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THESIS ABSTRACT

NAME: Abdulilah Kadri
TITLE OF STUDY: t-Reductions of Ideals in Integral Domains
MAJOR FIELD: Mathematics

DATE OF DEGREE: May 2016

This Ph.D. thesis traverses two chapters which contribute to the study of multi-
plicative ideal theoretic properties of integral domains. Let R be a domain and I a
nonzero ideal of R. Anideal J C I is a t-reduction of I if (JI"); = (I™!), for some
integer n > 0 (See a brief summary on the t-operation in Section 1.1). An element
z € R is t-integral over I if there is an equation " +a;2" '+ ...+ a,_1z+a, =0
with a; € (I*); for i = 1, ...,n. The set of all elements that are t-integral over [ is
called the t-integral closure of I. The first chapter investigates the ¢-reductions and
t-integral closure of ideals. Our objective is to establish satisfactory t-analogues
of well-known results, in the literature, on the integral closure of ideals and its
correlation with reductions. Namely, Section 1.2 identifies basic properties of
t-reductions of ideals and features explicit examples discriminating between the

notions of reduction and ¢-reduction. Section 1.3 investigates the concept of -
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integral closure of ideals, including its correlation with ¢-reductions. Section 1.4
studies the persistence and contraction of t-integral closure of ideals under ring
homomorphisms. All along the chapter, the main results are illustrated with orig-
inal examples.

An ideal I is t-basic if it has no t-reduction other than the trivial ones. The sec-
ond chapter investigates t-reductions of ideals in pullback constructions. Section
2.2 examines the correlation between the notions of reduction and t-reduction in
pseudo-valuation domains. Section 2.3 solves an open problem on whether the
finite #-basic and v-basic ideal properties are distinct. We prove that these two
notions coincide in any arbitrary domain. Section 2.4 features the main result,
which establishes the transfer of the finite ¢-basic ideal property to pullbacks in
line with Fontana-Gabelli’s result on Priifer v-Multiplication Domains (PvMDs)
[16, Theorem 4.1] and Gabelli-Houston’s result on v-domains [20, Theorem 4.15].
This allows us to enrich the literature with new families of examples, which put
the class of domains subject to the finite ¢-basic ideal property strictly between

the two classes of v-domains and integrally closed domains.
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Introduction

Throughout this thesis, all rings considered are commutative with identity. Let
R be a ring and I a proper ideal of R. An ideal J C I is a reduction of I if
JI™ = I"*! for some positive integer n. An ideal which has no reduction other
than itself is called a basic ideal [25, 44]. The notion of reduction was introduced
by Northcott and Rees and its usefulness resides mainly in two facts: “First, it
defines a relationship between two ideals which is preserved under homomorphisms
and ring extensions; secondly, what we may term the reduction process gets rid
of superfluous elements of an ideal without disturbing the algebraic multiplicities
associated with it” [44]. The main purpose of this paper was to contribute to the
analytic theory of ideals in Noetherian (local) rings via minimal reductions. Let
(R,m) be a Noetherian local ring and I a proper ideal of R. One of the main
results asserts that if I is non-basic, then it admits at least one minimal reduction
[44, Section 2, Theorem 1]. Further, if the residue field is assumed to be infinite,
then J is a minimal reduction of I if and only if u(J) = I(I) [44, Section 4,
Theorems 1&2], where u(J) denotes the number of a minimal generating set of J
and [(I) denotes the analytic spread of I.

In [25, 26|, Hays investigated reductions of ideals in more general settings of
commutative rings (i.e., not necessarily local or Noetherian); particularly, Noethe-
rian rings and Priifer domains. He provided several sufficient conditions for an
ideal to be basic. For instance, in Noetherian rings, an ideal is basic if and only
if it is locally basic [25, Theorem 3.6]. He also introduced and studied the dual
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notion of a basic ideal; namely, an ideal is a C-ideal if it is not a reduction of any
larger ideal. Several results about C-ideals are proved; including the fact that this
notion is local for regular ideals in Noetherian rings [25, Corollary 5.10]. More-
over, domains in which every ideal is basic are examined. This class is shown to
be strictly contained in the class of Priifer domains; and a new characterization
for Priifer domains is provided; namely, a domain is Priifer if and only if every
finitely generated ideal is basic. The main result of these two papers states that
in an integral domain, every ideal is basic if and only if it is a one-dimensional
Priifer domain [25, Theorem 6.1] combined with [26, Theorem 10]. Finally, he
exhibited an explicit example in a valuation domain showing that most results on
reductions in Noetherian rings do not extend beyond this class of rings, including
the existence of minimal reductions.

Reductions happened to be a useful tool for the theory of integral dependence
over ideals. Let I be an ideal in a ring R. An element z € R is integral over I if
there is an equation 2" 4+ a, 2" ' +... +ap_12+a, =0 witha; € I fori =1, ..., n.
The set of all elements that are integral over I is called the integral closure of I,
and is denoted by I. If T = I, then I is called integrally closed. It turned out
that an element x € R is integral over [ if and only if I is a reduction of I + Rxz;
and if I is finitely generated, then I C J if and only if J is a reduction of I. This
correlation allowed to prove a number of crucial results in the theory including
the facts that the integral closure of an ideal is an ideal. For a full treatment of

this topic, we refer the reader to Huneke and Swanson’s book [33].



This Ph.D. thesis traverses two chapters which contribute to the study of
multiplicative ideal theoretic properties of integral domains. Let R be a domain
and I a nonzero ideal of R. Anideal J C I is a t-reduction of I if (JI™), = (I™*1),
for some integer n > 0 (See a brief summary on the t-operation in Section 1.1). An
element z € R is t-integral over [ if there is an equation 2" +a; 2" ' +...+a,_17+
a, = 0 with a; € (I*); for 1 = 1,...,n. The set of all elements that are ¢-integral
over I is called the ¢-integral closure of I. The first chapter investigates the ¢-
reductions and ¢-integral closure of ideals. Our objective is to establish satisfactory
t-analogues of well-known results, in the literature, on the integral closure of ideals
and its correlation with reductions. Namely, Section 1.2 identifies basic properties
of t-reductions of ideals and features explicit examples discriminating between
the notions of reduction and #-reduction. Section 1.3 investigates the concept of
t-integral closure of ideals, including its correlation with ¢-reductions. Section
1.4 studies the persistence and contraction of ¢-integral closure of ideals under
ring homomorphisms. All along the chapter, the main results are illustrated with
original examples.

An ideal I is t-basic if it has no ¢t-reduction other than the trivial ones. The
second chapter investigates t-reductions of ideals in pullback constructions. Sec-
tion 2.2 examines the correlation between the notions of reduction and ¢-reduction
in pseudo-valuation domains. Section 2.3 solves an open problem on whether the
finite t-basic and v-basic ideal properties are distinct. We prove that these two

notions coincide in any arbitrary domain. Section 2.4 features the main result,



which establishes the transfer of the finite t-basic ideal property to pullbacks in
line with Fontana-Gabelli’s result on Priifer v-Multiplication Domains (PvMDs)
[16, Theorem 4.1] and Gabelli-Houston’s result on v-domains [20, Theorem 4.15].
This allows us to enrich the literature with new families of examples, which put
the class of domains subject to the finite ¢-basic ideal property strictly between

the two classes of v-domains and integrally closed domains.



CHAPTER 1

T-REDUCTIONS AND

T-INTEGRAL CLOSURE OF

IDEALS

This chapter investigates the t-reductions and ¢-integral closure of ideals. Our
objective is to establish satisfactory ¢-analogues of well-known results, in the lit-
erature, on the integral closure of ideals and its correlation with reductions. This
work is accepted for publication in Rocky Mountain Journal of Mathematics un-
der the title “4-Reductions and t-integral closure of ideals” (in collaboration with

Dr. S. Kabbayj).



1.1 Introduction

Let R be a domain with quotient field K, I a nonzero fractional ideal of R,
and let I™' := (R : 1) ={z € K | zI C R}. The v- and t-closures of I are
defined, respectively, by I, := (I"1)"! and I, := UJ,, where J ranges over the
set of finitely generated subideals of I. The ideal I is a v-ideal (or divisorial) if
I, = I and a t-ideal if I; = I. Under the ideal t-multiplication (I, J) — (IJ),
the set Fi(R) of fractional t-ideals of R is a semigroup with unit R. An invertible
element for this operation is called a t-invertible t-ideal of R. Recall that factorial
domains, Krull domains, GCDs, and PuvMDs can be regarded as t-analogues of
the principal domains, Dedekind domains, Bézout domains, and Priifer domains,
respectively. For instance, a domain is Priifer (resp., a Priifer v-Multiplication
Domain (PvMD)) if every nonzero finitely generated ideal is invertible (resp., t-
invertible). For some relevant works on v- and t-operations, we refer the reader
to [22, 32, 38, 39, 40, 45, 48, 49, 50].

This chapter investigates the t-reductions and t-integral closure of ideals with
the aim to establish satisfactory t-analogues of well-known results, in the litera-
ture, on the integral closure of ideals and its correlation with reductions. Namely,
Section 1.2 identifies basic properties of t-reductions of ideals and features ex-
plicit examples discriminating between the notions of reduction and t-reduction.
Section 1.3 investigates the concept of t-integral closure of ideals, including its
correlation with ¢-reductions. Section 1.4 studies the persistence and contraction

of t-integral closure of ideals under ring homomorphisms. All along the chapter,



the main results are illustrated with original examples.

1.2 {-Reductions of ideals

This section identifies basic ideal-theoretic properties of the notion of {-reduction
including its behavior under localizations. As a prelude to this, we provide explicit
examples discriminating between the notions of reduction and ¢-reduction.
Recall that, in a ring R, a subideal J of an ideal [ is called a reduction of I
if JI™ = I"™*! for some positive integer n [44]. An ideal which has no reduction

other than itself is called a basic ideal [25, 26].

Definition 1.1 [cf. [30, Definition 1.1]] Let R be a domain and I a nonzero ideal

of R. An ideal J C I is a t-reduction of I if

(JIn)t — (In+1)t

for some integer n > 0 (and, a fortiori, the relation holds for n > 0). The ideal J
is a trivial t-reduction of I if J, = I;. The ideal I is t-basic if it has no t-reduction

other than the trivial ¢-reductions.

At this point, recall a basic property of the t-operation, which, in fact, holds
for any star operation (see definition in Section 2.2) that will be used throughout

the chapter. For any two nonzero ideals I and J of a domain, we have

(IJ)t = (ItJ)t = (IJt)t = (ItJt)t-

7



So, obviously, for nonzero ideals J C I, we always have:

J is a t-reduction of I & J is a t-reduction of I; < J, is a t-reduction of I,.

Notice also that a reduction is necessarily a t-reduction; and the converse is not
true, in general, as shown by the next example which exhibits a domain R with

two t-ideals J g I such that J is a t-reduction but not a reduction of I.

Example 1.1 We use a construction from [34]. Let z be an indeterminate over

Z and let
R := Z[3z,z? z3

I = (3z,2% %)
J = (3z,3z? 13 2%).

Then J g I are two finitely generated t-ideals of R such that:

JI™ g I"+1V n € N and (JI)t = (.[2)7;.

Proof. I, being a height-one prime ideal [34], is a t-ideal of R. Next, we prove
that J is a t-ideal. We first claim that J=' = 1Z[z]. Indeed, notice that Q(z) is the
quotient field of R and since 3z € J, then J~! C 3%R. So, let f := £ € J~1 where
g =Y r,ax’ € Zlz| with a; € 3Z. Then the fact that z3f € R implies that

a; € 3Z for i = 0,2,...,m; i.e., g € 3Z[z]. Hence f € 1Z[z|, whence J~' C 1Z[z].



The reverse inclusion holds since
1 2 .3
;JZ[x] = (3,3z,2°,2°)Z[z] C R

proving the claim. Next, let h € (R : Z[z]) € R. Then zh € R forcing h(0) € 3Z

and thus h € (3,3z,z2,2%). So, (R: Z[z]) C (3, 3z, 22, %), hence

(R:Z[x])z%J.
It follows that
5 o= J,
~ (r:1zi)
— (R : Zfa))
_ g

as desired.
Next, let n € N. It is easy to see that z3z?" = 2°"*3 is the monic monomial

with the smallest degree in JI™. Therefore
x2(n+1) — x2n+2 c In—l—l \ JI".

That is, J is not a reduction of I. It remains to prove (JI); = (I?);. We first
claim that

(JI)" = %Z[a}].



Indeed, we have
(JI)™* C (Z[z] : JIZ[z]) = (Z[z] : (9, 3z, %) Z[z]) = 7 2(Z]x] : (9, 3z,2®)Z][x]) = %Z[x]
and the reverse inclusion holds since

%Jzzm = (3,3z,2%,2°)(3,7,2%)Zlz] C R

proving the claim. Now, observe that I? = (922, 3z3, 2%, z%). It follows that

(1)) = (IJ)y

= (R: %Z[z))
= z?(R:Z[z])
= zJ
o I
Thus (IJ); 2 (I?);, as desired. O

Observe that the domain R in the above example is not integrally closed. Next,
we provide a class of integrally closed domains where the notions of reduction and
t-reduction are always distinct. For this purpose, recall that a domain R is said
to be completely integrally closed if every nonzero ideal of R is v-invertible (with
respect to the ideal v-multiplication (I, J) + (IJ),). The domain R is said to
be a Mori domain if it satisfies the ascending chain condition on divisorial ideals;

and R is a Krull domain if every nonzero ideal of R is t-invertible (with respect

10



to the ideal t-multiplication (I, J) — (IJ):).

Example 1.2 Let R be any integrally closed Mori domain that is not completely
integrally closed (i.e., not Krull). Then there always exist nonzero ideals J g I

in R such that J is a t-reduction but not a reduction of I.

Proof. These domains do exist; for instance, let k g K be a field extension with &
algebraically closed and let z be an indeterminate over K. Then, R := k + zK|x]
is an integrally closed Mori domain [20, Theorem 4.18] that is not completely
integrally closed [24, Lemma 26.5] (see [19, p. 161)).

Now, by [30, Proposition 1.4], there exists a t-ideal A in R that is not ¢-basic;
say, B C A is a t-reduction of A with B, G A;. By [6, Theorem 2.1], there exist
finitely generated ideals FF C Aand J C Bsuchthat A =Ftand B! =J};
yielding A; = F; and B; = J;. Let I := F + J. Then, one can easily see that J
is a non-trivial ¢-reduction of I. Finally, we claim that J is not a reduction of I.
Deny. Since I is finitely generated, I C J by [33, Corollary 1.2.5]. But, J C J; by

[43, Proposition 2.2|. It follows that J; = I;, the desired contradiction. |

Another crucial fact concerns reductions of ¢-ideals. Indeed, if J is a reduction
of a t-ideal, then so is J;; and the converse is not true, in general, as shown by the
following example which features a domain R with a ¢-ideal I and an ideal J C I

such that J; is a reduction but J is not a reduction of I.

11



Example 1.3 Let &k be a field and let z,y, z be indeterminates over k. Let

R = klz] + (y, 2)k(2)]ly, 2]]
M = (y,2)k(z)[ly, 2]]

J = M3

Note that R is a classical pullback issued from the local Noetherian and integrally
closed domain T := k(z)[[y, 2]]. Then M is a divisorial ideal of R by [29, Corollary
5] and clearly, we have

VneN, M™2 G M,

That is, J is not a reduction of M in R. On the other hand, notice that (M :
M) =T (since T is integrally closed) and M is not principal in 7. Therefore, by

[29, Theorem 13|, we have

(R: (R:M?) = (R:(M™':M))

= (R:(M:M): M)

= (R:(T:M))
= (R: M)
= M.
So that
Jt = Jv == M

Hence, J; is trivially a reduction of M in R.

12



In the sequel, R will denote a domain. For convenience, recall that, for any
nonzero ideals I, J, H of R, the equality (IJ + H); = (I;J + H); always holds
since I;J C (I;J); = (IJ); C (IJ + H);. This property will be used in the proof
of the next basic result which examines the ¢-reduction of the sum and product

of ideals.

Lemma 1.1 Let J C I and J' C I' be nonzero ideals of R. If J and J' are
t-reductions of I and I', respectively, then J + J' is a t-reduction of I + I' and

JJ' is a t-reduction of I1'.

Proof. Let n be a positive integer. Then the following implication always holds

(JIY), = (I, = (JI™), = (™), Vm > n. (1.1)

Indeed, multiply the first equation through by I"™™" and apply the t-closure to

both sides. By (1.1), let m be a positive integer such that

(JI™), = (I™*Y), and (J'I'™), = (I'™),. (1.2)

13



By (1.2), we get

((I+I/)2m+1)t g Im+1 I—l—[')m—l—I'm+1(I—|—I') )

(Im+1 I 4 Il)m + (I/m+1) (I 4 Il)m)t
(JI™) (I + I')™ + (JT™)o(I + I')™),
JI™(I + 1™ + J'I'™(1 + I')™),

(
(
(
(
((J+I)T + 1)),
((7+17m),

and then equality holds throughout, proving the first statement. The proof of the

second statement is straightforward via (1.2). O
The next basic result examines the transitivity for ¢-reduction.

Lemma 1.2 Let K C J C I be nonzero ideals of R. Then:

(1) If K is at-reduction of J and J is a t-reduction of I, then K is a t-reduction

of I.
(2) If K is a t-reduction of I, then J is a t-reduction of I.

Proof. For any positive integer m, we always have
(J.Im)t = (Im+1)t = (JnIm)t = (I'm—i-n)t Vn 2 1. (13)

Indeed, multiply the first equation through by J"~, apply the t-closure to both

14



sides, and conclude by induction on n. Let

(KJ™) = (J™*)y and (JI™), = (I™+1),

for some positive integers n and m. By (1.3), we get

(Im+n+1)t — (Jn+11m)t
= ((JnH)tIm)t
= ((KJ™).I™),

= (KI™™),
proving (a). The proof of (b) is straightforward. O
The next basic result examines the t-reduction of the power of an ideal.

Lemma 1.3 Let J C I be nonzero ideals of R and let n be a positive integer.

Then:
(1) J is a t-reduction of I if and only if J™ is a t-reduction of I".

(2) If J = (a4, ...,ax), then: J is a t-reduction of I if and only if (a7, ...,a}) is

a t-reduction of I™.

Proof. (a) The “only if” implication holds by Lemma 1.1. For the converse,

suppose (J"I"™), = (I"™*"), for some positive integer m. Then

(Inm+n)t — (JJn—lInm)t g (JInm+n—1)t g (Inm+n)t

15



and so equality holds throughout, as desired.
(b) Assume that J is a t-reduction of I. From [33, (8.1.6)], we always have the

following equality

(a?, ..., a}) (a1, ...,ak)(k_l)(n_l) = (a1, ...,ak)("_l)k-'-:l (1.4)

and, multiplying (1.4) through by J*=!, we get

(a’l‘, vey aﬁ) JEn = gk,

Therefore (a7, ..., a}) is a t-reduction of J" and a fortiori of I by (a) and Propo-

sition 1.2. The converse holds by (a) and Proposition 1.2. 0
The next basic result examines the ¢-reduction of localizations.

Lemma 1.4 Let J C I be nonzero ideals of R and let S be a multiplicatively

closed subset of R. If J is a t-reduction of I, then S~1J is a t-reduction of S~11.

Proof. Assume that (JI™), = (I"*!), for some positive integer n. Let ¢; denote

the t-operation with respect to S~1R. By [40, Lemma 3.4], we have:

(7)™ N = (§7H{I" )y
= (S7HU™ D))
= (S7HUT))u
= (§7 (M)
= (7' D(E )M

16



proving the lemma. O

It is worthwhile noting here that, in a PuMD, J is a t-reduction of I if and
only if J is t-locally a reduction of I; i.e., JRys is a reduction of IRy, for every

maximal t-ideal M of R [30, Lemma 2.2].

1.3 t-Integral closure of ideals

This section investigates the concept of ¢-integral closure of ideals and its corre-
lation with ¢-reductions. Our objective is to establish satisfactory t-analogues of
(and in some cases generalize) well-known results, in the literature, on the integral

closure of ideals and its correlation with reductions.

Definition 1.2 Let R be a domain and I a nonzero ideal of R. An element z € R

is t-integral over I if there is an equation
"+ a " 4. 1T+ 0, =0 with a; € (I'); Vi =1, ...,n.
The set of all elements that are ¢-integral over I is called the t-integral closure of

I, and is denoted by IIfI= T, then I is called t-integrally closed.

Recall that a domain R is called a v-domain if all its nonzero finitely generated
ideals are v-invertible (with respect to the ideal v-multiplication (I, J) — (1J),);
equivalently, if the t-integral closure of the ring R (also called pseudo-integral

closure) is equal to R. Notice, at this point, that the ¢-integral closure of the ideal
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R is always R, whereas the t-integral closure of the ring R may be larger than R;

e.g., consider any non v-domain [3, 19]. Also, we have

More ideal-theoretic properties are provided in Remark 1.7.
It is well-known that the integral closure of an ideal is an ideal which is inte-

grally closed [33, Corollary 1.3.1]. Next, we establish a ¢-analogue for this result.

Theorem 1.4 The t-integral closure of an ideal is an integrally closed ideal. In

general, it is not t-closed and, a fortiori, not t-integrally closed.

The proof of this theorem relies on the following lemma which sets a t-analogue
for the notion of Rees algebra of an ideal [33, Chapter 5]. Recall, for convenience,
that the Rees algebra of an ideal I (in a ring R) is the graded subring of R[z]
given by

RiIs) =@ I" "

n>0

[33, Definition 5.1.1] and whose integral closure in R[z] is the graded ring

Rl =@ T o

n>0

[33, Proposition 5.2.1].

Lemma 1.5 Let R be a domain, I a t-ideal of R, and z an indeterminate over
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R. Let

Ry[Iz] :== @P(I™)ez™.

n>0
Then Ri[Iz] is a graded subring of R[z] and its integral closure in R[z] is the

graded ring

Ri[Iz] = @f;‘x"

n>0

Proof. That R;[Iz] is N-graded follows from the fact that
(I)e - (%) © (I"),, Vi, 5 € N.

By [33, Theorem 2.3.2], R;[Iz] is an N-graded ring. Let k¥ € N and let S denote
the homogeneous component of R;[Iz] of degree k. We shall prove that S = Tka*,

Let s := 532" € Sy, for some s; € R. Then
"+ a8+ a, =0

for some positive integer n and a; € Ry[Iz], i = 1,...,n. Expanding each a; =

ki

o a; jz’ with a;; € (I7);, the coefficient of the monomial of degree kn in the

above equation is

n
Sz + E ai,,-ksz_’ =0
i=1
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with a;;x € (I'*);. It follows that s;, € I* and thus Sy C T*gzk. For the reverse

inclusion, let z := yzz* € I*2*, for some y; € I*. Then

Ve tayp T+ tan =0

for some positive integer n and a; € (I*),, j = 1,...,n. Multiplying through by

z*" yields the equation

B+arl Tt + o tar =0

with

a;z" € (I")2" C Ry[Iz

for j = 1,...,n. That is, zx € R;[Iz]. But 2 is homogeneous of degree k in
R;[Iz]. Therefore z; € Sy and hence Ikzk C Sk, completing the proof of the

lemma. O

Definition 1.3 The ¢-Rees algebra of an ideal I (in a domain R) is the graded
subring of R[z] given by

Ry[Iz] :== @P(I")ez™.

n>0
Proof of Theorem 1.4 Let R be a domain and I a nonzero ideal of R. Since
I= E, we may assume I to be a t-ideal. We first prove that T is an ideal. Clearly,

T is closed under multiplication. Next, we show that T is closed under addition.
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Let a,b € I. Then, by Lemma 1.5, az and bz € R;[Iz]. Hence
az + bz = (a + b)z € Ry[Ix].

Again, by Lemma 1.5, a + b € T, as desired. Next, we prove that ITis integrally

closed. For this purpose, observe that, ¥n € N, (S;)* C S, forcing
(f)ngﬁVneN. (1.5)

Consider the Rees algebra of the ideal T

R[Iz] = @ ( T)nx".

n>0

Therefore R[Iz] C R,[Iz] and hence

R[Iz] C R[Iz].

Now, a combination of Lemma 1.5 and [33, Proposition 5.2.1] yields

GB ( T)nm" C GBIC;‘:E"

n>0 n>0

In particular, ? C T, that is, Tis integrally closed. The proof of the last statement
of the theorem is handled by Example 1.9(b), where we provide a domain with an

ideal I such that T G ( T );- That is, T is not a t-ideal and, hence, not {-integrally
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closed since ( I ), C T always holds. O

The next result shows that the ¢-integral closure collapses to the ¢-closure in
the class of integrally closed domains. It also completes two existing results in the

literature on the integral closure of ideals (Gilmer [24] and Mimouni [43]).

Theorem 1.5 Let R be a domain. The following assertions are equivalent:
(1) R is integrally closed;
(2) Ewvery principal ideal of R is integrally closed;
(3) Every t-ideal of R is integrally closed;
(4) I C I, for each nonzero ideal I of R;
(5) Ewvery principal ideal of R is t-integrally closed;
(6) Ewvery t-ideal of R is t-integrally closed;
(7) I = I, for each nonzero ideal I of R.

Proof. (a) & (b) and (a) & (c) & (d) are handled by [24, Lemma 24.6] and [43,
Proposition 2.2], respectively. Also, (g) & (f) = (e) = (b) are straightforward.
So, it remains to prove (a) = (g). Assume R is integrally closed and let I be a

nonzero ideal of R. The inclusion I; C T holds in any domain. Next, let a € I.

Claim 1.1 There exists a finitely generated ideal J C I such that o € J.
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Indeed, « satisfies an equation of the form

a"+aa™t+ ... +a,=0

with a; € (I'); Vi = 1, ...,n. Now, let 7 € {1,...,n}. Hence, there exists a finitely
generated ideal F; C I* such that a; € F;,. Further, each generator of F; is a finite

combination of elements of the form

H Cj Eli.

1<5<i

Let J denote the subideal of I generated by all c;’s emanating from all F;’s.

Clearly, a; € (J*); Vi =1,...,n. That is, a € J, proving the claim.
Claim 1.2 J C J;.

Indeed, we first prove that J=X = ( J )=2. Clearly, ( J )= C J~. For the reverse

inclusion, let z € J™! and y € J. Then y satisfies an equation of the form

Y a4 . ta, =0

with a; € (J*), Vi = 1,...,n. It follows that

(yz)" + a12(yz)* ' + - + apz™ =0
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such that
a.,;iL'i c (Jz)t(J—l)z

< (NI

= ()

C R.

Hence yz € R. Thus, z € ( J )71, as desired. Therefore

proving the claim. Now, by the above claims, we have

o~

aGJthQIt.

Consequently, I= I, completing the proof of the theorem. m|

In case all ideals of a domain are t-integrally closed, then it must be Priifer.

This is a well-known result in the literature:

Corollary 1.6 ([24, Theorem 24.7]) A domain R is Priifer if and only if every

ideal of R is (t-)integrally closed.

Now, we examine the correlation between the t-integral closure and ¢-reductions

of ideals. Recall that, for the trivial operation, two crucial results assert that
z € I & I is a reduction of I + Rz [33, Corollary 1.2.2]

and if I is finitely generated and J C I, then:

24



I CJ & Jis a reduction of I [33, Corollary 1.2.5].

Next, we establish t-analogues of these two results.

Proposition 1.1 Let R be a domain and let J C I be nonzero ideals of R.
(1) z € I = I is a t-reduction of I + Rz.
(2) Assume I is finitely generated. Then: I C J = J is a t-reduction of I.

Moreover, both implications are irreversible in general.

Proof. (a) Let z € I. Then, z* + a;2" X + -+ + a,, = 0 for some a; € (I), for

each i € {1,...,n}. Hence

" < Itzn—l 4+ .+ (In)t
C Lzt (1)),

C (I(I+ Rz)™™1),.

It follows that

(I+Rz)" C (I(I+ Rz)"™),.

Hence

(I + Rx)™)y = (I(I + Rx)™™"), .

Thus, I is a t-reduction of I + Rx.

(b) Assume I = (a4,...,a,), for some integer n >1and a; € RVi=1,...,n.
Suppose that I C J. By (a), J is a t-reduction of J + Ra;, for each i € {1,...,n}.
By Lemma 1.1, J is a t-reduction of J + (ay,...,a,) = I, as desired.
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The converse of (a) is not true, in general, as shown by Example 1.9(a). Also,
(b) can be irreversible even with I and J both being finitely generated. For
instance, consider the integrally closed domain R of Example 1.2 with two ideals
J G I, where J is a non-trivial t-reduction of I (i.e., J; G It). By Theorem 1.5,

j = Jt 2 1. O
Next, we collect some ideal-theoretic properties of the integral closure of ideals.

Remark 1.7 Let R be a domain and let I, J be nonzero ideals of R. Then:

(1) I €T C I C T, Example 1.8(a) features a t-ideal for which these three
containments are strict. However, note that radical (and, a fortiori, prime)

t-deals are necessarily t-integrally closed.

N

(2) INnJ C InJ. The inclusion can be strict, for instance, in any integrally
closed domain that is not a PuMD by [1, Theorem 6] and Theorem 1.5.
Another example is provided in the non-integrally closed case by Exam-
ple 1.8(c).

B) I+JC T+ J . The inclusion can be strict. For instance, in Z[z|, we have

6) + (z) = (2,z) and (2,z)~! = Z|z] so that (2,z) = (2,z); = Z[z] (via

Theorem 1.5).

(4) By (1.5), Vn > 1, ( I ) C I*. The inclusion can be strict, as shown by

Example 1.8(b).
B) Vz €R, z T C zI. Indeed, let y € = 1. Then, there is an equation of
the form y"™ + (za1)y™* + - - - + z"a, = 0 with z'a; € z°(I*); = ((x])*)s, ¢ =
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1,...,n. Hence, y € zI . Note that z T = E,VweRandVIideal(:>

R is integrally closed (Theorem 1.5).
We close this section by the two announced examples.

Example 1.8 Let z be an indeterminate over Z and let

R = Z[V-3|2z,z?, x|
I = (222,223, 1% 2%)

J = (z%).

N

3) JnI GJnlI.

Proof. We first show that I is a t-ideal. Clearly, %Z[v/=3][z] C I'. For the

reverse inclusion, let f € I-! C z7R. Then

1 n
f=g(a0—|—a1x+---—|—anx)

for some n € N, ay € Z[v/-3], a1 € 2Z[v-3|, and a; € Z[/-3| for i > 2.
Since 22?f € R, then ag = a; = 0. It follows that f € %Z[v/—3][z]. Therefore

It = L7Z[v/=3][z]. Next, let g € (R : Z[v/=3|[z]) C R. Then zg € R, forcing
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g(0) € 2Z[v/—3] and hence g € (2, 2z, 2%, z3). So

(R: Z]V/=3|[z]) C (2,2z,22, z%).

The reverse inclusion is obvious. Thus, (R : Z[v/-3][z]) = (2, 2z, z?, z*). Conse-

quently, we obtain

I, = 1,
— (R: 3Z[v=3|[a))
= o*(R: Z[V=3|[e))
= I.

(a) Next, we prove the strict inclusions
IGTSIGVI

For I G T, notice that (1++/-3)z2 € I\ I as ((1+ \/—3):52)3 = —82% € I* and
1+ /=3 ¢ 2Z[/-3|.
For T G I, we claim that 23 € T\ 7. Indeed, let f € (I2)~! C z®R. Then

there are n € N, o; € Z[v/—3] for i € {0,2,...,n}, and a; € 2Z[+/—3| such that

1
f= ﬁ(ao—l—alx—l—---—l—anx").
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Since 4zf € R, then ap = a; = ag = ag = 0. Therefore, (I?)™' C LZ[v/=3]|[z].

The reverse inclusion is obvious. Hence, (I?)™* = 5 Z[y/—3][z]. It follows that

(%) = (I
= (R: &Z[V-3|lz])
= 24(R: Z[v-3][z])

= z?I.

Hence 28 € (I%), and thus z* € I. It remains to show that 23 ¢ I. By [33,
Corollary 1.2.2], it suffices to show that I is not a reduction of I + (z3). Let
n € N. Tt is easy to see that z*z%" is the monic monomial with the smallest

degree in I(I + (z®))". Therefore

23t — p3n+3 (I—l— (xs))nﬂ \ I(I—|— (xs))n.

Hence, [ is not a reduction of I + (), as desired.

For T G VI, we claim that z2 € /T \ I. Obviously, 22 € v/I. In order to
prove that 72 ¢ 7, it suffices by Proposition 1.1 to show that I is not a t-reduction
of I + (z?). To this purpose, notice that I + (z2) = (z?). Suppose by way of
contradiction that

(IT + @) = (I + @)™
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for some n € N. Then

($2)n+1 — x2n+2 c (I(I—I— ($2))n)t — .’I:2nI.

Consequently, z2 € I, absurd.

(b) We first prove that

T = (222, (1 + V=3)2?, 2%, z*).

In view of (a) and its proof, we have

(222, (1 +v—=3)2?, 2%,z C I.

Next, let o == (a + by/—3)z? € T where a,beZ. Ifb=0,thena #1asz? ¢ I.
Moreover, since 2z2 € T, a must be even; that is, o € (2z%). Now assume b # 0.
If a =0, then b # 1 as /—32% ¢ I. Moreover, since 2v/—3z? € f, b must be
even; that is, a € (22%). So suppose a # 0. Then similar arguments force a and
b to be of the same parity. Further, if a and b are even, then a € (27%); and if
a and b are odd, then o € (222, (1 + +/—3)z2). Finally, we claim that I contains

no monomials of degree 1. Deny and let az € T, for some nonzero a € 2Z[v/—3|.
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Then, by [33, Remark 1.1.3(7)], we obtain

~

ar € 1

@)
- @

12Z[v/-3|[z].

IN

N

By [33, Corollary 1.2.2], (z?) is a reduction of (az,z?) in Z[v/—3][z], absurd.

Consequently, I = (222, (1 + v/—3)z2, 23, z%). Now, we are ready to check that

For this purpose, recall that (12); = z2I. So, 2z* € I2. We claim that 2z* ¢ (T )2.
Deny. Then, 2z € (4z*, 2(14+/—3)x*), which yields 22 € (222, (14++/—3)z2) C I,
absurd.

(c) We claim that

~ e TN

BelInJ\ InJ.

We proved in (a) that z® € I. So, z® € TN J. Now, observe that TN J = zI and
assume, by way of contradiction, that z3 ¢ 1/57 = zI . Then z° satisfies an

equation of the form

)" +a (2> +--+a,=0
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with

a; € (D)) =2 ('), i =1,...,n.

For each 4, let a; = z°b;, for some b; € (I*);. Therefore

()" + by (2> + -+ b, =0.

It follows that z2 € T, the desired contradiction. |

Example 1.9 Let z be an indeterminate over Q and let

R = Z+2Q(+2)[z]
1= (3)

Then:
(1) I is a t-reduction of I + aR and a & I.
(2) T;(T)tandhencefgf.

Proof. (a) First, we prove that

(I(I + aR)); = (I + aR)?)..
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It suffices to show that a® € (I(I + aR));. For this purpose, let

Then, f = Z(ag+ a1z + ...+ ayz™), for some n > 0, ag € Z, and a; € Q(v/2) for

1 > 1. Since % f € R, ag = 0. Tt follows that

(I +0R)™ € ~Q(V3)la).
On the other hand, we have

(I +aR))(;QWE)) € R

so that

(I +aR)) ™" = (%2 %) - %Q(\/i) [2] (1.6)

Now, clearly, a®(I(I + aR))™* C R. Therefore
a* € (I(I +aR)), = (I(I +aR)),

as desired.
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Next, we prove that

agl=1

By [33, Corollary 1.2.2], it suffices to show that I is not a reduction of I + aR.
Deny and suppose that I(I + aR)” = (I + aR)™™, for some positive integer n.
Then

@ = ()" € I(I +aR)" =

wRviEh

One can check that this yields
1ev2(v2,1)" C (V2)

in Z[v/2], the desired contradiction.
(b) We claim that a € ( I );. Notice first that z € T as 22 € I? = (I?),.
2 2

Therefore, A := (m,%) C I. Clearly, A = 2(%, ;W) Hence, by (1.6), A~ =

~

Q(v2)[z]. However, aA~' C R. Whence, a € A, = A; C ( I );. Consequently,

ae(T)\ I O

1.4 Persistence and contraction of ¢t-integral clo-

sure

Recall that the persistence and contraction of integral closure describe, respec-

tively, the facts that for any ring homomorphism ¢ : R — T', we have:
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e o(I)C ()T for every ideal I of R

o o 1(J) = ¢ }(J) for every integrally closed ideal J of T

This section studies the persistence and contraction of {-integral closure. To
this purpose, we first introduce the concept of ¢-compatible homomorphism which
extends the well-known notion of ¢-compatible extension [2]. Throughout, we

denote by ¢ (resp. t1) and v (resp. v;) the t- and v- closures in R (resp., T).

Lemma 1.6 Let ¢ : R — T be a homomorphism of domains. Then, the follow-

ing statements are equivalent:
(1) (L)T C ((I)T),,, for each nonzero finitely generated ideal I of R;
(2) o(I)T C (‘P(I)T)tl’ for each nonzero ideal I of R;
(3) ¢ 1(J) is a t-ideal of R for each t;-ideal J of T such that o' (J) # 0.

Proof. (a) = (c) Let J be a t;-ideal of T" and let A be any finitely generated ideal
of R contained in ¢~!(J). Then, ¢(A)T C J = J;,. Further, ¢(A)T is finitely

generated. Hence, ((,O(A)T)v1 C J. It follows, via (a), that

w(A,)T C ((,O(A)T)v1 CJ

Therefore, A, C ¢~1(J) and thus ¢~1(J) is a t-ideal.
(c) = (b) Let I be a nonzero ideal of R. The ideal J := (o(I)T) ., 18 clearly

a ti-ideal of T with ¢ ~1(J) # 0. By (c), ¢ !(J) is a t-ideal of R. Consequently,
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we obtain

So that o(I)T C J = ((p(I)T)tl, as desired.

(b) = (a) Trivial. O

Definition 1.4 A homomorphism of domains ¢ : R — T is called t-compatible

if it satisfies the equivalent conditions of Lemma 1.6.

When ¢ denotes the natural embedding R C T, this definition matches the
notion of t-compatible extension (i.e., T C (IT);, for every ideal I of R) well
studied in the literature [2, 7, 11, 16].

Next, we announce the main result of this section which establishes persistence

and contraction of t-integral closure under t-compatible homomorphisms.

Proposition 1.2 Let ¢ : R — T be a t-compatible homomorphism of domains,

I an ideal of R, and J an ideal of T. Then:

(1) o( I)T C (I)T.

(2) <p/‘_1\(j) C o }( J). Moreover, if J is t-integrally closed, then

N

() = ().
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Proof. (a) Let z € I, y := ¢(x), and z € T. We shall prove that yz € o(I)T.
Suppose that z satisfies the equation " + a;2" ! + ... + a, = 0 with a; € (I*); for

i=1,...,n. Then, apply ¢ to this equation and multiply through by 2" to obtain

(yz)" + blz(yz)"_1 + ...+ bn_lz"_l(yz) +b,2" =0

where, by t-compatibility, we get

b = olas)
€ o((IN)T
C (p(I)T),

= ((e()1)", -

—

Hence b;2* € (((p(I)T)i)tl, for i = 1,...,n. Consequently, yz € o(I)T.

(b) Let H := (¢~ (J))T. Then, by (a), we have

e ()T CHCJ.

T e —~

It follows that ¢=1(J) C ¢ 1(J), as desired. Now, if J is t-integrally closed, then

N

e I(J) C ¢I(J)
= ¢ 1(J)

N

C o }(J).

and hence the equality holds.
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In the special case when both R and T are integrally closed, persistence of
t-integral closure coincides with ¢-compatibility by Theorem 1.5. This shows that

the t-compatibility assumption in Proposition 1.2 is imperative.

Corollary 1.10 Let R C T be a t-compatible extension of domains and I an ideal

of R. Then:

(1) IT CIT.

—~ N ——

(2 ICITNRCITNR.

Moreover, the above inclusions are strict in general.

Proof. (a) and (b) are direct consequences of Proposition 1.2. The inclusion in
(a) and second inclusion in (b) can be strict as shown by Example 1.12. The

first inclusion in (b) can also be strict. For instance, let R be an integrally closed

—~—

domain and let P G @ be prime ideals of R with z € @ \ P. Then () = () by
Theorem 1.5. While

tRrNR=RpNR=R.

—~— N

That is, (z) G (z)Rp N R. O

Corollary 1.11 Let R be a domain, I an ideal of R, and S a multiplicatively

closed subset of R. Then S~1I C S-17.

Proof. It is well-known that flatness implies t-compatibility [16, Proposition 0.6].

Hence, Corollary 1.10 leads to the conclusion. |
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For the integral closure, we always have S~'T = S—1I [33, Proposition 1.1.4].
But in the above corollary the inclusion can be strict, as shown by the following

example.

Example 1.12 We use a construction due to Zafrullah [48]. Let E be the ring of
entire functions and z an indeterminate over E. Let S denote the set generated
by the principal primes of E. Then, we claim that R := E + zS~'E[z] contains
a prime ideal P such that S -1p g E—\lﬁ Indeed, R is a P-domain that is not a
PvMD [48, Example 2.6]. By [49, Proposition 3.3|, there exists a prime t-ideal P

in R such that PRp is not a t-ideal of Rp. By Theorem 1.5, we have

PRp = PRp
G R,
= (PRP)t

— PRp.
since R is integrally closed. Also notice that
P = PRpNR

G PRpNR

= R.

Corollary 1.13 Let R be a domain and I a t-ideal that is t-locally t-integrally
closed (i.e., Iy is t-integrally closed in Ry for every mazimal t-ideal M of R).

Then I is t-integrally closed.
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Proof. Let Maz;(R) denote the set of maximal ¢-ideals of R. By Corollary 1.11,

we have
M;eMaz:(R)
cC N I
M;cMaz(R)
= n In,
M;cMaz(R)
= I.
Consequently, I is t-integrally closed. O
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CHAPTER 2

ON T-REDUCTIONS OF

IDEALS IN PULLBACKS

This chapter investigates t-reductions of ideals in pullback constructions of type
[0 (See definition in Section 2.4). This work is submitted for publication under
the title “On t-reductions of ideals in pullbacks” (in collaboration with Dr. S.

Kabbaj and Dr. A. Mimouni).

2.1 Introduction

Let R be aring and I a proper ideal of R. Recall that an ideal J C I is a reduction
of I if JI® = I™*! for some positive integer n. In [25, 26], Hays investigated
reductions of ideals in Noetherian rings and Priifer domains. He provided several
conditions for an ideal to be basic. His two main results asserted that a domain
R is Priifer (resp., one-dimensional Priifer) if and only if R has the finite basic
ideal property (resp., basic ideal property).
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Let R be a domain and I a nonzero fractional ideal of R. Recall, for con-
venience, that the v-, -, and w-closures of I are defined, respectively, by I, :=
(I"1)71, I := UJ,, where J ranges over the set of finitely generated subideals of
I, and I, = NI Ry where M ranges over the set of maximal ¢-ideals of R. Re-
call that a domain is a Priifer v-Multiplication Domain (PvMD)) if every nonzero
finitely generated ideal is t-invertible (with respect to the ideal ¢-multiplication
(I,J) — (IJ)s).

In [30], the authors extended Hays’ aforementioned results to PvMDs; namely,
a domain has the finite w-basic ideal property (resp., w-basic ideal property) if
and only if it is a PuMD (resp., PuMD of t-dimension one). They also investigated
relations among the classes of domains subject to various x-basic properties for
a given %-operation (See definition in Section 2.2). In this vein, the problem of
whether the finite - and v-basic ideal properties are distinct was left open. In
the first chapter, we investigated the ¢t-reductions and t-integral closure of ideals
establishing satisfactory t-analogues of well-known results, in the literature, on
the integral closure of ideals and its correlation with reductions. One of our main
result (Theorem 1.3.5) asserts that the ¢-closure and ¢-integral closure of an ideal
coincide in the class of integrally closed domains.

This chapter investigates t-reductions of ideals in pullback constructions of
type O (See definition in Section 2.4). Section 2.2 examines the correlation be-
tween the notions of reduction and #-reduction in pseudo-valuation domains. Sec-

tion 2.3 solves an open problem raised in [30] on whether the finite t-basic and
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v-basic ideal properties are distinct. We prove that these two notions coincide in
any arbitrary domain. Section 2.4 features the main result, which establishes the
transfer of the finite ¢-basic (equiv., v-basic) ideal property to pullbacks in line
with Fontana-Gabelli’s result on PuMDs [16, Theorem 4.1] and Gabelli-Houston’s
result on v-domains [20, Theorem 4.15]. This allows us to enrich the literature
with new families of examples, which put the class of domains subject to the finite
t-basic ideal property strictly between the two classes of v-domains and integrally
closed domains.

For a full treatment of the topic of reduction theory, we refer the reader to

33].

2.2 t-Reductions in pseudo-valuation domains

Let R be a domain with quotient field K, and let F(R) denote the set of nonzero

fractional ideals of R. A map

* : F(R) — F(R)

I - I

is said to be a star operation on R if the following conditions hold for every nonzero

a € K and I,J € F(R):
(1) (al)* = al* and R* = R.

(2) I CI* and I C J implies I* C J*.
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(3) I = I*.

For more details about star operations, we refer to [17] and [24, Sections 32
and 34]. We first recall the definitions of *-reduction and related concepts such

as the trivial x-reduction and (finite) *x-basic ideal property.

Definition 2.1 ([30, 36]) Let R be a domain and I a nonzero ideal of R.

(1) An ideal J C I is a %-reduction of I if (JI™)* = (I"*!)* for some integer

n > 0. The ideal J is a trivial x-reduction of I if J* = I*.
(2) I is x-basic if it has no x-reduction other than the trivial x-reductions.

(3) R has the (finite) x-basic ideal property if every nonzero (finitely generated)

ideal of R is x-basic.

This is not to be confused with Epstein’s c-reduction [12, 13, 14], which gen-
eralizes the original notion of reduction in a different way and was studied in
different settings. Namely, let ¢ be a closure operation. An ideal J C I is a
c-reduction of I if J¢ = I°. Thus, for ¢ := %, Epstein’s c-reduction coincides with
the trivial x-reduction.

In the sequel, we will be using the following obvious facts, for nonzero ideals

J C I, without explicit mention:

J is a t-reduction of I < J is a t-reduction of I, & J, is a t-reduction of I;.

Recall that R is a pseudo-valuation domain if R is local and shares its maximal
ideal with a valuation overring V or, equivalently, if R is a pullback issued from
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the following diagram

R=¢p k) — k

i i

1% *y K:=V/M

where (V, M) is a valuation domain and & is a subfield of K (cf. [27, 28] and also
[4, 5, 9, 10, 46]).

Note that a reduction is necessarily a t-reduction; and the converse is not true
in general. The next result investigates necessary and sufficient conditions for
the notions of reduction and t-reduction to coincide in pseudo-valuation domains.
This result can be used readily to provide examples discriminating between the

two notions of reduction and t-reduction.

Theorem 2.1 Let R be a pseudo-valuation domain issued from (V, M, k) and set

K :=V/M. Then, the following statements are equivalent:

(i) For every nonzero ideals J C I, J is a t-reduction of I if and only if J is a

reduction of I.

(ii) For each k-subspace W of K containing k, W™ is a field for some positive

integer n.

Proof. (i) = (i) Let W be a k-subspace of K with k G W G K. Let 0 £a € M

and consider the ideals of R

J:=aRC I :=ap (W)
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Let r > 1. Then, the fact that k G W yields

(R:IMN=a"p  (k:W)=a"M

and then

(IMNy=a"M*=dV.

By [31, Proposition 4.3], the ¢- and v- operations coincide in R. Hence, we have

(JI); = (al):

= al,
= a?V
= (Iz)v

= (I*)

and so J is a t-reduction of I. By (i), J must be a reduction of I and so

an+1(p—1 (Wn) — JIn

In+1

— an+1(P—1 (Wn+1)

for some positive integer n. It follows that o=} (W™) = =} (W"T); ie., W™ =

Wt Therefore W™ = (W™)? and thus W" is a ring. In particular, let 0 # A € K
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and let W, := k + Ak. Then, there is some positive integer m such that

E+Ak+- A"k = W

— m-+1
= W]

= k+MXk+---+ AL,

So, A™*! € k+ Ak + --+- + A™k. Therefore X is algebraic over k and thus K is
algebraic over k. Consequently, W™ is a field, as desired.

(i¢) = (i) Let J C I be a t-reduction of I; ie., (JI"), = (I"*'), for some
positive integer n. If I is an ideal of V, then both JI™ and I™*! are ideals of V'
so that JI™ and I"™*! are divisorial ideals of R by [27, Theorem 2.13]. Therefore,

we obtain

JIr = (JI"),
= (JI")e
(™),
I+,
In+,
That is, J is a reduction of I. Next, assume that I is not an ideal of V. Then, by
[8, Theorem 2.1(n)], we have

I=ap™ (W)

for some nonzero a € M and some k-vector space W with k C W C K. Assume
that k = W; i.e., I = aR. Then J; = aR. Now, if J G aR, then a™'J G R, hence

a™lJ C M, whence J C aM. Since M is a divisorial ideal of R [29, Corollary 5|,
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we obtain

aRth

which is a contradiction. So, necessarily, J = I. Next, assume k& g W. Suppose
J is an ideal of V. Then JI™ would be an ideal of V' and hence a divisorial ideal

of R yielding
a"J = JI"
= (JI"),
= (JI"):
= (")
= (I,
= a""V.

where the last equality is already handled in (i) = (ii). It follows that

That is, J = I is an ideal of V, absurd. Hence, J is not an ideal of V. So, since
J C I, we may assume that J = ap™!(F'), where F is a k-subspace of W. Now

by hypothesis, W* = W**! is a field for some s > 1. It follows that

FW?® = w**!

48



yielding
JIs — as“(p‘l(FWS)
— (1,'9+1(,0_1(Ws+1)

— Is+1

Hence J is a reduction of I, completing the proof of the theorem. O

Note that the condition (ii) in the above result forces K to be algebraic over k.
In this vein, this fact can be used readily to provide examples of domains where

the two notions of reduction and t-reduction are distinct.

Example 2.2 Let R be a pseudo-valuation domain issued from (V, M, k) and set

K =V/M.

(1) Assume that K is a transcendental extension of k. Then, the notions of
reduction and t-reduction are distinct in R. For instance, pick a transcen-
dental element A\ € K over k and let W = k + kX, I := a¢~}(W) and
J =: aR. Then, J is a proper t-reduction of I, but I is basic in R, as seen

the proof of (i) = (ii) of the above theorem.

(2) Assume that [K : k] is finite. Then for every k-submodule W of K with
k C W C K, some power of W is a field, and hence the notions of reduction

and t-reduction coincide in R.

Given nonzero ideals J C I, if J; is a reduction of I;, then J is a ¢t-reduction of
I. The converse is not true in general as shown by Example 1.2.2 which consists

of a domain containing two t-ideals J g I such that J is a t-reduction but not
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a reduction of I. The next result provides a class of (integrally closed) pullbacks

where the two assumptions are always equivalent.

Proposition 2.1 Let R be a pseudo-valuation domain and let J C I be nonzero

ideals of R. Then, J is a t-reduction of I if and only if J; is a reduction of I;.

Proof. Sufficiency is trivial. For the necessity, assume R is issued from (V, M, k)
and, without loss of generality, R g V. Next, let J be a t-reduction of I. Then,
J; is a t-reduction of I; and hence we may assume that J and I are both ¢-ideals.
So (JI™), = (I™*1);, for some integer n > 1. If I is an ideal of V, as in the proof

of Theorem 2.1(ii)=-(i), we get

JI'n = (JIn)t
= (I"),

— In+1

That is, J is a reduction of I. Next, suppose that I is not an ideal of V. By [8,
Theorem 2.1(n)], we have

I=ap (W)

for some nonzero a € M and some k-vector space W with

kCW CK:=V/M.
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We claim that &k = W. Otherwise, we would get, via [31, Proposition 4.3], that

I=5L=1,=aV

where the last equality is already handled in the proof of Theorem 2.1(i)=-(ii). It
follows that I is an ideal of V, the desired contradiction. So, necessarily, k = W
and then I = aR. By [30, Lemma 1.2], I is t-basic; i.e., J = I, completing the

proof. O

The class of Priifer domains is, so far, the only known class of domains where
these two notions of reduction and ¢-reduction coincide. We close this section
with the next result, which features necessary conditions for such a coincidence.
For this purpose, recall that a domain where the trivial and w-operations are the
same is called a DW-domain [23, 32, 42|. Common examples of DW-domains
are pseudo-valuation domains, Priifer domains, and quasi-Priifer domains (i.e.,

domains with Priifer integral closure) [18, Page 190].

Proposition 2.2 Let R be a domain where the notions of reduction and t-reduction

coincide for all ideals of R. Then:

(1) Ewvery monzero prime ideal of R is a t-ideal. In particular, R is a DW-

domain.

(2) R is integrally closed if and only if R has the finite t-basic ideal property.

(3) R is a PuMD if and only if R is a Prifer domain.
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Proof. (a) Let P be a nonzero prime ideal of R. Clearly, P is a t-reduction of
P,. By hypothesis, P is then a reduction of ;. But every prime ideal is a C-ideal
(i.e., it is not a proper reduction of any larger ideal) [25, Page 58]. It follows that
P = P, as desired. In particular, every maximal ideal of R is a t-ideal and, hence,
R is a DW-domain by [42, Proposition 2.2].

(b) Assume that R is integrally closed and let I be a finitely generated ideal
of R and J a t-reduction of I. By hypothesis, J is a reduction of I. So, by a

combination of [33, Corollary 1.2.5] and [43, Proposition 2.2(iii)], we get

where J denotes the integral closure of J. It follows that J; = I;; i.e., I is t-basic,
as desired. The converse is true for any arbitrary domain R by [30, Lemma 1.3].

(c) Assume R is a PuMD. By hypothesis, the notions of reduction and t-
reduction coincide in R and, hence, R is a DW-domain by (1) above. By [23,

Theorem 1.2, R is a Priifer domain. The converse is trivial. O

2.3 Equivalence of the finite ¢- and v-basic ideal

properties

For the reader’s convenience, recall that a domain R is called a v-domain if all
nonzero finitely generated ideals of R are v-invertible (with respect to the ideal
v-multiplication (I, J) — (IJ),); an excellent reference for v-domains is Fontana
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& Zafrullah’s comprehensive survey paper [19]. Also, recall from [30] the following
diagram of implications, which puts into perspective the finite basic ideal property

for each of the ¢-, v-, and w-operations:

Krull domain

4

PvMD = Finite w-basic ideal property

4

v-domain

4

Finite v-basic ideal property
4

Finite t-basic ideal property

4

Integrally closed domain

The problem of whether the fourth implication is reversible was left open in
[30, Section 3|. The main result of this section (Theorem 2.4) solves this open
problem. For this purpose, recall from the first chapter the following: Let R be a
domain and I a nonzero ideal of R. An element z € R is t-integral over I if there

is an equation

"+ a " 4.+ 1T+ 0y, =0 with a; € (I'); Vi =1, ...,n.
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Consider the two sets:

T:={z € R| z is t-integral over I}

T:= {z € R| I is a t-reduction of (I,z)}.

T is called the t-integral closure of I and is an integrally closed ideal by Theorem

1.3.2. We always have

where the first containment is trivial and the second is asserted by Proposition
1.3.7 and can be strict as shown by Example 1.3.10(a). However, for the trivial
operation, it is well-known that the equality I=T1 always holds [33, Corollary
1.2.2]; this fact was used to show that the integral closure of an ideal is an ideal
[33, Corollary 1.3.1]. Finally, in order to put Theorem 2.4 into perspective, recall

the following important (partial) result from the first chapter.

Theorem 2.3 For a domain R, the following two assertions are equivalent:
(i) L = T for each nonzero (finitely generated) ideal I of R;
(ii) R is integrally closed.
Now, to the main result of this section.

Theorem 2.4 For a domain R, the following assertions are equivalent:

(i) L = T for each monzero (finitely generated) ideal I of R;
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(ii) R has the finite t-basic ideal property;

(iii) R has the finite v-basic ideal property.

The proof of this result requires the following two lemmas.

Lemma 2.1 ([30, Lemma 1.7]) Let R be a domain and let I be a finitely gener-
ated ideal of R. If J C I is a t-reduction of I, then there exists a finitely generated

ideal K C J such that K is a t-reduction of I.

Note that, for any given %-operation, x-reductions of (integral) ideals can be
naturally extended to fractional ideals. The following lemma collects basic results

on x-reductions of (fractional) ideals.

Lemma 2.2 For a domain R, let K C J C I and J' C I’ be nonzero fractional

ideals of R.

(1) If J and J' are x-reductions of I and I', respectively, then J + J' is a *-

reduction of [ + I' and JJ' is a x-reduction of II'.

(2) If K is a x-reduction of J and J is a x-reduction of I, then K is a x-reduction

of I.

(3) If K is a %-reduction of I, then J is a x-reduction of I.

(4) J is a x-reduction of I if and only if J™ is a x-reduction of I™.

(5) If J = (aa,...,ax), then: J is a x-reduction of I if and only if (a7, ...,a}) is

a *-reduction of I".
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Proof. Substitute “¥” for “t” and “fractional ideals” for “(integral) ideals” in the

proofs of Lemmas 1.2.5, 1.2.6 and 1.2.7. O

Proof of Theorem 2.4 In view of the aforementioned diagram, we only need to
prove (i) < (i) = (iii).

First, let us prove that if the equality T = I, holds for all nonzero finitely
generated ideals then it holds for all nonzero ideals. Indeed, let I be an ideal of

R and z € R such that I is a t-reduction of (I, z). So,

I, z)")e = (I, 2)™ )

for some positive integer n. Hence, 2" € (I(I,z)");. Whence, z"*! € A, for
some finitely generated ideal A C I(I, z)". Moreover, there exist finitely generated

subideals F,,, F ..., F, of I such that

AC F,(F,z)(Fy,x) - (Fy,z).

Set F:=) " F; CI. Then, AC F(F,z)" and so

"t e (F(F,z)"), = (F(F,z)");.

It follows that

(F2)™ ) = (F(F,2)", 2™, © (F(F,7)"):.
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Thus, F is a t-reduction of (F, z). Since F is finitely generated, then by hypothesis
zeF = F; C I;. Consequently, T C I; and, as mentioned above, the reverse
inclusion always holds by Proposition 1.3.7.

Next, assume that R has the finite ¢-basic ideal property and let I be a finitely

generated ideal of R and z € T Necessarily, we have

Iy = (I, )

which forces z € I;. Consequently, IT= I;. Conversely, assume that (i) holds. Let
I := (ay,...,a,) be a nonzero finitely generated ideal of R (n > 1) and let J be
a t-reduction of I. By Lemma 2.1, we may assume that J is finitely generated.
Clearly, we have

JQ (J,al,...,an_l) QI

By Lemma 1.2.6, (J,a1,...,a,-1) is a t-reduction of I which can be regarded as

((J,a1,.--,an-1),as). Hence, by hypothesis

e —
a, < (J, ay, ... ,an_l) = (J, ai, ... ,an_l)t.

It follows that

It = (J, Ay ... ,an_l)t.

But J, being a t-reduction of I, is also a t-reduction of (J,as,...,a,-1). There-

fore, we re-iterate the above process by removing one generator at each step.
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Eventually, we get I; = J;, as desired. This proves (i) < (ii).
Assume that R has the finite ¢-basic ideal property and let I be a finitely

generated ideal of R and J a v-reduction of I. So

Jy = n (ax)

AeA

where the (a,)’s are the nonzero principal fractional ideals of R containing J by
[24, Theorem 34.1]. By Lemma 2.2, (ay) = (J,a,) is a v-reduction of (I, a,)
for each A € A. Hence (a,) is a t-reduction of (I, a,) as both ideals are finitely
generated. Since R has the finite {-basic ideal property, one can easily verify that

every nonzero fractional ideal of R is t-basic. Hence

(ax) = (I, ax):

for each A € A. Therefore
I'v == It

S Mealan)
= J,.
Hence, I, = J,; that is, I is v-basic. This proves (ii) = (iii), completing the proof

of the theorem. O

New examples of domains subject to the finite ¢-basic (equiv., v-basic) ideal
property will be provided in the next section. We close this section with the

following open question:
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Question 2.5 Is T always an ideal?

2.4 Transfer of the finite {-basic ideal property

to pullbacks

Let us fix notation for this section. Let T be a domain, M a maximal ideal of T', K
its residue field, ¢ : T — K the canonical surjection, and D a proper subring of
K with quotient field k. Let R be the pullback issued from the following diagram

of canonical homomorphisms:

So, we have

This section establishes necessary and sufficient conditions for a pullback of type
[0 issued from local domains to inherit the finite ¢-basic (equiv., v-basic) ideal
property. Recall, at this point, that a domain with the ¢-basic ideal property is
completely integrally closed [30, Proposition 1.4]. Therefore, by [24, Lemma 26.5],
a pullback of type [1 never has the ¢t-basic ideal property.

It is worthwhile recalling that the finite ¢-basic ideal property lies between the

two notions of v-domain and integrally closed domain [30]; and that the finite w-
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basic ideal property coincides with the PuMD property [30, Theorem 2.1]. Also,
the transfer of the notions of PuMD and v-domain to pullbacks was established,
respectively, by Fontana & Gabelli in [16] and by Gabelli & Houston in [20], which

summarizes as follows:

Theorem 2.6 ([16, Theorem 4.1] & [20, Theorem 4.15]) Let R be a pull-

back of type O0. Then, the following assertions are equivalent:
(i) R is PuMD (resp., v-domain);

(ii) T and D are PvMDs (resp., v-domains), Ty is a valuation domain, and

k=K.

Finally, recall that if T is integrally closed, then the integral closure of R is
¢~ (D), where D denotes the integral closure of D in K. This follows easily
from the fact that R and T have the same quotient field. Next, we announce
the main result of this section which allows us to enrich the literature with new
families of examples, putting the new class of domains subject to the finite ¢-basic
ideal property strictly between the two classes of v-domains and integrally closed

domains.

Theorem 2.7 Let R be a pullback of type O such that T is local. Then, the

following assertions are equivalent:
(i) R has the finite t-basic ideal property;
(ii) T and D have the finite t-basic ideal property and k = K.
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Proof. (i) = (ii) Assume that R has the finite ¢-basic ideal property. We
first prove that k = K. Assume, by way of contradiction, that k g K. By [20,

Proposition 2.4], there is an element z € T'\ R with

(R:(1,z)) =M.

Hence

™

N

N

R.

That is, 2 € (1, ),. Therefore, for any nonzero m € M, we have

’m® € (m?, zm?), = (m?, zm?),

and so

((m,zm)?); = (m? zm?);
= (m(m,zm)):.

forcing (m) to be a t-reduction of (m,zm) in R. Whence

(m, zm); = (m).

It follows that zm € (m) and thus z € R, the desired contradiction.
Next, we prove that T has the finite ¢-basic ideal property. Below, we denote

by v; and t; the v- and t- operations with respect to 7". Let I be a nonzero finitely
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generated proper ideal of T and J a t-reduction of I. So (JI™);, = (I"*1),, for some
positive integer n. We may assume, by Lemma 2.1, that J is finitely generated.

If (I™*!),, is principal; say

(" = I )w = (a)

for some nonzero a € T, then

aJtl = (JIn+1)t1
= (I™?)y,

= aItl

yielding J;, = IL,. Next, suppose that (JI™),, = (I"*!),, is not principal. Since

k = K, then T is a localization of R (cf. [15, 35]). So

J=BT and I = AT

for some nonzero finitely generated ideals B C A of R. By [20, Proposition

2.7(1)(b)], we obtain
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(A™H1), = (A",
= ("
= ("
= (JI")y
= (JI")w
= (BA™),
= (BA™);.
It follows that B is a t-reduction of A and thus B; = A;. By [40, Lemma 3.4|, we

get
Ju = (BT)y

= (AT)y
= L.
Therefore, in both cases, we showed that J is a trivial ¢-reduction of I, as desired.
Next, we show that D has the finite ¢-basic ideal property. Let A be a nonzero
finitely generated ideal of D and let B be a t-reduction of A. Let tp denote the
t-operation with respect to D. So, (BA™),, = (A™*!),, for some positive integer
n. We may assume, by Lemma 2.1, that B is finitely generated. By [16, Corollary

1.7], we have

I:= ¢ '(A) and J := ¢~ '(B)

are two nonzero finitely generated ideals of R (containing M). Since k = K, by
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[16, Proposition 1.6(a) & Proposition 1.8(a3)], we obtain

(JIM)e = (¢ (BA™)):
= ¢ ((BA"):y)
= ¢ (A" )ep)
= (A

= (™),

Hence J is a t-reduction of I and thus J; = I;. It follows that

By, = (07 (B))
= o(%)
= o(I)
= (™ (Asp))

= A

D*

completing the proof of the “only if” assertion.

(ii) = (i) Assume that T and D have the finite t-basic ideal property and
k = K. Notice that, in presence of the latter assumption, M cannot be finitely
generated [20, Lemma 4.1]. Also, recall that we always have M, = M [29, Corol-
lary 5]. Next, let I be a nonzero finitely generated ideal of R and let J be a finitely
generated subideal of I with (JI™), = (I"*!), for some positive integer n. By [21,

Proposition 1.6], any ideal of R is comparable to M. So, we envisage two cases:
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Case 1: Suppose that M g I. We first claim that

n+1
MG I

Otherwise, I™! C M yields, by [16, Proposition 1.1], the following

T = (IT)n+1
= [T
C MT

= M.

which is absurd. Moreover, we have M g J; otherwise, we would obtain

<
N
<

In+1

N NN

Ji

I
h

which is absurd. Further, we claim that

MG JIm
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Otherwise, JI™ C M yields via [16, Proposition 1.1]

T = (JT)IT)"
= (JIMT
C MT

= M.

which is absurd. Now, let A := ¢(I) and B := ¢(J), two nonzero finitely generated

ideals of D. Therefore, by [16, Proposition 1.6(b) & Proposition 1.8(b3)], we get

(BA")ip = (¢(JT™))ep
= o((JI"):)
= o((I"*)y)
= (™o

= (An+1)tD .

Hence B is a t-reduction of A and thus B;, = A;,. It follows that

T = ¢ He(R)
= ¢ (Bip)
= ¢ (Ay)
= ¢ He(l))

= It-

Case 2: Suppose that I G M. If I ¢ M, then there is a nonzero z € qf(R)
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with M g I C R, hence zJ; = zlI; by Case 1, whence J; = I;. So, we may

assume II~! C M. Now, note that (JI")™! = (I"*1)~1. So, by [21, Proposition

2.2(1)], we have
(JI™T),,

(JI"T),,
(I
(J17) )
(1))
(7))
(I™T),,

(I"1T),,.

Hence JT is a t-reduction of IT. It follows, via [21, Proposition 2.2(1)], that

JoT

1)~

((JT)w) ™
((JT))™
((IT)e)™

((IT)u)™

Ty
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On the other hand, the assumption I7-! C M yields

(IT)IT) = II7'T
C MT

= M.

Hence IT is not invertible and, a fortiori, not principal in 7. Therefore, by [20,

Proposition 2.7(a)|, we get

= I7'T
= (IT)!
= (M:1I)

= I_l

Consequently,

completing the proof of the theorem. |

Theorem 2.7 allows us to enrich the literature with new families of examples,

which put the class of domains subject to the finite f-basic ideal property strictly

between the two classes of integrally closed domains and v-domains.
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Example 2.8 Consider any non-trivial pseudo-valuation domain R issued from

(V, M, k) with k algebraically closed in K := V/M. Then:

(1) R is an integrally closed domain by [8, Theorem 2.1].

(2) R does not have the finite ¢-basic ideal property by Theorem 2.7.

Moreover, the two notions of reduction and ¢-reduction are distinct in R by Propo-

sition 2.2(b).

Example 2.9 Consider any pullback R of type O issued from (7', M, D) where

af(D) =T/M, T is a non-valuation local v-domain, and D is a v-domain. Then:

(1) R has the finite ¢-basic ideal property by [30, Proposition 1.6] and Theo-

rem 2.4 and Theorem 2.7.

(2) R is not a v-domain by [20, Theorem 4.15].

One can easily build non-valuation local v-domains via pullbacks through [20,

Theorem 4.15].

Here is a specific example, where we ensure, moreover, that the two notions of

reduction and t-reduction are distinct.

Example 2.10 Let X,Y, Z be indeterminates over QQ and let

T = QX)Y,;Z]
M = (Y,2)QX)[Y, Z]
R = Z[X]+M.
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Clearly, T and D := Z[X] have the finite ¢-basic property (since both are Noethe-
rian Krull domains). By Theorem 2.7, R has the finite ¢-basic property. Also R
is not a v-domain since 7' is a non-valuation local domain. Next, let 0 # a € Z

and consider the finitely generated ideal of R given by

I:=(a,X)Z[X]+ M = aR + XR.

Clearly I™* = R and so (I*)~! = R, for every positive integer s. In particular, we

have

(’); = (%)

= (I*)..
and hence I? is a t-reduction of I. However, I? is not a reduction of I; otherwise,
if I"*2 = [2]™ = I™*!, for some n > 1, this would contradict [41, Theorem 76]. It

follows that the notions of reduction and t-reduction are distinct in R, as desired.

We close this section with the following two open questions.

Question 2.11 Is Theorem 2.7 valid for the classical pullbacks R = D+ M issued
from T := K + M not necessarily local? The idea here is that (since ¥ = K, then)
T = S7'R for S := D\ {0}. Clearly, the current proof of the “only if’ assertion

works for this context.
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Question 2.12 Is Theorem 2.7 valid for the non-local case through an additional
assumption on Ty? The idea here is that, “(k = K and hence) Ry = Ta/” is a
necessity for the finite ¢-basic property; and for the PuMD and v-domain notions,
Ry = Ty is a valuation domain. So, one needs to investigate this localization for

the t-basic ideal property in this context.
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