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Major Field : Computer Science and Engineering 

Date of Degree : May, 2016 

 

 

In recent years tablets and smartphones have been used widely. Online text forms a 

natural representation for inputting data to these devices. Developing a system for 

automatic recognition of online text provides a quick and natural way of communication 

between these devices and human beings. Statistical-based approaches have been widely 

used in research on online text recognition while syntactical-based approaches have 

remained less explored. In this thesis, research on automatic Arabic online text recognition 

using syntactical-based techniques has been conducted.  

An improved fuzzy modeling approach of Arabic text is proposed. This approach is 

applied to Arabic (Indian) online digits’ recognition. In this approach, fuzzy models for the 

different digits are automatically generated using the training data. The fuzzy intervals are 

generated automatically based on the analysis of the training samples at the digit segment 

level. In addition, we automatically generate weights for the different segments using the 

training samples. These weights are integrated to the fuzzy similarity estimate. These fuzzy 

models proved to be able to handle the variability of the handwriting styles. 

A grapheme-based approach for recognizing isolated online Arabic characters is 

presented. The proposed approach models the online characters based on their graphemes 

using generated codebook. Different features and classification approaches are used in 

order to investigate the proposed modeling on Arabic online character recognition.  
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A new algorithm for segmenting the Arabic online text into its graphemes is proposed. 

The algorithm utilizes the way characters are joined in Arabic online text. Based on this 

algorithm, a grapheme-based approach for Arabic online text recognition is presented. A 

fuzzy classification approach is used to recognize the extracted graphemes from the testing 

data. A graph-based approach is used to map the recognized graphemes to their 

corresponding characters based on the graphemes’ statistics gathered by analyzing the 

training data.  

The proposed techniques in this thesis are applied on Arabic online digits, characters, 

words and text databases and the obtained results are promising. The presented work is 

easily extendable. 
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الرسالة ملخص  

 
 ضياء عبدالرب علي مصلح :الاسم الكامل

 
لي على الكتابة العربية اليدوية الّنية بإ ستخدام الطرق البنيوية :عنوان الرسالة  التعرف الّآ

 
 علوم وهندسة الحاسب الّلي التخصص:

 
2016مايو : تاريخ الدرجة العلمية  

و الهواتف الذكية، تستخدم بشكل واسع  الأجهزة اللوحية ، مثل الإلكترونية دعومة بالأقلامملأصبحت الأجهزة ا

مؤخرا. إن إستخدام الكتابة الآنية بالقلم الإلكتروني يمثل الطريقة الأنسب لإدخال البيانات في هذه الأجهزة.  سيوفر 

لمستخدمين اتطوير نظم للتعرف الآلي على النصوص المكتوبة بإستخدام القلم الإلكتروني طريقة سريعة وسهلة لتعامل 

 النصوص الآنية المكتوبة بإستخداملتعرف على لمع هذه الأجهزة.  إستخدمت الطرق الإحصائية في الأبحاث المتعلقة 

في هذه منا قلم تستخدم بشكل كاف.  تعتمد على الصفات البنيويةالأقلام الإلكترونية بشكل واسع, ولكن الطرق التي 

خدام الصفات بإست الآنية المكتوبة بإستخدام الأقلام الإلكترونيةالعربية  وصالنصعلى لي بدراسة التعرف الآالرسالة 

 .البنيوية

( في التعرف على Fuzzy modelingتم في هذه الرسالة إقتراح طريقة مطورة لإستخدام التمثيل الضبابي )

عربية بشكل يقة بتوليد نماذج للأرقام الالكتابة، وقد تم تطبيق هذه الطريقة لتمثيل الأرقام العربية )الهندية(. تقوم هذه الطر

( مختلفة Weightsإلى ذلك، يتم إعطاء أوزان ) بالإضافةآلي بالإستفادة من البيانات المستخدمة في مرحلة التدريب. 

لأجزاء الرقم حسب أهميتها بحيث يستفاد من هذه الأوزان في مرحلة تقييم التشابة. إن النماذج المقترحة قادرة على 

ل مع التغيرات الناتجة من أنماط الكتابة اليدوية المختلفة. تعرض هذه الرسالة أيضا طريقة للتعرف على الحروف التعام

(.  وقد تم تقييم الطريقة Graphemesالعربية المنفصلة إعتمادا على تمثيل الحروف بإستخدام مكوناتها الأساسية )

   .تقنيات التصنيف الحديثةجموعة من بالإضافة إلى م السماتستخدام مجموعة من االمقترحة ب

تقدم هذه الرسالة أيضا خوازمية لتقسيم النصوص العربية الآنية المتصلة إلى أجزاءها الأساسية. تم تصميم هذه 

الخوازمية بحيث تراعي طريقة ربط الحروف ببعضها في الكتابة العربية. تم الإستفادة من الخوازمية المقترحة في 

 رف الآلي على النصوص العربية الآنية بإستخدام سماتها البنيوية. تعتمد التقنية على التصنيف الضبابيتصميم تقنية للتع



xvi 

 

(Fuzzy classification في التعرف على الأجزاء الأساسية التي يتم تحديدها من النصوص ومن ثم يتم التعرف )

تجة من تحليل الحروف المستخدمة في مرحلة على الحروف المقابلة لهذه الأجزاء بالإستفادة من إلإحصائيات النا

 التدريب. 

تم تطبيق التقنيات المقترحة في هذه الرسالة على قواعد بيانات تشمل الأرقام والحروف والكلمات والنصوص 

دي ؤالعربية الآنية، وقد حصلنا على نتائج واعدة. بالإضافة إلى ذلك فإن التقنيات المقترحة قابلة للتطوير والذي بدوره سي

 إلى تحسن النتائج.
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1 CHAPTER 1 

INTRODUCTION 

Nowadays, the use of smart phones and tablets is growing rapidly. Handwriting is 

commonly used in these devices for recording information. As a result, online handwriting 

recognition gained a significant interest in recent years. In reality, research on online 

recognition has started during the 1960s [1] and is still gaining  powerful attention among 

scientist due to the development of new more tablets and smart phones and the wide use of 

these devices. The pen movement, which represents the text, is captured in these devices 

as a sequence of x and y coordinates. Automatic recognition of handwritten Arabic 

characters is used in a variety of applications such as forms filling, text editing and note 

taking. A reliable online recognition system with acceptable recognition rate is needed as 

an alternative input method.    

Online Arabic handwritten recognition has been less researched compared to offline Arabic 

handwritten recognition. The reasons for this may be attributed to the challenges related to 

online Arabic handwriting recognition systems. Some of these challenges include the need 

for special hardware; techniques of other languages may not work for online Arabic text 

recognition; etc.  
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In this thesis, we conduct research on Arabic online text recognition. We apply structural-

based techniques to Arabic online text recognition since they proved satisfactory with 

offline Arabic handwritten text. 

1.1 Handwriting Recognition 

Handwriting recognition is a process of translating a text written in its spatial or temporal 

form into its symbolic representation [2]. Handwriting recognition is a 

hot research direction in pattern recognition and has become a topic of intensive study due 

to its important applications such as forms processing, automatic cheques processing, 

postal address recognition, writer identification etc. 

1.2 Offline vs. Online Handwriting Recognition 

The field of handwriting recognition can be classified into two different types based on the 

nature of the handwritten text: off-line recognition and on-line recognition. Off-line 

recognition addresses the recognition of handwriting in the form of scanned images 

whereas on-line recognition deals with the recognition of handwriting in the form of (x, y) 

coordinates. The handwritten text is collected, in offline recognition, using an ordinary pen 

and paper before it’s converted into an image by using a scanner or a camera. Whereas 

special devices, such pen-based or touch-screen computers/smartphones, are need in online 

recognition to capture the x and y coordinates of the text as a function of time. In contrast 

to offline recognition, online recognition captures the dynamic information of the written 

text such as the speed and the direction of the writing [3].  However online text dose not 

clearly represent some spatial information that is available in offline text. For example, if 

a letter, like BAA “ب”, is written then different strokes are written before writing the ‘dot’ 
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of that letter, here the letter will be far from its dot in the time domain although they are 

close to each other in the spatial domain [4]. 

1.3 Challenges in Arabic online handwriting recognition 

In the literature, most of the effort in Arabic text recognition has been spent on off-line 

Arabic printed and handwritten text; whereas comparatively fewer studies focused on 

Arabic online handwritten text. The reasons for this may be due to the challenges related 

to online Arabic handwriting recognition systems. The main challenges of online Arabic 

handwriting recognition are as follows: 

1. Online Arabic text recognition needs special hardware.  

2. The writing of online devices is less controlled than writing using a pen on paper. 

Consequently, the variability between writers will be increased and even with the 

same writer.  This makes the problem of online handwriting recognition a 

challenging pattern recognition problem. However, online handwritten has the time 

of the writing information (sequence of writing) available.   

3. The available classifiers of other languages may be used for off-line text 

recognition while structural classifiers are needed for Arabic online text 

recognition. The structural approaches are language dependent. So, techniques of 

other languages may not suit Arabic text recognition. 

4. There is no comprehensive and freely available database for online Arabic text 

recognition research. 
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1.4 Motivation 

Arabic Language is spoken by more than  422  million all over the world and is 

considered as the official language of the Arab world [5]. Moreover, Arabic characters are 

used in several languages besides Arabic such as Urdu, Persian, Kurdish and Malay. 

Therefore, automatic processing of Arabic text has widespread benefits. Computers are 

greatly affecting our way of life and their usage is increasing rapidly.  It is very important 

for simplifying the way of exchanging information between users and computers since 

input devices today, such as keyboards, have some limitations. Nowadays, pen-based 

computers (tablet PCs) are used widely. Personal digital assistants and smart phones with 

pen or touch screen have become popular as input devices. The presence of online 

handwritten text recognition systems is very important to provide a natural and convenient 

way of two communications between users and computers. Much researches has conducted 

on Arabic handwritten recognition. Most of this research addressed Offline Arabic 

handwritten text. While online Arabic handwritten recognition is less researched. 

Developing a system for automatic recognition of online Arabic text will provide a quick 

and natural way of communication between computers, digital assistants, smart phones and 

human beings.  

1.5 Contributions of the Thesis 

In this thesis, we conducted research on automatic recognition of Arabic online text. The 

main contributions of this work are summarized in the following paragraphs 
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1. A literature review of Arabic Online text recognition. 

 A literature review is conducted to survey the published work in the field of 

Arabic online text recognition.  It includes a review for the different phases of 

Arabic online text recognition systems and also a study for the different attempts to 

build databases for Arabic online text. Details of this literature review are presented 

in chapter 2.  

2. A novel fuzzy modeling approach applied to Arabic (Indian) online digits’ 

recognition: 

a) Robust fuzzy models for Arabic online digits.  

We automatically generate robust fuzzy models for Arabic online digits using the 

training data. The fuzzy durations are automatically generated and are set at the 

digit segment level. In addition, automatic generation of weights at the segment 

level, which indicate the importance of the different segments of the digit for 

recognition, was integrated into the models. These fuzzy models are considered as 

an improvement over previous works as discussed in chapter 3. 

b) A robust two cascaded stages digit classification. 

The proposed classification phase consists of two cascaded stages, where in the first 

stage the system classifies digits into zero/nonzero classes and the second stage 

classifies digits 1 to 9. 

c) A novel fuzzy syntactic classifier with integrated feedback stage.  

We develop a novel fuzzy syntactic classifier with integrated feedback stage that 

verifies the selected classes for test samples using segment histogram features. This 

stage improved the syntactic fuzzy classification.  
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The Experimental evaluations of the proposed approach show very promising results 

for Arabic online digits.  

3. A new grapheme-based modeling approach applied to Arabic online character  

recognition: 

a) A new approach for modeling Arabic online character using graphemes.  

We propose a new approach for modeling the Arabic online characters based on 

their graphemes using the generated grapheme codebook.  

b) A new grapheme-based classification approach for Arabic online characters. 

We propose a new classification approach for Arabic online characters based on 

grapheme modeling.  The graphemes of the testing character are extracted and then 

used to build the pattern of the corresponding character. This is not a trivial process 

since deciding which grapheme belongs to which character is a challenging task 

and it needs an effective algorithm [6].  

4. A new approach for Arabic online text recognition using grapheme–based 

modeling and fuzzy classification: 

a) A new approach for segmenting the Arabic online text into its graphemes.  

A new approach for segmenting the Arabic online text into graphemes is proposed. 

The proposed approach is designed to consider the way characters are joined in 

Arabic online text. 
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b) A new approach for modeling Arabic online text.  

We propose an approach for modelling the Arabic online text based on its 

graphemes. The grapheme models are built, in the training phase, from pre-

segmented Arabic online characters while Arabic online text lines are used in the 

testing phase. Therefore, the training dataset is different from the set used for 

testing. The grapheme models are built in a fuzzy manner to better address the 

problem of variability in writing. 

c) A similarity/dissimilarly measure for recognizing the graphemes extracted 

from the testing lines.  

This similarity/dissimilarity measure is based on our proposed fuzzy classification.  

The weight of the similarity between a testing grapheme and a model is represented 

by the membership value assigned to that grapheme. The calculations of 

membership values are based on automatically generated durations and weights, 

and not fixed. 

d) A graph-based classification for recognizing text characters.  

Our approach for recognizing the characters is based on construction of a graph 

where nodes represent the candidate recognized characters and edges are created 

between nodes depending on the grapheme-based probabilities calculated from the 

training data. Each path in the graph represents a possible solution for the input 

text. The probabilities assigned to the path’s edges are used to find the best path 

that represents the recognized text.  
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1.6 Organization of this Thesis 

The rest of this thesis is organized as follows. In Chapter 2 we discuss the characteristics 

of Arabic language script, then we present a literature review of the published work in the 

field of Arabic online text recognition. Chapter 3 describes the proposed fuzzy technique 

for Arabic (Indian) online digits recognition. The proposed automatic fuzzy model 

generation approach is described in detail. In addition, this chapter presents the proposed 

fuzzy classification approach. A grapheme-based approach for recognizing isolated online 

Arabic characters is presented in Chapter 4. Chapter 5 presents the proposed Arabic online 

text recognition. A new approach for segmenting the Arabic online text into its graphemes 

is presented. In addition, the details of the training and testing phases are described in 

detail. Chapter 6 concludes this thesis by addressing the outcomes and future work. 
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2 CHAPTER 2 

LITERATURE REVIEW 

2.1 CHARACTERISTICS OF ARABIC SCRIPT 

The Arabic Language is one of the most widely spoken and studied languages in the world. 

The Arabic script has many characteristics which make it distinguished from other 

languages. The Arabic alphabet consists of 28 basic characters. Arabic text is written from 

right to left and it is cursive in both handwritten and printed text. Each Arabic character 

has at least two and at most four different forms based on its position in the word. Figure 

2-1 shows the four different forms of online Arabic “Ain ع” character. These forms are: 

isolated, ending, beginning and middle form.  

 

Figure 2-1 Different online forms for Arabic character “Ain ع”. (a) Isolated (b) Ending 

(c) Middle (d) Beginning form. 

Some Arabic characters have one, two or three dots. These dots help in differentiating 

between the characters that are sharing the same basic shape as in BA’A (ب), TA’A (ت) 

and THA’A (ث). Table 2-1 shows the Arabic alphabet ( العربية الأبجدية ).   



10 

 

Table 2-1  The Arabic alphabet ( العربية الأبجدية ) 

Transcription 
Printed 

form 

Online 

(Handwritten) 

form 

Transcription Printed form 

Online 

(Handwritten) 

form 

ALEF 
 أ

 
DHAD 

 ض
 

BAA ب  
TTAA ط 

 

TAA ت 
 

TTHAA ظ 
 

THA 
  ث

AIN 
 ع

 

JEEM 
  ج

GHAIN 
 غ

 

HAA ح 
 

FAA ف  

KHAA خ 
 

QAAF ق 
 

DAL د  
KAAF ك 

 

THAL 
  ذ

LAM 
 ل

 

RAA ر  
MEEM م 

 

ZAIN ز 
 

NOON ن  

SEEN س 
 

HHAA هـ 
 

SHEEN ش 
 

WAW و 
 

SAAD ص 
 

YAA 
 ي

 

 

Some Arabic letters (e.g. أ ,ؤ ,ك) may have a zig-zag like stroke called (Hamza ء). The 

Hamza’s and  dots are called secondary’s and are written either above the main stroke like 

in WAW (ؤ) and Noon (ن), or in the middle as in JEEM (ج) and KAAF (ك)  or below the 
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main stroke like ALEF  ( إ ) and BAA(ب). Some characters are connected to the previous 

and/or the next characters within the same word, and some are not connected.  

Arabic Characters in a word may have extra strokes called diacritics such as Fat-hah (  َ ), 

Kasrah (  َ ) and Dhammah (  َ ). Tanween which is written as double Fat–hah (  َ ), Dhammah 

(  َ ), or Kasrah (  َ ) is considered as another form of diacritics.  These diacritics will not only 

change the pronunciation of the word but also can change the meaning such as the word 

ت ب  ) can be pronounced as either (كتب) ت ب  ) kataba) which means ‘he wrote’ or ك   kutiba) which ك 

means ‘it was written’ or (  ت ب  kutub) which means ‘books’. Although these diacritics are ك 

important, the Arabic readers are familiar with reading a text without diacritics and 

understanding the meaning from the word’s context. Table 2-2 illustrates the different 

shapes of the possible secondary’s used in Arabic writing.  

Table 2-2  Some secondary’s used in Arabic handwritten text. 

Secondary’s Shape Position Examples 

Single dot  Above/middle/below 
 

Double dots           Above/below 
  

Triple dots    Above     

Shadda  Above 
    

Hamza  Above/below 
   

Fatha / Double Fatha  /  Above 

 

Kasra / Double Kasra /  Below 
 

Dhamma/Double 

Dhamma 

/  Above 
 

Madda  Above 
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In Arabic text, there is also the ligature which is formed by overlapping two or more letters, 

such as laam–alif ‟لا”, meem-haa in “مح” and so on.  

There are some advantageous features in the Arabic scripts that may help in Arabic 

handwriting recognition. One of these features is the existence of the handwriting baseline 

which is a virtual horizontal line on which the letters are connected to each other.  In 

addition, there are some rules that apply for connecting the letters in both printed and 

handwritten Arabic text. Figure 2-2 illustrates some characteristics of Arabic script. 

 

Figure 2-2  Some Characteristics of Arabic handwritten text. It is cursive and written from 

right to left. (1) Diacritics (Dhamma, Shadda and fatha, left to right). (2) Dots (Triple, 

single and double, left to right) (3) Two ligatures. (4) The writing line. (5) Different Arabic 

letters with loops. 

In general, these characteristics of Arabic text (like the cursive nature of the language, the 

similarity of groups of symbols and the overlapping between characters) make the 

automatic recognition of Arabic text more difficult comparing to the automatic recognition 

of Latin text. For more details, reference may be made to [7]  and [8]. 
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2.2 General model for Arabic online text recognition system 

A general model for an online Arabic handwriting recognition system is presented in figure 

2-3. The presented system is composed of several phases; however these phases are not 

necessarily present in all systems. The input for the system is the (x, y) coordinates of the 

points of the writing trajectory as a function of time. This input may need to be enhanced 

by applying preprocessing steps such as remove duplication of points, smoothing, size 

normalization and re-sampling, etc.  Then, the enhanced data may need to be segmented 

into smaller parts (such as lines, words or characters). After that, the features are extracted 

from the segmented data. These features are used to train the system and build the data 

models. In the classification phase, the extracted features are used to classify the testing 

data based on the generated models. The last phase, post-processing, enhances the 

recognition rate by refining the results of the classification stage. 

 

Figure 2-3 A general model of Arabic online text recognition system 

The accuracy of each phase has an important impact on the overall recognition 

performance. In addition, each phase has its own difficulties and challenges that need to be 

addressed in order to improve the overall accuracy. Different approaches have been 
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proposed for each phase in the literature. The different phases and their proposed 

approaches will be discussed in more details in the next sections.  

2.3 Arabic online handwritten databases 

Attempts to develop efficient Arabic online handwriting recognition systems raise the need 

to collect and build comprehensive online Arabic databases. These databases are very 

important for researchers in this area. Using one benchmark database, the researchers can 

evaluate their own systems in relation to the state of the art. 

Systems that are evaluated based on private, self-generated, databases are not comparable; 

this is because in some systems, better results may be obtained due to high quality of the 

database used to evaluate the system. Therefore, common benchmarking databases are 

essential for the research community to perform comparative evaluation. This section 

discusses the available online Arabic text databases that are used by the research 

community. 

We are not aware of any standard comprehensive database for online Arabic text 

recognition that is available freely for researchers. The published work on Online Arabic 

handwritten text is mostly based on self-generated database, this is evident from Table 2-5 

which shows various online databases used by researchers in their experimentations. 

However, some attempts to build benchmarking databases for Arabic online handwritten 

text have been realized in recent years. 

A real attempt to build comprehensive databases was in 2008 by Kherallah et al. [9]. They 

developed the on/off (LMCA) dual Arabic handwriting database in REGIM (REsearch 
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Group on Intelligent Machines) laboratory. LMCA is the abbreviation of a French sentence 

"Lettres, Mots et Chiffres Arabe" which is composed of letters, words and digits. This 

database consists of (100,000 letters), (500 words) and (30,000 digits) written by 55 

writers. Since this database is developed for both online and offline handwritten 

recognition, two procedures were used to collect the data. In the first procedure, text’s 

trajectory is collected by taking the (x, y) coordinates for online recognition. For offline 

recognition, the second procedure collects the images of the handwritten trajectory. This 

database does not represent a natural Arabic online text lines as only words, letters and 

digits are included.  

The ADAB (Arabic DAtaBase) was developed in 2009 by a collaboration between the 

Institute for Communications Technology (IfN) and the Ecole Nationale d’Ing`enieurs de 

Sfax (ENIS) [10]. The ADAB in version 1.0 consists of 15,158 Arabic words of 937 

Tunisian city names collected from more than 130 writers. Figure 2-4 illustrates the dataset 

entry for each written city name in the ADAB database. This database is not a natural 

online Arabic text database as it consists of city names only.  

Due to the lack of a comprehensive real database, Saabni and El-Sana propose a first 

synthetic database for online Arabic handwritten words [11]. The words were generated by 

using a set of Arabic words written by 10 writers and including all the Arabic characters in 

their forms. Based on these words, their system generates the shapes of all words in the 

database, for each writer. The generated synthetic database contains 300,000 words 

consisting of 48,000 word-parts (PAWs). This database has two limitations, it is 

synthesized and it consists of words and not natural Arabic online text. 
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Figure 2-4 A dataset entry for the ADAB database [10]  

In 2010, an Online Arabic Handwritten Sentence Database (OHASD) was developed by 

Elanwar et al. [12]. Sentences of this database were sampled from daily newspapers. The 

OHASD comprises 154 paragraphs which consist of about 3,800 words and about 19,400 

characters written by 48 writers. The writers are well-educated and they are from different 

research centers of ages between 23 and 40 years of both genders. Figure 2-5 shows a 

sentence from OHASD Database. 

 

Figure 2-5 A sentence from OHASD database [12]  



17 

 

Another attempt to create a comprehensive database for online handwritten Arabic 

language was proposed by Arabic Language TEchnology Center (ALTEC) in 2011 [13]. 

The proposed ALTEC database includes 5,000 pages of online Arabic documents written 

by 1000 different writers. The whole database consists about 35,000 lines; each line 

represents a sentence. It includes 175,000 words consisting of 500,000 PAWs and about 

one million letters. 

Another attempt to create a larger database for Arabic On-line handwritten Digits was made 

in 2012 by Azeem et al. [14]. They proposed an Arabic On-line Digits Database (AOD). 

AOD was collected from 300 different writers varying over different ages and without 

enforcing any constraints on the digit size, orientation or number of strokes per digit. More 

than 30,000 online Arabic digits were collected by asking each writer to write an average 

of 10 samples per digit. The AOD is freely available for noncommercial research at: 

http://www.aucegypt.edu/sse/eeng/Pages/AOD.aspx. Table 2-3 summarizes some of the 

used databases in online Arabic recognition.  

2.4 Preprocessing techniques 

Preprocessing is a basic step in any handwriting recognition system in which the acquired 

data is enhanced to achieve better recognition rates. Basically, the data can be enhanced by 

smoothing, reducing the noise, normalizing the trace, etc.   

 

 

http://www.aucegypt.edu/sse/eeng/Pages/AOD.aspx
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Table 2-3 Some of the Databases used in online Arabic recognition 

Database Description Writers Scope Comment 

LMCA  
100,000 letters 500 words 

30,000 digits 
55 letters, words and digits 

Online and 

Offline 

ADAB  
15,158 Arabic words of 937 

Tunisian town names 
130 Words 

 

----- 

 

Saabni et al. 
300,000 words containing 

48,000 word-parts 
10 Words Synthetic 

OHASD 

Newspaper’s sentences, 154 

paragraphs, 3800 words and 

more than 19,400 characters 

48 Sentences ----- 

ALTEC 

5,000 pages, 35,000 sentences, 

175,000 words that include 

about 500,000 PAWs and about 

1 million letters. 

1000 Sentences ----- 

AOD 30,000 online Arabic digits 300 Digits ----- 

 

In online text recognition, each digit/character/word is represented by a sequence of points 

(i.e. x and y coordinates). These points can contain considerable amount of noise which 

makes the task of handwriting recognition more challenging. This noise may be caused by 

the online devices as well as by a hand jerk. Several preprocessing steps can be applied on 

the online writing such as smoothing, re-sampling to eliminate the noise and size 

normalization. Figure 2-6 shows an example of input Arabic letter before and after 

preprocessing phase. 
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Figure 2-6 Example of smoothing the input data 

In the following subsections we discuss the research related to the preprocessing phase of 

Arabic online text. We classify these tasks into two categories; resampling and noise 

removal category and baseline detection category.   

2.4.1 Resampling and noise removal 

In general, the captured (x, y) coordinates are not divided evenly along the online text 

trajectory because of the variation in writing speed. Therefore, the number of acquired 

points varies, depending on writing speed (usually there are more points where the speed 

is low and fewer points where the speed is high). Resampling is performed to remove the 

variability due to writer's speed. Mezghani et al. normalized the size of the acquired string 

of coordinates by replacing the acquired points with a sequence of a fixed number of 

equidistant points, namely 30 points [15]. 

A resampling algorithm based on trace segmentation method was adopted by Kosmala et 

al. to overcome the variations in writing speed by resampling the trajectory points spatially 

with fixed length vectors [16]. The main disadvantage of this algorithm is deciding the 

distance between each two points, which is called the resampling distance. This distance 
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needs to be tuned either empirically or using some criteria to determine the distance [17]. 

This distance needs to be adjusted carefully. If it is large, that means the number of points 

is decreased which may cause some information to be lost. If the distance is small, the 

number of points is increased without increasing the relevant information. Pastor et al. try 

to overcome this problem by normalizing the writing speed instead of doing trace 

segmentation.  In their approach, the derivatives are normalized by the derivative module 

at each point [17]. This normalization approach was adopted by Eraqi and Abdulazeem 

[18] to normalize the writing speed and enforce equal distance between the data pints as 

shown in figure 2-7. 

 

Figure 2-7 Smoothing and Resampling Effect [18]  

Linear interpolation was used by Azeem et al. to solve the problem of large distances 

between consecutive points [14].  

Tagougui et al. normalized the handwriting script size by first adjusting the vertical 

dimension of the script lines, then replacing each point’s coordinates (x ,y) as follows; 

Normalized_x=128*((x-Minimum_x)/m); and Normalized_y=128*((y- Minimum _y)/m); 

Where m is the length of the maximum dimension and 128 is a threshold selected 

empirically [19].  

Alsallakh and Safadi normalized the input stroked into a 100x100 pixel box to achieve size 

independence [20]. Al-taani instead used a bounding box of 5x5 drawn around the 
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character [21].  Similarly, Daifallah et al. scale every letter and center it in a window frame 

with the size 128×128 [22]. Point clustering and de-hooking were also used in this work. 

Point clustering is used to remove unnecessary points by averaging the neighboring points 

whereas de-hooking is performed to remove the part of the stroke that contains hooks. 

Figure 2-8 illustrates the results of these preprocessing techniques implemented in [22]. 

De-hooking were also used by Husain et al. [23]. 

 

Figure 2-8 Illustrations of some of the pre-processing techniques [22]  

Smoothing is an important factor for good segmentation and high recognition rate. In the 

literature, different techniques have been proposed for smoothing. Mezghani et al. smooth 

the online character signals to remove noise by averaging a point with its 3 neighbors [15]. 

The same approach is also applied by Eraqi and abulazeem by replacing each point with 

the mean value of itself and its neighbors [18].  

Chebyshev filter is used by kherallah et al. to eliminate duplicated data points [24]. 

Chebyshev filter with a radius of filtering window equal to 8 is also used in [19] [25]. 

Teredesai et al. converted the online stroke information into an offline image. Then offline 

preprocessing techniques were applied to the converted image [26]. 
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Horizontal and Vertical Projection Profile was used by Ismail and Abdullah to help in 

determining the character’s shape and the position of its dots [27]. Laplacian Filter was 

also used in the preprocessing phase of their work. 

2.4.2 Baseline Detection 

Estimating the baseline of written words is considered as a common preprocessing step for 

online Arabic text. Basically, the baseline is the horizontal line on which the characters of 

cursive text are connected and aligned. An approach for estimating the baseline in both 

offline and online written words is presented by Boubake et al. in [28]. Their approach 

begins by grouping points according to aligned neighborhood. Then the estimated baseline 

is enhanced based on some topological conditions. Razzak et. al presented a baseline 

detection algorithm which is composed of three stages [29]. In the first stage, the secondary 

strokes are segmented from the raw data. Then, the primary baseline is estimated in the 

second stage using the horizontal projection on the ghost shape. Finally, the local baseline 

is detected based on the primary baseline and fetures extracted from ending shape of the 

word. The baseline was used by Eraqi and Abdelazeem in order to detect delayed strokes 

and construct Part of Arabic Word (PAW) stroke [18]. Baseline detection algorithm using 

horizontal projection histogram was used in their work as shown in figure 2-9. 

 

Figure 2-9 Baseline detection for the Arabic word “ الشيحية مركز ”[18] 
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In 2011, Abdel Azeem and Ahmed converted the online text trajectory into its 

corresponding bitmap image; then a horizontal projection algorithm was used for 

estimating the baseline as shown in Figure 2-10.a [30]. In order to improve the estimation 

of the baseline, the trajectory image was divided into three vertical parts and the baseline 

was estimated for each part as shown in Figure 2-10.b. Their experiments showed that the 

best estimation for the baseline is the minimum one among the four lines, i.e. Final-

Baseline = min(baseline of whole image, baseline part1, baseline part2, baseline part3), as 

shown in Figure 2-10.c. 

 

Figure 2-10 Baseline estimation (a) Horizontal projection (b) baseline estimation for the 

three parts (c) final base line [30]  
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2.5 Segmentation techniques 

Segmentation of cursive words into characters or strokes may be needed to recognize 

online words. Daifallah et al. proposed their own segmentation algorithm called KHDJ-1 

[22]. KHDJ-1 segments strokes into letters in four stages: arbitrary segmentation, then 

segmentation enhancement followed by consecutive joints connection and finally locating 

the segmentation point. This algorithm has the advantage of producing at least all correct 

segments. Sternby et al [31] segmented the input at the vertical extreme points with respect 

to the writing direction [31]. Then, a set of heuristic rules are applied to trigger additional 

segmentation points as shown in figure 2-11.  

 

Figure 2-11 Arabic word Segmentation (a) Vertical segmentation. (b) Extra segmentation 

[31] 

Boubaker et al. proposed fuzzy graphemes segmentation. They segment the words into 

graphemes based on extracting two types of points: the bottom of the valleys close to the 

writing line and the angular points  [32]. 
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In 2011, a segmentation algorithm based on segmenting each PAW stroke into its basic 

graphemes was proposed by Eraqi and Abdelazeem [18]. The thresholds of the proposed 

algorithm were defined based on statistics made on the ADAB database. The graphemes, 

generated using this algorithm, are not affected by baseline detection errors since this 

algorithm is independent of the baseline.  

A real-time segmentation approach was proposed by George Kour and Raid Saabne in 

2014 [33]. The proposed approach has three phases, in the first one the potential 

Segmentation Points SPs are nominated and scored while the stroke is being written. The 

second phase starts once the whole stroke is available and uses a set of rules to eliminate 

redundant SPs and rescore the strokes. The strokes scores are used in the final phase to 

yield the final set of SPs. Figure 2-12 shows the Key Points, KP, which are the possible 

segmentation points of word  لبيه  (colored in red). The green points in the figure (KP0 and 

KP5) represent the first and the last points in the stroke 

 

Figure 2-12 The Key Points of word [33] لبيه  

Different segmentation algorithms for online handwritten Arabic text were discussed by 

Abuzaraida et al. in 2010 [34].  
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2.6  Feature extraction techniques 

Extracting good and representative features is very important in any recognition system as 

it contributes to the recognition performance. Moreover, selecting a proper feature is 

considered as the most important factor influencing the recognition accuracy [35]. 

Selecting the appropriate features is based on many factors such as the text nature, the type 

of system (i.e. offline or online) and the type of the script (i.e. printed or handwritten). In 

the literature, a number of approaches have been used in modeling Arabic online 

handwritten text which may be word, character or digit. These approaches aim to extract 

the most pertinent features of the input that achieve better classification. In general two 

main approaches are available: structural and statistical approaches. In the following 

paragraphs we will review the research work in these approaches. 

2.6.1 Structural Features 

Structural features are a set of perceptual entities that describe the geometrical 

characteristic of text such as loops, dots and intersection points [36]. The challenge with 

structural feature is that it requires a robust algorithm to extract the primitives, which is not 

always assured. [37]. 

Arabic text has different structural features that can be extracted from the structure of the 

text’s shape like loops, end points, straight lines etc. Figure 2-13 shows some structural 

features in an online text. 
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Figure 2-13 Illustrations of some structural features. 

These structural features can be used to differentiate between the different characters. 

Structural feature are considered to be more common for the recognition of Arabic script 

compared to Latin script [38]. 

An early structural approach for Arabic offline cursively handwritten words was proposed 

by Almuallim and Yamaguchi in 1987 [39]. In their approach, words are segmented first 

into a set of strokes which are defined as a continuous curve represented by a string of (Xi, 

Yi). For each stroke, the following information is extracted: The start and end points, the 

stroke length, the frame of the stroke (i. e. Xmin, Xmax, Ymin, Ymax) and the connection 

point with the previous stroke. Based on this information, the stroke is classified into one 

of five groups which are: dots, Hamza, strokes that contain loops, strokes without loops 

and connected with the next stroke and strokes without loops and end with a line end. A 

recognition rate of 81.25% was reported on a database of 400 words.  However, these words 

are collected from two writers only and written in a formal writing style, which is not the 

case in practical applications. 

In 1990, Al-Emami and Usher proposed a structural approach for Arabic online words 

based on decision tree techniques [40]. After finding the segments of the word, each 
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segment is categorized into one of four directions based on its direction. The following 

information is also extracted for each segment: the segment’s length, flags referring to dots 

and a tangent value representing the slope. A decision tree then is used to store the 

information on the segments in the learning process, and for the search to find a segment 

in the recognition process. The reported recognition rate was 100% for writer dependent. 

However, when the tested words were written by one writer who did not provide data in 

the training phase the achieved recognition rate drops to 86% (43 words out of 50 word 

were correctly recognized). The samples used in this work are limited to the letters of four 

words of a postcode. These words comprise only ten different letters which may explain 

the high recognition rate. 

An early structural approach for recognition online Arabic handwritten digits was proposed 

by Beigi et al. in 1994 [41]. In their approach, a five dimensional feature vector is used (the 

difference between neighboring coordinate, the sine and cosine at each point and the 

absolute y-coordinate of each point shifted by the computed baseline value).  Hidden 

Markov models (HMMs) was used in the classification phase. For training, 6000 samples 

of Arabic digits written by 20 different writers were used whereas 700 samples written by 

14 writers were used for testing. The reported recognition rate was 93.14%. The proposed 

system used single state HMM and the reported accuracy may be increased by using 

multiple-state HMM which would model the duration of each part of the digit much better. 

Trajectory/velocity modeling approaches were applied in several works. Kherallah et al. 

[42] proposed a neural network system to recognize online Arabic digits based on Beta-

circular approach. Their approach represents the first work that combine the geometry and 
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the kinematics in the trajectory modelling. Each stroke is represented by dynamic Beta and 

static circular parameters. These parameters are extracted from the curvilinear velocity of 

the points. In their later work [43] they improved the modeling quality of handwriting by 

introducing elliptical parameters and using velocity signal extremum to estimate the 

number of strokes. They did not use the overlap of the Beta signal which presents an 

important factor to determine the number of strokes. According to Beta–elliptic 

representation used in this system, the number of features for each character may reach 63. 

To reduce the problem of dimensionality, the authors proposed a new approach for 

modeling the handwritten trajectory. Their approach is based on inflection point detection, 

the overlapped form of beta signals, and the elliptic arcs [24]. The trajectory is modeled 

using velocity-based (Beta function parameters) and trajectory-based (elliptic parameters) 

features where the stroke is represented by seven values. The first four values (Beta 

parameters) describe the global timing features whereas the last three values (elliptic 

parameters) reflect the global geometric features.   

Al-Taani et al. proposed a feature extraction approach for recognizing of handwritten 

Arabic digits based on changing signs of the slope values [44].  In his algorithm, the slope 

is estimated and normalized for adjacent nodes. Each digit is represented by a set of 

primitives which are identified and extracted based on the changes of the signs of the slop 

values. These primitives are represented by a string which is a production of a grammar.  

In order to identify the digit, a special grammar is used to match the string of primitives to 

the corresponding digit. A dataset collected from 100 writers is used to evaluate the 

proposed algorithm and the reported average recognition rate was about 95%.  
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In 2012, Abdul Azeem et al. proposed an approach that uses both structural and statistical 

features to recognize Arabic online digits [14]. The statistical features were extracted by 

converting the user’s trajectory into a bitmap image. The image’ size then normalized to 

30X30 pixels. A database containing 30,000 digits were collected from 300 users to test 

the proposed approach. The overall reported recognition rate was 98.73%.   

2.6.2 Statistical Features 

Statistical features are used in many recognition systems due to their reliable results; 

however statistical approaches require a large amount of data for training [19]. On the other 

hand, statistical approaches offer high speed with large memory compared to structural 

approaches [45]. Normally, statistical features are based on numerical measures that are 

computed over images or regions of images. There are many machine learning paradigms, 

such as Hidden Markov Models (HMM) and Support Vector Machine (SVM), available 

for classification based on statistical features.  

In 2002, an online system for the recognition of handwriting Arabic characters was 

proposed by  Mezghani et al. [46]. Fourier descriptors were used in this study as a feature 

vector to represent the online Arabic characters. In their later work, the authors improve 

their work by combining two Kohonen maps using two different character representations 

[47]. These character representation techniques are Fourier descriptors and tangents 

extracted along the characters online signals. Then, they use majority voting decision rule 

to combine the two Kohonen maps results and favors the most reliable one. In another 

recent work Mezghani et al. [15] represent the characters by empirical distribution 

(histograms) of tangent differences at regularly sampled points on the characters signal 
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[15]. This representation is used to investigate Bayes classification for online Arabic 

characters using Gibbs modeling of the class-conditional density functions. They estimate 

the parameters of Gibbs density functions according to constrained maximum entropy 

formalism proposed by Zhu et al. which was originally used for image and shape synthesis 

[48].  

In 2008, Izadi and Suen defined a new statistical feature called Relative Context (RC) 

which is extracted from the relative pairwise distances and the angles on the trajectory of 

a digital character [45]. All pairs of points on the trajectory are used in order to preserve 

local descriptors in the context of the global character shape. Their approach was tested 

with a database of Arabic isolated characters containing 528 samples. The reported 

recognition rate was 97.8%. The authors claim that this performance outperforms the best 

accuracy reported in literature on the same database. 

 The Hu’s moments were adopted by Daifallah et al. for extracting the features of online 

Arabic hand-written words [22]. Hu’s moments, which are a set of seven compound 

moments, are considered as an offline features extraction approach. In this approach, each 

character is featured by Hu’s seven moments, h1 to h7, which are invariant in the 

continuous image domain to translation, rotation, and scale change. The reported 

recognition rate was about 92% for words and 97% for letter recognition. These recognition 

rates were obtained with the same training user. When the system was tested with new 

users, the recognition rates dropped to 71% and 79% for words and letters, respectively. 

This work was evaluated using 150 words without dots or marks (above or below the 

words). 
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Boubaker et al. proposed an online Arabic handwriting modeling system based on fuzzy 

graphemes segmentation [32]. To overcome the problem of crisp segmentation points, a 

fuzzy segmentation is adopted by associating to each candidate point a fuzzy degree of 

confidence as follows: after detecting the baseline, fuzzy confidence degree is estimated 

and associated with each vertical extremum trajectory point to be a particular point of 

segmentation. Therefore, the fuzzy confidence degree is associated with two types of 

candidate segmentation points: angular points and bottom of valleys. The segmented fuzzy 

graphemes are described using Fourier descriptors parameters. The proposed model is 

evaluated on the ADAB database of 937 online Tunisian city names which consists of 

15158 samples using a Hidden Markov Models classifier. The reported results show that 

the recognition rate is improved using the fuzzy segmentation approach compared to the 

crisp one. Table 2-4 shows a summary of some techniques used for feature extraction for 

Arabic online text recognition. 
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Table 2-4 Summary of some techniques used for feature extraction for Arabic online text recognition 

Author(s) Features 
Features’ 

Type 
Scope 

Beigi et al. 1994 [41] Geometric features Structural Digits 

 Kherallah et al. 2002 [42] Circular and Beta features Structural Digits 

Kherallah et al. 2004 [43]  Elliptical and Beta features Structural Digits 

Kherallah et al. 2008 [24] Elliptic parameters and Beta function parameters Structural Digits 

Al-taani 2008 [49]  
The changes in the slope’s values + 

The primitives’ string 

Structural Digits 

Abdul Azeem et al. 2012 [14]  Temporal (online) and spatial (offline) features 
Structural 

/Statistical 
Digits 

Mezghani et al. 2002 [46] Elliptic Fourier descriptors Statistical Characters 

Mezghani et al. 2003 [47]  Fourier descriptors and tangents  Statistical Characters 

Izadi and Suen 2008 [45] Relative Context (RC) feature Statistical Characters 

Mezghani et al. 2008  [15]  Histograms of tangent differences Statistical Characters 

Omer and Ma 2010 [50] Freeman code  Structural Characters 
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Al-taani and Al-Haj 2010 [21]  

Structural features that include: number of segments, loop,  sharp 

edges,  secondary segments,  similarity of secondary segment,  

horizontal–vertical Orientation 

Structural Characters 

Khodadad et al. 2011 [51] 

Spatial features such as loops and stroke directions and temporal 

features based on Discrete Cosine Transform of the trajectory 

coordinates 

Structural 

/Statistical 
Characters 

Ismail and Abdullah 2012 [27] 

Two type of features are used: Edge Direction Matrixes (such as 

homogeneity and edges regularity features) and geometrical features 

(like the width of the dot, number of occurrence in horizontal and 

vertical projection). 

Structural 

/Statistical 
Characters 

Kour and Saabne 2014 [52] Shape context feature and the Multi Angular Descriptor (MAD) 
Structural 

/Statistical 
Characters 

Daifallah et al. 2009 [22]  Hu’s seven moments  Statistical 
Characters / 

Words 

Sternby et al. 2009 [31] 
Structural features such as angles, length ratio,  arc type, and the 

relative positions 
Structural 

Characters / 

Words 

Al-Emami and Usher 1990 [40] Segments’ directions  Structural Words 

Kherallah et al. 2009  [53] combine visual encoding, beta-elliptical model Structural Words 

Boubaker et al. 2010 [32]  Fourier descriptors, Fuzzy segments Statistical Words 
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2.7  Classification approaches 

Several classification approaches have been discussed in connection with the feature 

extraction techniques described in the previous section. In addition to these approaches, 

many other classification approaches have been used by researchers for the recognition of 

Arabic Online digits, characters, and text. These classification approaches include Hidden 

Markov Models [54] [55] [56] [57], Artificial Neural Networks (ANN) [51] [42] [58], 

Support Vector Machines (SVM) [18] [14] , k-Nearest Neighbors (k–NN) [59], dynamic 

programming [60] [61], decision trees [21] [50], template matching [31] [62] and 

combination of different approaches [24] [27]. 

Statistical classifiers, such as Hidden Markov Models and Artificial Neural Networks, are 

used in many recognition systems due to their reliability. Artificial Neural Networks with 

three layers feed forward is used by Khodadad et al. in 2011 for Arabic/Persian character 

recognition system [51]. They represent the characters using Discrete Cosine Transform 

(DCT) of their x and y coordinates. More than 3000 characters are used for training and 

testing the system and the reported recognition rate is 95.69%. 

An HMM/NN hybrid system was proposed by Tagougui et al. in 2013 where the 

discriminative powers of the neural network and Markovian sequence modeling are utilized 

[19]. The input trajectory is first segmented into small and continuous parts called segments 

then the features of these segments are extracted based on the enhanced Beta-Elliptical 

strategy [63]. These segments are used for training the neural network and the output of 

this neural network is decoded by Hidden Markov Models to generate character level 
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recognition. For the training phase, segmented characters are used by segmenting 6000 

words chosen randomly from sets 1, 2 and 3 of ADAB database. The system was tested on 

sets 4, 5 and 6 of ADAB and the reported accuracy was 96.4%. 

Kherallah et al. proposed an approach that combine visual encoding, beta-elliptical model 

and genetic algorithm for recognition of Arabic online words [53]. The proposed approach 

is evaluated using a dataset of words selected from ‘‘LMCA’’ database. This dataset 

includes 500 words written by 24 writers. The average of obtained recognition rate is 97%. 

The application of a template matching scheme is explored in the recognition of Arabic 

online text by Sternby et al. [31]. The proposed approach is based on an additive single 

character recognition method [64]. Their approach starts by segmenting the text into a set 

of segments representing at most the shape of one individual character. This segmentation 

is based on the vertical extreme points with respect to the writing direction and a set of 

heuristic rules. Each segment is then represented by the features angle (φ), connection 

angle (θ), arc type (T), length ratio (λ), and the relative positions Rx, Ry. The graph 

strategies proposed for connected character recognition are used for matching segments 

from the template database to the segments of the input text [65]. The proposed approach 

is tested on a set of 1,578 words collected from 40 writers. The reported recognition rate is 

about 91% for word recognition. 

In order to reduce the search space, a hierarchical Arabic online recognition system was 

proposed by Saabni and El-Sana in 2009 [62]. In their work, they avoid segmenting the 

words into individual characters by adopting a holistic approach. The final recognition 

decision is taken based on several filters in a hierarchical manner.  The number of candidate 
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words are reduced in the first filter using global features and delayed strokes. In the second 

filter, a modified dynamic time warping (DTW) classifier, which is considered as a 

template matching classifier, is used with local features to measure the similarity between 

the input word and all candidate words. In the last filter, shape context features are used to 

compare the top k ranked word-part against the written word-part. The reported recognition 

rates reaches 90% after using shape-context based classifier. However, the quadratic time 

and space complexity represents the main drawback of DTW classifier [66]. 

Dynamic Time Warping (DTW) was used also by Kour and Saabne in 2014 to re-score the 

candidate characters returned form k-NN classifier  [52].  Preprocessing steps followed by 

extracting shape context features [67] and multi angular descriptors [68] are used to 

generate the characters’ feature vectors.  Then an embedding of the feature vectors into a 

normed wavelet coefficients domain is employed in order to allow fast classification. 

Consequently, Earth Movers Distance metric is approximated using the Manhattan 

distance. Fast retrieval of the k nearest neighbors, potential letter candidates, for a testing 

character was then possible using k-NN. DTW was used to refine the similarity scoring of 

the candidates. In their work, they manually segmented some words from ADAB database 

to extract a set of characters for both training and testing. The extracted set comprises 5602 

characters and covers the different forms of the characters. The reported accuracy was 91%. 

Elanwar et al. adopted dynamic programming technique for developing an Arabic online 

character recognition system [60]. They used dynamic programming for computing the 

Minimum Edit distance between direction features of the testing data with the skeleton 

patterns built during the training phase.  Their system is trained using 1814 characters 
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collected from four writers. The testing data includes 435 characters collected from other 

four writers. The reported recognition rate is 95%.   

Dynamic programming is also used by Abuzaraida et al. to recognize Arabic online digits 

[61]. In their system Global Alignment Algorithm (GAA) is used as recognition engine to 

recognize the Arabic digits. The digit trajectory directions are taken as the main features 

for their system by using freeman chain code to find the direction matrix for each digit. 

The system is tested using a dataset collected from 50 writers where 150 samples were 

collected for each digit. An average of 98% accuracy was archived using 80% of the 

collected digits for training and 20% for testing.  

Decision tree is used with the structural features to recognize the Arabic online characters 

by Al-Taani and Al-Haj in 2010 [21].  The proposed decision tree is split into four sub-

trees due to the different features attached to the different classes of characters. For the 

input character, the values of the features determine the branch that should be selected. The 

system fails to recognize the character if its feature values are not labeled on any branch of 

the tested features. The proposed system is evaluated on a set of 1,400 isolated characters 

written by ten users where each user wrote the 28 Arabic characters five times. The reported 

recognition rate was 75.3% for all characters. Their experimental results show that the 

proposed approach did not perform well on the characters that contain sharp edges.  

A recognition system for Arabic online characters based on a combination of matching 

algorithm and decision tree was proposed by Omar and Ma in 2010 [50]. In their system, 

the characters are divided into four sets based on the number of dots. Freeman code is used 

to represent the characters where every character is represented by a string of directions.  
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A decision tree is used to classify an unknown character into one out of four classes 

according to number of dots. Then matching algorithm is used to find the similarity 

between the directional stroke string of the unknown character and the strings’ database. 

Self-collected data was used in the training phase where four writers are invited to write 

336 samples of isolated Arabic character set. Other dataset comprising 140 characters was 

collected from five writers to test the system. The average reported recognition rate was 

97.6%. The approach is tested with the isolated forms of Arabic characters without 

considering the beginning, middle or end forms. 

A rule based approach for Arabic online character recognition was proposed by Ismail and 

Abdullah in 2012 [27].  Twenty eight production rules (i.e. IF-THEN rules) are built for 

the twenty eight Arabic characters. These rules are built based on the hybrid Edge Direction 

Matrices (EDMS) [69] and geometrical features extracted from the characters. In addition 

to the production rule classifier, artificial neural network and decision trees are also used 

in order to achieve reliable results. They used 504 characters in the training phase and 336 

characters in the testing phase. These characters are collected from different users. The 

achieved accuracy was 97%. The proposed approach works only on isolated Arabic 

characters. 

A sequential version of multiple classifiers is used by Kherallah et al. for recognition of 

Arabic online digits [24].  In the learning phase, an association of the Self-Organization 

Maps (SOM) with Fuzzy K-Nearest Neighbor Algorithms (FKNNA) are used with Beta 

signals and Elliptic arcs features. The result of the learning phase is used in the training 

process of Multi-Layers Perception Neural Networks (MLPNN) classifier which is used in 
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the classification process. The MLPNN classifier output represents the membership degree 

of the testing digit to the digits’ classes. To test the performance of the proposed system, a 

dataset comprising 30,000 digits is collected from twenty four writers where 20,000 was 

used in the learning process and the rest was used for testing the approach. The reported 

recognition rate was 95.08%. Table 2-5 summaries some classification techniques for 

Arabic online text recognition.
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Table 2-5 Summary of some classification techniques for Arabic online text recognition 

Author(s) Classifiers 
Data 

Accuracy # Writers 
Training Testing 

Mustafa  et al. in 2015 

[61] 

Global Alignment 

Algorithm (dynamic programming) 

1200  

digits 

300 

digits 
98% 50 writers 

Kherallah et al. 2008  [24] MLPNN developed in a fuzzy concept 
20000 

digits 

10000 

digits 
95.08% 24 writers 

 Elanwar et al. [60] Dynamic programming technique 
1814 

characters 

435 

characters 
95% 8 writers  

Khodadad et al. in 2011 [51] Artificial Neural Network 
2800 

characters 

560 

characters 
95.69%. -- 

Al-Taani and  Al-Haj 

2010 [21]   
Decision tree 1400 characters 75.3% 10 writers 

Omar and Ma in 2010 [50] Decision tree  and matching algorithm  
366  

characters 

140 

characters 
97.6% 9 writers 
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Ismail and siti Abdullah in 

2012 [27]  

Production rules/ Decision Tree/ Neural 

Network 

504 

characters 

336 

characters 
97% -- 

Kour, G. and Saabne, R. in 

2014 [52]. 

Earth Mover’s Distance (EMD) and Dynamic 

Time Warping (DTW)  

5602 segmented  

characters from ADAB 

database  

91%.   --- 

Tagougui et al. in 2013 [19]   Hybrid HMM/NN 

ADAB 

Sets 1,2 

and 3 

ADAB 

Sets 4,5 

and 6 

96.4% 
130  

writers 

Saabni and El-Sana 2009 

[62] 

Modified  Dynamic Time Warping (DTW) and  

shape-context based classifier 
-- 

1000 

PAWs 

86% 

 -90% 
10 writers 

Kherallah et al. 2009 [53] Genetic algorithm 
500 words from 

‘‘LMCA’’ database. 
97%. 24 writers 

Sternby et al. 2009 [31] Template matching 1,578 words 91% 40 writers 



43 

 

3 CHAPTER 3 

FUZZY MODELING FOR ARABIC ONLINE DIGITS 

RECOGNITION   

In this chapter we present a novel fuzzy technique for Arabic (Indian) online digits 

recognition. We use directional features to automatically build generic fuzzy models for 

Arabic online digits using the training data. The fuzzy models include the samples’ trend 

lines, the upper and lower envelops of the samples of each digit and the automatically 

generated weights for the different segments of the digit models are also used. In addition, 

the fuzzy intervals are automatically estimated using the training data. These fuzzy models 

proved to be able to handle the variability of the handwriting styles. The classification 

phase consists of two cascaded stages, in the first stage the system classifies digits into 

zero/nonzero classes using five features (viz. length, width, height, height’s variance and 

aspect ratio) and the second stage classifies digits 1 to 9 using fuzzy classification based 

on directional and segment histogram features. SVM is used in the first stage and syntactic 

fuzzy classifier in the second stage. A database containing 32695 Arabic online digits is 

used in the experimentation.  

                                                 
  A paper is accepted based on this chapter 
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3.1 Introduction 

In recent years mush research has been conducted on the recognition of offline [70] [71] 

[72]  and online [73] [26] Latin digits.  Most of the research on Arabic digits addressed 

offline Arabic handwritten digits [8] [74] [75] [76] [77] [78][79] [80] while few addressed 

online Arabic digits [14] [24] [41] [42] [43] [49].  

Automatic recognition of handwritten Arabic (Indian) digits has a variety of applications 

including banking systems and forms filling. Although printed/handwritten Arabic text is 

cursive, Arabic numerals are not cursive and hence segmentation of individual digits may 

not be needed unless the digits are touching. Figure 3-1 shows samples of handwritten 

Arabic digits from 0 to 9 along with their printed versions.  

 
Figure 3-1 Arabic (Indian) digits 0 to 9 

In this chapter we present a novel technique for the automatic recognition of Arabic online 

digits. In this technique, automatic fuzzy modeling of Arabic online digits is implemented. 

We automatically generate fuzzy models of the different digits using the segments’ 

directions of the Arabic online digits using the training data. The models include the 

samples trend line of each digit and the digits’ model envelops. While the skeleton 

(generated using offline Arabic character clustering) is used to define the character models 

in [81] and models were not used (only fuzzy similarity measure is used) in [82].  In this 

work, we automatically generate the fuzzy intervals based on the analysis of the training 

samples and they are not set manually as in [81] and [82]. In addition, our proposed 
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technique automatically generates weights for the different segments using the training 

samples. These weights are integrated in the fuzzy models while weights were not used in 

[82] and  the segments are assumed of equal weight in [83]. These weights improve the 

recognition rates because they are assigned based on the importance of the different 

segments of the digit. 

For the classification, we use a two stage approach where SVM is used in the first stage to 

classify digits into zero and nonzero (using statistical features) and fuzzy-based approach 

is used in the second stage to classify nonzero digits (digits 1 to 9)  using the automatically 

generated models in the second stage. The second stage has an integrated feedback 

verification step which verifies the recognized test sample label. If the first label does not 

pass validation (using other features) then the next label in the list is selected in the 

feedback loop and so on. Figure 3-2 shows the overall block diagram of the implemented 

system.   

The contribution of our approach automatically generates robust fuzzy models for Arabic 

online digit recognition using the training data. The models include the trend lines, the 

upper and lower envelops of the samples of each digit. The fuzzy durations are 

automatically generated and are set at the digit segment level. In addition, automatic 

generation of weights at the segment level, which indicates the importance of the different 

segments of the digit, was integrated into the model. This is an improvement over previous 

work [81], [82] and [83] in several aspects (viz. automatic model generation over both [81] 

and [82]  ; weights of the different segments were not used in [82] and [83] assuming equal 

weights; only similarity estimate is used in [82] and no fuzzy modeling; Parvez et al. 



46 

 

applied it to the skeleton of the Arabic offline characters [82] and Halawani applied it to 

the polygonal approximation of the Arabic online characters [83] and here we apply it to 

Arabic online digit recognition). A fuzzy syntactic classifier is implemented with 

integrated feedback stage that verifies the selected classes of the test samples using segment 

histogram features. This stage improved the accuracy of the syntactic fuzzy classification. 

 
Figure 3-2 Overall block diagram of our approach for Arabic online digit recognition 
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The rest of the chapter is organized as follows. Section 3.2 presents the preprocessing 

techniques applied to Arabic online digits. Features used in this work are detailed in section 

3.3; section 3.4 describes the proposed analysis and automatic fuzzy model generation 

approach; the classification phase is discussed in section 3.5; the experimental results are 

reported in section 3.6; and finally the conclusions are presented in section 3.7. 

3.2 Preprocessing 

Writing using keyboard-less devices is less controlled than writing using a pen on paper. 

Therefore, data collected by using these devices is affected by hardware imperfections and 

the trembles in writing. Preprocessing is crucial to achieve better recognition rate [84]. In 

this work, simplification, smoothing and normalization are applied to the data before 

feature extraction. 

Douglas-Peucker algorithm [85] is used to simplify the curves in the digits by reducing the 

number of points representing the curves. The algorithm removes unimportant points from 

the curve to simplify it as shown in Figure 3-3.  

 

Figure 3-3 Digit four (a) before simplification (b) after simplification 

An algorithm to remove the small curve variations and noise is applied. Any small segment 

at the beginning or at the end is considered as noise. In addition, if there are two consecutive 
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segments that are very close to each other but having different directions, the first one is 

considered as a noise. The following figure shows digit 6 before and after preprocessing.   

 

 
Figure 3-4 Digit six (a) before preprocessing and (b) after Preprocessing 

In this work we also normalize the data by adjusting all the samples’ lengths to 25 points. 

This length is derived based on the common lengths of samples. We experimentally found 

that this length is enough to model the samples.  

3.3 Feature Extraction 

Extracting good and representative features is very important in any recognition system as 

it contributes to the recognition performance [86]. Three sets of features are extracted in 

this work. Shape features are extracted first to classify digits into zero or nonzero. Then, 

directional and histogram-based features are used to recognize nonzero digits (digits from 

one to nine). 

3.3.1 Shape Features 

Unlike other digits, Arabic digit zero is just like a dot. The way it is written when magnified 

have different shapes as shown in figure 3-5. These shapes are sometimes confused with 

other digits like 1, 5, 8, etc. A human seeing the samples in figure 3-5 will not be able to 

identify them as zeroes. 
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Figure 3-5 Different samples of Arabic digit zero ‘0’ 

Due to these difficulties, we address the ‘zero’ digit separately based on its length, width, 

height, heights’ variance and aspect ratio (height-to-width ratio).  

3.3.2 Directional Features 

Each digit is represented by taking the directional information of all points representing 

that digit. Let P= (xi ,yi), where i=1,2,…,n be the sequence of points that represent digit D. 

The directional features are ϴD=[d1, d2,……., dn-1], where di is the angle between the points 

(xi ,yi)  and (xi+1 ,yi+1).  

3.3.3 Histogram-based Features 

Basically, each digit consists of a set of segments and each segment has its own orientation. 

In our histogram-based feature, segments’ orientation takes values from a finite set of 

orientations or directions called standard writing directions. Standard directions can be 

regarded as quantization of stroke directions.  Figure 3-6 (a) shows the standard writing 

directions with 22.5o gap (i.e. number of directions is sixteen). The proposed histogram-

based features are based on the histogram of digit segment orientation. Let Segi =1, 2,.., n, 

be the segments of a digit D. The histogram features vector SD = [P1, P2 , …….., P16], where 

16 represents the number of directions used in our work, and Pj is the percentage of the 

segments of digit D in direction j such that: 
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𝑃𝑗 =   
Number of segments of direction 𝑗 

 Number of  all segments
 

 

Figure 3-6 (a) Standard writing direction with 22.5o gap   (b) The overlap between 

direction 337.5o and direction 0o 

 

Due to the variations in writing style, the computation of the segments’ directions should 

tolerate some level of variations in writing directions.  To alleviate this problem, we 

represent each direction i by i ± 22.5o (i.e. direction i represents all segments having 

directions from i - 22.5 o up to i + 22.5o). For example, direction 0o includes all segments 

having directions from -22.5o (337.5o) up to +22.5o. Accordingly, there will be an overlap 

of 22.5o between consecutive directions’ segments. The overlap between direction 337.5o 

and direction 0o is shown in figure 3-6 (b). Figure 3-7 (a) shows a sample of digit ‘six’ with 

the directions of its segments; the histogram vector values for this sample are [0.02, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, ,0.37, 0.39,  0.02, 0, 0.20] and its histogram is shown in figure 3-7 (b).  
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Figure 3-7 (a) Sample of digit six ‘6’ with the directions of its segments (b) Segments 

histogram 

 

3.4 Automatic Fuzzy Models’ Generation 

In this section we present the generation of fuzzy models to address the problem of 

variability in writing.  

3.4.1 Automatic Fuzzy Modeling 

The directional feature representation of digits reflects their shapes. This representation is 

used to build generic models that represent the digits (i.e. fuzzy models). In order to 

generate the fuzzy models of digits, the lengths of all digit samples are normalized to a 

unique length. In this work, we normalized all the samples’ lengths to 25. This length is 

derived based on the common lengths of the samples. After normalizing the samples, the 

directional features of the training samples are extracted. The length of the directional 

features’ vector is 24 since it represents the sequence of angles between each two 

consecutive points. Figure 3-8 shows the directional representation of several samples of 

digit ‘three’ written by different writers. We implemented two approaches; Model Trend 

Line (MTL) and Model Envelope (ME) [83]. MTL is a single trajectory that represents the 

mean of all samples. ME uses the top and bottom envelops of the aggregated samples. Top 
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and bottom envelops of the samples form a good model to describe the shape of the digits’ 

models. 

 

Figure 3-8 Directional representations of several samples of digit three 

3.4.2 Model Trend Line (MTL) 

The Trend Line (TL) is a trajectory that represents the center of the aggregated samples 

and hence the general shape of the samples of the classes. The aggregation is done by 

estimating the mean at each line segment (sampling point): 

𝑇𝐿𝑚(𝑠) =  
1

𝑛𝑠
 ∑𝑦𝑖

𝑛𝑠

𝑖=1

 

Where s is the line segment index, 𝑛𝑠 is the number of points in segment s, 𝑦𝑖 is the 

segments' direction at point i of the segment. The standard deviation is given by the 

following equation:       

𝑇𝐿𝑠 = √
1

𝑛𝑠
∑(𝑌𝑖 − 𝑇𝐿𝑚(𝑠))2

𝑛𝑠

𝑖=1

2
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This representation shows the general shape of the digit. Figure 3-9 shows an example of 

the MTL for digit three.  

 

Figure 3-9 MTL and Model Envelop for digit three 

3.4.3 Model Envelop (ME) 

ME is represented by two curves that surround the main body of the samples aggregation. 

The top and bottom envelops describe the range and shape of each digit main body. Every 

sample is represented as a function y = C(x). Given a set C = {C1, C2, …, Cn } of x- curves 

that represent n samples. The bottom envelope is defined as the point-wise minimum of all 

samples. The bottom envelope for the set C at position i can be defined as follows: 

Bc[i] = minCi(x), 

where x=1, 2,… 𝑛𝑠, and i=1,2,..N, is the number of points in each sample. Similarly, the 

top envelope of C is the point-wise maximum of the samples curves in the set: 

Tc[i] = maxCi(x), 
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where x=1, 2,… 𝑛𝑠, and i=1,2,..N. Figure 3-9 demonstrates the aggregated samples that 

form digit ‘three’. The top envelop, shown in bold, represents the upper limit of the model 

and the bottom envelop, shown in bold, represents the lower limit.  

In our experiments the fuzzy model generated for each training sample is a series of points 

that represent the directional features of that sample with the standard deviation (σ) of y-

values of all the training samples from the same class at each point. The standard deviation 

for each class (digit) is calculated from the training samples of that class. Figure 3-10 shows 

a fuzzy model for digit ‘three’ which is generated from the directional representations of 

the training samples of this digit.  

 

Figure 3-10 Generated Fuzzy models for digit ‘Three’ 

The shaded area in Figure 3-10 represents the fuzzy tolerance of the model. The width of 

this area on both sides is related to the standard deviation which is estimated in the training 

phase. The width of the fuzzy tolerance varies from one point to another according to the 

model as estimated in the training phase. Figure 3-11(a) shows the directional 
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representation of several samples of digit ‘Six’ written by different writers. Figure 3-11(b) 

shows a sample of digit ‘Six’ mapped to the fuzzy model generated for these samples of 

digit ‘Six’. 

 

Figure 3-11 Generated Fuzzy models for digit ‘Six’ 

 

3.5 Classification 

The proposed classification technique has two stages, namely Zero/Nonzero and Fuzzy 

classification.  The first stage recognizes digit zero ‘0’ and the second stage recognizes 

digits one ‘1’ to nine ‘9’.   
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3.5.1 Zero/Nonzero Classification 

In this stage, the shape features are used to classify digits into zero and nonzero. Support 

Vector Machine (SVM) classifier with Radial Basis Function (RBF) as the kernel was used. 

In this classification, we use the length, width, height, height variance and aspect ratio of 

the digit as features. 

3.5.2 Fuzzy Classification 

This stage is used to classify nonzero digits (digits 1 to 9). Directional and histogram-based 

features are used in this stage. Directional features’ vector of each test sample is compared 

with all fuzzy models to find the most similar one. 

As a result of the normalization process, the directional features of each digit are 

represented by 24 features (angles).  At each point, fuzzy comparison between the sample 

and the models is done to estimate their similarity. Figure 3-12 illustrates the fuzzy 

comparison between a sample and a model. All the sample and model points are aligned 

where the testing sample curve is marked by plus points and circular points for the model 

line. The shaded area in Figure 3-12 represents the fuzzy tolerance of the model. The width 

of this area is based on the standard deviation estimated in the training phase, and it is 

different from one point to another. 

The membership of any point outside the tolerance region (shaded area) is considered as 

zero. For the shaded area, the membership of any point in the middle area (dark area) is 

taken as 1 which represents the peak of a fuzzy set. The membership outside this area (light 

area), Mv, is calculated based on Equation (1) and trapezoidal membership function as 
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shown in Figure 3-12. Note that we are using membership functions based on automatically 

generated duration and not fixed as in [82]. When computing the membership value at a 

certain sampling point, the value of the membership is determined based on one of four 

cases as follows; the membership value is denoted by Mv. 

𝑀𝑣(𝑥,𝑚) =

{
 
 

 
 
 0,                   x >∝1 or x <∝2      (a)

 1,                    β2 ≤ x ≤  β1               (b)
∝1 − x

∝1 − β1
, β1 < x ≤ ∝1              (c)

x −∝2
β2 −∝2

, ∝2≤  x < β2               (d)

  (1) 

 

Figure 3-12  Fuzzy comparison between a sample and a model 
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The values of ∝1 , ∝2 , β1, and β1 were taken as fixed values in [82] and [83] while here 

these values are automatically generated from the training samples. 

The membership value (Mv) represents the weight of the similarity between sample x and 

the model at sampling point m. The value of Mv ϵ [0, 1] such that ‘0’ (1.a) means least 

similarity between the sample (outside the shaded region) and the model at that sampling 

point. Membership value ‘1’ (1.b) represents the maximum similarity (central region).  

Membership value in the light shaded area (outer region) is calculated using (1.c) and (1.d) 

of Equation 1. Figure 3-12 shows these four cases for digit sample S and a digit model M, 

N is the number of points. The overall similarity between M and S is given by 

sim(𝑆,𝑀) =
1

𝑁
∑ 𝑀𝑣  ( 𝑆(i) ,𝑀(i) )

𝑁

i=1

 

The zoomed part in Figure 3-12 illustrates the fuzzy model in 3-dimentional representation. 

This illustration shows the real form of the fuzzy model, including the two tolerance 

regions. The figure shows a number of sampling points of the model; the similarity check 

is done at each one of these points. 

To enhance the achieved recognition rates, we used histogram-based features to validate 

the decision taken by the fuzzy classifier as follows. Two sets of features are extracted from 

the testing sample, directional and histogram-based features. The first one is used by the 

fuzzy classifier to identify to which class the sample belongs to. The second one is used to 

validate the recognized class. The decision taken by the fuzzy classifier is evaluated based 

on the histogram-based features of the sample and the selected class. If they are similar, 
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then the classification confidence of this decision is accepted. Otherwise, the selected class 

is rejected and the control goes back to the fuzzy classifier to select the next candidate 

class. The validation process is illustrated in figure 3-13. 
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 Figure 3-13 Fuzzy classification block diagram 
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3.6 Experimental Work 

In this section we present the experiments that were conducted to evaluate our technique 

for the recognition of Arabic online digits. In addition, the details of the used database and 

the results are discussed. 

In our experiments, we used the Arabic On-line Digits Database (AOD) proposed by 

Abdul Azeem et al.  [14]. AOD was collected from 300 writers of varying ages and without 

enforcing any constraints on digit size, orientation or number of strokes per digit. More 

than 32,000 online Arabic digits were collected by asking each writer to write an average 

of 10 samples per digits. About 78% of the AOD database was used for training and the 

remaining 22% for testing. The proposed technique is composed of two stages. In the first 

stage, all testing data are classified into zero or nonzero digits. SVM classifier with RBF 

was used in this stage. The classifier was designed for two-class problem with five 

dimensional feature vector (length, width, height, height variance and aspect ratio). An 

overall accuracy of 99.55% was achieved in this phase.  

The nonzero digits are classified by using the fuzzy classifier in the second stage. A 20% 

of the training data is selected as validation data which is used for fuzzy model parameters’ 

estimation. The values for the first tolerance (β1 and β2) and the second tolerance (α1 and 

α2) are chosen experimentally as (σ/4) and (σ/2), respectively. These parameters are used 

in the experiments with the extracted features of the test data. A recognition rate of 93.36% 

                                                 
  Available at: \\ http://www.aucegypt.edu/sse/eeng/Pages/AOD.aspx 

 

http://www.aucegypt.edu/sse/eeng/Pages/AOD.aspx
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was obtained in this stage using the first candidate. To improve the recognition rate of this 

stage, we use histogram-based features to validate the decision taken by the fuzzy classifier 

as discussed in section 3.4 such that if the decision based on the first candidate is inadequate 

the next candidate of the fuzzy classification is selected. After applying this improvement, 

the recognition rate reached 98%. 

We evaluated our directional features using SVM classifier to classify Arabic digits. An 

average recognition rate of 93% is achieved. This indicates that our fuzzy models with the 

proposed fuzzy structural classifier are more effective than using the directional features 

with SVM classifier for online Arabic digit recognition. Table 3-1 shows the confusion 

matrix of our classification which includes fuzzy-based and histogram-based classification. 

Table 3-1 Confusion matrix of the enhanced fuzzy classification 

   

 

 

 

 

 

 

Digit 1 2 3 4 5 6 7 8 9 R.R. 

1 836 2 4 0 0 0 1 3 1 98.7 

2 1 653 2 7 0 1 3 0 1 97.8 

3 5 1 651 1 0 0 4 6 6 96.6 

4 0 8 0 676 0 3 1 1 1 97.9 

5 0 2 0 0 694 0 0 0 2 99.4 

6 11 0 0 3 0 650 2 0 14 95.6 

7 1 0 0 0 0 0 677 0 0 99.9 

8 0 0 0 0 1 0 3 661 1 99.3 

9 0 6 1 2 2 9 0 2 659 96.8 

Average Recognition Rate 98.01 
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The misclassified samples of the fuzzy classifier were analyzed carefully and it was found 

that some of these samples are badly written and may not be recognized by human. 

Therefore, subjective evaluation was conducted on the misclassified samples. The images 

of the misclassified samples were printed randomly in a form and the form is given to 30 

graduate/undergraduate students. Each student was told that these images are images of 

Arabic digits and he was asked to label the images as he perceives in the image. The results 

of this subjective evaluation are summarized in Table 3-2. 

Table 3-2 The overall classification results of the human subjective evaluation 

 

 

 

 

 

 

 

  

As shown in the table, the labels of the students are classified into three groups. The first 

group includes the percentage of answers that correctly labeled the digits. The second 

group indicates the percentage of answers that labeled the digit incorrectly. The last group 

Digit 
Correctly 

Classified 

Incorrectly 

Classified 
Undetermined 

1 1.67% 42.22% 56.11% 

2 86.89% 0.00% 13.11% 

3 80.14% 4.93% 14.93% 

4 83.33% 10.48% 6.19% 

5 45.83% 4.17% 50.00% 

6 64.19% 13.87% 21.94% 

7 0% 10% 90% 

8 67.33% 11.33% 21.33% 

9 64.85% 16.36% 18.79% 

Average 64.77% 13.12% 22.11% 
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includes the percentage of responses where the students were unable to label the images. 

The subjective evaluation of the results shows that most students were not able to classify 

digits ‘1’ and ‘7’ correctly. Digits 5, 6, 8 and 9 were correctly labeled by no more than 68% 

of the subjective evaluators. Some samples of digits 2, 3 and 4 were not reflecting the 

proper directional way of writing these digits. The order of writing of these samples is 

different from the normal order of writing similar samples as shown in figure 3-14. It is not 

easy to recognize these samples based on their directional features. However, the images 

of these samples can be recognized by humans easily.  

 

Figure 3-14 (a) Regular order of writing digit ‘three’ (b) Irregular order of writing digit 

‘three’   

The overall results show that  65% of the samples were classified correctly by humans,  

 13% were incorrectly classified and the remaining  23% were undetermined. Therefore, 

 35% of the misclassified digits by our fuzzy classifier were not classified by humans. 

In our work, we are using the same database used by Abdul Azeem et al. [14]. However, 

they used offline features in their approach by converting the user’s strokes into a bitmap 

image while in our work we are using the online features. In addition, they used 30000 

digits in their experiments whereas in our experiments we used all the samples of AOD 
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database (32695 digits).  Hence, the results of both techniques may not be comparable.  We 

could not use their 30000 samples as we have no information of which 30000 samples were 

used. In one experiment when we removed unreadable samples by humans (125 samples) 

our combined recognition rate (stages 1 and 2) reached 99.55%. 

Table 3-3 Some misclassified samples of the fuzzy classifier 

Digit Image Digit Class Classified Class 

 

 

3.7 Conclusions 

In this chapter, a technique based on automatic fuzzy modeling for the automatic 

recognition of Arabic (Indian) online digits is presented. In this technique we automatically 

generate fuzzy models of the different digits using the segments’ directions of Arabic 

online digits of the training data. The models include the samples’ trend line of each digit 

and the digit’s model upper and lower envelops. The fuzzy intervals are generated 

automatically based on the analysis of the training samples at the digit segment level and 

not set manually at the digit level as in the previous works. In addition, we automatically 

generate weights for the different segments using the training samples. These weights are 

integrated in the fuzzy similarity estimate.  
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For the classification, a two stage approach is implemented where SVM is used in the first 

stage (using statistical features) and fuzzy-based approach using the automatically 

generated models in the second stage. The second stage has an in integrated feedback 

verification step which verifies the recognized test sample label. If the first label does not 

pass validation (using other features) then the next label in the list is selected in the 

feedback loop otherwise it is selected as the recognized digit.   

A database containing more than 30,000 Arabic online handwritten digits is used to test 

the proposed approach. An overall accuracy of 99.55% was achieved in the first stage 

(zero/nonzero) and the second stage (digits 1 to 9) achieved an accuracy of 98.01%. This 

result, based on using our fuzzy models and the proposed fuzzy structural classifier, proved 

to better than using the SVM classifier with the directional features. The misclassified 

samples are evaluated subjectively and results indicate that humans were able to recognize 

≈ 65% of these samples.  
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4 CHAPTER 4 

ONLINE ARABIC CHARACTER RECOGNITION 

BASED ON GRAPHEME MODELING 

In this chapter, a grapheme-based approach for recognizing isolated online Arabic 

characters is presented. The novelty of this work comes from modeling the isolated online 

Arabic characters based on their graphemes using the generated graphemes’ codebook. 

This chapter is organized as follows. The introduction is presented in section 4.1 then the 

collected dataset is described in section 4.2. Section 4.3 presents the preprocessing steps 

followed by the graphemes’ extraction process in section 4.4. Features used in this work 

are detailed in section 4.5; section 4.6 describes the proposed method for generating the 

graphemes’ codebook. The experimental results are reported in section 4.7; and finally the 

conclusions are presented in section 4.8. 

4.1 Introduction 

Handwritten character recognition is an area of pattern recognition that has received 

considerable interest during the last decades. Most of the research on Arabic characters 

addressed offline handwritten characters [7] [8] while few addressed online Arabic 

characters [84]. 
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 In this chapter we propose a grapheme-based approach for the automatic recognition of 

Arabic online characters. The proposed technique is based on modeling the characters 

based on their graphemes. In the training phase, the characters are segmented into a set of 

small and basic parts called graphemes. Then, the segmented graphemes are clustered 

regardless of the characters to which these graphemes belong to. The graphemes’ codebook 

is generated from the representative samples of all clusters. The codebook is used to 

represent the characters based on their graphemes. In the recognition phase, the codebook 

is used to recognize the testing characters based on their extracted graphemes. This is not 

a trivial task since deciding which grapheme belongs to which character is a challenging 

task and it needs an effective algorithm [6]. Different features and different classification 

approaches are used in order to investigate the proposed modeling. The proposed approach 

is evaluated using a dataset of isolated online Arabic characters collected from 20 writers 

and comprises the different forms of all Arabic characters.  

Two sets of experiments are conducted in this work. The first set was designed to evaluate 

the extracted graphemes themselves regardless of the characters to which these graphemes 

belong. The aim of these experiments was to evaluate the extracted graphemes by 

recognizing the testing graphemes based on the models generated from the training 

graphemes. In the second set of experiments, the testing characters are recognized using 

the characters’ graphemes modeling of the training characters.  Figure 4-1 shows the 

overall block diagram of the proposed approach.  
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Figure 4-1 Overall block diagram of the proposed approach for Arabic online character 

recognition 
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4.2 Collected Data 

To model the online Arabic characters, a dataset of isolated online Arabic characters have 

been collected from 20 writers. The dataset was collected using InkMlPad application, 

which is an ink editor application used to create ink files on windows platform. InkMlPad 

uses Tablet PC SDK to capture the digital ink and it saves the collected data as InkMl files 

[87]. Figure 4-2 shows the editor of InkMlPad application. 

 
Figure 4-2 InkMlPad Editor 

InkMlPad represents the drawn character using a sequence of points and each point is 

represented using its (x, y) coordinates. The collected dataset contains 2160 samples and 

covers the different shapes of all Arabic characters i.e. the beginning, middle, end and 

isolated forms. No constraints are enforced on the size, orientation or number of strokes 

per character. Figure 4-3 shows some samples from the collected characters.  
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Figure 4-3 Samples from the collected dataset. (a) Samples of different characters (b) 

Different samples from the end form of Arabic letter “Ain” 

 

4.3  Preprocessing steps  

Preprocessing phase is important in order to achieve better accuracy. In our work, 

simplification, removing duplicated points, smoothing and length normalization are 

applied to enhance the collected data as follows. Douglas-Peucker algorithm [85] is used 

to simplify the character’s trajectory by remove unimportant points. The duplicated points 

are removed by checking if any two points are equal, if so one of them is removed. The 

character’s trajectory is also smoothed by moving a window along the grapheme’s 

trajectory points and replacing each point inside the window with the window’s mean 

value. Finally, the lengths of all samples are normalized by adjusting all samples’ 

trajectories to a unique length. Figure 4-4 shows the middle form of Arabic character ‘Ain’ 

before and after smoothing. 
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Figure 4-4 Preprocessing for the middle form of Arabic character ‘Ain’. (a) Before 

smoothing. (b) After smoothing 

 

4.4 Graphemes extraction 

In the literatures, different algorithms are proposed for decomposing characters into 

graphemes. Jung, S.K. Kim [88] extracting the graphemes based on selecting the corner 

points as the cut points.  The chain code representation is used to detect the local maximum 

convex or concave curvatures of a stroke. In 2010, De Cao Tran [6] extracted the 

graphemes based on the maximum and the minimum values of y-coordinate. Thus, the 

extracted grapheme is a sequence of points from maximum y-coordinates to minimum y-

coordinates or from minimum to maximum. A recent approach was used by Boubaker et 

al. in 2014 [89] and also in [90]. Their approach extracts the graphemes by detecting two 

points; bottom of the valleys and the angular points i.e. the extremum point where the curve 

turns back.   

In this work, the proposed algorithm for extracting the graphemes is as follows. 

1. Checking if the character has a loop: if there is a loop, the loop’s trajectory 

represents a grapheme.  
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2. For the non-loop points, measuring the curvature of the character’s trajectory by 

detecting the sharp turn in the trajectory: if the curvature is greater than a threshold 

then that is a cut point. 

Figure 4-5 shows the end form of letter ‘Ain’ before and after segmenting it into its 

graphemes. 

 

Figure 4-5 Grapheme’s Extraction. (a) The end form of character ‘Ain’. (b) The extracted 

graphemes in different colors 

4.5 Feature Extraction 

After extracting the graphemes, the following features are used to represent the graphemes: 

4.5.1 Writing Direction Feature 

The writing direction at any point p(x (t), y (t)) is calculated using sine and cosine functions 

[91] where: 

sin (𝛼𝑡) =
𝛿𝑦(𝑡)

𝛿𝑠(𝑡)
   , 𝑎𝑛𝑑 cos (𝛼𝑡) =

𝛿𝑥(𝑡)

𝛿𝑠(𝑡)
   , where 
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𝛿𝑥(𝑡) = 𝑥(𝑡 − 1) − 𝑥(𝑡), 
      𝛿𝑦(𝑡) = 𝑦(𝑡 − 1) − 𝑦(𝑡), and 

𝛿𝑠(𝑡) = √𝛿𝑥2(𝑡) + 𝛿𝑦2(𝑡) 
 

For each grapheme, the writing direction features are extracted twice. The first one 

represents the writing directions of the whole grapheme points and the second one 

represents the writing directions of the grapheme’s points in each window after partitioning 

the grapheme into four windows as shown in figure 4-6.  

 

Figure 4-6 partitioning the grapheme’s trajectory into four windows 

 

4.5.2 Orientation Histogram-based features 

This feature is based on the histogram of grapheme’s segments orientation. The details of 

this feature is presented in Chapter 3 (section. 3.3.3) 

4.5.3 Polar Angular features  

These features are based on the relationship between the point in the center of the bounding 

box surrounding the grapheme and all grapheme’s points. As a preprocessing step, the size 

normalization process is performed to obtain a uniform size for all graphemes [92]. As a 
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result of this normalization process, the grapheme’s center of gravity will be the origin 

point (i.e. point (0, 0)).  The normalized grapheme’s trajectory is calculated as follows. 

Given the grapheme’s trajectory 𝑮 = { 𝑷𝒊   }𝒊=𝟏
𝒏 = {(𝒙𝒊, 𝒚𝒊)}, the normalized grapheme’s 

trajectory is �̅� = {  𝑷𝒊   ̅̅ ̅̅ ̅}𝒊=𝟏
𝒏 = {(�̅�𝒊, �̅�𝒊)}, such that: 

�̅�𝒊 = 
(𝒙𝒊 − 𝝁𝒙)

𝑊
       𝑎𝑛𝑑          �̅�𝒊 = 

(𝒚𝒊 − 𝝁𝒚)

𝑊
 

Where, W is the maximum of (the width, the height) of the grapheme’s trajectory; and  

𝝁𝒙 =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

         𝑎𝑛𝑑       𝝁𝒚 =
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

 

Figure 4-7 shows samples of different graphemes (red curves) with lines connecting the 

grapheme’s points with the center of gravity. The polar angular feature is described by the 

lengths and directions of these lines (the blue lines).  

 
Figure 4-7 Samples of different graphemes (red curves) with lines connecting the 

grapheme’s points with the center of gravity (blue lines) 

4.5.4 Chain Code features 

The freeman chain code representation [93] , which is a popular technique for representing 

images, is also used in our work to represent the grapheme’s trajectory as follows.               
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Let Segi =1, 2, 3…. n, be the segments of a grapheme G. Each segment is represented by 

an integer (0, 1,… 7) based on its direction as shown in figure 4-8. 

 

Figure 4-8 Freeman chain code 

4.5.5 Curliness features 

This feature describes the curving of the grapheme (i.e. the deviation of grapheme points 

from a straight line). The calculation of this feature is based on the length of the grapheme’s 

trajectory and the maximum side of the bounding box [13] as follows 

𝐶𝑢𝑟𝑙𝑖𝑛𝑒𝑠𝑠(𝐺) =  
𝐿𝑒𝑛𝑔𝑡ℎ(𝐺)

max (𝐿𝑥, 𝐿𝑦)
− 2 

Where, Length (G) represents the length of the trajectory; Lx and Ly are the width and the 

height of the grapheme’s trajectory.  Figure 4-9 shows the curliness values of two different 

graphemes.   
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Figure 4-9 Curliness feature 

4.5.6 Loop detection feature 

This feature indicates whether the grapheme points form a loop or not.  This is done by 

checking the self-intersection in the grapheme’s trajectory. The values of this feature are 

Boolean expressed as true or false.      

4.5.7 Other features 

In addition to the previous features, the following features are used to classify the different 

graphemes’ classes. 

1. The grapheme’s length. 

2. The grapheme’s width. 

3. The graphemes’ height.  

4. The aspect ratio. 

5. The horizontal direction (right to left or left to right).   

6. The vertical direction (top to bottom or bottom to top). 
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4.6 Graphemes’ Codebook Generation 

This section describes the process of generating the graphemes’ codebook from the 

extracted graphemes. The process starts by clustering the graphemes into different classes, 

then the representative samples of these classes are used to build the codebook. The inter-

class similarities are used after that to reduce the size of the generated codebook. The 

details of this process is described in the following subsections. 

4.6.1 Graphemes Clustering 

The features presented is section 4.5 (i.e. writing direction, histogram-based orientation, 

polar Angular, chain code, curliness, existence of loop and other features) are extracted 

from all graphemes of the training characters, then k-means clustering algorithm is used to 

cluster the graphemes into different clusters based on the extracted features. The algorithm 

is run many times with different number of clusters and different combination of features. 

The generated clusters are evaluated subjectively with each run to get the best clusters. The 

best results were achieved by using 64 clusters. 

4.6.2 Codebook Generation 

The mean sample of each class is not a good representative for that class thus these mean 

samples are not the best choice for representing the classes in the codebook. To generate 

the codebook, the intra-class similarities are used to select the representative sample for 

each class as follows. The distance between each sample and all other samples, within the 

same class, are calculated, and then the sample with minimum distance with all samples is 
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selected as a representative for the class. The codebook is generated from the representative 

samples of all classes.  

4.6.3 Codebook Reduction 

In order to reduce the size of the codebook, inter-class similarities are used to merge similar 

classes into the same bag-of-classes. Each bag-of-classes contains a class or a set of classes 

that are similar. The distances are calculated and the classes with distance less than a 

threshold are merged into the same bag. Our experiments, as described in section 4.7, show 

the effectiveness of reducing the number of classes using our implemented bag-of-classes. 

 

Figure 4-10 Graphemes’ Codebook 
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4.7 Experimental work 

In this work, two sets of experiments were conducted. The first set was designed to evaluate 

the extracted graphemes regardless to which characters they belong. The generated classes 

and the reduction of the original 64-classes into 34-bag-of-classes are evaluated in this set 

of experiments. In the second set, the testing characters are recognized using the characters’ 

graphemes modeling of the training data. The following subsections present the details of 

our experiments.  

4.7.1 Grapheme Classification  

In these experiments, the models generated from the training graphemes are used to 

recognize the testing graphemes. The generated classes and the generated codebook were 

evaluated in these experiments as described in the following subsections.  

4.7.1.1 Evaluating the generated classes  

In the first experiment we find the representative sample of each Bag-of-classes; then we 

generate the fuzzy models of these representative samples. The membership values of all 

graphemes with the generated fuzzy models are calculated. Then, each grapheme is 

represented by the following two features: 

a) The segments’ directions of the grapheme. 

b) The membership values with the closest fuzzy models. 

SVM classifier is used to recognize the testing graphemes based on the training graphemes 

and the obtained recognition rate was 91.66. However, the recognition rate was improved 
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to 95.17 after combining the features (a) and (b) with the graphemes-features presented in 

section 4.5 (i.e. writing direction, histogram-based orientation, polar Angular, chain code, 

curliness, existence of loop and other features). 

We modify the setting of the previous experiment by representing the segments’ direction 

using its standard writing direction number instead of the angle.  Standard writing direction 

divides the 3600 degree into sixteen directions i.e. each direction covers 450 with overlap 

of 22.50 between each two consecutive regions as shown in Figure 3-6(a).  Then, the 

following features are extracted for all data:  

a) Standard writing direction numbers (two numbers representing the two regions 

since we are allowing the overlap). 

b) The membership values (two values). 

A recognition rate of 90.20 was achieved using these features. The following table 

summarizes the experiments conducted to evaluate the generated classes.  

Table 4-1 The results of evaluating the generated classes 

 

 

Experiment ‘s description Classifier Recognition Rate 

Standard writing direction numbers and the membership values are used 

to represent all graphemes. 
SVM 90.20 

The grapheme’s segments’ directions (angles) and the membership 

values are used to represent all graphemes. 
SVM 91.66 

Combining the grapheme’s segments’ directions and   the membership 

values with the following features: writing direction, orientation 

histogram-based, polar Angular, chain code, curliness and existence of 

loop features. 

SVM 95.17 
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4.7.1.2 Evaluating the reduction of the codebook using Bag-of-classes  

These experiments were designed to evaluate the reduction of the original 64-classes into 

34-bag-of-classes. Two experiments were conducted where in the first one the original 

generated codebook (before reduction) was used to label the graphemes. Therefore, 

graphemes are labeled here based on the closest class from the 64-classes. Then we use 

fuzzy classification (described in section 3.5.2) to recognize the testing graphemes using 

the fuzzy models generated from the training graphemes; here the fuzzy models are 

generated for each Class. A recognition rate of 77.18 was achieved in this experiment. This 

recognition rate was improved to reach 90.11 after adjusting the labeling of all training and 

testing graphemes to be based on the closest Bag from the 34-bags (after the reduction). 

The fuzzy models here are generated for each Bag. This improvement proves the feasibility 

of reducing the original classes using Bag-of-Classes.  

The following table summarizes the experiments of evaluating the reduction of the 

codebook using bag-of-classes along with the achieved recognition rates.  

Table 4-2 The reduction of the codebook using bag-of-classes 

 

Experiment’s Description Classifier 
Recognition 

Rate 

- Before Reduction:  

Using the original generated 64-Classes (i.e. The fuzzy models are generated for each Class. 

Fuzzy 

classification 
77.18 

- After Reduction:  

Using the 34-Bag-Of-Classes (i.e. The fuzzy models are generated for each Bag. 

Fuzzy 

classification 
90.11 
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To illustrate how the codebook size affects the recognition rate, we conducted another 

experiment with different codebook sizes. In this experiment, we represent all graphemes 

using the features presented in section 4.5 (i.e. writing direction, orientation histogram-

based, polar Angular, chain code, curliness, existence of loop and other features) then we 

use different codebooks with different sizes as follows: 

a) The size of the codebook is 64:  The graphemes are labeled based on the closest 

class from the 64-Classes (before the reduction). 

b) The size of the codebook is 44: The graphemes are labeled based on the closest bag 

(after reducing the classes into 44 bags).  

c) The size of the codebook is 34: The graphemes are labeled based on the closest bag 

(after reducing the classes into 34 bags).  

For each case, we recognize the testing samples based on the training samples using SVM 

and the following recognition rates were achieved 93.27, 94.23 and 97.02 for codebook 

sizes 64, 44 and 34 respectively. The highest recognition rate (97.02) was achieved after 

reducing the original classes to 34 bags and this also shows the effectiveness of reducing 

the size of the codebook. The following table shows the impact of codebook size reduction 

on recognition rate 

Table 4-3 The impact of codebook size on recognition rate 

Experiment’s Description Classifier 
Recognition 

Rate 

Codebook size= 64 (Before reduction) SVM 93.266 

Codebook size= 44 (reducing the classes to 44 bags). SVM 94.219 

Codebook size= 34 (reducing the classes to 34 bags). SVM 97.02 
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4.7.2 Character Classification  

In these experiments, the testing characters are recognized using the characters’ graphemes 

modeling of the training data. In the graphemes’ extraction phase, the characters are 

segmented into small and basic parts called graphemes. Then in the recognition phase, the 

representations of these graphemes are combined to build the pattern of the corresponding 

character. Different representations are proposed in order to achieve better recognition rate.  

Initially, we represent each character by a 34-length vector representing the 34 Bag-of-

classes. The values of this vector are 0’s and 1’s such that the Bag number is set to one if 

the character has a grapheme from that bag or zero otherwise. A recognition rate of 60.34 

was achieved using this representation. This representation suffers from generating sparse 

vectors i.e. vectors that have mostly zero values. To overcome the problem of sparse 

vectors we use the similarities between the character’s graphemes and the Bag-of-classes 

instead of using binary representation. The recognition rate reaches 77.469 after using this 

representation which is an improvement over the binary representation but still need to be 

improved.  

These experiments show that bag-of-classes alone is not enough for representing the 

characters based on their graphemes. More features may be needed to improve the 

accuracy. In this regard, a set of features are proposed to represent the characters. The 

proposed features are described in the next section.  
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4.7.2.1 Characters’ representation 

We propose to use the following features to represent the characters based on their 

graphemes: 

a) The grapheme’s Bag 

The value for this feature will be a number representing the Bag number to which the 

grapheme belong (i.e. a number between 1 and 34). 

b) The ratio between the grapheme’s length and the character’s lengths 

The relative length feature of the grapheme is important in distinguishing between the 

graphemes that look similar but have different length.  The value for this feature will be 

greater than ZERO and less than or equal to ONE. 

c) The grapheme’s location 

The location is represented by four values and each value represents the percentage of the 

grapheme in one window (the character is divided into 4-windows). Thus this feature has 

four values: 

 C1: The percentage of the grapheme in the Top-Right window. 

 C2: The percentage of the grapheme in the Bottom-Right window. 

 C3: The percentage of the grapheme in the Top-Left window. 

 C4: The percentage of the grapheme in the Bottom-Left window. 
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Figure 4-11 shows the percentage of the grapheme of letter RAA in each window. Here the 

letter comprises only one grapheme and the values of this feature are 0.55, 0.25, 0 and 0.20 

for C1, C2, C3 and C4 respectively.  

 

Figure 4-11 Grapheme' location 

 

d) Strat-End-Points feature: this feature is related to the line connecting the start-point of 

the grapheme with the end-point of the grapheme (for example, the line connecting points 

S and E in Figure 4-12). Two features are extracted from this line which are:  

        d1: The length of the line connecting start-point with end-point. 

        d2: The direction of the line connecting start-point with end-point. 

e) Middle-Points feature: this feature is related to the line connecting the middle-point of 

the line connecting the start-point of the grapheme with the end-point of the grapheme (for 

example, point M1 in Figure 4-12) and the middle point of the grapheme (for example, 

point M2 in Figure 4-12). Two features are extracted from this line which are:  

         e1: The length of the line connecting middle-points. 

         e2: The direction of the line connecting middle-points. 
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Figure 4-12 Sample of grapheme (the blue curve) where S represents the start-point, E 

represents the end-point, M1 is middle-point of the line connecting the start-point with the 

end-point and M2 is middle point of the grapheme 

 

4.7.2.2 Used Classifiers  

The following classifiers are used to classify the testing characters based on the models 

created from the training dataset: 

 Support Vector Machine (SVM). 

 Random Forest Tree. 

 Logistic Model Tree (LMT). 

 Multilayer Perceptron (MLP). 

4.7.2.3 Experimental Results  

Different experiments were conducted with different settings, the descriptions and results 

of these experiments are as follows.  
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 In the first experiment, the features described in section 4.7.2.1 (i.e. the Bag No., the length 

ratio, the graphemes’ location, the direction and length of the line connecting start point to 

end point and the direction and length of the line from the middle point of the grapheme to 

the line connecting start point to end point) were used to represent all characters. The 

classifiers presented in section 4.7.2.2 (i.e. SVM, Random Forest Tree, LMT and MLP) 

were used to classify the testing characters. The achieve character recognition rate in this 

experiment ranges from %78.53 to %86.91.  

The same features were used in the second experiment after modifying features d1 and e1 

by using the ratio of the length, with the grapheme length, instead of using the length itself. 

The best recognition rate obtained in this experiment is 87.53.  

In the third experiment, the same features described were used after modifying features d2 

and e2 as follows. Instead of using the angles for the direction, the numbers representing 

the standard writing directions are used. The number of directions used here are eight. The 

obtained recognition rate reaches 86.5743 in this experiment. 

The modifications made in the second and third experiments for features d1, d2, e1 and e2 

are combined in the fourth experiment, and the achieved recognition rate ranges from 

%78.83 to %86.67. 

The same setting is also applied in the last experiment but the standard writing directions 

have different representation as follows. The number of directions will be 16 and there is 

an overlap between each two consecutive directions. The best recognition rate achieved in 

this experiment is %86.48. Table 4-4 summarizes the results of these experiments. 
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Table 4-4 The Recognition Rates of Online Arabic Characters based on Graphemes Modeling 

 

As shown in the table, the best recognition rate is 87.5 and it was obtained using Random 

Forest Tree classifier. This result was achieved by using the following features: the Bag 

No., the length ratio, the graphemes’ location, the direction and length ratio of the line 

connecting start point to end point and the direction and length ratio of the line from the 

middle point of the grapheme to the line connecting start point to end point. 

Our experiments have been conducted using a self-collected data of isolated Arabic online 

characters. Table 4-5 shows the obtained recognition rates with the datasets used in 

techniques proposed for isolated Arabic online characters. The recognition rates of the 

different techniques are not comparable due to the different data used. However, we are 

showing them as a general reference. 

 

Experiment# Description SVM Random Forest Tree LMT MLP 

1 Using Direction and Length 82.54 86.909 80.172 78.548 

2 
Using Direction and length 

ratios 
84.286 87.530 79.217 78.930 

3 
Using Standard Directions (8 

directions)  and Length 
80.952 86.575 79.742 78.691 

4 
Using Standard Directions (8 

directions)  and  length ratio 
82.882 86.670 79.647 78.835 

5 

Using Standard Directions 

(16 directions with overlap)  

and  length ratio 

77.619 86.479 78.930 80.077 
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Table 4-5 Recognition rates with the datasets used in systems proposed for isolated 

Arabic online characters 

 

4.7.3 Conclusions 

In this work, an approach for recognizing isolated online Arabic characters based on 

graphemes’ modeling is presented. The novelty of this work comes from modeling the 

isolated online Arabic characters based on their graphemes using the graphemes’ 

codebook. In the training phase, the characters are segmented into a set of small and basic 

parts called graphemes.  The codebook is generated from the extracted graphemes of the 

training characters. Then, the characters are represented based on their graphemes using 

the generated codebook. In the recognition phase, the graphemes of the testing characters 

are extracted then the representations of these graphemes are combined to build the pattern 

of the corresponding character. Different features are proposed and different classification 

Authors and Year Dataset used  
Reported  

Recognition Rate 

Al-taani and Al-haj, 2010   [21] 
1400 Self-collected isolated 

character (Written by 10 writers).  
75% 

Alddakiri and Bahaj, 2012 [94] 
1400 Self-collected isolated 

character (Written by 10 writers) 
83% 

Ismail and Abdullah, 2012 [27] 
840 Self-collected isolated 

character, 60% for training. 
97% 

Alijla and Kwaik, 2012 [95] 
585  Self-collected isolated 

character, 68% for training 
95.7% 

Kour and Saabne, 2012  [52] 
5602 characters segmented from 

ADAB database 
91% 

Proposed 

2160 Self-collected isolated 

character, 66% for training. 

(Written by 20 writers) 

87.5 
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approaches are used in order to investigate the proposed graphemes modeling. A dataset of 

isolated online Arabic characters is collected to evaluate the proposed approach. The 

collected dataset comprises the different forms of all characters. Two sets of experiments 

are conducted in this work. The first set was designed to evaluate the graphemes 

classification. The aim of these experiments was to evaluate the extracted graphemes by 

recognizing the testing graphemes based on the models generated from the training 

graphemes. The achieved accuracy in these experiments reaches 97.02 which shows the 

effectiveness of the proposed process used in extracting the graphemes and building the 

codebook. In the second set of experiments, the testing characters are recognized using the 

characters’ graphemes modeling of the training characters. A recognition rate of 87.53 was 

obtained in these experiments. 
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5 CHAPTER 5 

ARABIC ONLINE TEXT RECOGNITION 

This chapter describes the different phases of the proposed Arabic online text recognition. 

The proposed approach is based on segmenting the text into graphemes. In general, the text 

is composed of a set of graphemes and each one can represent a whole character or part of 

a characters’ trajectory. In our approach, these graphemes are extracted and used in 

modeling the text. Different structural features are proposed to represent the extracted 

graphemes. For the classification, we use fuzzy classification to find the most similar class 

for each grapheme based on the automatically generated fuzzy models in the training phase 

whereas graph-based classification is used to recognize the graphemes of each character 

based on statistics gathered from the training characters. 

The organization of this chapter is as follows. Section 5.1 presents an overview of Arabic 

Online Text Recognition process. The different steps of the training phase are described in 

section 5.2. Section 5.3 presents the details of the recognition phase. Arabic Online text 

recognition are detailed in section 5.4. The experimental results are discussed in section 

5.5; and finally the conclusions are presented in section 5.6. 

5.1 Overview of the Arabic Online Text Recognition Process 

The framework for our proposed online text recognition is presented in figure 5.1. The 

framework consists of two main phases, the training phase and the recognition phase. The 
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training phase comprises two stages: codebook generation and fuzzy modeling. Although 

this framework is proposed for online text recognition, pre-segmented Arabic online 

characters are used in the training phase to generate the codebook and build the fuzzy 

models. Moreover, these segmented characters can be independent from the testing data 

which makes our approach more general. Unlike statistical classifiers that require large 

training data, our structural classifier can be trained using less data. 

In the recognition phase, the Arabic online text is modeled as a sequence of graphemes 

which represent its basic parts. These graphemes are recognized based on the graphemes’ 

fuzzy models generated in the training phase. Then, the recognized graphemes are mapped 

to their corresponding characters based on graphemes’ statistics gathered by analyzing the 

training data. 

5.2 Training phase 

The grapheme models are built from online characters segmented from Arabic online text 

database (Online-KHATT). We choose to use a database of pre-segmented characters in the 

training phase instead of using isolated characters to better handle the issues related to 

characters’ connections in an input text. Figure 5.2 shows a line from Online-KHATT 

database with some segmented characters. 
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Figure 5-1General framework for the proposed Arabic online text recognition 
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Figure 5-2 Arabic Online text from Online KHATT database with some segmented 

characters 

In our work, the graphemes are extracted from the main stroke of the character, therefore 

the characters are grouped into classes based on the similarity in the main stroke. Table 5.1 

shows the classes of Arabic characters based on common main stroke. 

5.2.1 Preprocessing 

The trajectories of the selected characters are enhanced by applying the following 

preprocessing steps: removing the repeated points, simplification using Douglas-Peucker 

algorithm [85] and smoothing. Figure 5-3 shows letter FAA before and after the 

simplification. The simplification’s threshold is selected experimentally as 0.3 to avoid 

removing important points from the trajectory which will be the case if we increase the 

value of the threshold. The original trajectory is almost not simplified with values for the 

threshold smaller than 0.3. The details of these preprocessing steps are presented before in 

chapter 4 (section 4.3). In this work we also normalize the data by adjusting all the 

graphemes’ lengths to 20 points. This length is derived based on the common lengths of 

samples. This is different than the one used with digits where the common lengths of the 

digits is 25 as shown in chapter 3. 



95 

 

Table 5-1 Characters’ classes based on similarity in the main stroke 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class Label Char Class Label Char Class Label Char 

1 

'B_al' 19 ـئ 'E_ya' يـ 

40 

'I_laaa' لا 

'B_ba' ـب 
20 

'E_fa' فـ 'I_laae' لأ 

'B_na' ـن 'E_ka' قـ 'I_laah' لإ 

'B_ta' ـت 

21 

'E_ha' 41 حـ 'I_laee' لى 

'B_th' ـث 'E_ja' 42 جـ 'I_ma' م 

'B_ya' ـي 'E_kh' 43 خـ 'I_na' ن 

2 
'B_ay' ـع 

22 
'E_he' هـ 

44 
'I_ra' ر 

'B_gh' ـغ 'E_tee' ةـ 'I_za' ز 

3 
'B_de' 23 ـض 'E_laaa' 45 لاـ 'I_se' س 

'B_sa' 24 ـص 'E_ma' مـ 
46 

'I_wa' و 

4 
'B_fa' 25 ـف 'E_na' نـ 'I_wl' ؤ 

'B_ka' ـق 
26 

'E_ra' 47 رـ 'E_ke' ك 

5 

'B_ha' ـح 'E_za' زـ 
48 

'M_ay' ع 

'B_ja' ـج 
27 

'E_se' سـ 'M_gh' غ 

'B_kh' ـخ 'E_sh' شـ 

49 

'M_al' ـئـ 

6 'B_he' 28 ـه 'E_to' طـ 'M_ba' ـبـ 

7 'B_ke' ـك 

   29 

'I_aa' ا 'M_na' ـنـ 

8 'B_la' ـل 'I_ae' أ 'M_ta' ـتـ 

9 'B_laha' ـلح 'I_ah' إ 'M_th' ـثـ 

10 'B_lama' ـلم 'I_am' آ 'M_ya' ـيـ 

11 'B_ma' 30 ـم 'I_ay' ع 
50 

'M_de' ـضـ 

12 
'B_se' ـس 

31 

'I_ba' ب 'M_sa' ـصـ 

'B_sh' ـش 'I_ta' ت 
51 

'M_fa' ـفـ 

13 
'B_to' ـط 'I_th' ث 'M_ka' ـقـ 

'B_zha' ـظ 
32 

'I_da' د 

52 

'M_ha' ـحـ 

14 

 

'E_aa' اـ 'I_dh' ذ 'M_ja' ـجـ 

'E_ae' 33 أـ 'I_de' ض 'M_kh' ـخـ 

'E_ah' 34 إـ 'I_ee' 53 ى 'M_he' ـهـ 

15 
'E_ay' 34 عـ 'I_ya' 54 ي 'M_ke' ـكـ 

'E_gh' 35 غـ 'I_fa' 55 ف 'M_la' ـلـ 

16 

'E_ba' 35 بـ 'I_ka' 56 ق 'M_ma' ـمـ 

'E_ta' تـ 
36 

'I_ha' ح 
57 

'M_se' ـسـ 

'E_th' ثـ 'I_ja' ج 'M_sh' ـشـ 

17 
'E_da' دـ 

37 
'I_he' ه 

58 
'M_to' ـطـ 

'E_dh' ذـ 'I_tee' ة 'M_zha' ـظـ 

18 
'E_de' 38 ضـ 'I_hh' 59 ء 'E_la' لـ 

'E_sa' صـ 
39 

'I_ke' ك 
60 

'E_wa' وـ 

19 'E_ee' ىـ 'I_la' ل 'E_wl' ؤـ 
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Figure 5-3 Letter FAA (a) before the simplification (b) after the simplification 

5.2.2 Grapheme Extraction  

The algorithm of extracting the graphemes from the segmented characters starts by 

extracting the loop from the character since the loop can be considered as a basic grapheme 

in modeling the character. Then, the sharp points are detected by measuring the curvature 

of the character’s trajectory. These sharp points represent the cut points that are used to 

segment the character into its graphemes. Figure 5-4 shows some segmented characters 

along with their extracted graphemes. 

 

Figure 5-4 Some Arabic Online characters with their segmented graphemes 

The sharp turn in the trajectory are detected as follows. Given three points P1 (x1,y1), 

P2(x2,y2), and P3(x3,y3), the curvature of a circle drawn through them is four times the area 
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of the triangle formed by theses points divided by the product of its three sides [96]. The 

following equation and figure show the curvature of point P1, P2 and P3. 

Curvature(P1, P2, P3) =  
4 ∗ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 (𝑃1, 𝑃2, 𝑃3)

𝑑(𝑃1, 𝑃2) ∗ 𝑑(𝑃2, 𝑃3) ∗ 𝑑(𝑃3, 𝑃1)
 

 
Figure 5-5 Curvature of Points P1, P2 and P3 

Figure 5-6 shows an example of Arabic PAW after applying the sharp turn formula, the 

sharp turns are marked using small red circles around them.  

 

Figure 5-6 The sharp turns of Arabic PAW “صا”  ) marked by small red circles) 
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5.2.3 Feature Extraction 

This section presents the features used to represent the extracted graphemes. Some features 

have been presented in details in the previous chapters. Therefore, these features will be 

listed with references to the details in the previous chapters. 

5.2.3.1 Angles Quantization Feature 

The grapheme is represented by the angles of its segments and the regions of these angles 

where the standard directions are divided into 8 regions of 45o. The Angles Quantization 

feature vector AngQuant = [a1,r1,a2,r2,…an-1,rn-1], where ai is the angle between point Pi  

and point Pi+1 and ri is the region’s number of angle ai. 

 

Figure 5-7 Angle Quantization feature 

5.2.3.2 Orientation Histogram-based Feature 

This feature is based on the histogram of grapheme’s segments orientation. The details of 

this feature is presented in Chapter 3 (section. 3.3.3) 
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5.2.3.3 Curliness feature 

This feature describes the curving of the grapheme (i.e. the grapheme points’ deviation 

from a straight line). More details are presented in Chapter 4 (section 4.5.5).  

5.2.3.4 Curvature and Writing Direction Feature   

The curvature of a grapheme’s trajectory at a specific point is a measure of how sensitive 

the tangent line of that point to moving it to other adjacent points [91]. The curvature at 

point (x(t), y(t)) is represented using the following sine and cosine functions: 

Cos(βt) = cos(α (t – 1)) ∗ cosα (t + 1) + sin(α (t – 1)) ∗ sin(α (t + 1)), 

Sin(βt) = cos(α (t – 1)) ∗ sin(α (t + 1)) – sin(α (t – 1)) ∗ cos(α (t + 1)) 

Where the values of cosα and sinα represent the writing direction and are computed as 

follows:  

sin (𝛼𝑡) =
𝛿𝑦(𝑡)

𝛿𝑠(𝑡)
   , 𝑎𝑛𝑑 cos (𝛼𝑡) =

𝛿𝑥(𝑡)

𝛿𝑠(𝑡)
   , where 

 

𝛿𝑥(𝑡) = 𝑥(𝑡 − 1) − 𝑥(𝑡), 
      𝛿𝑦(𝑡) = 𝑦(𝑡 − 1) − 𝑦(𝑡), and 

𝛿𝑠(𝑡) = √𝛿𝑥2(𝑡) + 𝛿𝑦2(𝑡)  

The difference between the curvatures and the writing direction is shown in figure 5-8 [97] 

[88]. 
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Figure 5-8 The difference between the curvature (Ø) and Writing direction (Ѳ)[88] 

5.2.3.5 Polar Angular feature 

This feature is based on the relationship between the point in the center of the bounding 

box surrounding the grapheme and all the grapheme points.  More details and examples 

are presented in Chapter 4 (section 4.5.3). 

5.2.3.6 End-Points Feature 

This feature represents the grapheme based on the lengths and the directions of the lines 

connecting the first point, the middle point, and the last point of the grapheme. More 

specifically, this feature describes the following information: The lengths/directions of the 

lines connecting the start-point to middle-point, the end-point to middle-point, and the 

start-point to end-point of the grapheme.   

Figure 5-9 shows two different graphemes with the lines connecting the start point, the 

middle point and the end point.  
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Figure 5-9  Grapheme’s End-Points Feature 

5.2.3.7 Loop detection feature 

This feature indicates whether the grapheme points form a loop. The values of this feature 

are Boolean expressed as true or false.      

5.2.3.8 Shape features 

The following shape features are also used to classify the different graphemes’ classes; the 

grapheme’s length, width, height, and aspect ratio (represents the height to width ratio for 

the grapheme’s trajectory). 

5.2.4 Graphemes’ Codebook Generation  

The process of generating the graphemes’ codebook from the extracted graphemes have 

been described in details in Chapter 4 (section 4.6). In brief, the process here is started by 

representing the training graphemes using the features described in the previous section 

(i.e.  Angles quantization, orientation histogram-based, curliness, polar angular, curvature 

and writing direction, loop existence, length, width, height and aspect ratio). Then k-means 

clustering algorithm is used to cluster the graphemes into different clusters based on the 

used features. The representative samples of these clusters are used to build the graphemes’ 

codebook. Figure 5-10 shows the graphemes’ codebook generated in this process. 
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             Figure 5-10 Graphemes’ Codebook 

The generated codebook is reduced by grouping similar classes into the same bag-of-

classes. Therefore, each bag-of-classes contains a class or a set of classes that are similar. 

Figure 5-11 shows the reduced codebook (Bag-of-classes). 

 

Figure 5-11 Reduced Codebook (Bag-of-Classes) 
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5.2.5 Feature Selection Approach 

Selecting the most relevant and representative features is essential to achieve better 

accuracy. In our work, different features are designed and used in modelling the 

graphemes. The proposed approach for Arabic online text recognition was evaluated first 

using all features. Then, an approach based on ranking and merging the features is applied 

to select the most suitable features as follows. Initially, we create feature groups that have 

a single feature (i.e. each single feature forms a group). In the ranking phase, each group is 

evaluated alone for classification. Then the groups are ranked based on their achieved 

accuracies. The merge phase starts by considering the first ranked feature group as the 

selected feature group. Then the performance of using the second ranked feature group 

with the selected feature group is evaluated. If the accuracy is improved then the second 

ranked feature group is merged into the selected feature group. Otherwise, the second 

ranked feature group is ignored. This evaluating and merging process is repeated for all 

ranked feature groups till we get the final selected features.   

As a result of this approach, the selected features are; curliness, curvature, writing 

direction, end-points, existence of loop, length, width, height and aspect ratio. 

5.2.6 Codebook improvement based on the selected features 

The graphemes’ codebook is improved based on the selected features as follows. The 

extracted graphemes are represented using the selected features then k-mean clustering 

algorithm is used to cluster the graphemes based on these features. The initial codebook is 

generated from the representative samples of all generated clusters. The graphemes’ 
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codebook is improved automatically according to inter-class similarities between the 

codebook elements (classes). Similar classes will be merge into the same bag-of-classes 

such that each bag contains a class or a set of classes that are similar. Finally, the grouping 

is refined subjectively to improve the generated Bag-of-classes. Figure 5-12 shows the 

generated codebook using the selected features. Arrows have been added in the figure to 

show the graphemes' directions. 

 

Figure 5-12 Codebook generated from the selected features 

 

5.2.7 Fuzzy Modeling (generating graphemes’ fuzzy models) 

To address the problem of variability in writing, fuzzy models are generated for the 

extracted graphemes from the training characters. In order to generate the fuzzy models, 

the lengths of all graphemes are normalized to a unique length. In our work, we normalized 

the lengths to 20. This length is derived based on the common lengths of the graphemes. 

After normalizing the graphemes’ lengths, the following features are used to represent the 

graphemes: curliness, curvature, writing direction, end-points, loop existence, length, 

width, height and aspect ratio (these features are described in section 5.2.3). These features 

are used to build generic models that represent the graphemes (i.e. fuzzy models) as 
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follows. For each extracted grapheme, the fuzzy model generated for that grapheme is a 

series of points that represent the features of that grapheme with the standard deviation (σ) 

of y-values of all the training graphemes from the same class at each point. The standard 

deviation for each class represents the fuzzy tolerance of the class’s model and it is 

calculated from the graphemes samples of that class. The width of the fuzzy tolerance 

varies from one point to another according to the model as estimated from the training 

graphemes. In the recognition phase, computing the membership value for a testing sample 

at a certain sampling point is determined based on the width of the fuzzy tolerance. 

Therefore, we are using membership functions based on automatically generated duration 

and not fixed. This illustrates the robustness of the proposed fuzzy models in handling the 

variability of handwriting styles.  

5.3 Recognition phase 

In this phase, Arabic online text is modeled as a sequence of graphemes which represent 

the basic parts that text is composed of. Subsequently, these graphemes are recognized 

based on the fuzzy models generated in the training phase. The recognition process consist 

of different steps. The details of these steps are presented in the next subsections.  

5.3.1  Preprocessing 

After reading the Arabic text, the preprocessing steps are applied in order to enhance the 

text’s trajectory and achieve better accuracy. In our work, removing duplication, 

simplification and smoothing are used in the preprocessing phase. These steps are 



106 

 

described in the training phase (section 5.2.1). Figure 5-13 shows the text “ فصار طاهرا” 

before and after the preprocessing phase.  

 

Figure 5-13  Arabic Online text line (a) before preprocessing (b) after preprocessing 

5.3.2 Baseline Estimation 

The baseline is the horizontal line on which the characters of a text line are joined. 

Estimating the baseline is very important for segmentation and feature extraction steps 

[98].  Different approaches have been proposed for estimating the baseline of the Arabic 

text [99]. Among these approach, the horizontal histogram projection is commonly used to 

estimate the Arabic text baseline [100]. In our work, we use horizontal histogram projection 

for estimating the baseline of Arabic online text. In addition to baseline, top-line, bottom-

line, upper-median and lower-median lines are also estimated. Figure 5-14 shows the 

estimated base line for the text line “ فصار طاهرا”. 
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Figure 5-14 Baseline Estimation 

5.3.3 Delayed strokes handling  

In Arabic text, delayed strokes (sometimes called additional strokes or secondary’s) are 

written above, below or within the characters. The appropriate handling of the delayed 

strokes is essential for adequate recognition rate. Although the size of the delayed strokes, 

especially the dots, is usually small compared with other strokes, this feature alone is not 

enough for detecting all types of delayed strokes. For example, figure 5-15 shows an Arabic 

word where the delayed stroke of the letter TAA has greater size than the main stroke of 

the letter ALEF. 

 

Figure 5-15 The delayed stroke of letter TAA has grater size than the main stroke of letter 

ALEF 
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Furthermore, estimating the text’s height is important to detect the delayed strokes. In our 

work, and in order to estimate the line’s height, a window is drawn around each stroke, as 

shown in figure 5-16, then the heights of all windows are calculated. The maximum height, 

MaxHeight, will be used as the estimated line’s height.  

 

Figure 5-16 Text line with windows drawn around its strokes 

In addition to the stroke’s size and height, the following features are also used to detect the 

delayed strokes: the height/width ratio and the overlap between strokes. These features 

need to be combined in order to get better results. For example, in some cases and due to 

the variation in handwriting, we could have a delayed stroke that has a height greater than 

the height of a main stroke as shown in figure 5-17.a. Combining the height with the 

overlap feature resolves such cases. 

 
Figure 5-17 (a) The height of the delayed stroke of letter ALEF is greater than the height 

of letter WAW. (b) Partial overlap between the main strokes of letters WAW and MEEM. 
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The overlap between strokes will be used to detect the delayed strokes that are overlapped 

with their main strokes (usually with their previous strokes). In Arabic text, some letters 

may overlap partially with other letters as shown in figure 5-17.b. To avoid considering 

this partial overlap in the delayed stroke detection, a threshold, ThresholdOverlap, is used 

such that a stroke is detected as a delayed stroke if a complete overlap occurs or the amount 

of overlap > ThresholdOverlap.  

The algorithm DelayStrokesDetection presents the main steps used for detecting the 

delayed strokes. 

Algorithm DelayStrokesDetection 

1. Find the Line’s height (MaxHeight of all strokes). 

2. MainStrokes ←{} , DelayedStrokes ←{} 

3. Repeat for all strokes  

If (stroke’s size < ThresholdSize ) and (Height/width ratio < ThresholdRatio ) 

and (Height < ThresholdHeight  *  Line’s height) 

DelayedStrokes ← stroke 

Else  

If (overlap exists) and  (overlap > ThresholdOverlap)  

DelayedStrokes ← stroke 

             Else  

MainStrokes ← stroke 

4. Until the last stroke in the text is reached 
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5.3.4 Graphemes’ Extraction 

In this section we describe the proposed algorithm for extracting the graphemes from the 

Arabic online text. The algorithm TextGraphemeExtration below presents the different 

steps used for extracting the line’s graphemes.  

Algorithm TextGraphemeExtration 

1. Find the Loops. 

2. Find the Open-loops. 

3. Find Possible Segmentation Points (PSPs). 

- Using Curvature of the text’s trajectory. 

4. Filter PSPs:  

Rule 1: Excluding PSPs that are inside loops. 

Rule 2: Excluding PSPs that are far away from the baseline   

- Exclude if PSP > (Upper-Median + Threshold). 

- Exclude if PSP < (Lower-Median - Threshold). 

 The steps of the proposed algorithm will be described in detail in the following 

subsections. 

5.3.4.1 Loop detection 

There are nine Arabic letters that contain loops (ه, و, م, ق, ف, ظ, ط,ض ,ص ) and five letters 

that some writers write with loops (غ,ع ,ج, ح, خ ). This makes the existence of loop a useful 

feature for recognizing Arabic letters. Moreover, the loop can be considered as a basic 

grapheme in modeling its letter. Figure 5-18 shows some Arabic online characters with 

loops. 
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Figure 5-18 Different Arabic online characters with loops 

In our approach, the loop is detected and its points are extracted to be used as a basic 

grapheme for the letter. Closed loop detection is done by finding the self-intersection in 

the trajectory. Figure 5-19 shows the line (فصار طاهرا) after detecting the loops of letters 

FAA, SAD and HAA. The loop of letter TAA is not detected at this level since it is an open 

loop as shown in the zoomed part in the figure. 

 

Figure 5-19 The text line after finding the loops 
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5.3.4.2 Open loop detection 

The loops are sometimes written as open-loops as shown in figure 5-20.a. This creates a 

problem in detecting these loops and recognizing the corresponding letters. To solve this 

problem we close these open-loops by applying the following steps: 

1. Finding the direction of the first n points in the stroke. 

2. Adding n points at the beginning of the stroke (before the first point) according to the 

detected direction. 

3. Checking if there is self-intersection after adding these points. 

Figure 5-20 shows the steps of closing the loop of letter WAW.  

 

 

Figure 5-20 Closing Open-loop 

 

Figure 5-21 shows the line (فصار طاهرا) after closing the open-loop of letter TAA.  
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Figure 5-21 Text line after closing the loop of letter TAA 

5.3.4.3 Finding Possible Segmentation Points (PSP) 

The Possible Segmentation points (PSPs) are detected by measuring the curvature of the 

text’s trajectory; if the curvature is greater than a threshold then that is a candidate PSP. 

The detected PSPs in the line (فصار طاهرا) are shown in figure 5-22. 

 
Figure 5-22 Possible segmentation points 

 

5.3.4.4  Filtering Possible Segmentation Points (PSPs) 

The detected PSPs are filtered using the following rules: 

Rule 1: Excluding PSPs that are at the loops. 



114 

 

If the selected PSP is inside a loop then that point will be excluded from the PSPs list since 

the whole loop points represent one grapheme and is not segmented into more than one 

grapheme.    

Rule 2: Excluding PSPs that are far away from the baseline   

Based on the nature of Arabic text, characters are connected at the baseline. Most of the 

proposed segmentation approaches in the literature assume that the Arabic characters are 

connected at the baseline [8]. Graphemes’ cut points are also located close to the baseline. 

Therefore the PSP that is far from the baseline most likely will not be a cut point. In our 

approach, the distance between the candidate PSP and the baseline is measured and if that 

distance is greater than a threshold then that PSP will be excluded from the PSP list. 

Specifically, the PSP is excluded if: 

PSP > (Upper-Median + Threshold), or 

PSP < (Lower-Median – Threshold). 

5.3.5 Feature Extraction 

The length of the extracted graphemes are normalized by adjusting all the graphemes’ 

lengths to 20 points. Then the normalized graphemes are represented using the features 

described in the training phase, section 5.2.3, (viz. curliness, curvature, writing direction, 

end-points, loop existence, length, width, height and aspect ratio).    
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5.3.6 The graphemes’ relative height feature (Grapheme/Line height ratio) 

In Arabic text, the relative height of the characters is important and can be used to resolve 

the confusion between the different characters that may look similar. As a result, the 

relative height of the graphemes, extracted from the characters, represents useful 

information which may help in differentiating between similar graphemes. The 

normalization process may destroy this useful information and may thus cause confusion 

between samples that look similar. In our work, the estimation of the line’s height is done 

by drawing a window around each stroke, as shown in figure 5-23.b, then the heights of all 

windows are calculated. The maximum height are used as the estimated line’s height. This 

approach is more accurate than the estimation of the height using one window as shown in 

figure 5-23.a. The relative height of the grapheme is defined as grapheme’s height/ line’s 

height .Table 5-2 shows the relative heights of the Arabic characters estimated from the 

training characters. 

 

Figure 5-23 Estimating the height of the Text Line (a) Height’s Estimation based on 

using one window (b) Estimation based on using a window for each stroke and taking 

the height of the maximum one 
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Table 5-2 Relative Heights of Arabic characters 

Character 
 Height 

Ratio 
Character 

 Height 
Ratio 

Character 
 Height 

Ratio 

B_al 0.28739 ـئ E_ja 0.652174 ـج I_laaa 0.731522 لا 
B_ay 0.542857 ـع E_ka 0.483485 ـق I_laae 0.666356 لأ 
B_ba 0.320313 بـ E_ke 0.720674 ـك I_laah 0.802335 لإ 
B_de 0.442648 ـض E_kh 0.67439 ـخ I_laee 0.704232 لي 
B_fa 0.325659 فـ E_la 0.835244 ـل I_ma 0.75742 م 
B_gh 0.241379 غـ E_laaa 0.683855 ـلا I_na 0.404509 ن 
B_ha 0.265432 حـ E_ma 0.70592 ـم I_ra 0.351247 ر 
B_he 0.337073 هـ E_na 0.454695 ـن I_se 0.507173 س 
B_ja 0.225883 جـ E_ra 0.380893 ـر I_ta 0.414232 ت 
B_ka 0.28081 قـ E_sa 0.525238 ـص I_tee 0.307848 ة 
B_ke 0.6324 كـ E_se 0.459514 ـس I_th 0.35269 ث 
B_kh 0.237853 خـ E_sh 0.513732 ـش I_wa 0.349286 و 
B_la 0.540667 لـ E_ta 0.37628 ـت I_wl 0.413492 ؤ 

B_laha 0.692737 لحـ E_tee 0.38423 ـة I_ya 0.540847 ي 
B_lama 0.56358 لمـ E_th 0.416198 ـث I_za 0.337287 ز 
B_ma 0.198569 مـ E_to 0.370863 ـط M_al 0.120537 ـئـ 
B_na 0.323663 نـ E_wa 0.378069 ـو M_ay 0.257408 ـعـ 
B_sa ـص  0.435779 E_wl 0.415284 ـؤ M_ba 0.150194 ـبـ 
B_se 0.235686 سـ E_ya 0.488303 ـي M_de 0.348417 ـضـ 
B_sh 0.259126 شـ E_za 0.455282 ـز M_fa 0.233173 ـفـ 
B_ta 0.273617 تـ I_aa 0.422224 ا M_gh 0.267029 ـغـ 
B_th 0.192938 ثـ I_ae 0.444123 أ M_ha 0.254406 ـحـ 
B_to 0.480462 طـ I_ah 0.474016 إ M_he 0.383133 ـهـ 
B_ya 0.300138 يـ I_am 0.494867 آ M_ja 0.211695 ـجـ 

B_zha 0.462652 ظـ I_ay 0.800824 ع M_ka 0.237956 ـقـ 
E_aa 0.552771 ـا I_ba 0.293662 ب M_ke 0.685975 ـكـ 
E_ae 0.514772 ـأ I_da 0.286077 د M_kh 0.212475 ـخـ 
E_ah 0.536445 ـإ I_de 0.528122 ض M_la 0.555395 ـلـ 
E_ay 0.827303 ـع I_dh 0.28736 ذ M_ma 0.203839 ـمـ 
E_ba 0.412795 ـب I_ee 0.444493 ى M_na 0.152068 ـنـ 
E_da 0.266933 ـد I_fa 0.391612 ف M_sa 0.378894 ـصـ 
E_de 0.461424 ـض I_ha 0.854018 ح M_se 0.157478 ـسـ 
E_dh 0.248167 ـذ I_he 0.283071 ه M_sh 0.156308 ـشـ 
E_ee 0.43014 ـى I_hh 0.320499 ء M_ta 0.148432 ـتـ 
E_fa 0.423775 ـف I_ja 0.832702 ج M_th 0.175774 ـثـ 
E_gh 0.731487 ـغ I_ka 0.516145 ق M_to 0.360625 ـطـ 
E_ha 0.632163 ـح I_ke 0.688681 ك M_ya ــع  0.181399 
E_he 0.376598 ـه I_la 0.779594 ل M_zha 0.299152 ـظ 
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5.4 Arabic Online text line recognition 

Figure 5-24 shows the proposed steps for recognizing Arabic online text.  Initially, the 

online text is segmented into its basic graphemes using the algorithm 

TextGraphemeExtration described in section 5.3.4. Then the extracted graphemes are 

classified using FuzzyClassification algorithm to find the most similar class for each 

grapheme. After that, the recognized graphemes are mapped to the corresponding 

characters using MapGraphemesToCharacter algorithm. These steps are addressed in 

details in following sections.  

  

Figure 5-24 Illustration of steps to recognize Arabic Online line from Online KHATT database 
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5.4.1 Graphemes’ Recognition (Fuzzy Classification) 

After extracting the text’s graphemes, we use fuzzy classification to recognize the extracted 

graphemes using the fuzzy models generated from the graphemes of the training characters. 

For each extracted grapheme, fuzzy comparisons between the grapheme and the models 

are done to find the most similar one as follows. At each point in the grapheme, fuzzy 

comparison is performed to estimate the membership between the grapheme and the model. 

The membership value between a grapheme’ point g and the model at sampling point m is 

estimated base on the following equation: 

𝑀𝑣(𝑔,𝑚) =

{
 
 

 
 
 0,                   g >∝1  or g <∝2      (a)
 1,                    β2 ≤ g ≤ β1               (b)
∝1 − g

∝1 − β1
, β1 < g ≤ ∝1              (c)

g −∝2
β2 −∝2

, ∝2≤  g < β2               (d)

         

Where (β1 and β2) represent the first tolerance region and (α1 and α2) represent the second 

tolerance region as shown in the trapezoidal membership function in figure 5-25.  The 

values of β1, β2, α1 and α2 are automatically generated from the training data. 

 

Figure 5-25 Trapezoidal membership function 
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The membership value (Mv) represents the weight of the similarity between the grapheme 

and the model at sampling point m. The value of Mv ϵ [0, 1] such that ‘0’ (part (a) in the 

Equation) means least similarity between the grapheme and the model at that sampling 

point. Membership value ‘1’ (part (b) in the Equation) represents the maximum similarity. 

Membership value in the regions between (α1 and β1) and between (β2 and α2) are calculated 

using parts (c) and (d) of the Equation respectively. The overall similarity between a 

grapheme G and a model M is given by 

Similarity(𝐺,𝑀) =
1

𝑁
∑ 𝑀𝑣 ( 𝐺(i) ,𝑀(i) )

𝑁

i=1

, 

 Where N is the number of points. The model with the highest similarity will be selected 

as the recognized grapheme’s class. 

5.4.2 Character Recognition (Graph-based Classification) 

The previous phase, graphemes’ recognition, results in a list of model numbers that 

represent the recognized graphemes’ classes. Each number, or sequence of numbers, is 

corresponding to a specific character and has to be mapped to that character during the 

character recognition phase. In order to do this mapping, statistics about all Arabic 

characters and their corresponding grapheme classes’ numbers are needed. These statistics 

are gathered by analyzing the training characters. For each character, the probability of 

representing the character by a grapheme (or a sequence of graphemes) is calculated and 

used in mapping the grapheme (or a sequence of graphemes) to its (their) corresponding 

character. 
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5.4.2.1 Character Grapheme-based Probability 

Due to variations in handwriting, different occurrences of the same character may be 

represented by different sequences of graphemes. Moreover, different characters may have 

common sub sequence of graphemes. In order to map each grapheme (or sequence of 

graphemes) to its (their) corresponding character, we compute the grapheme-based 

probability for each character as follows. 

Let GS= {gs1, gs2…, gsn} be a set of all grapheme sequences extracted from the training 

data. The conditional probability of a character Chari represented by a sequence gsi ∈ GS 

is defined as follow:  

P(𝐶ℎ𝑎𝑟𝑖 | gs𝑗) =
𝐶( 𝐶ℎ𝑎𝑟𝑖 , gsj)

𝐶( gsj)
 

Where C(Chari, gsj) is the number of occurrences of the character Chari represented using 

the grapheme sequence gsi and C(gsj) is the number of occurrences of all characters 

represented using the grapheme sequence gsi. 

5.4.2.2 Graph Construction   

Our proposed character recognition approach is based on construction of a graph where 

nodes represent Grapheme Patterns (candidate characters) and edges are created between 

nodes depending on the grapheme-based probabilities calculated from the training data. 

The Grapheme Pattern is defined as follows. 
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Grapheme Pattern (GP): Given the input text T, let GraphemeList = {G1, G2, G3 

… Gn-1, Gn
.}, be a sequence of graphemes extracted from T where n is the number 

of graphemes. For each grapheme Gi ∈ GraphemeList, the Grapheme Patterns (GP) 

of Gi ,GP(Gi), is a set of all candidate sequences of graphemes that start with Gi 

and their length is less than or equal to m where m is the maximum possible number 

of graphemes in a character in the training set. For example: 

- GP(G1) = {G1, G1G2, G1G2G3…}, i.e. patterns for characters that start with 

grapheme G1. 

- GP(G2) = {G2, G2G3, G2G3G4…}, i.e. patterns for characters that start with 

grapheme G2. 

- … 

- … 

- and so on. 

For a given GraphemeList G= {G1, G2, G3… Gn-1, Gn.}, extracted from a text T, the process 

of constructing the graph starts by generating all Grapheme Patterns (GPs) of the first 

grapheme, G1. For each generated grapheme pattern (GP), which is corresponding to a 

specific character Ci, we find its probability Pi based on the grapheme-based probabilities 

calculated from the training data. Then all generated grapheme patterns are added as nodes 

in the first level of the graph and connected to the root node and their probabilities are 

assigned to the connected edges. After that, for each added node n, we find the last 

grapheme, last; then the subsequent grapheme of last is used to generate a new set of 

grapheme patterns. These generated grapheme patterns are added as nodes in the next level 
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of the graph and connected to the node n and their probabilities are assigned to the 

connected edges. This process is repeated until the last grapheme, last, in each node (in the 

last level of the graph) has no subsequent grapheme in the GraphemeList i.e. last is equal 

to Gn.  

The algorithm MapGraphemesToCharacter shows the main steps of our graph-based 

approach proposed to find the corresponding character for a grapheme (or a sequence of 

graphemes).  Note that, the algorithm generates the nodes located in the first level of the 

graph in step 3 and connects them to the root node, whereas the loop in steps 4-5 is 

responsible for generating the nodes in the subsequent levels of the graph. 

5.4.2.3 Path evaluation 

Nodes in the graph represent grapheme patterns which correspond to candidate recognized 

characters, while edges are created between nodes depending on the characters grapheme-

probabilities. Each path in the graph represents a possible solution for the input text. 

Among these paths, we need to find the best one that represents the recognized text. 

Therefore, all paths are evaluated using the following formula: 

𝐶 =∑𝑙𝑛(𝑃𝑘))

𝑛

𝑘=2

 

Where C is the path probability, n is the number of nodes in the path and Pk is the 

probability assigned to the edge e :( nk-1, nk), i.e. the edge between nodes nk-1 and nk.  The 

characters corresponding to the nodes in the path with the maximum probability will be 

selected as the recognized text. 
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Figure 5-26 shows an example of the initial steps for mapping the recognized graphemes 

to their corresponding characters for the given text. The characters connected to the 

grapheme pattern in the figure represent the candidate characters corresponding to that 

grapheme pattern and the number attached with the character represents the character’s 

probability. The sign Ø means that the Grapheme Pattern does not represent any character. 

Algorithm MapGraphemesToCharacter 

1. Let GraphemeList = {G1, G2, G3… Gn-1, Gn
.}, be a sequence of graphemes 

extracted from the text T. 

2. Generate all grapheme patterns (GPs) of the first grapheme G1. (GPs represent 

the candidate characters)  

3. For each generated Grapheme Pattern, gpi ∈ GPs, 

a. Find its probability Pi based on the grapheme-based probabilities 

calculated from the training data. 

b. Create a node n and add it to the graph.  

c. Connect n to the root node. 

d. Assign Pi as a weight to the connected edges. 

4. Repeat 

For each node n in the current level 

a.  Find the last grapheme, last, in the node n 

b. Find the subsequent grapheme, Subseq, of last. 

c.  Generate a set of grapheme patterns S from Subseq. 

d. Create a node for each grapheme pattern in S and add it to the 

graph.  

e.  Connect each generated node to the node n and assign its 

probability Pi as a weight to the connected edge. 

5. Until last grapheme, last, in each node, in the last level of the graph, has no 

subsequent grapheme in the grapheme list G. 
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Figure 5-26 Example to show the steps of mapping the graphemes to their corresponding 

characters 

 

Figure 5-27 shows the graph constructed for the previous example. The nodes in the graph 

represent the candidate characters while numbers between nodes represent the probabilities 

of these characters. These probabilities are calculated based on statistics 

gathered from the training characters. Each path in the graph represents a possible solution 

for the text. Our approach selects the one with the maximum probability as the recognized 

text. 
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Figure 5-27 Initial steps of constructing a graph for recognizing a text line 

 

5.5  Experimental Work 

In this section we present our experimental work with Arabic online text. The details of the 

experiments and the used databases are discussed.  

5.5.1 Grapheme’s fuzzy models Generation 

As we have discussed before in section 5.2, the graphemes’ fuzzy models in the training 

phase are built from isolated characters. To build models that better address the problems 

of characters’ connections in the Arabic online text, we decide to use pre-segmented Arabic 

online characters. For this purpose, a data set containing 3882 pre-segmented Arabic online 
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characters is used. These characters are manually segmented from Online-KHATT database 

and include samples from all Arabic characters in their different shapes. 

In our work, the relative height ratios are utilized by integrating them into the graphemes’ 

fuzzy models. The relative height ratios are calculated for the training graphemes according 

to the heights of the original lines from which the training characters are segmented. In the 

testing phase, the relative height ratio features are calculated and assigned more weight 

than other features during the similarity calculation.   

5.5.2 Performance evaluation 

To evaluate the performance of our proposed approach, we use HResult tool provided by 

HTK [101]. It compares the output transcription file (produced by our classifier) with the 

corresponding original reference transcription file.  HResult uses two measurements to 

evaluate the system performance which are the correctness and the accuracy. These 

measurements evaluate the percentage number of labels correctly recognized as follows:  

% 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑁 − 𝐷 − 𝑆

𝑁
∗ 100 

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁 − 𝐷 − 𝑆 − 𝐼

𝑁
∗ 100 

Where N is the total number of labels in the transcription files, D is the number of deletions, 

S is the number of substitutions and I is the number of insertions.  
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5.5.3 Experimentation using Arabic Online words 

In this section, we present our experimental results on Arabic online words. For this 

purpose, we collected two hundred Arabic Online words from 10 different writers.  The 

collected words are selected from the fixed paragraph that consists of minimal Arabic text 

covering the different shapes of Arabic alphabet in their all forms [102]. Figure 5-28 shows 

some samples from the collected words. 

 

Figure 5-28 Some samples from the collected Arabic Online words. 

Table 5-3 shows the obtained results after selecting the best features and reducing the 

codebook accordingly as described in sections 5.2.5 and 5.2.6. The table shows the results 

with different fuzzy tolerance values. 

Table 5-3 Results of Online Words Recognition Using HResult tool 

 

 

 

 

As shown in the table, the best obtained correctness value is around 59%. These results are 

in terms of character recognition, which can be relatively considered as competitive results 

Fuzzy Tolerance %Correctness %Accuracy 

0.35 58.28 50.88 
0.30 59.11 51.94 
0.28 58.40 50.88 
0.25 58.05 50.41 
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compared with similar works on Arabic text using structural approaches and without using 

post-processing steps to improve the results. 

5.5.4 Experimentation using Online-KHATT database 

In this section, we present our experimental results for Arabic online text lines recognition. 

For this purpose, several lines were selected from Online-KHATT database which is a large 

Arabic online text database collected in KFUPM from more than 600 writers.   

The selected text lines are divided into two disjoint sets. The validation set, 50 lines, is 

used for fuzzy model parameters’ estimation while the test set, 100 lines, is used to test the 

performance of the proposed approach. We evaluated the performance of the proposed 

approach using the selected structural features as described in section 5.2.5. We also 

conducted the experiments using turning function. Table 5-4 reports the results of these 

experiments.  

Table 5-4 Results of Online Text Lines Recognition Using HResult tool 

 

These experiments were conducted without using a lexicon. However, it is expected that 

the obtained results will be improved by consulting a lexicon of Arabic words. Using a 

lexicon and a language model is part of the post-processing phase and can be regarded as 

a future work.  

Representation Top n %Correctness %Accuracy 

Selected Features 
Top 1 (1st  Path) 42.30 31.52 

Top 5 (5 Paths) 44.12 33.19 

Turning Function 
Top 1 (1st  Path) 35.35 24.28 

Top 5 (5 Paths) 37.34 26.68 
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In addition, the fuzzy models for the training graphemes are built from a dataset of pre-

segmented characters which is different from the text database we used for testing. 

Therefore, the writers in the training database are different from writers of the testing data. 

The obtained recognition rate depends on many factors. The following paragraphs discuss 

some issues that affect the accuracy of our Arabic online text line recognition system. 

- The used data in these experiments is natural online handwriting text. 

Moreover, the writing itself is a subjective process and it has different styles. 

The writing quality is affected by writers' skills. In one experiment, when we 

choose the more readable lines form the selected 100 lines, the obtained 

correction reaches 50% as shown in table 5-5. 

Table 5-5Results of the more readable lines Using HResult tool 

 

 

- The text lines are selected from Online-KHATT database which is an open-

vocabulary database (i.e. it has unlimited vocabularies). Most of the reported 

work is based on closed-vocabulary databases. In some work, a database with 

very limited words is used. For example, only one word "عزالدين"    is replicated 

by the same writer in [103]  and different samples from only two names (i.e.   

  .is used in [57] (’سحر‘ and ’سلمى‘

- The loop represents a basic grapheme in our grapheme-based modelling 

approach.  This makes the existence of loop a useful information for 

Top n %Correctness %Accuracy 

Top 1 (1st  Path) 50.29 38.83 

Top 5  (5 Paths) 51.46 41.36 
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recognizing the Arabic characters in the text. One of the peculiar trait of some 

writers is that, they draw loop for characters that don't require loop as shown in 

figure 5-29.  Such cases can be a source of error and result in problems in 

recognizing the corresponding characters. 

 

Figure 5-29 Loop is drawn with character that do not require loop 

 

5.6 Conclusions 

In this chapter, we have described the Arabic online text recognition approach proposed in 

this thesis. The proposed approach is based on segmenting the text into graphemes that can 

represent a whole character or a part from a characters’ trajectory.  

Pre-segmented Arabic online characters are used in the training phase to build the fuzzy 

models while Arabic online texts are used in the testing phase. Hence, in our approach the 

training and testing phases are independent which makes the proposed approach general 

and more suitable for handling unknown data. We choose to use a database of pre-

segmented characters in the training phase instead of using isolated characters to better 

handle the issues related to characters’ connections in an input text. 
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 The training phase has two stages: codebook generation and fuzzy modeling. The 

codebook is generated from the extracted graphemes of the training characters. To better 

address the problem of variability in writing, the grapheme models are built in a fuzzy 

concept. The relative heights of the extracted graphemes are utilized by integrating them 

into the graphemes’ fuzzy models. 

Different features are used in modelling the extracted graphemes and an approach based 

on ranking and merging the features is applied to select the most suitable features.  

In the recognition phase, the Arabic online text is modeled as a sequence of graphemes 

which represent its basic parts. For this purpose, a new approach for segmenting Arabic 

online text into its graphemes is proposed. The proposed approach starts by extracting the 

loops from the text since loops are considered as basic graphemes in modeling the Arabic 

text. For the non-loop trajectory’s points, an initial set of Possible Segmentation Points 

(PSPs) is detected by measuring the curvature of the text’s trajectory and finding the sharp 

turns in the trajectory. Then, a rule-based filtering algorithm is used to produce the final 

segmentation points (FSPs). The filtering algorithm utilizes the way characters are joined 

in Arabic online text. 

A fuzzy classification approach is used to recognize the graphemes using the fuzzy models 

generated from the graphemes of the training characters. Then, the recognized graphemes 

are mapped to their corresponding characters based on graphemes’ statistics gathered by 

analyzing the training characters. 

 



132 

 

6 CHAPTER 6 

CONCLUSIONS AND FUTUER RESEARCH DIRECTIONS 

In this chapter, we summarize the contributions of this thesis and discusses some issues 

relevant to the developed techniques. In addition, future research directions related to 

Arabic online text recognition are presented. 

6.1 Conclusions  

In recent years many researches have been conducted on the recognition of offline and 

online Latin text. Most of the research on Arabic addressed offline Arabic handwritten text 

while few addressed online Arabic text. The reasons for this may be due to the challenges 

related to online Arabic handwriting recognition systems. These challenges include the 

need for special hardware; the lack of freely available comprehensive databases  

for Arabic online text. In addition, the writing using electronic pen is less controlled than 

writing using a pen on paper which leads to more variability between writers, and even 

with the same writer.  

Statistical-based approaches have been widely used in Arabic online text recognition 

research while structural-based approaches have remained comparatively unexplored. In 

this thesis, research on automatic recognition of online handwritten Arabic text using 

structural-based techniques has been conducted.  We conducted research on issues relevant 

to automatic recognition of Arabic online digits, isolated characters, words and text. 
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A literature review of Arabic online text recognition is presented in chapter 2 that surveys 

the published work related to this thesis. It also includes a study of the different attempts 

to build a comprehensive database for Arabic online text. 

An approach based on fuzzy modeling for the automatic recognition of Arabic online digits 

is presented in chapter 3. In this approach, fuzzy models of the different digits are 

automatically generated using the training data. The fuzzy intervals are generated 

automatically based on the analysis of the training samples at the digit segment level and 

not set manually at the digit level as was done in the previous works. In addition, we 

automatically generate weights for the different segments using the training samples. These 

weights are integrated in the fuzzy similarity estimate.  

A two stage classification approach is implemented where SVM is used in the first stage 

and fuzzy-based classification using the automatically generated models in the second 

stage. The second stage has an in integrated feedback verification step which verifies the 

recognized test sample label and possibly selects a better alternative. The proposed 

approach is evaluated using a database containing more than 30,000 Arabic online 

handwritten digit. An overall accuracy of 99.55% was achieved in the first stage (classify 

zero-nonzero digits) and the second stage classifies digits 1 to 9 with an accuracy of 98 %. 

This result, based on using our fuzzy models and the proposed fuzzy structural classifier, 

proved to better than using the SVM classifier with the directional features. 

An approach for recognizing isolated online Arabic characters is presented in chapter 4. 

The novelty of the proposed approach comes from modeling the isolated Arabic online 

characters based on their graphemes. In the training phase, the codebook is generated from 
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the extracted graphemes of the training data. Then, the characters are represented based on 

their graphemes using the generated codebook. In the recognition phase, the graphemes of 

the testing data are extracted then the representations of these graphemes are combined to 

build the pattern of the corresponding character. Different features and different 

classification approaches are used in order to investigate the proposed graphemes 

modeling. A dataset set of isolated Arabic online characters comprising the different forms 

of all characters is collected to evaluate the proposed approach. Two sets of experiments 

were conducted. The first set was performed to evaluate the extracted graphemes and the 

achieved accuracy in these experiments reaches 97.02 which shows the effectiveness of the 

proposed process used in extracting the graphemes and building the codebook. In the 

second set of experiments, the testing characters are recognized using the characters’ 

graphemes modeling of the training characters. A recognition rate of 87.53 was obtained 

in these experiments.  

The grapheme-based approach proposed for Arabic online text recognition is presented in 

chapter 5. The proposed approach is based on segmenting the text into basic graphemes 

where each one can represent a whole character or a part of a characters’ trajectory.  

The grapheme models are built from pre-segmented Arabic online characters in the training 

phase, while Arabic online text is used in the testing phase. Therefore, the training dataset 

is different from the set used for testing. This illustrates the robustness of the proposed 

approach to handle unknown data. We choose to use a database of pre-segmented 

characters in the training phase instead of using isolated characters to better handle the 

issues related to characters’ connections in an input text. 
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To address the problem of variability in writing, the grapheme models are built in a fuzzy 

manner. Moreover, the relative heights of the extracted graphemes are integrated into the 

graphemes’ fuzzy models to address the confusion between the different graphemes that 

look similar. 

In the recognition phase, Arabic online text is modeled as a sequence of graphemes. For 

this purpose, a new approach for segmenting Arabic online text into its graphemes is 

proposed. The algorithm utilizes the way characters are joined in Arabic online text.  

A fuzzy classification approach is used to recognize the extracted graphemes from the 

testing data. Furthermore, the fuzzy models generated from the graphemes of the training 

characters are used by the fuzzy classifier to find the most similar class for each testing 

grapheme. A graph-based algorithm is used to map the recognized graphemes to their 

corresponding characters based on the graphemes’ statistics gathered by analyzing the 

training data. 

6.2 Limitations of the Work 

The main objectives of this thesis are met. However, this work has some limitations that 

we discuss below. 

- The used features are highly dependent on the order of writing. The starting point, 

the point from where the writer starts the writing, has a great impact on the extracted 

features. Different order of writing for the same sample yield different features. 

However, this can be solved by building models for the different writing styles.    
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- A semi-automated process is used to reduce the generated codebook into bag-of-

classes. The final bag-of-classes are adjusted manually to ensure that each bag 

contains a set of classes that are similar. 

- The used data sets in our experiments are either digits, isolated characters or text. 

The proposed approaches are not evaluated using data sets that combine digits and 

words. 

- The used features are mainly based on the direction and length of writing. Different 

features can be also utilized to improve the recognition rate. 

6.3 Future Research Directions 

The different phases of this work can be investigated more using other options for each 

phase. Some directions for future research are as follows. 

- Hybrid structural/statistical classification. Combining the strengths of structural 

classification with statistical classification in a hybrid structural/statistical 

classification is expected to perform better compared to either structural or 

statistical classifier. The main objective of the hybrid classification is to take the 

advantage of both structural and statistical classification and they are supposed to 

complement each other. 

- Optimizing the graphemes’ codebook. The obtained recognition rate is strongly 

affected by the generated graphemes’ codebook. Enhancing the process of 

generating the codebook is expected to improve the recognition rate. The current 

process of generating the codebook is based on clustering the graphemes using k-
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means clustering algorithm. This process may be improved by enhancing the 

graphemes’ representation and explore different clustering algorithms. 

- Using dictionary and language model. The obtained results can be improved by 

using a dictionary and language model. This can be done as a post-processing phase 

in which we can also utilize some natural language processing techniques to further 

enhance the results. 
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