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الغير  )معادله انتشار الحراره ومعادله الموجه(السيطره الحديه للمعادلات التفاضليه الجزئيه الكسريه درسنا في هذه الاطروحه 

القابل للانعكاس ) باك ستبنق( لازاله الجزء الغير مستقر في النظام  الخطي طريقه معامل التحويل استخدمنا. و  مستقره

ويله الاصلي وتحويل النظام عبر نظام اخر مستقر وبسيط لايجاد التحكم الحدي الذي بدوره يتحكم في النظام الاصلي وتح

.باسم كابوتوالتفاضل الكسري المعرف  في هذا البحث سوف نستخدم الي نظام مستقرر. ايضا   

رتبه الاشتقاق بالنسبه للزمن في معادله الانتشار  بتحويلمعادله انتشار الحراره الكسريه ومعادله الموجه الكسريه نحصل علي 

 1و  0بين  ، اذا كان العدد محصوركسري او اي عدد اخر  صحيح الي عددمن عدد وجه العاديه العاديه او معادله الم

سوف نحصل علي معادله الموجه الكسريه. 2و  1سوف نحصل علي معادله الانتشار الكسريه واذا كان العدد بين   

 .دائيالابتللحل  في الاخير سوف نوضح طريق الحل بجموعه من الامثله العدديه وبقيم مختلفه لمرتبه الاشتقاق وقيم مختلفه 
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Chapter 1

INTRODUCTION

1.1 Introduction

It has been observed in the last three decades that fractional calculus and di¤erential

equations provide adequate modelling tools for many physical devices and processes.

The central idea is the concept of fractional derivative, which is more than three

centuries old. It generalizes the notions of integration and di¤erentiation to arbitrary

orders (including complex orders). The idea of fractional derivative is simple and

dates back to 1695 when L�Hospital wrote to Leibniz asking him about the simple

fractional derivative @
1
2u=@x

1
2 [29]. If @u

@x
and @2u

@x2
exist, then @

1
2u=@x

1
2 may exist too.

The fractional calculus also �nds applications in di¤erent �elds of science and

engineering [17], not limited to the theory of fractals, numerical analysis, physics,
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engineering, biology, economics and �nance. For instance, some problems of vis-

coelasticity was formulated and solved by M. Caputo [4] with his own de�nition of

fractional di¤erentiation.

Also, fractional di¤usion and wave equations are obtained from the classical di¤u-

sion and wave equations by replacing derivative of integer orders by fractional deriv-

atives of appropriate orders. The most simple examples are fractional heat and wave

equations obtained by replacing the order � of the time derivative of the classical heat

and wave equations by a non-integer order satisfying � 2 (0; 1) to obtain fractional

heat equation and � 2 (1; 2) to obtain fractional wave equation. Fractional integrals

and derivatives also appear in the theory of control systems, where for the descrip-

tion of the controlled system and the controller, fractional di¤erential equations are

used. Below are the simplest well-know fractional-order partial di¤erential equations

(FOPDE) considered in the literature,

� Time fractional-order di¤usion equation:

@�u(x; t)

@t�
=
@2u(x; t)

@x2
; � 2 (0; 1] (1.1)

� Time fractional-order wave equation

@�u(x; t)

@t�
=
@2u(x; t)

@x2
; � 2 (1; 2] (1.2)

2



� Time fractional-order di¤usion-wave equation

@�u(x; t)

@t�
=
@�u(x; t)

@x�
; � 2 (0; 2]; � 2 (1; 2]: (1.3)

The equation (1.3) represents a hyperbolic wave equation for � = 2, � = 2, and

parabolic di¤usion equation for � = 2, � = 1, such that the equation (1.3) can

be interpreted as the interpolation between a hyperbolic and a parabolic equation.

The existence and uniqueness of solution was studied by Fujita [25]. Di¤usion-wave

equation involving Riemann-Liouville derivative and Caputo derivative, have also been

discussed by various researchers .

Mittag-Le¤er functions; a generalization of exponential functions to fractional or-

der are often used to express the solutions of the above equations. Various methods

have been used to solve these equations for example Green�s function method [49],

�nite sine transform method [15], method of images and Fourier transform [51], sepa-

ration of variables method [36], �nite di¤erence method [38], Adomian decomposition

method (ADM) [35]. However, controlling such a fractional di¤erential equations is a

very recent topic and so much remains to be done. Boundary controller of fractional

di¤erential equations is still new, and we expect that better controller topics will be

explored in the coming years.

A system can be modeled in a classical way using integer order derivative or deriv-

ative of fractional-order. The controller can also be operated as a classical one or a

fractional-order one. Several scenarios have been considered

3



1. integer-order controller for integer-order system

2. integer-order controller for fractional-order system

3. fractional-order controller for integer-order system

4. fractional-order controller for fractional-order system

with increasing di¢ culty. Publications dealing with the last problems are very

scarce as compared to the previous cases. Even in this last case most of the research

consider systems with constant coe¢ cients. As an important application �eld of frac-

tional calculus, the topic about fractional-order control and system recently has been

the focus of many researchers [1], [2], [3], [4], [5].

For unstable systems, we may have an in�nite output irrespective of whether the

input is �nite or not. This in itself produces some visible problems. For instance, an

unstable arm of a robot may make the robot move in a dangerous manner. Sometimes,

very costly damages are incurred by unstable systems. In any case, there are quiet a

number of systems which are naturally unstable, e.g., a rocket lift o¤ or a �ghter jet

to mention a few. However, it is possible to design controllers which stabilizes such

systems. To do that, one must understand what stability is, how it is determined

and why it is needed. The stability of control systems is an important property.

Considering any bounded input signal of a system, and if the output signal of the

system to such a signal is also bounded, then the system is called bounded-input-

bounded-output stable. If the output signal does not show this property, the system

is unstable. Stability is the base requirement for the design of a control system.

4



Control is also applied whenever one would like to change the operation of a system

to a desired form over a period of time. For instance, trying to make a car maintain the

speed of say 50km/h on a road, irrespective of the topography of the road or presence

of pot holes. Another example is the process of trying to keep at a speci�ed level, the

temperature and pressure level in a reactor vessel in a chemical process plant. Or one

may want an aircraft to �y at a speci�c altitude, direction and velocity, independent

of wind gusts.

These above examples, are types of task which are being accomplished today by

various control methods. Moreover, these examples employ the use of automatic

control system, which needs no human intervention.

1.2 Literature overview

Fractional calculus and di¤erential equations have been studied by several authors.

Several recent books on the fractional calculus and control theory have been written,

illustrating the usefulness of the theory in applications [1], [2], [3], [4], [5], [6], [7], [8],

[9]. In 1974, fractional di¤usion equation with 1
2
order time derivative and �rst-order

derivative in space was considered by Oldham and Spanier [10] and they discussed

the relation between di¤usion equation with integer order and fractional one. Om.P.

Agrawal [15] de�ned a fractional di¤usion-wave equation in a bounded space domain

with Caputo fractional time derivative and used a �nite sine and Laplace transform

technique to �nd a general solution in terms of Mittag-Le­ er functions. In 2015

Mophou and Tao [54] studied the existence and uniqueness of solutions for fractional

5



di¤usion equation and composite fractional equation using change of variables and

eigenfunctions expansions.

Boundary control of di¤usion equation with integer-order derivative was considered

by many researcher when � = q(x) is function of x or � = �0 constant and also with

Dirichlet, Neumann, and Robin boundary control [30], [31], [32], [33], [37], [39] where

the boundary control is de�ned by using the backstepping method.

@u(x;t)
@t

= @2u(x;t)
@x2

+ �(x)u(x; t); (x; t) 2 [0; 1]� [0;1)

It was shown that without controller this system is unstable for large value of �.

The system can be stabilized using appropriate controller where the controller is the

function on the boundary. Recently, many advances in control theory have been given,

for example [21], [22] for stability properties of linear fractional di¤erential systems

and [26] for controllability and observability properties of linear fractional di¤erential

systems [27], [28]. In 2004, Liang, Chen and Fullmer [42] considered the simple form

of one-dimensional boundary control of fractional wave equation,

8>>>>>><>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

; 1 < � � 2; 0 � x � 1; t > 0

u(0; t) = 0; ux(1; t) = f(t); t > 0

u(x; 0) = u0(x); ut(x; 0) = u1(x); 0 � x � 1

(1.1)

where f(t) is the boundary control at the free end of the cable and is de�ned by

f(t) = �kdut(1; t) where kd is the controller gain and subscript d means that kd is a

6



gain for derivative feedback.

Also they added disturbance force at the same point where the boundary control

and de�ned the boundary force by

bf(s) = (kd + ks

s2 + !2
)but(1; s) + bn(s) (1.2)

where bf(s) is the Laplace transform of the combination of boundary control force and
disturbance force n(t): The authors observed and concluded from simulation that the

boundary controller can stabilize the fractional order wave equation. In 2005, Liang,

Chen, Vinagre and Podlubny [43] considered the same system (1.1) and de�ned the

controller with fractional order by

f(t) = �kd
�u(1; t)

dt�
; 0 < � < 1 (1.3)

where k is the controller gain, � is the order of fractional derivative of the displacement

at the free end of the cable. They have also shown that the fractional order boundary

controller is better than the integer order boundary control. In 2005, Liang, Zhang and

Podlubny [44], used the Smith predictor method (the most famous method for control

of systems with pure time delays) to solve the instability problem of the fractional

wave equation (1.1) with a fractional-order boundary controller when the time delay

in the boundary measurement is small or large. They concluded that for large delays

which makes the system unstable, the fractional-order controller combined with the

Smith predictor is able to compensate the time delay and is robust against a small

7



di¤erence between the assumed delay and the actual delay. In 2010, Ahmed [45]

studied the boundary controllability of nonlinear fractional integrodi¤erential systems

under su¢ cient conditions in Banach space. An elementary method of steering a

fractional linear control system from a given initial state to a given �nal state was

presented by Dzielinski and Malesza [41] in 2011. In 2011 Yanzhu Zhang, Wang

Xiaoyan and Yanmei [46], considered the boundary control of the two models of the

anti-stable fractional-order and integer-order vibration systems. The string vibration

system can be modelled in the integer and fractional wave models.

(i) Integer-order 8>>>>>><>>>>>>:
utt(x; t) = uxx(x; t)

ux(0; t) = �a1ut(0; t)

ux(1; t) = f1(t)

(1.4)

where f1(t) is the boundary controller and is de�ned by A. Smyshlyaev [34]

f1(t) =
ka1(a1 + b1)

1 + a1b1
u(0; t)�ku(1; t)� a1 + b1

1 + a1b1
ut(1; t)�

k(a1 + b1)
1 + a1b1

Z 1

0

ut(y; t)dy (1.5)

(ii) Fractional-order 8>>>>>><>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

; 1 < � < 2

ux(0; t) = �a2ut(0; t)

ux(1; t) = f2(t)

(1.6)
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where f2(t) is the boundary controller de�ned by

f2(t) =
kda2(a2 + b2)

1 + a2b2
u(0; t)� kdu(1; t)�

a2 + b2
1 + a2b2

ut(1; t)�
kd(a2 + b2)

1 + a2b2

Z 1

0

ut(y; t)dy

(1.7)

where b1and b2 are appropriate constants.

In this thesis, we are interested in controlled systems described by fractional partial

di¤erential equations. The input can be a function in a boundary condition, and the

output is the solution of the fractional partial di¤erential equation. The input is called

the control variable, or the control, and the output is called the state of the system.

And also, we shall consider the boundary control of fractional partial di¤eren-

tial equations and present the backstepping method to design boundary controllers

stabilizing the fractional PDE systems and show that these controllers work �irre-

spective� of the initial condition. The main feature of backstepping is to eliminate

the destabilizing e¤ects terms that appear throughout the domain while the control

is acting only from the boundary. We pursue a continuum equivalent of this approach

and build a change of variables, which involves a volterra integral operator that ab-

sorbs the destabilizing terms acting in the domain and allows the boundary control

to completely eliminate their e¤ect. One can pursue several di¤erent objectives in a

control design for PDEs and fractional PDEs systems. If the system is already stable,

a typical objective for feedback control would be to improve performance. Optimality

methods are natural in such situations. Another control objective is stabilization. The

objective of stabilization is to annihilate of the e¤ect of perturbation of the system
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state in order to steer the system state to a given desired trajectory. For this purpose

feedback laws are introduced, that allow to react to deviations of the system state

from the desired trajectory. Since the deviations are a priority unknown, the feedback

laws must be well de�ned for all possible system states.

This thesis is organized as follows: In chapter two, we present some basic de�n-

itions, lemmas, properties and notation needed later in this work. In chapter three,

�rst we present our contribution, speci�cally the boundary control of time fractional

di¤usion equation in two cases, namely constant coe¢ cient and space dependent coe¢ -

cient. Thereafter, we show that the boundary control stabilizes the unstable fractional

di¤usion equation and �nally give some examples to illustrate our contribution. In

chapter 4, we show that the boundary control can improve the stability of time frac-

tional wave equation. After that, in chapter �ve we present the di¤usion-wave time

and space fractional equation, which is represented by a hyperbolic wave equation

or a parabolic di¤usion equation, and show that the control is stabilizing. Finally,

we consider the optimal control of fractional di¤usion equation with space dependent

coe¢ cient and give some examples to illustrate our contributions to the problems

considered.
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Chapter 2

PRELIMINARIES

In this chapter, we give some notations and basic de�nitions of special functions such

as Gamma and Mittag-Le­ er function [8], [4]) used in this work. These notations and

functions are most frequently used in the fractional calculus and especially in solving

fractional di¤erential equations,

De�nition 1 [4] Let 
 = [a; b]; (0 � a < b � 1) be a �nite interval. We denote by

Lp (a; b) (1 5 p 51) the set of those Lebesgue real-valued measurable functions f on


 for which kfkp <1; where

kfkp =
�Z b

a

jf(x)jp dt
� 1

p

(1 5 p <1) (2.1)

and

kfkp = ess sup
a5x5b

jf(x)j ; if p = +1 (2.2)

Here ess sup jf(x)j is the essential supremum of jf(x)j :
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De�nition 2 [4] Let 
 = [a; b] ; (�1 < a < b < 1) be a �nite interval and let

AC [a; b] be the space of functions f which are absolutely continuous on [a; b] : It is

known that AC [a; b] coincides with the space of primitives of Lebesgue summable func-

tions:

f(:) 2 AC [a; b], f(x) = c+

Z x

a

�(t)dt; (�(:) 2 L(a; b)); (2.3)

and therefore an absolutely continuous function f(:) has a summable derivative f 0(x) =

�(x) almost everywhere on [a; b] : Thus (2.3) yields

�(x) = f 0(x) and c = f(a): (2.4)

Lemma 3 [4] The space ACn [a; b] consists of those and only those functions which

can be represented in the form

f(x) = (Ina �) (x) +
n�1X
k=0

ck(x� a)k; (2.5)

where � 2 L(a; b); ck (k = 0; 1; :::; n� 1) are arbitrary constants, and

(Ina �) (x) =
1

(n� 1)!

Z x

a

(x� t)n�1 �(t)dt: (2.6)

It follows from (2.5) that

�(t) = f (n) (t) ; ck =
f (k) (a)

k!
, k = 0; 1; :::; n� 1: (2.7)
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Let 
 = [a; b] (�1 < a < b <1) and m 2 N0 = f0; 1; :::g: We denote by Cm(
)

the space of functions f which are m times continuously di¤erentiable on 
 with the

norm

kfkCm =
mX
k=0



f (k)


C
=

mX
k=0

max
x2


��f (k)(x)�� ; m 2 N0: (2.8)

In particular, for m = 0; C0(
) � C(
) is the space of continuous functions f on 


with the norm

kfkC = maxx2

jf(x)j : (2.9)

2.1 Derivative of Integrals Depending on a Para-

meter

The following formula holds when the integrated function g(t; �) is integrable with

respect to the second variable, its derivative @
@t
g(t; �) is continuous and g(t; �) is de�ned

in a < � < t <1

d

dt

Z t

a

g(t; �)d� = g(t; t) +

Z t

a

@

@t
g(t; �)d� (2.10)

2.2 The Gamma Function

In integer-order calculus, the factorial function plays an important role because it is

one of the most fundamental combinatorial tools. The Gamma function has the same

importance in the fractional-order calculus and denoted by �(x):We will recall in this
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section some results on the gamma function which are important for other parts in

this work.

De�nition 4 [4] The gamma function, the Euler integral of the second kind �(:) is

de�ned by the integral

�(z) =

Z 1

0

e�ttz�1dt; Re z > 0: (2.11)

One of the most important properties is a generalization of the factorial function

n!; �(n) = (n� 1)! for n 2 N and satis�es the following functional equation,

�(x+ 1) = x�(x);

which can be easily proved using integration by parts. The Gamma function has been

extensively studied by many researchers [16].

2.3 The Mittag-Le­ er Function

The one parameter Mittag-Le­ er function is de�ned by

E�(z) :=
1X
k=0

zk

�(�k + 1)

It generalizes the exponential function. The two parameter function of the Mittag-

Le­ er type, introduced by R. P. Agarwal, plays a very important role also in fractional

14



calculus. It is de�ned by [4]

E�;�(z) :=

1X
k=0

zk

�(�k + �)
(� > 0; � > 0): (2.12)

For special choices of the values of the parameters �; � we obtain well-known classical

functions,

E1;1(z) =
1X
k=0

zk

�(k + 1)
=

1X
k=0

zk

k!
= ez

E1;2(z) =
1X
k=0

zk

�(k + 2)
=
1

z

1X
k=0

zk+1

(k + 1)!
=
ez � 1
z

E2;1(z
2) =

1X
k=0

z2k

�(2k + 1)
=

1X
k=0

z2k

(2k)!
= cosh(z)

E2;2(z
2) =

1X
k=0

z2k

�(2k + 2)
=
1

z

1X
k=0

z2k+1

(2k + 1)!
=
sinh(z)

z
(2.13)

As we will see later, classical derivatives of the Mittag-Le­ er function appear in

solutions of fractional DEs. Since the series (2.12) is uniformly convergent we may

di¤erentiate term by term and obtain

E
(m)
�;� (z) :=

1X
k=0

(k +m)!

k!

zk

�(�k + �m+ �)
(2.14)

2.4 The Laplace Transform

The Laplace transform is a very useful tool for solving linear ODEs with constant

coe¢ cients since it converts linear di¤erential equations to linear algebraic equations
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which can be solved easily. The inverse transform of the result, is usually the most

complicated part of this approach.

De�nition 5 The Laplace transform of a function '(:) of a real variable t 2 R+ =

(0;1) is de�ned by

(L')(s) = L['(:)](s) = e'(s) := Z 1

0

e�st'(t)dt; (s 2 C): (2.15)

The inverse Laplace transform is given for x 2 R+ by the formula

(L�1g)(x) = L�1[g(:)](x) :

=
1

2�i

Z c+i1

c�i1
esxg(s)ds; (c = <(s) > c0); (2.16)

where c0 lies in the right half plane of the absolute convergence of the Laplace inte-

gral (2.15). The direct and inverse Laplace transforms are inverse to each other for

�su¢ ciently good�functions ' and g : L�1L' = ' and LL�1g = g:

2.5 The Bessel and the Modi�ed Bessel Functions

Bessel functions are named after Friedrich Wilhelm Bessel (1784 - 1846).

De�nition 6 [13], [14] The second order di¤erential equation

x2y00 + xy0 + (x2 � �2)y = 0; for � 2 C; (2.17)
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is called the Bessel equation and its solution is given by

J�(x) =
1X
k=0

(�1)k(x
2
)2k+�

k!(� + k)!
; (2.18)

whereas the second order di¤erential equation

x2y00 + xy0 � (x2 + �2)y = 0; for � 2 C; (2.19)

is called the modi�ed Bessel equation with solution given by

I�(x) =
1X
k=0

(x
2
)2k+�

k!(� + k)!
: (2.20)

Solutions to these di¤erential equations are called Bessel and modi�ed Bessel functions

respectively.

2.6 Fractional Integration and di¤erentiation

If f is a continuous function on the real line, then we can form the de�nite integral

from a to t

I1f(t) :=

Z t

a

f(�)d� 1:

Repeating this process gives

I2f(t) :=

Z t

a

d� 1

Z �1

a

f(� 2)d� 2;
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and this can be extended arbitrarily to

Inf(t) :=

Z t

a

Z �1

a

:::

Z �n�1

a

f(�)d�n�1:::d� 2d� 1

The Cauchy�s formula for repeated integration [10], [4] is

Inf(t) : =

Z t

a

Z �1

a

:::

Z �n�1

a

f(�)d� :::d� 2d� 1

=
1

(n� 1)!

Z t

a

(t� �)n�1f(x)d� ; (2.21)

where n 2 N, a; t 2 R; t > a: If n is substituted with a positive real number (� > 0)

and (n�1)! by its generalization �(�), a formula for fractional integration is obtained

as follows

De�nition 7 [4], [5] Let 
 = [a; b] (�1 < a < b <1) be a �nite real interval. The

Riemann-Liouville fractional integrals I�a+f and I
�
b�f of order � > 0) is de�ned by

�
I�a+f

�
(x) =

1

�(�)

Z x

a

(x� s)��1f(s)ds; x > a; (2.22)

and �
I�b�f

�
(x) =

1

�(�)

Z b

x

(s� x)��1f(s)ds; x < b; (2.23)

respectively. Here � is the Gamma function. These integrals are called the right-sided

and the left-sided fractional integrals. ([17], [4]).

There are several types of fractional derivative, the most popular ones are the

Riemann-Liouville and the Caputo derivatives ([17], [4]).
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2.6.1 The Riemann-Liouville Fractional Di¤erential Operator

De�nition 8 [4], [5] The Riemann-Liouville fractional derivatives
�
D�
a+y
�
and

�
D�
b�y
�

of order � � 0; n� 1 � � < n; n = [R(�)] + 1 are de�ned by

�
D�
a+y
�
(x) =

�
d

dx

�n
(In��a+ y)(x) (2.24)

=
1

�(n� �)

�
d

dx

�n Z x

a

(x� s)n���1y(s)ds; x > a

and

�
D�
b�y
�
(x) =

�
� d

dx

�n
(In��b� y)(x) (2.25)

=
1

�(n� �)

�
� d

dx

�n Z b

x

(s� x)n���1y(s)ds; x < b

respectively, where [R(�)] means the integer parts of R(�): In particular, when � =

n 2 N0 = f0; 1; :::g, then

�
D0
a+y
�
(x)=

�
D0
b�y
�
(x) = y(x); (2.26)

�
D�
a+y
�
(x)= y(n) (x) and

�
D�
b�y
�
(x) = (�1)n y(n) (x) (n 2 N) (2.27)

where y(n) (x) is the usual derivative of y (x) of order n:
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2.6.2 The Caputo Fractional Di¤erential Operator

De�nition 9 [4], [5] Let [a; b] be a �nite interval of the real line R, and let

D�
a+ [y(s)] (x) �

�
D�
a+y
�
(x) and D�

b� [y(s)] (x) �
�
D�
b�y
�
(x)

be the Riemann-Liouville fractional derivatives of order � 2 C (R(�) = 0) de�ned by

(2.22) and (2.23) respectively. The fractional derivatives

�
CD�

a+y
�
(x) and

�
CD�

b�y
�
(x)

of order � 2 C (R(�) = 0) on [a; b] are de�ned via the above Riemann-Liouville

fractional derivatives by

�
CD�

a+y
�
(x) =

 
D�
a+

"
y(s)�

n�1X
k=0

y(k) (a)

k!
(s� a)k

#!
(x) (2.28)

and �
CD�

b�y
�
(x) =

 
D�
b�

"
y(s)�

n�1X
k=0

y(k) (b)

k!
(b� s)k

#!
(x) (2.29)

respectively, where

n = [R(�)] + 1 for � =2 N0; n = � for � 2 N0: (2.30)

These derivatives are called right-sided and left-sided Caputo fractional derivatives of

order �
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Lemma 10 [4], [5] Let R(�) > 0 and let n be given by (2.30) . If y(:) 2 ACn [a; b]

or y(:) 2 Cn [a; b] ; then

�
I�a+

CD�
a+y
�
(x) = y(x)�

n�1X
k=0

y(k) (a)

k!
(x� a)k (2.31)

and �
I�b�

CD�
b�y
�
(x) = y(x)�

n�1X
k=0

(�1)k y(k) (b)
k!

(b� x)k (2.32)

In particular, if 0 < R(�) 5 1 and y(:) 2 AC [a; b] or y(:) 2 C [a; b] ; then

�
I�a+

CD�
a+y
�
(x) = y(x)�y (a) ; and

�
I�b�

CD�
b�y
�
(x) = y(x)�y (b) (2.33)

De�nition 11 [4] Let Re(�) 2 (m � 1;m): The right-sided and left-sided Riemann-

Liouville derivatives of order � are de�ned as

�
D�
a+f
�
(x) = Dm

�
Im��a+ f

�
(x): x > a; (2.34)�

D�
b�f
�
(x) = (�D)m

�
Im��b� f

�
(x): x < b:

Analogous formulas yield the left- and right-sided Caputo derivatives of order � :

�
CD�

a+f
�
(x) = (Im��a+ Dmf)(x): x > a; (2.35)�

CD�
b�f
�
(x) = Im��b� (�Dmf)(x): x < b:

This operator is introduced in Caputo [12].
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Corollary 12 [4] The relation between Riemann-Liouville fractional derivative and

Caputo fractional derivative are given by (see Goren�o and Mainardi [17])

CD�f(x) = D�f(x)�
n�1X
k=0

xk��

�(k + 1� �)f
(k)(0)

CD�f(x) = D�

 
f(x)�

n�1X
k=0

xk

k!
f (k)(0)

!
(2.36)

Lemma 13 Let n � 1 < � < n; n 2 N; �; � 2 C and the functions f(:) and g(:) be

such that both CD�f(:) and CD�g(:) exist, the Caputo fractional derivative is a linear

operator, i.e.,

CD�(�f(t) + g(t)) = �CD�f(t) + CD�g(t): (2.37)

Similarly, the Riemann-Liouville operator satis�es

D�(�f(t) + g(t)) = �D�f(t) +D�g(t) (2.38)

2.6.3 Examples of Fractional Derivatives

In this subsection we shall �nd derivatives of some elementary functions, e.g., the con-

stant, the power and the exponential function, as well as the sine and cosine function.

The Caputo fractional derivatives of these functions are studied and compared with

the Riemann-Liouvill fractional derivative [4], [18], [5].
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The Constant Function

Let f(:) be a constant function i.e f(x) = c; then the Riemann-Liouville fractional

derivative of f(:) is given by

D�[f(x)] =D�[c] =
c

�(1� �)x
�� 6= 0:

whereas Caputo fractional derivative is

CD�[f(x)] =CD�[c] =
1

�(n� �)

Z x

a

(x� s)n���1c(n)ds = 0 (2.39)

The Power Function

The Riemann-Liouville fractional and Caputo fractional derivatives of the power func-

tion satisfy

D�tp =
�(p+ 1)

�(p� �+ 1)t
p��; n� 1 < � < n; p > �1; p 2 R: (2.40)

CD�tp =

8>><>>:
�(p+1)

�(p��+1)t
p�� ; n� 1 < � < n; p > n� 1; p 2 R;

0 , n� 1 < � < n; p � n� 1; p 2 N;
(2.41)

respectively [4].
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The Exponential Function

We shall consider the exponential function, let � 2 R, n� 1 < � < n; n 2 N , � 2 C.

Then the Caputo fractional derivative of the exponential function has the form

CDe�t =

1X
k=0

�k+ntk+n��

�(k + 1 + n� �) = �
ntn��E1;n��+1(�t); (2.42)

[4] where E�;�(z) is the two-parameter function of Mittag-Le¤er type.

The Laplace Transform of Basic Fractional Operator

Suppose that p > 0 and F (s) is the Laplace transform of f(t), then the following

statements holds [4]:

� The Laplace transform of the fractional integral of order �; n � 1 � � < n is

given by

LfJ�f(t); sg = s��F (s): (2.43)

� The Laplace transform of the Riemann-Liouville fractional di¤erential operator

of order � is given by

LfD�f(t); sg = s�F (s)�
n�1X
k=0

sk[D��k�1f(t)]t=0

= s�F (s)�
n�1X
k=0

sn�k�1[DkJn��f(t)]t=0; (2.44)

� The Laplace transform of the Caputo fractional di¤erential operator of order �
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is given by

LfCD�f(t); sg = s�F (s)�
n�1X
k=0

s��k�1f (k)(0); n� 1 � � < n: (2.45)

� Let �; �; � 2 R ,�; � > 0; p 2 N, then the Laplace transform of the two-

parameter function of Mittag-Le­ er type is given by

Lft�p+��1E(p)�;�(��t�); sg =
p!s���

(s� � �)p+1 ; Re(s) > j�j
1=�: (2.46)

2.7 Fractional Ordinary Di¤erential Equations

In this section fractional initial value problems are presented. These are fractional or-

dinary di¤erential equations with classical initial conditions [4], [5]. Using the Laplace

transform we shall obtain the general solution for a linear fractional ordinary di¤er-

ential equation with constant coe¢ cients.

Theorem 14 Consider the linear initial value problem

8>><>>:
CD

(�)
t y(t)� �y(t) = 0; t > 0; n� 1 < � < n;

y(k)(0) = bk; bk 2 R; k = 0; :::; n� 1:
(2.47)

Then the solution of problem (2.47) is given by

y(t) =

n�1X
k=0

bkt
kE�;k+1(�t�); (2.48)
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where E�;�(z) is the two-parameter function of Mittag-Le­ er type.

Proof. [4], Applying Laplace transform to the fractional di¤erential equation in

(2.47), it becomes

s�Y (s)�
n�1X
k=0

s��k�1y(k)(0)� �Y (s) = 0; (2.49)

where Y (s) is the Laplace transform of y(t) and L f��y(t); sg = ��Y (s). We solve

equation (2.49) with respect to Y (s) as follows

Y (s) =
n�1X
k=0

s��k�1

s� � �y
(k)(0): (2.50)

Substituting the initial conditions gives

Y (s) =
n�1X
k=0

s��k�1

s� � �bk:

Using Laplace transform of the two-parameter function of Mittag-Le­ er types (2.46),

it follows

Y (s) =

n�1X
k=0

s��k�1

s� � �bk =
n�1X
k=0

L
�
tkE�;k+1(�t

�); s
	
bk = L

(
n�1X
k=0

bkt
kE�;k+1(�t

�); s

)
:

(2.51)

That is the inverse Laplace transform, y(t) is

y(t) = y(t; �) =

n�1X
k=0

bkt
kE�;k+1(�t

�): (2.52)
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It is clear that the form of the solution is given by the properties of the Mittag�

Le­ er function [20]. Figure 2-1 and Figure 2-2 show the graphs of the function for

di¤erent values of � and � < 0. As we can see, the behavior corresponds to a standard

�rst-order decay for � 2 (0; 1], is exponential for � = 1, becomes a damped oscillation

for � 2 (1; 2], and oscillates for � = 2. Figure 2-3 shows a growth toward in�nity for

di¤erent values of � and � > 0;

Figure 2-1: Mittag-Le­ er Function, 0 < � � 1; � < 0
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Figure 2-2: Mittag-Le­ er Function, 1 < � � 2; � < 0

Figure 2-3: Mittag-Le­ er Function, 0 < � � 2; � > 0
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2.8 Regular Sturm-Liouville Problems

2.8.1 Integer Order Case

Consider the following Regular Sturm-Liouville problem [67],

8>><>>:
L[y] = 1

w(x)

�
d
dx

�
p(x) d

dx
y(x)

�
� q(x)y(x)

	
= ��y(x)

a1y(a) + a2p(a)y
0 = 0; b1y(b) + b2p(b)y

0 = 0;

where p > 0; w > 0; and p, q; w are continuous functions on interval [a; b] and

a21+a
2
2 6= 0 and b21+b22 6= 0: � is called an eigenvalue and the corresponding non-trivial

solutions y are called eigenfunctions. Below are some properties of the a regular SL

problems

1. The eigenvalues are real

2. The eigenfunctions of corresponding to distinct eigenvalues are orthogonal with

respect to weight function w on [a; b]

3. The eigenvalues of a regular SL problems are simple. Thus an eigenfunction

corresponding to an eigenvalue is unique up to a constant multiple.

2.8.2 Fractional Order Case

Theorem 15 Assume that ( 1
2
< � < 1 and p; q; w� are given functions such that:

p is of class C1 and p(x) > 0; q; w� are continuous), the fractional Sturm�Liouville
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Problem (FSLP)

[ CD
(�)
b� p(x)

CD
(�)
a+ + q(x)]y(x) = �w�(x)y(x)

y(a) = y(b) = 0

has an in�nite increasing sequence of eigenvalues �(1),�(2), ...,�(n); ::: and to each

eigenvalue �(n) there corresponds an eigenfunction y(n) which is unique up to a constant

factor. Furthermore, eigenfunctions y(n) form an orthogonal set of solutions [62]

2.9 Stability of Fractional Di¤erential Equation

Stability analysis is the most important problem when studying fractional di¤erential

equations. Recently, many stability results for fractional-order systems were derived,

see, for instance, [21], [61]. These stability results are mainly concerned with the

linear fractional di¤erential system, a su¢ cient and necessary condition on asymptotic

stability of linear fractional di¤erential system with order 0 < � < 1 was �rst given.

Then some other research on the stability of fractional-order systems appeared. In

1996, Matignon [21], studied stability of the following fractional di¤erential system

involving Caputo derivative

CD�
0 y(t) = Ay(t); 0 < � � 1; y 2 R (2.53)
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with initial value y(0) = y0 and A 2 Rn�n: The stability of the equilibrium of system

(2.53) was �rst de�ned and established by Matignon as follows.

De�nition 16 The autonomous system (2.53) is said to be: (a) stable if and only if

for any y0, there exists � > 0 such that ky(t)k � � for t � 0: (b) asymptotically stable

if and only if limt!1ky(t)k = 0.

Theorem 17 [21], The autonomous system (2.53) is (a) asymptotically stable i¤

jarg(spec(A))j > ��
2
: In this case, the components of the state decay towards 0 like

t��: (b) stable i¤ either its asymptotically stable, or those critical eigenvalues which

satisfy jarg(spec(A))j = ��
2
have geometric multiplicity one. (Here arg(spec(A)) de-

notes the arguments of the eigenvalues of the square matrix A).

2.10 Eigenfunction Expansions and Exact Solution

In this subsection we shall use separation of variables to �nd the exact solution of a

simple fractional PDE system.

Consider the fractional di¤usion equation which includes a reaction term with

boundary and initial conditions,

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ �0u(x; t); 0 < x < 1; t > 0

u(x; 0) = u0(x); 0 � x � 1

u(0; t) = 0; u(1; t) = 0; t > 0:

(2.54)

where 0 < � � 1; �0 > 0 and u0 is a continuous function over [0; 1];
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Let us �nd the solution to this fractional initial boundary value problem and

determine for which values of the parameter �0 this system is unstable. We assume

that the solution u(x; t) can be written as a product of a function of the space variable

and a function of the time variable.

u(x; t) = X(x)T (t): (2.55)

Substitution into fractional PDE, gives,

X(x)T (�)(t) = X 00(x)T (t) + �0X(x)T (t) (2.56)

Division by X(x)T (t) gives,

T (�)(t)

T (t)
=
X 00(x) + �0X(x)

X(x)
(2.57)

In the above equation the left hand side depends only on time and the right hand

side depends on the spatial variable, thus, the equality can hold only if both sides are

constant, that is

T (�)(t)

T (t)
=
X 00(x) + �0X(x)

X(x)
= � (constant)

Hence,

T (�)(t) = �T (t); 0 < � � 1; t > 0 (2.58)
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and 8>><>>:
X

00
(x) + (�0 � �)X(x) = 0; 0 < x < 1

X(0) = X(1) = 0

(2.59)

That is, we are dealing with a regular Sturm-Liouville problem (2.59) which has the

simple eigenvalues �0 � �n = (n�)2; n � 1 with corresponding eigenfunctions

Xn(x) = An sin(n�x); n � 1; An 6= 0: (2.60)

Now,

Tn(t) = anE�;1(�nt
�)

where an are constant,

Superposition of the product solutions gives,

u(x; t) =
X
n�1
CnE�;1(�nt

�) sin(n�x)

that is,

u(x; t) =
X
n�1
CnE�;1((�0 � (n�)2)t�) sin(n�x) (2.61)

where Cn are the Fourier coe¢ cients of u(x; 0) = u0(x) that is

Cn =
1

2

Z 1

0

u0(x) sin(n�x)dx (2.62)
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Thus,

u(x; t) =
1

2
X
n=1

CnE�;1((�0 � (n�)2)t�) sin(n�x); 0 < x < 1 (2.63)

Let us look at the structure of the solution. It consists of the following elements:

� eigenvalues: �0 � �2n2

� eigenfunctions: sin(�nx)

� e¤ect of initial conditions:
R 1
0
u0(x) sin(n�x)dx

The largest eigenvalue, �0 � �2(n = 1); dictates the rate of growth or decay of

the solution if u0 is not orthogonal to sin �x ! If u0 is orthogonal to sin �x then it is

�0�(2�)2; (n = 2) which will dictate the rate of growth or decay. Therefore in the �rst

case we impose �0 < �2 for stability whereas in the second case we need �0 < (2�)2

for stability and in general if u0 is orthogonal to {sin k�x; k = 1; 2; 3; :::N � 1} and

not orthogonal to sin(N�x) then the system is stable if �0 < (N�)2.

2.11 Terminology

In this work we shall be using the following function spaces

Name Description Norm

C(n)[a; b] f; f
0
; ::f (n) continuous functions on (a; b) kfk1 = maxx jf(x)j

L1(a; b) Integrable function:
R
jf(x)j dx < +1 kfkL1 =

R
jf(x)j dx

L2(a; b) Square integrable function:
R
jf(x)j2 dx < +1 kfkL2 = [

R
jf(x)j2 dx] 12

H1(a; b) Sobolev space: f 2 L2 and f 0 2 L2 kfk2H1 = kf(x)k2L2 +


f 0(x)

2

L2

and in general
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Hm(a; b) = ff jf; f 0 ; ::::; f (m) 2 L2(a; b)g with the norm

kfk2Hm =
Pm

j=0



f (j)(x)

2
L2
= kfk2Hm�1 +




f (m)


2
L2
=


f 0

2

Hm�1 + kfk2L2 :

The inner product in L2(a; b) and H1(a; b) are de�ned as

hf; gi =
Z b

a

f(x)�g(x)dx

and

hf; gi =
Z b

a

[f(x)�g(x) + f
0
(x)

_

g
0
(x)]dx

respectively.

2.12 Existence and Uniqueness

The existence and uniqueness of solutions to initial and boundary-value problems for

fractional di¤erential equations has been studied by many authors; see for example

[55], [57], [58], [56]. Some of the existence and uniqueness results have been obtained

using the well-known Lax-Milgram theorem, and �xed point theorems [60], [59]. Many

important results on the existence of solutions of various classes of fractional di¤eren-

tial equations were given by Oldham and Spainer [10], Kilbas and Marichev [5], Miller

and Ross [9], Podlubny [4] etc.

There is a need to improve or to adapt the existing methods and techniques from

the classical case to the fractional one. At the �rst sight this process seems simple and

direct but in fact this is a complicated process and it requires much attention mainly

because the fractional calculus requires some additional conditions in order to be well
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de�ned.

2.13 Volterra Integral Equations

A linear Volterra integral equation (VIE) of the second kind is a functional equation

of the form

u(x) = g(x) +

Z x

0

k(x; y)u(y)dy; x 2 I

Where I := [0; b]; D = f(x; y) : 0 � y � x � bg: Here, g(:) and k(:; :) are given

functions, and u(:) is an unknown function. The function k(:; :) is called the kernel of

the VIE. A linear VIE of the �rst kind is given by

g(x) =

Z x

0

k(x; y)u(y)dy; x 2 I

Here, the unknown function occurs only under the integral sign. In 1896 Vito Volterra

published the �rst of his fundamental papers on integral equations. It contains the

following fundamental result [65], [66]

Theorem 18 Assume that kernel k(:; :) of the linear Volterra integral equation

u(x) = g(x) +

Z x

0

k(x; y)u(y)dy; x 2 [0; b]

is continuous on D := f(x; y) : 0 � y � x � bg. Then for any function g(:) that

is continuous on [0; b] (that is, g 2 C ([0; b])), the VIE possesses a unique solution
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u 2 C ([0; b]). This solution can be written in the form

u(x) = g(x) +

Z x

0

l(x; y)g(y)dy; x 2 I;

for some l 2 C(D). The function l = l(x; y) is called the resolvent kernel of the given

kernel k(x; y)

If we de�ne the integral operator L : C[0; b]! C[0; b] by

(Lg)(x) :=
Z x

0

l(x; y)g(y)dy; x 2 [0; b]

and if we write the VIE in operator form,

(I �K) = g ) u = (I + L)g

By last Theorem, the inverse operator (I �K)�1 always exists, and hence (by unique-

ness of l(x; y))

(I �K)�1 = I + L
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Chapter 3

The Time-Fractional Di¤usion

Equation

3.1 Introduction

In this chapter we present the backstepping method to design Dirichlet boundary

controllers stabilizing the fractional PDE systems and show that these controllers work

�irrespective�of the initial condition. We shall also deal only with boundary control

of fractional di¤erential equations and the backstepping approach is particularly well

suited for boundary control. The main feature of backstepping is to eliminate the

destabilizing e¤ects terms that appear throughout the domain while the control is

acting only from the boundary and that is at �rst a highly surprising result. We

pursue a continuum equivalent of this approach and build a change of variables, which

involves a volterra integral operator that absorbs the destabilizing terms acting in the
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domain and allows the boundary control to completely eliminate their e¤ect. One

can pursue several di¤erent objectives in a control design for fractional PDE systems.

If the system is already stable, a typical objective for feedback control would be to

improve performance. Optimality methods are natural in such situations. Another

control objective is stabilization.

3.2 Boundary Control of Time-Fractional Di¤usion

Equation with Constant Coe¢ cient

In this section we shall apply the Dirichlet boundary control on one end and insulating

the other. We also discuss two cases, the uncontrolled system and the boundary control

applied to the one-dimensional fractional di¤usion equations with Caputo fractional

derivatives with respect to time. We shall consider the following fractional reaction�

di¤usion system with a destabilizing linear term on the right-hand side and Dirichlet

boundary conditions

8>>>>>>>>>><>>>>>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ �0u(x; t), 0 < � � 1; 0 < x < 1; t > 0

u(x; 0) = u0(x); 0 � x � 1

u(0; t) = 0; t > 0

u(1; t) = U(t); t > 0

(3.1)

where � is the parameter describing the order of the time fractional derivative and

�0 > 0. U(t) is the boundary control at the free end of the boundary, u0(x) is the
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initial conditions of the displacement. When � = 1, the problem (3.1) is reduced to

the classical integer order unstable heat equation for positive and large values of �0:

3.2.1 The Free Time-Fractional Di¤usion Equation (Uncon-

trolled System)

In this subsection we shall consider the uncontrolled system, where the boundary

control is identically zero, U(t) � 0;

8>>>>>><>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ �0u(x; t), 0 < � � 1; � > 0; 0 � x � 1; t > 0

u(x; 0) = u0(x); 0 � x � 1

u(0; t) = 0; u(1; t) = 0; t > 0:

(3.2)

The general solution of (3.2) can be obtained by separation of variables as follows: let

u(x; t) = X(x)T (t) then we have

X(x)T (�)(t) = X
00
(x)T (t) + �0X(x)T (t) (3.3)

from which we get

T
(�)

(t)

T (t)
=
X

00
(x) + �0X(x)

X(x)
= �� (constant). (3.4)

Hence, T must satis�es the fractional ordinary di¤erential equation

T (�)(t) = ��T (t); t > 0 (3.5)
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and X satis�es the regular Sturm-Liouville problem

8>><>>:
�X 00

(x)� �0X(x) = �X(x); 0 < x < 1

X(0) = X(1) = 0

(3.6)

with simple eigenvalues are �k = (k�)2 � �0; k � 1 and corresponding normalized

eigenfunctions Xk(x); k � 1;
�
kXkk2 =

R 1
0
jXk(x)j2 dx = 1

�

Xk(x) =
p
2 sin(k�x); k � 1: (3.7)

For each k � 1 we have

Tk(t) = dkE�(��kt�); k � 1 (3.8)

where E�(z) is the Mittag-Le­ er function, and dk are constants. Superposition of the

product solutions gives,

u(x; t) =
X
k�1

ckE�(��kt�)Xk(x) (3.9)

where ck are the Fourier coe¢ cients of u(x; 0) = u0(x) that is

ck = 2

Z 1

0

u0(x)Xk(x)dx: (3.10)

Therefore, we have shown that the solution to the uncontrolled system is

u(x; t) = 2

Z 1

0

g(x; �; t)u0(�)d� (3.11)
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where

g(x; �; t) =
X
k�1

E�(��kt�)Xk(x)Xk(�): (3.12)

We can see that a negative eigenvalues �k will make the solution of the uncontrolled

system increase without bounds if the initial data u0 is not orthogonal to the corre-

sponding eigenfunction Xk0. Hence, it follows that,

Theorem 19 Let {�k; Xk} be the sequence of eigenvalues and associated (normalized)

eigenfunctions of the Sturm-Liouville problem( 3.6 ) if �0 > (k0�)2 gives �k < 0; for

some integer k0then the uncontrolled system ( 3.2) is unstable if the initial data u0 is

not orthogonal to Xk0

3.2.2 Boundary Control of Time-Fractional Di¤usion Equa-

tion (Controlled System)

In controlled system, one-end of the rod is insulated where as the other end is regulated

according to the measurement of averaged temperature over the whole rod. Physically,

if the destabilizing heat is generated inside the rod, then we cool that controlled end

to avoid over heating. In this subsection we shall apply the method of transmutation

or transformation operator or back-stepping method. The objective of this method

is to eliminate all unwanted terms from the equation. In other words, we want the

closed-loop system to have the form of the target system. We shall transform the

original system (3.1) into a target system which has some desired properties.

De�nition 20 Let L0 and L1 be operators. The operator T is a transmutation for
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the pair of operators (L0; L1) if

TL0 = L1T

and T is a bounded, invertible with bounded inverse

Theorem 21 Let L0 = @2

@x2
and L1 = @2

@x2
+ �0 where �0 is a given constant. Let

K : H2(0; 1)! H2(0; 1) be the operator de�ned by,

(K)u(x; t) =
Z x

0

k(x; y)u(y; t)dy (3.13)

where k solves the Goursat problem,

8>>>>>>>>>><>>>>>>>>>>:

kxx(x; y)� kyy(x; y) = �0k(x; y); 0 � y � x � 1

k(x; x) = ��0
2
x; 0 � x � 1

k(x; 0) = 0; 0 � x � 1

k(0; 0) = 0

(3.14)

Then the operator I�K is a transmutation operator for the pair of operators fL0; L1g:

In fact,

(I �K)�1 = I + L where L : H2(0; 1)! H2(0; 1);

is de�ned by

(Lw)(x; t) =
Z x

0

l(x; y)w(y; t)dy (3.15)
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where l solves the Goursat problem,

8>>>>>>>>>><>>>>>>>>>>:

lxx(x; y)� lyy(x; y) = ��0l(x; y); 0 � y � x � 1

l(x; x) = ��0
2
x; 0 � x � 1

l(x; 0) = 0; 0 � x � 1

l(0; 0) = 0

(3.16)

Proof: it has been proved for integer derivative by A.Smyshlyaev and M. Krstic

[57], [40]

Lemma 22 [57]: The problems (3.14), (3.16) have unique solutions which are twice

continuously di¤erentiable in 0 � y � x � 1 and de�ned respectively by

k(x; y) = ��0y
I1
p
�0(x2 � y2)p
�0(x2 � y2)

and l(x; y) = ��0y
J1
p
�0(x2 � y2)p
�0(x2 � y2)

where I1(z) is a �rst-order modi�ed Bessel function of the �rst kind (2.20) and

J1(iz) = �iI1(z)

We shall transform the system (3.1), by applying I � K to both sides of the

fractional PDE in (3.1). we get,

(I �K)@
�u(x; t)

@t�
= (I �K)[( @

2

@x2
+ �0)u(x; t)]; 0 < � � 1; 0 < x < 1; t > 0
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interchanging I �K and @�

@t�
we obtain,

@�

@t�
(I �K)u = (I �K)( @2

@x2
+ �)u

@�

@t�
(I �K)u = (I �K)L1u

@�

@t�
(I �K)u = L0(I �K)u

@�w(x;t)
@t�

= @2w(x;t)
@x2

As for the boundary and initial conditions, we have

(I �K)u(0; t) = w(0; t) = 0 and (I �K)u(x; 0) = (I �K)u0(x) = w0(x)

Taking the other boundary condition to be w(1; t) = 0; leads to the target system for

w = (I �K)u;

8>>>>>><>>>>>>:

@�w(x;t)
@t�

= @2w(x;t)
@t2

, 0 < � � 1; 0 < x < 1; t > 0

w(0; t) = 0; w(1; t) = 0; t > 0

w(x; 0) = w0(x), 0 < x < 1

(3.17)

The boundary control in this case is obtained as follows. Since u(x; t) = (I+L)w(x; t):

It follows, w(1; t) = 0 and u(1; t) = U(t) that is,

U(t) =

Z 1

0

k(1; y)u(y; t)dy
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Returning to the target system (3.17) separation of variables w(x; t) = X(x)T (t) leads

to the solution

w(x; t) =
X
k�1

ckE�(�(k�)2)t�)Xk(x) (3.18)

where ck are the Fourier coe¢ cients of w(x; 0) = w0(x) given by

ck =

Z 1

0

w0(x) sin(k�x)dx:

Replacing ck by their values in (3.18), we obtain the solution of the target system as

w(x; t) =

Z 1

0

g(x; �; t)w0(�)d� (3.19)

where

g(x; �; t) =
X
k�1

E�(�(k�)2t�) sin(k��) sin(k�x): (3.20)

The decay rate of the solution to zero is dictated by the �rst eigenvalues �k0 = (k0�)
2.

Provided the initial data w0 is not orthogonal to the corresponding eigenfunction Xk0 :

Hence, we have the following,

Theorem 23 If �k0 = (k0�)
2; a boundary control which stabilizes (3.1) is given by

U(t) = �
Z 1

0

�0y
I1
p
�0(12 � y2)p
�0(12 � y2)

u(y; t)dy

where

u(x; t) = w(x; t)� �0
Z x

0

y
J1
p
�0(x2 � y2)p
�0(x2 � y2)

w(x; t)dy:
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and w(x; t) is the solution of (3.17)

Remark 1 Note that the above choice for target system is good for several reasons:

�rst, it�s simple, well studied equation, which allows us to avoid any issues with well-

posedness of the closed-loop system. Second, this equation is explicitly solvable, so that

the exact closed loop eigenvalues are known and explicit closed-loop solutions can be

obtained.

3.3 Boundary Control of Time-Fractional Di¤usion

Equation with Space Dependent Coe¢ cient

In this section we shall consider the following one-dimensional fractional di¤usion

equations with Caputo fractional derivative with respect to time.

8>>>>>>>>>><>>>>>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ q(x)u(x; t), 0 < � � 1;� > 0; 0 � x � 1; t > 0

u(x; 0) = u0(x); 0 � x � 1

u(0; t) = 0; t > 0

u(1; t) = U(t); t > 0

(3.21)

where � is the parameter describing the order of the time fractional derivative, u(x; t)

is the displacement of the (x; t) 2 [0; 1]� [0;1); U(t) is the boundary control at the

free end of the boundary, u0(:) 2 C[0; 1] is the initial condition of the displacement

and q 2 C1[0; 1].
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3.3.1 The Free Time-Fractional Di¤usion Equation (Uncon-

trolled System)

In this subsection we shall consider the uncontrolled system, U(t) � 0;

8>>>>>><>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ q(x)u(x; t), 0 < � � 1; 0 < x < 1; t > 0

u(x; 0) = u0(x); 0 � x � 1

u(0; t) = 0; u(1; t) = 0; t > 0

(3.22)

Separation of variables leads to the solution of the problem (3.22) as

u(x; t) = 2

Z 1

0

g(x; �; t)u0(�)d� (3.23)

where

g(x; �; t) =
X
k�1

E�(��kt�)Xk(x)Xk(�): (3.24)

We can see that a negative eigenvalues �k will make the solution of the uncontrolled

system increase without bounds if the initial data u0 is not orthogonal to the corre-

sponding eigenfunction Xk0 .

Theorem 24 Let {�k; Xk} be the sequence of eigenvalues and and associated (nor-

malized) eigenfunctions of the Sturm-Liouville problem if �k < 0; for some integer

k0then the uncontrolled system ( 3.22) is unstable if the initial data u0 is not orthog-

onal to Xk0
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3.3.2 Boundary Control of Time-Fractional Di¤usion Equa-

tion (Controlled System)

In this subsection we shall again apply the method of transmutation operator. One of

the main key of the transmutation (back-stepping) method is to transform a di¢ cult

system with nonhomogeneous boundary conditions to a simpler one with homogeneous

boundary condition to which seperation of variables can be applied. We shall trans-

form the original system (3.21) into a target system (3.30) which has some desired

properties and then summarize the results in the following theorem

Theorem 25 Let L0 = @2

@x2
+ q(x) and L1 = @2

@x2
+ �0; where q 2 C1 ([0; 1]) and �0 is

a given constant.

Let

K : H2(0; 1)! H2(0; 1) (3.25)

be the operator de�ned by,

(K)u(x; t) =
Z x

0

k(x; y)u(y; t)dy (3.26)

where k solves the Goursat problem,

8>>>>>>>>>><>>>>>>>>>>:

kxx(x; y)� kyy(x; y) = [q(x)� �0]k(x; y); 0 � y � x � 2

d
dx
k(x; x) = �1

2
[q(x)� �0] ; 0 � x � 1

k(x; 0) = 0; 0 � x � 1

k(0; 0) = 0

(3.27)
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Then the operator I�K is a transmutation operator for the pair of operators fL0; L1g:

In fact

(I �K)�1 = I + L where L : H2(0; 1)! H2(0; 1);

is de�ned by

(Lw)(x; t) =
Z x

0

l(x; y)w(y; t)dy (3.28)

where l solves the Goursat problem,

8>>>>>>>>>><>>>>>>>>>>:

lxx(x; y)� lyy(x; y) = �[q(x)� �0]l(x; y); 0 � y � x � 1

d
dx
l(x; x) = �1

2
[q(x)� �0] ; 0 � x � 1

l(x; 0) = 0; 0 � x � 1

l(0; 0) = 0

(3.29)

The Goursat problems (3.27) and (3.29), have been shown to have unique solution

that are twice continuously di¤erentiable in 0 � y � x � 1 provided q 2 C1 ([0; 1]) :

The theorem has been proved in the case of the boundary control of integer order

di¤usion equation in [37]

Remark 2 [37] The kernels PDEs (3.27), (3.29) can be shown to be well posed but,

unlike the gain kernel equations for plants we considered before, it cannot be solved

in closed form. However, one can solve it either symbolically, using the recursive

procedure similar to the one given in (3.13) ,(3.15) or numerically with �nite di¤erence

schemes.
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We shall transform the system (3.21), by applying I �K to both sides of the PDE

in (3.21),

(I �K)@
�u(x; t)

@t�
= (I �K)

��
@2

@x2
+ q

�
u(x; t)

�
;

interchanging I �K and @�=@t� we obtain,

@�

@t�
(I �K)u = (I �K)L0u

@�

@t�
(I �K)u = L1(I �K)u

@�w(x;t)
@t�

= @2w(x;t)
@x2

+ �0w(x; t)

As for the boundary conditions, we proceed as follows. Since, u = (I + L)w and

w = (I �K)u we have

(I �K)u(x; 0) = w0(x) and (I �K)u(0; t) = w(0; t) = 0

Taking the other boundary condition to be w(1; t) = 0; we obtain the target system

w = (I �K)u;

8>>>>>><>>>>>>:

@�w(x;t)
@t�

= @2w(x;t)
@t2

+ �0w(x; t), 0 < x < 1; t > 0

w(0; t) = 0; w(1; t) = 0; t > 0

w(x; 0) = w0(x), 0 < x < 1

(3.30)

where w0(x) is a continuous function. The boundary control in this case is

U(t) =

Z 1

0

l(1; y)w(y; t)dy (3.31)
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Returning to the target system (3.30). Separation of variables w(x; t) = X(x)T (t);

leads to the solution

w(x; t) =
X
k�1

ckE�(�((k�)2 � �0)t�)Xk(x) (3.32)

where ck are the Fourier coe¢ cients of w(x; 0) = w0(x) given by

ck =

Z 1

0

w0(x) sin(k�x)dx

Replacing ck in (3.32), we obtain

w(x; t) =

Z 1

0

g(x; �; t)w0(�)d�

where we have taken

g(x; �; t) =
X
k�1

E�((�0 � (k�)2)t�) sin(k��) sin(k�x): (3.33)

Thus, we have,

Theorem 26 If 0 < �0 < (k0�)2; a boundary control which stabilizes (3.21) is given

by

U(t) =

Z 1

0

k(1; y)u(y; t)dy

where

u(x; t) = w(x; t) +

Z x

0

l(x; y)w(x; t)dy: (3.34)
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w(x; t) is the solution of (3.30)

3.4 Examples and Simulation for Fractional Dif-

fusion Equations

In this section we shall give several examples to illustrate the e¤ectiveness of the

method. In each examples, we shall plot the boundary control U and the solution u

of the given system, the solution u of the free system (i.e., uncontrolled U(t) = 0) and

�nally, the solution w of the target system.

Example 1:

u0(x) =

8>><>>:
2x; x � 0:5

2(1� x), 0:5 < x � 1
; �0 = 12; x 2 [0; 1]; t 2 [0; 5]; � = 0:9
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Figure 3-1: Controlled system for Example 1

Figure 3-2: U(t) Control for Example 1
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Figure 3-3: Free system for Example 1

Figure 3-4: Target system for Example 1
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Example 2:

u0(x) = sin(�x); �0 = 12; x 2 [0; 1]; t 2 [0; 5]; � = 0:5

Figure 3-5: Controlled system for Example 2
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Figure 3-6: U(t) Control for Example 2

Figure 3-7: Free system for Example 2
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Figure 3-8: Target system for Example 2

Example 3:

u0(x) = sin(�x); �0 = 5; t 2 [0; 10]; � = 0:75; q(x) = �11(x2 + 1)
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Figure 3-9: Controlled System for Example 3

Figure 3-10: U(t) Control for Example 3
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Figure 3-11: Free System for Example 3

Figure 3-12: Target System for Example 3
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Example 4:

u0(x) = sin(�x); �0 = 5; x 2 [0; 1]; t 2 [0; 5]; � = 0:75; q(x) = �20 cos(x)

Figure 3-13: Controlled System for Example 4
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Figure 3-14: U(t) Control for Example 4

Figure 3-15: Free System for Example 4
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Figure 3-16: Target System for Example 4

Example 5:

u0(x) =

8>><>>:
4
3
x x � 3

4

4(1� x), 3
4
< x � 1

�0 = 5; x 2 [0; 1]; t 2 [0; 2]; � = 0:6; q(x) = �10(x+ 1)
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Figure 3-17: Controlled System for Example 5

Figure 3-18: U(t) Control for Example 5
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Figure 3-19: Free System for Example 5

Figure 3-20: Target System for Example 5
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Chapter 4

The Time-Fractional Wave

Equation

4.1 Introduction

In this chapter, we shall consider the boundary control of fractional hyperbolic partial

di¤erential equations, more speci�cally the time fractional wave equation which model

various oscillatory phenomena, i.e., string vibrations. We shall use again the back-

stepping method. The main feature of a wave fractional equation is that the order

derivative of time � is between 1 < � � 2 and the solution is oscillatory. The objective

of stabilization is to annihilate the e¤ect of perturbation of the system state in order

to steer the system state to a given desired trajectory. For this purpose feedback laws

are introduced, that allow to react to deviations of the system state from the desired

trajectory. Since the deviations are a-priori unknown, the feedback laws must be well
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de�ned for all possible system states.

4.2 Boundary Control of Time-FractionalWave Equa-

tion with Constant Coe¢ cients

The control for wave fractional systems are typically developed to damp out their os-

cillations. We shall consider one-dimensional fractional wave equations with fractional

derivatives with respect to time and constant coe¢ cients, �xed at one end stabilized

by boundary controller at the other end. The system can be represented by

>>>>>>>><>>>>>>>>>>>>>>:

8 
2 >>>> @�

@t
u(
�

x;t) = @ 
@x
u(x;t

2 
) + �0u(x; t); 0 � x � 1; t > 0 > >

u(x; 0) = u0(x); 0 � x � 1

ut(x; 0) = u1(x); 0 � x � 1

u(0; t) = 0; t > 0

u(1; t) = U(t); t > 0

(4.1)

where 1 < � � 2; is the parameter describing the order of the time fractional deriva-

tive. U(:) is the boundary control at the free end of the boundary, u0(:) is the initial

condition of displacement and u1(:) is velocity, �0 is an arbitrary positive constant

and both u0 and u1 2 C ([0; 1])
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4.2.1 The Free Time-FractionalWave Equation (Uncontrolled

System)

In this subsection we shall consider the uncontrolled system, U(t) � 0;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ �0u(x; t), 1 < � � 2; �0 > 0; 0 � x � 1; t > 0

u(x; 0) = u0(x); 0 � x � 1

ut(x; 0) = u1(x); 0 � x � 1

u(0; t) = 0; t > 0

u(1; t) = 0; t > 0

(4.2)

Separation of variables u(x; t) = X(x)T (t) leads to the solution,

u(x; t) =
X
k�1

�
b1kE�;1(�((k�)2 � �0)t�) + b2ktE�;2(�((k�)2 � �0)t�)

�
sin(k�x) (4.3)

where b1n and b2k are the Fourier coe¢ cients of u(x; 0) = u0(x) and ut(x; 0) = u1(x)

respectively given by

b1k = 2

Z 1

0

u0(x) sin(k�x)dx

b2k = 2

Z 1

0

u1(x) sin(k�x)dx:

When �0 is large and positive the solution u(x; t) grows to in�nity without bound.
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4.2.2 Boundary Control of Time-Fractional Wave Equations

with Constant Coe¢ cients (Controlled System)

In this subsection we introduce the main ideas for backstepping control of fractional

wave equations. We shall use the same transmutations (3.13), (3.15) as for the frac-

tional di¤usion equation with constant coe¢ cients de�ned in Theorem (21).

Now transform the system (4.1), by applying I � K to both sides of the PDE in

(4.1).

(I �K)@
�u(x; t)

@t�
u(x; t) = (I �K)[( @

2

@x2
+ �0)u(x; t)];

interchanging I �K and @�=@t� we obtain,

@�

@t�
(I �K)u = (I �K)L1u

@�

@t�
(I �K)u = L0(I �K)u

@�w(x;t)
@t�

= @2w(x;t)
@x2

:

leading to the target system,

8>>>>>>>>>><>>>>>>>>>>:

@�w(x;t)
@t�

= @2w(x;t)
@t2

, 1 < � � 2; 0 < x < 1; t > 0

w(0; t) = 0; w(1; t) = 0; t > 0

w(x; 0) = w0(x) = (I �K)u0(x), 0 < x < 1

wt(x; 0) = w1(x) = (I �K)u1(x), 0 < x < 1

(4.4)
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where w0(:) and w1(:) are continuous functions. de�ned by,

w0(x) = u0(x)�
Z x

0

k(x; y)u0(y)dy;

w1(x) = u1(x)�
Z x

0

k(x; y)u1(y)dy:

The boundary control in this case is

u(1; t) =

Z 1

0

k(1; y)u(y; t)dy:

Returning to the target system (4.4) separation of variables w(x; t) = X(x)T (t) leads

to the solution given by,

w(x; t) =
X
k�1

[c1kE�;1(�(k�)t�) + c2ktE�;2(�(k�)t�)] sin(k�x) (4.5)

where c1k and c1k are the Fourier coe¢ cients of w(x; 0) = w0(x) and wt(x; 0) = w1(x)

respectively that is

ck1 = 2

Z 1

0

w0(x) sin(k�x)dx;

ck2 = 2

Z 1

0

w1(x) sin(k�x)dx

The boundary control is therefore,

U(t) = �
Z 1

0

�0y
I1
p
�0(12 � y2)p
�0(12 � y2)

u(y; t)dy (4.6)
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where the solution of (??) is given by

u(x; t) = w(x; t)� �0
Z x

0

y
J1
p
�0(x2 � y2)p
�0(x2 � y2)

w(x; t)dy: (4.7)

Theorem 27 If �0 is large and positive the solution of the uncontrolled system (4.2)

grows to in�nity without bound. The controlled system (4.1) is stabilized using the

control given by (4.6)

4.3 Boundary Control of Time-FractionalWave Equa-

tion with Space Dependent Coe¢ cients

In this section we shall consider one-dimensional linear fractional wave equations with

fractional derivatives with respect to time and space dependent coe¢ cients

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ q(x)u(x; t); 0 < x < 1; t > 0

u(x; 0) = u0(x); 0 � x � 1

ut(x; 0) = u1(x); 0 � x � 1

u(0; t) = 0; t > 0

u(1; t) = U(t); t > 0

(4.8)

where 1 < � � 2; is the parameter describing the order of the time fractional deriv-

ative. q 2 C1 ([0; 1]) ; U(t) is the boundary control at the free end of the boundary,

u0(:) and u1(:) 2 C ([0; 1])
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4.3.1 The Free Time-FractionalWave Equation (Uncontrolled

System)

In this subsection we shall consider the uncontrolled system, U(t) � 0

8>>>>>><>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ q(x)u(x; t)

u(x; 0) = u0(x); ut(x; 0) = u1(x);

u(0; t) = 0; u(1; t) = 0;

(4.9)

Separation of variables u(x; t) = X(x)T (t) leads to solution of (4.9) given by

u(x; t) =
X
k�1

[b1kE�;1(��k t�) + b2ktE�;2(��k t�)]Xk(x) (4.10)

where b1n and b2k are the Fourier coe¢ cients of u(x; 0) = u0(x) and ut(x; 0) = u1(x)

respectively that is

b1k = 2

Z 1

0

u0(x)Xk(x)dx and b2k = 2
Z 1

0

u1(x)Xk(x)dx

If q is a positive and large function then the solution u(x; t) of (4.9) grows to

in�nity without bound as we will see later in the examples and simulation.
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4.3.2 Boundary Control of Time-Fractional Wave Equations

with Space Dependent Coe¢ cients

In this section we shall consider one-dimensional fractional wave equations with frac-

tional derivatives with respect to time and space dependent coe¢ cients

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

@�u(x;t)
@t�

= @2u(x;t)
@x2

+ q(x)u(x; t), 0 � x � 1; t > 0

u(x; 0) = u0(x); 0 � x � 1

ut(x; 0) = u1(x); 0 � x � 1

u(0; t) = 0; t > 0

u(1; t) = U(t); t > 0

(4.11)

where 1 < � � 2; is the parameter describing the order of the time fractional deriva-

tive, q 2 C1[0; 1]; u0(:) and u1(:) 2 C ([0; 1]). U(t) is the boundary control at the free

end of the boundary. We shall again use the same transmutations (3.26), (3.28) as for

the fractional di¤usion equation with space dependent coe¢ cients de�ned in Theorem

(25).

Now, we shall transform the system (4.8), by applying I �K to both sides of the

PDE in (4.8), then, interchanging with @�=@t� and using the transmutation rule we

get,

(I �K)@
�u(x;t)
@t�

= (I �K)[( @2
@x2
+ q(x))u(x; t)]

@�

@t�
(I �K)u = (I �K)L0u

@�

@t�
(I �K)u = L1(I �K)u

@�w(x;t)
@t�

= @2w(x;t)
@x2

+ �0w(x; t)
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leading to the target system,

8>>>>>>>>>><>>>>>>>>>>:

@�w(x;t)
@t�

= @2w(x;t)
@t2

+ �0w(x; t), 0 < x < 1; t > 0

w(0; t) = 0; w(1; t) = 0; t > 0

w(x; 0) = (I �K)u0(x) = w0(x), 0 � x � 1

wt(x; 0) = (I �K)u1(x) = w1(x); 0 � x � 1

(4.12)

where w0(x) and w1(x) are continuous functions de�ned by

w0(x) = (I �K)u0(x)

w1(x) = (I �K)u1(x):

The boundary control in this case is

u(1; t) =

Z 1

0

u(1; y)u(y; t)dy

Returning to the target system (4.12) separation of variables w(x; t) = X(x)T (t) leads

to the solution,

w(x; t) =
X
k�1

�
c1kE�;1(�((k�)2 � �0)t�) + c2ktE�;2(�((k�)2 � �0)t�)

�
sin(k�x)

(4.13)

where ck are the Fourier coe¢ cients of w(x; 0) = w0(x) and wt(x; 0) = w1(x) respec-
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tively that is

ck1 = 2

Z 1

0

w0(x) sin(k�x)dx and ck2 = 2
Z 1

0

w1(x) sin(k�x)dx

The boundary control is therefore,

u(1; t) =

Z 1

0

k(1; y)u(y; t)dy (4.14)

and the solution of the (4.11)

u(x; t) = w(x; t) +

Z 1

0

l(1; y)w(y; t)dy: (4.15)

where k(x; y) and l(x; y) are the solutions of the kernels PDE (3.27), (3.29)

Theorem 28 If q is a positive and large function then the solution of the uncontrolled

fractional system (4.9) grows to in�nity without bound. The controlled system (4.11)

is stabilized using the control given by (4.14)

4.4 Examples and Simulations for Fractional Wave

Equations

We present examples to demonstrate the e¢ ciency and simplicity of the method and

to show the behavior of the solution of the fractional wave equation
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Example 1: Consider the following

u0(x) = sin(�x); u1(x) =

8>><>>:
2x x � 1

2

2(1� x), 1
2
< x � 1

;

� = 1:9; �0 = 12; x 2 [0; 1]; xp = 50; t 2 [0; 20]; tp = 60

Figure 4-1: Controlled System for Example 1
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Figure 4-2: U(t) Control for Example 1

Figure 4-3: Free System for Example 1
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Figure 4-4: Target System for Example 1

Example 2: Consider the following

u0(x) = sin(�x); u1(x) =

8>><>>:
4
3
x x � 3

4

4(1� x), 3
4
< x � 1

;

� = 1:75; �0 = 5; x 2 [0; 1]; t 2 [0; 10]; q(x) = �15(1 + x2)
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Figure 4-5: Controlled System for Example 2

Figure 4-6: U(t) Control for Example 2
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Figure 4-7: Free System for Example 2

Figure 4-8: Target System for Example 2
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Chapter 5

The Fractional Di¤usion-Wave

Equations

5.1 Introduction

A fractional di¤usion-wave equation is a linear integro partial di¤erential equation

obtained from the classical di¤usion or wave equation by replacing the �rst or second-

order time derivative term by a fractional derivative of order �; 0 < � � 2; and the

second space derivative by a fractional derivative of order, �, 1 < � � 2: The simplest

fractional di¤usion-wave equation is

CD
(�)
t u(x; t) = CD(�)

x u(x; t); 0 < � � 2; 1 < � � 2: 0 < x < 1; t � 0 (5.1)

where the time and space fractional di¤erential operators CD
(�)
t and CD

(�)
x are de�ned

in Caputo sense. (5.1) represents a hyperbolic wave equation for � = 2, � = 2, and
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parabolic di¤usion equation for � = 2, � = 1. So equation (5.1) can be interpreted

as the interpolation between a hyperbolic and parabolic equation. The method of the

solution [23] is based on applying the operator I(�) = I(�)0 , the inverse of the operator

CD
(�)
t to both sides of equation (5.1) to obtain

u(x; t)�
m�1X
k=0

@ku(x; 0)

@tk
tk

k!
= I(�)( CD(�)

x u)

u(x; t) =

m�1X
k=0

@ku(x; 0)

@tk
tk

k!
+ I(�)( CD(�)

x u)

u(x; t) =
m�1X
k=0

@ku(x; 0)

@tk
tk

k!
+

1

�(�)

Z t

0

(t� �)��1( CD(�)
x )u(x; �)d�

and a series solution

u(x; t) =
1X
n=0

un(x; t) (5.2)

was given by the Adomian�s decomposition method where the components un(x; t) are

determined recursively as follows

1X
n=0

un(x; t) =
m�1X
k=0

@ku(x; 0)

@tk
tk

k!
+

1

�(�)

Z t

0

(t� �)��1( CD(�)
x )u(x; �)d�

where

u0(x; t) =
m�1X
k=0

@ku(x; 0)

@tk
tk

k!
and un(x; t) =

1

�(�)

Z t

0

( CD
(�)
x )un�1(x; �)d�

(t� �)1��
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which particularizes to the cases

m = 1; u0(x; t) = u(x; 0) and m = 2; u0(x; t) = u(x; 0) +
@u(x; 0)

@t

The convergence of the decomposition series has been investigated by several authors,

see for instance [24].

5.2 The Fractional Di¤usion-wave Equation with

Constant Coe¢ cients

In this section we shall consider the space and time fractional Di¤usion-wave equation.

8>>>>>>>>>><>>>>>>>>>>:

@�u(x;t)
@t�

= @�u(x;t)
@x�

+ �0u(x; t)

u(x; 0) = u0(x); ut(x; 0) = u1(x); 0 < x < 1

u(0; t) = 0; t � 0

u(1; t) = U(t); t � 0

(5.3)

where �; � are parameters describing the order of time and space fractional deriva-

tives respectively, U(:) is the boundary control at the free end of the boundary, u0(:)

is the initial condition of displacement and u1(:) is velocity, �0 is an arbitrary pos-

itive constant and both u0 and u1 2 C ([0; 1]), u(x; t) is de�ned in [0; 1] � [0;1):

We refer to the equation (5.3 ) to as the space and time fractional di¤usion and to

the space and time fractional wave equation in cases f0 < � � 1; 1 � � � 2g and
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f1 � � � 2; 1 < � � 2g respectively.

5.2.1 The free Fractional Di¤usion-wave Equation with Con-

stant Coe¢ cients (uncontrolled system)

We shall consider the system without control, U(t) � 0;

8>>>>>><>>>>>>:

@�u(x;t)
@t�

= @�u(x;t)
@x�

+ �0u(x; t); 0 < � � 1; 1 � � � 2

u(x; 0) = u0(x); 0 < x < 1

u(0; t) = 0; u(1; t) = 0; t � 0

(5.4)

The general solution of (5.4) can be obtained by separation of variables as follows, let

u(x; t) = X(x)T (t) then we have

X(x)T (�)(t) = X
(�)

(x)T (t) + �0X(x)T (t) (5.5)

from which we get

T
(�)

(t)� �0T (t)
T (t)

=
X

(�)
(x)

X(x)
= �� (constant).

Hence, T satis�es the fractional ordinary di¤erential equation

T (�)(t) = �(�� �0)T (t); t > 0 (5.6)
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and X satis�es the regular fractional Sturm-Liouville problem

8>><>>:
X

(�)
(x) = �X(x); 0 < x < 1

X(0) = X(1) = 0:

(5.7)

The solution of the fractional di¤erential equation in (5.7) is given by

X(x) = AE�;1(�x
�) +BxE�;2(�x

�): (5.8)

Using the boundary conditionX(0) = 0 gives A = 0 andX(1) = 0 gives BE�;2(�) = 0:

To get a nontrivial solution, B must be di¤erent from zero, so,

E�;2(�) = 0:

Solving the last equation to obtain the simple eigenvalues �k; k � 1 and corresponding

normalized eigenfunctions Xk(x); k � 1;
�
kXkk2 =

R 1
0
jXk(x)j2 dx = 1

�
;

Xk(x) = akxE�;2(�kx
�); k � 1: (5.9)

where

ak =

�Z 1

0

x2E2�;2(�kx
�)dx

�� 1
2

:

For each k � 1 we have

Tk(t) = dkE�;1(�(�k � �0)t�); k � 1
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where E�(z) is the Mittag-Le­ er function, and dk are constants. Superposition of the

product solutions gives,

u(x; t) =
X
k�1

ckE�;1(�(�k � �0)t�)Xk(x)

where ck are the Fourier coe¢ cients of u(x; 0) = �0(x), that is

ck = 2

Z 1

0

u0(x)Xk(x)dx

Therefore, we have shown that the solution to the uncontrolled system is

u(x; t) = 2

Z 1

0

g(x; �; t)u0(�)d�

where

g(x; �; t) =
X
k�1

E�;1(�(�k � �0)t�)Xk(x)Xk(�):

So that we conclude, if �0 is positive and large the solution of the uncontrolled

system (5.4) grows to in�nity without bound as we will see in the examples simulation

5.2.2 Boundary Control of Fractional Di¤usion-wave Equa-

tion with Constant Coe¢ cients (Controlled System)

In this part, we will also apply the transmutation method. However, we shall add and

subtract from right hand side of the PDE in (5.3) D(2)
x u(x; t) to rewrite the system in
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the form,

8>>>>>>>>>><>>>>>>>>>>:

CD
(�)
t u(x; t) = D

(2)
x u(x; t) + �0u(x; t) +

h
CD

(�)
x �D(2)

x

i
u(x; t),

u(x; 0) = u0(x); 0 < x < 1

u(0; t) = 0; t � 0

u(1; t) = U(t); t � 0

(5.10)

where 0 < � � 1; 1 < � � 2; 0 � x � 1; t > 0

Let u =
P

j�1 uj and U(t) =
P

j�1 Uj(t) then substitute into di¤erential equation

(5.10) to get

X
j�1

CD
(�)
t uj =

X
j�1

�
D(2)
x uj + �0uj

�
+
X
j�1

�
CD(�)

x �D(2)
x

�
uj

Now, de�ne u1 by

8>>>>>>>>>><>>>>>>>>>>:

CD
(�)
t u1(x; t) = D

(2)
x u1(x; t) + �0u1(x; t)

u1(x; 0) = u0(x)

u1(0; t) = 0

u1(1; t) = U1(t)

(5.11)

and un by

8>>>>>><>>>>>>:

CD
(�)
t un(x; t) = D

(2)
x un(x; t) + �0un(x; t) + Fn(x; t); n � 2

un(x; 0) = 0; un(0; t) = 0

un(1; t) = Un(t)

(5.12)
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where Fn are de�ned by

F1(x; t) = 0 and Fn(x; t) =
�
CD(�)

x �D(2)
x

�
un�1(x; t) (5.13)

We shall consider in the next section the boundary control of nonhomogeneous frac-

tional di¤usion equation

5.3 Boundary Control of Nonhomogeneous Frac-

tional Di¤usion Equations with constant coef-

�cients

In this section, we shall consider the system of nonhomogeneous fractional di¤usion

equation with Dirichlet boundary control

8>>>>>><>>>>>>:

CD
(�)
t v(x; t) = D

(2)
x v(x; t) + �0v(x; t) + F (x; t)

v(x; 0) = 0; v(0:t) = 0

v(1; t) = V (t):

(5.14)

where � 2 (0; 1) is parameter describing the time order derivative; V (:) is the bound-

ary control at the free end of the boundary, v0(x) is the initial condition, �0 is arbitrary

positive constant and v(x; t) is de�ned in [0; 1]� [0;1): Consider the change of vari-

ables

w(x; t) = (I �K)v = v(x; t)�
Z x

0

k(x; y)v(y; t)dy
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by applying I�K to both sides of the PDE in (5.14), then, interchanging with @�=@t�

and using the transmutation rule we get,

(I �K)@
�v

@t�
= (I �K)

�
@2

@x2
+ �0

�
v + (I �K)F (x; t) (5.15)

@�(I �K)v
@t�

= (I �K)
�
@2

@x2
+ �0

�
v + (I �K)F (x; t)

@�w(x; t)

@t�
=

@2w(x; t)

@x2
+ f(x; t)

leading to the target system

8>>>>>><>>>>>>:

@�w(x;t)
@t�

= @2w(x;t)
@x2

+ f(x; t); x 2 (0; 1); t � 0

w(x; 0) = 0; x 2 (0; 1)

w(0; t) = 0; w(1; t) = 0

(5.16)

where w(x; 0) = (I � K)v(x; 0) = 0 and f(x; t) = (I � K)F (x; t): Finding a series

solution of the form

w(x; t) =
X
n�0

Xn(x)Tn(t)

where Xn(x) are the eigenfunctions we �nd when solving the associated homogeneous

problem 8>><>>:
@�w(x;t)
@t�

= @2w(x;t)
@x2

; x 2 (0; 1); t � 0

w(0; t) = w(1; t) = 0; t � 0
(5.17)
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and Tn(t) are functions which can be found by solving a sequence of ODEs. Recall

that the solution of (5.17) is of the form

w(x; t) =
X
n�0

AnE�;1(��nt�)Xn(x)

where �n and Xn(x) are the eigenvalues and eigenfunctions of the problem (5.17).

Returning to (5.16), we expand f(x; t) in eigenfunctions expantion as

f(x; t) = f1(t)X1(x) + f2(t)X2(x) + :::+ fn(t)Xn(x) + :::

and �nd the response wn(x; t) = Xn(x)Tn(t) to each of these individual components.

The solution to our problem will then be w(x; t) =
P

n�1wn(x; t) where �n = (n�)
2;

n � 1,

Xn(x) = sin(n�x); n � 1: (5.18)

and

fn(t) = 2

Z 1

0

w0(x) sin(n�x)dx:

Replacing f(x; t) by its expansion, we shall seek a solution in the form

w(x; t) =
X
n�1

Tn(t) sin(n�x):
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Thus,

8>>>>>><>>>>>>:

P
n�1 T

(�)
n (t) sin(n�x) =

P
n�1 (n�)

2 Tn(t) sin(n�x) +
P

n�1 fn(t) sin(n�x)P
n�1 Tn(t) sin(0) =

P
n�1 Tn(t) sin(�) = 0P

n�1 Tn(0) sin(n�x) = 0

we are left with

8>><>>:
P

n�1

h
T
(�)
n (t) + (n�)2 Tn(t)� fn(t)

i
sin(n�x) = 0P

n�1 Tn(0) sin(n�x) = 0

Thus Tn must satisfy the initial value problem

8>><>>:
T
(�)
n (t) + (n�)2 Tn(t)� fn(t) = 0

Tn(0) = 0

(5.19)

The solution to (5.19) is

Tn(t) = AnE�;1(� (n�)2 t�) +
Z t

0

fn(�)E�;2(� (n�)2 (t� �)�)d� (5.20)

thus the solution to (5.16) is

w(x; t) =
X
n�1

�
AnE�;1(� (n�)2 t�) +

Z t

0

fn(�)E�;2(� (n�)2 (t� �)�)d�
�
sin(n�x):
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Since w(x; 0) = 0, the Fourier coe¢ cent An = 0 for all n; So that, the solution of the

target system becomes

w(x; t) =
X
n�1

Z t

0

fn(�)E�;2(� (n�)2 (t� �)�)d�) sin(n�x) (5.21)

leading to the solution of (5.14) as

v(x; t) = w(x; t) +

Z x

0

l(x; y)w(y; t)dy (5.22)

and the control as

v(1; t) =

Z 1

0

k(x; y)v(y; t)dy (5.23)

where k and l are solve the Goursat problem (3.14), (3.16) respectively.

Theorem 29 A boundary control for the nonhomogeneous system (5.14) is given by

(5.23) and the state is given by (5.22). The boundary control stabilizes the overall

system.

Returning to (5.10), the solution is given by

u(x; t) =
X
n�1

un(x; t) (5.24)

under the boundary control

U(t) =
X
n�1

Un(t) (5.25)
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where un and Un are the state solution and the boundary control of (5.12) for each n

respectively:

To summarize, we have the following theorem,

Theorem 30 The boundary control of fractional di¤usion-wave equation (5.10) is

given by U(t) =
P

n�1 Un(t) and the solution is u(x; t) =
P

n�1 un(x; t): While the

solution of the uncontrolled system (5.4) grows to in�nity, the solution of the controlled

system (5.10) stabilizes by the control given by (5.25)

5.4 The Fractional Di¤usion-wave Equation with

Space Dependent Coe¢ cients

In this section we shall consider time and space fractional derivatives di¤usion-wave

equation with space dependent coe¢ cient

8>>>>>>>>>><>>>>>>>>>>:

CD
(�)
t (x; t) = CD

(�)
x u(x; t) + q(x)u(x; t), 0 < � � 1; 1 < � � 2; 0 � x � 1; t > 0

u(x; 0) = u0(x); 0 < x < 1

u(0; t) = 0; t � 0

u(1; t) = U(t); t � 0
(5.26)

where �; � are parameters describing the order of time and space fractional derivatives

respectively, u(x; t) is the �eld de�ned in the space domain [0; 1]; and time t 2 [0;1);

U(:) is the boundary control at the free end of the boundary, u0(:) is the initial

condition and u0 2 C ([0; 1])
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5.4.1 Boundary Control of Fractional Di¤usion-wave with Space

Dependent Coe¢ cients (Controlled System)

As before, we shall add and subtract D(2)
x u(x; t) to the right hand side of the equation

( 5.26) above and rewrite the system as

8>>>>>>>>>><>>>>>>>>>>:

CD
(�)
t (x; t) = D

(2)
x u(x; t) + q(x)u(x; t) +

h
CD

(�)
x �D(2)

x

i
u(x; t)

u(x; 0) = u0(x); 0 < x < 1

u(0; t) = 0; t � 0

u(1; t) = U(t); t � 0:

(5.27)

where 0 < � � 1; 1 < � � 2; 0 � x � 1; t > 0: Let u =
P

j�1 uj and U(t) =
P

j�1 Uj(t)

then substitute into di¤erential equation (5.27) to get

X
j�1

CD
(�)
t uj =

X
j�1

�
D(2)
x uj + q(x)uj

�
+
X
j�1

�
CD(�)

x � D(2)
x

�
uj

Now, de�ne u1 by

8>>>>>>>>>><>>>>>>>>>>:

CD
(�)
t u1(x; t) = D

(2)
x u1(x; t) + q(x)u1(x; t)

u1(x; 0) = u0(x)

u1(0; t) = 0

u1(1; t) = U1(t)

(5.28)
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and un by

8>>>>>><>>>>>>:

CD
(�)
t un(x; t) = D

(2)
x un(x; t) + q(x)un(x; t) + Fn(x; t); n � 2

un(x; 0) = 0; un(0; t) = 0

un(1; t) = Un(t)

(5.29)

where Fn are de�ned by

F1(x; t) = 0; and Fn(x; t) =
�
CD(�)

x �D(2)
x

�
un�1(x; t); n � 2 (5.30)

We shall consider in the next section the boundary control of nonhomogeneous frac-

tional di¤usion equation with space dependent coe¢ cients

5.5 Boundary Control of Nonhomogeneous Frac-

tional Di¤usion Equations with space depen-

dent coe¢ cients

we shall consider the boundary control of nonhomogeneous fractional di¤usion equa-

tions with space dependent coe¢ cients

8>>>>>><>>>>>>:

CD
(�)
t v(x; t) = D

(2)
x v(x; t) + q(x)v(x; t) + F (x; t)

v(x; 0) = 0; v(0:t) = 0

v(1; t) = V (t)

(5.31)
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where 0 < � � 1; (x; t) 2 [0; 1]� [0;1): Consider the change of variables

w = (I �K)v = v(x; t)�
Z x

0

k(x; y)v(y; t)dy

by applying I�K to both sides of the PDE in (5.31), then, interchanging with @�=@t�

and using the transmutation rule we get,

(I �K)@
�v

@t�
= (I �K)

�
@2

@x2
+ q

�
v + (I �K)F (x; t) (5.32)

@�(I �K)v
@t�

= (I �K)
�
@2

@x2
+ q

�
v + (I �K)F (x; t)

@�w(x; t)

@t�
=

@2w(x; t)

@x2
+ �0w(x; t) + f(x; t);

leading to the target system

8>>>>>>>>>><>>>>>>>>>>:

@�w(x;t)
@t�

= @2w(x;t)
@x2

+ �0w(x; t) + f(x; t)

w(x; 0) = 0

w(0; t) = 0

w(1; t) = 0

(5.33)

where w(x; 0) = (I � K)v(x; 0); f(x; t) = (I � K)F (x; t): The solution for the target

system (5.33) is given by

w(x; t) =
X
n�1

Z t

0

fn(�)E�;2(�0 � (n�)2)(t� �)�)d�) sin(n�x) (5.34)
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and the solution of (5.31) is given by

v(x; t) = (I � L)w(x; t) = w(x; t) +
Z x

0

l(x; y)w(y; t)dy (5.35)

and the boundary control is

v(1; t) =

Z 1

0

k(x; y)v(y; t)dy (5.36)

where k and l solve the Goursat problem (3.27), (3.29) respectively.

Theorem 31 A boundary control for the nonhomogeneous system (5.31) is given by

(5.36) and the state is given by (5.35). The boundary control stabilizes the overall

system.

Returning to (5.27), the general solution of (5.27) is given by

u(x; t) =
X
n�1

un(x; t) (5.37)

under the boundary control

U(t) =
X
n�1

Un(t) (5.38)

where un and Un are the state solution and the boundary control of (5.27) for each n

respectively.

To summarize, we have the following theorem,

Theorem 32 The boundary control of fractional di¤usion-wave equation (5.26) is
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given by U(t) =
P

n�1 Un(t) and the solution is u(x; t) =
P

n�1 un(x; t): While the

solution of the uncontrolled system grows to in�nity, the solution of the controlled

system (5.26) stabilizes by the control given by (5.38)

5.6 Examples and Simulations for Fractional Di¤usion-

Wave Equations

We present examples to show the e¢ ciency and simplicity of the method and to

demonstrate the behavior of the solution of the fractional di¤usion-wave equation as

the order of the time and space-fractional derivatives are changes.

Example 1: We shall consider

u0(x) = sin(�x); q(x) = �0 = 15;

x 2 [0; 1]; t 2 [0; 10]; � = 0:9; � = 1:9
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Figure 5-1: The Controlled System u1 for Example 1

Figure 5-2: The Control U1 for Example 1
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Figure 5-3: The Target System w1 for Example 1

Figure 5-4: The Controlled System u2 for Example 1
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Figure 5-5: The Control U2 for Example 1

Figure 5-6: The Target System w2 for Example 1
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Figure 5-7: The Free System for example 1

102



Chapter 6

Optimal Control of

Time-Fractional Di¤usion Equation

6.1 Introduction

Optimal control theory is concerned with �nding control functions that minimize cost

functionals for systems described by di¤erential equations. In the area of calculus of

variations and optimal control of fractional di¤erential equations little has been done

compared to a di¤erential equation with integer time derivative. The �rst record of the

formulation of the fractional optimal control problem was given by O.P Agrawal [64]

and he presented a general formulation and solution scheme for the fractional optimal

control problem. In 2011, Mophou [63] considered the optimal control of the fractional

di¤usion equation in Rieman-Liouville sense. We are now in a position to formulate

the optimal control problems. We shall consider the linear quadratic optimal control
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of the time-fractional PDE system given by,

Minf J
�
=

Z T

0

ku(:; t)� bu(:; t)k2w dt (6.1)

subject to,

8>>>>>>>>>><>>>>>>>>>>:

@�u(x;t)
@t�

= 1
w(x)

�
@
@x

�
p(x) @

@x
u(x; t)

�
� q(x)u(x; t)

	
+ f(x; t); 0 < x < 1; 0 < t � T

u(x; 0) = u0(x); 0 � x � 1

a1p
@
@x
u� a2u = 0; at x = 0, 0 < t � T

b1p
@
@x
u� b2u = 0; at x = 1, 0 < t � T

(6.2)

where bu(x; t) is a given function, 0 < � � 1 , with p; w > 0 and f is the control

6.2 Method of solution

We shall associate to (6.2) the following Regular Sturm-Liouville problem,

8>>>>>><>>>>>>:

1
w(x)

�
d
dx

�
p(x) d

dx
v(x)

�
� q(x)v(x)

	
= ��v(x); a < x < b

a1p
d
dx
v � a2v = 0; at x = a

b1p
d
dx
v � b2v = 0; at x = b

(6.3)

It is well known that it has an in�nite sequence of simple eigenvalues �0 < �1 <

�2 < � � � " 1 with corresponding orthogonal eigenfunctions v0; v1; v2; � � � with respect

to the inner product < g; h >w=
R b
a
w(x)g(x)h(x)dx: We shall assume that they are

normalized using the induced norm kgkw =
�R b

a
w(x) jg(x)j2 dx

�1=2
.Since the system
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of eigenfunctions is complete in L2w([a; b]), we expand f(x; t) as

f(x; t) =

1X
n=0

fn(t)vn(x)

and seek a solution of (6.2) in the form

u(x; t) =
1X
n=0

un(t)vn(x)

Replacing into (6.2)

@(�)

@t(�)

1X
j=0

ujvj =
1

w

"
@

@x
p
@

@x

1X
j=0

ujvj � q
1X
j=0

ujvj

#
+

1X
j=0

fjvj

1X
j=0

vj
@(�)

@t(�)
uj =

1X
j=0

uj

�
1

w

�
@

@x

�
p
@

@x
vj

�
� qujvj

��
+

1X
j=0

fjvj

1X
j=0

vj
@(�)

@t(�)
uj =

1X
j=0

uj (��jvj) +
1X
j=0

fjvj

and taking the inner product with vj we obtain the decoupled in�nite system of

fractional ODEs

u
(�)
j (t) = ��juj(t) + fj(t); 0 < t � T; j = 0; 1; 2; � � � (6.4)

whose solution is

uj(t) = E�(��jt�)dj +
Z t

0

E�;2(��j (t� �)�)fj(�)d� ; j = 0; 1; 2; � � � (6.5)
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where E�(z) and E�;�(z) are the Mittag-Le­ er functions, dj are arbitrary constants.

Thus, the solution to the PDE and boundary conditions in (6.2) is

u(x; t) =
1X
j=0

�
E�(��jt�)dj +

Z t

0

E�;2(��j (t� �)�)fj(�)d�
�
vj(x)

=

1X
j=0

E�(��jt�)vj(x)dj +
1X
j=0

Z t

0

E�;2(��j (t� �)�)vj(x)fj(�)d� (6.6)

Letting t = a, we get, dj as the Fourier coe¢ cients of u(x; 0) = u0(x)

dj =

Z b

a

u0(�)vj(�)d� (6.7)

Now, recall the Fourier coe¢ cient fj(t) of f(x; t),

fj(t) =

Z b

a

f(�; t)vj(�)d� (6.8)

Hence,

u(x; t) =
1X
j=0

E�(��jt�)vj(x)
Z b

a

u0(�)vj(�)d�

+

1X
j=0

Z t

0

E�;2(��j (t� �)�)vj(x)
Z b

a

f(�; �)vj(�)d�d�

u(x; t) =

Z b

a

1X
j=0

E�(��jt�)vj(x)vj(�)u0(�)d� (6.9)

+

Z t

0

Z b

a

1X
j=0

E�;2(��j (t� �)�)vj(x)vj(�)f(�; �)d�d�
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that is, the solution is

u(x; t) =

Z b

a

g(x; �; t)u0(�)d� +

Z b

a

Z t

0

g(x; �; t� �)f(�; �)d�d� (6.10)

where

g(x; �; t) =
1X
j=0

E�(��jt�)vj(x)vj(�) (6.11)

Hence, we have proved the theorem below,

Theorem 33 Let f�j; vjgj�0 be the sequence of eigenvalues and associated (normal-

ized) eigenfunctions of the regular Sturm-Liouville problem (6.3), then the system (6.3)

has the unique solution given by (6.10).

6.3 Optimal Control

Replacing the control f; the state u and the reference state bu by their eigenfunction
expansions,

f(x; t) =
1X
n=0

fn(t)vn(x), u(x; t) =
1X
n=0

un(t)vn(x), bu(x; t) = 1X
n=0

bun(t)vn(x) (6.12)
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in the integral in (6.1) we get,

Z T

0

Z b

a

w(x)

( 1X
n=0

[un(t)� bun(t)] vn(x) )2 dxdt
=

Z T

0

1X
i=0

1X
j=0

[ui(t)� bui(t)] [uj(t)� buj(t)]Z b

a

w(x)vi(x) vj(x) dxdt

=

Z T

0

1X
j=0

[uj(t)� buj(t)]2 dt = 1X
j=0

Z T

0

[uj(t)� buj(t)]2 dt: (6.13)

So the problem (6.1), (6.2) becomes

Minf

1X
j=0

Z T

0

[uj(t)� buj(t)]2 dt (6.14)

subject to (6.5) and the boundary conditions.

Thus, since the equations are decoupled, the problem becomes

Minfj Jj
�
=

Z T

0

[uj(t)� buj(t)]2 dt (6.15)

subject to u(�)j (t) = ��juj(t) + fj(t); 0 < t � T; uj(0) = dj

for j = 0; 1; 2; � � �

Jj =

Z T

0

[uj(t)� buj(t)]2 dt
=

Z T

0

�
E�(��jt�)dj +

Z t

0

E�;2(��j (t� �)�)fj(�)d� � buj(t)�2 dt
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Let

fj(t) =
1X
i=0

fji�i(t)

for each j; where f�igi�0 is some basis of L2 ([0; T ])

Minfji

Z T

0

[uj(t)� buj(t)]2 dt (6.16)

subject to u(�)j (t) = ��juj(t) +
nX
i=0

fji�i(t); 0 < t � T; uj(0) = dj

Jj[fj] =

Z T

0

[uj(t)� buj(t)]2 dt =Z T

0

"
E�(��jt�)dj +

nX
i=0

fji

Z t

0

E�;2(��j (t� �)�)�i(�)d� � buj(t)#2 dt
Let @Jj

@fji
= 0; for i = 0; 1; 2; ; ; ; ; n

@Jj
@fji

= 2

Z T

0

8>><>>:
h
E�(��jt�)dj +

Pn
i=0 fji

R t
0
E�;2(��j (t� �)�)�i(�)d� � buj(t)ihR t

0
E�;2(��j (t� �)�)�i(�)d�

i
9>>=>>; dt

= 2

Z T

0

[E�(��jt�)dj � buj(t)] �Z t

0

E�;2(��j (t� �)�)�i(�)d�
�
dt+

2

Z T

0

nX
i=0

�
fji

Z t

0

E�;2(��j (t� �)�)�i(�)d�
� �Z t

0

E�;2(��j (t� �)�)�i(�)d�
�
dt

= 0:
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Then we have,

mX
i=0

fji

Z T

0

�Z t

0

E�;2(��j (t� �)�)�i(�)d�
��Z t

0

E�;2(��j (t� �)�)�i(�)d�
�
dt

= �
Z T

0

(E�(��jt�)dj � buj(t))�Z t

0

E�;2(��j (t� �)�)�i(�)d�
�
dt

implies,
mX
k=0

fjkakji = bji , i = 0; 1; 2; ; ; ; ; n; j = 0; 1; 2; ; ; ; ;m (6.17)

for a given j we have Ajf �j = Bj where

Aj = (n+ 1) � (m+ 1); Bj = (n+ 1) � 1; f �j : (m+ 1)(1);

Aj = (ak;i;j)k;i, Bj = (bji)j

akji =

Z T

0

�Z t

0

E�;2(��j (t� �)�)�k(�)d�
��Z t

0

E�;2(��j (t� �)�)�i(�)d�
�
dt

bji = �
Z T

0

(E�(��jt�)dj � buj(t))�Z t

0

E�;2(��j (t� �)�)�i(�)d�
�
dt

Let

b(t; j; i) =

Z t

0

E�;2(��j (t� �)�)�i(�)d� ; b(tl; j; i) =
Z tl

0

E�;2(��j (tl � �)�)�i(�)d�

bl;j;i = �t

lX
k=1

E�;2(��j (tl � tk)�)�i(tk)

where tl = l�t , l = 1; :::; n and �t = 1=n: Solving the system of linear equations (6.17)
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for fj for j = 0; 1; 2; � � �m so that, we get

f �j (t) =
mX
i=0

f �ji'i(t); u
�
j = E�(��jt�)dj+

nX
i=0

f �ji

Z t

0

E�;2(��j (t� �)�)�i(�)d� (6.18)

and

f(x; t) =
1X
n=0

f �n(t)vn(x); u(x; t) =

1X
n=0

u�n(t)vn(x): (6.19)

Thus we have

Theorem 34 The optimal control and optimal state of (6.1), (6.2) are given by (6.19)

respectively.

Applying the optimal control f to the system will lead to the optimal state u

following bu(x; t): In the reconsidering expansion below. we shall draw the graphs of
u(x; t) and bu(x; t) for di¤erent values of x:

6.4 Examples and Simulations for Optimal Control

of Time-Fractional Di¤usion Equation

In this chapter we shall present some examples to illustrate our method. For any

practical purpose, we shall truncate the series say to N and introduce

gN(x; �; t) =

NX
j=0

E�(��jt�)vj(x)vj(�)
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as well as the approximate solution,

uN(x; t) =

Z b

a

gN(x; �; t)u0(�)d� +

Z b

a

Z t

0

gN(x; �; t� �)f(�; �)d�d�

and the optimal control is

fN(x; t) =

NX
n=0

f �n(t)vn(x)

We shall present in the sequel a few examples with di¤erent p, q, w, u0 and bu and
obtain the optimal f in each case.

Example 1: We shall consider the following

w(x) = x2 + 1; p(x) = x2 + 1; q(x) = �20 cos(x);

� = 0:7; x 2 [0; 1]; xp = 60; t 2 [0; 0:9]; tp = 50; N = 10

u0(x) =

8>><>>:
4
3
x; 0 � x � 0:75

4(1� x); 0:75 < x � 1
, bu(x; t) = e�t sin(�x)
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Figure 6-1: Optimum solution for di¤erent values of x for example 1

Figure 6-2: The u References for example 1
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Figure 6-3: The u Optimum Control for Example 1

Figure 6-4: The f Optimum Control for Example 1
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Example 2: We shall consider the following

w(x) = x2 + 1; p(x) = x2 + 1 ; x 2 [0; 1]; xp = 40; t 2 [0; 3]; tp = 50

u0(x) = sin(�x); q(x) = �20x; � = 0:8; bu(x; t) = e(xt) sin(�x)

Figure 6-5: Optimum Solution for di¤erent values of x for Example 2
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Figure 6-6: The u Reference for Example 2

Figure 6-7: The u Optimum for example 2
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Figure 6-8: The f Optimum Control for Example 2

Example 3: We shall consider the following

w(x) = x2 + 1; p(x) = x2 + 1; q(x) = �50(x2 + 1); bu(x; t) = xte�t; � = 0:5;
u0(x) =

8>><>>:
2x; x � 0:5

2(1� x); 0:5 � x � 1
; x 2 [0; 1]; xp = 60; t 2 [0; 10]; tp = 50
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Figure 6-9: Optimum Solution for di¤erent values of x for Example 3

Figure 6-10: The u Reference for Example 3
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Figure 6-11: The u Optimum for example 3

Figure 6-12: The f Optimum Control for Example 3
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