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Product Lines 
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A Software Product line (SPL) is configuration-centric with a focus on developing a 

collection of related software products, all of which share some core functionality, and 

differ in some specific features. SPL uses a feature model to specify the commonalities 

and variabilities in terms of software features, to identify and develop reusable software 

assets. Selection of features is a key process to derive new SPL configurations that aim to 

either minimize or maximize a business objective, subject to a set of constraints. To date, 

feature selection techniques have focused on finding an optimal solution to objective 

functions such as cost and resource constraints. However, the existing approaches have 

not considered the structural relationships and configuration dependencies encoded in a 

feature model, together with the business objectives, leaving open the question of how 

best to optimize SPL feature selection in the presence of feature interdependencies. In 

this research thesis, we have developed a feature selection technique that consolidates 

interdependent features into related clusters and uses a Genetic algorithm (GA) to find a 

near optimal solution for feature selection with respect to clustering error, product 

priority and product integrity. This thesis provides a solution to SPL feature selection 

problem such that it helps a developer to analyze interdependencies and select suitable 

features for SPL configurations. This thesis also applies the approach on two case studies 

to evaluate the workings of the developed approach. 
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 الرسالةملخص 

 
 

 محمد احسن جاويد  :        الاسم الكامل
 

  منهج اختيار الخاصية المعتمد على الرسم لتكوين خط انتاج البرمجيات  :            عنوان الرسالة
 

 هندسة البرمجيات :                  التخصص
 

 6102 ,مايو :     العلميةتاريخ الدرجة 
 

 

المركزي بالاعتماد على تطوير مجموعة من المنتجات البرمجية المرتبطة ببعضها،  خط انتاج البرمجيات هو التكوين

نموذج  يستخدم خط انتاج البرمجيات .وكلها تشترك في بعض الوظائف الأساسية، وتختلف في بعض السمات المحددة

وتطوير برمجيات  يعتمد على الخاصية لتحديد القواسم المشتركة والمتغيرات من حيث خصائص البرمجيات، لتحديد

جديدة لخط انتاج  الاختيار من بين هذه الخصائص هي عملية أساسية لإنتاج تكوينات .يمكن إعادة استخدامها

حتى الآن،  .التي تهدف إما إلى تقليل أو زيادة الهدف التجاري، والذي عادة يخضع لمجموعة من القيود البرمجيات

مع ذلك، فان  .ل الأمثل لدالة الهدف مثل القيود في التكلفة والمواردتقنيات اختيار الخاصية ركزت على إيجاد الح

المشفرة في النموذج المعتمد على  ةالطرق الحالية المستخدمة لا تعتمد العلاقات الهيكلية والاعتمادات التكويني

لسبل لتحسين اختيار الخاصية، جنبا إلى جنب مع أهداف المؤسسة، وترك الباب مفتوحا أمام مسألة كيفية ايجاد أفضل ا

في هذه الأطروحة البحثية، قمنا بتطوير تقنية اختيار  .الخصائص لخط انتاج البرمجيات في ظل وجود خاصية الترابط

الخصائص التي تعزز الخصائص المترابطة في مجموعات ذات صلة، وباستخدام الخوارزمية الجينية لإيجاد أقرب 

خذ بالاعتبار الخطأ الوارد من توزيع المجموعات، أولوية المنت  وسلامة حل للحل الأمثل لاختيار الخاصية مع الا

والتي تساعد المطور في تحليل  وتقدم هذه الأطروحة حل لمسالة لاختيار الخاصية لخط انتاج البرمجيات .المنت 

قها على اثنين من خط انتاج البرمجيات. هذه الاطروحة أيضا تم تطبي الترابط واختيار الخاصية المناسبة لتكوينات

 .دراسات الحالة لتقييم عمل المنه  المقترح
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1 CHAPTER 1 

INTRODUCTION 

Over the last decade, the extensive use of software has placed new challenges for the 

software industry in terms of expectations to enhance development productivity, quality 

and reduce associated costs [1]. These expectations have influenced the software industry 

to recreate the idea of reuse [2, 3]. Software product line is an approach with an aim to 

move the software engineers away from developing each system from scratch. It focuses 

on developing a set of software systems in a domain that shares more commonalities than 

uniqueness [3] while developing software systems by releasing product variants. Due to 

these advantages, SPL development has been utilized in a variety of software applications 

such as mobile phones, elevator control systems, and the list keeps growing. In this 

research thesis, we adopt Clements and Northrop’s definition of software product line 

[3]: “software product line is a software engineering approach for creating configurable 

software applications that can be adapted to a variety of requirement sets”.  

The success of SPL project requires a substantial initial investment for the development 

of core assets. This development process of the core assets needs to maximize the 

coverage of the domain in a product line within budget and a given time frame. SPL core 

asset development consists of two main activities: (a) Domain engineering and (b) 

Application engineering [4]. Domain engineering process defines the commonality and 

variability of the product line while application engineering process deals with the 
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development of the applications of the product line by reusing domain artifacts for a 

specific set of requirements.  

Feature modeling [5-8] is the de-facto standard to represent core assets of a SPL. A 

feature model expresses the commonality and variability in a product line in terms of 

features [9]. In a feature model, features are units of capability that are delivered to 

customers, product configuration and configuration management, parameterization for 

reusable components and product management for targeting specific market segments [7, 

10, 11]. A feature model shows a set of features in a hierarchical arrangement that 

describes successive refinements of the variability in a product line [9, 12]. The common 

and variable features in a feature model are organized using structural relationships like 

aggregation and generalization. Furthermore, the organization of the features also use 

configuration relations which are defined in terms of different type of dependencies [6, 

13].  

Previous research indicates that deriving SPL configurations is a time consuming and 

expensive activity [11, 14-16]. A major challenge while deriving valid SPL 

configurations using feature model, is determining, for a given set of constraints, how an 

optimized feature selection can be found [11]. The process of feature selection needs to 

consider the structural and configuration dependencies encoded in a feature model when 

grouping related features into clusters. The consolidation of related features into clusters, 

considering the dependencies among them, is an essential aspect but it is not sufficient on 

its own. The feature selection process also needs to consider how feature assignments to 

products affect different desired objectives required of a product line like value and 

integrity of product line [2].  Hence, it is implied that the feature selection process in SPL 
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should not be opportunistic; it should be carefully planned while considering feature 

dependencies and keeping a balance among the different objectives of a SPL. 

 

1.1 Research Objectives 

In this research work, the feature selection problem is represented as a multi-objective 

optimization problem; with the desired system attributes formulated as objective 

functions. We present a feature selection process that helps SPL developers to 

consolidate interdependent features into clusters and use a genetic search algorithm to 

search for solutions with minimum clustering error, maximum product integrity and 

maximum priority of the product.  

The overarching objective of this thesis is to present a software feature selection process 

that provides guidelines for software product line developers to consolidate related 

requirements into clusters and then optimally select the consolidated feature sets based on 

the user preferences. The objectives of this research can be formally stated as the 

following: 

Objective: Rectify the problem of multi-objective feature selection in software product 

lines by providing optimal (or near optimal) solutions while considering the impact of 

dependency relationships among features. This objective is divided into following sub-

objectives: 

Sub-Objective 1: Develop dependency analysis technique for SPL features and 

model inter-dependency between SPL features. 

Sub-Objective 2: Adapt signed graph clustering for consolidating SPL features.  
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Sub-Objective 3: Apply Genetic Algorithm to optimize feature selection in SPL. 

Sub-Objective 4: To present application of our approach to two case studies.    

Addressing above objectives will assist software product line development organizations 

in better understanding, planning and managing software feature selection decisions in 

software product line development projects. 

1.2 Thesis Outline 

The remainder of the thesis is organized as follows: Chapter 2 gives the background on 

the topics that must be highlighted before going deep into the workings of the developed 

approach. Chapter 3 defines the research methodology and framework and explains the 

approach step by step. Chapter 4 applies the approach to two case studies separately and 

depicts the results achieved. Chapter 5 discusses the results and compares the solutions. 

Chapter 6 concludes the thesis, states the outcomes of this thesis, points out the threats to 

validity and mentions the future directions to this research. 
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2 CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

Before moving on to the research specifics, it is important to highlight some fundamental 

background information on the topics that will help in understanding the problem fully, 

leading to the complete understanding of the approach this research dictates.  

This chapter is comprised of four sections. Section 2.1 gives a background on software 

product lines. Section 2.2 describes feature modeling and the different type of 

dependencies that can exist among the features. Section 2.3 discusses the different 

approaches and algorithms that attempt to solve this feature optimization problem. 

Another section, Section 2.4, identifies the open problems and formulates the problem 

that we have solved in this research. Section 2.5 introduces the Grouping Genetic 

Algorithms (GGA). This chapter then concludes with Section 2.6, where the different 

approaches of GGA are mentioned alongside their applications. 

2.1 Software Product Line Overview 

Software pervades every sector. It has become the bottom line for many organizations, 

even those who never envisioned themselves in the software business are heavily 

involved with software [3]. Businesses now expect improved efficiency and productivity 

from software to help achieve their business goals like low-cost production, high quality, 

and quick time to market, etc. In such circumstances, a reuse strategy makes more sense. 

Although there are several reuse strategies SOA [17], CBS [18] that are being practiced 

by the industry, they have a little economic effect [3]. Traditional reuse techniques’ focus 
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is small-grained, opportunistic, and technology-driven rather than meeting business goals. 

There is a need for strategic reuse to achieve business benefits [3].  

This is where the innovative and growing concept in software engineering, Software 

Product Lines (SPL), is introduced. A software product line is a set of software-intensive 

systems sharing a common, managed set of features that satisfy the specific needs of a 

particular market segment or mission and that are developed from a common set of core 

assets in a prescribed way. It is a new application of a proven concept in several 

engineering fields. Many businesses have put the product-line concept to their advantage 

achieving their business goals in less time. Few examples include the Celsiustech’s Ship 

System 2000, Cummins Inc.’s Diesel Control Systems, National Reconnaissance Office/ 

Raytheon’s Control Channel Toolkit, Market Maker GMBH’s Merger, Nokia Mobile 

Phones. These companies gained a lot of benefits like major cost cuttings, a drastic 

decrease in the time to market etc. The success of SPL in software engineering suggests 

the future of reuse lies in SPL.  

There are two approaches to software product line, a proactive and a reactive one. We 

will be using the former approach since it is more consistent with the SPL principle of 

proactive reuse [3]. Moreover, since we are catering the situation where SPL has to be 

newly introduced in a place where there is no prior use of SPL; proactive evolution was 

the right approach to adopt. 

2.2 Feature Modeling and Dependency Analysis  

Kang et al. [5] first introduced the feature models as part of Feature-Oriented Domain 

Analysis (FODA) for SPLs. Features are units of capability that are delivered to 

customers, product configuration and configuration management, parameterization for 
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reusable components and product management for targeting specific market segments [7, 

10, 11]. A feature model is a hierarchically arranged set of features showing the 

relationships and dependencies between a set of features for a SPL.  

Typically, a feature model specifies structural relationships, configuration dependencies 

and operational dependencies between features of a SPL [6, 13]. We discuss the main 

types of feature dependencies as follows: 

 “Required Dependency” – It exists between two features if a feature that is selected in 

a product requires the presence of another feature in the same product.  

 “Excluded Dependency” – It is present among two features if a feature is selected in a 

product where the other feature cannot be selected.  

 “Usage dependency” – It’s there among the features if a feature depends on another 

feature in order to correctly function or be implemented.    

A sample feature model can be seen in Figure 1, followed by the description of several 

dependencies that exist between the features of the depicted feature model. 

For instance, in Figure 1, there exists a “required” dependency between maps and GPS 

feature; whenever a maps feature is selected the GPS will also be selected. The 

dependency is due to the fact that in real-world setting the maps are a useless feature 

without the GPS, not vice versa. Similarly, a “required” dependency between iPhone6 

and fingerPrint and retinaScan where, whenever an iPhone6 feature is selected, the 

fingerPrint and retinaScan feature must also be present in the product. The dependency 

was based on the fact that iPhone6, being the latest and flagship mobile for Apple Inc., it 
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contains both the fingerprint and retinaScan features by default.  Next, a “required” 

dependency between phones and voiceCall feature, which is quite logical when it is put 

to real-life environment, where a mobile phone is of no use if it unable make a call, hence 

the phone feature will have the voiceCall feature by default.  In addition to these three 

“required” dependencies, there exists an “excluded/threat” dependency which resides 

between m7 and videoCall feature, which states that an m7 feature can never have a 

videoCall feature since in real-life settings m7 is not able to support the video calling 

feature. 

2.3 Feature Selection Approaches 

It can be seen in the previous researches that finding an optimal feature selection is a NP-

hard problem [11, 19]. Researchers indicate similarity between feature selection with 

resource constraints and configuration optimization problems as addressed by rest of the 

automated feature selection approaches in the literature who have not consider potential 

constraints [20]. A significant number of researchers have applied techniques like BDD 

[21], CSP [22], and SAT solvers [23] to solve the product line feature selection problem, 

Figure 1 - Feature model for Smartphone 
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but they haven’t considered resource constraints. Furthermore, the time complexities for 

these techniques is shown to be exponential [11, 19]. Similarly, there have been efforts 

by researchers in developing polynomial-time approximation algorithms to select highly 

optimal feature sets [19].  

Furthermore, there are many researchers in recent times that are trying to solve this 

feature optimization problem along the consideration of resource constraints and user 

requirements. In a certain research, Henard et al. [1] introduce an algorithm called 

SATIBEA, where the authors address the problem by combining constraint solving with 

multi-objective search-based optimization. The research evaluates the algorithm over five 

large real world SPLs considering some quality indicators and diversity measures. 

Furthermore, this research demonstrates the significance of using constraint solving with 

search-based approaches. To use the two techniques together they consider two key 

aspects called diversity promotion and searching via smart operators. By using this they 

show how SATIBEA outperforms the ‘Sate-of-the-art’ Indicator based evolutionary 

algorithm (IBEA) [24].  

In another research, Guo et al. [11] tries to solve this problem by using a GA-based AI 

approach which they name as GAFES. Here they generate a set of related feature while 

simultaneously considering the resource constraints. They first generate encodings of 

products randomly to initialize the modified GA and then use their functions to eradicate 

the invalid configurations using their approach. 

Wang and Pang [25] attempts to solve this problem. In order to solve, they preprocess the 

feature model by modifying the feature model such that the features that have some user 
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constraints are always selected. Then they convert this model into a graph using defined 

rules, which follows the optimization step where they apply the Ant colony optimization 

algorithm. However, their technique only caters to the required and excluded 

dependencies and ignores the other types of dependencies mentioned in section 2.2, 

which may result in products that don’t conform to the feature dependencies that exist 

among the features. 

There are several researchers [26, 27] that augment the feature model with some attribute 

and the use it to solve the multi-objective optimization problem. The attributes act as the 

resource constraints that the researchers try to cater while optimizing the feature selection 

process. Both the researchers add the same attributes to the feature but, with different 

value ranges assigned to each attribute. Sayyad et al. [26] defined optimization objectives 

which guide their search for optimized feature selection. Due to the optimization 

objectives selected, the research results in a viewpoint that is only useful for researchers 

but not the business end users which negates the ultimate purpose of using the product-

line engineering. On the other hand, Lian [27] explicitly mentions the feature attributes as 

NFRs and then solves the problem using the two-dimensional fitness function to also 

integrate the user preferences. Their algorithm IVEA does the selection in one step which 

tends to increase the time of the algorithm takes. Moreover, they tested it on two feature 

models which make the results hard to be generalized upon a variety of feature models 

available.   

In a similar research Lizhang [28] shows two evolutionary algorithm templates to solve 

the problem of feature selection. First, to simplify the treatment for different feature 

constraints they encode them into a uniform format, defining them as rules using 
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Chomsky grammar. They then use their solutionRevies algorithm upon IBEA technique, 

Sayyad et al. [29], to select features using optimization objectives. However, in this 

paper, they assume that NFRs considered are quantified and classified. 

Li et al. [4] attempts to solve this problem from a new perspective using an approach 

called 0-1 programming. They transform the feature model constraint into inequality 

constraint to make them compatible to be solved by linear programming.  Although they 

claim to solve this problem of feature selection in less polynomial time, they assume 

there is only one kind of resource to be consumed, which is not the case in real life 

situations.  

The literature surveyed is evaluated in the light of the following criterion: (a) 

Consideration of features interdependencies/Cross-tree constraints (b) Stated Objectives 

(c) Experimental or Theoretical base/Validation (V), which helps in identification of the 

problems that remain open in the domain of software product line engineering. 

Based on the discussion in Section 2.3, we formalized the problem for our research, by 

addressing open problems that were posed by the literature surveyed.  

2.4 Addressing the open problems 

Despite the interest in software feature selection problem, there are some key research 

questions with regards to the selection of suitable features that remain open. The 

approach for feature selection that we have developed in this research addresses the open 

problems raised in the literature. For example, Cho et al. [13] advocate the need to 

analyze and consider feature dependencies before designing and developing product line 

assets.  
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The proposed approach does consider different types of dependencies encoded in a 

feature model, as mentioned in Section 2.2. Similarly, Karimpour and Ruhe [2] argue the 

need for developing techniques that find a solution for a trade-off between alternative 

features for products while balancing overall value and product integrity.  

The feature selection approach developed in this research work aims to rectify this 

problem by providing optimal (or near optimal) solutions for feature selection while 

considering the impact of dependency relationships, product priority and the overall 

integrity of the product. The objectives are selected keeping the business perspective in 

mind. Moreover, to best of our knowledge, the related studies have used their techniques 

on automatically generated feature models only; so we validate our research by applying 

it to real life case studies to confirm the beneficial aspect of our approach, as a proof-to-

concept.    

2.5 Grouping Genetic Algorithm (GGA) 

Ensuring that the SPL configurations fulfill the business objectives while considering the 

feature dependencies makes the problem more complex. As there are multiple objectives 

to be optimized, this yields for some tradeoffs still ensuring best possible results. This 

makes the problem an optimization problem.   

A popular and promising approach to solve such optimization problem is the use of 

genetic algorithm and it has been used by many researchers as used by Karimpour and 

Guo, [2, 11]. 

The techniques and approaches that use GA, mentioned in Section 2.3, use the normal 

binary chromosomal representations to solve the feature selection problem. So in order to 
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avoid the invalid solutions to be created they have to assign huge or moderate penalties 

on individuals; which causes the GA to converge before finding some of the solutions. 

If they incorporate a high penalty during evaluation and the domain is one in which 

production of an individual violating the constraint is likely, the genetic algorithm might 

spend most of its time evaluating illegal individuals. Further, it can happen that when a 

legal individual is found, it drives the others out and the population converges on it 

without finding better individuals, since the likely paths to other legal individuals require 

the production of illegal individuals as intermediate chromosomes/structures (two illegal 

parents might produce best of the children), and the penalties for violating the constraint 

make it unlikely that such intermediate chromosomes/structures will reproduce. If one 

imposes moderate penalties, the system may evolve individuals that violate the constraint 

but are rated better than those that do not because the rest of the evaluation function can 

be satisfied better by accepting the moderate constraint penalty than by avoiding it. If one 

builds a "decoder" into the evaluation procedure that intelligently avoids building an 

illegal individual from the chromosome, the result is frequently computation-intensive to 

run. Further, not all constraints can be easily implemented in this way. 

As seen, normal binary encodings in a GA are unnatural for many problems as they don’t 

fully accommodate the problem specific information [30]. Hence, our GA’s encoding 

scheme is inspired by the encoding scheme suggested by Falkenaeur  [31] and 

Michalewicz [32] , we have modified the scheme just to ease the coding of the genetic 

algorithm. No changes have been made to the gist of the encoding scheme. 
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Falkenauer [31] proposed so-called Grouping Genetic Algorithm (GGA) to deal with a 

variety of grouping (partitioning) problems; his efforts aimed at designing appropriate 

chromosomal representation to capture the structure of the problem. Many researchers 

[33-38] have applied his chromosomal representations or a modified version of his 

chromosomal representations to represent and then solve the different type of partitioning 

problems like the bin-packing, bin balancing or graph-coloring problems. 

2.6 GGA Approaches and applications 

This section highlights some of the work that has been done using the grouping genetic 

algorithm. The section also discusses some of the applications of the GGA. 

Quiroz et al [33] presents a new grouping genetic algorithm called GGA-CGT to solve 

the bin packing problem. The algorithm includes heuristic strategies that promote the 

transmission of the best genes of the chromosomes and that allow for exploration of the 

search space. In this research GGA-CGT controls the selection of individuals, to create a 

balance between the selective pressure and population diversity, avoiding the premature 

convergence of the algorithm and obtaining better solutions in a small number of 

generations. 

In another research[36],  proposes a grouping genetic algorithm for clustering along with 

the following stages: application of various numbers of clusters in a data set in order to 

find the suitable number of clusters, optimization of the algorithm by means of effective 

crossover and mutation operators, quality enhancement by implementation of the local 

search method. 
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Zulawinski [39] shows an application of a modified version of the GGA, which proposed 

by [31]. This paper shows the effectiveness of this approach on various Bin Balancing 

problems. 

E. C. Brown and R. T. Sumichrast [35] proposes a new solution to solve the machine-part 

cell formation (MPCF) problem. MPCF is a problem that addresses the issues 

surrounding the creation of part families based on component processing requirements, 

and the identification of machine groups based on their ability to process specific part 

families. This methodology is based on a grouping genetic algorithm and employs a 

specialized replacement heuristic within the crossover operator. 

Another application of GGA is shown by Rhydian Lewis and Ben Paechter [34]. They   

apply GGA to solve University Course Timetabling-Problems (UCTPs) which involves 

the allocation of resources (such as rooms and timeslots) to all the events of a university; 

satisfying a set of hard-constraints and, as much as possible, some soft constraints. 
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3 CHAPTER 3 

RESEARCH METHODOLOGY AND FRAMEWORK 

The evolution of SPL is particularly a challenging job. The functionalities that a SPL is 

composed of are in the form of features. These features naturally have dependencies 

among them. When evolving SPL these feature dependencies must be taken into 

consideration for smooth and efficient evolution. SPL development needs a feature 

selection process where the user requirements and the features are analyzed together to 

provide a portfolio of sets of related features that must be implemented together. 

 

Figure 2 - Research Methodology and Framework 
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We believe that this consolidation of related features into sets must address three 

essential concerns: understanding the needs of stakeholder via SPL specifications, 

analyzing dependencies among features; and then identifying a group of suitable sets 

(containing related features) that best matches SPL specifications and user preferences. 

The multi-objective feature selection process shown in Figure 2 composed of following 

four phases: (a) SPL specification, (b) Features dependency analysis, (c) Cluster analysis 

and (d) Feature optimization. The first phase, SPL specification, uses a feature model to 

specify all the features present in the SPL. In the second phase, feature dependency 

analysis is carried out which examines the relationships between the features. The third 

phase applies the graph clustering algorithm to organize interdependent features into 

clusters and create consolidated features. Lastly, in the feature optimization phase, an 

evolutionary algorithm is used to optimize feature selection with respect to the objective 

functions. As a result, a set of possible solutions that fit user preferences is produced. 

 

3.1 Design Science Research Guidelines 

 

Our approach, a graph-based feature selection technique, adheres to the research 

guidelines mentioned in the design science research framework [40]. The framework sets 

forth seven design science research guidelines which guide in producing a research 

carrying viable contributions. The guidelines and a summary of what each guideline 

indicates are presented in Table 1.  
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Table 1 - Summary of Design Science Research Guidelines 

 Design science research guideline Guideline indications 

1 “Design as an artifact” 
The artifacts produced by a research must be in 

the form of a model or a method. 

2 “Problem relevance” 
The technology-based solutions, produced by 

the research, must be relevant to the problems. 

3 “Design evaluation” 

Case studies, experiments or other evaluation 

methods must be used to gauge and exhibit the 

quality of the design artifact.  

4 “Research contribution” 
Clear contributions in the scope of the design 

artifact, must be made by the research. 

5 “Research rigor” 

Rigorous methods must be used by the 

research model while evaluating and 

developing the design artifact. 

6 “Design as search process” 

For the production of an effective design 

artifact, desired ends must be reached via 

available means while adhering to the problem 

domain’s laws. 

7 “Communication of research” 
The audience for the research should be both, 

technology and management oriented. 

 

We discuss our approach with reference to the guidelines in Table 2 as follows: 

3.1.1 Design as an artifact 

The major artifact in this research is the multi-objective feature selection process that is 

led by features dependency analysis, consolidated features (a feature that contains several 

related features) and the objective functions (user preferences). The feature selection 

process uses the feature model to elicit SPL requirements while the feature dependency 

analysis is performed to analyze the relationships between SPL features. The graph 
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clustering is used to consolidate related features which lead to the main artifact of our 

research. 

3.1.2 Problem Relevance 

The problem we solve in our research has high relevance to software engineering field. 

Firstly, SPL success critically depends upon the selection of appropriate features [26, 41, 

42]. Secondly, the consolidation of related features should be performed based on the 

feature dependencies, as discussed in Chapter 2, and the SPL requirements. The 

discussion in literature review section of Chapter 2 highlights the need for a technique 

that can select features based on the feature dependency/requirements analysis [18], and 

can present several solution sets of consolidated features that match SPL specifications 

and the user preferences. The feature selection approach developed in this research aims 

to fulfill the aforementioned needs, eventually contributing to solving an important 

problem in the field of software engineering. 

3.1.3 Design Evaluation 

The feature selection approach is evaluated using two real life case studies. This allows 

the research audience to gauge the efficiency of our approach compared to other related 

approaches. The case studies presented are discussed in relation to our feature selection 

process in detail, in chapter 4. The observations on the findings of the case studies are 

discussed in detail.  Moreover, we have incorporated experts’ qualitative feedback in our 

approach to confirm the viability of our approach.  
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3.1.4 Research Contribution 

The principal research contributions of our research are the following: (a) Development 

of a feature dependency analysis technique, (b) Introduction to the concept of FDG 

(feature dependency graph), (c) Adaptation to signed graph clustering for combining 

related features, (d) Applying a Genetic Algorithm to optimize feature selection in SPL. 

These research contributions are then be evaluated as mentioned in the previous part, 

“Design Evaluation”.  

3.1.5 Research Rigor 

The feature selection process that is presented in our research uses a feature model to 

acquire the SPL specifications; it then applies feature dependency analysis to analyze the 

dependencies among the features while forming a feature dependency graph; followed by 

the graph clustering step where related feature are consolidated accordingly; leading to 

the final step where the multi-objective feature selection is done by using genetic 

algorithm. The SPL to-be needs are elicited using feature modeling [5] while the 

consolidation of related features is done using a local optimization signed graph 

clustering algorithm [43, 44] which has a long history and follows a sound mathematical 

model. It can therefore be seen, that our research work is drawn from a clearly defined 

and tested base of literature and techniques. 

3.1.6 Design as a Search Process 

The design of our research is based on an iterative search that can effectively balance the 

SPL requirements, the feature dependencies and the user preferences. Moreover, our 

process ensures that the laws that are commonly accepted and practiced in software 
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engineering are satisfied; this can be seen in the previous item that our work is heavily 

drawn from already accepted processes and approaches.  

3.1.7 Communication of Research 

The audience targeted by our research is the SPL analysts who are well aware of the 

feature modeling; clustering approaches, particularly graph based, and feature selection 

processes and algorithms. However, since the business requirements play a central role in 

our approach, there is strong motivation for the managerial audience to adopt our 

approach.  

3.2 Feature Modeling 

 The first step is to form a suitable feature model that has sufficient amount of features 

and dependencies which are also close to a real world setting. These features act as the 

design requirements for the SPL. A similar feature model for smartphone device product 

line can be seen in Figure 1, earlier in chapter 2.  

3.3 Feature Dependency Analysis 

 To proceed with the research it is important to analyze the dependencies that exist 

among the features and come up with a technique that allows us to convert the feature 

model into a graph upon which the graph clustering can be carried out.  

These dependencies are induced in the feature model when it is being created. The 

dependencies reflect upon the relationships features have among themselves; based on 

the structural and relational constraints.  

The dependencies must be fully analyzed and translated into a structure that can easily 

depict the relations among the various features of a product line. The semantic 
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dependency relationship among the concrete level features (CLFs), leaves of the feature 

model, can be seen in Figure 3. 

The child features that were connected to their parent via AND connector were given the 

edge weight ‘1’ between them as these features must exist together. Similarly, those 

connected via ALT or NOT connectors were assigned the edge weight value of ‘-1’ 

among them, as only one of the child can be selected for a certain product or both 

can’t/must not exist in the same product. Likewise, edge weight between the features that 

were connected via OR connector were assigned the value ‘0.5’.  

 

Figure 3 - Semantic Dependency Relationships among the CLFs  

 

The weights proposed for the required, usage, structural OR and threat dependencies are 

derived from the literature surveyed to compile this study. A similar method to the one 

used by Khan in [18]. The inherent limitation of using weights lies in the subjective 

nature of their values. However, the sensitivity analysis presented previously indicates 

that our approach is robust and is able to produces stable solutions even if the weight 

values are varied. 
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3.4 Feature Dependency Graph (FDG)  

We construct an undirected signed graph G(N, E), called the feature dependency graph, 

to model the semantic dependencies between CLFs. The set of nodes N of the feature 

dependency graph consists of all CLFs of the SPL, with positive or negative edges 

connecting pairs of CLFs with required, usage or threat dependencies.  

Every edge E is assigned a positive or negative weight between -1 and 1 to specify the 

nature and the strength of the interdependence between its end nodes. The signed graph 

clustering algorithm subsequently used in our approach tries to merge nodes (CLFs) with 

positive edges in the same cluster (group), preferring edges with higher positive weights, 

while separating nodes with negative edges, preferring edges with more negative weights. 

Therefore, in order to differentiate between the three dependences, we have to choose 

three weight values w1, w2 and w3 such that w1, w2 > 0 (as the usage and required are 

positive in nature) while w3 < 0 (as the threat dependency is a negative relationship). We 

assign weights of 1, 0.1 and -1 to the required, usage and threat dependencies, 

respectively. The choice of the weights is based on the case studies experiences 

mentioned in [18]. 

We also introduced another dependency for the structural OR and assigned a weight, w4, 

of 0.5 to the edge among the nodes that have a structural OR among themselves. The 

notion behind the value of w4 is that, if there exist two nodes with structural OR among 

themselves, they have an equal probability of being selected for a certain cluster; either a 

node (CLF) will be selected or either it won’t be selected.  
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Based on the dependencies discussed in Chapter 2, a feature dependency graph can be 

made. A sample FDG can be seen in Figure 4. This FDG contains 10 nodes, which 

represent 10 concrete level features. Features that don’t have any relation with other 

feature can exist too; like ‘CLF 3’ shown in Figure 4. These features can be placed in any 

cluster. Such features are one of the causes why we receive several different solutions 

having the same clustering error. 

 

Figure 4 - A sample Feature dependency graph 

 

3.5 Graph Clustering 

Once the feature model is converted into the graph, we run graph clustering algorithm, to 

come up with the several solutions including some near-optimal solutions each of which 

contains clusters of features (consolidated features) that are interrelated and can 

efficiently be developed together when developing a software product line.  
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A custom graph clustering algorithm was developed to cluster elements into groups. Our 

graph clustering algorithm works like a relocation algorithm that is used to partition 

signed graphs. Signed graphs are the graphs that have positive or negative weights over 

the edges that connect the vertices. As seen in Figure 4, the edges in the graph contain 

both negative and positive weights so; our algorithm seems to be the appropriate graph 

clustering algorithm to apply. This algorithm optimizes a certain partition by including as 

many positive edges as possible with the cluster and negative edges between the clusters.  

3.5.1 Cluster Formation 

In this step, the nodes of the feature dependency graph are clustered based on their 

interdependencies. We use the local optimization signed graph clustering algorithm [43] 

that partitions nodes of a signed graph in such a way that pairs of nodes joined by 

positive edges are grouped in the same cluster, whereas pairs of nodes joined by negative 

edges are separated into different clusters. Our objective is to cluster the concrete-level 

features (CLFs) with required and usage relationships together while separating concrete-

level features with threat dependencies. The cluster formation helps to combine those 

CLFs in a cluster that work together to achieve a functionality of the SPL. On the other 

hand, any two concrete-level features with a threat dependency will be separated into 

different clusters. 

However, it is important to note that it is not always possible to cluster a signed graph. In 

fact, a signed graph is clusterable if and only if it contains no cycle with exactly one 

negative edge [45]. If the feature dependency graph is not clusterable, the local 

optimization algorithm finds a partition that minimizes the clustering error. The negative 

error neg of a partition is the sum of weights of all negative edges that lie inside clusters. 
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While the positive error pos can be defined as the sum of weights of positive edges 

joining different clusters. The clustering error, Er is defined [43] as: 

Er =   pos +  |neg|                              (1) 

where |.| stands for the absolute value. Given Eq. (1) we can outline the local 

optimization clustering algorithm as shown in Figure 5: 

 

Figure 5 - Cluster formation procedure for graph clustering 

 

Here Er(Cls) denotes the error of the clustering Cls and n denotes the number of 

iterations performed by the algorithm before stopping. The output of the Procedure is a 

local optimal clustering that is not necessarily a global optimal. However, for large n 

(typically 1000), this local optimal provides a good approximation to the global optimal 

[43]. Procedure 1 is the most widely used signed graph clustering algorithm as the 

problem of finding a global optimal clustering is NP-hard [46]. 

3.6 Business Objectives 

Once the set of solutions or configurations to SPL are provided, there can be several 

different near optimal solutions based on the objectives that must be reached out of the 

set of SPL solutions. The objective functions can be created based on the structural needs 

of the solutions or they can be elicited from the stakeholders, like a business analyst, who 
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wants a certain trait to be depicted at all times from their products within a product line or 

as in our case, software product line.  

For our approach, overall there are three objectives which are considered while defining 

near-optimal solutions to a software product line.  One was the clustering error that 

resulted after applying our graph clustering algorithm over the FDG; the second was the 

overall product priority and last the product integrity.  Each of the objectives is defined in 

the following sub-sections.    

3.6.1 Clustering Error 

The clustering error is generated by the graph clustering algorithm, which depicts how 

much of a tradeoff between the features’ dependencies have been made in order to 

generate that particular error.  

Er =  pos + |neg|          (1) 

Where, neg of a partition is the sum of weights of all negative edges that lie inside 

clusters and  pos can be defined as the sum of weights of positive edges joining different 

clusters. 

3.6.2 Overall product priority 

One of the major requirements of businesses or software system planner is to produce 

products that are not only built in a certain fashion but they also amount to a required 

value it provides to the company. As a single product contains several features, we start 

off by assigning a priority value based on the importance of each concrete level feature 

(CLF). A common approach to find the value or priority of a feature is to ask the 

stakeholders to vote for features. Hence, the assignment was made based on a small 
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survey where we asked the respondents, experts and developers, to rate the features based 

on the importance of the feature in the product. We then took the average value of the 

respondents answer and assigned that value as the priority for a particular feature.    

As we have set of clustered/consolidated features in a single product 

configuration/solution, the priority of a cluster may depend on the selection state of other 

features such that selection of a feature can increase or decrease the value/priority of the 

whole cluster. Therefore, we use average of averages method to calculate the overall 

product priority or value. So, the priority of each feature in a group is added and divided 

by the number of features in a group/cluster, hence the average priority within each 

cluster increases or decreases based on the priority of each individual.  This is repeated 

for every group. The average of these averages is then the overall product priority of the 

resulting product.    

PP = (∑ (∑ CPj)
𝑛

𝑗=0

𝑚

𝑖=0
/n)/m    (2) 

Where PP is the overall product priority, m is the number of clusters in the product, n is 

the number of CLFs in that particular cluster and CPj is the priority of a single CLF, ‘j’. 

3.6.3 Overall product integrity 

As talked about earlier, one of the main goals for businesses to use SPL as a reuse 

technique is to achieve a range of products in efficient and effective manner that also 

comply to the business requirements which SPL tends to fulfill. One such goal that is 

required by businesses or stakeholders is the overall integrity of the resulting product [2, 

47]. 
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According to C. Takahiro [47], the product integrity can be defined as “the degree to 

which the features of a product are perceived as cohesive”. From end-user perspective the 

higher the product’s integrity is, the higher the synergy among the features of the product, 

rather than a product just having a collection of features each doing a solitary task. 

To formulate integrity, we use NCP (Nearest common Predecessor). NCP measures the 

semantic distance among tow CLFs. To calculate NCP for two CLFs, we first have to 

label the levels, root being the zero level, while the parent of the deepest leaf will have 

the highest level, as the number is incremented at each tree level. NCP for two CLFs is 

their first common abstract reached when moving from leafs towards the root. That level 

number will be the NCP of those two features. Figure 6 shows how the integrity between 

two features is measured by using NCP. 

 

Figure 6 - Sample Calculations for NCP. Ex: NCP(a,b) = 2, NCP(c,d) = 0 

 

3.7 Multi-objective feature selection using Genetic Algorithm 

Ensuring that the SPL configurations fulfill the business objectives while considering the 

feature dependencies makes the problem more complex. As there are multiple objectives 



30 

 

to be optimized, this yields for some tradeoffs still ensuring best possible results. This 

makes the problem an optimization problem.   

A popular and promising approach to solve such optimization problem is the use of 

genetic algorithm and it has been used by many researchers as in [2, 11].  

3.7.1 Grouping Genetic Algorithm (GGA) 

Falkenauer [31] proposed so-called Grouping Genetic Algorithm (GGA) to deal with a 

variety of grouping (partitioning) problems; his efforts aimed at designing appropriate 

chromosomal representation to capture the structure of the problem. Many researchers 

[33-38] have applied his chromosomal representations or a modified version of his 

chromosomal representations to represent and then solve the different type of partitioning 

problems like the bin-packing, bin balancing or graph coloring problems.  

3.7.2 Encoding Scheme 

Normal binary encodings are unnatural for many problems as they don’t fully 

accommodate the problem specific information[30]. Hence, our encoding scheme is 

inspired by the encoding scheme suggested by Falkenaeur  [31] and Michalewicz [32] , 

we have modified the scheme just to ease the coding of the genetic algorithm. No change 

has been made to the gist of the encoding scheme. This encoding scheme is used to 

enhance the performance of the genetic algorithm by using problem specific genetic 

operators.   

The crossover and mutation genetic operators remain the same and work in the same 

fashion as suggested in [31, 32]. This encoding scheme is specially designed to solve the 

grouping problems, like bin-packing and bin-balancing problems. It scheme had to be 
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modified because in the bin-balancing and the bin-packing problems either the bin/group 

size is fixed or the number of objects/features inside a bin/group are fixed. In our 

approach both the amount of groups and the number of features within a group are kept 

variable.   

The following scheme has been used to represent the chromosome: 

(11 22 31 43 53 63 71 81 92 : 1 2 3) 

 The part of the chromosome to the left of the colon is the feature part, while the 

other is called the group part. 

 The 1st digit of each number in the feature part is the feature number or ID. The 

second digit is the group they are associated with. 

 The group part represents the total clusters that all the features in this solution 

reside in. 

 So, in the above example, there are 9 features associated with 3 different groups.  

The encoding scheme to encode a SPL configuration into a chromosome is depicted in 

Figure 6. 
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Figure 7 - a) Description of Chromosome b) Solution representation of the chromosome 

 

3.7.3 Selection 

Once the population is generated, the next step is to select some individuals from the 

given population, upon which the crossover and mutation genetic operators can be 

applied.  

The individuals will be selected based on a fitness value which is calculated as follows: 

Fitness =  1/PP  + 1/PI + Er  (3) 

Where, PP is the overall product priority, PI is the overall product integrity and Er is the 

clustering error for that product/SPL configuration. The lower the value of fitness the 

fittest an individual is.  

To select the individuals we have used the tournament selection approach [48]. It is a 

method to select an individual from a given population of several individuals. Several 
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tournaments are carried out among some individuals (chosen at random) in a given 

population. The one with the best fitness among the two is then selected for crossover. 

The tournament selection method has the following steps:  

 Select X individuals from a given population. (X = tournament size)  

 Select the individual with best fitness value, having some probability p. 

 Then select the next best-fit individual, with probability p*(1-p) 

 Then select the 2nd next best fit individual with probability p*((1-p)^2) 

 Do this K times and then perform crossover upon each pair of individuals to 

generate the next population. 

3.7.4 Crossover 

One of the genetic operators in a GA is a crossover. When crossover between two 

individual of a given population occurs, a new individual is generated. This individual 

inherits the traits of its parent. When performing crossover, the hope is that by combining 

two individuals an even 'fitter' offspring will be created, while inheriting the traits of its 

parents.  

The words chromosome and individual will be used interchangeably. The crossover is 

explained using the following example: 

Individual 1: (11 22 31 43 53 63 71 81 92 : 1 2 3) 

Individual 2: (12 23 33 45 51 64 72 82 96 : 1 2 3 4 5 6) 

Two crossing sites are then selected in each of the individuals 

Individual 1: (11 22 31 43 53 63 71 81 92 : 1 | 2 3| ) 

Individual 2: (12 23 33 45 51 64 72 82 96 : 1 2 |3 4| 5 6) 
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The idea is to inject the contents bounded between the two crossings sites of the first 

parent are inserted at the first crossing site of the second parent and vice versa. This 

creates two children, who are then mutated or sent directly to the new population, 

depending on the mutation probability.  

This form of crossover results in duplicate elements being grouped into the different 

clusters. To solve this problem the old groups of the child with duplicate elements are 

deleted if the new group also has those same elements. This, in turn, leaves some 

elements not being assigned to any of the group. To cater this problem a repair function is 

developed that randomly assigns the abandoned elements to any group or creates a new 

group and assigns the abandoned features to it. 

The process of crossover can be seen in Figure 8. The two chromosomes are denoted with 

different colors in order to identify the groups and features of each individual 

chromosome.  
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Figure 8 - GA Crossover process 

  

3.7.5 Mutation 

Once the crossover produces a child, mutation is performed based on the mutation 

probability. Mutation is performed to bring a little bit of randomness in the created 

individual, to ensure that this particular individual is not among the initial population. 

The small change we perform is swapping of a feature from one cluster to another. This 

process of mutation of a chromosome can be seen in Figure 9. 
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Figure 9 - Mutating a chromosome by swapping a feature among clusters 

 

 

3.7.6 Termination of GA  

There are two ways to terminate the GA either a certain number of generations (1000) are 

reached or a certain fitness value individual is created and no further improvement to the 

fitness value occur, for a certain amount of generations.  

3.8 Consolidated features for SPL requirements 

 Once the GA terminates, The GA produces a single best solution having the best fitness 

value among the last generation that was generated. This solution is the near optimal 

solution that has evolved from a random initial population. The solution suggests that 

elements in each cluster must be developed together in order to benefit the most in terms 

of the business objectives.  
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4 CHAPTER 4 

CASE STUDIES AND RESULTS 

This chapter comprises of two case studies where we apply our approach and discuss the 

outcomes of each case study separately. The first case study is a real life example of an 

automotive system (AS), which is used to easily understand the concepts discussed in our 

approach. The second case study is based on a well known tool used by the architects and 

structural engineers, life cycle assessment tool (LCA). These case studies show the 

applicability of our approach in different environments, which will help the system 

analysts and SPL managers to easily adopt to this approach.    

4.1 Case Study 1 – Automotive System (AS)  

This case study includes some commonly utilized features of an automotive system. As 

automobiles are widespread and knowledge about them is a very common, it will make 

our approach easy to relate and understand.   

4.1.1 AS - Feature Modeling 

 For the purpose of the case study a suitable feature model for an Automotive System was 

formulated based on the SPL requirements of an automotive system, which contained 34 

features and 8 cross-tree constraints. These constraints were the basis upon which the 

relationships between the features were defined. The feature model can be seen Figure 9; 

it depicts the core and optional features having a variety of relations among the features.    
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Figure 10 - Feature Model for an Automotive system 

 

4.1.2 AS - Feature Dependency Analysis 

 The feature dependency analysis was performed over the feature model depicted in 

Figure 10. The analysis considered the feature dependencies that existed among the 

concrete level features, as shown in Figure 3. The dependencies that existed among the 

CLFs of the automotive system can be seen in Table 2. 



39 

 

Table 2 - Feature Dependency analysis for automotive system 

 

4.1.3 AS - Feature Dependency Graph (FDG)  

The undirected feature dependency graph was created by developing a graph clustering 

algorithm defined in Chapter 3 of the thesis. The undirected FDG can be seen in Figure 

11.  The nodes of the graph represent the CLFs in the feature model, which was created 

for the automotive system.  
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Figure 11 - FDG for the Automotive FM using the feature dependencies 

 

4.1.4 AS - Graph Clustering 

The graph clustering algorithm was run on the feature dependency graph; the following 

steps were followed to get the clustering results depicted in Table 3:    

1. Provide the number of clusters 

2. Run graph clustering algorithm 1000 times with 95% confidence level 

3. Note the clustering error 

4. Decrement the number of clusters 

5. Repeat step 1-4 (starting from ‘no. of clusters = number of CLFs’ to ‘no. of 

clusters = 1’) 
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4.1.5 AS - Clustering Results  

The clusters are formed based on how related the features are (i.e. feature dependencies). 

Clustering error closer to zero suggests that during clusters formation better compromises 

between the placement of features (based on the dependencies) into clusters, were made 

than the results produced with higher clustering error. 

Table 3 - Results after applying graph clustering on the FDG 
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Hence, the optimum clustering error is 0.45 in our experiments. The reason it remained 

constant for several different numbers of clusters is that there might always be a 

compromise made between placements of features into clusters that if the error decreases 

by removal of a feature from a cluster, it tends to increase due to the addition of that 

feature into another cluster. 

In case, if the error is same for several different solutions, the near optimal solution is the 

one that gives minimal error we select the solution with a the most number of clusters, as 

it gives more choices to distribute the product among the development teams. Therefore, 

the results in Table 3 suggest having the most number of clusters with minimum 

clustering error, 12 clusters (consolidated features) of related features. 

Therefore, the algorithm clustered the FDG into 12 clusters where the cluster number can 

be seen beside each CLF, within the parenthesis in the graph in Figure 12. 

 

Figure 12 - A clustered FDG after running the Graph Clustering algorithm 
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4.1.6 Multi-objective feature selection using Genetic Algorithm 

GA algorithm was used to generate a near-optimal solution. The GA started off by 

initializing a population of 50 random solutions. All the solutions were evaluated based 

on the fitness value and then the 20 best among the population were selected to be the 

part of a new population. These 20 were then selected for crossover, using tournament 

selection. Based on the crossover probability, 0.5, the crossover was performed between 

each pair of solutions. The children produced by these crossovers were then mutated in 

accordance with the mutation probability, 0.1. These children were then added to the new 

created population. The steps were then repeated until a certain fitness value was 

achieved.  The one with the best fitness value was suggested as the near-optimal solution.  

To calculate the fitness value equation (3) is used. To compute the overall fitness value 

we need the computations of the PP, PI and Err or the clustering error is generated when 

we apply our graph clustering algorithm, PP is calculated by using equation (2) while PI 

is calculated using a technique called Nearest Common Predecessor, NCP. Calculation of 

PP and PI are discussed individually and then the resulting configuration is shown.     

4.1.7 AS – Calculating Product Priority, PP  

As mentioned in Section 3.6.2, the assignment of priority was made based on a small 

survey where we asked the respondents, experts and developers, to rate the features based 

on the importance of the feature in the product. We then took the average value of the 

respondents’ answers and assigned that value as the priority for a particular feature. Next, 

we inverted the priority for each feature as the higher the priority numbering the lower 

the importance and vice versa (i.e. the feature having priority 1 is of most importance). 
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This value was assigned to each individual feature as its priority and then used in the 

GA’s objective function for calculating the product priority as discussed in Section 3.6.2..  

The priorities for each concrete level feature in the ‘Automotive System (AS)’ feature 

model can be seen in the Table 4.  

Table 4 - Priorities of CLFs in AS feature model 

 

4.1.8 AS – Calculating Product Integrity, PI  

As mentioned in the previous chapter we used Nearest Common Predecessor (NCP) to 

calculate the integrity of the product. The NCP was calculated for every concrete level 

feature with all other concrete level features. To ease up the calculations of NCP we 

converted the Automotive System’s feature model to a similar sample that was seen in 
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the previous chapter in section 3.6.3 (i.e. Figure 6). The modified feature model is shown 

in Figure 13.  

 

Figure 13 - Modified feature model to calculate NCP for AS 

 

Based on the Figure 13, the NCP calculations were carried out on AS feature model. The 

NCP value was calculated among each pair of concrete level features and then in the 
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objective function for product integrity in the GA, the product integrity for each solution 

was calculated. The pair-wise NCP calculations can be seen in table 5. 

Table 5 - NCP calculations for all CLFs in AS feature model 

 

The results for the clustering errors, corresponding product priority and integrity values 

can be seen in Table 6.  
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Table 6 - Clustering Error, Priority and Integrity values for each resulting SPL solutions of AS 

 

Hence, the SPL configuration/solution for the AS feature model after the consideration of 

feature dependencies and the business objectives can be seen in Figure 14. 

The GA resulted in the following near optimal solution:  

(CLF 4, CLF 8), (CLF 2, CLF 6, CLF 13, CLF 14, CLF 16), (CLF 1, CLF 15, CLF 17, 

CLF 18, CLF 20), (CLF 3, CLF 5, CLF 19), (CLF 9, CLF 10), (CLF 7, CLF 11, CLF 12) 
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Chromosome Representation:  

(13 22 34 41 54 62 76 81 95 105 116 126 132 142 153 162 173 183 194 203 | 1 2 3 4 5 6)               

 

 

Figure 14 - SPL configuration representation after running GA 
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4.2 Case Study 2 – Life Cycle Assessment software tool (LCA)  

For the purpose of the case study a suitable feature model was formulated for a Life 

Cycle Assessment Tool. It is a software tool used by architects, structural and 

Environmental Engineers and many others, to help them automate an exhaustive manual 

assessment known as Life-cycle assessment (LCA).   

Life-cycle assessment is a technique to assess environmental impacts associated with all 

the stages of a product's life from cradle to grave [49]. Designers use this process to help 

critique their products. LCAs can help avoid a narrow outlook on environmental concerns 

by: 

 Compiling an inventory of relevant energy and material inputs and environmental 

releases; 

 Evaluating the potential impacts associated with identified inputs and releases; 

 Interpreting the results to help make a more informed decision.  

4.2.1 LCA - Feature Modeling 

The feature model for the LCA tools was formulated based on the 4 phases that are part 

of the LCA process; namely (1) Goal and Scope Specification, (2) Inventory Analysis, 

(3) Impact Assessment and (4) Interpretation. Furthermore, to confirm the features and 

the variations that can be present in a LCA tool we used and inquired several commonly 

used LCA tools like OpenLCA, SimaPro and Gabi. This process resulted in a feature 

model that contained 39 features and 6 cross-tree constraints. These constraints were the 

basis upon which the relationships between the features were defined. The feature model 



50 

 

can be seen Figure 15; it depicts the core and optional features having a variety of 

relations among the features.    

 

Figure 15 - Feature Model for LCA tool 
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4.2.2 LCA - Feature Dependency Analysis 

 The feature dependency analysis was performed over the feature model depicted in 

Figure 15. Like the previous case study the analysis considered the feature dependencies 

that existed among the concrete level features, as shown in Figure 3. The dependencies 

that existed among the CLFs of the LCA tool can be seen in Table 7. 

Table 7 - Feature Dependency analysis for LCA tool 

 

4.2.3 LCA - Feature Dependency Graph (FDG)  

The undirected FDG was created by developing a graph clustering algorithm defined in 

Chapter 3 of the thesis. The undirected FDG can be seen in Figure 16.  The nodes of the 

graph represent the CLFs in the feature model, which was created for the LCA tool.  
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Figure 16 - FDG for the LCA FM using the feature dependencies 

 

4.2.4 LCA - Clustering Results  

Similar to the previous case study, the same method for graph clustering was used.  The 

clusters were formed based on the relationships among the features. Clustering error 

closer to zero suggests that during clusters formation better compromises between the 

placement of features (based on the dependencies) into clusters, were made than the 

results produced with higher clustering error. The results after performing the graph 

clustering can be seen in Table 8. 
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Table 8 - Results after applying graph clustering on the LCA tool’s FDG 

 

Hence, the optimum clustering error is 0.0 in our experiments. It remained constant at 0.0 

for several different solutions. This behavior was expected as there were separate clusters 

seen in the FDG in Figure 16 prior to graph clustering. This meant the features in the 

LCA tool are less dependent upon each other. Hence, the features can be easily sorted out 
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into different clusters without compromising their interdependencies which are the crux 

of our approach. 

Like in this case, if the error is same for several different solutions, the near optimal 

solution is the one that gives minimal error with the most number of clusters, as it gives 

more choices to distribute the product among the development teams. Therefore, the 

results in Table 8 suggest the optimal solution after applying the graph clustering 

algorithm is the SPL configuration/solution containing 16 clusters.  

Therefore, the algorithm clustered the FDG into 16 clusters. The clustered FDG for the 

LCA tool can be seen in Figure 17, where features in same cluster carry the same color. 

 

Figure 17 - A clustered FDG for LCA tool after running the Graph Clustering algorithm 
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4.2.5 Multi-objective feature selection using Genetic Algorithm 

Similar to previous case study we applied GA algorithm to generate a near-optimal 

solution. The GA parameters that were used are mentioned in Table 9.  

Table 9 - GA parameters 

GA Parameters Value 

Population Size 20 

Crossover probability 0.5 

Mutation probability 0.1 

Max Generation 1000 

Selection Strategy Tournament selection 

 

To calculate the fitness value equation (3) is used. To compute the overall fitness value 

we need the computations of the PP, PI and Err or the clustering error is generated when 

we apply our graph clustering algorithm, PP is calculated by using equation (2) while PI 

is calculated using a technique called Nearest Common Predecessor, NCP. Calculation of 

PP and PI are discussed individually and then the resulting configuration is shown.     

4.2.6 LCA – Calculating Product Priority, PP  

As mentioned in Section 3.6.2, the assignment of priority was made based on a small 

survey where we asked the respondents, experts and developers, to rate the features based 

on the importance of the feature in the product. We then took the average value of the 

respondents’ answers and assigned that value as the priority for a particular feature. Next, 

we inverted the priority for each feature as the higher the priority numbering the lower 
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the importance and vice versa (i.e. the feature having priority 1 is of most importance). 

This value was assigned to each individual feature as its priority and then used in the 

GA’s objective function for calculating the product priority as discussed in Section 3.6.2.  

The priorities for each concrete level feature in the ‘Life Cycle Assessment software tool 

(LCA)’ feature model can be seen in the Table 10.  

Table 10 - Priorities of CLFs in LCA tools’ feature model 
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4.2.7 AS – Calculating Product Integrity, PI  

As mentioned in the previous chapter we used Nearest Common Predecessor (NCP) to 

calculate the integrity of the product. The NCP was calculated for every pair of concrete 

level features.  To calculate the NCP of each pair of CLFs we converted the LCA tool’s 

feature model to a similar sample that was seen in the previous chapter in Section 3.6.3 

(Figure 6) and Section 4.1.7 (Figure 13). The modified feature model of LCA tool is 

shown in Figure 18.  

 

Figure 18 - Modified feature model to calculate NCP for LCA tool 
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Based on the Figure 13, the NCP calculations were carried out on LCA tool’s feature 

model. The NCP value was calculated among each pair of concrete level features and 

then in the objective function for product integrity in the GA, the product integrity for 

each solution was calculated. The pair-wise NCP calculations can be seen in table 11. 

Table 11 - NCP calculations for all CLFs in LCA tool’s feature model 

 

The results for the clustering errors, corresponding product priority and integrity values 

can be seen in Table 12.  
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Table 12 – Clustering Error, Priority and Integrity values for each resulting SPL solutions of LCA tool 

 

So the SPL configuration/solution for the LCA tool’s feature model after the 

consideration of feature dependencies and the business objectives can be seen in Figure 

19. 
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The GA resulted in the following near optimal solution:  

(CLF 1, CLF 4, CLF 13, CLF 19, CLF 24, CLF 27), (CLF 2, CLF 5, CLF 7, CLF 8, CLF 

9, CLF 12, CLF 15, CLF 18, CLF 21, CLF 22, CLF 23, CLF 25), (CLF 3, CLF 6, CLF 

10, CLF 11, CLF 14, CLF 16, CLF 17, CLF 20, CLF 26)  

 

Chromosome Representation:  

(11 22 33 41 52 63 72 82 92 103 113 122 131 143 152 163 173 182 191 203 212 222 232 

241 252 263 271 | 1 2 3)               

 

 

Figure 19 - SPL configuration representation for LCA tool after running GA 
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5 CHAPTER 5 

DISCUSSION AND ANALYSIS  

When we apply the graph clustering to both our case studies, they result in SPL solutions 

with variable clustering errors. These errors are representative of how much compliance 

the solution has with the dependencies that exist among the features. The closer the value 

to 0, the better the solution is; clustering error 0 suggests that all the feature dependencies 

are fulfilled. Hence, the more the dependencies among the features and the more 

distributive the dependencies are, the harder it is to come up with a solution closer to 0.  

The best solution for AS (Case Study 1) is 0.45, which means that in producing a solution 

there is always a trade-off to be made while consideration of feature dependencies of 

different features. As seen in Table 2, there are a lot of dependencies that exist among the 

features due to the way the AS feature model is designed; and all these dependencies 

must be fully satisfied in order to achieve a cluster error of 0. In such complex situations 

it is hard to fulfill all dependencies, as fulfillment of one dependency might negatively 

affect the other. For instance, a feature A has a positive dependency with feature B, while 

feature B has a positive dependency with feature C and feature A has a negative 

dependency with feature C; in this case all three features must reside in a single cluster 

which requires some trade-off to be made in terms of consideration of the feature 

dependencies. So, some feature dependencies might be considered and some might not, 

depending upon the type of relationship that exists among each pair of features as each 
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type of dependency is assigned different edge weight in the feature dependency graph 

(FDG).         

On the other hand, when we apply the graph clustering algorithm on LCA tool’s feature 

model we get more solutions with the clustering error of 0. This means that there are 

several solutions available that fulfill all the feature dependencies among the features. 

This is due to the fact, and also can be seen in the feature dependency graph (FDG), 

Figure 16, that there are less distributive dependencies among the features; the FDG even 

before clustering seems to be clustered together. Hence, it is easier to satisfy the 

relationships among the features.     

In real-world setting, however, we don’t just have to comply with the feature 

dependencies but also with the business objectives which are required of the SPL 

solutions; as the purpose of using SPL is to be proactive in product evolution. Hence, 

SPL solutions are not of much importance if they don’t accomplish the business 

objectives which are required out of them.  

This need for conformity with the feature dependencies and the business objectives 

makes the pursuit of optimal SPL solution more complex. The problem leads to the 

second phase of the thesis where we apply the GA to produce near-optimal SPL solutions 

that observe the feature dependencies alongside the objectives, namely, product priority 

and product integrity.     

As can be seen in Figure 20 and Figure 21, the SPL solutions produced before and after 

the application of our GA are different. The solutions on the right side of each Figure 
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show the SPL solutions that are near-optimal, fulfilling the objectives while conforming 

to the feature dependencies. 

 

Figure 20 - Comparison of results after graph clustering and after applying GA, for AS 

 

In Figure 20, the SPL configuration on the left shows the best possible solution we can 

get, when considering the relationships among the features only. However, this solution 

is less cohesive as there are several clusters having individual features, which shows the 

lack of synergy among the features. Hence, this SPL configuration has less integrity. 

On the other hand, the solution on the left is the near-optimal solution which is a result of 

the GA we have developed. This solution has more cohesive components or clusters each 

having a collection of features that also comply with the dependencies in the best possible 

way, as both the solutions have the same clustering error of 0.45.  

 Moreover, as seen in Table 4 there were different priorities assigned to the each feature; 

our approach tries to preserve these priorities optimally while trying to keep a best trade-
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off with the product integrity and clustering error. For instance, in the SPL solution on 

the left, the features in cluster ‘C6’ all have the same priority, all feature dependencies 

are considered except 1, which seems reasonable as the overall clustering error is 0.45, 

and all these features form a cluster with an integrity value of 1 which is greater than the 

overall integrity of the SPL configuration, suggesting that this component/cluster is 

highly cohesive.        

 

 

Figure 21 - Comparison of results after graph clustering and after applying GA, for LCA 

 

Figure 21 shows the optimal SPL configuration before and after the application of the 

developed GA. On the left side we can see the best possible SPL solution which accords 

to the feature dependencies only. However, this solution too is perceived to be less 

cohesive as there are several clusters having individual features, which shows the lack of 

synergy among the features. Hence, this SPL configuration has less integrity. 
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The solution in discussion also has less product priority too. This is because the product 

priority is calculated using average of averages. In this case, if some feature with less 

priority is alone in a cluster, the cluster priority (average) will be less hence affecting the 

overall product priority negatively. However, if the same feature is placed in a cluster 

having high priority (average), this will surely decrease the priority (average) 

of the accepting cluster but the negative effect on the overall product priority will be less.      

On the other hand, the solution on the left is the near-optimal solution which is a result of 

the GA we have developed. This solution has more cohesive components or clusters each 

having a collection of features that also comply with the dependencies in the best possible 

way, as both the solutions have the same clustering error of 0.  

 Moreover, as seen in Table 10 there were different priorities assigned to the each feature; 

the SPL solution produced after the full application of our approach preserves these 

priorities optimally while trying to keep a best trade-off with the product integrity and 

clustering error. For instance, the priority value of the cluster ‘C1’ in the SPL solution on 

the right side is 0.708 and the average of priorities from clusters (‘C1’, ‘C4’, ‘C13’, 

‘C14’, ‘C5’) having the same features in the solution on the left side is 0.65. And as 

discussed in Section 3.6.2 the higher this value is the higher the priority. 

This shows that our approach produces near-optimal solutions that conform to all the 

business objectives while fully considering the relationships among the features. 
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6 CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

Due to the extensive use of software, the software industry and businesses require a 

strategic reuse technique like SPL to fulfill the expectations and the business needs. SPL 

however, requires the consideration of the interdependencies that exists among the core 

assets (features) of a SPL, while selecting the features for a valid product configuration. 

Furthermore, SPL also requires the fulfillment of the competing objectives/user 

preferences. In this thesis, an approach was developed that caters to both these 

requirements; by developing a dependency analysis technique for SPL features, then 

consolidating related features using signed graph clustering algorithm and finally, 

developing a genetic algorithm to balance the clustering error, product priority and 

product integrity (objectives) in a SPL to produce optimal (near-optimal) SPL 

configurations.  

Moreover, we demonstrate the application of our graph based feature selection approach 

using two case studies, namely, Automotive System (AS) and LCA (Life Cycle 

Assessment) tool. The former is a common example to explain and easily understand the 

approach while demonstrating its concepts and applicability to similar environments. 

LCA tool however, is as engineering software. This shows that our approach can be 

potentially applied to different types of systems.  

The results from the case studies suggest that only considering the feature dependencies 

may results in a different SPL configuration, which might actually not be an optimal 
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solution when other real-life business objectives are considered. Our approach, as 

depicted by the application of case studies, ensures that not only the relationships among 

the features are maintained but it also tries to give the near-optimal solution considering 

the business objectives. 

In addition to that, the approach we formulated follows ‘Design Science Research 

Guidelines/Framework’, which ensures that the research work produced carries viable 

contributions, hence enabling technical as well as managerial personnel to readily make 

use of our approach. 

Our Approach naturally is highly dependent upon the SPL specifications provided or 

elicited. Hence, it is of utmost importance that the specifications gathered are an exact 

idealization of the system under discussion.  This affects the approach from the initial 

phases when we are forming the feature model for a given system. Hence, to formulate 

the feature model for the AS (case study 1), we carefully articulated the SPL specification 

and confirmed its viability from the experts in the industry. We also consulted the 

architectural engineering experts to form the feature model for the LCA tool (case study 

2) 

There are several directions in which this work can be extended further. For the future 

work we plan to rank the consolidated features (of the near-optimal solutions produced) 

using ranking algorithms to give a timeline to the SPL analyst in order to devise a way to 

easy and efficient SPL development during evolution.  Another plan is to apply ACO 

algorithms to compare the results, which we believe will provide us further confidence in 

our technique. 
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