

iii

© Mohammad Ahsan Javed

2016

iv

To my beloved father, without whom none of my success would be possible.

v

ACKNOWLEDGMENTS

First and foremost, I praise Allah the Almighty, without whom it would have never been

possible for me to complete this thesis in such an esteemed institution. Secondly, I send

my salutations to Prophet Mohammad (P.B.U.H.). I then thank my father, mother and

siblings for being the constant source of support, prayers and inspiration throughout my

life and the journey towards the completion of this thesis.

I express my deep thanks to my Thesis Advisor, Dr. Sajjad Mahmood, for believing in

me and taking me under his mentorship. It was his brilliance and relentless help that kept

me going and focused on the right track, to achieve this milestone. It seems highly fit to

thank Dr. Mohammad Rabah AlShayeb and Dr. Mahmood Khan Niazi, for teaching me

the art of research and honing my academics by allowing me to have some pearls from

their knowledgeable minds.

I genuinely thank my friends, who were there for me through thick and thin, especially,

Mohsin Javed, Abdullah Siddiqui, Osamah Al Dhafer, Haris Mumtaz and Samran

Naveed. In the end, I thank all those who offered me their help and prayers, at occasions

where I was low and assisted me in climbing out of those pit holes.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. IX

LIST OF FIGURES ... X

LIST OF ABBREVIATIONS .. XI

ABSTRACT .. XII

الرسالة ملخص ... XIII

CHAPTER 1 INTRODUCTION ... 1

1.1 Research Objectives .. 3

1.2 Thesis Outline ... 4

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW .. 5

2.1 Software Product Line Overview ... 5

2.2 Feature Modeling and Dependency Analysis ... 6

2.3 Feature Selection Approaches ... 8

2.4 Addressing the open problems ... 11

2.5 Grouping Genetic Algorithm (GGA) ... 12

2.6 GGA Approaches and applications .. 14

CHAPTER 3 RESEARCH METHODOLOGY AND FRAMEWORK 16

3.1 Design Science Research Guidelines .. 17

3.1.1 Design as an artifact ... 18

vii

3.1.2 Problem Relevance ... 19

3.1.3 Design Evaluation ... 19

3.1.4 Research Contribution .. 20

3.1.5 Research Rigor .. 20

3.1.6 Design as a Search Process ... 20

3.1.7 Communication of Research ... 21

3.2 Feature Modeling .. 21

3.3 Feature Dependency Analysis ... 21

3.4 Feature Dependency Graph (FDG) ... 23

3.5 Graph Clustering ... 24

3.5.1 Cluster Formation ... 25

3.6 Business Objectives ... 26

3.6.1 Clustering Error .. 27

3.6.2 Overall product priority .. 27

3.6.3 Overall product integrity .. 28

3.7 Multi-objective feature selection using Genetic Algorithm ... 29

3.7.1 Grouping Genetic Algorithm (GGA) .. 30

3.7.2 Encoding Scheme.. 30

3.7.3 Selection... 32

3.7.4 Crossover ... 33

3.7.5 Mutation .. 35

3.7.6 Termination of GA .. 36

3.8 Consolidated features for SPL requirements ... 36

CHAPTER 4 CASE STUDIES AND RESULTS .. 37

4.1 Case Study 1 – Automotive System (AS) .. 37

viii

4.1.1 AS - Feature Modeling .. 37

4.1.2 AS - Feature Dependency Analysis .. 38

4.1.3 AS - Feature Dependency Graph (FDG) ... 39

4.1.4 AS - Graph Clustering .. 40

4.1.5 AS - Clustering Results .. 41

4.1.6 Multi-objective feature selection using Genetic Algorithm ... 43

4.1.7 AS – Calculating Product Priority, PP .. 43

4.1.8 AS – Calculating Product Integrity, PI .. 44

4.2 Case Study 2 – Life Cycle Assessment software tool (LCA) ... 49

4.2.1 LCA - Feature Modeling .. 49

4.2.2 LCA - Feature Dependency Analysis .. 51

4.2.3 LCA - Feature Dependency Graph (FDG) ... 51

4.2.4 LCA - Clustering Results .. 52

4.2.5 Multi-objective feature selection using Genetic Algorithm ... 55

4.2.6 LCA – Calculating Product Priority, PP... 55

4.2.7 AS – Calculating Product Integrity, PI .. 57

CHAPTER 5 DISCUSSION AND ANALYSIS .. 61

CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS ... 66

REFERENCES... 68

VITAE .. 73

ix

LIST OF TABLES

Table 1 - Summary of Design Science Research Guidelines ... 18

Table 2 - Feature Dependency analysis for automotive system 39

Table 3 - Results after applying graph clustering on the FDG ... 41

Table 4 - Priorities of CLFs in AS feature model ... 44

Table 5 - NCP calculations for all CLFs in AS feature model ... 46

Table 6 - Clustering Error, Priority and Integrity values for SPL solutions of AS........... 47

Table 7 - Feature Dependency analysis for LCA tool .. 51

Table 8 - Results after applying graph clustering on the LCA tool’s FDG 53

Table 9 - GA parameters ... 55

Table 10 - Priorities of CLFs in LCA tools’ feature model .. 56

Table 11 - NCP calculations for all CLFs in LCA tool’s feature model 58

Table 12 – Clustering Error, Priority and Integrity values for SPL solutions of LCA tool 59

x

LIST OF FIGURES

Figure 1 - Feature model for Smartphone ... 8

Figure 2 - Research Methodology and Framework .. 16

Figure 3 - Semantic Dependency Relationships among the CLFs 22

Figure 4 - A sample Feature dependency graph ... 24

Figure 5 - Cluster formation procedure for graph clustering .. 26

Figure 6 - Sample Calculations for NCP. Ex: NCP(a,b) = 2, NCP(c,d) = 0 29

Figure 7 - a) Description of Chromosomeb) Solution representation of the chromosome32

Figure 8 - GA Crossover process .. 35

Figure 9 - Mutating a chromosome by swapping a feature among clusters 36

Figure 10 - Feature Model for an Automotive system .. 38

Figure 11 - FDG for the Automotive FM using the feature dependencies 40

Figure 12 - A clustered FDG after running the Graph Clustering algorithm.................... 42

Figure 13 - Modified feature model to calculate NCP for AS .. 45

Figure 14 - SPL configuration representation after running GA 48

Figure 15 - Feature Model for LCA tool .. 50

Figure 16 - FDG for the LCA FM using the feature dependencies 52

Figure 17 - Clustered FDG for LCA tool after running the Graph Clustering algorithm . 54

Figure 18 - Modified feature model to calculate NCP for LCA tool 57

Figure 19 - SPL configuration representation for LCA tool after running GA 60

Figure 20 - Comparison of results after graph clustering and applying GA, for AS 63

Figure 21 - Comparison of results after graph clustering and applying GA, for LCA 64

file:///D:/University%20Stuff/KFUPM/Semester%204/SWE%20610%20-%20MS%20Thesis/My%20Thesis/Thesis%20stuff%20Semester%205/Thesis%20Writeup/Thesis%20Draft/Final%20Thesis%20V3.1.docx%23_Toc465760475

xi

LIST OF ABBREVIATIONS

PL : Product Line

SPL : Software Product Line

FDG : Feature Dependency Graph

FM : Feature Model

CLF : Concrete Level Feature

GA : Genetic Algorithm

GGA : Grouping Genetic Algorithm

FODA : Feature Oriented Domain Analysis

AS : Automotive System

LCA : Life Cycle Assessment

xii

ABSTRACT

Full Name : Mohammad Ahsan Javed

Thesis Title : A Graph Based Feature Selection Approach for Configuring Software

Product Lines

Major Field : Software Engineering

Date of Degree : May, 2016

A Software Product line (SPL) is configuration-centric with a focus on developing a

collection of related software products, all of which share some core functionality, and

differ in some specific features. SPL uses a feature model to specify the commonalities

and variabilities in terms of software features, to identify and develop reusable software

assets. Selection of features is a key process to derive new SPL configurations that aim to

either minimize or maximize a business objective, subject to a set of constraints. To date,

feature selection techniques have focused on finding an optimal solution to objective

functions such as cost and resource constraints. However, the existing approaches have

not considered the structural relationships and configuration dependencies encoded in a

feature model, together with the business objectives, leaving open the question of how

best to optimize SPL feature selection in the presence of feature interdependencies. In

this research thesis, we have developed a feature selection technique that consolidates

interdependent features into related clusters and uses a Genetic algorithm (GA) to find a

near optimal solution for feature selection with respect to clustering error, product

priority and product integrity. This thesis provides a solution to SPL feature selection

problem such that it helps a developer to analyze interdependencies and select suitable

features for SPL configurations. This thesis also applies the approach on two case studies

to evaluate the workings of the developed approach.

xiii

 الرسالةملخص

 محمد احسن جاويد : الاسم الكامل

 منهج اختيار الخاصية المعتمد على الرسم لتكوين خط انتاج البرمجيات : عنوان الرسالة

 هندسة البرمجيات : التخصص

 6102 ,مايو : العلميةتاريخ الدرجة

المركزي بالاعتماد على تطوير مجموعة من المنتجات البرمجية المرتبطة ببعضها، خط انتاج البرمجيات هو التكوين

نموذج يستخدم خط انتاج البرمجيات .وكلها تشترك في بعض الوظائف الأساسية، وتختلف في بعض السمات المحددة

وتطوير برمجيات يعتمد على الخاصية لتحديد القواسم المشتركة والمتغيرات من حيث خصائص البرمجيات، لتحديد

جديدة لخط انتاج الاختيار من بين هذه الخصائص هي عملية أساسية لإنتاج تكوينات .يمكن إعادة استخدامها

حتى الآن، .التي تهدف إما إلى تقليل أو زيادة الهدف التجاري، والذي عادة يخضع لمجموعة من القيود البرمجيات

مع ذلك، فان .ل الأمثل لدالة الهدف مثل القيود في التكلفة والمواردتقنيات اختيار الخاصية ركزت على إيجاد الح

المشفرة في النموذج المعتمد على ةالطرق الحالية المستخدمة لا تعتمد العلاقات الهيكلية والاعتمادات التكويني

لسبل لتحسين اختيار الخاصية، جنبا إلى جنب مع أهداف المؤسسة، وترك الباب مفتوحا أمام مسألة كيفية ايجاد أفضل ا

في هذه الأطروحة البحثية، قمنا بتطوير تقنية اختيار .الخصائص لخط انتاج البرمجيات في ظل وجود خاصية الترابط

الخصائص التي تعزز الخصائص المترابطة في مجموعات ذات صلة، وباستخدام الخوارزمية الجينية لإيجاد أقرب

خذ بالاعتبار الخطأ الوارد من توزيع المجموعات، أولوية المنت وسلامة حل للحل الأمثل لاختيار الخاصية مع الا

والتي تساعد المطور في تحليل وتقدم هذه الأطروحة حل لمسالة لاختيار الخاصية لخط انتاج البرمجيات .المنت

قها على اثنين من خط انتاج البرمجيات. هذه الاطروحة أيضا تم تطبي الترابط واختيار الخاصية المناسبة لتكوينات

 .دراسات الحالة لتقييم عمل المنه المقترح

1

1 CHAPTER 1

INTRODUCTION

Over the last decade, the extensive use of software has placed new challenges for the

software industry in terms of expectations to enhance development productivity, quality

and reduce associated costs [1]. These expectations have influenced the software industry

to recreate the idea of reuse [2, 3]. Software product line is an approach with an aim to

move the software engineers away from developing each system from scratch. It focuses

on developing a set of software systems in a domain that shares more commonalities than

uniqueness [3] while developing software systems by releasing product variants. Due to

these advantages, SPL development has been utilized in a variety of software applications

such as mobile phones, elevator control systems, and the list keeps growing. In this

research thesis, we adopt Clements and Northrop’s definition of software product line

[3]: “software product line is a software engineering approach for creating configurable

software applications that can be adapted to a variety of requirement sets”.

The success of SPL project requires a substantial initial investment for the development

of core assets. This development process of the core assets needs to maximize the

coverage of the domain in a product line within budget and a given time frame. SPL core

asset development consists of two main activities: (a) Domain engineering and (b)

Application engineering [4]. Domain engineering process defines the commonality and

variability of the product line while application engineering process deals with the

2

development of the applications of the product line by reusing domain artifacts for a

specific set of requirements.

Feature modeling [5-8] is the de-facto standard to represent core assets of a SPL. A

feature model expresses the commonality and variability in a product line in terms of

features [9]. In a feature model, features are units of capability that are delivered to

customers, product configuration and configuration management, parameterization for

reusable components and product management for targeting specific market segments [7,

10, 11]. A feature model shows a set of features in a hierarchical arrangement that

describes successive refinements of the variability in a product line [9, 12]. The common

and variable features in a feature model are organized using structural relationships like

aggregation and generalization. Furthermore, the organization of the features also use

configuration relations which are defined in terms of different type of dependencies [6,

13].

Previous research indicates that deriving SPL configurations is a time consuming and

expensive activity [11, 14-16]. A major challenge while deriving valid SPL

configurations using feature model, is determining, for a given set of constraints, how an

optimized feature selection can be found [11]. The process of feature selection needs to

consider the structural and configuration dependencies encoded in a feature model when

grouping related features into clusters. The consolidation of related features into clusters,

considering the dependencies among them, is an essential aspect but it is not sufficient on

its own. The feature selection process also needs to consider how feature assignments to

products affect different desired objectives required of a product line like value and

integrity of product line [2]. Hence, it is implied that the feature selection process in SPL

3

should not be opportunistic; it should be carefully planned while considering feature

dependencies and keeping a balance among the different objectives of a SPL.

1.1 Research Objectives

In this research work, the feature selection problem is represented as a multi-objective

optimization problem; with the desired system attributes formulated as objective

functions. We present a feature selection process that helps SPL developers to

consolidate interdependent features into clusters and use a genetic search algorithm to

search for solutions with minimum clustering error, maximum product integrity and

maximum priority of the product.

The overarching objective of this thesis is to present a software feature selection process

that provides guidelines for software product line developers to consolidate related

requirements into clusters and then optimally select the consolidated feature sets based on

the user preferences. The objectives of this research can be formally stated as the

following:

Objective: Rectify the problem of multi-objective feature selection in software product

lines by providing optimal (or near optimal) solutions while considering the impact of

dependency relationships among features. This objective is divided into following sub-

objectives:

Sub-Objective 1: Develop dependency analysis technique for SPL features and

model inter-dependency between SPL features.

Sub-Objective 2: Adapt signed graph clustering for consolidating SPL features.

4

Sub-Objective 3: Apply Genetic Algorithm to optimize feature selection in SPL.

Sub-Objective 4: To present application of our approach to two case studies.

Addressing above objectives will assist software product line development organizations

in better understanding, planning and managing software feature selection decisions in

software product line development projects.

1.2 Thesis Outline

The remainder of the thesis is organized as follows: Chapter 2 gives the background on

the topics that must be highlighted before going deep into the workings of the developed

approach. Chapter 3 defines the research methodology and framework and explains the

approach step by step. Chapter 4 applies the approach to two case studies separately and

depicts the results achieved. Chapter 5 discusses the results and compares the solutions.

Chapter 6 concludes the thesis, states the outcomes of this thesis, points out the threats to

validity and mentions the future directions to this research.

5

2 CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Before moving on to the research specifics, it is important to highlight some fundamental

background information on the topics that will help in understanding the problem fully,

leading to the complete understanding of the approach this research dictates.

This chapter is comprised of four sections. Section 2.1 gives a background on software

product lines. Section 2.2 describes feature modeling and the different type of

dependencies that can exist among the features. Section 2.3 discusses the different

approaches and algorithms that attempt to solve this feature optimization problem.

Another section, Section 2.4, identifies the open problems and formulates the problem

that we have solved in this research. Section 2.5 introduces the Grouping Genetic

Algorithms (GGA). This chapter then concludes with Section 2.6, where the different

approaches of GGA are mentioned alongside their applications.

2.1 Software Product Line Overview

Software pervades every sector. It has become the bottom line for many organizations,

even those who never envisioned themselves in the software business are heavily

involved with software [3]. Businesses now expect improved efficiency and productivity

from software to help achieve their business goals like low-cost production, high quality,

and quick time to market, etc. In such circumstances, a reuse strategy makes more sense.

Although there are several reuse strategies SOA [17], CBS [18] that are being practiced

by the industry, they have a little economic effect [3]. Traditional reuse techniques’ focus

6

is small-grained, opportunistic, and technology-driven rather than meeting business goals.

There is a need for strategic reuse to achieve business benefits [3].

This is where the innovative and growing concept in software engineering, Software

Product Lines (SPL), is introduced. A software product line is a set of software-intensive

systems sharing a common, managed set of features that satisfy the specific needs of a

particular market segment or mission and that are developed from a common set of core

assets in a prescribed way. It is a new application of a proven concept in several

engineering fields. Many businesses have put the product-line concept to their advantage

achieving their business goals in less time. Few examples include the Celsiustech’s Ship

System 2000, Cummins Inc.’s Diesel Control Systems, National Reconnaissance Office/

Raytheon’s Control Channel Toolkit, Market Maker GMBH’s Merger, Nokia Mobile

Phones. These companies gained a lot of benefits like major cost cuttings, a drastic

decrease in the time to market etc. The success of SPL in software engineering suggests

the future of reuse lies in SPL.

There are two approaches to software product line, a proactive and a reactive one. We

will be using the former approach since it is more consistent with the SPL principle of

proactive reuse [3]. Moreover, since we are catering the situation where SPL has to be

newly introduced in a place where there is no prior use of SPL; proactive evolution was

the right approach to adopt.

2.2 Feature Modeling and Dependency Analysis

Kang et al. [5] first introduced the feature models as part of Feature-Oriented Domain

Analysis (FODA) for SPLs. Features are units of capability that are delivered to

customers, product configuration and configuration management, parameterization for

7

reusable components and product management for targeting specific market segments [7,

10, 11]. A feature model is a hierarchically arranged set of features showing the

relationships and dependencies between a set of features for a SPL.

Typically, a feature model specifies structural relationships, configuration dependencies

and operational dependencies between features of a SPL [6, 13]. We discuss the main

types of feature dependencies as follows:

 “Required Dependency” – It exists between two features if a feature that is selected in

a product requires the presence of another feature in the same product.

 “Excluded Dependency” – It is present among two features if a feature is selected in a

product where the other feature cannot be selected.

 “Usage dependency” – It’s there among the features if a feature depends on another

feature in order to correctly function or be implemented.

A sample feature model can be seen in Figure 1, followed by the description of several

dependencies that exist between the features of the depicted feature model.

For instance, in Figure 1, there exists a “required” dependency between maps and GPS

feature; whenever a maps feature is selected the GPS will also be selected. The

dependency is due to the fact that in real-world setting the maps are a useless feature

without the GPS, not vice versa. Similarly, a “required” dependency between iPhone6

and fingerPrint and retinaScan where, whenever an iPhone6 feature is selected, the

fingerPrint and retinaScan feature must also be present in the product. The dependency

was based on the fact that iPhone6, being the latest and flagship mobile for Apple Inc., it

8

contains both the fingerprint and retinaScan features by default. Next, a “required”

dependency between phones and voiceCall feature, which is quite logical when it is put

to real-life environment, where a mobile phone is of no use if it unable make a call, hence

the phone feature will have the voiceCall feature by default. In addition to these three

“required” dependencies, there exists an “excluded/threat” dependency which resides

between m7 and videoCall feature, which states that an m7 feature can never have a

videoCall feature since in real-life settings m7 is not able to support the video calling

feature.

2.3 Feature Selection Approaches

It can be seen in the previous researches that finding an optimal feature selection is a NP-

hard problem [11, 19]. Researchers indicate similarity between feature selection with

resource constraints and configuration optimization problems as addressed by rest of the

automated feature selection approaches in the literature who have not consider potential

constraints [20]. A significant number of researchers have applied techniques like BDD

[21], CSP [22], and SAT solvers [23] to solve the product line feature selection problem,

Figure 1 - Feature model for Smartphone

9

but they haven’t considered resource constraints. Furthermore, the time complexities for

these techniques is shown to be exponential [11, 19]. Similarly, there have been efforts

by researchers in developing polynomial-time approximation algorithms to select highly

optimal feature sets [19].

Furthermore, there are many researchers in recent times that are trying to solve this

feature optimization problem along the consideration of resource constraints and user

requirements. In a certain research, Henard et al. [1] introduce an algorithm called

SATIBEA, where the authors address the problem by combining constraint solving with

multi-objective search-based optimization. The research evaluates the algorithm over five

large real world SPLs considering some quality indicators and diversity measures.

Furthermore, this research demonstrates the significance of using constraint solving with

search-based approaches. To use the two techniques together they consider two key

aspects called diversity promotion and searching via smart operators. By using this they

show how SATIBEA outperforms the ‘Sate-of-the-art’ Indicator based evolutionary

algorithm (IBEA) [24].

In another research, Guo et al. [11] tries to solve this problem by using a GA-based AI

approach which they name as GAFES. Here they generate a set of related feature while

simultaneously considering the resource constraints. They first generate encodings of

products randomly to initialize the modified GA and then use their functions to eradicate

the invalid configurations using their approach.

Wang and Pang [25] attempts to solve this problem. In order to solve, they preprocess the

feature model by modifying the feature model such that the features that have some user

10

constraints are always selected. Then they convert this model into a graph using defined

rules, which follows the optimization step where they apply the Ant colony optimization

algorithm. However, their technique only caters to the required and excluded

dependencies and ignores the other types of dependencies mentioned in section 2.2,

which may result in products that don’t conform to the feature dependencies that exist

among the features.

There are several researchers [26, 27] that augment the feature model with some attribute

and the use it to solve the multi-objective optimization problem. The attributes act as the

resource constraints that the researchers try to cater while optimizing the feature selection

process. Both the researchers add the same attributes to the feature but, with different

value ranges assigned to each attribute. Sayyad et al. [26] defined optimization objectives

which guide their search for optimized feature selection. Due to the optimization

objectives selected, the research results in a viewpoint that is only useful for researchers

but not the business end users which negates the ultimate purpose of using the product-

line engineering. On the other hand, Lian [27] explicitly mentions the feature attributes as

NFRs and then solves the problem using the two-dimensional fitness function to also

integrate the user preferences. Their algorithm IVEA does the selection in one step which

tends to increase the time of the algorithm takes. Moreover, they tested it on two feature

models which make the results hard to be generalized upon a variety of feature models

available.

In a similar research Lizhang [28] shows two evolutionary algorithm templates to solve

the problem of feature selection. First, to simplify the treatment for different feature

constraints they encode them into a uniform format, defining them as rules using

11

Chomsky grammar. They then use their solutionRevies algorithm upon IBEA technique,

Sayyad et al. [29], to select features using optimization objectives. However, in this

paper, they assume that NFRs considered are quantified and classified.

Li et al. [4] attempts to solve this problem from a new perspective using an approach

called 0-1 programming. They transform the feature model constraint into inequality

constraint to make them compatible to be solved by linear programming. Although they

claim to solve this problem of feature selection in less polynomial time, they assume

there is only one kind of resource to be consumed, which is not the case in real life

situations.

The literature surveyed is evaluated in the light of the following criterion: (a)

Consideration of features interdependencies/Cross-tree constraints (b) Stated Objectives

(c) Experimental or Theoretical base/Validation (V), which helps in identification of the

problems that remain open in the domain of software product line engineering.

Based on the discussion in Section 2.3, we formalized the problem for our research, by

addressing open problems that were posed by the literature surveyed.

2.4 Addressing the open problems

Despite the interest in software feature selection problem, there are some key research

questions with regards to the selection of suitable features that remain open. The

approach for feature selection that we have developed in this research addresses the open

problems raised in the literature. For example, Cho et al. [13] advocate the need to

analyze and consider feature dependencies before designing and developing product line

assets.

12

The proposed approach does consider different types of dependencies encoded in a

feature model, as mentioned in Section 2.2. Similarly, Karimpour and Ruhe [2] argue the

need for developing techniques that find a solution for a trade-off between alternative

features for products while balancing overall value and product integrity.

The feature selection approach developed in this research work aims to rectify this

problem by providing optimal (or near optimal) solutions for feature selection while

considering the impact of dependency relationships, product priority and the overall

integrity of the product. The objectives are selected keeping the business perspective in

mind. Moreover, to best of our knowledge, the related studies have used their techniques

on automatically generated feature models only; so we validate our research by applying

it to real life case studies to confirm the beneficial aspect of our approach, as a proof-to-

concept.

2.5 Grouping Genetic Algorithm (GGA)

Ensuring that the SPL configurations fulfill the business objectives while considering the

feature dependencies makes the problem more complex. As there are multiple objectives

to be optimized, this yields for some tradeoffs still ensuring best possible results. This

makes the problem an optimization problem.

A popular and promising approach to solve such optimization problem is the use of

genetic algorithm and it has been used by many researchers as used by Karimpour and

Guo, [2, 11].

The techniques and approaches that use GA, mentioned in Section 2.3, use the normal

binary chromosomal representations to solve the feature selection problem. So in order to

13

avoid the invalid solutions to be created they have to assign huge or moderate penalties

on individuals; which causes the GA to converge before finding some of the solutions.

If they incorporate a high penalty during evaluation and the domain is one in which

production of an individual violating the constraint is likely, the genetic algorithm might

spend most of its time evaluating illegal individuals. Further, it can happen that when a

legal individual is found, it drives the others out and the population converges on it

without finding better individuals, since the likely paths to other legal individuals require

the production of illegal individuals as intermediate chromosomes/structures (two illegal

parents might produce best of the children), and the penalties for violating the constraint

make it unlikely that such intermediate chromosomes/structures will reproduce. If one

imposes moderate penalties, the system may evolve individuals that violate the constraint

but are rated better than those that do not because the rest of the evaluation function can

be satisfied better by accepting the moderate constraint penalty than by avoiding it. If one

builds a "decoder" into the evaluation procedure that intelligently avoids building an

illegal individual from the chromosome, the result is frequently computation-intensive to

run. Further, not all constraints can be easily implemented in this way.

As seen, normal binary encodings in a GA are unnatural for many problems as they don’t

fully accommodate the problem specific information [30]. Hence, our GA’s encoding

scheme is inspired by the encoding scheme suggested by Falkenaeur [31] and

Michalewicz [32] , we have modified the scheme just to ease the coding of the genetic

algorithm. No changes have been made to the gist of the encoding scheme.

14

Falkenauer [31] proposed so-called Grouping Genetic Algorithm (GGA) to deal with a

variety of grouping (partitioning) problems; his efforts aimed at designing appropriate

chromosomal representation to capture the structure of the problem. Many researchers

[33-38] have applied his chromosomal representations or a modified version of his

chromosomal representations to represent and then solve the different type of partitioning

problems like the bin-packing, bin balancing or graph-coloring problems.

2.6 GGA Approaches and applications

This section highlights some of the work that has been done using the grouping genetic

algorithm. The section also discusses some of the applications of the GGA.

Quiroz et al [33] presents a new grouping genetic algorithm called GGA-CGT to solve

the bin packing problem. The algorithm includes heuristic strategies that promote the

transmission of the best genes of the chromosomes and that allow for exploration of the

search space. In this research GGA-CGT controls the selection of individuals, to create a

balance between the selective pressure and population diversity, avoiding the premature

convergence of the algorithm and obtaining better solutions in a small number of

generations.

In another research[36], proposes a grouping genetic algorithm for clustering along with

the following stages: application of various numbers of clusters in a data set in order to

find the suitable number of clusters, optimization of the algorithm by means of effective

crossover and mutation operators, quality enhancement by implementation of the local

search method.

15

Zulawinski [39] shows an application of a modified version of the GGA, which proposed

by [31]. This paper shows the effectiveness of this approach on various Bin Balancing

problems.

E. C. Brown and R. T. Sumichrast [35] proposes a new solution to solve the machine-part

cell formation (MPCF) problem. MPCF is a problem that addresses the issues

surrounding the creation of part families based on component processing requirements,

and the identification of machine groups based on their ability to process specific part

families. This methodology is based on a grouping genetic algorithm and employs a

specialized replacement heuristic within the crossover operator.

Another application of GGA is shown by Rhydian Lewis and Ben Paechter [34]. They

apply GGA to solve University Course Timetabling-Problems (UCTPs) which involves

the allocation of resources (such as rooms and timeslots) to all the events of a university;

satisfying a set of hard-constraints and, as much as possible, some soft constraints.

16

3 CHAPTER 3

RESEARCH METHODOLOGY AND FRAMEWORK

The evolution of SPL is particularly a challenging job. The functionalities that a SPL is

composed of are in the form of features. These features naturally have dependencies

among them. When evolving SPL these feature dependencies must be taken into

consideration for smooth and efficient evolution. SPL development needs a feature

selection process where the user requirements and the features are analyzed together to

provide a portfolio of sets of related features that must be implemented together.

Figure 2 - Research Methodology and Framework

17

We believe that this consolidation of related features into sets must address three

essential concerns: understanding the needs of stakeholder via SPL specifications,

analyzing dependencies among features; and then identifying a group of suitable sets

(containing related features) that best matches SPL specifications and user preferences.

The multi-objective feature selection process shown in Figure 2 composed of following

four phases: (a) SPL specification, (b) Features dependency analysis, (c) Cluster analysis

and (d) Feature optimization. The first phase, SPL specification, uses a feature model to

specify all the features present in the SPL. In the second phase, feature dependency

analysis is carried out which examines the relationships between the features. The third

phase applies the graph clustering algorithm to organize interdependent features into

clusters and create consolidated features. Lastly, in the feature optimization phase, an

evolutionary algorithm is used to optimize feature selection with respect to the objective

functions. As a result, a set of possible solutions that fit user preferences is produced.

3.1 Design Science Research Guidelines

Our approach, a graph-based feature selection technique, adheres to the research

guidelines mentioned in the design science research framework [40]. The framework sets

forth seven design science research guidelines which guide in producing a research

carrying viable contributions. The guidelines and a summary of what each guideline

indicates are presented in Table 1.

18

Table 1 - Summary of Design Science Research Guidelines

 Design science research guideline Guideline indications

1 “Design as an artifact”
The artifacts produced by a research must be in

the form of a model or a method.

2 “Problem relevance”
The technology-based solutions, produced by

the research, must be relevant to the problems.

3 “Design evaluation”

Case studies, experiments or other evaluation

methods must be used to gauge and exhibit the

quality of the design artifact.

4 “Research contribution”
Clear contributions in the scope of the design

artifact, must be made by the research.

5 “Research rigor”

Rigorous methods must be used by the

research model while evaluating and

developing the design artifact.

6 “Design as search process”

For the production of an effective design

artifact, desired ends must be reached via

available means while adhering to the problem

domain’s laws.

7 “Communication of research”
The audience for the research should be both,

technology and management oriented.

We discuss our approach with reference to the guidelines in Table 2 as follows:

3.1.1 Design as an artifact

The major artifact in this research is the multi-objective feature selection process that is

led by features dependency analysis, consolidated features (a feature that contains several

related features) and the objective functions (user preferences). The feature selection

process uses the feature model to elicit SPL requirements while the feature dependency

analysis is performed to analyze the relationships between SPL features. The graph

19

clustering is used to consolidate related features which lead to the main artifact of our

research.

3.1.2 Problem Relevance

The problem we solve in our research has high relevance to software engineering field.

Firstly, SPL success critically depends upon the selection of appropriate features [26, 41,

42]. Secondly, the consolidation of related features should be performed based on the

feature dependencies, as discussed in Chapter 2, and the SPL requirements. The

discussion in literature review section of Chapter 2 highlights the need for a technique

that can select features based on the feature dependency/requirements analysis [18], and

can present several solution sets of consolidated features that match SPL specifications

and the user preferences. The feature selection approach developed in this research aims

to fulfill the aforementioned needs, eventually contributing to solving an important

problem in the field of software engineering.

3.1.3 Design Evaluation

The feature selection approach is evaluated using two real life case studies. This allows

the research audience to gauge the efficiency of our approach compared to other related

approaches. The case studies presented are discussed in relation to our feature selection

process in detail, in chapter 4. The observations on the findings of the case studies are

discussed in detail. Moreover, we have incorporated experts’ qualitative feedback in our

approach to confirm the viability of our approach.

20

3.1.4 Research Contribution

The principal research contributions of our research are the following: (a) Development

of a feature dependency analysis technique, (b) Introduction to the concept of FDG

(feature dependency graph), (c) Adaptation to signed graph clustering for combining

related features, (d) Applying a Genetic Algorithm to optimize feature selection in SPL.

These research contributions are then be evaluated as mentioned in the previous part,

“Design Evaluation”.

3.1.5 Research Rigor

The feature selection process that is presented in our research uses a feature model to

acquire the SPL specifications; it then applies feature dependency analysis to analyze the

dependencies among the features while forming a feature dependency graph; followed by

the graph clustering step where related feature are consolidated accordingly; leading to

the final step where the multi-objective feature selection is done by using genetic

algorithm. The SPL to-be needs are elicited using feature modeling [5] while the

consolidation of related features is done using a local optimization signed graph

clustering algorithm [43, 44] which has a long history and follows a sound mathematical

model. It can therefore be seen, that our research work is drawn from a clearly defined

and tested base of literature and techniques.

3.1.6 Design as a Search Process

The design of our research is based on an iterative search that can effectively balance the

SPL requirements, the feature dependencies and the user preferences. Moreover, our

process ensures that the laws that are commonly accepted and practiced in software

21

engineering are satisfied; this can be seen in the previous item that our work is heavily

drawn from already accepted processes and approaches.

3.1.7 Communication of Research

The audience targeted by our research is the SPL analysts who are well aware of the

feature modeling; clustering approaches, particularly graph based, and feature selection

processes and algorithms. However, since the business requirements play a central role in

our approach, there is strong motivation for the managerial audience to adopt our

approach.

3.2 Feature Modeling

 The first step is to form a suitable feature model that has sufficient amount of features

and dependencies which are also close to a real world setting. These features act as the

design requirements for the SPL. A similar feature model for smartphone device product

line can be seen in Figure 1, earlier in chapter 2.

3.3 Feature Dependency Analysis

 To proceed with the research it is important to analyze the dependencies that exist

among the features and come up with a technique that allows us to convert the feature

model into a graph upon which the graph clustering can be carried out.

These dependencies are induced in the feature model when it is being created. The

dependencies reflect upon the relationships features have among themselves; based on

the structural and relational constraints.

The dependencies must be fully analyzed and translated into a structure that can easily

depict the relations among the various features of a product line. The semantic

22

dependency relationship among the concrete level features (CLFs), leaves of the feature

model, can be seen in Figure 3.

The child features that were connected to their parent via AND connector were given the

edge weight ‘1’ between them as these features must exist together. Similarly, those

connected via ALT or NOT connectors were assigned the edge weight value of ‘-1’

among them, as only one of the child can be selected for a certain product or both

can’t/must not exist in the same product. Likewise, edge weight between the features that

were connected via OR connector were assigned the value ‘0.5’.

Figure 3 - Semantic Dependency Relationships among the CLFs

The weights proposed for the required, usage, structural OR and threat dependencies are

derived from the literature surveyed to compile this study. A similar method to the one

used by Khan in [18]. The inherent limitation of using weights lies in the subjective

nature of their values. However, the sensitivity analysis presented previously indicates

that our approach is robust and is able to produces stable solutions even if the weight

values are varied.

23

3.4 Feature Dependency Graph (FDG)

We construct an undirected signed graph G(N, E), called the feature dependency graph,

to model the semantic dependencies between CLFs. The set of nodes N of the feature

dependency graph consists of all CLFs of the SPL, with positive or negative edges

connecting pairs of CLFs with required, usage or threat dependencies.

Every edge E is assigned a positive or negative weight between -1 and 1 to specify the

nature and the strength of the interdependence between its end nodes. The signed graph

clustering algorithm subsequently used in our approach tries to merge nodes (CLFs) with

positive edges in the same cluster (group), preferring edges with higher positive weights,

while separating nodes with negative edges, preferring edges with more negative weights.

Therefore, in order to differentiate between the three dependences, we have to choose

three weight values w1, w2 and w3 such that w1, w2 > 0 (as the usage and required are

positive in nature) while w3 < 0 (as the threat dependency is a negative relationship). We

assign weights of 1, 0.1 and -1 to the required, usage and threat dependencies,

respectively. The choice of the weights is based on the case studies experiences

mentioned in [18].

We also introduced another dependency for the structural OR and assigned a weight, w4,

of 0.5 to the edge among the nodes that have a structural OR among themselves. The

notion behind the value of w4 is that, if there exist two nodes with structural OR among

themselves, they have an equal probability of being selected for a certain cluster; either a

node (CLF) will be selected or either it won’t be selected.

24

Based on the dependencies discussed in Chapter 2, a feature dependency graph can be

made. A sample FDG can be seen in Figure 4. This FDG contains 10 nodes, which

represent 10 concrete level features. Features that don’t have any relation with other

feature can exist too; like ‘CLF 3’ shown in Figure 4. These features can be placed in any

cluster. Such features are one of the causes why we receive several different solutions

having the same clustering error.

Figure 4 - A sample Feature dependency graph

3.5 Graph Clustering

Once the feature model is converted into the graph, we run graph clustering algorithm, to

come up with the several solutions including some near-optimal solutions each of which

contains clusters of features (consolidated features) that are interrelated and can

efficiently be developed together when developing a software product line.

25

A custom graph clustering algorithm was developed to cluster elements into groups. Our

graph clustering algorithm works like a relocation algorithm that is used to partition

signed graphs. Signed graphs are the graphs that have positive or negative weights over

the edges that connect the vertices. As seen in Figure 4, the edges in the graph contain

both negative and positive weights so; our algorithm seems to be the appropriate graph

clustering algorithm to apply. This algorithm optimizes a certain partition by including as

many positive edges as possible with the cluster and negative edges between the clusters.

3.5.1 Cluster Formation

In this step, the nodes of the feature dependency graph are clustered based on their

interdependencies. We use the local optimization signed graph clustering algorithm [43]

that partitions nodes of a signed graph in such a way that pairs of nodes joined by

positive edges are grouped in the same cluster, whereas pairs of nodes joined by negative

edges are separated into different clusters. Our objective is to cluster the concrete-level

features (CLFs) with required and usage relationships together while separating concrete-

level features with threat dependencies. The cluster formation helps to combine those

CLFs in a cluster that work together to achieve a functionality of the SPL. On the other

hand, any two concrete-level features with a threat dependency will be separated into

different clusters.

However, it is important to note that it is not always possible to cluster a signed graph. In

fact, a signed graph is clusterable if and only if it contains no cycle with exactly one

negative edge [45]. If the feature dependency graph is not clusterable, the local

optimization algorithm finds a partition that minimizes the clustering error. The negative

error neg of a partition is the sum of weights of all negative edges that lie inside clusters.

26

While the positive error pos can be defined as the sum of weights of positive edges

joining different clusters. The clustering error, Er is defined [43] as:

Er = pos + |neg| (1)

where |.| stands for the absolute value. Given Eq. (1) we can outline the local

optimization clustering algorithm as shown in Figure 5:

Figure 5 - Cluster formation procedure for graph clustering

Here Er(Cls) denotes the error of the clustering Cls and n denotes the number of

iterations performed by the algorithm before stopping. The output of the Procedure is a

local optimal clustering that is not necessarily a global optimal. However, for large n

(typically 1000), this local optimal provides a good approximation to the global optimal

[43]. Procedure 1 is the most widely used signed graph clustering algorithm as the

problem of finding a global optimal clustering is NP-hard [46].

3.6 Business Objectives

Once the set of solutions or configurations to SPL are provided, there can be several

different near optimal solutions based on the objectives that must be reached out of the

set of SPL solutions. The objective functions can be created based on the structural needs

of the solutions or they can be elicited from the stakeholders, like a business analyst, who

27

wants a certain trait to be depicted at all times from their products within a product line or

as in our case, software product line.

For our approach, overall there are three objectives which are considered while defining

near-optimal solutions to a software product line. One was the clustering error that

resulted after applying our graph clustering algorithm over the FDG; the second was the

overall product priority and last the product integrity. Each of the objectives is defined in

the following sub-sections.

3.6.1 Clustering Error

The clustering error is generated by the graph clustering algorithm, which depicts how

much of a tradeoff between the features’ dependencies have been made in order to

generate that particular error.

Er = pos + |neg| (1)

Where, neg of a partition is the sum of weights of all negative edges that lie inside

clusters and pos can be defined as the sum of weights of positive edges joining different

clusters.

3.6.2 Overall product priority

One of the major requirements of businesses or software system planner is to produce

products that are not only built in a certain fashion but they also amount to a required

value it provides to the company. As a single product contains several features, we start

off by assigning a priority value based on the importance of each concrete level feature

(CLF). A common approach to find the value or priority of a feature is to ask the

stakeholders to vote for features. Hence, the assignment was made based on a small

28

survey where we asked the respondents, experts and developers, to rate the features based

on the importance of the feature in the product. We then took the average value of the

respondents answer and assigned that value as the priority for a particular feature.

As we have set of clustered/consolidated features in a single product

configuration/solution, the priority of a cluster may depend on the selection state of other

features such that selection of a feature can increase or decrease the value/priority of the

whole cluster. Therefore, we use average of averages method to calculate the overall

product priority or value. So, the priority of each feature in a group is added and divided

by the number of features in a group/cluster, hence the average priority within each

cluster increases or decreases based on the priority of each individual. This is repeated

for every group. The average of these averages is then the overall product priority of the

resulting product.

PP = (∑ (∑ CPj)
𝑛

𝑗=0

𝑚

𝑖=0
/n)/m (2)

Where PP is the overall product priority, m is the number of clusters in the product, n is

the number of CLFs in that particular cluster and CPj is the priority of a single CLF, ‘j’.

3.6.3 Overall product integrity

As talked about earlier, one of the main goals for businesses to use SPL as a reuse

technique is to achieve a range of products in efficient and effective manner that also

comply to the business requirements which SPL tends to fulfill. One such goal that is

required by businesses or stakeholders is the overall integrity of the resulting product [2,

47].

29

According to C. Takahiro [47], the product integrity can be defined as “the degree to

which the features of a product are perceived as cohesive”. From end-user perspective the

higher the product’s integrity is, the higher the synergy among the features of the product,

rather than a product just having a collection of features each doing a solitary task.

To formulate integrity, we use NCP (Nearest common Predecessor). NCP measures the

semantic distance among tow CLFs. To calculate NCP for two CLFs, we first have to

label the levels, root being the zero level, while the parent of the deepest leaf will have

the highest level, as the number is incremented at each tree level. NCP for two CLFs is

their first common abstract reached when moving from leafs towards the root. That level

number will be the NCP of those two features. Figure 6 shows how the integrity between

two features is measured by using NCP.

Figure 6 - Sample Calculations for NCP. Ex: NCP(a,b) = 2, NCP(c,d) = 0

3.7 Multi-objective feature selection using Genetic Algorithm

Ensuring that the SPL configurations fulfill the business objectives while considering the

feature dependencies makes the problem more complex. As there are multiple objectives

30

to be optimized, this yields for some tradeoffs still ensuring best possible results. This

makes the problem an optimization problem.

A popular and promising approach to solve such optimization problem is the use of

genetic algorithm and it has been used by many researchers as in [2, 11].

3.7.1 Grouping Genetic Algorithm (GGA)

Falkenauer [31] proposed so-called Grouping Genetic Algorithm (GGA) to deal with a

variety of grouping (partitioning) problems; his efforts aimed at designing appropriate

chromosomal representation to capture the structure of the problem. Many researchers

[33-38] have applied his chromosomal representations or a modified version of his

chromosomal representations to represent and then solve the different type of partitioning

problems like the bin-packing, bin balancing or graph coloring problems.

3.7.2 Encoding Scheme

Normal binary encodings are unnatural for many problems as they don’t fully

accommodate the problem specific information[30]. Hence, our encoding scheme is

inspired by the encoding scheme suggested by Falkenaeur [31] and Michalewicz [32] ,

we have modified the scheme just to ease the coding of the genetic algorithm. No change

has been made to the gist of the encoding scheme. This encoding scheme is used to

enhance the performance of the genetic algorithm by using problem specific genetic

operators.

The crossover and mutation genetic operators remain the same and work in the same

fashion as suggested in [31, 32]. This encoding scheme is specially designed to solve the

grouping problems, like bin-packing and bin-balancing problems. It scheme had to be

31

modified because in the bin-balancing and the bin-packing problems either the bin/group

size is fixed or the number of objects/features inside a bin/group are fixed. In our

approach both the amount of groups and the number of features within a group are kept

variable.

The following scheme has been used to represent the chromosome:

(11 22 31 43 53 63 71 81 92 : 1 2 3)

 The part of the chromosome to the left of the colon is the feature part, while the

other is called the group part.

 The 1st digit of each number in the feature part is the feature number or ID. The

second digit is the group they are associated with.

 The group part represents the total clusters that all the features in this solution

reside in.

 So, in the above example, there are 9 features associated with 3 different groups.

The encoding scheme to encode a SPL configuration into a chromosome is depicted in

Figure 6.

32

Figure 7 - a) Description of Chromosome b) Solution representation of the chromosome

3.7.3 Selection

Once the population is generated, the next step is to select some individuals from the

given population, upon which the crossover and mutation genetic operators can be

applied.

The individuals will be selected based on a fitness value which is calculated as follows:

Fitness = 1/PP + 1/PI + Er (3)

Where, PP is the overall product priority, PI is the overall product integrity and Er is the

clustering error for that product/SPL configuration. The lower the value of fitness the

fittest an individual is.

To select the individuals we have used the tournament selection approach [48]. It is a

method to select an individual from a given population of several individuals. Several

33

tournaments are carried out among some individuals (chosen at random) in a given

population. The one with the best fitness among the two is then selected for crossover.

The tournament selection method has the following steps:

 Select X individuals from a given population. (X = tournament size)

 Select the individual with best fitness value, having some probability p.

 Then select the next best-fit individual, with probability p*(1-p)

 Then select the 2nd next best fit individual with probability p*((1-p)^2)

 Do this K times and then perform crossover upon each pair of individuals to

generate the next population.

3.7.4 Crossover

One of the genetic operators in a GA is a crossover. When crossover between two

individual of a given population occurs, a new individual is generated. This individual

inherits the traits of its parent. When performing crossover, the hope is that by combining

two individuals an even 'fitter' offspring will be created, while inheriting the traits of its

parents.

The words chromosome and individual will be used interchangeably. The crossover is

explained using the following example:

Individual 1: (11 22 31 43 53 63 71 81 92 : 1 2 3)

Individual 2: (12 23 33 45 51 64 72 82 96 : 1 2 3 4 5 6)

Two crossing sites are then selected in each of the individuals

Individual 1: (11 22 31 43 53 63 71 81 92 : 1 | 2 3|)

Individual 2: (12 23 33 45 51 64 72 82 96 : 1 2 |3 4| 5 6)

34

The idea is to inject the contents bounded between the two crossings sites of the first

parent are inserted at the first crossing site of the second parent and vice versa. This

creates two children, who are then mutated or sent directly to the new population,

depending on the mutation probability.

This form of crossover results in duplicate elements being grouped into the different

clusters. To solve this problem the old groups of the child with duplicate elements are

deleted if the new group also has those same elements. This, in turn, leaves some

elements not being assigned to any of the group. To cater this problem a repair function is

developed that randomly assigns the abandoned elements to any group or creates a new

group and assigns the abandoned features to it.

The process of crossover can be seen in Figure 8. The two chromosomes are denoted with

different colors in order to identify the groups and features of each individual

chromosome.

35

Figure 8 - GA Crossover process

3.7.5 Mutation

Once the crossover produces a child, mutation is performed based on the mutation

probability. Mutation is performed to bring a little bit of randomness in the created

individual, to ensure that this particular individual is not among the initial population.

The small change we perform is swapping of a feature from one cluster to another. This

process of mutation of a chromosome can be seen in Figure 9.

36

Figure 9 - Mutating a chromosome by swapping a feature among clusters

3.7.6 Termination of GA

There are two ways to terminate the GA either a certain number of generations (1000) are

reached or a certain fitness value individual is created and no further improvement to the

fitness value occur, for a certain amount of generations.

3.8 Consolidated features for SPL requirements

 Once the GA terminates, The GA produces a single best solution having the best fitness

value among the last generation that was generated. This solution is the near optimal

solution that has evolved from a random initial population. The solution suggests that

elements in each cluster must be developed together in order to benefit the most in terms

of the business objectives.

37

4 CHAPTER 4

CASE STUDIES AND RESULTS

This chapter comprises of two case studies where we apply our approach and discuss the

outcomes of each case study separately. The first case study is a real life example of an

automotive system (AS), which is used to easily understand the concepts discussed in our

approach. The second case study is based on a well known tool used by the architects and

structural engineers, life cycle assessment tool (LCA). These case studies show the

applicability of our approach in different environments, which will help the system

analysts and SPL managers to easily adopt to this approach.

4.1 Case Study 1 – Automotive System (AS)

This case study includes some commonly utilized features of an automotive system. As

automobiles are widespread and knowledge about them is a very common, it will make

our approach easy to relate and understand.

4.1.1 AS - Feature Modeling

 For the purpose of the case study a suitable feature model for an Automotive System was

formulated based on the SPL requirements of an automotive system, which contained 34

features and 8 cross-tree constraints. These constraints were the basis upon which the

relationships between the features were defined. The feature model can be seen Figure 9;

it depicts the core and optional features having a variety of relations among the features.

38

Figure 10 - Feature Model for an Automotive system

4.1.2 AS - Feature Dependency Analysis

 The feature dependency analysis was performed over the feature model depicted in

Figure 10. The analysis considered the feature dependencies that existed among the

concrete level features, as shown in Figure 3. The dependencies that existed among the

CLFs of the automotive system can be seen in Table 2.

39

Table 2 - Feature Dependency analysis for automotive system

4.1.3 AS - Feature Dependency Graph (FDG)

The undirected feature dependency graph was created by developing a graph clustering

algorithm defined in Chapter 3 of the thesis. The undirected FDG can be seen in Figure

11. The nodes of the graph represent the CLFs in the feature model, which was created

for the automotive system.

40

Figure 11 - FDG for the Automotive FM using the feature dependencies

4.1.4 AS - Graph Clustering

The graph clustering algorithm was run on the feature dependency graph; the following

steps were followed to get the clustering results depicted in Table 3:

1. Provide the number of clusters

2. Run graph clustering algorithm 1000 times with 95% confidence level

3. Note the clustering error

4. Decrement the number of clusters

5. Repeat step 1-4 (starting from ‘no. of clusters = number of CLFs’ to ‘no. of

clusters = 1’)

41

4.1.5 AS - Clustering Results

The clusters are formed based on how related the features are (i.e. feature dependencies).

Clustering error closer to zero suggests that during clusters formation better compromises

between the placement of features (based on the dependencies) into clusters, were made

than the results produced with higher clustering error.

Table 3 - Results after applying graph clustering on the FDG

42

Hence, the optimum clustering error is 0.45 in our experiments. The reason it remained

constant for several different numbers of clusters is that there might always be a

compromise made between placements of features into clusters that if the error decreases

by removal of a feature from a cluster, it tends to increase due to the addition of that

feature into another cluster.

In case, if the error is same for several different solutions, the near optimal solution is the

one that gives minimal error we select the solution with a the most number of clusters, as

it gives more choices to distribute the product among the development teams. Therefore,

the results in Table 3 suggest having the most number of clusters with minimum

clustering error, 12 clusters (consolidated features) of related features.

Therefore, the algorithm clustered the FDG into 12 clusters where the cluster number can

be seen beside each CLF, within the parenthesis in the graph in Figure 12.

Figure 12 - A clustered FDG after running the Graph Clustering algorithm

43

4.1.6 Multi-objective feature selection using Genetic Algorithm

GA algorithm was used to generate a near-optimal solution. The GA started off by

initializing a population of 50 random solutions. All the solutions were evaluated based

on the fitness value and then the 20 best among the population were selected to be the

part of a new population. These 20 were then selected for crossover, using tournament

selection. Based on the crossover probability, 0.5, the crossover was performed between

each pair of solutions. The children produced by these crossovers were then mutated in

accordance with the mutation probability, 0.1. These children were then added to the new

created population. The steps were then repeated until a certain fitness value was

achieved. The one with the best fitness value was suggested as the near-optimal solution.

To calculate the fitness value equation (3) is used. To compute the overall fitness value

we need the computations of the PP, PI and Err or the clustering error is generated when

we apply our graph clustering algorithm, PP is calculated by using equation (2) while PI

is calculated using a technique called Nearest Common Predecessor, NCP. Calculation of

PP and PI are discussed individually and then the resulting configuration is shown.

4.1.7 AS – Calculating Product Priority, PP

As mentioned in Section 3.6.2, the assignment of priority was made based on a small

survey where we asked the respondents, experts and developers, to rate the features based

on the importance of the feature in the product. We then took the average value of the

respondents’ answers and assigned that value as the priority for a particular feature. Next,

we inverted the priority for each feature as the higher the priority numbering the lower

the importance and vice versa (i.e. the feature having priority 1 is of most importance).

44

This value was assigned to each individual feature as its priority and then used in the

GA’s objective function for calculating the product priority as discussed in Section 3.6.2..

The priorities for each concrete level feature in the ‘Automotive System (AS)’ feature

model can be seen in the Table 4.

Table 4 - Priorities of CLFs in AS feature model

4.1.8 AS – Calculating Product Integrity, PI

As mentioned in the previous chapter we used Nearest Common Predecessor (NCP) to

calculate the integrity of the product. The NCP was calculated for every concrete level

feature with all other concrete level features. To ease up the calculations of NCP we

converted the Automotive System’s feature model to a similar sample that was seen in

45

the previous chapter in section 3.6.3 (i.e. Figure 6). The modified feature model is shown

in Figure 13.

Figure 13 - Modified feature model to calculate NCP for AS

Based on the Figure 13, the NCP calculations were carried out on AS feature model. The

NCP value was calculated among each pair of concrete level features and then in the

46

objective function for product integrity in the GA, the product integrity for each solution

was calculated. The pair-wise NCP calculations can be seen in table 5.

Table 5 - NCP calculations for all CLFs in AS feature model

The results for the clustering errors, corresponding product priority and integrity values

can be seen in Table 6.

47

Table 6 - Clustering Error, Priority and Integrity values for each resulting SPL solutions of AS

Hence, the SPL configuration/solution for the AS feature model after the consideration of

feature dependencies and the business objectives can be seen in Figure 14.

The GA resulted in the following near optimal solution:

(CLF 4, CLF 8), (CLF 2, CLF 6, CLF 13, CLF 14, CLF 16), (CLF 1, CLF 15, CLF 17,

CLF 18, CLF 20), (CLF 3, CLF 5, CLF 19), (CLF 9, CLF 10), (CLF 7, CLF 11, CLF 12)

48

Chromosome Representation:

(13 22 34 41 54 62 76 81 95 105 116 126 132 142 153 162 173 183 194 203 | 1 2 3 4 5 6)

Figure 14 - SPL configuration representation after running GA

49

4.2 Case Study 2 – Life Cycle Assessment software tool (LCA)

For the purpose of the case study a suitable feature model was formulated for a Life

Cycle Assessment Tool. It is a software tool used by architects, structural and

Environmental Engineers and many others, to help them automate an exhaustive manual

assessment known as Life-cycle assessment (LCA).

Life-cycle assessment is a technique to assess environmental impacts associated with all

the stages of a product's life from cradle to grave [49]. Designers use this process to help

critique their products. LCAs can help avoid a narrow outlook on environmental concerns

by:

 Compiling an inventory of relevant energy and material inputs and environmental

releases;

 Evaluating the potential impacts associated with identified inputs and releases;

 Interpreting the results to help make a more informed decision.

4.2.1 LCA - Feature Modeling

The feature model for the LCA tools was formulated based on the 4 phases that are part

of the LCA process; namely (1) Goal and Scope Specification, (2) Inventory Analysis,

(3) Impact Assessment and (4) Interpretation. Furthermore, to confirm the features and

the variations that can be present in a LCA tool we used and inquired several commonly

used LCA tools like OpenLCA, SimaPro and Gabi. This process resulted in a feature

model that contained 39 features and 6 cross-tree constraints. These constraints were the

basis upon which the relationships between the features were defined. The feature model

50

can be seen Figure 15; it depicts the core and optional features having a variety of

relations among the features.

Figure 15 - Feature Model for LCA tool

51

4.2.2 LCA - Feature Dependency Analysis

 The feature dependency analysis was performed over the feature model depicted in

Figure 15. Like the previous case study the analysis considered the feature dependencies

that existed among the concrete level features, as shown in Figure 3. The dependencies

that existed among the CLFs of the LCA tool can be seen in Table 7.

Table 7 - Feature Dependency analysis for LCA tool

4.2.3 LCA - Feature Dependency Graph (FDG)

The undirected FDG was created by developing a graph clustering algorithm defined in

Chapter 3 of the thesis. The undirected FDG can be seen in Figure 16. The nodes of the

graph represent the CLFs in the feature model, which was created for the LCA tool.

52

Figure 16 - FDG for the LCA FM using the feature dependencies

4.2.4 LCA - Clustering Results

Similar to the previous case study, the same method for graph clustering was used. The

clusters were formed based on the relationships among the features. Clustering error

closer to zero suggests that during clusters formation better compromises between the

placement of features (based on the dependencies) into clusters, were made than the

results produced with higher clustering error. The results after performing the graph

clustering can be seen in Table 8.

53

Table 8 - Results after applying graph clustering on the LCA tool’s FDG

Hence, the optimum clustering error is 0.0 in our experiments. It remained constant at 0.0

for several different solutions. This behavior was expected as there were separate clusters

seen in the FDG in Figure 16 prior to graph clustering. This meant the features in the

LCA tool are less dependent upon each other. Hence, the features can be easily sorted out

54

into different clusters without compromising their interdependencies which are the crux

of our approach.

Like in this case, if the error is same for several different solutions, the near optimal

solution is the one that gives minimal error with the most number of clusters, as it gives

more choices to distribute the product among the development teams. Therefore, the

results in Table 8 suggest the optimal solution after applying the graph clustering

algorithm is the SPL configuration/solution containing 16 clusters.

Therefore, the algorithm clustered the FDG into 16 clusters. The clustered FDG for the

LCA tool can be seen in Figure 17, where features in same cluster carry the same color.

Figure 17 - A clustered FDG for LCA tool after running the Graph Clustering algorithm

55

4.2.5 Multi-objective feature selection using Genetic Algorithm

Similar to previous case study we applied GA algorithm to generate a near-optimal

solution. The GA parameters that were used are mentioned in Table 9.

Table 9 - GA parameters

GA Parameters Value

Population Size 20

Crossover probability 0.5

Mutation probability 0.1

Max Generation 1000

Selection Strategy Tournament selection

To calculate the fitness value equation (3) is used. To compute the overall fitness value

we need the computations of the PP, PI and Err or the clustering error is generated when

we apply our graph clustering algorithm, PP is calculated by using equation (2) while PI

is calculated using a technique called Nearest Common Predecessor, NCP. Calculation of

PP and PI are discussed individually and then the resulting configuration is shown.

4.2.6 LCA – Calculating Product Priority, PP

As mentioned in Section 3.6.2, the assignment of priority was made based on a small

survey where we asked the respondents, experts and developers, to rate the features based

on the importance of the feature in the product. We then took the average value of the

respondents’ answers and assigned that value as the priority for a particular feature. Next,

we inverted the priority for each feature as the higher the priority numbering the lower

56

the importance and vice versa (i.e. the feature having priority 1 is of most importance).

This value was assigned to each individual feature as its priority and then used in the

GA’s objective function for calculating the product priority as discussed in Section 3.6.2.

The priorities for each concrete level feature in the ‘Life Cycle Assessment software tool

(LCA)’ feature model can be seen in the Table 10.

Table 10 - Priorities of CLFs in LCA tools’ feature model

57

4.2.7 AS – Calculating Product Integrity, PI

As mentioned in the previous chapter we used Nearest Common Predecessor (NCP) to

calculate the integrity of the product. The NCP was calculated for every pair of concrete

level features. To calculate the NCP of each pair of CLFs we converted the LCA tool’s

feature model to a similar sample that was seen in the previous chapter in Section 3.6.3

(Figure 6) and Section 4.1.7 (Figure 13). The modified feature model of LCA tool is

shown in Figure 18.

Figure 18 - Modified feature model to calculate NCP for LCA tool

58

Based on the Figure 13, the NCP calculations were carried out on LCA tool’s feature

model. The NCP value was calculated among each pair of concrete level features and

then in the objective function for product integrity in the GA, the product integrity for

each solution was calculated. The pair-wise NCP calculations can be seen in table 11.

Table 11 - NCP calculations for all CLFs in LCA tool’s feature model

The results for the clustering errors, corresponding product priority and integrity values

can be seen in Table 12.

59

Table 12 – Clustering Error, Priority and Integrity values for each resulting SPL solutions of LCA tool

So the SPL configuration/solution for the LCA tool’s feature model after the

consideration of feature dependencies and the business objectives can be seen in Figure

19.

60

The GA resulted in the following near optimal solution:

(CLF 1, CLF 4, CLF 13, CLF 19, CLF 24, CLF 27), (CLF 2, CLF 5, CLF 7, CLF 8, CLF

9, CLF 12, CLF 15, CLF 18, CLF 21, CLF 22, CLF 23, CLF 25), (CLF 3, CLF 6, CLF

10, CLF 11, CLF 14, CLF 16, CLF 17, CLF 20, CLF 26)

Chromosome Representation:

(11 22 33 41 52 63 72 82 92 103 113 122 131 143 152 163 173 182 191 203 212 222 232

241 252 263 271 | 1 2 3)

Figure 19 - SPL configuration representation for LCA tool after running GA

61

5 CHAPTER 5

DISCUSSION AND ANALYSIS

When we apply the graph clustering to both our case studies, they result in SPL solutions

with variable clustering errors. These errors are representative of how much compliance

the solution has with the dependencies that exist among the features. The closer the value

to 0, the better the solution is; clustering error 0 suggests that all the feature dependencies

are fulfilled. Hence, the more the dependencies among the features and the more

distributive the dependencies are, the harder it is to come up with a solution closer to 0.

The best solution for AS (Case Study 1) is 0.45, which means that in producing a solution

there is always a trade-off to be made while consideration of feature dependencies of

different features. As seen in Table 2, there are a lot of dependencies that exist among the

features due to the way the AS feature model is designed; and all these dependencies

must be fully satisfied in order to achieve a cluster error of 0. In such complex situations

it is hard to fulfill all dependencies, as fulfillment of one dependency might negatively

affect the other. For instance, a feature A has a positive dependency with feature B, while

feature B has a positive dependency with feature C and feature A has a negative

dependency with feature C; in this case all three features must reside in a single cluster

which requires some trade-off to be made in terms of consideration of the feature

dependencies. So, some feature dependencies might be considered and some might not,

depending upon the type of relationship that exists among each pair of features as each

62

type of dependency is assigned different edge weight in the feature dependency graph

(FDG).

On the other hand, when we apply the graph clustering algorithm on LCA tool’s feature

model we get more solutions with the clustering error of 0. This means that there are

several solutions available that fulfill all the feature dependencies among the features.

This is due to the fact, and also can be seen in the feature dependency graph (FDG),

Figure 16, that there are less distributive dependencies among the features; the FDG even

before clustering seems to be clustered together. Hence, it is easier to satisfy the

relationships among the features.

In real-world setting, however, we don’t just have to comply with the feature

dependencies but also with the business objectives which are required of the SPL

solutions; as the purpose of using SPL is to be proactive in product evolution. Hence,

SPL solutions are not of much importance if they don’t accomplish the business

objectives which are required out of them.

This need for conformity with the feature dependencies and the business objectives

makes the pursuit of optimal SPL solution more complex. The problem leads to the

second phase of the thesis where we apply the GA to produce near-optimal SPL solutions

that observe the feature dependencies alongside the objectives, namely, product priority

and product integrity.

As can be seen in Figure 20 and Figure 21, the SPL solutions produced before and after

the application of our GA are different. The solutions on the right side of each Figure

63

show the SPL solutions that are near-optimal, fulfilling the objectives while conforming

to the feature dependencies.

Figure 20 - Comparison of results after graph clustering and after applying GA, for AS

In Figure 20, the SPL configuration on the left shows the best possible solution we can

get, when considering the relationships among the features only. However, this solution

is less cohesive as there are several clusters having individual features, which shows the

lack of synergy among the features. Hence, this SPL configuration has less integrity.

On the other hand, the solution on the left is the near-optimal solution which is a result of

the GA we have developed. This solution has more cohesive components or clusters each

having a collection of features that also comply with the dependencies in the best possible

way, as both the solutions have the same clustering error of 0.45.

 Moreover, as seen in Table 4 there were different priorities assigned to the each feature;

our approach tries to preserve these priorities optimally while trying to keep a best trade-

64

off with the product integrity and clustering error. For instance, in the SPL solution on

the left, the features in cluster ‘C6’ all have the same priority, all feature dependencies

are considered except 1, which seems reasonable as the overall clustering error is 0.45,

and all these features form a cluster with an integrity value of 1 which is greater than the

overall integrity of the SPL configuration, suggesting that this component/cluster is

highly cohesive.

Figure 21 - Comparison of results after graph clustering and after applying GA, for LCA

Figure 21 shows the optimal SPL configuration before and after the application of the

developed GA. On the left side we can see the best possible SPL solution which accords

to the feature dependencies only. However, this solution too is perceived to be less

cohesive as there are several clusters having individual features, which shows the lack of

synergy among the features. Hence, this SPL configuration has less integrity.

65

The solution in discussion also has less product priority too. This is because the product

priority is calculated using average of averages. In this case, if some feature with less

priority is alone in a cluster, the cluster priority (average) will be less hence affecting the

overall product priority negatively. However, if the same feature is placed in a cluster

having high priority (average), this will surely decrease the priority (average)

of the accepting cluster but the negative effect on the overall product priority will be less.

On the other hand, the solution on the left is the near-optimal solution which is a result of

the GA we have developed. This solution has more cohesive components or clusters each

having a collection of features that also comply with the dependencies in the best possible

way, as both the solutions have the same clustering error of 0.

 Moreover, as seen in Table 10 there were different priorities assigned to the each feature;

the SPL solution produced after the full application of our approach preserves these

priorities optimally while trying to keep a best trade-off with the product integrity and

clustering error. For instance, the priority value of the cluster ‘C1’ in the SPL solution on

the right side is 0.708 and the average of priorities from clusters (‘C1’, ‘C4’, ‘C13’,

‘C14’, ‘C5’) having the same features in the solution on the left side is 0.65. And as

discussed in Section 3.6.2 the higher this value is the higher the priority.

This shows that our approach produces near-optimal solutions that conform to all the

business objectives while fully considering the relationships among the features.

66

6 CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

Due to the extensive use of software, the software industry and businesses require a

strategic reuse technique like SPL to fulfill the expectations and the business needs. SPL

however, requires the consideration of the interdependencies that exists among the core

assets (features) of a SPL, while selecting the features for a valid product configuration.

Furthermore, SPL also requires the fulfillment of the competing objectives/user

preferences. In this thesis, an approach was developed that caters to both these

requirements; by developing a dependency analysis technique for SPL features, then

consolidating related features using signed graph clustering algorithm and finally,

developing a genetic algorithm to balance the clustering error, product priority and

product integrity (objectives) in a SPL to produce optimal (near-optimal) SPL

configurations.

Moreover, we demonstrate the application of our graph based feature selection approach

using two case studies, namely, Automotive System (AS) and LCA (Life Cycle

Assessment) tool. The former is a common example to explain and easily understand the

approach while demonstrating its concepts and applicability to similar environments.

LCA tool however, is as engineering software. This shows that our approach can be

potentially applied to different types of systems.

The results from the case studies suggest that only considering the feature dependencies

may results in a different SPL configuration, which might actually not be an optimal

67

solution when other real-life business objectives are considered. Our approach, as

depicted by the application of case studies, ensures that not only the relationships among

the features are maintained but it also tries to give the near-optimal solution considering

the business objectives.

In addition to that, the approach we formulated follows ‘Design Science Research

Guidelines/Framework’, which ensures that the research work produced carries viable

contributions, hence enabling technical as well as managerial personnel to readily make

use of our approach.

Our Approach naturally is highly dependent upon the SPL specifications provided or

elicited. Hence, it is of utmost importance that the specifications gathered are an exact

idealization of the system under discussion. This affects the approach from the initial

phases when we are forming the feature model for a given system. Hence, to formulate

the feature model for the AS (case study 1), we carefully articulated the SPL specification

and confirmed its viability from the experts in the industry. We also consulted the

architectural engineering experts to form the feature model for the LCA tool (case study

2)

There are several directions in which this work can be extended further. For the future

work we plan to rank the consolidated features (of the near-optimal solutions produced)

using ranking algorithms to give a timeline to the SPL analyst in order to devise a way to

easy and efficient SPL development during evolution. Another plan is to apply ACO

algorithms to compare the results, which we believe will provide us further confidence in

our technique.

68

References

[1] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, "Combining Multi-

Objective Search and Constraint Solving for Configuring Large Software Product

Lines," pp. 517-528, 2015.

[2] R. Karimpour and G. Ruhe, "Bi-criteria Genetic Search for Adding New Features

into an Exising Product Line," in Proceedings of 1st International Workshop on

Combining Modelling and Search-Based Software Engineering, 2013, pp. 34-38.

[3] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns:

Addison-Wesley, Boston, MA, USA, 2001.

[4] K. Pohl, G. Bockle, and F. v. d. Linden, Software Product Line Engineering:

Foundations, Principles and Techniques: Springer, 2005.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, "Feature-

oriented domain analysis (FODA) feasibility study," Technical Report CMU/SEI-

90-TR-021, Software Engineering Institute, 1990.

[6] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, "FORM: a feature-

oriented reuse method with domain-specific reference architectures," Annals of

Software Engineering, vol. 5, pp. 143-168, 1998.

[7] K. C. Kang, J. Lee, and P. Donohoe, "Feature-oriented product line engineering,"

IEEE Software, vol. 19, pp. 58-65, 2002.

[8] J. Lee, K. C. Kang, P. Sawyer, and H. Lee, "A Holistic Approach to Feature

Modeling for Product Line Requirements Engineering," Requirements

Engineering, vol. 19, pp. 377-395, 2014.

[9] J. White, J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, and D. C.

Schmidt, "Evolvoing Feature Model Configurations in Software Product Lines,"

Journal of Systems and Software, vol. 87, pp. 119-136, 2014.

[10] D. Batory, D. Benavides, and A. Ruiz-Cortes, "Automated analysis of feature

models: challenges ahead," Communications of the ACM, vol. 49, pp. 45-47,

2006.

[11] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, "A genetic algorithm for

optimized feature selection with resource constraints in software product lines,"

Journal of Systems and Software, vol. 84, pp. 2208-2221, 2011.

69

[12] A. S. Karatas and H. Oguztuzun, "Attribute-Based Variability in Feature Models,"

Requirements Engineering, vol. DOI 10.1007/s00766-014-0216-9, In Press.

[13] H. Cho, K. Lee, and K. C., "Feature Relationship and Dependency Management:

An Aspect-Oriented Apporach," in Proceedings of 12th International Software

Product Line Conference, 2008, pp. 3-11.

[14] S. Deelstra, M. Sinnema, and J. Bosch, "Experiences in software product families:

problems and issues during product derivation," Lecture Notes in Computer

Science vol. 3154, pp. 165-182, 2004.

[15] S. Deelstra, M. Sinnema, and J. Bosch, "Product derivation in software product

families: a case study," Journal of Systems and Software, vol. 74, pp. 173-194,

2005.

[16] C. Henard, M. Papadakis, M. Harman, and Y. L. Traon, "Combining multi-

objective search and constraint solving for configuring large software product

lines," in 37th International Conference on Software Engineering (ICSE'15) -

Volume 1, 2015, pp. 517-528.

[17] D. Sprott and L. Wilkes, "Understanding service-oriented architecture," The

Architecture Journal, vol. 1, pp. 10-17, 2004.

[18] M. A. Khan and S. Mahmood, "A graph based requirements clustering approach

for component selection," Advances in Engineering Software, vol. 54, pp. 1-16,

2012.

[19] J. White, B. Dougherty, and D. C. Schmidt, "Selecting highly optimal

architectural feature sets with Filtered Cartesian Flattening," Journal of Systems

and Software, vol. 82, pp. 1268-1284, 2009.

[20] D. Benavides and A. Ruiz-Cortés, "First International Workshop on Analysis of

Software Product Lines (ASPL'08)," Software Product Line …, 2008.

[21] K. Czarnecki and A. Wasowski, "Feature diagrams and logics: There and back

again," in 11th International Conference on Software Product Line, 2007.

[22] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, " Automated reasoning on feature

models," Advanced Information Systems Engineering - Lecture Notes in

Computer Science, vol. 3520, pp. 491-503, 2005.

[23] D. Batory, " Feature models, grammars, and propositional formulas," Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 3714, pp. 7-20, 2005.

70

[24] E. Zitzler and K. Simon, "Indicator-Based Selection in Multiobjective Search," in

8th International Conference on Parallel Problem Solving from Nature (PPSN

VIII) vol. 3242, ed, 2004, pp. 832-842.

[25] Y. Wang and J. Pang, " Ant colony optimization for feature selection in software

product lines," J. Shanghai Jiaotong Univ, vol. 19, pp. 50-58, 2013.

[26] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, "“Optimum feature selection

in software product lines: Let your model and values guide your search,” " 1st Int.

Work. Comb. Model. Search-Based Softw. Eng. , pp. 22-27, 2013.

[27] X. Lian, "Optimized Feature Selection towards Functional and Non-functional

Requirements in Software Product Lines," in 22nd IEEE International

Conference on Software Analysis, Evolution and Reengineering, 2015, pp. 191-

200.

[28] X. L. Lizhang, "An Evolutionary Methodology for Optimized Feature Selection in

Software Product Lines," in 26th International Conference on Software

Engineering & Knowledge Engineering (SEKE2014), 2015, pp. 2-5.

[29] A. S. Sayyad, T. Menzies, and H. Ammar, "On the value of user preferences in

search-based software engineering: A case study in software product lines," in

35th Int. Conf. Softw. Eng, 2013, pp. 492–501.

[30] K. De Jong, "Genetic algorithms: a 30 year perspective," Perspectives on

Adaptation in Natural and Artificial Systems, vol. 11, 2005.

[31] E. Falkenauer, Genetic Algorithms and Grouping Problems: John Wiley \&

Sons, Inc., 1998.

[32] Z. Michalewicz, Genetic algorithms+ data structures= evolution programs:

Springer Science & Business Media, 2013.

[33] M. Quiroz-Castellanos, L. Cruz-Reyes, J. Torres-Jimenez, C. Gómez, H. J. F.

Huacuja, and A. C. Alvim, "A grouping genetic algorithm with controlled gene

transmission for the bin packing problem," Computers & Operations Research,

vol. 55, pp. 52-64, 2015.

[34] R. Lewis and B. Paechter, "Application of the grouping genetic algorithm to

university course timetabling," in Evolutionary Computation in Combinatorial

Optimization, ed: Springer, 2005, pp. 144-153.

[35] E. C. Brown and R. T. Sumichrast, "CF-GGA: A grouping genetic algorithm for

the cell formation problem," International Journal of Production Research, vol.

39, pp. 3651-3669, 2001.

71

[36] S. H. Razavi, E. O. M. Ebadati, S. Asadi, and H. Kaur, "An efficient grouping

genetic algorithm for data clustering and big data analysis," in Computational

Intelligence for Big Data Analysis, ed: Springer, 2015, pp. 119-142.

[37] O. Sobeyko and L. Mönch, "Grouping genetic algorithms for solving single

machine multiple orders per job scheduling problems," Annals of Operations

Research, vol. 235, pp. 709-739, 2015.

[38] L. E. Agustı´n-Blas, S. Salcedo-Sanz, S. Jiménez-Fernández, L. Carro-Calvo, J.

Del Ser, and J. A. Portilla-Figueras, "A new grouping genetic algorithm for

clustering problems," Expert Systems with Applications, vol. 39, pp. 9695-9703,

2012.

[39] B. W. Zulawinski, W. F. P. Iii, E. D. Goodman, and E. Falkenauer, "The grouping

genetic algorithm (gga) applied to the bin balancing problem," 1995.

[40] A. R. Hevner, S. T. March, J. Park, and S. Ram, "Design Science in Information

Systems Research," MIS Quarterly, vol. 28, pp. 75-105, 2004.

[41] F. Ahmed and L. F. Capretz, "Managing the business of software product line: An

empirical investigation of key business factors," Information and Software

Technology, vol. 49, pp. 194-208, 2007.

[42] L. M. Northrop, "Software product lines: reuse that makes business sense,"

Australian Software Engineering Conference (ASWEC'06), vol. 2006, pp. 1 pp.-3,

2006.

[43] P. Doreian and A. Mrvar, "Partitioning signed social networks," Social Networks,

vol. 31, pp. 1-11, 2009.

[44] T. Zaslavsky, "A mathematical bibliography of signed and gain graphs and allied

areas," The Electronic Journal of Combinatorics, pp. 2009-2012, 2012.

[45] J. A. Davis, "Structural Balance, Mechanical Solidarity, and Interpersonal

Relations," American Journal of Sociology, vol. 68, pp. 444-462, 1963.

[46] P. Doreian, V. Batagelj, and A. Ferligoj, "Generalized Blockmodeling, Structural

Analysis in the Social Sciences 25," ed: Cambridge University Press, 2005.

[47] K. B. F. C. Takahiro, "The power of product integrity," Harvard Bisiness Review,

vol. 68, p. 5, Nov, 1990 1990.

[48] B. L. Miller and D. E. Goldberg, "Genetic algorithms, tournament selection, and

the effects of noise," Complex Systems, vol. 9, pp. 193-212, 1995.

72

[49] S. Schaltegger, Life Cycle Assessment (LCA)—Quo vadis?: Springer Science &

Business Media, 1996.

73

Vitae

Name : Mohammad Ahsan Javed

Nationality : Pakistani

Date of Birth :11/6/1990

 Email : ahsanjaved09@gmail.com

Address : P.O.BOX 221526, Riyadh 11311

Academic Background : M.S (Software Engineering)

 May, 2016

 King Fahd University of Petroleum and Minerals

 Dhahran, Saudi Arabia

 B.S (Computer Science)

 May, 2013

 National University of Computer and Emerging Sciences

 Islamabad, Pakistan

