT
e tdt

where, Ae =


A 0

0 Ar

,Be =


B

Br

,Ce =

[
C −Cr

]
,

Pe =


P X

XT Pr

,Qe =


Q Y

Y T Qr

.

The lyapunov equations will be in the form:

AT 0

0 ATr

×
 Q Y

Y T Qr

+

 Q Y

Y T Qr

×
A 0

0 Ar

+

 CT

−CT
r

× [C −Cr

]
= 0

and

A 0

0 Ar

×
 P X

XT Pr

+

 P X

XT Pr

×
AT 0

0 ATr

+

B
Br

× [BT BT
r

]
= 0

To minimize the H2-norm,S, we must minimize the error function, i.e.

minimize S:

S = trace(

[
BT BT

r

] Q Y

Y T Qr


B
Br

)

In the above expression, (Q, Y, and Qr) are depending on A,Ar, C,and Cr.

B and Q are constant. Or equivalent: S = trace(

[
C −Cr

] P X

XT Pr


 CT

−CT
r

)

here, (P,X,and Pr) depend on A,Ar, B, and Br. C and P are constant. There
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are many researches on H2 to find the low-order system with a transfer function

Gr such that the difference between its output and the output of the complete

(high order) system is minimized. One of these methods used LMIs [25, 51, 65],

also genetic algorithms “GA” and particle swarm optimization“PSO” used to

find the reduced system [59, 60]

1.2.7 H∞-Model Reduction

The H∞-model reduction aims to find the reduced-order system of order r (r � n)

such that ||G(s) − Gr(s)||∞ is small ,where G(s) = C(sI − A)−1B, and Gr(s) =

Cr(sI − Ar)−1Br. This technique has received many considerable attention. In

[42], H∞-model reduction problem is converted to Hankel norm model reduction

problem. The problem of H∞ was solved using LMIs approach [65, 43], also this

problem was solved using genetic algorithms and particle swarm optimization [60].

1.2.8 Numerical Example:

In this section, a stable linear system is used as a numerical example. This

example has been used in many researches [72]. The order of this example is 4,

and it reduced to the second order. Here, the step signal is used as an input to
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both systems. The states of the original system as follows:

ẋ(t) =



0 0 0 −150

1 0 0 −145

0 1 0 −113

0 0 1 −19


x+



4

1

0

0


u(t)

y(t) =

[
0 0 0 1

]
x(t)

(1.29)

This system is reduced to the 2nd order due to the good separation between the

second Hankel singular value and the third one. Four of the previous approaches

used to reduce the original system (1.29) as follows:

1.2.8.1 Modal Truncation:

The first algorithm that we tested is the modal truncation technique. The fol-

lowing system represent the 2nd order system obtained using the modal order

reduction method:

ẋr(t) =


−1 −5.337

−1.11 ∗ 10−16 −3

xr +


−4.642

1.047

u(t)

yo(t) =

[
−0.005603 −0.01915

]
xr(t)
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Figure (1.1) compares the response of the system (1.29) that has the fourth order

to the reduced one with the second order. Here, the reduced system obtained by

using the modal truncation method. In this example, the H∞ norm of error is
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Figure 1.1: System outputs y and yo using modal truncation

0.0032.

1.2.8.2 Balanced Truncation Method

The second algorithm that we have discussed before is the balanced truncation

method, it used to reduce the system (1.29) to the second order:

The following system represent the second order result using the balanced trun-
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cation method

ẋr(t) =


−0.04378 −1.1685

−1.1685 −3.1353

xr +


−0.1181

0.1307

u(t)

yo(t) =

[
−0.1181 −0.1307

]
xr(t)

Figure (1.2) compares the response of the system (1.29) that has the fourth order

to the reduced one with the second order. Here, the reduced system obtained by

using the balanced truncation method. In this example, the H∞ norm of error is
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Figure 1.2: System outputs y and yo using balanced truncation
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2.4662 ∗ 10−4.

1.2.8.3 Schur Method

The Schur method is used to reduce the system (1.29) to the second order:

The following system represents the reduced system that obtained using the Schur

method

ẋr(t) =


−2.554 13.37

−0.01013 −1.019

xr +


−3.245

−0.9127

u(t)

yo(t) =

[
−0.01094 0.04232

]
xr(t)

Figure (1.3) compares the response of the system (1.29) with order four to the

reduced one with the second order. Here, the reduced system obtained using the

Schur method. In this example, the H∞ norm of error is 6.4629 ∗ 10−4.

1.2.8.4 Hankel Norm Reductions

Finally, Hankel norm reduction is used to reduce the system (1.29) to the second

order:

The following system represent the reduced system that obtained using the Hankel

norm reductions

ẋr(t) =


−2.801 2.428

0 −1.052

xr +


−0.06776

0.1665

u(t)
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Figure 1.3: System outputs y and yo using Schur method

yo(t) =

[
0.1755 0.041597

]
xr(t)

Figure (1.4) compares the response of the system (1.29) with order four to the

reduced one with the second order. Here, the reduced system obtained using the

Hankel norm reductions. In this example, the H∞ norm of error is 2.5438 ∗ 10−4.

The Hankel norm reduction gives the smallest H∞ norm of error, while the modal

truncation gives the largest H∞ norm of error. The balanced truncation and the

Schur MOR have almost the same H∞ norm of error.
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Figure 1.4: System outputs y and yo using Hankel norm reductions

1.3 Thesis Objectives

This study aims to develop a new algorithms for MOR for nonlinear systems.

In addition, the stability analysis of the proposed approaches is studied. Also,

two nonlinear electrical circuits are used to illustrate the developed techniques.

According to the above objectives, the scope of this thesis could be listed as the

follows:

� Study some of the popular techniques of MOR for linear and nonlinear

systems.

� Develop an algorithm of MOR for a class of nonlinear systems. In this

approach, the linearization method is applied to the large nonlinear system

to obtain the projection matrix from the linearized system. This matrix is

37



used to project the states of the large nonlinear system to obtain a reduced-

order system.

� Solve the problem of MOR for the developed approach using particle swarm

optimization to construct the projection matrix, no need to linearize the

original nonlinear system.

� Stability analysis of the developed algorithms.

� Study the effectiveness of the developed algorithms through simulation, by

applying these algorithms to two nonlinear electrical circuits.

1.4 Thesis Organization

The documentation for this research is broken down into four chapters; Chapter

one provides the reader with an introduction and literature review. It also gives

the reader a summary of how the research was carried out. In Chapter two, an

algorithm of MOR for a class of nonlinear systems is developed. This algorithm is

designed to project the original states of the nonlinear system so as to obtain the

reduced system with less order using a projection matrix. This matrix obtained by

linearized the original nonlinear system. In Chapter three, the projection matrix

is constructed using the particle swarm optimization which in turn projects the

states of the large nonlinear system. Furthermore, these chapters, Chapter two

and Chapter three, discussed the stability preservation of the reduced systems.

Finally, in Chapter Four, the performance of the developed MOR approaches is
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analyzed. Moreover, the efficiency of the developed algorithms is compared with

three of existing studies using results of two of nonlinear electrical circuits.
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CHAPTER 2

PROJECTION BASED

METHOD FOR NONLINEAR

SYSTEMS

2.1 Introduction

In this chapter, a new method of MOR for a class of nonlinear systems is de-

veloped. This technique is mainly based on the projection technique, where the

projection matrix is obtained from the transformation matrix of the linearized

system. Then, to obtain the reduced-order system, the states of the original non-

linear system have to be projected through the projection matrix. Firstly, the

projection-based procedure for linear systems is summarized. Then, the devel-

oped approach of MOR for nonlinear systems is presented. Finally, the efficiency

of the developed approach is tested and investigated using nonlinear electrical
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circuit.

2.2 Projection Method for Linear Systems

To understand the meaning of the MOR using the projection technique, this

technique is used to reduce the order of a stable linear system as follows:

Consider the linear system described by the following form

ẋ = Ax+Bu

y = Cx

(2.1)

where, A ∈ IRn×n, B ∈ IRn×m, and C ∈ IRp×n. The symbols m and p are denoted

to the number of the inputs and outputs of the linear system, respectively. The

MOR that based on projection method is aiming to approximate x(t) by its pro-

jection xr(t). It can achieve that by selecting a matrix V , such that x = V xr,

where V ∈ IRn×r. Here, the symbols n and r are denoted to the order of the

original system and the reduced system, respectively.

Let

x = V xr (2.2)
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where xr ∈ IRr and r � n.

Substituting equation (2.2) into equation (2.1) yields:

V ẋr = AV xr +Bu

yo = CV xr

(2.3)

By choosing a matrix U ∈ IRr×n, such that UV = Ir and multiply equation (2.3)

from the left side by U , we can write:

ẋr = UAV xr + UBu

yo = CV xr

(2.4)

Then, the reduced system of order r will be written in the following form:

ẋr = Arxr +Bru

yo = Crxr

(2.5)

where Ar ∈ IRr×r, Br ∈ IRr×m, Cr ∈ IRP×r, Ar = UAV,Br = UB, and Cr = CV .

In order to use the reduced system, with order r, instead of using the original

system, with order n, the output of the obtained system “yo” have to be closed to

the output of the large system “y”. In this technique, the projection matrix “V ” is

obtained from the corresponding between the projection and balanced truncation,

where V = T−1ET , T is the state transformation matrix, and E =

[
Ir,r 0r,n−r

]
.

Here, we gave a brief summery of how to obtain the transformation matrix “T”,

and the projection matrices “V ”. Assume that we have a linear system (2.1),
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then the first step is to find the transformation matrix “T”. From this matrix

we can obtain the projection matrix “V ”. This can be explained in the following

algorithm:

� Step 1: The procedures of this algorithm started by solving the lyapunov

equations and find the gramins P and Q for the original system using the

equations (1.13) and (1.14), it can be solved easily in Matlab using the

command [lyap].

� Step 2: Factorize the controllability gramian as P = RTR (this can be done

in Matlab using the command [chol]).

� Step 3: Construct the matrix RQRT and factorize it as : RQRT = UTΣU ,

where U is a unitary matrix, and Σ is a diagonal matrix, where its diagonal

elements are σi, i.e. Σ = diag(σ1, σ2, · · ·, σn), and (σi = (λi(PQ))1/2).

� Step 4: Defined the transformation matrix “T” as follows:

T = RTUΣ−1/2

� Step 5: Define the projection matrices V and U as follows:

V = T−1ET and U = (V TPV )−1V TP , such that UV = Ir and E =[
Ir,r 0r,n−r

]
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2.2.1 Numerical Example

In this subsection, a fourth-order stable linear system [72] has been used as an

example for the model-order reduction using the projection method. This system

reduced to the second order. To make the comparison easy, the step signal is used

as an input to both systems, the complete and the reduced systems. The original

system representation is as the following:

ẋ(t) =



0 0 0 −150

1 0 0 −145

0 1 0 −113

0 0 1 −19


x+



4

1

0

0


u(t)

y(t) =

[
0 0 0 1

]
x(t)

(2.6)

Due to the gap between the second and the third Hankel singular values of the

original system, the proposed method reduced the order of the original system to

the second order. The reduced-order system can be represented as follows:

ẋr(t) =


−0.4378 −1.1685

1.1685 −3.1353

xr +


−0.1181

0.1307

u(t)
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yo(t) =

[
−0.1181 −0.1307

]
xr(t)

Figure (2.1) compares between the response of the system (2.6) with order four

to the reduced one with the second order, the reduced system obtained by using

the projection method for linear systems.
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Figure 2.1: System outputs y and yo using projection based method

It is clear from figure (2.1) that the output of the reduced system of order 2 is

closed to the output of the original system of order 4. In this example, the step

signal used as an input to the both systems.
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2.3 Projection-Based Method For Nonlinear

Systems

The developed algorithm of MOR for a class of nonlinear systems is presented

in this section. The main idea of this approach is projecting the original states

of the nonlinear system to obtain the reduced system with less order using a

projection matrix. This matrix obtained by linearizing the original nonlinear

system, the projection reduction for linear system has been explained in Section

2.2. The states of the original system is reduced using the projection technique

via the projection matrix “V ”. The reduction procedures of this technique are

applied directly to the original nonlinear system (not to the approximated one),

and this advantage reduced the error that is introduced to the system during the

approximation.

2.3.1 Algorithm Procedures

Consider the nonlinear system described by the following form

ẋ = f(x) +Bu

y = Cx

(2.7)

In this system, x represents the states of the system and x ∈ IRn, while y represents

the output of the system. In equation (2.7), B ∈ IRn×m, C ∈ IRP×n, and f(x) is

a nonlinear function.
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Projection-based algorithm that we developed to reduce the order of a class of

nonlinear systems can be explained as follows:

Step 1: This algorithm started by approximating the states of the original sys-

tem, x(t), using the projection matrix V , that is obtained from the linearized

system, where x = V xr, here xr ∈ IRr and V ∈ IRn×r.

Step 2: Re-define the states of the nonlinear system such that the first one equal

to the first row of the obtained matrix in step one, i.e. x1 = x(1, :), and

do the same for the second state, i.e. x2 = x(2, :), up to the last state, i.e.

xn = x(n, :).

Step 3: Replace x1, x2, ... xn in the original nonlinear system (2.7), by the new

values that was obtained from step 2. The new form of the system will be:

V ẋr = fr(V xr) +Bu

yo = CV xr

(2.8)

Step 4: Define a new matrix U , where U ∈ IRr×n such that UV = Ir.

Step 5: Finally, multiply both sides of equation (2.8) from the left side by U to

obtain the following:

UV ẋr = Ufr(V xr) + UBu

yo = CV xr

(2.9)
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∴ The reduced nonlinear system will be written as the following:

ẋr = Ufr(V xr) +Bru

yo = Crxr

(2.10)

where Br = UB, Cr = CV , and fr is the reduced nonlinear function.

The main issue in this algorithm is how to select the element of the projection

matrix “V ” such that the error is small, i.e. the behavior of both systems, original

and reduced, is closed to each other.

In the projection-based algorithm, the projection matrix “V ” is constructed from

the corresponding between the projection and balanced truncation, where V =

T−1ET . Here, T is the state transformation matrix, and E =

[
Ir,r 0r,n−r

]
.

In this technique, the construction of the projection matrix “V ” is depending

on the linearization of the original system and the procedures can be written as

follows:

step 1: Linearize the original nonlinear system (2.7) using Jacobian linearization

method and from this step we obtain the linear system of the following form:

ẋ = Ax+Bu

y = Cx

(2.11)

here, the vector x has n-dimension, A is a constant matrix with dimension of

n×n. B and C are n-dimensional vectors where B ∈ IRn×m and C ∈ IRp×n.

step 2: The second step is to construct the transformation matrix “T”, and from
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this matrix we can get the projection matrices V and U , these matrices will

be used to project the states of the original nonlinear system. Construction

these matrices, T , V , and U , depends on the linearized system (2.11). We

have explained how to get these matrices for linear systems in Section 2.2

2.4 Stability Analysis

The stability analysis is one of the most important topics in control, through which

we can come up with a summary of the behavior of the system without the need

to compute its solution trajectories. The first person who studied the stability

was Lagrange in 1788, but this study was restricted to conservative mechanical

systems that can be described by Lagrangian equation of motion. Then came

the Russian mathematician A. M. Lyapunov in 1892 [73]. He provided the basic

definition of stability that still used up to the present day.

Theorem 2.1 Assume that x = 0 is an equilibrium point for the following system:

ẋ = f(x) (2.12)

and the domain D ⊂ IRn is containing x = 0. Let V = D → IR be a continuously

differentiable function, such that

V (0) = 0 and V (x) > 0 in the domain D − {0} (2.13)

V̇ (x) ≤ 0 in D (2.14)
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Then, x = 0 is stable. Moreover, if:

V̇ (x) < 0 in D − {0} (2.15)

then the origin “ x = 0 ” is asymptotically stable. This theorem is called “Lya-

punov theorem”, the proof of this theorem is available in Khalil book [73].

Proposition 2.1 If the large system is stable, i.e. it has a quadratic Lyapunov

function “V ” that satisfied the stability conditions, then the reduced system ob-

tained using the proposed algorithm is stable. In other words, there exists quadratic

Lyapunov function “Vr” that satisfied the stability conditions.

Mathematically, Consider we have a nonlinear system of order n as the following:

ẋ = f(x) +Bu

y = Cx

(2.16)

If there exist a Lyapunov function V (x) = xTPx, such that V̇ (x) = −Q(x),

∀x 6= 0, i.e.

V̇ (x) = ẋTPx+ xTPẋ

= fT (x)Px+ xTPf(x)

= −Q(x)

(2.17)

Then, for any right-projection matrix V , there exists a left-projection matrix U

such that the obtained-reduced system is stable, i.e. the reduced-order system have

a Lyapunov function Vr, such that V̇r(xr) = −Q(V xr)
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Proof

Assume that there exists a matrix V , such that:

x = V xr (2.18)

By substituting equation (2.18) into equation (2.16), we got the following:

V ẋr = f(V xr) +Bu

yo = CV xr

(2.19)

Now, by choosing a matrix U , where

U = (V TPV )−1V TP (2.20)

here, V ∈ IRn×r , U ∈ IRr×n and UV = Ir.

After that, the equation (2.19) is multiplied by the matrix U from left side

UV ẋr = Uf(V xr) + UBu

ẋr = Uf(V xr) + UBu

(2.21)

Assume that the function Vr(xr) is the Lyapunov function for the reduced-

order system, where: Vr(xr) = xTr V
TPV xr.
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Then, the derivation of the function Vr(xr) is:

V̇r(xr) = ẋTr V
TPV xr + xTr V

TPV ẋr

= fT (V xr)U
TV TPV xr + xTr V

TPV Uf(V xr)

(2.22)

Substitute equation (2.20) into equation (2.22), we get the following:

V̇r(xr) = fT (V xr)((V
TPV )−1V TP )TV TPV xr

+ xTr V
TPV ((V TPV )−1V TP )f(V xr)

(2.23)

Equation (2.23) is equivalent to:

V̇r(xr) = fT (V xr)P
TV (V TPV )−T (V TP TV )Txr

+ xTr (V TPV )(V TPV )−1V TPf(V xr)

(2.24)

Since the matrix P is symmetric, that means P = P T , then

(V TPV )−T (V TP TV )T = Ir (2.25)

Using the property (2.25), we can re-write equation (2.24) as the following:

V̇r(xr) = fT (V xr)PV xr + xTr V
TPf(V xr) (2.26)

Using the assumption in equation (2.18), we can re-write equation (2.26) as the
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following:

V̇r(xr) = fT (x)Px+ xTPf(x) (2.27)

Based on equation (2.17), the left side of equation (2.27) is equivalent to the

derivation of V xr, which can be represented mathematically as :

V̇r(xr) = V̇ (V xr) (2.28)

Then, for the reduced-order system, the derivative of its lyapunov function is:

V̇r(xr) = −Q(V xr) (2.29)

By using the lasalle theorem [73], the reduced-order system using the proposed

technique is stable.

2.5 Numerical Result and Simulation

2.5.1 Nonlinear Circuit Example 1

To verify the developed approach, a nonlinear circuit is reduced from order 6 to

order 3 using this method. Figure (2.2) shows the structure of the nonlinear circuit

that used previously by Chen in 1999 [11]. The nonlinearity lies in the resistors,

where it depends on the relationship between the resistors and the voltage applied

on them. Here, for each resistor, we labeled two ends by a and b to specify the

orientation due to probability of asymmetric, non-linear resistors. To make the
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electrical circuit simple, it was assumed that all resistors have the same value.

Moreover, the depend profile, which is called the current-voltage (I-V) profile,

is given by the function g. The current, that follows from a to b, is given by

I = g(x). In this example, the input is taken to be applied to the first node,

where i = u(t). In addition, the system output is the potential at the first node

with state variables being the potential at node from N1 to Nn.

The current at each node of this circuit and the voltage equations can be written

as follows:

u(t) = C
dx1
dt

+ g(x1 − x2) + g(x1)

g(x1 − x2) = C
dx2
dt

+ g(x2 − x3)

...

g(xn−1 − xn) = C
dxn
dt

The equations above are equivalent to the standard form that can be written as

follows:

C dx
dt

=



−g(x1)− g(x1 − x2)

g(x1 − x2)− g(x2 − x3)

...

g(xn−2 − xn−1)− g(xn−1 − xn)

g(xn−1 − xn)


+



1

0

...

0


u(t) (2.30)

Here, g(x) is the nonlinear function in this circuit, where g(x) = e40x + x− 1

To make this circuit simple, we assume that C = 1 for all nodes, we can re-write
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equation (2.30) as follows:

dx
dt

=



−g(x1)− g(x1 − x2)

g(x1 − x2)− g(x2 − x3)

...

g(xn−2 − xn−1)− g(xn−1 − xn)

g(xn−1 − xn)


+



1

0

...

0


u(t) (2.31)

Now, the current source i = u(t) is selected to be applied to the system above.

One of the most commonly used sources to study the behavior of the systems is

a step source. This is because it is easy to represent and observe how the system

behave [11]. By comparing the behavior of the reduced system to the original one,

the accuracy of our developed approach can be assessed.

To make it simple, we assume that n = 6, then the equations of this circuit can

be written as follows:



ẋ1

ẋ2

...

ẋ6


=



−g(x1)− g(x1 − x2)

g(x1 − x2)− g(x2 − x3)

...

g(x4 − x5)− g(x5 − x6)

g(x5 − x6)


+



1

0

...

0


u (2.32)

where g(x) = e40x + x− 1
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It’s clear from figure (2.3) that the behavior of the obtained nonlinear system

of order 3 is closed to the behavior of the original nonlinear system of order 6.

The projection-based method is used to obtain the reduced-order system, and the

step signal used as an input to both systems.
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Figure 2.3: Comparison of the original system response vs. the reduced system

2.6 Conclusion

To conclude, the developed method of MOR for a class of nonlinear systems

gives a reduced model that its behavior is closed to the behavior of the original

system. The main advantage of this approach is using the projection technique

to project the original states of the nonlinear system, no need to approximate the

original system. This advantage reduced the error that is introduced to the system

during approximation. In this method, the starting point is linearizing the original

system. Then, the projection matrix “V ” is constructed form the corresponding
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between the balanced truncation and the projection technique. After obtaining

the projection matrix “V ”, it will be used to project the states of the original

system. Moreover, the stability analysis of the reduced system is studied, so that

the reduced system obtained using the developed approach is proved to be stable.
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CHAPTER 3

PSO-BASED ALGORITHM

FOR NONLINEAR SYSTEMS

3.1 Introduction

PSO stands for Particle Swarm Optimization technique that uses particles to

explore the search space of the problem. These particles are moving towards

the optimal solution of the given problem. PSO introduced by Kennedy and

Eberhart in 1995 [74]. The idea of this technique comes from an observation of

some swarming habits in our live such as swarming of blocks of birds and schools

of fishes. Particle swarm optimization is a population-based search algorithm.

This algorithm has some advantages over the other optimization techniques, e.g.

its concept is simple and easily programmable. Moreover, it can converge speedily

to the optimal solution within the search space of the problem. When we take

the behavior of flocking birds as an example, we note that when the birds are
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searching for food in a region where there is only one place of food in it, all birds

do not know where the food is, but they know how far away it is in each iteration.

Therefore, the flocks of birds tend to follow the bird that is closest to the food

up to the desired area. In PSO, each bird in the search space of the problem

represents a single solution “Particle”. All particles have positions and velocities

and with each iteration the particles evaluate the fitness function and get the

fitness value. The best fitness value is saved and the particles move in the search

space following the current optimum particles.

The procedures of the PSO are shown below [75]:

1. PSO algorithm starts by initializing the population of the particles (particles

at time t) with a random values for their positions and velocities, these values

must be within the search space of the problem.

2. Evaluate the fitness function of the given problem for each particle in the

search space.

3. In each iteration, the PSO algorithm compares the particles fitness values

with the saved value of Pbest. In this algorithm, the best fitness value is

called “Pbest”. If the current fitness value of the particles is better than the

saved Pbest, then the value of Pbest is updated to the current fitness value,

i.e. Pbest=current fitness value. Moreover, the PSO saved the position of

the new Pbest.

4. Set the best fitness value achieved so far as the global best (gbest), i.e.

gbest= the best value of Pbest, and save its position.
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5. Update the velocity for each particle as stated in the following:

vj(t) = w(t)vj(t−1)+ c1r1(x
∗
j(t−1)−xj(t−1))+ c2r2(x

∗∗
j (t−1)−xj(t−1))

(3.1)

where

t Iteration number.

j the particle index.

v the velocity of the jth particle.

x the position of the jth particle.

c1 & c2 positive-acceleration constant, usually c1 = c2 = 2.

w inertial weight.

r1 & r2 random numbers between 0 and 1.

x∗j best position for jth particle (pbest)

x∗∗j global best, best of pbest.

6. Update the position for each particle as stated in the following:

xj(t) = vj(t) + xj(t− 1) (3.2)

Also, here the inertial weight will be updated as stated in the following:

w(t) = αw(t− 1) (3.3)
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7. Loop to the step 2, if one of the criteria is satisfied, then stop. These criteria

might be one of the following:

� Achieve the desired fitness value.

� Reach the maximum number of iteration, this value is determined by

the programmer.

The whole procedures of the particle swarm optimization “PSO” can be summa-

rized in the flowchart given in figure 3.1.

3.2 A Motivating Example

As a motivation example, the particle swarm optimization algorithm is used to

obtain a reduced linear system. Consider the linear system has the following form:

ẋ = Ax+Bu

y = Cx

(3.4)

where x ∈ IRn, A ∈ IRn×n, B ∈ IRn×m, C ∈ IRP×n. The objective is to use the

PSO to find the reduced linear system of the form:

ẋr = Arxr +Bru

yo = Crx

(3.5)

where the order of this system is r, such that r � n , and xr ∈ IRr, Ar ∈ IRr×r,

Br ∈ IRr×m, Cr ∈ IRP×r. However, the behavior, or the output “yo”, of the
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Figure 3.1: Particle Swarm Optimization Flowchart
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obtained system should be closed to the behavior “y” of the original system.

To achieve this objective, we need to set some definitions and parameters as listed

below:

� Set all parameters of the state space of the original system.

� Set the suitable order of the reduced system and consider that we have the

original system (3.4), the singular values of this system could be defined as

σ = λ1/2(PQ), where Q and P are the controllability and the observability

gramians, respectively. If r is the order of the reduced system, then σr+1 ≤

||y − yo||∞, where σr+1 is the (r + 1) Hankel singular value “HSV” of the

original system (3.4). In other words, the H∞ of the reduced system will

not be less than the highest HSV that has been dropped.

� Set the parameters of the PSO as the following:

- Set the number of the swarm “N”.

- Set the size of the particles which needed in this problem “P”.

- Set the iteration counter as t = 1

- Define the search space of the problem. This could be determined by

setting the maximum and minimum values for each parameter in the

swarm.

- Define the fitness function. This function is the most important point in

PSO, it links PSO with the problem that needed to be optimized. In

our problem, the fitness function is the H∞-norm of the error E, where
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E could be defined as the maximum error between the outputs of the

original and the obtained systems. In other words, fitness = E =

||y − yo||∞. Then, the objective is getting the minimum value of the

error (fitness = min(E)).

The main steps for using the particle swarm optimization algorithm to obtain the

reduced linear system can be summarized as follows:

1 Select random values within the range specified for the positions X(0) and

velocities V (0);

X(0) =



~x1

~x2

...

~xi

...

~xN


where ~xi =

[
xi1 . . . xip

]
V is the velocity matrix,

V (0) =



~v1

~v2

...

~vi

...

~vN


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where ~vi =

[
vi1 . . . vip

]
2 Vectorize the rows of the matrix X to produce vectors ~x1, ~x2 ... ~xN . Choose

the first vector “~x1” and construct the reduced system “sysr”, then evaluate

the objective function “E =‖ sys − sysr ‖∞”, where “sys” is the original

system. Save the value of E and do it for ~x2, and compare between the value

of the objective function “E”, continue up to ~xN . Choose the lowest value

of E to be the local and global best for initial values.

Pbest is the individual best,

Pbest =



~pbest,1

~pbest,2

...

~pbest,i

...

~pbest,N



where ~pbest,i =

[
pbest,i1 . . . pbest,ip

]
The global best is defined as best of the personal best, i.e. gbest =[
g1 g2 . . . gP

]
3 Set the iteration number as t = 1.

4 Update the velocity according to equation (3.1).

5 Update the position of each particle according to equation (3.2).
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6 Compute the fitness value of the new position.

7 Find pbest of each particle according to:

pt+1
best,i =


ptbest iff t+1

i > ptbest,i

xt+1
i iff t+1

i ≤ ptbest,i

where f is the fitness value.

8 Find the global best according to: gbest = min(P t
best,i)

9 Stopping criterion:

check if the desired fitness value satisfied or the maximum number of itera-

tion is met. If one of these criteria is achieved, then stop and the solution

will be the gbest. The position that satisfies this value will be used to con-

struct the reduced system. Otherwise, update the inertial weight, t=t+1,

and go to step 4.

The flowchart of using PSO in model order reduction shows in figure 3.2.

Example: Consider we have the linear system of order 6 as showing below:
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Defined the required parameters for PSO.

General initial for the population in the search space.

Find the fitness value  E=norm(sys-sysr,inf)  of each 
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Iter.=1

Yes
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Update the weight 

Figure 3.2: Flowchart of using the “PSO” in model-order reduction of linear
systems
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ẋ =



−41 −571 −3491 −10060 −13100 −6000

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0



x+



1

0

0

0

0

0



u

y =

[
2 70 762 3610 7700 6000

]
x

(3.6)

The obtained system using “PSO” is of order 2, and it’s parameters are as follows:

ẋr =


−7.0291 −3.7220

−4.8124 −3.9709

xr +


1.1779

0.4663

u
yo =

[
2.2553 −1.4078

]
xr

(3.7)

We compare the output of both systems, the original and the obtained systems.

Figure 3.3 shows that the behavior of the reduced system “with order 2” is close

to the behavior of the original system “with order 6”. The step signal is used as

an input to both systems.
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Figure 3.3: System outputs y and yo

3.3 Model Reduction of Nonlinear Systems Us-

ing PSO-technique

In this section, the PSO is used to construct the projection matrix “V ”, which

used to project the states of the original system which in turn produces a new

system with less order. However, the behavior of the obtained system is closed to

the behavior of the original system.
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Consider the nonlinear system described by the following dynamics

ẋ = f(x) +Bu

y = Cx

(3.8)

where x ∈ IRn, f is a nonlinear function. Here, the first equation is called the

“state equation”, and the other equation is called “output equation”.

The objective of “MOR” is to obtain the reduced nonlinear system of the form

ẋr = fr(xr) +Bru

yo = Crxr

(3.9)

where xr ∈ IRr, and fr is a nonlinear function. The behavior “yo” of the obtained

nonlinear system is closer to the behavior of the original nonlinear system “y”

The main steps of using the Particle Swarm Optimization to obtain the reduced

nonlinear system can be summarized as follows:

1: Select random values within the range specified for the positions X(0) and

velocities V (0);

X(0) =



~x1

~x2

...

~xi

...

~xN


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where ~xi =

[
xi1 . . . xip

]
V is the velocity matrix,

V (0) =



~v1

~v2

...

~vi

...

~vN


where ~vi =

[
vi1 . . . vip

]
2: Vectorize the rows of the matrix X to produce vectors ~x1, ~x2 ... ~xN . Choose the

first vector “~x1” and construct the projection matrix V , from this matrix

we defined the second matrix U , where U = (V TPV )−1V TP , such that

UV = Ir.

3: Use the obtained matrices V and U , which we got from step 2, to project the

original nonlinear system and get the reduced system

ẋr = Ufr(V x) + UBu

yo = CV xr

(3.10)

4: Compute the fitness value for this position, where the fitness value is the H∞

of the error, i.e. fitness value =‖ y − yo ‖∞.

5: Take the vectors “ ~x2 ... ~xN , and do the same procedures as we did for ~x1.
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Choose the lowest value of the fitness value to be the local and global best

for initial values. Pbest is the individual best,

Pbest =



~pbest,1

~pbest,2

...

~pbest,i

...

~pbest,N



where ~pbest,i =

[
pbest,i1 . . . pbest,ip

]
The global best is defined as best of the personal best, i.e. gbest =[
g1 g2 . . . gP

]
6: Set the iteration number as t = 1.

7: Update the velocities for all particles according to the equation (3.1).

8: Update the positions for all particles according to the equation (3.2).

9: Compute the fitness value of the new positions, and find the personnel and

global best.

10: Stopping criterion:

Check if one of these criteria has achieved:

� The desired fitness value satisfied.
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� Maximum number of iteration is met.

If one of them has been achieved, then stop and the solution is the global

best. Otherwise, update the inertial weight, t = t+ 1, and go to step 7.

To give a quick overview for the developed algorithm, the previous procedures of

MOR for a class of nonlinear systems using the Particle Swarm Optimization can

be summarized in the flowchart in figure 3.4.

3.4 Stability Analysis

The stability of the reduced system has been proved in Chapter 2, Section 2.4.

3.5 Simulation

To verify the developed algorithm, we reduced the nonlinear system that is used

in [25] to the third order. The original nonlinear system is described below:

ẋ1 = −2x1 − x2− 2u

ẋ2 = −2x2 − x3 + u

ẋ3 = −2x3 − x4 + sin(x3)

ẋ4 = −2x4 + u

y = 2x1 + x2 + x3 + x4

(3.11)

Our aim is to approximate this system using PSO to a reduced system of order

three.
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Figure 3.4: Flowchart of Model Order Reduction of Nonlinear Systems
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Figure 3.5 shows the response of both systems, the original and the reduced
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Figure 3.5: Outputs for both systems, the original and the obtained systems,
using the developed approach.

systems, using a bounded input, where u = 2sin(t)cos(4t). From Figure 3.5,

it is apparent that the reduced nonlinear system using the “PSO” gives a good

approximation to the original nonlinear system described in equation (3.11).

3.6 Conclusion

To conclude, a new efficient and practical technique is developed for doing MOR

for a class of nonlinear systems. The developed approach uses the projection

technique directly to the states of the original system. The Particle Swarm Op-

timization “PSO” is used to construct the projection matrix “V ”, which in turn
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project the states of the original system. The fitness value of the PSO is the H∞

of the error “E”. Moreover, the reduced system using this approach is proved

mathematically to be a stable system. Finally, to verify the efficiency of this ap-

proach, we used it to gain a reduced system, and its output was compared to the

output of the original system.
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CHAPTER 4

ASSESSMENT OF THE

DEVELOPED PROCEDURES

4.1 Introduction

Chapter 2 and Chapter 3 presented a theoretical analysis for the developed model-

reduction algorithms and the stability analysis of these algorithms was stud-

ied. Since the PSO-based algorithm gives better result than the projection-based

method, then the PSO-based approach is applied to two electrical circuits. The

PSO-based method has been validated by comparing the simulation of the out-

put for the reduced system with the original one. In addition, this method is

compared to three existing methods, quadratic reduction method [11], direct non-

linear reduction with variational analysis [18], and quadratic bilinear systems [76],

to investigate the efficiency and the accuracy of the developed approach.
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4.2 Nonlinear Circuit Example 2

In this example, we use the same circuit as in Section (2.5.1), but the dimension

of this circuit is increased to 20. The equation of the circuit can be written as

follows: 

ẋ1

ẋ2

...

ẋ6


=



−g(x1)− g(x1 − x2)

g(x1 − x2)− g(x2 − x3)

...

g(x18 − x19)− g(x19 − x20)

g(x19 − x20)


+



1

0

...

0


u (4.1)

where g(x) = e40x + x− 1

4.3 Nonlinear Circuit Example 3

Figure (4.1) shows the structure of another nonlinear electrical circuit. The I-V

characteristic of the nonlinearity is given by i = ψ(x). The differential equations

of this circuit is given as:

ẋ1 =
1

R1
(E − x1)−

1

Rc
(x1 − x2)− ψ(x1)

ẋ2 =
1

Rc
(x1 − x2)−

1

Rc
(x2 − x3)− ψ(x2)

...

ẋ19 =
1

Rc
(x18 − x19)−

1

Rc
(x19 − x20)− ψ(x19)

ẋ20 =
1

Rc
(x19 − x20)−

1

R2
(x20 − E)− ψ(x20)

(4.2)
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where E is the input, ψ(x) is the nonlinear function, and ψ(x) = 10−3(17.76x −

103.79x2 + 299.62x3). We can define the output of this circuit (I) as follows:

y = I =

(
0 0 0 0 1

Rc
−1
Rc

)



x1

x2

...

x19

x20


(4.3)

In this chapter, the PSO-based method has been applied to these two electrical

circuits in comparison with three existing studies. The original systems are of

order 20, and the reduced systems are of order 4. The following sections contain

a brief summary of these studies with comparison to the new approach.

4.4 Comparison with Quadratic Reduction

Method

This method uses Taylor expansion to expand the terms of nonlinear systems.

The idea of this method is based on the quadratic approximation of the nonlinear

systems by deleting the parts of Taylor expansion which are greater than two

degree. In other words, this method obtains a quadratic reduced system for the
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original nonlinear system [11]. The nonlinear function can be written as follows:

f(x(t)) = f(0) + A1x(t) + A2(x(t)⊗ x(t)) + A3(x((t)⊗ x(t)⊗ x(t)) + ... (4.4)

If the nonlinear function “f(x)” was approximated by the first two terms of the

Taylor expansion (4.4), then the following quadratic nonlinear system

ẋ = Ax+ xTWx+Bu(t)

y = Cx(t)

(4.5)

is the approximated system to the original nonlinear system (4.5). Where A ∈

IRn×n, and W is 3−D array or an n× n× n tensor. If we approximate x ≈ V xr,

then the reduced will be as follows:

ẋr = Arxr + ArV TA
−1xTr V

TWV xr + ArV
TBu(t)

y = CV xr

(4.6)

where Ar = (V TA−1V )−1, the V matrix is obtained using the following:

spancolumn{V } = span{A−1B, ..., A−qB}

Since the quadratic system is a more precise approximation of the original non-

linear system than the linearized system, then this method is more precise than

the linearization method [11].

For the nonlinear electrical circuit in example 2, a specific current source is used
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to be a step input (u = 0, when t ≤ 3, else u = 1, and t ∈ [0, 10] ). For a

clear comparison between the reduced methods, the output of the original non-

linear systems is plotted for the nonlinear circuit in example 2 in Section (4.2)

with size 20 using the PSO-base method and the reduced quadratic approxima-

tion method, and the dimension of the reduced order is 4. From this example, it

is clear that the reduced system using the developed approach is more accurate

than the reduced system that obtained using the quadratic method (Figure (4.2)).

The response of example 3 mentioned is Section (4.3) is in Figure (4.3). In this
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Figure 4.2: Comparison of the system response in example 2 using PSO-based
method vs. Quadratic Reduction Method

figure, the dimension of the reduced order is 4, and both, the PSO-base method

and the quadratic nonlinear system [11], are used to obtain the reduced system.

In this example, a current source is used to be a step input (u = 0, when t ≤ 0,

else u = 1, and t ∈ [0, 10]). Figure (4.3) shows that the reduced system obtained

using the PSO-base method is more accurate than the quadratic system. In other
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words, the output of the reduced system obtained using the developed approach

is much closer to the output of the original system.
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Figure 4.3: Comparison of the system response in example 3 using PSO-based
method vs. Quadratic Reduction Method

4.5 Comparison with Direct Nonlinear Reduc-

tion with Variational Analysis

The model order reduction that based on the variational analysis theory started

by transformed the original nonlinear system into several linear systems, then

model reduction is applied to each of these linear systems. Consider there exists

the following nonlinear system:

ẋ = f(x) +Bu

y = Cx

(4.7)
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If we change the input of the system (4.7) to be an input of the form αu(t), then

the system will be:

ẋ = f(x) +B(αu)

y = Cx

(4.8)

where α is an arbitrary scalar. We can write the expansion of the state x(t) in

the parameter α is the following form:

x(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . (4.9)

The Taylor series of the nonlinear function “f(x)” can be written in the Kronecker

form as follows:

f(x(t)) = f(0) + A1x(t) + A2(x(t)⊗ x(t)) + A3(x((t)⊗ x(t)⊗ x(t)) + ... (4.10)

By substituting equation (4.10) and equation (4.9) in equation (4.8), we get the

following:

αx1(t) + α2x2(t) + α3x3(t) + . . . =αA1x1(t) + α2[A1x2 + A2(x1 ⊗ x1)]

+ . . .+B(αu)

(4.11)
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Since the coefficient of like powers of α are equal, then equation (4.11) is equivalent

to the following:

ẋ1(t) = A1x1 +Bu(t) (4.12)

ẋ2(t) = A1x2 + A2(x1 ⊗ x1) (4.13)

ẋ3(t) = A1x3 + A2(x1 ⊗ x2 + x2 ⊗ x1) + A3(x1 ⊗ x1 ⊗ x1) (4.14)

In this technique, the MOR technique is applied to the linear systems (4.12) (4.13)

and (4.14), instead of applying it to the original system. This method started by

using the Taylor expansion of the nonlinear function “f(x)” to approximate the

original nonlinear system (4.7) into the second order

ẋ(t) = A1x+ A2(x⊗ x) +Bu

y(t) = Cx

(4.15)

or to the third order system

ẋ(t) = A1x+ A2(x⊗ x) + A3(x⊗ x⊗ x) +Bu

y(t) = Cx

(4.16)
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In equation (4.9), if we put α = 1, then the solution of equation (4.15) is equivalent

to the following:

x(t) = x1(t) + x2(t) (4.17)

also, the solution of equation (4.16) is equivalent to the following:

x(t) = x1(t) + x2(t) + x3(t) (4.18)

The main advantage of the direct order reduction method is the development of

a single projection matrix “V ” to reduce the whole system, instead of reducing

the individual linear systems (4.12), (4.13), and (4.14). This single matrix will be

used to reduce the system (4.15) (if we approximate the nonlinear to the second

order) or to reduce the system (4.16) (if we approximate the nonlinear system to

the third order) [18].

The construction of the projection matrix V can be summarized as follows [18]:

� Firstly, construct the projection matrix V1 based on the first linear system

(4.12), i.e. spancolum{V1} = span{A−11 b, A−21 b, . . . , A−q11 b}. Then, approxi-

mate x1 as x1 ≈ V1xr1.

� Secondly, construct the projection matrix V2 based on the second linear ma-

trix (4.13), i.e. spancolum{V2} = span{A−11 A2, A
−2
1 A2, . . . , A

−q1
1 A2}. Then,

we make an approximation of x2 as x2 ≈ V2xr2. The same procedures can

be followed to approximate x3. Then we have x(t) = V1x1 + V2x2 + V3x3.
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� Thirdly, the projection matrix “V ” can be written as: spancolum{V } =

spancolum{V1, V2, V3}

� Finally, the reduced system using this approach can be written as follows:

ẋr = V TA1V xr + V TA2(V xr ⊗ V xr) + V TA3(V xr ⊗ V xr ⊗ V xr) + V T bu

yo(t) = CV xr

(4.19)

Figure (4.4) shows the response of the nonlinear circuit in example 2. In this

example, a specific current source is used as input,( u = 0, when t ≤ 3, else

u = 1, and t ∈ [0, 10]). For a clear comparison between the reduced methods, the

output of the nonlinear circuit in example 2 [in Section (4.2)] is plotted with size

20, and the dimension of the reduced-order system is 4. The PSO-based method

and the direct nonlinear reduction with variational analysis [18] are compared

to each other. The reduced system using the direct nonlinear reduction with

variational analysis gives a good result. However, the developed approach is found

to give more accurate result. The simulation of example 3, that was mentioned

in Section (4.3), is shown in Figure (4.5). The input of this circuit is u, where

u = 0, when t ≤ 0, else u = 1, and t ∈ [0, 10]. It is clear from the figure that

the reduced system, of order 4, obtained using the PSO-based method gives a

good approximation to the original nonlinear system than the direct nonlinear

reduction with variational analysis [18].
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Figure 4.4: Comparison of the system response in example 2 using PSO-based
method vs. Direct Nonlinear Reduction with Variational Analysis
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Figure 4.5: Comparison of the system response in example 3 using PSO-based
method vs. Direct Nonlinear Reduction with Variational Analysis
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4.6 Comparison with Model Reduction for

Quadratic Bilinear Systems

As can be illustrated from the previous section, the Taylor expansion of the non-

linear system (4.7) can be written in a Kronecker product of the state x, i.e.

f(x) = A1x+ A2(x⊗ x) + A3(x⊗ x⊗ x) + . . . (4.20)

Since the bilinearization system is derived by approximating the nonlinear system

using the two terms of equation (4.20), the following approximation of the function

f(x) is obtained as follows:

f(x) = A1x+ A2(x⊗ x) (4.21)

Then, the bilinearization system can be represented as follows:

ẋ(t) = A⊗x⊗ +N⊗x⊗u(t) +B⊗u(t)

y(t) = C⊗x⊗

(4.22)

Where

x⊗ =

 x(t)

x(t)⊗ x(t)

 , B⊗ =

 B

0

 , C⊗ =

 C

0


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A⊗ =

 A1 A2

0 A1 ⊗ I + I ⊗ A1

 , N⊗ =

 0 0

B ⊗ I + I ⊗B 0


Mian IIyas Ahmed et al. [76] proposed a new technique for model reduction of

quadratic bilinear systems. In this technique, first the nonlinear system (4.7) is

approximated using the quadratic bilinear system as follows:

ẋ(t) = Ax(t) +Nx(t)u(t) +Hx(t)⊗ x(t) +Bu(t)

y(t) = Cx(t)

(4.23)

where A,N ∈ IRn×n, H ∈ IRn×n2

, B,C ∈ IRn. The next step is to project the

approximated system using two matrices V,W T ∈ IRn×r. The reduced matrices

of this technique are showing below:

Ar = W TAV , Hr = W TH(V ⊗ V ), , Nr = W TNV , Br = W T , Cr = CV

(4.24)

The matrices V and W T are constructed as follows [76]:

range(V ) = span{(σ1I − A)−1B, (σ2I − A)−1NV 1, . . . , (σrI − A)−1NV r−1}.

range(W ) = span{(σ1I−A)−TCT , (σ2I−A)−TNTW 1, . . . , (σrI−A)−TNTW r−1}.
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In example 2, the PSO-based method is used to reduce the order of the nonlinear

transmission line circuit with 20 nodes, see Figure (2.2). In this example, a specific

current source is used as input (u = 0, when t ≤ 3, else u = 1, and t ∈ [0, 10]).

Figure (4.6) shows a comparison of the reduced systems of order 4 that obtained

using the PSO-based method and the quadratic bilinear system method [76], in

order to examine the accuracy and the efficiency of the developed approach. It

is apparent from the this figure that the reduced system using the PSO-based

method provides more accurate results than the quadratic bilinear system method

[76]. The circuit in example 3, that was mentioned in Section (4.3), is used to

Time (s)
0 1 2 3 4 5 6 7 8 9 10

Ou
tpu

t

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Original
Reduced using PSO
Quadratic Bilinear Approximation
Reduced using Quadratic Bilinear

Figure 4.6: Comparison of the system response in example 2 using PSO-based
method vs. Model Reduction for Quadratic Bilinear Systems

test the accuracy of the developed approach. Here, a specific current source is

used as input (u = 0, when t < 0, else u = 1, and t ∈ [0, 10]). Figure (4.7) shows

that the quadratic bilinear systems method [76] failed to save the stability of the

reduced system. However, the reduced system of order 4 that obtained using the
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PSO-based approach gives a good approximation to the original nonlinear system.
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Figure 4.7: Comparison of the system response in example 3 using PSO-based
method vs. Model Reduction for Quadratic Bilinear Systems

4.7 Conclusion

In this chapter, two nonlinear electrical circuits have been used to test the PSO-

based method. This approach has been validated by comparing the simulation of

the output for these examples using its output with the original nonlinear model.

In addition, a brief summary was given regarding three existing approaches and

the PSO-based method was compared to these methods in order to investigate the

accuracy and the efficiency of the developed approach. It could be observed that

the PSO-based method gave more accurate results than these existing approaches.
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