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ABSTRACT 

 

Full Name : Omar Ali Adel Maraqa 

Thesis Title : Performance evaluation of Economic Denial of Sustainability (EDoS) 

Attack Mitigation Techniques. 

Major Field : Computer Networks 

Date of Degree : December 2016 

 

Cloud computing technology is a result of urgent needs for low cost, high utilization, 

and efficient management of the available resources in the information technology 

industry. Many medium and large organizations are interested in cloud computing 

because of its benefits such as elasticity, pay per use, and other benefits that it provides.  

However, even with all of its great advantages, the security of cloud computing is still 

a major concern. Many new attacks have been developed especially for the cloud, and 

the Economic Denial of Sustainability (EDoS) attack is one of them. EDoS attack is 

considered one of the main security issues that prevents many organizations from 

migrating their services to cloud computing environment. EDoS targets the financial 

constraints of the cloud consumer who rents the resources from the cloud provider. A 

number of researchers proposed mitigation techniques that can reduce the effect of an 

EDoS attack.  

In this work, we study the existing mitigation techniques that can mitigate the effect of 

the EDoS attack to come up with a comprehensive qualitative survey regarding such 

mitigation techniques. Moreover, we perform a thorough simulation validation for four 

of the proposed mitigation techniques that are considered having the most complete 

implementation details. The simulation validation is based on the use of a common 
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simulation platform, namely, CloudSim Simulator. In addition, we present a detailed 

quantitative simulation analysis for testing the suitability of these approaches in dealing 

with real cloud implementation conditions, such as  different load balancing algorithms, 

different types of algorithms that identify the automated attackers, different probability 

distributions of request service time for cloud users (input traffic), the capability of 

these techniques in handling the cases when the cloud legitimate users and attackers 

belong to the same NAT-based network, and when cloud legitimate users generate a 

Flash over-Crowd (FC) traffic towards the cloud.  
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 ملخص الرسالة
 
 

 عمر علي مرقة :             الكامل الاسم
 

 أنظمة  ي ف أداء بعض الحلول التقنية التي تخفف من هجمات الحرمان الاقتصاديتقييم  :          عنوان الرسالة
 السحابيه الحوسبه                         

 

 هندسه الشبكات الحاسوبية :              التخصص
 

 2016بر, ديسم : تاريخ الدرجة العلمية
 

ظيمها بشكل يتم استغلال الموارد الداخلية فيها وتنحيث  تم إنشاء أنظمة الحوسبة السحابية للحاجة الماسه لأنظمة تقوم بتوفير التكلفة

 مركل مستلموارد الداخليه فيها بشحالياً بأنظمة الحوسبة السحابية نظراً لتوفر ا فعال. العديد من الشركات الكبرى والمتوسطة مهتمه  

 ى الرغم من كل هذهالانظمة. وعل ن الخدمات الاخرى التي توفرها هذهالعديد ملوجود و لوجود نظام الدفع حسب الاستخدامو

من  يحتاج إلى الكثيرنظمة الحوسبة السحابية ما زال نظام الحماية من الهجمات في أ إلا ان  يزات في أنظمة الحوسبة السحابية الم

تعد هجمات الحرمان الاقتصادي إحدى و خصيصاً لأنظمة الحوسبة السحابية يم العديد من الهجماتتم تصمالتطوير والتحسين. 

ستخدام أنظمة منع العديد من الشركات من تبني واالهجمات. هجمات الحرمان الاقتصادي تعد إحدى أهم الاسباب التي ت هذه

ي تضطر الشركة لدفعها الى شركة الحلول التقنية المزودة لخدمة تالهجمات تزيد من الفاتورة ال هذه نظراً لان   ;الحوسبة السحابية

 الانظمة السحابية. 

خروج بتقرير كامل ومفصل دراسة أغلب أنظمة الحماية ضد هجمات الحرمان الاقتصادي وذلك لل تفي هذه الرسالة العلمية تم

ي ة ضد هجمات الحرمان الاقتصادي والتي كانت تحتوأنظمة حماي القيام بدراسة مفصله لأربعتم  ليتم نشره في ورقة بحثيه. كذلك

ربعة باستخدام برنامج محاكاه واحد وهو أ ممكنه. تم بناء هذه الانظمة الألتسمح لنا بتطبيقها بأقل نسبه خطعلى معلومات كافيه 

(CloudSim)  قامرله ومدعومة بالاربعة لعملية محاكاه مفصلك للخروج بنتائج متناسقة. أخيرا تم إخضاع هذه الانظمة الأوذ 

تلفة تحت أنماط مخ ت مختلفه كذلك اختبار هذه الانظمهتوزيع طلبا تحت خوارزميات اختبار هذه الانظمه مثل مختلفه تحت عوامل

رسال الطلبات باتجاه السحابة تبار هذه الانظمة مع اختلاف نمط إاخ ( بالإضافة إلىTuring testsمن اختبارات الرسم تيورنج )

على تحديد شرعية المستخدمين الكائنين خلف جهاز توجيه ترجمة عنوان  المستخدمين وفحص مقدرة هذه الأنظمه طرفمن 

 .(Flash over-Crowdنظمة على كشف ظاهرة ), كذلك تم فحص مقدرة هذه الأ(NATالشبكة )
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CHAPTER 1 

INTRODUCTION 

Cloud computing is a technology model which makes a huge revolution in the computing 

environment. Cloud computing is a utility that provides services on demand. All services 

provided by the cloud are elastic and could be leased by business companies via either a 

thin client interface (web browser) or thick client interface (program interface) through the 

Internet. These services are based on a model called “pay per use” model, which allows the 

cloud service consumers to request resources on demand and pay only for their usage. The 

cloud computing services can be categorized based on the type of resources provided by 

the cloud. These categories include the Infrastructure offered as a service (IaaS), Platform 

offered as a service (PaaS), and Software offered as a service (SaaS). There is another 

classification of cloud computing, which depends on the location of the cloud resources. 

This classification is divided into public cloud, private cloud, hybrid cloud, and community 

cloud. In addition, there are three main contributors in any cloud system, namely, the cloud 

service provider, the cloud service consumer and the cloud service customer [1].  

Many new attacks have been developed especially for the cloud, and EDoS attack is one 

of them [2]. There are two types of mitigation schemes for defending EDoS attacks, 

namely, proactive scheme and reactive scheme [2].  
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1.1 Background and Terminology 

In this section we will explain briefly the cloud characteristics and classification models as 

well as the definition of Denial of Service attack (DoS), Distributed Denial of service attack 

(DDoS), and Economic Denial of Sustainability attack (EDoS).    

1.1.1 Cloud Essential Characteristics 

According to the National Institute of Standards and Technology (NIST) there are six main 

characteristics that exist in any cloud computing environment [1, 3].  

1. Rapid elasticity: It is the ability to scale the cloud resources up and down as 

needed. From the consumer point of view, the cloud appears to be infinite, and the 

consumer can utilize as little or as much computing power according to his 

demands.   

2. Measured service: This indicates that all the aspects of the cloud service are 

monitored and controlled by the cloud service provider. This is crucial for resource 

optimization, billing, capacity planning, access control, and other tasks. 

3. Service level agreement (SLA): It is a contract between the cloud service provider 

and the cloud service consumer, where the consumer specifies his requirements and 

the provider shows his commitment to them. Usually, SLA consists of items such 

as cloud security, cloud privacy, cloud servers uptime, and backup procedures. 

4. On-Demand self-service: This aspect means that the cloud service consumer can 

use cloud resources as needed without any human interaction with the cloud service 

provider.  
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5. Resource pooling: This aspect means that the cloud sources (systems, applications 

or data) which are hosted in the same physical hardware can be rented to multiple 

consumers using a multi-tenant model.  

6. Broad network access: This aspect means that all cloud service customers can 

access cloud resources through their heterogeneous thick or thin client platforms, 

such as workstations, laptops, tablets and mobile phones, and all the infrastructure 

needed for this is available in the cloud solution. 

1.1.2 Cloud Contributors Models 

There are three main parties in this model, namely, the cloud service provider, the cloud 

service consumer and the cloud service customer [3].  

1. The cloud service provider: Represents the cloud company which delivers the 

service to the consumer.  

2. The cloud service consumer: Represents one or more organization which 

actually uses the service. 

3. The cloud service customer: Represents the employees or the clients of the 

consumer. 

1.1.3 Cloud Delivery Models 

According to NIST there are three main delivery models in the cloud [1, 3]. 

1. Software as a Service (SaaS): In this model the cloud consumer uses an 

application hosted in the cloud but without any means of controlling the 

underlying infrastructure of the cloud, which includes the operating systems, 

servers, storage, or network. 
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2. Platform as a Service (PaaS): In this model the cloud consumers have full 

control over their deployed applications and also sometimes over the hosting 

environment configuration settings, but still do not have the ability to manage 

or control the underlying infrastructure of the cloud. 

3. Infrastructure as a Service (IaaS): In this model the cloud consumers have 

the ability to manage or control operating systems, servers, processing power, 

storage, or network components such as load balancers and firewalls. 

1.1.4 Cloud Deployment Models 

NIST defines four deployment models in the cloud [1, 3].  

1. Private cloud: In this type the cloud resources are exclusively used by a single 

organization. As such, the resources may be operated and managed by the same 

organization, a cloud provider, or with some cooperation between them. The 

cloud resources may exist on or off the organization buildings. 

2. Community cloud: In this type the cloud resources are exclusively used by 

multiple organizations that share the same interests of security requirements, 

policy, or common missions. As such, the resources may be operated and 

managed by one or more of these organizations, a cloud provider, or with some 

cooperation between them. The cloud resources may exist on or off the 

organizations buildings. 

3. Public cloud: In this type the cloud resources are openly used by organization 

employees or by organization customers where the resources are usually owned 

and managed by the cloud provider. Also, the cloud resources exist in the cloud 

provider side. 
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4. Hybrid cloud: This type is a combination of the private cloud and public cloud. 

Usually an organization deploys this model to outsource non critical 

information to some public cloud provider, in the same time the organization 

deploys a private cloud for their critical business information. 

1.1.5 Denial of Service (DoS) attack 

As shown in Figure 1.1, a DoS attack is defined as an effort of one machine (attacker) to 

make some network or server unavailable to its clients or to severely degrade the quality 

of service in an unexpected manner [4].  

 
Figure 1.1: Representation of DoS attack. 

1.1.6 Distributed Denial of Service (DDoS) attack 

As shown in Figure 1.2, a DDoS attack represents the efforts of large number of machines 

to make some network or server unavailable to its clients or to severely degrade the quality 

of service in an unexpected manner [4].  



6 

 

 
Figure 1.2: Representation of DDoS attack. 

1.1.7 Economic Denial of Sustainability (EDoS) attack 

The cloud service consumer signs an SLA according to a “pay-per-use” model with the 

provider. So, an organization is billed based on its cloud resources usage. An EDoS attack 

targets the cloud environment to cause an economic loss to the cloud consumer, which can 

in turn severely impact the provider financially. During an EDoS attack, the cloud 

resources of the consumer will expand in order to handle the requests of the attack due to 

the elasticity property of the cloud. Thus, the consumer needs to pay for all the cloud 

resources that have been allocated because of the attack. All these aspects are shown in 

Figure 1.3. 



7 

 

 
Figure 1.3: Representation of EDoS attack. 

1.1.8 EDoS mitigation schemes 

In general, there are two types of basic mitigation schemes for defending against EDoS 

attacks, namely, reactive scheme and proactive scheme [2]. Reactive mitigation schemes 

often proceed in three phases. In the first phase, distributed monitoring components try to 

detect the on-going EDoS attack. Once an attack is detected, the detector triggers the 

second phase that aims to locate the source of the attack. In the third phase, 

countermeasures are deployed to reduce the effect of the on-going attack. On the other 

hand, the proactive mitigation schemes intend to reduce the possibility of successful EDoS 

attacks by taking appropriate provisions prior to such attacks. 
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1.2 Problem Statement 

EDoS attack is considered one of the main security concerns that have hindered the 

migration of many organizations from adopting the cloud technology. This is because an 

EDoS attack targets the financial constraints of the service consumer who rents the 

resources from the cloud provider. The EDoS attack exploits the elasticity feature of the 

cloud by forcing the cloud resources to scale up in order to accommodate all the service 

demand. As a consequence of “pay-per-use” model of the cloud, the service consumer will 

be charged as a result of the attackers activities. 

In this work, we survey the existing mitigation techniques that attempt to mitigate the effect 

of the EDoS attack so as to come up with a comprehensive taxonomy survey regarding 

such mitigation techniques. Moreover, we perform a thorough simulation validation for 

four of the proposed EDoS mitigation techniques under one simulation platform 

(CloudSim simulator) so as to come up with consistent results for such techniques. 

Moreover, we present detailed quantitative simulation analysis for testing the suitability of 

these approaches in dealing with real cloud implementation conditions such as testing these 

techniques under different load balancing algorithms, different types of algorithms that 

identify the automated attackers, different probability distributions of request service time 

for cloud users (input traffic), the capability of these techniques in handling the cases when 

the cloud legitimate users and attackers belong to the same NAT-based network, and when 

cloud legitimate users generate a Flash over-Crowd (FC) traffic towards the cloud. 

All the aforementioned performance analysis simulations that are considered in this work 

are currently missing from the literature even though such cases are expected to occur in a 

real cloud implementation. 
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1.3 Contributions 

 Propose a comprehensive taxonomy of the existing mitigation techniques for EDoS 

attacks. We surveyed 16 mitigation techniques that can reduce the effect of EDoS 

attacks that are based on DoS or DDoS attacks. 

 Perform thorough simulation validation for the approaches presented in [5] [6] [14] 

[21]. From the literature review, we have found that these four approaches represent 

the most detailed mitigation techniques for protecting cloud services against the 

EDoS attack. Specifically, these approaches provide proper description of the 

system architecture, and present the associated performance results. While 

validating the aforementioned solutions, we consider the following metrics: the 

utilization of the computing resources, and the cloud response time. 

 Present a detailed quantitative simulation analysis for testing the suitability of these 

approaches in dealing with real cloud implementation conditions, such as, testing 

these techniques under different load balancing algorithms in order to pick one of 

the optimum solutions in this field, different types of algorithms that identify the 

automated attackers, different probability distributions of request service time for 

cloud users (input traffic), the capability of these techniques in handling the cases 

when the cloud legitimate users and attackers belongs to the same NAT-based 

network, and when cloud legitimate users generate a Flash over-Crowd (FC). 
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1.4 Thesis organization  

The rest of the thesis is organized as follows. In Chapter 2, we provide a comprehensive 

survey of the research found in the literature for addressing the EDoS attack. Next, the 

methodology of the four mitigation techniques under study are fully described in Chapter 

3. In Chapter 4, the simulation setup under the CloudSim simulator and the analytical 

model of the mitigation techniques under study are discussed. In chapter 5, we present the 

simulation validation results of the mitigation techniques under study. In chapter 6, we 

present the performance simulation results and their analysis for the considered mitigation 

techniques while taking into account different cases that aim to study the effect of different 

real cloud implementation conditions. Finally, chapter 7 includes the conclusion and 

directions for future work.  
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CHAPTER 2 

LITERATURE REVIEW 

In general, there are two main types of EDoS attacks; the network layer EDoS attack and 

the application layer EDoS attack [2]. The former tries to saturate the bandwidth of the 

links in the infrastructure of the cloud, while the latter tries to overwhelm the resources of 

the cloud servers. So, in this section, we summarize the research work found in the 

literature that attempt to mitigate the network level EDoS attack, the application level 

EDoS attack, and the techniques that can mitigate both types. Note that we present the 

EDoS mitigation techniques found in the literature according to the date of publication. 

        Khor and Nakao [2] described a first of its kind approach dedicated to reduce the 

effect of the EDoS attack in the cloud environment, the approach is called Self-verifying 

Proof of Work (sPoW). SPoW is designed to mitigate the network level EDoS attack by 

transforming its traffic into a new form which can be filtered by basic packet pattern-

matching. Also, this algorithm can mitigate the application level EDoS by forcing cloud 

users to compete for cloud resources by solving a “crypto puzzle”.   

        In this approach, after the client requests the server access, the server asks the client 

to solve a “crypto puzzle” to prove the client commitment for its resources. The server also 

utilizes this “crypto puzzle” to protect the channel between the client and itself. The crypto 

puzzle consists of both the encrypted version of the server channel details and the 

encryption key with K bits which represents the difficulty of the puzzle. The client then 

consumes its resources to discover the details of the server channel and submit a connection 
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request towards the server through this secure channel. The connection request includes a 

random session key created by the client. Upon receiving this request, the server establishes 

a new permanent communication channel encrypted by the client’s session key and the 

former server channel will be vanished. Accordingly, the authors prevent the network level 

EDoS attack from reaching the expensive cloud infrastructure by introducing the concept 

of the ephemeral server channel. Besides, the authors reduce the influence of the 

application level EDoS by introducing the “crypto puzzle”. 

       This approach has several limitations such as a puzzle accumulation problem when 

there are a huge amount of fake puzzle requesters. Another limitations include asymmetric 

computation power for the cloud legitimate clients, and the puzzle generation cost at the 

server side. Finally, the authors did not provide an experimental work to highlight the 

performance of this solution [5]. 

        Sqalli et al. [5] described a novel EDoS attack mitigation technique called EDoS-

Shield. This technique is implemented to protect the cloud services from the application 

EDoS attacks by utilizing a Graphical Turing test. The EDoS-Shield protects also against 

the network EDoS attacks by using the Virtual firewall (VF). 

        The main idea behind the EDoS-Shield is to check whether the service requests are 

generated by legitimate users or come from bot machines. The architecture of the EDoS-

Shield mitigation technique is shown in Figure 2.1, where the main two components of this 

approach are the VF and the Verifier Node (V-Node). The VF filters the incoming requests 

based on two lists; the blacklist and the whitelist. The V-Node is responsible for sending 

Graphical Turing tests such as CAPTCHA to the client and verifying the client response. 

If the client passes the CAPTCHA test then its IP address will be stored in the whitelist and 
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all subsequent requests from this IP address will be automatically directed towards the 

cloud resources without any further investigation. Otherwise, the client IP address will be 

stored in the blacklist and any subsequent requests from this IP address will be dropped 

[5].  

        This approach has some shortcomings manifested in its vulnerability to attacks that 

come from spoofed IP addresses which leads to the problems of false positive and false 

negative. The false positive appears when a blacklisted spoofed IP address is used by its 

original client. In this situation any traffic from this client will be dropped. On the other 

hand, the false negative appears when a whitelisted client changes its behavior to harm the 

cloud system by becoming an attacker. Another limitation is associated with requests that 

come from sources that lie behind a network address translation (NAT) router or behind a 

proxy. In this case the approach treats all the clients behind the NAT or proxy equally 

without distinguishing whether the clients are attacker or legitimate. In practice, it is quite 

possible to have both legitimate clients and bots behind the same NAT or proxy.      

 
Figure 2.1: The EDoS-Shield architecture [5]. 
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        In [6], an enhanced version of the EDoS-Shield [5] that address the issue of IP 

spoofing is presented, where the authors append the Time to Live (TTL) value along with 

the IP address in the whitelist and the blacklist. In such a way, the authors can tell the 

malicious spoofed clients and legitimate clients apart. The limitation for this solution arises 

when the cloud sources lie behind a NAT or a proxy as the TTL value is not always 

accurate. 

        Kumar et al. [7] presented an in-cloud EDoS attack mitigation web service. The 

authors of this scheme designed their system to mitigate the network level EDoS as well 

as the application level EDoS using client cryptographic puzzles. This scheme includes 

three modules, namely, Proof of work technique, Packet filtering, and egress filtering. Only 

clients succeeding in solving the crypto-puzzle can gain the service access to the cloud 

resources. There are some shortcomings of this work. Firstly, the authors focus only on the 

parameters that make effective crypto-puzzle. Specifically the authors focus on how to 

make it easy to generate the puzzle by the server and difficult to solve by the client, while 

missing to describe the details of their architecture and the methodology of their algorithm. 

Secondly, this scheme is susceptible to puzzle accumulation attack at the server that 

generates the puzzles. 

         Kumar et al. [8] presented an EDoS mitigation technique in the cloud called In-Cloud 

Scrubber Service. According to the authors, this solution can mitigate the effect of the 

network level EDoS attack as well as the application level EDoS attack using an efficient 

client-puzzle approach.  

        In this technique, the authors add an on-demand servers to the cloud for generating 

and verifying crypto-puzzles with the clients. They refer to this service as the web Scrubber 
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service. The Scrubber service switches between three modes; normal mode, suspected 

mode with low-rated EDoS attack, and suspected mode with high-rated EDoS attack. The 

modes are dependent on the actual service provider server load and bandwidth load. During 

the suspected mode any incoming requests will be directed towards the In-cloud Scrubber 

service for verification process, while during the normal mode any incoming request will 

be immediately served by the actual cloud servers. There are two issues with the purposed 

scheme. The first one is the puzzle accumulation problem, and the second one is the fact 

that the authors did not provide experimental work to highlight the performance of this 

solution. 

        Sandar and Shenai [9] proposed an EDoS mitigation technique similar to the one 

proposed by the authors of [5]. The author in this technique implement a puzzle server that 

generates and verifies a client cryptographic puzzle instead of the CAPTCHA that is used 

by the authors of [5]. This solution is also proposed to protect the cloud services from a 

specific type of DDoS attack, the HTTP and XML based DDoS attack, that leads to EDoS 

to the cloud service under attack. In addition to the proposed mitigation technique, the 

authors also made qualitative comparison between different DDoS and EDoS 

countermeasures. As this technique is similar in nature to that presented in [5], it suffers 

from the same shortcomings as in [5]. 

        Masood et al. [10] proposed a cost effective mitigation technique for EDoS attack 

called EDoS Armor. This work concentrated on the EDoS attacks that target the E-

commerce applications hosted in a cloud system. This technique is implemented to protect 

the cloud application services from network level EDoS and application level EDoS 

attacks. The EDoS Armor includes three main modules: challenge server, admission 
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control, and congestion control, as shown in Figure 2.2. The challenge server is 

implemented to deal with the flooding attack that comes towards the cloud server. The 

challenge server can generate and verify either cryptographic or image based challenges. 

The admission control model is implemented to mitigate the network level EDoS attack by 

utilizing a port hiding mechanism, in which the attacker cannot perform a network level 

EDoS without knowing the system valid port. Moreover, with the admission control model, 

the number of simultaneous clients that access the cloud server can be limited to match the 

available cloud resources. The congestion control model is implemented to mitigate the 

application level EDoS attack by monitoring and prioritizing clients according to their 

browsing behavior. Specifically, any client that is involved in an intensive search queries 

without going to the purchasing phase is considered a bad client, and in return this client 

will face high response time for their malicious behavior. 

 
Figure 2.2: The EDoS Armor architecture [10]. 

        The EDoS Armor has the following shortcomings. Firstly, this solution contradicts 

with the cloud scalability feature because the admission control model limits the number 

of simultaneous cloud users. Secondly, the average response time for good users is 

relatively high when compared with the results of [5]. 



17 

 

        Alosaimi and AlBegain [11] have presented a framework to mitigate the effect of the 

EDoS attack called DDoS Mitigation System (DDoS-MS). In this work the authors 

enhance the EDoS-Shield solution [5] by decreasing its end-to-end latency. Since it is an 

extension of the EDoS-Shied solution [5], the DDoS-MS can mitigate the network level 

and the application level EDoS attacks by testing only the first two packets of the client 

request. 

        The DDoS-MS consists of six main models: a Filtering Router, Green Nodes, a DNS 

server, a Virtual Firewall, a Client Puzzle Server, and a Verifier Node, as shown in Figure 

2.3. The Virtual Firewall stores the IP addresses of the clients along with the Time to Live 

(TTL) value of the request in either a whitelist or a blacklist depending on the verification 

result. The Verifier Node uses a Graphical Turing test (GTT) for verifying the first packet 

of the request. The Client Puzzle Server tests the second packet of the request via a crypto 

puzzle to authenticate legitimate clients and avoid bots attacks. The authors implement the 

DNS server and the Green Nodes for hiding the location of the protected cloud server, 

while using the Filtering Router to forward only the packets that come from the Green 

Nodes to the protected server.   

 
Figure 2.3: The DDoS-MS architecture [11]. 
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       The DDoS-MS has some shortcomings including the false negative problem, in which 

legitimate users may change their behavior to harm the cloud after the proposed algorithm 

verifies the users’ first two packets [12]. Another shortcoming of the solution is that the 

authors did not provide an experimental work to examine the efficiency for this mitigation 

technique.  

        Alosaimi and AlBegain [12] presented an Enhanced DDoS-MS mitigation technique. 

The Enhanced DDoS-MS mitigation technique attempts to solve the false negative problem 

that exists in the DDoS-MS technique presented in [11]. Unlike the DDoS-MS [11], this 

solution only tests the first packet of each session. 

        The Enhanced DDoS-MS consists of five main models: the Reverse Proxy (RP) 

Server, Intrusion Prevention System (IPS), the Virtual Firewall (FV), the Verifier Node 

and the Client Puzzle server, as shown in Figure 2.4. There are four lists available in the 

FV: malicious, suspicious, black and white lists for the cloud service users. Those lists 

depend on the monitoring and verification results. The proposed solution has three 

verification layers. In the first layer, the verifier node verifies the first packet of the session 

to distinguish between the botnets and legitimate users using GTT. In the second layer, the 

IPS inspects packets flows to detect any malware components in these flows. If the IPS 

successfully detects a malware component then the IP address of the source will be stored 

in the malicious list. In the third layer, the RP server detects any suspicious user who tries 

to flood the system with requests. If one exists, then the Client Puzzle server sends a Crypto 

Puzzle to that user, forcing the user to consume its computational resources trying to solve 

this puzzle. In return, the user that generates huge amount of requests will be delayed. The 
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Enhanced DDoS-MS uses the Client Puzzle server as a reactive step to mitigate the effect 

of flooding attack by malicious users. 

 
Figure 2.4: The Enhanced DDoS-MS architecture [12]. 

        The Enhanced DDoS-MS has some shortcomings as it utilizes a huge amount of 

expensive systems in order to mitigate the EDoS attack. Also, the authors did not provide 

an experimental work to show the performance of the proposed technique. 

        M. Kumar and N. Roberts [13] presented a mitigation technique for the EDoS attack 

that is based on the public key infrastructure (PKI). This technique utilizes the Digital 

signature in such a way to provide mutual authentication between the server and the user. 

The proposed solution has two stages. At the first stage, the server issues a special 

certificate for each user that asks to access the cloud service. The certificate will be 

encrypted by the public key of a Certificate Authority (CA) and transmitted to the user. 

The user in turn transmits his original certificate encrypted with the public key of CA to 

the server. Then each side asks the CA to check the other side’s certificate. Thereby, the 

proposed solution provides a two-way mutual authentication between both parties. After 
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that the server sends an encrypted unique password to the user. The password will be used 

in the future for data exchange. While at the second stage, the authors implement a Verifier 

Node to check whether the requests come from botnets or legitimate users using a specific 

hashing algorithm.  

        The proposed scheme suffers from the certificate accumulation problem. Moreover, 

the end-to-end delay is high in this algorithm since the mutual authentication phase requires 

the help of the CA. Furthers, the provided description of the experimental work is not clear. 

        Baig and Binbeshr [14] have described a scheme for mitigating and detecting the 

effect of EDoS attack on the cloud scalability feature. The proposed scheme depends on 

two factors to classify user requests as malicious or legitimate: the threshold and the 

duration, where the former refers to the maximum number of the requests beyond which 

the cloud scalability feature will be activated. While the latter refers to the length of time 

during which the scalability feature will be active. 

         There are four main components in the scheme: vFirewall, Job Scheduler, VM 

Observer, and Virtual Machine (VM) investigator, as shown in Figure 2.5. The vFirewall 

purpose is to analyze the incoming requests. If the request is received from a blacklisted 

user then the request will be sent to the VM investigator for further investigation, while if 

the source of the request appears in the white list then the source traffic will be directed to 

the cloud VM’s. The Job Scheduler divides the requests between the individual VMs 

according to round robin scheduling algorithm. If the scheduling algorithm leads to 

overwhelm any of the cloud VM, then the VM Observer forwards the additional requests 

to the VM investigator for further analyses. When the VM investigator receives a request 

from either the vFirewall or the VM Observer, the VM investigator sends a Turing tests 
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toward the owner of that request. The purpose of the Turing test depends on the source of 

the received request. When the request comes from the vFirewall, the purpose of the test 

will be to check the legitimacy of the sender. On the other hand, when the request comes 

from the VM Observer, the purpose of the test will be to provide the additional users with 

a delayed access to the cloud service. The major limitation of this solution arises when the 

cloud sources lie behind a NAT or a proxy. 

 
Figure 2.5: The Controlled Virtual Resources Access EDoS mitigation scheme 

Architecture [14].  

        Amazon in [15] provided a monitoring service for their cloud consumers to reduce the 

effect of the EDoS attack. The proposed service is called the Cloud Watch. Cloud Watch 

enables the cloud consumers to set an upper limit on their cloud platforms elasticity. A 

major shortcoming for this solution is that defining such a limit results in the loss of the 

scalability feature of the cloud. Also, the cloud consumers will still be charged according 
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to the pre-defined threshold of the cloud platforms elasticity because of serving the attack 

traffic. Moreover, this scheme is exposed to spoofed IP EDoS attacks [16, 17].  

        Anusha K. et al. [18] proposed a technique for detecting EDoS attacks based on the 

Time Spent on a Web Page (TSP) which represents the duration spent on viewing a website. 

A massive quantity of very few TSP values indicates a botnet targeting the web page. The 

average TSP value resulting from the attack payload is different from the mean TSP of a 

website. The TSP deviation from the mean value can be calculated in terms of Mean 

Absolute Deviation (MAD). A MAD plot method and foot step graph method; plot the 

deviation and the TSP’s respectively to identify the various types of the attack traffic. 

However, the proposed technique requires human intervention to monitor and interpret the 

plots.  

        Saini and Somani [19] proposed a novel technique to decrease the effect of index page 

EDoS attack which targets the index page of a website. The proposed technique is called 

Index Page Attack Defender (IPA Defender). The index page attack is feasible because the 

website index page is freely available and accessible without any type of authentication.  

        The proposed scheme works as follows. Initially, the IPA Defender checks every 

request for the website index page. If the requester exceeds the page count threshold then 

the request and all subsequent requests will be dropped by the IPA Defender, and the 

requester IP address will be stored in the DROPLIST table for a specific amount of time. 

The proposed solution suffers from a number of issues. First, a poor description is provided 

about this solution. Second, the index page EDoS attack will be successful if the attackers 

design their attack to never exceed the page count threshold. Third, the proposed solution 

is susceptible to the false positive problem.   
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        Al-Haidari et al. [20] presented an analytical model to study the influence of EDoS 

attack on the cloud service. The analytical model was validated using a discrete event 

simulation model. Also, the analytical model incorporated a queuing model that imitated 

the behavior of the cloud and considered some of the cost and performance metrics such 

as the resulted incurring cost of the attack, utilization, throughput, and end-to-end response 

time. The work result shows a considerable influence of EDoS attack on both the cost and 

the performance of the cloud service.  

      Baig et al. [21] modified their work in [14] by removing the VM observer and adding 

a Database (DB) next to the VM investigator to hold a copy of the blacklist users and some 

necessary variables for the operation. In addition, they removed the rate limit algorithm for 

the blacklisted users. Instead, they proposed a new algorithm called “limited access 

permission” to detect and mitigate the EDoS attack against the cloud service provider. 

Finally, they built a physical experimental setup in order to evaluate their proposed 

technique. The limitation for this solution arise when the cloud sources lie behind a NAT 

or a proxy. 

        Ficco and Rak [22] proposed a new EDoS attack mitigation technique that is based on 

the use of an intrusion Prevention system (IPS) and the adoption of the Service Level 

Agreement (SLA). The mitigation scheme splits end users into classes based on their IP 

addresses and the penalty cost of service unavailability that is defined by SLA. Then, the 

specific class that represents large number of bot machines and has the least penalty cost 

is prohibited from accessing the cloud resources. In such a case, the cloud provider accepts 

the idea of paying the service unavailability fees to the cloud consumer. In return, the cost 

of the cloud infrastructure remains acceptable.   
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        The proposed scheme does not provide a method for detecting the presence of the 

EDoS attack, but rather it focuses on designing a new cloud architecture that can mitigate 

this kind of threats. This mitigation technique is lacking performance evaluation results in 

order to prove the feasibility of this scheme. 

        Table 2.1 summarizes the research found in the literature for addressing the EDoS 

attack, also it provides a modified version of the EDoS attack mitigation techniques 

summarization presented in [9] [16] [17]. From our literature study, we note that there are 

a couple of problems in the existing solutions. Some of the solutions are impractical due to 

the cost of the components which form the architecture of the solution. Also, some 

solutions are not adaptable to the dynamic environments as there are no learning 

mechanisms implemented in such schemes. Other schemes are susceptible itself to the 

DDoS attacks. Moreover, it is apparent that there is no concrete experimental study to help 

in choosing between all of these alternatives. Thus, in this work we will conduct a 

performance evaluation between the work presented in [5] [6] [14] [21] as they are 

considered having the most complete implementation details. Also, we come up with a 

generic criteria that can prove with measurable parameters the performance of these 

existing solutions. Such a performance evaluation platform can be easily adapted to test 

the performance of future solutions. 
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Table 2.1: EDoS Mitigation techniques summary [9] [16] [17].  

Technique 

                                                 Metrics  

Methodology 

Simulation 

Setup/Experimental 

work 

Can mitigate 

Network and/ 

(or) Application 

EDoS? 

Limitations 

sPoW [2] 

Packet 

matching 

algorithm and 

crypto puzzle 

No/No Yes/Yes 

- Puzzle Accumulation 

problem.  

- A symmetric 

consumption power 

problem 

EDoS- 

Shield[5] 

Packet filtering 

and verification 
Yes/No Yes/Yes 

- IP spoofing EDoS 

attack. 

- The case when attackers 

are behind the NAT or 

proxy is not addressed.  

Enhanced 

EDoS- 

Shield[6] 

Packet filtering 

and verification 
Yes/No Yes/Yes 

- The case when attackers 

are behind the NAT or 

proxy is not addressed. 

In-Cloud 

EDDoS 

Mitigation[7] 

Packet filtering, 

egress filtering, 

Proof of work. 

No/No Yes/Yes 

- Puzzle Accumulation 

problem. 

- Poor description about 

the three main modules. 

In-Cloud 

Scrubber 

Service [8] 

Crypto Puzzle No/No Yes/Yes 

- Puzzle Accumulation 

problem. 

Sandar and 

Shenai EDoS 

mitigation 

technique [9] 

Crypto Puzzle No/Yes No/Yes - Same drawbacks of [5]. 

EDoS Armor 

[10] 

Admission 

control and 

Congestion 

control 

Yes/Yes Yes/Yes 

- Contradict with the 

Cloud Scalability feature. 

- High response time for 

legitimate users. 

DDoS-MS 

[11] 

Packet filtering 

and verification 
No/No Yes/Yes - False Negative problem. 

Enhanced 

DDoS-MS 

[12] 

Packet filtering 

and verification 
No/No Yes/Yes 

- Expensive solution. 

- Cannot mitigate cloud 

internals attacks. 

EDoS 

mitigation 

based on 

Digital 

signature[13] 

Mutual 

authentication 

and 

Verification 

Yes/No No/Yes 

- Certificate generation 

accumulation problem. 

- High end-to-end delay 

solution. 

- Not clear description of 

the experimental work. 
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Controlled 

Virtual 

Resources 

Access EDoS 

Mitigation[14] 

Request Rate 

limit and 

Turing test 

Yes/No Yes/Yes 

- The case when attackers 

are behind the NAT or 

proxy is not addressed. 

Cloud Watch 

[15] 

Traffic 

monitoring 
Yes/Yes No/Yes 

- Contradict with the 

Cloud Scalability feature. 

- IP spoofing EDoS 

attack. 

TSP EDoS 

mitigation 

technique [18] 

Monitoring 

MAD and foot 

step plots 

Yes/Yes No/Yes 

-requires human 

intervention to interpret 

MAD and foot step plots. 

 

IPA – 

Defender[19] 

Request Rate 

limit 
No/Yes No/ Yes 

- A poor description is 

provided about the details 

of the solution. 

- Cannot mitigate page 

count threshold based 

EDoS attack. 

- False positive problem.  

Controlled 

Access to 

Cloud 

Resources 

EDoS 

Mitigation[21] 

Limited access 

permission 

and 

Turing test 

No/Yes Yes/Yes 

- The case when attackers 

are behind the NAT or 

proxy is not addressed. 

Ficco and Rak 

EDos 

Mitigation 

technique[22] 

IPS and SLA Yes/No Yes/Yes 

- There are no 

performance evaluation 

results in the paper in 

order to prove the 

feasibility of such 

scheme. 
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CHAPTER 3 THE METHODOLOGY OF THE EDOS 

MITIGATION TECHNIQUES UNDER STUDY 

In this chapter, we present the main activities of the four EDoS mitigation techniques that 

were considered. Also, we discuss how each mitigation technique processes the cloud 

traffic in order to distinguish and mitigate the EDoS attack traffic from the normal traffic. 

This chapter is organized as follows, section 3.1 illustrates the methodology of the EDoS-

Shield work. The methodology of the Enhanced EDoS-Shield is presented in section 3.2. 

Next, the methodology of Baig et al. mitigation techniques presented in [14] and [21] are 

discussed in section 3.3 and section 3.4, respectively. 

3.1 EDoS-Shield 

The main components of the EDoS-Shield mitigation technique are the virtual firewall 

(VF) and the verifier node (V-Node). The virtual firewall has two lists of IP addresses: 

whitelist and blacklist.  The  whitelist  consists  of  those  source  IP  addresses  which  are  

considered legitimate. All the requests that come from those sources are allowed to pass 

the firewall to the cloud servers. On the other hand, all the IP addresses that are contained 

in the blacklist are considered malicious, and hence all the traffic that comes from these 

IPs is blocked by the firewall [5].  

When  there  is  a  request  from  a source, whose  IP  is  not  included  in  the firewall’s 

lists, the request is forwarded to the  V-Node. The V-Node sends a graphical Turing test to 

the request source. If the request has been issued by a human, the human will be able to 

pass the test by responding correctly to the test. Then, the V-Node will add the IP  address  
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of  the  request source  to  the  whitelist  of  the  firewall and the request will be forwarded 

to the cloud server. Any following requests from this source will be allowed to pass the 

firewall. However, if the request has been generated by a machine such as bot, the machine 

will fail to solve the test. In this case, the  V-Node  adds  the  IP  address  of  the  request  

source  to  the  blacklist  of  the firewall. Any following requests from this source will be 

blocked by the firewall [5].  

3.2 Enhanced EDoS-Shield 

Al-Haidari et al. [6] proposed a modified technique for their work in [5]. This technique 

attempts to detect EDoS attacks originating from IP spoofed addresses. The same 

architecture of the original EDoS-Shield is used, but with extra fields appended along with 

the sources IP addresses in the whitelist and the blacklist. The extra fields are the TTL 

values, a counter of unmatched TTL values in both the whitelist and the blacklist, and the 

attack start time field in the blacklist. 

The TTL value is modified according to the verification phase done at the V-Node. The V-

Node verifies client requests using Graphical Turing tests, such as CAPTCHA [23, 24]. If 

the source passes the test then the final value of the TTL will be placed in the whitelist 

along with the source IP address. If the source fails to respond to the test, the TTL value 

will be placed in the blacklist along with the source IP address [6].  

The unmatched TTL counter field will be used to reduce the false positives requests. 

Instead of dropping packets because of not matching the TTL value, a verification phase 

will be performed at the V-Node as long as the “unmatched TTL” counter does not exceed 
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a given threshold. This will reduce the false positive results, since packets having different 

TTL values will still have a chance to verify their legitimacy at the V-Node [6].  

The attack timestamp field in the blacklist is used to record the start time of the attack that 

is set to the time at which the source IP address is placed in the blacklist. The timestamp 

field will be utilized to make the verification phase at the V-Node more restricted during 

the attack. For example, if a packet arrives during the lifetime of the attack with a source 

IP address and TTL value that are present in the blacklist, it will be dropped without 

performing any further verification phase. On the other hand, if the packet arrives after the 

end of the attack period, then a verification phase will be performed since there is a 

probability that it is a non-spoofed request [6].  

Figure 3.1 illustrates the actions at the vFirewall Node when receiving a packet. At the 

vFirewall, the packet will be forwarded directly to the destination only if its source IP 

address is found in the whitelist and its TTL value matches the TTL value that was stored 

in the whitelist. Otherwise, packets will be forwarded to V-Nodes for further investigation 

[6].  

 
Figure 3.1: Main activity of vFirewall. 



30 

 

Figures [3.2-3.5] describe the actions at the V-Node when receiving a packet from the 

vFirewall. The V-node considers four cases based on the presence of the source IP address 

in the whitelist and/or blacklist. These cases are: the source IP address does not exist in the 

in the whitelist nor the blacklist, already present only in the whitelist, already present only 

in the blacklist, and present in both lists [6].  

For the first case that is shown in Figure 3.2, where the source IP address is neither in the 

whitelist nor in the blacklist, the V-Node will perform a verification phase using Graphical 

Turing test. If the user passes the test, the user request will be forwarded to the cloud. 

Moreover, the user IP address along with the request TTL value will be placed in the 

whitelist and the unmatched counter will be initialized to zero. On the other hand, if the 

user fails to respond to the test, the user IP address along with the request TTL value will 

be placed in the blacklist, and the timestamp and unmatched counter will be initialized to 

the current time and zero, respectively [6].  

 
Figure 3.2: Main activity of V-Node when the source IP address is neither in the whitelist 

nor in the blacklist. 
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For the second case illustrated in Figure 3.3, where the source IP address appears only in 

the whitelist, the V-Node will perform a verification phase. If the user passes the test, the 

corresponding TTL value in the whitelist will be updated to the new value obtained from 

the last verified request. If the user fails to respond to the test, the unmatched TTL counter 

in the whitelist will be incremented and the source IP address will be added to the blacklist 

with its TTL value and timestamp [6].  

 
Figure 3.3: Main activity of V-Node when the source IP address appears only in the 

whitelist. 

For the third case that is shown in Figure 3.4, where the source IP address appears only in 

the blacklist, the packet will be dropped when its TTL value matches the corresponding 

TTL value in the blacklist or when the unmatched TTL counter in the blacklist reaches the 

threshold during the attack’s lifetime. Otherwise, the V-Node will perform the verification 
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phase. During the verification phase, if the user passes the test, the request will be 

forwarded to the destination and its source IP address will be placed in the whitelist along 

with the request TTL value. On the other hand, if the user fails to respond to the test, the 

packet will be dropped and the corresponding entry in the blacklist will be updated as 

follows. If the packet is received within the attack’s lifetime, the unmatched TTL counter 

will be incremented. If it is received after the attack’s lifetime elapses, the TTL, timestamp, 

and unmatched TTL counter fields in the blacklist will be set to the received packet TTL, 

current time, and zero, respectively [6].  

 

Figure 3.4: Main activity of V-Node when the source IP address appears only in the 

blacklist. 
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Figure 3.5: Main activity of V-Node when the source IP address appears in both lists. 

For the fourth case depicted in Figure 3.5, where the source IP address appears in both lists. 

This means that the incoming traffic at the V-Node side might have some requests with 

spoofed IP addresses and others being legitimate requests. In such a case, the request will 

be dropped when its TTL value matches the stored TTL value in the blacklist of the same 

IP address, or when the unmatched TTL counter in the whitelist reaches the specified 

threshold within the attack’s lifetime. Otherwise, the V-Node will perform a verification 

phase. If the user passes the test, the request will be forwarded to the destination and its 

corresponding entry in the whitelist will be updated by the new TTL value and by resetting 
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the unmatched TTL counter to zero. On the other hand, if the user fails to respond to the 

test, the packet will be dropped and the unmatched TTL counters in both the whitelist and 

the blacklist will be incremented if the packet is received within the attack’s lifetime. 

Similarly, if the packet arrives after the attack’s lifetime elapses, then the corresponding 

entry in the blacklist is updated so that the TTL, timestamp, and unmatched TTL counter 

fields, will hold the received packet TTL, current time, and zero, respectively [6].  

3.3 Controlled Virtual Resources Access EDoS Mitigation 

This method is proposed to detect the EDoS attacks that target the cloud service provider 

and to reduce the effects of these attacks based on a rate limit mechanism. The proposed 

method depends on two factors to classify user requests as malicious or legitimate; the 

threshold and the duration. The former refers to the upper limit of the user’s requests, 

beyond which the cloud scalability feature will be activated. While the latter refers to the 

length of time in which the scalability feature will be active [14].  

This approach is considered as a reactive scheme to mitigate the EDoS attack because it 

starts running when the cloud provider side receives requests that exceed the threshold 

parameter [14].  

There are four main components in the scheme, namely, vFirewall, Job Scheduler, VM 

Observer, and VM investigator, as presented in Figure 3.6. The vFirewall analyses the 

incoming request to decide if the request comes from a blacklisted user. If so, then the 

request will be sent to the VM investigator for further investigation. Otherwise, the request 

will be directed to the cloud Virtual Machines (VM).  
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 The Job Scheduler divides the requests between the individual VMs according to the 

Round Robin scheduling algorithm. If the scheduling algorithm leads to overwhelm any 

VM in the cloud, then the VM Observer forwards the additional requests to the VM 

investigator for further analyses. The VM investigator receives the user’s requests from 

two sources: the vFirewall and the VM observer. Subsequently in both cases, the VM 

investigator sends a Turing test towards the owners of these requests. The purpose of the 

Turing test depends on the source of the received requests. When the requests come from 

the vFirewall, the purpose of the test will be to check the legitimacy of the senders. On the 

other hand, when the requests come from the VM Observer, the purpose of the test will be 

to provide the additional users with a delayed access to the cloud service [14].  

 
Figure 3.6: The Controlled Virtual Resources Access EDoS mitigation technique [14].  

The Controlled Virtual Resources Access EDoS mitigation technique operates in three 

scenarios. The first scenario appears when the threshold parameter is not crossed, and when 

the service requests are received from non-blacklisted users. While the second scenario 

appears when the threshold parameter is crossed, and when the service requests are 
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received from non-blacklisted users. Finally, the third scenario appears when the threshold 

parameter is crossed, and when the service requests are received from a blacklisted user. 

In the first scenario, the vFirewall forwards all the incoming requests to the VM directly, 

the VM observer checks the VM threshold parameter continuously, if the threshold 

parameter is crossed, the scheme will operate in the second scenario. Figure 3.7 describes 

the communication hierarchy of the first scenario [14].  

 

Figure 3.7: The communication hierarchy of the first scenario. 

In the second scenario, the vFirewall forwards user’s requests to the cloud resources. At 

this point, the VM is over-utilized so the VM Observer forwards all subsequent requests to 

the VM investigator. In return the VM investigator sends Turing test towards the user. The 

VM investigator initiates a User Trust Factor (UTF) parameter for each user (0<UTF<1). 

The VM investigator assigns a UTF of 0.5 to the new users, if the user successfully passes 

one Turing test the UTF for this user will be incremented 0.05. On the contrary, if the users 

fails the UTF will be decremented by 0.05. If a given user reaches a UTF of zero, the VM 
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investigator adds the user to the blacklist and all the subsequent requests from this user are 

dropped by the VM investigator. On the other hand, if the user reaches a UTF of 1, the VM 

investigator removes the user from blacklist and conveys this information to the vFirewall. 

For users that fail to solve the Turing test the VM investigator adds them to the black list 

then applies a rate limit algorithm on them. In such a case the VM investigator calculates 

a new parameter called “number of access to give” (𝑤𝑜𝑝𝑡) which refer to an upper bound 

of requests that the user can send in a limited time. The calculation of 𝑤𝑜𝑝𝑡 will be 

illustrated in chapter 4. The communication hierarchy of the second scenario is illustrated 

in Figure 3.8 [14].        

 

Figure 3.8: The communication hierarchy of the second scenario [14]. 
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In the third scenario, the vFirewall forwards the blacklisted user’s requests to the VM 

investigator, in which the scheme gives another chance for the blacklisted user to prove its 

legitimacy. If the user solves the Turing test, then the user will gain access to the cloud 

resources. On the other hand, if the user fails the test, the user will suffer from the rate limit 

algorithm. Figure 3.9 describes the communication hierarchy of the third scenario [14].  

 

Figure 3.9: The communication hierarchy of the third scenario [14].  
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3.4 Controlled Access to Cloud Resources EDoS Mitigation 

The proposed work [21] is a modified version of the work of Baig et al. [14]. In this 

technique, the authors add a new algorithm called “limited access permission” in the VM 

Investigator to detect and mitigate the EDoS attack. Also, the authors add a database (DB) 

that holds some necessary parameters for the operation of this technique. 

The DB contains two tables, namely, the blacklisted table and the rate limit table. The 

blacklisted table has the IP address of the malicious users. On the other hand, the rate limit 

table stores five parameters, namely, the IP addresses of the cloud service legitimate and 

malicious users, the last activity timestamp which reflect the last seen activity of the user, 

the user requests count that records the number of requests that are made by a single user 

in one minute, the UTF where this parameter maintains a value between 0 and 1 that 

classifies the legitimacy of the cloud service users, and the count (CRPS) which hold the 

number of requests of a single cloud user in a single second.  

Figure 3.10 shows the limited access permission algorithm that is deployed in the VM 

investigator. This algorithm depends on three main parameters: the UTF, the Concurrent 

requests per second (CRPS), and the Random Check (RC). 

The UTF classifies users into three levels: bad, average and good. If the cloud user responds 

correctly to the Turing test then the UTF is incremented by 0.01, on the other hand if the 

user fails to respond to the test the UTF is decremented by 0.02.  

The CRPS holds a value that defines an upper limit of the number of requests that one user 

can send in one second. The network administrator can adjust the value of the CRPS based 

on the history of the cloud service.  
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The RC parameter is used to counter smart attacker who can figure out the accurate CRPS 

and send requests less than the CRPS threshold. RC is an interval between one and the total 

requests per minutes (TRPM), where TRPM equals to 60*CRPS. This interval is divided 

into equal subintervals with the number of subintervals being equal to the CRPS value. 

Then, one value is chosen from each subinterval randomly. The chosen values are called 

RC_values_count. Finally, the RC_values_count is compared with the requests count 

parameter. If there is a match then a Turing test is sent to the end user, as shown in the left 

branch of Figure 3.10. For example, if the CRPS equals 2, then the RC interval is between 

[1, 2*60]. The interval is divided into two subintervals because the CRPS equals 2. The 

subintervals are [1, 60] and [61,120]. One number is chosen randomly from each 

subinterval. When a request arrives at the VM Investigator, the VM Investigator checks the 

requests count parameter in the DB. If it is a match, then the VM Investigator sends a 

Turing test to the user. On the other hand, if the requests count parameter does not match 

the RC_values_count, the decision of sending a Turing test toward the user is being made 

according to the UTF value of the user, as depicted in Figure 3.10.      
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Figure 3.10: The VM Investigator flow chart [21]. 
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CHAPTER 4 SIMULATION SETUP OF EDOS 

MITIGATION TECHNIQUES UNDER STUDY 

In this chapter, we discuss the simulator implementation used to build the four mitigation 

techniques under study. In addition, we present the analytical and the simulation models 

for each considered mitigation technique. These models are used in chapter 5 for the 

validation purpose of each technique. 

4.1 CloudSim Simulator  

The CloudSim simulation tool [25] is used to implement the four EDoS mitigation 

techniques under study since this simulator has been widely used by the research 

community. Moreover, CloudSim enables researchers to focus on specific system design 

issues rather than being concerned with the low level details related to Cloud-based 

infrastructures and services [26].  

The CloudSim simulator is implemented using the Java programing language. It is used to 

simulate different scenarios of cloud computing infrastructure. It provides different classes 

that describe cloud users (cloudlet), load balancer (broker), datacenter, virtual machine 

instances, random generators, storage elements, and management policies such as cloudlet 

scheduling policies and VM allocation policies [26].  

The CloudSim frame work is designed as a multilayered software. It contains two main 

layers; the user code layer and the CloudSim layer [26]. The user code layer is concerned 

with the cloud basic units such as load balancing scheduling policies, virtual machines and 

their specifications, input traffic demand, and the number of cloud users. On the other hand, 
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the CloudSim layer is concerned with supporting the modeling and simulation of the 

virtualized cloud based datacenter that includes bandwidth, storage, memory, and virtual 

machines interfaces. Figure 4.1 illustrates the CloudSim architecture of these two layers.        

 
Figure 4.1: The CloudSim simulator Architecture [26].  

In the CloudSim simulator, the average cloud response time is measured by collecting two 

main parameters for all user’s requests (𝑁) served by the cloud; the request arrival time 

(𝐴𝑇) and the request departure time (𝐷𝑇). The average cloud response time is calculated 

using the following equation:    

                                               𝑅𝑇Avg =  
1

𝑁
 ∑ (𝐷𝑇i − 𝐴𝑇i)

𝑁
i=1                                         (4.1) 

Also, the average CPU utilization of all cloud instances is measured by collecting the total 

server processing time and the total time of the simulation as shown in the following 

equation:    

                                              𝑈Avg =  
1

𝑆
 ∑

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒i

𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒i

𝑆
i=1                                            (4.2) 

Where the 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒i = 𝐹𝑖𝑛𝑖𝑠ℎ𝑖𝑛𝑔𝑇𝑖𝑚𝑒i − 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒i. 
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4.2 EDoS-Shield Analytical Model 

This section presents the analytical model that was used to build the EDoS-Shield 

mitigation technique [5]. Figure 4.2 shows the queuing network model that represents the 

proposed mitigation technique. The input to this model is an aggregate traffic from both 

legitimate users and attackers. Sqalli et al. [5] have assumed a Poisson distribution for 

characterizing the EDoS traffic, Since in the literature many authors used the assumption 

of Poisson distribution to characterize DDoS attacks [27, 28], and the flooding nature of 

DDoS attack is similar to the EDoS attack. 

 

Figure 4.2: EDoS-Shield queueing model [5].  

In order to evaluate the EDoS-Shield, we consider different performance metrics, namely, 

the cloud response time, computing resource utilization, and the number of allocated VMs. 

In order to formulate the total cloud response time for the queueing model in Figure 4.2, 

the authors used the decomposition method which is discussed by chandy and Sauer [29]. 

Hence, the EDoS-Shield queuing model is broken up into three subsystems; vFirewall, 

vNode, and the cloud VMs. Then, the average delay is computed for each subsystem. 
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Finally, the total cloud response time is the summation of the average delay for each 

subsystem. Thus, the total response time is computed as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 𝑖𝑛 𝑣𝐹𝑖𝑟𝑒𝑤𝑎𝑙𝑙 +  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 𝑖𝑛 𝑙𝑖𝑛𝑘𝑠 +  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 𝑖𝑛 𝑉𝑀𝑠  

Note that, because only few requests go through the vNode for verification purpose, the 

authors ignore the average delay incurred in the vNode.  

Al-Haidari et al. [6] have modeled the links as M/D/1 queueing system with exponential 

arrival time and deterministic service time. The average delay that passes through any link 

provided by the following equation [30]: 

                                   𝑙𝑖𝑛𝑘 𝑑𝑒𝑙𝑎𝑦 =  (1 −
𝜆in

𝜇link
) /(𝜇link −  𝜆in)                                           (4.3) 

 Where 𝜆in is the mean request arrival rate and 𝜇linkis the mean link request service rate. 

The vFirewall and VMs can be modeled as a collection of parallel single queues, as 

described in [31]: 

                                           𝑣𝐹𝑖𝑟𝑒𝑤𝑎𝑙𝑙/𝑉𝑀 𝑑𝑒𝑙𝑎𝑦 =  
𝑆

𝑆μ − 𝜆
                                               (4.4) 

Where 𝑆 is the total number of VMs, 𝜆 is the total arrival rate for the VMs, and μ is the 

service rate of a single VM.  

Sqalli et al. [5] have also ignored the delay in the link between the end user and the 

vFirewall because they focused on the performance of the cloud that starts with the 

vFirewall.  
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Based on equations (4.3) and (4.4), we can formulate the total cloud response time, (𝑅𝑇), 

as follows: 

                      𝑅𝑇 =
𝑆1

𝑆1.𝜇1− 𝜆1
+ (1 −  

𝜆1

𝜇link2
) /(𝜇link2 −  𝜆1) +

𝑆2

𝑆2.𝜇2− 𝜆2
                      (4.5) 

Where 𝜇link2 is the capacity of the link from the vFirewall to the cloud resources, S1 is the 

number of the instances representing the vFirewalls, 𝑆2 is the number of VMs representing 

the cloud resources, 𝜇1 is the processing rate of a vFirewall, 𝜇2 is the processing rate of a 

cloud VM, 𝜆1 is the rate of the requests at the beginning of the vFirewall, and 𝜆2 is the rate 

of the total requests arriving at the cloud resources. 

Sqalli et al. [5] have computed the resource utilization (𝑈) at the cloud resources as 

follows: 

                                                                𝑈 =  
𝜆2

𝑆.𝜇
                                                         (4.6)  

To measure the accuracy of EDoS-Shield validation we compare the results from Sqalli et 

al. [5] code with the simulation results that we got from the CloudSim simulator. The 

relative error percentage can be expressed as follows: 

                    𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  |
𝑅𝑒𝑠𝑢𝑙𝑡𝑠cloudSim−𝑅𝑒𝑠𝑢𝑙𝑡𝑠Sqalli et al.  [5] 

𝑅𝑒𝑠𝑢𝑙𝑡𝑠cloudSim
| ∗ 100%               (4.7)  

The elasticity feature is one of the important characteristics of the cloud that allows the 

scaling up or down of the cloud resources based on some metrics specified by the cloud 

provider. One of these metrics is related to the optimization of the scaling VMs size value. 

Al-Haidari et al. [20] presented an optimization problem regarding the scaling of VMs size 

value. They concluded that the optimal number of VMs that should be added in one 
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provisioning period is 2. Another important metric is related to the tuning of the utilization 

upper threshold. An optimization problem regarding the utilization upper threshold was 

done also by Al-Haidari et al. [20]. Al-Haidari et al. concluded that the optimal upper 

utilization for cloud environment is 80%. Moreover, Al-Haidari et al. have calculated a 

formula for the minimum number of operational VMs to ensure that the average utilization 

remains below the upper threshold. The number of the required VMs is formulated as 

follows [20]: 

                                               𝑈 =  
𝜆

𝑆.𝜇
 ≤ 0.8 →  𝑆 = ⌈1.25 ∗ 

𝜆

𝜇
+ 1⌉                                     (4.8)    
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4.3 EDoS-Shield Simulation Model 

The proposed work presented by Sqalli et al. [5] is built using CloudSim simulator [25]. 

Table 4.1 shows a summary of the parameters that have been used while simulating this 

technique. 

Table 4.1: EDoS-Shield mitigation technique simulation parameters [5].  

Parameter Value 

Request Size [32] 

Average VM/Vnode Capacity 

Average vFirewall Capacity 

Load Balancing algorithm 

Legitimate Request rate (Fixed) 

Attacker request rate (variable) 

580 bytes 

100 Req./Sec. 

9260 Req./Sec. 

Round Robin 

400 Req./Sec. 

400-8000 Req./Sec. 

The average capacity of the vFirewall can be calculated as follows [5]: 

Average service time of vFirewall = average processing time for a request in the device 

driver + average processing time in the rule set = 
𝑟𝑒𝑞𝑒𝑠𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑖𝑡𝑠) [32]

𝑀𝑎𝑥 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑠𝑎𝑛𝑐𝑒 (𝑀𝑏𝑝𝑠)[35]
+

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑟𝑢𝑙𝑒 [34] ∗ max 𝑠𝑖𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒 𝑠𝑒𝑡[36] =
580∗8

400∗106 +

2671 ∗ 0.036𝜇𝑠 = 11.6𝜇𝑠 + 0.962𝑚𝑠 = 108𝜇𝑠  

Average capacity of one vFirewall = 
1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑣𝐹𝑖𝑟𝑒𝑤𝑎𝑙𝑙 
=  

1

108𝜇𝑠
 ≈

9260 𝑅𝑒𝑞/𝑠𝑒𝑐. 

In addition, the average cloud response time can be calculated based on equation (4.5) by 

considering the following settings: 

1. The capacity of the link between vFirewall and VMs assumed to be 10Gbps. 

2. The number of initial running instances is 6. 

3. The provisioning overhead is 55.4sec [37].  

4.  The upper utilization threshold is 80%. 

5. The scaling size parameter is considered to be 2VM/provisioning period.  
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4.4 Enhanced EDoS-Shield Analytical Model 

In this section we present the analytical model that was used to build the Enhanced EDoS- 

Shield mitigation technique. Al-Haidari et al. [6] have used the same queuing model of the 

EDoS-Shield [5] to model the Enhanced EDoS-Shield with minor modifications to the 

modeling of the vFirewall and vNode components. 

Al-Haidari et al. [6] have evaluated their proposed technique in two scenarios: the whitelist 

scenario and the blacklist scenario.  In the whitelist scenario, the attacker initially sends 

one legitimate request toward the cloud in order to add the attacker IP address to the 

whitelist. Then, the attacker controls a number of zombie machines while changing all their 

IP addresses to the attacker’s whitelisted IP address. On the other hand, the blacklist 

scenario occurs when one of the legitimate clients sends requests towards the cloud but, 

unfortunately, the IP address of this legitimate user was used by an attacker and is already 

placed in the blacklist.       

In the EDoS-Shield, the false positive rate that is associated with the attack rate that may 

pass the vFirewall is zero as Al-Haidari assumes that the EDoS-Shield is protected against 

the IP spoofing attacks. On the other hand, the Enhanced EDoS-Shield false positive rate 

will dramatically affect the results of the analytical method. 

For the whitelist scenario, the percentage of the false negative is computed as follows: 

                                                𝑃False Negative =  𝑚 ∗
1

255
∗

𝑍

255
                                             (4.9) 

Where 𝑚 is the number of zombie masters, 𝑍 is the zombie machine. 
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For the blacklist scenario, the percentage of the false positives is computed as follows: 

                                                𝑃False Positive = 𝑚 ∗ 
1

255
                                                  (4.10) 

In Table 4.2 we summarize all the equations used while calculating the performance 

metrics for the Enhanced EDoS-Shield mitigation technique. 

Table 4.2: A summary of the Enhanced EDoS-Shield analytical model equations [6]. 

Metric Equation 

Response Time 

𝑅𝑇 =
𝑆1

𝑆1. 𝜇1 −  𝜆1
+  (1 −  

𝜆1

𝜇link2
) / (𝜇link2 − 𝜆1)

+
𝑆2

𝑆2. 𝜇2 −  𝜆2
 

Average Utilization   
𝜆2

𝑆.𝜇
     

Description: 

𝜇link2 is the capacity of the link from a vFirewall to the cloud VMs. 

𝑆1 is the number of the instances representing the vFirewall. 

𝜇1 is the processing rate of a vFirewall. 

𝜇2 is the processing rate of a cloud instance. 

𝜆1 is the legitimate rate plus the false positive rate of the requests at the beginning of the 

vFirewall. 

𝜆2 is the legitimate rate plus the false positive rate of the requests that arrived at the cloud VMs. 
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4.5 Enhanced EDoS-Shield Simulation Model 

The proposed work presented by Al-Haidari et al. [6] was built using the CloudSim 

simulator. All the simulation parameters for the EDoS-Shield discussed in section 4.3 were 

used in simulating the Enhanced EDoS-Shield. In addition, the following parameters are 

also used in the simulation: 

1. The maximum value of the counter of unmatched TTL is set to be 5 as a 

previous study shows that about 95% of the network paths had fewer than 5 

observable daily changes [39].  

2. The attack lifetime is set to be 1 hour as around 90% of the cloud attacks did 

not exceed 1 hour [40]. 

3. The TTL values changes from 1 to 255.   

4. Fixed Legitimate Request rate = 400 Req./Sec. 

5. Variable attack request rate from 400-8000 Req./Sec. 
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4.6 Controlled Virtual Resources Access EDoS Mitigation (Analytical 

Model)  

This section presents the analytical model that was used by Baig et al. [14] in order to build 

the Controlled Virtual Resources Access EDoS mitigation technique. Baig et al. proposed 

a rate limit algorithm to be used in the VM Investigator in order to mitigate the EDoS 

attack. The rate limit algorithm is based on the “number of accesses to give” (𝑤opt) 

parameter that is generated by the VM Investigator. The purpose of the 𝑤opt parameter is 

to avoid flooding the VM Investigator resources by the user requests either through flash 

overcrowd or EDoS attacks. The 𝑤opt parameter represents an upper bound on requests 

that the user can send in a limited time. 

When the VM investigator receives a request from either the vFirewall or the VM 

Observer, the VM investigator sends a Turing test toward the owner of that request. If the 

owner of the request (i) fails to respond to the test, the VM investigator stores the following 

state information of that user:  

State_information = {start time 𝑡i, end time 𝑡i+1, Max access counter 𝑤opt, source IP 

address, time request received 𝑡s}; 

Where:   

 1 ≤ 𝑤opt  ≤  
𝐿i.𝑣

𝑛
 , where 𝐿i is the length of the buffer at the VM investigator that 

should hold all the requests from cloud user (i), 𝑣 is the number of the operational 

VMs at the cloud provider, and 𝑛 is the maximum parallel end users that attempt 

to access the cloud. 
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 𝑡i = 𝑡w + ∆, where 𝑡i is the beginning of the time frame for the access control, 

𝑡w is the waiting time of the request in the buffer to gain access, and ∆ is the 

network delay between the end user and the cloud provider. 

 𝑡i+1 = 𝑡i + 𝑤opt. (𝜏 + 2. ∆ +  𝛿i), where 𝑡i+1is the ending of the time frame for the 

access control, 𝜏 is the sum of all buffers which exists in all the operational VMs 

in the cloud, 𝛿i is the estimate of the minimum interarrival delay between two 

successive requests from the same user (i).    

The time frame of the access control (𝑡i+1 − 𝑡i) is depends on the access parameter 

(𝑤opt) given to the user. So for small number of accesses granted to the user the time 

frame will be small, and vice versa. If a large number of access is granted to a given 

user, then this will be unfair for other end users, and the quality of experience for these 

users will be affected. On the contrary, if a small number of access is granted to a given 

user or users who access the cloud resources frequently, then this will cause a service 

disruption at the VM investigator, and a possible DoS may occur at the VM 

investigator. In order to solve this problem, Baig et al. [14] optimize the number of 

accesses which will be granted to the end user as follows: The authors calculate the 

total cost incurred at the service provider when the rate access scheme is operational, 

as follows: 

                                          𝐶total =  
𝐶1 .  𝐴 

𝑤opt
+ 𝑐2 . (1 − 𝑖). 𝑤opt                               (4.11) 

Where 

 𝐶1 is the cost of communication between the VM investigator and the end user 

(i.e. the cost of the mitigation technique). 

 𝐴  is the estimate access counter for a given cloud resource 𝐶s. 
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 𝐶2 is the cost of the under-utilized allocated time that is being granted to the 

malicious user by the cloud provider, which will affect the resource utilization 

at the cloud service provider (i.e. the cost of the EDoS attack). 

 𝑖 is the fraction of the legitimate users that access the cloud where 0< 𝑖 <1. 

By minimizing the total cost in equation 4.11, we can figure out an optimal value for 𝑤𝑜𝑝𝑡 

which will be as follows: 

                                                       𝑤opt =  √
𝐶1.𝐴

𝐶2.(1−𝑖) 
                                                                   (4.12) 

Based on the formula (4.12), the value of  𝑡i+1 can be calculated, and subsequently, the 

value of 𝑡i.  

4.7 Controlled Virtual Resources Access EDoS Mitigation (Simulation 

Model)  

The proposed work presented by Baig et al. [14] is built using the CloudSim simulator to 

evaluate the effect of the EDoS attack against the cloud provider services when the rate 

limit algorithm is being deployed. Table 4.3 shows the parameters that have been used 

while simulating this technique. 

Table 4.3: Baig et al. [14] simulation parameters. 

Parameter   Value 

𝐿i 

𝛿i 

𝐴 

𝐶1 

𝐶2 

Default UTF 

100 

10ms 

100 

0.5 

0.5 

0.5 
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4.8 Controlled Access to Cloud Resources EDoS Mitigation (Simulation 

Model)  

In this section we present the simulation model that was used to build the Controlled Access 

to Cloud Resources EDoS Mitigation technique [21] in the CloudSim simulator while the 

“limited access permission” algorithm is being deployed. Table 4.4 shows the parameters 

that have been used while simulating this technique. 

Table 4.4: Baig et al. [21] simulation parameters. 

Parameter Value 

Legitimate load  

Web server type  

 

UTF 

 

VM instance OS 

Max VM instances 

Min VM instances 

Average VM Capacity 

Provisioning overhead 

The upper threshold utilization 

Auto Scaling upper Threshold 

Auto Scaling lower Threshold 

Auto Scaling metric  

180 Request/Sec. [41] 

Apache 

Good (0.75,1] 

Average [0.25,0.75] 

Bad [0,0.25) 

CenOS 5.6 (64-bit) 

10 

3 

150 Request/Sec. [21] 

60s [33] 

60s [33] 

80% [33] 

30% [21] 

Utilization 
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CHAPTER 5 SIMUALTION VALIDATION RESULTS 

In this chapter we present a thorough simulation validation for the approaches presented in 

[5] [6] [14] [21]. From the literature review, we found that these four approaches represent 

the most detailed mitigation techniques for protecting cloud services against the EDoS 

attack. Specifically, these approaches provide proper description of the system architecture, 

and present the associated performance results. While validating the aforementioned 

solutions, we consider the following metrics: the utilization of the computing resources, 

and the cloud response time. We perform the simulation validation under one simulation 

platform that was built using the CloudSim simulator so as to come up with consistent 

results for such techniques. 

5.1 EDoS-Shield Validation 

While validating the EDoS-Shield all the parameters and the details of Sqalli et al. work 

[5] were carefully followed. So, for the validation purpose we compare the results of the 

EDoS-Shield CloudSim simulator that we built with the results of Sqalli obtained code [5]. 

More specifically, we plot the response time and the cloud resources utilization for the 

cases when an EDoS attack is occurring while the mitigation technique is inactive as well 

as being active. 
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5.1.1 Response Time 

Figure 5.1 shows that both simulations have almost similar results for the response time, 

the small variation is due to the randomness of both simulations. While the EDoS-Shield 

being inactive, both results show that when the attack traffic increases the cloud response 

time also increases. Also, it is clear that when the attack traffic is significantly increases, 

the response time does not increase by the same trend. This is due to the auto scaling 

algorithm that allocates more VMs to process the high load caused by the attack traffic. In 

general, the attack traffic results in an increase in the response time of the legitimate users 

when compared with the response time of having only 400 request/Sec. from legitimate 

users. On the other hand while the EDoS-Shield being active, the corresponding response 

time is approximately constant when the attack traffic increases. This is due to successfully 

blocking the attack requests from reaching the protected cloud service. 

Figure 5.2 shows the relative error between the CloudSim EDoS-Shield results and the 

corresponding result of Sqalli et al. work [5]. The relative error is computed using equation 

(4.7). Figure 5.2 shows that the relative error percentage does not exceed 0.6573%, which 

indicates that the CloudSim Simulation has a good accuracy. 
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5.1.2 Utilization 

Figure 5.3 presents the cloud resources utilization for both the CloudSim EDoS-Shield 

simulation and Sqalli work [5]. The Figure shows that the two results are identical with a 

maximum relative error 0.141% as observed from Figure 5.4. In Figure 5.3 while the 

EDoS-Shield being inactive, the average cloud resources utilization has a similar trend to 

the results obtained for the cloud response time, where the utilization increases whenever 

there is an increase in the attack rate. So in general, the EDoS attack consumes more cloud 

computational power than when there is no attack. On the other hand while the EDoS-

Shield being active, the average cloud resources utilization is not affected due to the attack 

rate as the attack requests will not reach the target cloud service. 
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Figure 5.1: Response time results for EDoS-Shield [5] and EDoS-Shield CloudSim. 

 
Figure 5.2: Response time relative error percentage for EDoS-Shield [5] and EDoS- 

Shield CloudSim. 
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Figure 5.3: The computing resources utilization results for EDoS-Shield [5] and EDoS- 

Shield CloudSim. 

 
Figure 5.4: The computing resources utilization relative error percentage for EDoS-

Shield [5] and EDoS-Shield CloudSim. 
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5.2 Enhanced EDoS-Shield Validation 

While validating the Enhanced EDoS-Shield we used all the parameters and the details of 

Al-Haidari work [6]. So, for the validation purpose we compare the results of the Enhanced 

EDoS-Shield CloudSim simulator with the results from the obtained Al-Haidari code. For 

the purpose of validation, the response time and the cloud resources utilization for both the 

blacklist case and the whitelist case are plotted and compared with the results provided in 

[6]. 

5.2.1 Blacklist case results 

In the Enhanced EDoS-Shield blacklist case, initially the Enhanced EDoS-Shield detects 

number of attackers that carry out an attack using spoofed IP addresses. Accordingly, the 

Enhanced EDoS-Shield places the IP addresses and TTL values of these attackers in the 

blacklist. A problem might occur when a legitimate user tries to send a request towards the 

cloud using an IP address that is already blacklisted. Consequently, the Enhanced EDoS-

Shield will drop that request and block the legitimate user from being served.   

From Figures [5.5-5.6] it is observed that the obtained response time simulation results for 

Enhanced EDoS-Shield [6] and CloudSim Enhanced EDoS-Shield are close to each other 

with a relative error percentage of 0.4202%. Also, From Figures [5.7-5.8] it is clear that 

the obtained utilization simulation results for Enhanced EDoS-Shield [6] and CloudSim 

Enhanced EDoS-Shield are close to each other with a relative error percentage of 0.1669%. 

The results in Figure 5.5 and Figure 5.7 show a decrease in the cloud response time and 

the average cloud resources utilization as compared with the no attack case. This is due to 

an assumption made by the authors that 20% of the total attacker’s requests have the same 

IP address and TTL value as some legitimate users. In this case, all the legitimate users that 



62 

 

have the same IP address and TTL value as for the attacker will be dropped mistakenly by 

the Enhanced EDoS-Shield as they will be considered as attackers. Accordingly, less 

number of legitimate requests can access the cloud resources which results in decreasing 

the cloud response time and utilization. 
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Figure 5.5: Response time results for Enhanced EDoS-Shield [6] and Enhanced EDoS-

Shield CloudSim for the blacklist case. 

  
Figure 5.6: Response time relative error percentage for Enhanced EDoS-Shield [6] and 

Enhanced EDoS-Shield CloudSim for the blacklist case. 
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Figure 5.7: The computing resources utilization results for Enhanced EDoS-Shield [6] 

and Enhanced EDoS-Shield CloudSim for the blacklist case. 

 
Figure 5.8: The computing resources utilization relative error percentage for Enhanced 

EDoS-Shield [6] and Enhanced EDoS-Shield CloudSim for the blacklist case. 
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5.2.2 Whitelist case results 

In the Enhanced EDoS-Shield whitelist case, the IP address of an attacker is placed in the 

whitelist by sending one legitimate request from the attacker’s machine. Then, the attacker 

orders a set of bot machines to generate a huge amount of attack traffic toward the cloud 

while forging their IP addresses using the attacker whitelisted IP address. Subsequently, 

the corresponding traffic of these bot machines is forwarded to the cloud.  

From Figures [5.9-5.10] it is clear that the obtained response time simulation results for 

Enhanced EDoS-Shield [6] and CloudSim Enhanced EDoS-Shield are close to each other 

with a relative error percentage less than 0.6868%. Also, From Figures [5.11-5.12] the 

obtained utilization simulation results for Enhanced EDoS-Shield [6] and CloudSim 

Enhanced EDoS-Shield are close to each other with a relative error percentage less than 

0.3068%. Furthermore, it is observed from Figure 5.9 and 5.11 that when the attack rate is 

below the 4800 Req./Sec. the Enhanced EDoS-Shield shows a response time and utilization 

results less than the results obtained for the no attack case. This is due to an assumption 

made by the authors that 20% of the total bot’s requests have the same TTL value as that 

of the attacker whitelisted TTL value (false negative percentage). In this case, all the bot 

requests that have the same IP address and TTL value as that of the attacker will be 

forwarded to the cloud by the Enhanced EDoS-Shield as such bot requests are considered 

to be legitimate requests. Therefore, the auto scaling algorithm in the cloud will be 

triggered in order to handle the bot’s traffic that reaches the cloud. Since the false negative 

rate is proportional to the attack rate, the false negative excess traffic when the attack rate 

is below 4800 Req./Sec. will consume little computational power from the added VMs. 

This leads to having less average response time when compared with the no attack case. 
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Likewise, when the attack rate is above the 4800 Req./Sec., the false negative excess traffic 

saturates the added VM instances with requests and leads to having an average response 

time greater than the no attack case.  
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Figure 5.9: Response time results for Enhanced EDoS-Shield [6] and Enhanced EDoS-

Shield CloudSim for the whitelist case. 

 
Figure 5.10: Response time relative error percentage for Enhanced EDoS-Shield [6] and 

Enhanced EDoS-Shield CloudSim for the whitelist case. 
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Figure 5.11: The computing resources utilization results for Enhanced EDoS-Shield [6] 

and Enhanced EDoS-Shield CloudSim for the whitelist case. 

 
Figure 5.12: The computing resources utilization relative error percentage for Enhanced 

EDoS-Shield [6] and Enhanced EDoS-Shield CloudSim for the whitelist case. 
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5.3 Controlled Virtual Resources Access EDoS Mitigation Validation 

In order to validate the Controlled Virtual Resources Access all the parameters and the 

details presented by Baig et al. [14] were followed. So, for the validation purpose we 

compare the results of the CloudSim simulator with the results from the obtained Baig et 

al. code [14]. For the purpose of validating the simulator, the response time metric is 

compared with the corresponding response time evaluated in [14] when the number of VMs 

is equal to 500.  

5.3.1 Response Time 

As evident from Figure 5.13 and Figure 5.14, there is a small difference between the results 

presented by Baig et al. [14] and the CloudSim Simulation results with a relative error 

percentage of at most 0.7791%. In [14], the analytical model was included in the code that 

generated the performance results. On the other hand, the CloudSim simulator mimics the 

whole cloud infrastructure. Subsequently, a small variation appears between the Baig et al. 

results and CloudSim simulation results. 
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Figure 5.13: Response time results for Baig [14] and CloudSim simulation. 

 
Figure 5.14: Response time relative error percentage for Baig [14] and CloudSim 

simulation. 
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5.4 Controlled Access to Cloud Resources EDoS Mitigation Validation 

In order to validate the Controlled access to cloud resources EDoS mitigation, all the 

parameters and the details presented in [21] where followed. For the validation purpose, 

the response time and the cloud resources CPU utilization metrics obtained from the 

CloudSim simulator are compared with the corresponding metrics presented by Baig et al. 

[21]. 

5.4.1 Response Time 

As shown in Figure 5.15 and Figure 5.16, there is a small difference between the results 

presented by Baig et al. [21] and the CloudSim Simulation results with a relative error 

percentage of less than 1.4761%. In [21], Baig et al. tested their mitigation technique using 

an experimental testbed and collected the performance results accordingly. Conversely, we 

collect the performance results using the CloudSim simulator. Subsequently, there is a 

small relative error between the CloudSim simulation results and the results presented by 

Baig et al. [21]. 

It is noted that, the response time while the attack rate being below 1000 request/Sec. 

roughly stays around 20ms as evident from Figure 5.15. This is mostly due to the auto 

scaling that allocates more VMs to accommodate all of the users demand. On the other 

hand, when the attacking traffic exceeds 1000 requests/Sec. the response time increases 

rapidly because the maximum VM instances of 10 VMs cannot instantaneously serve the 

excess traffic. 
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5.4.2 Utilization 

Figure 5.17 and Figure 5.18 shows that the utilization results are close for the CloudSim 

simulation and Baig et al. testbed with a maximum relative error percentage of 1.2768%. 

Focusing on Figure 5.17, it is observed that the average CPU utilization of the cloud 

resources is 40% when the attack rate is zero. The 40% utilization is due to the fixed 

legitimate load. When the attack rate is 1200 Req./Sec. the analytical CPU utilization is 

equal to  (attack rate + legitimate rate)/ capacity of the running VMs which is equal to 

(1200+180)/(10*150)=92%. Above this rate the system will be over saturated with requests 

and the average response time will increase dramatically as shown in Figure 5.15. 
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Figure 5.15: Response time results for Baig et al. [21] and CloudSim simulation. 

 
Figure 5.16: Response time relative error percentage for Baig et al. [21] and CloudSim 

simulation. 
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Figure 5.17: The computing resources utilization results for Baig et al. [21] and 

CloudSim simulation. 

 
Figure 5.18: The computing resources utilization relative error percentage for Baig et al. 

[21] and CloudSim simulation 
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CHAPTER 6 PERFORMANCE SIMULATION RESULTS 

AND ANALYSIS 

In this chapter, we present the performance simulation results of the EDoS mitigation 

techniques under study while considering the effect of different real cloud implementation 

conditions. We have conducted four experimental modes using the simulation models of 

the four mitigation techniques under study that were discussed in chapter 3 and chapter 4. 

The first mode is called the normal mode in which we expose the four mitigation 

techniques to different arrival rates of only legitimate user’s traffic. The purpose of this 

mode is to examine if any of the EDoS mitigation techniques causes an overhead to the 

cloud service. The second mode is called the attack mode with IP spoofing users in which 

we consider two cases in order to cover all the possibilities of IP spoofing users. The two 

cases are the whitelist case and the blacklist case. This mode is highly needed to see if the 

EDoS mitigation techniques can handle smart attackers capable of tampering with the IP 

addresses before sending their requests to the cloud service. The third mode is called the 

attack mode with same NAT-based network users in which the cloud legitimate users and 

attackers belong to the same NAT-based network. Such mode reflects real life more than 

the previous modes since a considerable amount of the networks have their users behind a 

NAT router. The last mode is called the flash overcrowd mode in which an enormous 

amount of legitimate traffic is coming toward the cloud in a short period of time. This mode 

is also reflected in real life when a massive amount of traffic is generated in a short period 

due to some event such as a sports event or a sales promotion event. The successful EDoS 
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mitigation technique should be able to differentiate this behavior from an attack behavior 

and, accordingly, provides the same quality of service as in the normal mode.  

In each of the aforementioned modes, we consider the effect of the following three real 

cloud implementation conditions: 

1- The effect of using different load balancing algorithms: Beside the Round Robin (RR) 

algorithm that was used by all authors of the mitigation techniques under study, we 

consider the Least Loaded (LL) dispatching algorithm [42]. The LL makes the load 

balancer capable of sending the incoming request to the VM that has the lowest workload. 

In order to figure out who’s VM has the lowest workload, a variable called “Finishing 

Time” is defined for each VM. This variable adds the service times of all the existing 

requests in a particular VM. Hence, the VM that has the lowest finishing time receives the 

next request from the load balancer. 

2- The effect of using the Uniform Resource Locator (URL) redirection technique [43] to 

identify the automated attackers. Note that none of the EDoS mitigation techniques under 

study use this technique. The URL redirection technique can replace the CAPTCHA Turing 

test technique used by the EDoS mitigation techniques under study. The URL redirection 

technique transmits a URL redirection packet to the cloud user with a location field in the 

header that includes a virtual IP Address. This implies that the cloud user has to redirect 

the request to a different URL by using the received virtual IP address [43]. For a legitimate 

user the web browser can respond to the URL redirection packet without human 

intervention. On the other hand, an attacker usually runs a script on a bot machine to 

generate the attack traffic. Consequently, the attacker does not wait for the cloud response 
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packet. Therefore, the attacker does not react to the URL redirection. Accordingly, the 

benefit of using the URL redirection technique is reflected in reducing the average response 

time since the URL redirection overhead takes 0.63 seconds on average [44]. 

Consequently, the URL redirection overhead is approximately seven times less than the 

CAPTCHA Turing test overhead as reported in [45].  

3- The effect of using different probability distributions for request service times for cloud 

users input traffic. Several studies have considered the exponential distribution to 

characterize the request service time in the cloud service [46-49]. On the other hand, others 

have shown that the heavy-tailed Pareto distribution can fit several essential characteristics 

of web servers and coincides with Internet traffic behavior [50, 51]. More importantly, Al-

Fayoumi [52] uses Pareto distribution to model the service time of the cloud incoming 

traffic. Subsequently, the four mitigation techniques are evaluated using these two 

characterizations of input traffic.  

Several researchers have modeled the cloud-based service as a network of queues and each 

VM is considered as a single queue [53, 54]. In the cloud service, there are usually multiple 

cloud servers employed to offer the service to cloud customers. Thus, parallel M/M/1 and 

parallel M/Pareto/1 queuing models are used in the evaluation process.    

In order to simulate a full factorial experiment for the three aforementioned real cloud 

implementation conditions, five cases in the normal mode are considered. The first case 

uses the RR as a load balancing technique, the URL redirection as a Turing test, and the 

exponential probability distribution as an input traffic. The first case is referred to as 

simulation case 1: [RR-U-E]. The second case uses the RR as a load balancing technique, 
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the URL redirection as a Turing test, and the Pareto probability distribution as an input 

traffic. The second case is referred to as simulation case 2: [RR-U-P]. The third case uses 

the LL as a load balancing technique, the URL redirection as a Turing test, and the 

exponential probability distribution as an input traffic. The third case is referred to as 

simulation case 3: [LL-U-E]. The fourth case uses the LL as a load balancing technique, 

the URL redirection as a Turing test, and the Pareto probability distribution as an input 

traffic. The fourth case is referred to as simulation case 4: [LL-U-P]. Finally, the fifth case 

compares the best simulation case from these four cases with the author’s mitigation 

technique simulation parameters of RR as a load balancing technique, CAPTCHA as a 

Turing test, and exponential probability distribution as an input traffic. The fifth case is 

referred to as simulation case 5: [RR-CAP-E]. The purpose of the fifth case is to find out 

if a variation of these parameters would provide for a better system performance than what 

is considered in the mitigation techniques original simulation results. In order to do so, we 

define the normalized response time and normalized CPU utilization as follows: 

Normalized Response Time of the best simulation case = average response time of 

simulation case 5: [RR-CAP-E] / average response time of the best of the first four 

simulation cases.                                                                                                                         (6.1) 

Normalized CPU utilization of the best simulation case = average CPU utilization of 

simulation case 5: [RR-CAP-E] / average CPU utilization of the best of the first four 

simulation cases.                                                                                                                       (6.2) 

If the normalized value produces a one, it indicates that the two cases have the same 

performance. 
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In this chapter, the considered EDoS mitigation techniques are named as follows: the 

EDoS-Shield [5] is named (mitigation technique 1), the Enhanced EDoS-Shield [6] is 

named (mitigation technique 2), the Controlled Virtual Resources Access [14] is named 

(mitigation technique 3), and the Controlled Access to Cloud Resources [21] is named 

(mitigation technique 4).  

Table 6.1 summarizes all the performance evaluation modes that are presented in this 

chapter. Four experimental modes are conducted using the simulation models discussed in 

chapter 3 and chapter 4. 

Table 6.1: Performance Evaluation Modes. 

 

Table 6.2 summarizes the parameters used in the simulation. All the parameters are picked 

from the original work of the four mitigation techniques under study. Some parameters are 

common in the four mitigation techniques while others are specific to one or two mitigation 

technique(s). 
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Table 6.2: Simulation Parameters. 

Parameter Value Reference 

VM instance type Small [5,6,14,21] 

Load Balancer instance type Large [5,6] 

vFirewall instance type Large [5,6] 

Scaling-up upper threshold 80% [5,6,14,21] 

Scaling-down lower threshold 30% [5,6,14,21] 

Auto scaling metric CPU usage [5,6,14,21] 

Initial running servers 6 [5,6] 

Scaling size parameter (Mitigation 1 & 2) 2 [5,6] 

Scaling size parameter (Mitigation 3 & 4) 1 [14,21] 

Provisioning Overhead (Mitigation 1 & 2) 55.4sec [5,6] 

Provisioning Overhead (Mitigation 3 & 4) 60sec [14,21] 

Upper threshold duration (Mitigation 1 & 2) 5 min [5,6] 

Upper threshold duration (Mitigation 3 & 4) 1 min [14,21] 

Counter of unmatched TTL (max value) (Mitigation 2) 5 [6] 

Attack life time (Mitigation 2) 60 min [6] 

Default UTF (Mitigation 3 & 4) 0.5 [14,21] 

6.1 Normal Mode Results 

In this mode, the cloud service has enough VMs to handle the incoming legitimate traffic 

without the need for auto scaling. The arrival legitimate rate is varied from 400 Req./Sec. 

to 8000 Req./Sec. Also, the cloud does not receive any type of attack traffic. The objective 

of this mode is to see if the mitigation techniques under study can handle the normal load 

without adding overhead to the cloud service. In this section, the cloud response time and 

the resource utilization simulation results of the four mitigation techniques under study are 

presented. The results take into account changing the load dispatching algorithm, the 

algorithms that can identify the automated attackers, and the probability distributions for 

request service time for cloud users input traffic. Hence, the results are for simulation cases 

1 through 5.  
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6.1.1 Response Time and Utilization Results for Simulation case 1 [RR-U-E] 

The average response time results for the four mitigation techniques under study after 

applying the parameters of case 1 [RR-U-E] are depicted in Figure 6.1. The average cloud 

response time of the mitigation techniques (3) and (4) are the same as these two techniques 

are classified as reactive schemes. As such, these two techniques operate only when certain 

conditions are met. Specifically, if the cloud average CPU utilization exceeds 80% 

threshold or if the request comes from a blacklisted user then the technique is invoked. In 

the normal mode, the two techniques are not invoked as there are enough VMs to serve all 

legitimate requests without crossing the CPU utilization threshold. Also, none of the cloud 

legitimate users exist in the blacklist. Subsequently, the dispatcher will forward all the 

requests to the cloud VMs without interfering. Thus, these two techniques do not generate 

any overhead while serving legitimate requests. On the other hand, mitigation techniques 

(1) and (2) provide a noticeable overhead as compared to mitigation techniques (3) and (4). 

This is due to the fact that the vFirewall of mitigation techniques (1) and (2) checks the IP 

addresses of the incoming requests and sends Turing tests to the users to classify the users 

into whitelist and blacklist.    

Figure 6.2 shows the average resources utilization results for the four mitigation techniques 

under study after applying case 1 [RR-U-E] parameters. All of the mitigation techniques 

give identical results for the average resource utilization as each server in the cloud serves 

equal amount of requests.  
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Figure 6.1: Response time result in the normal mode after applying case 1 [RR-U-E].  

 
Figure 6.2: Resource Utilization result in the normal mode after applying case1 [RR-U-

E]. 
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6.1.2 Response Time and Utilization Results for Simulation case 2 [RR-U-P] 

Figure 6.3 shows the average cloud response time results for the four mitigation techniques 

under study while considering the parameters of case 2 [RR-U-P]. The cloud response time 

results for mitigation techniques (3) and (4) are identical for the same reason as stated in 

section 6.1.1. Subsequently, these two techniques do not generate any overhead while 

serving legitimate requests.  

Comparing Figures 6.1 and 6.3, there is a noticeable increase in the cloud response time 

results for case 2. This increase is due to the heavy right tail of the Pareto distribution. 

Consequently, the cloud servers will receive a number of requests that require high service 

times which leads to having an increase in the overall cloud response time. 

The average resource utilization evaluation for simulation case 2 [RR-U-P] is shown in 

Figure 6.4. It is noted that there is an increase in the resources utilization while using the 

Pareto distributions as an input traffic when comparing the exponential distributions results 

shown in Figure 6.2 to the Pareto distributions results shown in Figure 6.4. The increase is 

also due to the heavy right tail of the Pareto distribution. 
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Figure 6.3: Response time result in the normal mode after applying case 2 [RR-U-P].  

 
Figure 6.4: Resource Utilization result in the normal mode after applying case 2 [RR-U-

P].  
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6.1.3 Response Time and Utilization Results for Simulation case 3 [LL-U-E] 

Figure 6.5 shows the cloud response time evaluation for different arrival rates while using 

the parameters specified in case 3 [LL-U-E]. Comparing the results of Figure 6.1 and 

Figure 6.5, it is clear that the LL dispatching algorithm outperforms the RR algorithm in 

all mitigation techniques in term of response time. This is due to fact that the LL algorithm 

utilizes the cloud resources more efficiently than the RR algorithm. For example in 

mitigation technique (1) with an arrival rate equal to 400 Req./Sec. the RR algorithm is 

approximately 2.75 times worse than the LL algorithm in terms of the cloud response time. 

However, as the arrival rate increases the performance of the RR algorithm becomes closer 

to the LL algorithm as all the VM instances in the cloud will be highly utilized. Hence, the 

equal distribution of the requests among the servers in the RR algorithm becomes almost 

the same as choosing the least loaded server in the LL algorithm.       

The average resources utilization results for the four mitigation techniques under study 

after applying case 3 [LL-U-E] parameters are shown in Figure 6.6. Comparing the results 

of Figure 6.2 and Figure 6.6, it is evident that the average utilization result improves when 

the LL algorithm is used. At the first glance, the increase in the average utilization can be 

attributed to the asymmetrical distribution of requests among the servers while using the 

LL algorithm. However, this is not true since this should lead to a different average 

utilization in each cloud server but not to the overall utilization of all servers of the cloud 

as explained in the next paragraph. The real reason for this increase in the average 

utilization can be explained by considering equation 4.2. Due to the LL algorithm, the 

finishing time of each server will be less. Hence, according to equation 4.2, the overall 

average utilization will increase.  
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Figure 6.7 and Figure 6.8 show a comparison between the number of requests served by 

the cloud servers in mitigation technique (1) within one minute of simulation at 400 

Req./Sec. while using simulation case 1 [RR-U-E] and simulation case 3 [LL-U-E], 

respectively. It is clear that the equal distribution of requests among servers when using 

the RR algorithm and the asymmetrical distribution of requests among servers when using 

the LL algorithm. Similar figures will result for the other mitigation techniques as in Figure 

6.7 and Figure 6.8. 
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Figure 6.5: Response time result in the normal mode after applying case 3 [LL-U-E].  

 
Figure 6.6: Resource Utilization result in the normal mode after applying case 3 [LL-U-

E].  
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Figure 6.7: The number of requests served in each server while using the case 1[RR-U-E] 

parameters within one minute of simulation at 400 Req./Sec. for mitigation technique (1). 

 
Figure 6.8: The number of requests served in each server while using case 3 [LL-U-E] 

parameters within one minute of simulation at 400 Req./Sec. for mitigation technique (1). 
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6.1.4 Response Time and Utilization Results for Simulation case 4 [LL-U-P] 

The average response time results and the average utilization results for the four mitigation 

techniques under study after applying the parameters of case 4 [LL-U-P] are depicted in 

Figure 6.9 and Figure 6.10, respectively. Comparing the results of Figure 6.5 and Figure 

6.9, it is clear that there is an increase in the cloud response time for case 4. Similarly, by 

comparing Figure 6.6 and Figure 6.10, it is noted that there is an increase in the cloud 

resources utilization for case 4. The reasons behind both observations are similar to those 

that were discussed in section 6.1.2. Moreover, mitigation techniques (3) and (4) provide a 

significant decrease in the overhead as compared to mitigation techniques (1) and (2) as 

the vFirewall of mitigation techniques (1) and (2) checks the IP addresses of incoming 

requests and sends Turing tests to classify the users in whitelist and blacklist. 
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Figure 6.9: Response time result in the normal mode after applying case 4 [LL-U-P]. 

 
Figure 6.10: Resources Utilization result in the normal mode after applying case 4 [LL-

U-P].  
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6.1.5 Comparison Between Simulations Results of case 3 [LL-U-E] and case 5 

[RR-CAP-E] 

Section 6.1.1 through section 6.1.4 demonstrated that the simulation results of case 3 [LL-

U-E] outperform the simulation results of the other cases in terms of response time as well 

as utilization. Therefore, a comparison between the usage of case 3 parameters and case 5 

parameters are presented in this section. The purpose of this comparison is to find out the 

amount of system performance improvement after applying case 3 parameters as compared 

to the original simulation results reported by the authors of these techniques. 

Figure 6.11 shows the cloud response time evaluation for different arrival rates while using 

the parameters specified in case 3 [LL-U-E] and case 5 [RR-CAP-E]. The gap between the 

cloud response time of mitigation techniques (1) and (2) and the cloud response time of 

mitigation techniques (3) and (4) in case 3 is smaller than the corresponding gap in case 5. 

The reason behind this is related to the large relative difference between the average 

response time in solving CAPTCHA Turing test and the average response time in 

responding to a URL redirection. Moreover, from the normalized response time shown in 

Figure 6.11, it can be concluded that by using the parameters of case 3 the cloud response 

time in mitigation technique (1) is at most 4 times better than in case 5 [RR-CAP-E]. The 

reason behind this improvement is due to the usage of the LL algorithm and the URL 

redirection technique instead of the RR algorithm and the CAPTCHA Turing test. 

Moreover, as the arrival rate increases the improvement starts to decay since at high rates 

all the VM instances in the cloud will be highly utilized. Hence, the equal distribution of 

the requests among the servers in the RR algorithm becomes almost the same as choosing 

the least loaded server in the LL algorithm. At high rates, the factor that plays the major 
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role in the system improvement becomes the usage of the URL redirection technique 

instead of the CAPTCHA Turing test.     

The average resources utilization results for the four mitigation technique under study after 

applying case 3 [LL-U-E] parameters and case 5 [RR-CAP-E] parameters are shown in 

Figure 6.12. From the normalized utilization, it is clear that a slight increase in the average 

cloud resources utilization is gained as a result of applying case 3 parameters on the four 

mitigation techniques. 
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Figure 6.11: Response time comparison between case 3 [LL-U-E] and case 5 [RR-CAP-

E] in the normal mode. 
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Figure 6.12: Resources Utilization comparison between case 3 [LL-U-E] and case 5 [RR-

CAP-E] in the normal mode. 
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6.2 Flash Overcrowd Mode Results  

The flash overcrowd phenomena occurs when an enormous amount of legitimate traffic 

arrives at the cloud in a short period of time. A successful EDoS mitigation technique 

should be able to rapidly detect and differentiate between such a phenomena and an 

attacker’s behavior so as not to impact legitimate users traffic. Accordingly, this mode 

checks if the mitigation techniques under study are capable of handling the flash overcrowd 

load without adding overhead to the cloud service. In addition, this mode evaluates the 

efficiency of the auto scaling in each of the four mitigation techniques under study when 

the cloud service faces a flash traffic. 

In order to simulate an experiment that mimics the flash overcrowd behavior, the cloud 

system are set to receive normal traffic of 400 Req./Sec. for the first 5 minutes of 

simulation, and then the traffic increases until it reaches 2000 Req./Sec. at minute six. After 

that, the load remains at 2000 Req./Sec. until the end of the simulation. Hence, the cloud 

service encounters a high load peak that is 5 times larger than the normal traffic. The 

aforementioned flash overcrowd load is depicted in Figure 6.13. Based on equation (4.8) 

the number of initial running VMs to handle the 400 Req./Sec. without exceeding the 

utilization upper threshold is set to 6 VMs. Also, attack traffic is not considered during the 

flash overcrowd mode. 

Figure 6.14 shows the evaluation of the auto-scaling mechanism in the studied mitigation 

techniques when the cloud service encounters a flash overcrowd load. In mitigation 

techniques (1) and (2) the average CPU utilization of the cloud instances is periodically 

checked every 5 minutes. Subsequently, if the average CPU utilization exceeds the upper 

threshold of 80%, two additional instances will be allocated after a provisioning period of 
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55.4 seconds. On the other hand, mitigation techniques (3) and (4) check the average CPU 

utilization of the cloud instances every 1 minute. Accordingly, if the CPU utilization 

threshold is crossed, an additional instance is added to the running instances after a one 

minute of provisioning overhead. For example, at minute six of the simulation, mitigation 

techniques (3) and (4) check the CPU utilization of the cloud and request an addition of 

one VM to the running set. The additional instance starts working at minute seven. 

Mitigation techniques (1) and (2) check the utilization at minute five and find the CPU 

utilization threshold is still uncrossed, after that at minute ten mitigation techniques (1) and 

(2) check the CPU utilization again and identify that the CPU utilization has been crossed. 

So, two additional instances will join the running instances at second 10.54. It can be 

concluded from Figure 6.14 that mitigation techniques (3) and (4) converged to the 

required number of instances faster than mitigation techniques (1) and (2).  

 

 

 



97 

 

 
Figure 6.13: Flash overcrowd traffic.  

 
Figure 6.14: Simulation results of the number of allocated VMs at a flash overcrowd rate 

of 2 KReq./Sec. 
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6.2.1 Comparison Between Simulation Results of case 3 [LL-U-E] and case 5 

[RR-CAP-E] 

A comparison between the required number of VMs needed to serve the flash overcrowd 

users while using the four mitigation techniques and the analytical method discussed in 

equation (4.8) is shown in Figure 6.15. The Figure shows that when the arriving traffic is 

equal to 400 Req./Sec. the required instances while using either the analytical method or 

the mitigation techniques under study is the same since there is no auto-scaling needed in 

this situation. On the contrary, when the cloud receives traffic that is larger than or equal 

800 Req./Sec. all the mitigation techniques allocate more cloud instances than the 

analytical method. This is regards to the accumulated queuing requests in the initial running 

VMs that operate from the beginning of the simulation. Accordingly, the accumulated 

queuing requests make the average utilization in the cloud above 80%. As consequence, 

the auto scaling feature will append more VMs to the running instances set. 

The response time results in the flash overcrowd mode after applying case 5 [RR-CAP-E] 

are depicted in Figure 6.16. Note that there is no special algorithm in the four mitigation 

techniques under study capable of distinguishing between the flash overcrowd (FC) traffic 

and the attack traffic. Consequently, all those techniques send one or more CAPTCHA 

Turing tests towards the cloud users that generate the FC traffic. Furthermore, the overhead 

associated with each mitigation technique will be different from one technique to another. 

For mitigation techniques (1) and (2) where a whitelist table is used in the vFirewall, the 

cloud user that generates the FC traffic is forced to solve only one Turing test to gain the 

full access to the cloud resources. On the other hand, for mitigation technique (3) the cloud 

user is forced to solve more than one CAPTCHA Turing test according to the rate limit 

algorithm. Because the VMs utilization threshold will be crossed as a result of the flash 
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traffic, so the VM observer will order the firewall to send all the subsequent requests to the 

VM investigator. In turn, the VM investigator sends an additional CAPTCHA to each user 

in order to delay the incoming traffic until the cloud utilization decreases. In mitigation 

technique (4), the cloud user that generates FC traffic is also forced to solve CAPTCHA 

Turing test whenever the average resources CPU utilization is crossed. Therefore, the user 

in mitigation techniques (3) and (4) will suffer from relatively high cloud response time. 

Also, Figure 6.16 shows that when the arriving traffic is equal to 400 Req./Sec. the cloud 

response time is higher than the associated cloud response time when the cloud receives 

traffic that is larger than or equal 800 Req./Sec. for all the mitigation techniques. This dip 

is regard to the usage of the initial number of running VMs while the arriving traffic is 

equal to 400 Req./Sec. without needing to auto scale which makes these VMs highly 

utilized. Accordingly, the cloud response time will increase. On the contrary, when the 

arriving traffic is larger than or equal to 800 Req./Sec. all mitigation technique append 

more cloud instances to the running instances set which resulted in decreasing the queuing 

delay in each server and accordingly the cloud response time.  

Figure 6.17 shows the cloud response time results in the flash overcrowd mode after 

applying case 3 [LL-U-E] parameters. There is a noticeable reduction in the cloud response 

time for all the studied mitigation techniques when comparing the results provided in 

Figure 6.16 and the results provided in Figure 6.17. The reason behind this is related to the 

large relative difference between the average response time in solving CAPTCHA Turing 

test and the average response time in responding to a URL redirection as well as using the 

LL algorithm instead of RR algorithm.  
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Similarly, the resource utilization results in the flash overcrowd mode after applying case 

5 [RR-CAP-E] parameters is depicted in Figure 6.18. When the resource utilization results 

shown in Figure 6.2 are compared with and the resource utilization results provided in 

Figure 6.18, we see a decrease in the resources utilization in the flash overcrowd mode. 

The reason behind this decrease is due to using additional cloud instances in the flash 

overcrowd mode than in the case of the normal mode. Also, Figure 6.18 shows that when 

the arriving traffic is equal to 400 Req./Sec. the resource utilization results is higher than 

the associated resource utilization results when the cloud receives traffic that is larger than 

or equal 800 Req./Sec. for all the mitigation techniques. The reason behind this is 

previously discussed while addressing the same phenomena in Figure 6.16. 

Finally, Figure 6.19 shows the resource utilization results in the flash overcrowd mode 

after applying case 3 [LL-U-E] parameters. It is clear that a slight increase in the average 

cloud resources utilization is gained as a result of applying case 3 parameters to the four 

mitigation techniques. The reason behind this increase is the same as that presented in 

section 6.1.3. 
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Figure 6.15: Simulation results of the number of allocated VMs at different flash 

overcrowd rates. 



102 

 

 
Figure 6.16: Response time results in the flash overcrowd mode after applying case 5 

[RR-CAP-E]. 

 
Figure 6.17: Response time results in the flash overcrowd mode after applying case 3 

[LL-U-E]. 
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Figure 6.18: Resources Utilization results in the flash overcrowd mode after applying 

case 5 [RR-CAP-E]. 

 
Figure 6.19: Resources Utilization results in the flash overcrowd mode after applying 

case 3 [LL-U-E]. 
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6.3 Attack Mode Results–IP spoofing  

In order to evaluate the effect of the EDoS attack on the four mitigation technique under 

study, the cloud service is tested using a fixed load of legitimate traffic that equals to 400 

Req./Sec. and to a variable attack traffic that is varied between 400 and 8000 Req./Sec. For 

every attack rate, the number of initial running instances in the studied mitigation technique 

is set to 6 VMs as deduced from the results that shown in Figure 6.15. 

In the attack mode, all EDoS mitigation techniques are susceptible to the IP Spoofing 

problem. Thus, the four considered mitigation techniques are studied under two cases in 

order to cover the spoofing problem: the whitelist case and the blacklist case. In the 

whitelist case, the IP address of the attacker’s machine is placed in the whitelist by sending 

one legitimate request from the attacker’s machine. Then, the attacker orders a set of bot 

machines to generate a huge amount of attacking traffic toward the cloud while setting their 

IP addresses to the attacker’s whitelisted IP address. On the other hand, the blacklist case 

occurs when initially the mitigation technique identifies a number of spoofed attackers IP 

addresses and places these addresses in the blacklist. A problem might occur when a 

legitimate user sends a request towards the cloud service using an IP address that is already 

blacklisted. Consequently, the mitigation technique will drop that request and block the 

legitimate user from being served.       
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6.3.1 Comparison Between Simulation Results of case 3 [LL-U-E] and case 5 

[RR-CAP-E] (Whitelist case)  

The required number of VMs needed to serve the cloud users in the attack mode (whitelist 

case) while using the four mitigation techniques is shown in Figure 6.20. Both mitigation 

techniques (1) and (2) have allocated more VMs instances than mitigation techniques (3) 

and (4) as mitigation techniques consider the attacking traffic as a flash traffic. More 

specifically, all of the attack traffic in mitigation technique (1) is considered as a flash 

traffic. Similarly, only the attack traffic that have same IP address and TTL value of a 

whitelisted user is served and considered as a flash traffic in mitigation technique (2). As 

a result, both mitigation techniques (1) and (2) will auto scale to serve the flash traffic. On 

the other hand, mitigation techniques (3) and (4) are considered reactive mitigation 

techniques and will start working when the average CPU utilization of the cloud resources 

exceeds the threshold. Hence, some of the attack traffic will be served until the utilization 

threshold is crossed. Afterwards, all the requests in the vFirewall will be sent to the VM 

investigator for further verification and a onetime auto scaling that adds one additional VM 

is performed.           

The response time results in the attack mode (whitelist case) after applying case 5 [RR-

CAP-E] parameters are depicted in Figure 6.21. There is an increase in the cloud response 

time in mitigation technique (1) and (2) when the attack traffic increases. This is mainly 

due to the fact that all of the attack traffic is served by the cloud in mitigation technique 

(1), and some of the attack traffic is served in mitigation technique (2) as explained earlier. 

In mitigation techniques (3) and (4) the response time results are constant. Accordingly, 

when these mitigation techniques are in operation they will eliminate all of the attack traffic 

successfully.  
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Figure 6.22 shows the response time results in the attack mode (whitelist case) after 

applying case 3 [LL-U-E] parameters. There is a noticeable reduction in the cloud response 

time for all the studied mitigation techniques as compared to the results provided in Figure 

6.21. The reason behind this is related to the large relative difference between the average 

response time in solving a CAPTCHA Turing test and the average response time in 

responding to a URL redirection as well as using LL algorithm instead of RR algorithm. 

The resource utilization results in the attack mode (whitelist case) after applying case 5 

[RR-CAP-E] parameters are depicted in Figure 6.23. In mitigation techniques (3) and (4), 

the CPU utilization results are similar because both mitigation techniques employ the same 

number of VM instances to serve the cloud users. The CPU utilization result in mitigation 

technique (1) is greater than the CPU utilization in mitigation technique (2) since less 

number of attack requests are considered as flash traffic in mitigation technique (2). 

Comparing Figure 6.23 to Figure 6.24 reveals a slight increase in the average cloud 

resources utilization for case 3 as a result of applying case 3 parameters to the four 

mitigation techniques. The reason behind this increase was explained in section 6.1.3. 

Figure 6.25 shows the number of False Negative requests served by the cloud resources for 

the whitelist case. The entire attack traffic is severed by the cloud resources in mitigation 

technique (1) due to considering these requests as flash requests. In mitigation technique 

(2) only the attack traffic that has the same IP address and TTL value of a whitelisted user 

is served and considered as flash traffic. Accordingly, the behavior observed in Figure 6.25 

reflects the assumption made in [6] of having 20% of the attack traffic having the same IP 

address and TTL value of a whitelisted users. Mitigation techniques (3) and (4) will start 

working when the average CPU utilization of the cloud resources exceeds the threshold. 
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Hence, some of the attack traffic will be served until the utilization threshold is crossed. 

Afterwards, all the requests in the vFirewall will be sent to the VM investigator for further 

verification and both mitigation techniques will successfully identify and drop all the attack 

traffic. 

 

 

 

Figure 6.20: Simulation results of the number of allocated VMs at different attack rates 

for the Whitelist case. 
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Figure 6.21: Response time results in the attack mode after applying case 5 [RR-CAP-E] 

for the whitelist case. 

 
Figure 6.22: Response time results in the attack mode after applying case 3 [LL-U-E] for 

the whitelist case. 
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Figure 6.23: Utilization results in the attack mode after applying case 5 [RR-CAP-E] for 

the whitelist case. 

 
Figure 6.24: Utilization results in the attack mode after applying case 3 [LL-U-E] for the 

whitelist case. 
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Figure 6.25: The number of False Negative requests in the attack mode for the whitelist 

case. 
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6.3.2 Comparison Between Simulation Results of case 3 [LL-U-E] and case 5 

[RR-CAP-E] (Blacklist case)  

Figure 6.26 shows the required number of VMs needed to serve the cloud users in the attack 

mode (Blacklist case) while using the four mitigation technique. It is assumed that the 

blacklist table is periodically updated and it holds all the IP addresses of the attacking 

machines [7]. Consequently, mitigation technique (1) will drop the attack traffic directly 

while mitigation techniques (2), (3) and (4) will forward the attack requests to the V-node 

or VM Investigator for further verification. As a result, all the studied mitigation techniques 

will mitigate the attack traffic and will use only the initial running VMs in order to serve 

the legitimate users for all attack rates considered. 

The response time results for the attack mode (blacklist case) after applying case 5 [RR-

CAP-E] parameters are depicted in Figure 6.27. The response time for mitigation technique 

(1) is zero because all the legitimate users and attackers were blocked since their IP 

addresses already exist in the blacklist. In addition, the response time for mitigation 

techniques (2), (3) and (4) are constant as a result of blocking the attack traffic. Moreover, 

the response time for mitigation technique (2) is less than the response time for mitigation 

techniques (3) and (4). This is due to having some of the legitimate traffic in mitigation 

technique (2) being dropped due to having the same IP address and TTL value of a 

blacklisted user. Comparing Figure 6.28 to Figure 6.27 reveals a reduction in the cloud 

response time for case 3. The reason behind this reduction is related to the large relative 

difference between the average response time in solving CAPTCHA Turing test and the 

average response time in responding to a URL redirection as well as using LL algorithm 

instead of RR algorithm. 
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The resources utilization results for the attack mode (Blacklist case) after applying case 5 

[RR-CAP-E] parameters are shown in Figure 6.29. Same trend for the resources utilization 

that is depicted in Figure 6.29 as the trend of the response time results shown in Figure 

6.27. 

Figure 6.30 shows the resources utilization results for the attack mode (Blacklist case) after 

applying case 3 [LL-U-E] parameters. A slight increase in the average cloud resources 

utilization is gained as a result of applying case 3 parameters to the four mitigation 

techniques. The reason behind this increase is due to the early finishing time of input traffic 

while using case 3 parameters as previously discussed in section 6.1.3. 

Figure 6.31 shows the number of False Positive requests erroneously blocked by the EDoS 

mitigation techniques under study in the blacklist case. The entire legitimate traffic is 

blocked by mitigation technique (1) since legitimate users send requests toward the cloud 

service using IP addresses that are already blacklisted. Similar to the whitelist case that was 

explained in Figure 6.21 20% of the attack traffic have the same IP address and TTL value 

of legitimate users. Subsequently, mitigation technique (2) blocks the legitimate traffic that 

has the same IP address and TTL value of blacklisted users. On the other hand, mitigation 

technique (3) and (4) will successfully serve all the legitimate traffic since these mitigation 

techniques give another chance for the blacklisted users to proof their legitimacy through 

CAPTCHA test.   
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Figure 6.26: Simulation results of the number of allocated VMs at different attack rates 

for the Blacklist case. 
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Figure 6.27: Response time results in the attack mode after applying case 5 [RR-CAP-E] 

for the Blacklist case. 

 
Figure 6.28: Response time results in the attack mode after applying case 3 [LL-U-E] for 

the Blacklist case. 
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Figure 6.29: Utilization results in the attack mode after applying case 5 [RR-CAP-E] for 

the Blacklist case. 

 
Figure 6.30: Utilization results in the attack mode after applying case 3 [LL-U-E] for the 

Blacklist case. 
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Figure 6.31: The number of False Positive requests in the attack mode for the blacklist 

case. 
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6.4 Attack Mode Results – Cloud Users Belong to The Same NAT-based 

Network  

In this mode, the cloud resources are subjected to legitimate and attack traffic that are 

originating from behind the same NAT-based network. Thus, all the requests that are 

received by the cloud resources will share the same public IP address of the NAT router. 

This mode is one of the most possible yet most sophisticated scenario since it is difficult 

for regular EDoS mitigation techniques to differentiate between legitimate users and 

attackers that share the same public IP address. 

To properly cover all the possibilities in this mode, the studied mitigation techniques are 

simulated under two cases: The whitelist case and the blacklist case. In both cases it is 

assumed that the public IP address is not used earlier to access the cloud service. In the 

whitelist case, initially an attacker that resides behind the NAT router targets the cloud 

resources with a legitimate request from the attacker’s machine to place the NAT public IP 

address in the whitelist of the vFirewall. In the blacklist case, initially a bot machine behind 

a NAT router that is controlled by an attacker targets the cloud service, and subsequently 

the NAT public IP address will be placed in vFirewall blacklist table.    

In order to evaluate the aforementioned cases for the mitigation techniques under study, 

the cloud service is subjected to a fixed load of legitimate traffic that equals 400 Req./Sec. 

and to an attack traffic that varies between 400 and 8000 Req./Sec. For every attack rate, 

the number of initial running instances in the studied mitigation technique is set to 6 VMs 

as deduced from the results shown in Figure 6.15. 
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It should be pointed out that to protect the internal structure of a private network behind 

the NAT, typically network administrators reset the TTL value of all outgoing traffic to the 

default value [55]. As such, it makes it harder for mitigation techniques to depend on the 

TTL value to distinguish between legitimate users and attackers from behind the NAT.  

6.4.1 Comparison Between Simulation Results of case 3 [LL-U-E] and case 5 

[RR-CAP-E] (Whitelist case)  

The required number of VMs needed to serve the cloud users in the attack mode (whitelist 

case) after applying case 5 [RR-CAP-E] to the four mitigation techniques is shown in 

Figure 6.32. Both mitigation techniques (1) and (2) have allocated more VMs instances 

than mitigation techniques (3) and (4) because they consider the attack traffic as a flash 

traffic. In this case, all the attack traffic will bypass mitigation techniques (1) and (2) since 

the public NAT IP address is added to the vFirewall whitelist. Mitigation techniques (3) 

and (4) need to auto-scale one time in order to service cloud users as previously discussed 

in section 6.3.1. 

Figure 6.33 shows the response time results for the attack mode (whitelist case) after 

applying case 5 [RR-CAP-E] parameters. Because all the attack traffic is considered as a 

flash traffic in mitigation technique (1) and (2), the response time increases whenever there 

is an increase in the attack rate. On the other hand, mitigation techniques (3) and (4) will 

eliminate the EDoS attack traffic when they are in operation but at the expense of relatively 

high response time. Figure 6.34 shows the response time for case 3 [LL-U-E] and it shows 

that there is a reduction in the cloud response time as compared to Figure 6.31. This 

reduction is a result of using the URL redirection instead of the CAPTCHA Turing test as 

a method to distinguish between legitimate clients and bot machines as well as using LL 

algorithm instead of RR algorithm. 
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The resource utilization results in the attack mode (whitelist case) after applying case 5 

[RR-CAP-E] parameters are depicted in Figure 6.35. The CPU utilization results for 

mitigation (1) and (2) are similar because both techniques use the same number of VMs to 

serve the cloud users. Also, the CPU utilization results for mitigation (3) and (4) are similar 

for the same reason. Comparing Figure 6.35 to Figure 6.36 reveals a slight increase in the 

average cloud resources utilization for case 3 due to the early finishing of input traffic after 

applying case 3 parameters as previously discussed in section 6.1.3. 

Figure 6.37 shows the number of False Negative requests served by the cloud resources for 

the whitelist case. The entire attack traffic is severed by the cloud resources in mitigation 

techniques (1) and (2) since the public NAT IP address is added to the vFirewall whitelist. 

On the other hand, mitigation techniques (3) and (4) will serve some of the attack traffic 

until the utilization threshold is crossed as previously noted when explaining Figure 6.25.   
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Figure 6.32: Simulation results of the number of allocated VMs at different attack rates 

for the Whitelist case after applying case 5 [RR-CAP-E]. 
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Figure 6.33: Response time results in the attack mode after applying case 5 [RR-CAP-E] 

for the whitelist case. 

 
Figure 6.34: Response time results in the attack mode after applying case 3 [LL-U-E] for 

the whitelist case. 
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Figure 6.35: Utilization results in the attack mode after applying case 5 [RR-CAP-E] for 

the whitelist case. 

 
Figure 6.36: Utilization results in the attack mode after applying case 3 [LL-U-E] for the 

whitelist case. 
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Figure 6.37: The number of False Negative requests in the attack mode for the whitelist 

case. 
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6.4.2 Comparing Between Simulation Results of case 3 [LL-U-E] and case 5 

[RR-CAP-E] (Blacklist case) 

The required number of VMs needed to serve the cloud users in the attack mode (blacklist 

case) after applying case 5 [RR-CAP-E] to the four mitigation techniques is shown in 

Figure 6.38. It is assumed that the blacklist table is periodically updated and it holds the 

public IP of the NAT router. Consequently, mitigation techniques (1) and (2) will block 

the entire NAT. On the other hand, mitigation techniques (3) and (4) will direct all the 

traffic that comes from behind the NAT router to the VM investigator for further analysis. 

Accordingly, none of the four mitigation techniques need to perform auto scaling and they 

will operate using the initial running instances.  

Figure 6.39 shows the response time results for the attack mode (blacklist case) after 

applying case 5 [RR-CAP-E] parameters. In mitigation techniques (1) and (2) the response 

time is zero because all the legitimate users and attackers were blocked since their IP 

addresses already exist in the blacklist. In addition, the response time in mitigation 

techniques (3) and (4) is constant as an evidence of blocking the attack traffic but with the 

expense of a relatively high response time. This is because all the legitimate users need to 

solve CAPTCHA Turing test in order to gain access to the cloud resources. Figure 6.40 

shows a reduction in the cloud response time for case 3 when compared with Figure 6.39. 

This reduction is a result of using the URL redirection instead of the CAPTCHA Turing 

test as a method to distinguish legitimate clients from bot machines as well as using LL 

algorithm instead of RR algorithm. 

The resources utilization results for the attack mode (Blacklist case) after applying case 5 

[RR-CAP-E] parameters are shown in Figure 6.41. Same trend for the resources utilization 



125 

 

that is depicted in Figure 6.41 as the trend of to the response time results shown in Figure 

6.39. 

Figure 6.42 shows the resources utilization results for the attack mode (Blacklist case) after 

applying case 3 [LL-U-E] parameters. A slight increase in the average cloud resources 

utilization is gained as a result of applying case 3 parameters to the four mitigation 

techniques. The reason behind this increase is due to the early finishing time of input traffic 

while using case 3 parameters as previously discussed in section 6.1.3. 

Figure 6.43 shows the number of False Positive requests erroneously blocked by the EDoS 

mitigation techniques under study in the blacklist case. Note that Figure 6.43 assumes that 

there are 400 legitimate Req./Sec. being received for all attack mitigation technique. The 

entire legitimate traffic is blocked by mitigation techniques (1) and (2) since the NAT 

public IP address is added to the vFirewall blacklist. On the other hand, mitigation 

techniques (3) and (4) will successfully serve all the legitimate traffic since these mitigation 

techniques give another chance for the blacklisted users to proof their legitimacy through  

CAPTCHA test. 
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Figure 6.38: simulation results of the number of allocated VMs at different attack rates 

for the Blacklist case after applying case 5 [RR-CAP-E]. 
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Figure 6.39: Response time results in the attack mode after applying case 5 [RR-CAP-E] 

for the Blacklist case. 

 
Figure 6.40: Response time results in the attack mode after applying case 3 [LL-U-E] for 

the Blacklist case. 
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Figure 6.41: Utilization results in the attack mode after applying case 5 [RR-CAP-E] for 

the Blacklist case. 

 
Figure 6.42: Utilization results in the attack mode after applying case 3 [LL-U-E] for the 

Blacklist case. 
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Figure 6.43: The number of False Positive requests in the attack mode for the blacklist 

case. 
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CHAPTER 7 CONCLUSION AND FUTURE WORK 

This chapter summarizes the major contributions and findings in this thesis. It also provides 

a list of possible future research directions.  

7.1 Conclusion  

Many researchers proposed mitigation techniques that can reduce the effect of the EDoS 

attack. However, the literature lacks a concrete study that can help cloud service providers 

to choose between the different alternatives. Thus, a common platform to evaluate any 

EDoS mitigation technique was developed and proposed by this thesis. A performance 

evaluation between four of the existing mitigation techniques was conducted. Such a 

performance evaluation platform can be easily changed to test the performance of future 

solutions. As a result of the evaluation process of the studied EDoS mitigation techniques, 

it is advisable to include some features in any future EDoS mitigation technique. The 

features include the use of the LL algorithm instead of the RR algorithm as the cloud load 

scheduler. Another feature that can be included is the use of the URL redirection technique 

to identify automated attackers especially when they belong to a NAT-based network. 

Finally, it is advisable to test the EDoS mitigation technique under different modes 

including its adaptability to an EDoS attack, the flash overcrowd phenomena, and the IP 

spoofing problem.  

Another conclusion from this thesis is the need to test the performance of the mitigation 

technique using different probability distributions for request service times so as to model 

the real life cloud environment as much as possible.  
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7.2 Future work  

The future work improvements will look into the following aspects: 

1- Testing the mitigation technique under other real cloud conditions such as changing the 

VMs capacity, using different load balancing technique other than RR and LL, and using 

different probability distribution other than exponential and Pareto to characterize the 

arrival process and request service times. 

2- Study other queuing system models for modeling the VM instances in the cloud 

including a parallel Pareto/Pareto/1 queuing system [52], and a parallel G/M/1 queuing 

system with three alternatives for interarrival time distributions: Hypergeometric, 

Exponential, and Pareto distributions [51]. 

3- Study other performance metrics including the throughput of legitimate clients, and the 

cost associated with each mode while considering different pricing models. 

4- Check the suitability of the studied mitigation techniques for reducing the effect of the 

fraudulent resource consumption attack or low rate EDoS attack (LR-EDoS).  

5- Consider cloud optimization problems for tuning some of the provisioning mechanism 

parameters such as the lower utilization threshold that is used for the auto scaling.  

6- Evaluate the EDoS mitigation techniques when the attackers are capable of solving 

CAPTCHA Turing tests by utilizing some automatic software solvers like Xrumer [56].  
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APPENDIX: CLOUDSIM SIMULATOR CODE DESIGN 

 

The main six CloudSim simulator Modules that are related to the operation of the four 

EDoS mitigation techniques under study are shown in Figure A.1. The six Modules are the 

Main Module, the DataBase Module, the Cloudlet (CL) Module, the Broker Module, the 

Cloud Information service (CIS) Module, and the DataCenter Module. The Main Module 

and the DataBase Module are needed for the operation of the other modules. Figure A.1 

provides the additional features added to the CloudSim simulator for building the 

considered EDoS mitigation techniques. The additional features are shown using 

underlined text in Figure A.1. 
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