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ABSTRACT 

 

Full Name : [GAZALI TANIMU] 

Thesis Title : [Highly dispersed and stable Bi modified Ni-O supported catalyst for 

oxidative dehydrogenation of n-butane to butadiene] 

Major Field : [CHEMICAL ENGINEERING] 

Date of Degree : [May, 2016]    

 

The effect of different metal oxide species (Ni, Fe and/or Co) oxide-Bi2O3 over alumina 

support, influence of substituting Bi partially/fully with Mo/W, role of different supports 

and support modifications with MgO were investigated for n-butane oxidative 

dehydrogenation (ODH) to butadiene. Co-impregnation technique was used to prepare all 

the catalysts and the physic-chemical properties were studied using BET, XRD, NH3/CO2 

TPD and H2-TPR. The catalytic evaluation shows that, for the case of mono main metal, 

the order of the butadiene selectivity is Ni > Fe > Co, whereas the order of n-butane 

conversion is Ni > Co > Fe. Among the binary Ni-Fe, Ni-Co and Fe-Co systems, Fe and 

Co worked to improve the butadiene selectivity and n-butane conversion, respectively. The 

ternary Ni-Fe-Co system (10Ni5Fe5Co30Bi-O/Al2O3) showed the highest butadiene 

selectivity of 46.3% at the highest n-butane conversion of 30% with good catalytic stability 

at the reaction condition. The acid and base sites preferably adjusted by ternary main metal 

combination in hierarchical nano-particle cohabitation of main metal (Ni, Fe and Co) 

oxide, Bi2O3 and Al2O3 cooperate to accelerate butadiene selectivity at both 1st and 2nd step 

dehydrogenations. This fact was verified by the reduction temperature shift to lower and 

acid/base property change to moderate with temperature programmed H2 reduction and 

CO2/NH3 desorption, respectively. Substituting Bi with Mo and W showed decrease in 

performance indicating mainly that they are not as active as Bi2O3 (oxygen mobile oxide) 



xxi 

 

in enhancing redox cycle of the active species. The different supports investigated showed 

varying performance due to difference in their ability to interact actively with the metal 

species in terms of dispersion and reducibility as well as acidic/basic character. The 

kinetics of n-butane oxidative dehydrogenation was also investigated over the ternary metal 

(10Ni5Fe5Co30Bi-O/Al2O3) catalyst system. The kinetic models were developed based on 

the experimental data for the catalytic test as obtained in a fixed bed reactor at reaction 

temperatures ranging from 350-450oC. Power law model was used and the kinetic 

parameters were estimated using MATLAB program.  
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 ملخص الرسالة

 
 تنيمو غزالي :الاسم الكامل

 

( المشتت و المستقر و المعدل بواسطة البزموث المستخدم O-Niحفاز أوكسيد النيكل ) :عنوان الرسالة

 نزع الهيدروجين المؤكسد من البيوتان لإنتاج البيوتاديين

 
 الهندسة الكيمائية التخصص:

 
 6102مايو  :تاريخ الدرجة العلمية

الكوبالت( وأكسيد البيزموث المحمول على الألموينا، تأثير إستبدال أو /أكاسيد المعادن المختلفة )النيكل، الحديد وتأثير أنواع 

البيزموث كليا أو جزئيا مع المولوبيدنيوم المحمول على التنجستن، و دور الحاملات و تعديل الحاملات مع أكسيد المغنيسيوم تمت 

حيث من  بالترتيحادية الرئيسية،الأ في حالة المعادنؤكسد من البيوتان لإنتاج البيوتاديين. دراستها على نزع الهيدروجين الم

< كوبالتال< لكنيالهو  العادي البوتان تحويل حيثمن  الترتيبفي حين أن  كوبالت.< الالحديد< كلنيالن هو يبوتاديالنتقائية أ

ن مية البيوتاديين نتقائأتحسين  على، عملت الكوبالت-والحديد الكوبالت-والنيكل ،الحديد-كلنيال التركيبات الثنائية الحديد. بين

( الأنتقائية 3O2O/Al-10Ni5Fe5Co30Biالكوبالت )-الحديد-أظهر التركيب الثلاثي النيكل ، على التوالي.العادي نوتايالب

نتج عنه تحسينات مضاعفة عن  مع أستقرار حفاز جيد %30عند أعلى نسبة تحويل و هي   %46.3الأعلى للبيوتاديين و هي 

النيكل في أنتقائية البيوتاديين عن طريق الحديد و في نسبة تحويل البيوتان العادي عن طريق الكوبالت. المواقع الحمضية و القاعدية 

المعادن  دتم تعديلها التعديل الأفضل عن طريق التركيب الثلاثي للمعادن الرئيسية في أزدواج هرمية الجسيمات الصغيرة لأكاسي

و يعمل معا كل من أكسيد البيزموث و الألمونيا على تسريع أنتقائية البيوتاديين عن  ،(الحديد و الكوبالت ،النيكلالأساسية )

الخطوتيين الأولى و الثانية في نزع الهيدروجين المؤكسد. تم التحقق من هذه الحقيقة عن طريق تغير درجة حرارة الإختزال إلى 

القاعدية إالى معتدلة مع إختزال الهيدروجين مبرمج درجة حرارة و إمتزاز ثاني  /و تغيلر خاصية الحمضية درجة حرارة أقل

اسا انخفاضا في الأداء مما يدل أسعلى التوالي. إستبدال البيزموث مع المولوبيدنيوم و التنجستن أظهر  ،النشادر /أوكسيد الكربون

 . الحوامل المختلفة التي درستمن الأنواع النشطة و الإختزال عزيز دورة الأكسدةفي تة مثل أوكسيد البيزموث أنها ليست نشط

 زالختن حيث التشتت والقدرة على الإنظرا للاختلاف في قدرتها على التفاعل النشط مع أنواع المعادن مأظهرت أداء مختلف 
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لاثي يدروجين المؤكسد من البيوتان على التركيب الثتم التحقق من حركية التفاعلات لنزع اله .قاعديةالحمضية/ ال الخاصية وكذلك

(. تم تطوير النماذج الحركية أستنادا على البيانات العملية لإختبار 3O2O/Al-10Ni5Fe5Co30Biللمعادن للعامل الحفاز )

لتقدير  درجة مئوية. و قد أستخدم نموذج قانون القوة 350- 450الحفاز في مفاعل مثبت عند دراجات حرارة تتراوح من 

 .Matlabالمعاملات الحركية بإستخدام برنامج 



1 

 

1 CHAPTER 1 

INTRODUCTION 

1.1 Background 

The increase in the demand of olefins and diolefins in most polymer and petrochemical 

industries especially in Saudi Arabia motivated the interest towards the search for new 

production techniques different from the conventional methods, using alkanes as the 

starting raw materials. Light alkanes (lower alkanes of C2-C4) are highly available and are 

relatively less expensive compared to their corresponding alkenes leading to an economic 

advantage, they are also environmentally non-aggressive products, hence their usage as 

raw materials in most chemical industries [1],[2],[3],[4],[5]. 

The present worldwide usage about 80% of ethylene is in the production of a wide variety 

of commercially important chemicals such as polyethylene, polystyrene, ethylene 

dichloride straight chain, higher alkenes and so on. The market for ethylene has been 

growing at a rate of 2–5% per year. The global capacity of ethylene is around 150 million 

tons as of 2012, and it reached 160 million tons at the end of 2015 [6]. The demand of 1-

butene in the world industries is about 1.3 million metric tons per year and that of butadiene 

is 10 million in 2006 and is has reached 13 million tons at the end of 2015 with 3-4% 

annual increment [7]. Butadiene is used mainly as a monomer in the manufacture of 

polymers such as synthetic rubbers including styrene butadiene rubber (SBR), 

Polybutadiene rubber (PBR), Nitrile rubber which are tough and/or elastic which is 

commonly used for the production of tires [8],[9]. 
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The commercial (conventional) methods for olefins production includes: steam cracking 

process which is a gaseous one phase homogeneous reaction occurring at temperatures 

greater than 800oC, it involves the decomposition of hydrocarbon feed stocks using steam 

producing different products like alkanes, alkenes and molecular hydrogen [10]. Catalytic 

cracking process is a process used for upgrading streams from the refinery (heavy and low-

value). It uses mainly vacuum gas oil, residue and de-asphalted oil as feed stocks and 

convert them into light and higher value products like gasoline. Olefins are mainly obtained 

as co-products in this process in a low amount [10]. Catalytic dehydrogenation process is 

a reaction that involves the decomposition of alkanes (saturated) into olefins (unsaturated) 

and H2 molecule. It is the reverse of hydrogenation reaction. All these processes produces 

high purity olefins but have major drawbacks as they both are endothermic reactions, leads 

to coke formation thereby deactivating the catalyst, they are thermodynamically limited 

reactions hence only produce acceptable yields at high temperatures. Selectivity is difficult 

to control at such temperatures and finally they are highly energy intensive 

[6],[11],[12],[13],[14],[15].     

Oxidative dehydrogenation of alkanes is an alternative irreversible reaction used for the 

production of olefins and diolefins. It is an exothermic reaction that occurs at lower 

temperature and the catalyst used can obtain oxygen directly from the feed stream without 

requiring additional re-oxidation. The presence of oxygen in this method reduces coking 

and extends catalyst life time [16],[17],[18]. 

The major challenge in oxidative dehydrogenation is selectivity control mainly due to 

parallel and consecutive reactions resulting from the combustion of reactant (partial 
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oxidation) to CO and CO2, the correct co-feeding of oxygen can reduce this effect together 

with selectivity improvement by proper catalyst design and formulation [19],[20],[21]. 

The catalytic performance for ODH is related to the surface acidity/basicity property and 

reduction-oxidation (redox) property. The lattice oxygen of the catalyst is involved in 

oxidation process oxidizing hydrogen and olefins intermediates. After which the surface of 

the catalyst that has been reduced earlier is restored back to normal state by gas phase 

oxygen adsorption. The evolution of the lattice oxygen is promoted by the interaction 

between the metal oxides [22]. 

1.2 Commercial Industrial Technologies 

Dehydrogenation reaction is an endothermic process requiring high reaction temperature 

(600-700oC) for an economical conversion. Butane dehydrogenation requires higher 

temperature compared to butene for the same conversion. At these high temperatures, many 

side reactions including cracking and secondary reactions occur, hence the need for a 

selective catalyst and short residence time [23].  

Dehydrogenation reactions unit available in the industries used mainly transition metals 

like platinum, tin, vanadium and chromium supported on alumina catalysts. Alumina as a 

support compared to other supports like silica, Titania, zirconia etc has high thermal 

stability, mechanical strength and strong catalyst regeneration capabilities. The major 

drawback of alumina is that it speeds up undesired side reactions like cracking and 

isomerization resulting from its acidic sites, this in turn lead to coke formation and 

deposition. Some of the established technologies for dehydrogenation process with their 
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catalysts, reactor type, reaction condition and reported conversions and selectivities are 

summarized in Table 1.1. 

Table 1.1: Commercial dehydrogenation processes 

Process name Catofin Oleflex STAR FBD Linde/BASF 

Licensor Lummus UOP Uhde Snamprogetti BASF 

Feed C3 or C4 C3 or C4 C3 or C4 C3 or C4 C3 or C4 

Catalyst CrOx/Al2O3 Pt/Sn/Al2O3 Pt/Sn/Zn/Ca/Al CrOx/Al2O3 Pt-Sn/Zr 

Reactor Adiabatic 

FB 

Adiabatic 

MB 

Adiabatic/Oxy Continuous Isothermal 

FB 

Temperature/oC 590-650 550-620 550-590 550-600 500-600 

Pressure (bar) 0.3-0.5 2-5 1.1-1.5 5-6 >1 

Conversion/% C3:48-65 

C4: 60-65 

C3:25 

C4:35 

C3:40 C3:40 

C4:50 

C3:30 

Selectivity/% C3:82-87 

C4:93 

C3:89-91 

C4:91-93 

C3:89 C3:89 

C4:91 

C3:90 
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1.3 Objectives  

The main objectives of this research are: 

 To develop a highly dispersed and stable Bi-modified NiO catalyst for oxidative 

dehydrogenation of butane to butadiene. 

 To test the influence of various supports, metal species (Iron and Cobalt), 

modifiers (Molybdenum and Tungsten) and Acidity/basicity controller (MgO 

modifications) on the catalyst. 

 To kinetically study the reaction using the best catalyst. 

This are discussed in detail as below: 

1.3.1 Synthesis and Characterization of Bismuth and Nickel based catalysts  

 Preparation of modified bismuth and nickel oxide based catalysts using co-

impregnation, incipient wetness and successive impregnation methods 

 Physico-chemical properties determination of the catalysts using characterization 

techniques 

 Testing of the catalysts in the fixed bed reactor (BELCAT) system for their 

activity and selectivity 

 To study the stabilities of the catalysts with best performance in order to confirm 

their suitability or otherwise for long term usage.  

1.3.2 Kinetic modelling of the best catalyst in the fixed bed reactor 

 To predict the steps in the rate mechanism using kinetic model 

 To estimate the kinetic parameters in the rate equation 

 To fit the experimental data into a proposed model to validate the model 



6 

 

1.4 Scope and Outline of the work 

The scope of this research will be limited to the synthesis, characterization and testing of 

the highly dispersed and stable Bi-modified NiO supported catalyst for n-butane ODH to 

butadiene. This has been broken down to the following chapters 

Chapter two discuss a detailed literature review on catalytic oxidative dehydrogenation. 

Previous work done and the challenges faced and possible solutions taken to address the 

challenges. 

Chapter three will discuss the laboratory section of the work from the equipment used for 

the experiments together with the procedures followed for the synthesis, characterization 

and catalyst testing 

Chapter four deals with the results obtained from the experimental runs, all the results 

from characterization of the synthesized catalysts and their detail discussions together with 

the effects of various conditions varied during the experimental runs. Presented also is the 

results of the kinetic modelling from model derivation up to the parameters estimation 

using non-linear regression analysis 

Chapter five presents the conclusions that will be drawn from the research together with 

recommendations for future work.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 BUTADIENE 

Butadiene is an unsaturated aromatic hydrocarbon produced as a secondary product from 

the dehydrogenation (hydrogen abstraction process) of a saturated hydrocarbon mainly 

butane. Normal butane is first dehydrogenated to form butylene (primary product) and 

finally butadiene is formed from the dehydrogenation of butylene [1]. Butadiene is a 

colorless, non-corrosive gas or liquid with a mild aromatic or gasoline-like odor at room 

temperature, it is highly reactive, toxic and flammable hence classified as a hazardous 

chemical [24]. Butadiene is mainly polymerized for the production of synthetic rubber. A 

homo polymer from butadiene (Polybutadiene) is a liquid material and very soft, while 

Acrylonitrile butadiene styrene (ABS), Styrene butadiene (SBR) and Acrylonitrile 

butadiene (NBR) produced as copolymers from butadiene and styrene are elastic and tough. 

Automobile tires producing companies mainly used SBR [8]. 

2.1.1 Uses of Butadiene 

The major use of butadiene is in the production of polymers which have variety of usage 

domestically and industrially, they improve the performance and functionality of domestic 

products, safety and also reduces costs of the products. Butadiene-based polymers are used 

in construction materials, automobiles, Computer and telecommunication equipment, 

packaging and household articles [24],[25],[26]. 
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2.2 CONVENTIONAL METHODS FOR BUTADIENE PRODUCTION 

1,3-Butadiene is produced mainly by the following three methods in the industries: 

 Steam cracking of saturated hydrocarbons 

 Catalytic dehydrogenation of n-butane and 1-butene (Houdry process) 

 Oxidative dehydrogenation of 1-butene (O-X-D process) 

2.2.1 Steam Cracking 

This process accounts for over 95% of global butadiene production, butadiene is produced 

as a co-product in the steam cracking of paraffinic hydrocarbons and is purified in a 

butadiene recovery process. It is a gas phase homogeneous reaction where the feed stocks 

are fed to a pyrolysis furnace and mixed with steam to be cracked at temperatures in excess 

of 800oC. The reaction is highly endothermic and energy intensive and it produces a variety 

of products (pyrolysate) including olefins, hydrogen and paraffins. Fig. 2.1 shows a typical 

steam cracking reactor.  
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Fig. 2.1: Steam cracking furnace [10]. 

 

Depending on the feedstock that is fed to the steam cracker, we have light crackers for 

gaseous feed like ethane and propane and it produces very low quantity of C4 compounds 

and heavier co-products while heavy crackers used for liquid feed like gas oils, naphtha 

and condensates produces much higher quantity of butadiene. Table 2.1 reports a typical 

yield of steam cracking products from different feedstocks. Depending on the feedstock 

and the plant operation, butadiene content in C4 compounds can be as high as 75% [24], 

[10].    
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Table 2.1: Steam cracking products for different feedstocks [10]. 

Yield of 

products 

(wt%) 

Gas feeds Liquid feeds 

Ethane  Propane  Butane  Naphtha  VGO 

H2 and 

methane 

13.0 28.0 24.0 26.0 23.0 

Ethene 80.0 45.0 37.0 30.0 25.0 

Propene  1.1 14.0 16.4 14.1 14.4 

1,3-

butadiene  

1.4 2.0 2.0 4.5 5.0 

Mixed 

butenes 

1.6 1.0 6.4 8.0 6.0 

C5
+ 1.6 9.0 12.6 18.5 32.0 

 

2.2.2 Catalytic Dehydrogenation 

This is a reaction with positive enthalpy change (endothermic) hence requires huge amount 

of heat and is generally carried out using catalysts. In dehydrogenation of alkanes, the 

paraffins decompose into an alkene and H2 molecule and is generally favored by the 

addition of steam that lowers the partial pressure of the alkanes and also reduces 

isomerization, polymerization and coke deposition [27],[28]. 

A common dehydrogenation process is the Houdry process (developed in 1993), it is a 

single step process of hydrogen abstraction from butane. It uses chromia-alumina catalyst 

which is usually regenerated after few minutes of usage using air to burn off the coke layer. 

It is an adiabatic process and butadiene yield is up to 63%. Another dehydrogenation 
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process is the Dow process which utilizes butenes in the presence of steam to produce 

butadiene. The catalyst used in this process is Ca-Ni phosphate stabilized with Cr2O3, the 

heat of dehydrogenation is provided by the superheated steam, the conversion achieved is 

up to 50% and a selectivity of 90%. The catalyst is also regenerated and the product is 

isolated from reaction mixture using extractive distillation. Shell and Phillips petroleum 

also developed paraffin dehydrogenation processes using Fe-Cr oxide catalysts with K2O 

additive and Fe oxide bauxite catalyst respectively. Typical dehydrogenation reaction is as 

shown. 

       ………………………… (2.1) 

 

2.2.3 Oxidative Dehydrogenation of Butenes (O-X-D Process) 

This process uses oxygen (from air) as a co-feedstock in the production of butadiene. The 

oxygen acts to displace the equilibrium between butenes and butadiene towards greater 

production of the diolefins. It removes H2 by combustion producing water as a byproduct, 

initiates dehydrogenation by hydrogen abstraction and also oxidatively regenerate the 

catalyst. It is an exothermic process hence requires low temperature and improved catalyst 

lifetime compared to the dehydrogenation process. A common O-X-D process is the 

Phillips process that produces butadiene from n-butenes with steam and air using a fixed 

bed catalyst at 480-600oC. The resulting conversion is 75-80% and a selectivity of 88-92%. 
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PetroTex also developed process of butadiene production using O-X-D with a 

heterogeneous catalyst and reaction performed at 500-600oC, a selectivity of up to 93% 

and conversion of 65% were reported. 

2.3 OXIDATIVE DEHYDROGENATION OF ALKANES 

Oxidative dehydrogenation of alkanes is an alternative irreversible reaction used for the 

production of olefins and diolefins. It is an exothermic reaction in which the byproduct 

produced is water instead of hydrogen and occurs at lower temperature. The catalyst used 

can obtain oxygen directly from the feed stream without requiring additional re-oxidation. 

The presence of oxidant (like oxygen) in the method also reduces catalyst deactivation by 

coking due to the efficient removal of coke and its precursors thereby extending catalyst 

life time [16],[29]. 

The major challenge in oxidative dehydrogenation is selectivity control mainly due to 

parallel and consecutive reactions resulting from the combustion of reactant (partial 

oxidation) to CO and CO2, the correct co-feeding of oxygen can reduce this effect together 

with selectivity improvement by proper catalyst design and formulation [19]. 

The activity and selectivity of a catalyst for ODH depends on its acidic/basic properties 

and reduction-oxidation (redox) characteristics. The catalyst is reduced by losing its lattice 

oxygen which is used in the reduction reaction with water as byproduct, it then adsorbs 

molecular oxygen from the feed to regain its earlier oxidation state. The interaction 

between the metal components of the catalysts (active species and support) plays a great 

role in the availability or otherwise of the lattice oxygen for the reaction [30]. 
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Several researchers reported vanadium oxide and chromium oxide as active species with 

different oxides as carriers (Alumina, Silica, Titania, Zirconia, Ceria etc) showing good 

results for the ODH of lower paraffins [31],[32],[33]. The catalytic performance relies on 

the type of carrier, catalyst loading and synthesis method [34]. Hakuli et al [35] 

investigated different chromia supported catalysts and concluded that alumina and silica-

supported chromium oxides were the most effective for the production of lower olefins. 

Vanadia supported on basic supports not acidic or neutral oxides have been found to be the 

most selective catalysts for propane oxidative dehydrogenation as reported by Corma et al 

[36]. Volpe et al [37] concluded from his investigation on n-butane dehydrogenation using 

VOx supported on USY, NaY, γ-Al2O3 and α-Al2O3 that VOx/USY has the highest activity 

and selectivity due to VOx monolayer and its mild acidity. Investigation on the reactivity 

of vanadia on various supports was conducted by Arena et al [38] and the conclusion drawn 

was that vanadia was more reactive on amphoteric oxides with TiO2 having the highest 

reactivity and that the dispersion and reducibility of the active phase is greatly influenced 

by the acidic/basic property for the support. 

Chromia-Alumina is a dual functional catalyst due to its acidic function obtained from the 

support and dehydrogenation function due to chromium oxide. Vuurman et al [39] reported 

that the catalytic dehydrogenation properties of the Chromia-Alumina catalyst are due to 

surface chromium oxide species and not the bulk chromium oxide phases like CrO3 or 

Cr2O3. De Rossi et al [40] investigated propane dehydrogenation on Chromia/Silica and 

Chromia/Alumina catalysts and concluded that, the active sites for the dehydrogenation are 

CrIII and not CrII species and that Chromia supported on zirconia has the highest activity 

compared to silica and alumina supports. This is because the proper coordination of 
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chromium on the surface sites of zirconia is preserved and the oxygen ion necessary for 

reduction (H2 abstraction) is more readily available.  

Jibril et al [41] investigated the oxidative dehydrogenation of isobutane on chromium 

oxide-based catalyst, they tested different supports (Al2O3, TiO2, MgO, and SiO2), different 

chromium precursors and partially substituting the chromium with some metals (V, Ni, Co, 

Mo and Bi). They concluded that, chromia supported on alumina has the best performance 

with chromium nitrate as the best precursor and that partial substitution of chromium by 

the metals has little or no contribution on the catalyst performance with Nickel addition 

slightly increasing the selectivity with same conversion. 

Ajayi et al [22] studied n-Butane dehydrogenation over mono and bimetallic MCM-

41(highly dispersed Silica) catalyst under oxygen free atmosphere by varying the weight 

percent of the metals in the catalyst. They concluded that 1.2Cr2.8V/M-41 has the highest 

butane conversion and butene selectivity. 

2.4 CATALYST DEVELOPMENT FOR LOWER ALKANES ODH 

The catalyst systems studied by several researchers as obtained from literature for oxidative 

dehydrogenation of lower alkanes can be grouped into three. 

 Catalyst based on alkali and alkali earth metals 

 Catalyst based on noble metals 

 Catalyst based on oxides of transition metal 

2.4.1 Catalyst based on Alkali and Alkali Earth Metals 

Catalysts based on Group 1 and 2 metals show good olefin selectivity for ethane and 

propane, of this catalyst systems the most prominent one is Li/MgO. Although Li/MgO 
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combination shows reasonable activity [42], [43], the catalyst is usually promoted with 

halogens mainly chlorine.  Hence, halides have high significance towards achievements of 

good yields resulting from their acidic properties that positively affects dehydrogenation 

reaction. These catalysts activate ethane at temperature above 600 oC to form ethyl radicals 

that react in the gas phase [44]. Addition of Tin oxide (SnO2), Lanthanium oxide (La2O3), 

Neodymium oxide (Nd2O3), or Dysprosium oxide (Dy2O3) further improves the 

performance of Li/MgO [45]. Ethene yield is up to 77% when Dy2O3 is used as a promoter 

and a remarkable selectivity is achieved when the reaction temperature gets closer to 

melting point of LiCl [45]. Propene is the best alkene produced through oxidative 

dehydrogenation of propane. Ethene can as well be synthesized in large quantity via 

catalytic dehydrogenation, chemical industries still maintain steam cracking for ethene 

production [10]. 

2.4.2 Catalysts based on Nobel Metals 

Catalysts in this group have active species that contains noble metals such as Platinum, 

Rhodium, Palladium, which are very efficient catalysts for combustion. Paraffins can be 

converted to alkenes using nobel metal catalysts under specific reaction conditions like 

reduced contact times and little oxygen supply [10]. At lower temperatures these noble 

metal catalysts are usually non-selective, however they can be used for selective oxidation 

at temperature around 1000oC, and non-oxidative same phase reactions greatly influence 

the formation of products. The selectivity is enhanced by high alkane-oxygen ratio as well 

as a higher temperature.  This leads to nearly complete conversion of oxygen in a way that 

non-oxidative conversion of paraffins results like steam reforming together with cracking. 

The catalyst mainly deactivates due to coking and sintering [46]. Enclosing the active nobel 
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metals in a passive support helps mitigate the deactivation. The over layer of support 

suppresses the oxidative dehydrogenation process and prevents sintering of metals with 

decrease in coke formation for high temperature reactions. 

2.4.3 Transition Metal Oxides based Catalyst 

This category of catalyst allows low temperature activation of alkanes relative to group I 

and II as well as nobel metals. Hence the performance of catalysts for this group is usually 

better. The oxidative dehydrogenation reaction of lower paraffins using oxides of metals 

in the transition series on a support occurs via the mechanism of Mars Van Krevelen, in 

which lattice oxygen in the catalysts is used for oxidizing the paraffin as well as the 

reoxidation by the gas phase molecular oxygen [22],[47]. Some factors dictates the 

performance of the catalyst like the redox properties, chemical nature of the active oxygen 

species and the acid-base character, which in turn depend on the loading and dispersion of 

the transition metal and the kind of support used [34].   
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Fig. 2.2: Oxidative dehydrogenation of lower alkanes on transition metal oxides reaction 

steps [10]. 

 

Transition metal oxides have reducible oxygen (surface lattice oxygen) that partake in 

oxidative dehydrogenation in the absence of gaseous oxygen. Even though, the active 

oxygen specie partake also in other non-selective routes of ODH resulting to COx. The two 

most important systems are the molybdenum-based catalytic system and the vanadia–based 

catalytic system although from literature the molybdenum systems are less active. Figures 

2a and 2b show a plot of ethylene and propylene selectivities against conversion for various 

catalytic systems respectively.  
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Fig. 2.3a: Ethylene selectivity for various catalytic systems [44]. 

 

 

Fig. 2.3b: Propylene selectivity for various catalytic systems [44]. 
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For ethane, the ethylene yield values shown are close to, and sometimes even better than 

the corresponding values obtained from steam cracking although for propane ODH the 

values are not too interesting from an industrial point of view. Conditions leading to best 

propylene yields also leads to production of remarkable amount of ethylene, hence finding 

a catalyst of industrially acceptable conversion to this olefin is still a major goal [48]. 

2.5 PROPERTIES OF CATALYST USED FOR ODH 

The catalysts used for oxidative dehydrogenation reaction have some basic characteristics 

that influenced the activity and the selectivity of the catalyst. They are discussed as follows; 

2.5.1 Active Lattice Oxygen Species 

Metal oxides used as active species for ODH of paraffins have lattice oxygen which 

participate in the reduction reaction process. The difference in the affinity of the active 

oxygen species to bind with paraffins is among the main factors that determines the 

performance (activity and selectivity) of most metal oxides supported catalysts [49]. A 

study by Weckhuysen and Keller [50] on vanadium oxide supported catalyst reported that 

3 categories of lattice oxygen bonds are associated with the catalysts which are end V=O, 

intermediate V-O-V and V-O-Carrier bond each with different binding strength. They 

concluded that the lattice oxygen from the V-O-Support bond is the one that is involved in 

the catalytic reduction reaction. 

2.5.2 Surface Coverage 

The dispersion of active metal oxides on the support plays a great role on the performance 

of the supported catalyst. The dispersion depends on the active metal loading and 

preparation method [51]. Bell et al [52] and Klose et al [53] investigated the effect of 
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amount of vanadia loading as the main factor leading to distinguished VOX species on the 

surface of the carrier (support). They also investigated different type of supports (TiO2, 

SiO2, Al2O3 and ZrO2) with emphasis on alumina-supported vanadia. The conclusions 

drawn was with little loading of vanadia,  isolated VO4 species which is highly dispersed 

is formed, isolated monovanadates changes to polymeric polyvanadates with increase in 

VOX density which increases continuously until monolayer coverage is attained. 

Crystalline V2O5 nanoparticles forms at high loading of vanadium. 

2.5.3 Support Effect 

The physic-chemical properties (surface area and acid-base) of the carrier (support) used 

in metal supported catalysts significantly determines the selectivities of the olefins 

produced. This is related to the different interactions (dispersion and reducibility) of the 

active species on different types of support.  

Acidic or basic property of the support controls the catalyst selectivity and reactivity due 

to their influence on reactants adsorption and product desorption. Catalyst with acidic 

support favor basic reactant adsorption and acidic product desorption, hence with 

controlled acidic character of support, a catalyst can be designed with higher selectivity in 

oxidative dehydrogenation reaction [54]. It was concluded in a work by Blasco and Lopez-

Nieto [13] and also by Corma et al [36], that catalysts which are very selective are obtained 

with oxides of vanadium supported on basic oxide (MgO, La2O3) compared to oxides of 

acidic metals, this is as a result of the strong interaction between acidic V2O5 and the basic 

support leading to highly dispersed VOx species responsible for the higher selectivities to 

olefins and the opposite is true with acidic supports [13], [55]. 
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2.5.4 Redox Properties of Supported Metal Catalysts 

The reducibility of active metal oxides play a great role in their activities and selectivities 

as catalysts for ODH reactions. This property of the metal oxides is greatly influenced by 

the type of support used which determines the strength of the lattice oxygen used for the 

redox process. 

Lopez-Nieto investigated the reducibility of vanadium oxide catalysts using temperature 

programmed reduction on different support oxides and concluded that acid-base property 

of the support strongly influenced the reducibility of the oxides with a negative effect on 

basic support oxides [1]. 

2.6 OXIDATIVE DEHYDROGENATION OF NORMAL BUTANE TO 

BUTADIENE 

This is a reaction that involves series removal of molecule of hydrogen from normal butane 

forming 1,3-Butadiene in the presence of an oxidant (mainly oxygen) with water as a 

byproduct. Normal butane is a saturated and highly stable hydrocarbon hence requires high 

temperature for the activation process, it is slightly different from the ODH of ethylene and 

propylene because of the presence of two secondary atoms of carbon (-CH2-) hence it has 

high chance of undergoing side reactions to yield other products as shown in Fig. 2.4. 
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Fig. 2.4: Conversion route of butane to butadiene [56]. 

 

(Where DH = dehydrogenation, OC = oxygenates products and cracking and PO= partial 

oxidation, CO = complete oxidation, DDH = direct dehydrogenation) 

 

2.7 CATALYST DEVELOPMENT FOR BUTANE ODH 

Most researchers focus more on the catalyst development for ethane and propane oxidative 

dehydrogenation with more emphasis on vanadia, molybdena and chromia supported 

catalysts. Some of the literatures reviewed for the catalyst development for butane ODH 

are discussed in this section. 

Ariola and Nava investigated the ODH of n-butane using Iron-Zinc oxide catalyst. They 

employed XRD, TPR and Mossbauer spectroscopy to determine the catalytically active 

phase and concluded that zinc ferrites (ZnFe2O4) having spinel structure is the selective 

catalyst for ODH of n-butane to butenes which further produces butadiene in the presence 
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of ZnO as a modifier. The ZnO interacts with the iron from the zinc ferrite modifying the 

electron density of the iron which is responsible for the selectivity to butadiene [57]. 

Armendariz et al studied ODH of n-butane on zinc-chromium-ferrite catalyst. The catalyst 

was characterized using XRD and Mossbauer spectroscopy. The chromium was added as 

a promoter that substitutes Fe3+ in the octahedral sites which increases the basicity of the 

lattice oxygen thereby enhancing the selectivities to butadiene and CO2 [58] 

Vasil’ev and Galich reported that the method of active components deposition on the 

support strongly determines the performance of cobalt-molybdenum and magnesium-

molybdenum catalyst used in the ODH of normal butane. Catalyst activity increases 

proportionally to the number of active components which are cobalt, magnesium and 

molybdenum especially with a support of low surface area [8]. 

Xu et al investigated the dehydrogenation of n-butane over vanadia supported on silica gel 

catalyst using impregnation method of preparation and characterized using XRD, UV-Vis, 

FTIR, Raman and BET measurements. The influence of VOx loading and reaction 

temperature were studied and they concluded that at low VOx loading and temperature of 

590~600oC, n-butane conversion and olefin yield of highest value was obtained [59]. 

McGregor et al studied the effect of vanadia species in VOx/Al2O3 for n-butane 

dehydrogenation by varying the vanadium loadings. The catalysts were characterized using 

FTIR and solid state NMR and concluded from their findings that a strong relationship 

exist between the surface species of VOx and the performance of the catalyst with high 

activity and low selectivity for isolated VOx species and polymeric VOx species having 

greater selectivity to the targeted olefins [15]. 
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Malaika et al investigated the ODH of n-butane to butadiene using chemically modified 

activated carbon as catalyst. The conclusion was that at low temperature only oxidation 

takes place leading to the formation of CO2 but with increase in temperature up to 300oC 

and above, 1,3-butadiene and 1-butenes are formed as the major products [16]. 

Lee et al investigated oxygen mobility influence together with oxygen capacity of 

Mg3(VO4)2 supported with different oxides (Al2O3, ZrO2, MgO, CeO2) for ODH of n-

butane. Their experimental findings shows that at the initial stage of the reaction 

Mg3(VO4)2/MgO is the most active catalyst and Mg3(VO4)2/ Al2O3 the least active. The 

activity decreases with time for the MgO catalyst while Mg3(VO4)2/ZrO2 showed stable 

catalytic activity, hence the conclusion that oxygen mobility and oxygen capacity directly 

affects the stability of the catalyst activity and the initial catalytic activity respectively [60].   

Kwon Lee et al in a similar study investigated the ODH of normal butane to normal butene 

and 1,3-butadiene over Mg3(VO4)2/MgO-ZrO2 catalyst with varying Mg:Zr in the support. 

The support was prepared using gel-oxalate co-precipitation method and the catalyst by 

wet impregnation method and was characterized using XRD, XPS and ICP-AES 

techniques. They concluded that the catalyst with Mg:Zr of 4:1 has the highest activity and 

selectivity due to its highest oxygen capacity and acidity as confirmed by TPRO and TPD 

respectively [61].  

Xu et al investigated the catalytic ODH of n-butane over V2O5/MO-Al2O3 (M= Alkaline 

earth metals: Mg, Ca, Ba, Sr) with varying V2O5 loading. The catalyst were characterized 

by BET, XRD, FTIR, H2-TPR and Raman spectra and the results showed that only MgO 

modified Alumina produce a catalyst with high activity and selectivity while that of Ca, Ba 
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and Sr showed low activity due to the formation of orthovanadate phase which seldom 

undergoes reduction. The high activity of the MgO modified Alumina is due to the good 

dispersion of VOx species due to increased surface area of the support and the existence of 

crystalline phase of MgO [62]. 

Jermy et al investigated the catalytic ODH of normal butane to butadiene using Bi-Ni-O/γ-

Alumina and reported from their experimental findings that the support itself is selective 

for the ODH of n-butane to butenes and partial oxidation to CO, the dispersion of NiO on 

the support reduces the partial oxidation selectivity and enhanced butadiene selectivity. 

Addition of bismuth to the catalyst was confirmed to give more selectivity to butadiene 

due to improved NiO dispersion and the redox property of the resulting catalyst [30]. 

2.8 CATALYTIC PROPERTIES OF NiO SUPPORTED CATALYST FOR 

BUTANE ODH 

The important properties of active metals that influence their performance as active and 

selective catalyst for oxidative dehydrogenation reaction are redox property and acid/base 

character. These properties can be enhanced by doping promoters and modifiers to the 

active metal components and the support as investigated by many researchers, some of 

which were discussed in the previous section. 

Nickel oxide is a relatively less expensive oxide that has been reported to activate short 

chain alkanes (C2-C4) in the presence of molecular oxygen with resulting high activity and 

at low reaction temperatures. The products obtained however are mainly oxidation 

products (CO and CO2) with little dehydrogenation products. NiO has been reported to 

have improved performance in its activity and selectivity when supported or promoted on 
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metal oxides. This promotion reduces the selectivity of oxidation products and enhanced 

that of dehydrogenation [63].  

The nature of Ni species and the acidity/basicity of the catalyst are the two factors that 

influence its performance as a catalyst. The nature of the Ni species are influenced by the 

valence of the promoters with high valency reducing the concentration of the non-selective 

non-stoichiometric oxygen in Ni3+ species leading to higher selectivity [64]. Lopez-Nieto 

et al [63] studied the effect of promoted NiO catalysts for the ODH of ethane and concluded 

from XPS findings that non-stoichiometric Nickel sites Ni3+ are involved in the non-

selective catalytic processes resulting from the stabilization of electrophilic oxygen species 

and the removal of these species improves ethylene selectivity. Jermy et al [56] reported 

that NiO when promoted with Bismuth oxide results in an improved performance, this is 

due to the participation of Bi2O3 as oxygen mobile oxides which is critical in the formation 

of electrically active grain boundaries in the NiO. Fig. 2.6 shows a pictorial representation 

of the role of NiO loading on its performance as catalyst for ODH of n-butane as reported 

by Jermy et al [30]. The mechanism of hydrogen abstraction performed by redox cycle of 

Ni supported by bismuth oxide species is as shown in Fig. 2.5 as reported by Jermy et al 

[56]. The redox system by the Ni species is better stabilized with bismuth oxide (which act 

as controlled O2- supplier) as hierarchical nanoparticle cohabitation hence making the 

system highly efficient. 
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Fig. 2.5: Mechanism of the dehydrogenation performed by redox cycle of Ni (Ni-Bi 

bimetallic) species [56]. 

 

Iron oxide has been shown to be an active site for ODH of butene to butadiene. This is due 

to its ability to switch easily from Fe+2 to Fe+3 and vice versa in oxidation/reduction cycle. 

Park et al [65] reported that if oxygen is added to the catalyst surface, reduced Fe+2 reacts 

with molecular oxygen to form Fe+3O-. The formed O- dissociates the C-H bonds thereby 

forming an adsorbed C4H7 species and a hydroxyl ion. A second OH- ion formed will result 

in adsorbed C4H6 with a negative charge which oxidizes Fe+3 back to Fe+2 through electron 

release with desorption of butadiene in the gas phase. The two hydroxyl ions formed 

combined to form water with active site regeneration for further O2 adsorption. This has 

been confirmed by electrical conductivity measurements [30].   

Cobalt oxide is a good catalyst for various reactions like dehydrogenation, VOC 

combustion, alcohol oxidation and CO oxidation. Especially in the nanoparticle form, 

Co3O4 shows high surface area and an increased active sites accessibility. Thomas et al 

[66] reported the use of nanocrystalline cobalt oxide as catalyst for propane oxidative 

dehydrogenation with almost 100% selectivity to propene. 
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Fig. 2.6: Effect of Nickel oxide loading [30]  

 

2.9 ODH OF PARAFFINS REACTION MECHANISM 

The mechanism of oxidative dehydrogenation rely mostly on the paraffin and the catalyst 

used, but the basic steps involved in a typical reaction are: 

 Alkane interaction with the surface of the catalyst (physisorption) 

 Breakage of C-H bond forming alkyl species 

 Alkyl species react with nearby surface oxygen (β-elimination) to form olefins 

 Reoxidation of the catalyst by molecular oxygen. 

2.9.1 Kinetic Models for ODH of Light Alkanes 

Light alkanes are gases and their ODH involves solid catalyst, hence forming 

heterogeneous system. The catalytic reaction proceeds via the following steps: 

 Reactants (Alkanes) diffusion to the catalyst surface 

 Reactants adsorption on the catalyst surface 
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 Surface reaction 

 Products desorption from the surface of the catalyst 

 Products of reaction diffuse from the surface of the catalyst  

Based on this reaction steps, the models used for ODH reactions are Eley Rideal model, 

Langmuir Hinshelwood model, Rake model, Mars Van Krevelen model (Redox model) 

and power law model.  

For ODH reactions using transition metal oxide catalyst, most literatures reported the 

kinetics following Mars Van Krevelen model (Mechanism of reduction-oxidation) where 

the active species oxygen participates in the ODH reaction by removing molecule of 

hydrogen from the paraffin thereby forming water as a byproduct which is removed by 

surface dehydration. The reduced catalyst is re-oxidized by the gas phase molecular oxygen 

[10], [67].  

For the ODH of n-butane, based on the acidic/basic property of the catalyst, two reaction 

networks are proposed by several researchers, for a catalyst with basic character alkenes 

are formed directly from normal butane while 1,3-butadiene as a consecutive reaction 

product while for catalyst with acidic character, olefins and diolefins are produced firstly 

from normal butane with COx as products of series reaction. Hydrogen removal from 

normal butane determines the reaction rate while second hydrogen removal/desorption of 

olefinic intermediate determines the selectivity. Olefinic intermediate desorption rate from 

catalysts with basic character is higher than that of catalyst with acidic character [68]. 
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CHAPTER 3 

EXPERIMENTAL METHODOLOGY 

3.1 CATALYST PREPARATION. 

The catalysts for used in this research fall into different categories as shown in Table 3.1 

and all were synthesized using either co-impregnation technique, successive impregnation 

or incipient wetness technique for support modification. 

3.1.1 Co-impregnation technique 

A solution of Ni(NO3)2.6H2O (99% Fisher Scientific) was formed by dissolving 0.99 g of 

the salt in 160ml distilled water. 0.43 g of Ferric nitrate hydrate and 0.49 g of cobalt nitrate 

were successfully added to the solution with continuous stirring at 55oC. To the mixture, 

1.39 g of Bi(NO3)3.5H2O (98% Fluka-Garantie) was added with stirring until it dissolved. 

2.00 g of Al2O3 support was then added and the resulting mixture was stirred continuously 

for 10 minutes. Air was removed using vacuum from the pore capillaries and the mixture 

was kept closed overnight at room temperature. It was then dried on a hot plate at 100oC 

until there was no free water and the resulting solid mixture was dried in an oven for 3hrs 

at 120oC. All the catalysts were prepared using the above mentioned procedure for 

consistency. For catalyst testing and characterization, two step calcination method was 

adopted where the catalyst is heated at a rate of 10oC/min up to 350oC and maintained for 

1hr after which it is raised to 590oC at a rate of 15oC/min and maintained for 2hr to fully 

convert the catalyst precursors into their active oxides form. 
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3.1.2 Successive Impregnation 

0.24 g of Ammonium meta tungstate ((NH4)6H2W12O40) was dissolved in 60 ml of distilled 

water to form a solution. 0.92 g of Bi(NO3)3.5H2O (98% Fluka-Garantie) was also 

dissolved in 120ml of distilled water in a separate beaker. The two solutions were mixed 

together and added to 2.00 g of Al2O3 support in a 250 ml beaker. The mixture was stirred 

continuously for 10 mins after which air was removed from the pore capillaries using 

vacuum. The mixture was kept closed at room temperature overnight for ageing. The 

resulting mixture was dried at 100oC on a hot plate with stirring for several hours until no 

free water and finally dried in an oven at 120oC for 3hrs. 

Ni(NO3)2.6H2O (99% Fisher Scientific) solution was formed by dissolving 1.98 g of the 

precursor in 80 ml of distilled water and poured onto the dried Bi-W impregnated Al2O3 

support. The resulting mixture was subjected to the same first stage impregnation 

procedures until dried as-prepared catalyst was obtained. 

3.1.3 Incipient wetness followed by Impregnation   

0.89 g of Magnesium acetate was dissolved in 2.00 ml of distilled water. This was added 

dropwise to 2.00 g of Al2O3 support. It was then dried under atmospheric condition 

overnight and calcined at 550 oC for 2 hrs at the rate of 5 oC/min after which co-

impregnation procedure was followed to impregnate the metal species precursors on the 

modified support. 
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Table 3.1. Controlling factors of catalysts for Oxidative dehydrogenation of n-butane to 

butadiene  

Main Item Sub Item  Species/Content (wt %) 

Metal Species  

SJC01 20Ni 30Bi/Al2O3 

SJC28 20Fe 30Bi/Al2O3 

SJC30 20Co 30Bi/Al2O3 

SJC20 15Ni 5Fe 30 Bi/Al2O3 

SJC22 10Ni 10Fe 30Bi/Al2O3 

SJC27 5Ni 15Fe 30Bi/Al2O3 

SJC21 15 Ni 5Co 30 Bi/Al2O3 

SJC23 10Ni 10Co 30Bi/Al2O3 

SJC29 5Ni 15Co 30Bi/Al2O3 

SJC33 10Fe 10Co 30Bi/Al2O3 

SJC31 15Ni 2.5Fe 2.5Co 30Bi/Al2O3 

SJC24 10Ni 5Fe 5Co 30Bi/Al2O3 

SJC32 5Ni 7.5Fe 7.5Co 30Bi/Al2O3 

Modifier to Bi 

Mo 

SJC41 20Ni 20Bi (10)Mo/Al2O3 

SJC42 20Ni 10Bi (20)Mo/Al2O3 

SJC43 20Ni (30)Mo/Al2O3 

W 

SJC38 20Ni 20Bi 10W/Al2O3 

SJC39 20Ni 10Bi 20W/Al2O3 

SJC40 20Ni 30W/Al2O3 

Support 

SiO2 

SJC25 20Ni 30Bi/Silicalite 

SJC02 20Ni 30Bi/formed SiO2 MSU 

SJC03 20Ni 30Bi/SiO2 gel (broad) D6 

SJC04 20Ni 30Bi/SiO2 (new Q10) 

Mesoporous C 

SJC36 20Ni 30Bi/mesoporous C 

SJC44 20Ni 10Bi/mesoporous C 

SJC45 10Ni 20Bi/mesoporous C 
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SJC46 10Ni 5Fe 5Co 30Bi /mesoporous C 

Modifier to 

support 

SJC34 20Ni 30Bi/5MgO-Al2O3 

SJC35 20Ni 30Bi/5MgO-SiO2 (old Q10) 

SJC05 20Ni 30Bi/5MgO-SiO2 (new Q10) 

SJC06 
20Ni 30Bi/5MgO-SiO2 sol (fumed 

SiO2) 

SJC07 20Ni 30Bi/10MgO-SiO2 (new Q10) 

 

 

3.2 CATALYST TESTING 

All the catalysts testing were done in a fixed bed type of reactor fully integrated with a 

continuous flow system (BELCAT). It contains a quartz tubular reactor fixed into a 

stainless steel furnace which passes through reactor furnace thermo well wall. 0.3g of the 

as-synthesized sample of the catalyst was packed into the reactor. For activation and 

stabilization, the catalyst was pretreated at higher temperature under flowing air. The 

system was cooled down to reaction test temperature using nitrogen before commencing 

the reaction. The contact time for the feed (n-butane) was maintained at 0.093 g-

cat.h/mmol. Total reactants flow rates together with inert N2 was maintained at the fixed 

proportion (31.2 ml/min). The testing of the catalyst was done by changing reaction 

conditions of temperature (400, 450 and 500oC) and reactant feed ratio (O2/n-C4H10) of 1.0, 

2.0 and 4.0 mol/mol for oxygen to butane. 

Oxidative dehydrogenation reaction is exothermic in nature, hence to monitor the 

temperature of the catalyst bed, a thermocouple was inserted using a thermocouple well. 

Online GC (Agilent, 7890N) was used to analyze the reaction products. The GC is 
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equipped with flame ionization detector (FID) and GC-Gas pro capillary column with 

dimensions (length=60m, internal diameter=0.32mm) which was used for analyzing 

hydrocarbons and oxygenates products and a thermal conductivity detector (TCD) with 

Shin Carbon 80/100 mesh SS Column (having He as a carrier) and MS5A 60/80 mesh SS 

Column (having Ar as a carrier) for detecting gases including N2, O2, CO, CO2 and H2. The 

effluents were identified by comparing with known standard samples. n-butane conversion 

and products selectivity were determined using carbon balance. 

3.3 CATALYST CHARACTERIZATION 

All the as-synthesized catalysts were characterized for their physic-chemical properties 

using the following procedures and techniques as outlined: 

For Elemental composition in the various catalysts, ICP equipment ULTIMA 2 (HORIBA 

Scientific) was used to ascertain the weight percent of the various elements in the catalysts. 

For crystallinity test, powder x-ray diffraction (PXRD) was conducted with a desktop x-

ray diffractometer Rigaku Miniflex II for a diffraction angle of 5o to 80o using Cu Kα 

radiation (wavelength λ = 1.5406 Å) and 30 mA and 40 kV as operating parameters, a step 

size of 0.02o and a speed of 2o/min. 

Surface area and pore structure measurements (pore surface area, pore volume and pore 

diameter) were carried out using a Micrometrics ASAP 2020 equipment (Norcross GA). 

Prior to the adsorption measurements, 0.05g of the calcined catalyst sample was degassed 

under nitrogen flow for 3hr at 240oC. The adsorption isotherms were measured at -196oC 

(liquid nitrogen temperature). The pore surface area, pore volume and pore diameter were 

measured using BJH adsorption calculation method. 
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For redox property and acidic/basic character of the catalyst, temperature programmed 

reduction (TPR) and temperature programmed desorption (TPD) were conducted in a 

chemisorption apparatus (BELCAT-A-200). It is made up of a quartz sample holder having 

a furnace (suitable for high temperature), a mass spectrometer and a thermal conductivity 

detector (TCD). Injection of gas pulses with standard volume in helium background flow 

establishes the linearity of the TCD response. The redox property measurement was done 

using a gas mixture of Ar/H2 (95/5 vol%) having a total flow rate of 50cm3/min. 100 mg 

of the calcined catalyst was preheated for 3 hrs at 300oC in inert He after which it is cooled 

to room temperature. It was then heated at the rate of 20oC/min up to 900oC. H2 intake was 

recorded with a TCD and CuO was used as a reference for calibrating the consumption of 

H2. 

Ammonia and carbondioxide temperature programmed desorption (NH3 and CO2 TPD) 

were carried out using the same equipment (BELCAT system) for acidity and basicity 

measurements, respectively. 100 mg of the calcined catalyst sample was pretreated for 1hr 

at 500oC using inert He (50ml/min). It was then exposed to He/NH3 mixture (He/CO2 

mixture for CO2 TPD) in volume ratio of 95/5vol% for 30min at 100oC. Gaseous NH3 

(CO2) was removed by purging using He for 1hr and then TPD was performed using the 

same flow of He at a rate of 10oC/min up to 600oC and the desorbed gas (NH3 or CO2) was 

monitored using mass spectroscopy or TCD detector. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 CATALYST EVALUATION 

4.1.1 Sole Metal (Ni, Fe, Co) Catalyst 

The influence of different metal species on the performance of catalyst for oxidative 

dehydrogenation of n-butane to butadiene in the optimum reaction condition of 450 oC and 

O2/n-C4H10 = 2.0 is represented in Table 4.1. 

Table 4.1: Comparison of catalytic performance for mono main metal in (Ni, Fe or Co)-

Bi-O catalyst, Catalyst: 20 wt% main metal-30 wt% Bi-O/Al2O3, Reaction condition: 450 
oC, O2/n-C4H10 = 2.0  

Catalyst main metal  20Ni 20Fe 20Co 10Ni10Fe 10Ni10Co 10Fe10Co 10Ni5Fe5Co 

n-C4H10 conversion 

[%] 
24.0 16.2 21.4 22.2 30.7 18.3 30.0 

Selectivity*1 [C%]         

DH 75.1 43.3 54.9 54.0 68.9 46.7 66.4 

         1-C4H8 15.7 3.9 11.4 3.8 13.7 4.3 8.4 

          BD 36.4 29.6 21.9 43.2 33.3 33.2 46.0 

OC 23.7 54.9 45.1 45.7 31.0 52.4 33.4 

PO 1.2 1.8 0.0 0.3 0.1 0.9 0.2 

BD/DH % 48.5 68.3 39.8 80.1 48.3 71.1 69.2 

(1-C4H8 + BD)/DH 

%*2 
69.4 77.4 60.6 87.1 68.2 80.2 81.8 

BD/(1-C4H8 + BD) 

%*3 
69.8 88.2 65.7 91.9 70.8 88.6 84.6 

BD yield 8.7 4.8 4.7 9.6 10.2 6.1 13.8 
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Butadiene is produced as a second step reaction product from butadiene. The overall 

reaction including all the side products (partial oxidation, oxygenate and cracking) is 

shown in Fig.4.1. 

 

Fig.4.1: Selectivity chart from n-butane to butadiene, DH: oxidative dehydrogenation; BD: 

butadiene production from butene; OC: oxygenate formation and cracking; PO: partial 

oxidation to syngas; BD/DH: total DH inside; S1: 1st step of DH inside; S2: 2nd step of 

DH inside, in Table 1. 

 

From Table 4.1, it can be seen that butadiene selectivity for the sole metals is in the order 

Ni > Fe > Co while n-butane conversion is Ni > Co > Fe, while the overall dehydrogenation 

selectivity is Ni > Co > Fe, conversely oxygenate and cracking selectivity trend is Fe > Co 

> Ni and all the metal species shows very little partial oxidation selectivity. Ni shows the 

highest tendency of activating n-butane as well as hydrogen atom abstraction, this fact is 

possibly due to difference in metal-support interaction and acid-base properties of the metal 

species which strongly determines the catalyst performance. Table 4.1 also shows the inner 
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dehydrogenation selectivity to butadiene through the 1-butene intermediate as shown in 

Fig.4.2. 

 

Fig. 4.2. Route inside dehydrogenation for selective conversion from n-butane to 

butadiene including intermediate and by-product formation. Purple broken and blue 

dotted line squares mean *2 and *3 in Table 1, respectively. 

 

As can be seen from Table 4.1, for both 1st and 2nd step selectivity, the trend is Fe >Ni > 

Co, this shows that Fe function as a selective butadiene catalyst due its ability to switch 

easily from Fe+2 to Fe+3 and vice versa in oxidation/reduction cycle as reported by Park et 

al [65] eventhough it shows low activity for the overall reaction. Hence, Ni sole metal 

catalyst is the best among the three metals owing to its relative high activity and selectivity 

to butadiene.  

4.1.2 Binary Metal (Ni-Fe, Ni-Co, Fe-Co) Catalyst 

In order to investigate further the metal species effect on the catalytic performance for 

oxidative dehydrogenation reaction of n-butane to butadiene, the sole metal species were 

combined to form binary metals by substituting partially the 20 wt% of Ni from the 
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standard catalyst (20Ni-30Bi-O/Al2O3) as shown in Table 4.1. This shows that partial 

substitution of Ni by Fe up to 50 % substitution increases butadiene selectivity due to an 

improved dispersion on the support and redox properties enhancement. The activity was 

slightly constant for 50 % substitution but decreases with increase in Fe substitution, which 

is probably due to decrease in metal-support interaction and increase in catalyst acidity as 

manifested in the successive increase in oxygenate and cracking selectivity. Main 

selectivity of dehydrogenation as represented in Fig.4.1 also decreases with increase in Fe 

substitution. Partial oxidation selectivity remain very low even after substitution. This trend 

of conversion and selectivity is depicted clearly as shown in Fig.4.3. 

Fig. 4.3: Comparison of catalytic performance for binary main metal in (Ni-Fe)-Bi-O 

catalyst, Catalyst: 20 wt% main metal-30 wt% Bi-O/Al2O3, Reaction condition: 450 oC, 

O2/n-C4H10 = 2.0 

 

Fig.4.3 clearly shows the influence of combining Ni-Fe in a binary metal combination on 

n-butane conversion and butadiene selectivity. Also, it greatly improves (1-C4H8 + 

BD)/DH: selectivity at 1st step dehydrogenation, BD/(1-C4H8 + BD): selectivity at 2nd step 

dehydrogenation, and BD/DH: two step total selectivity, = [(1-C4H8 + BD)/DH] x [BD/(1-
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C4H8 + BD)] especially up to 50 % substitution which is also due an enhanced redox 

property as well as Ni-Fe-O, Bi2O3 and Al2O3 hierarchical nanoparticle cohabitation.  

Ni-Co binary metal oxide combination was also studied to show its own influence on the 

catalyst performance as represented in Table 4.1. From the table it can be seen that, Ni-Co 

binary metal oxide combination improves the catalyst activity (increased in conversion) 

mainly due to high surface area and an increased accessibility to active sites by cobalt oxide 

nanoparticle as reported by Junjiang et al [69]. It shows only little improvement in 

butadiene selectivity at 25 % substitution after which decrease in selectivity was observed. 

Ni-Co combination showed a gradual increase in oxygenate and cracking selectivity due 

to change in catalyst acidity by Co oxide substitution. A very negligible partial oxidation 

selectivity was observed indicating no activity completely by the various catalyst in favor 

of that reaction pathway. Also, this Ni-Co catalyst combination shows little improvement 

in both 1st step dehydrogenation selectivity, 2nd step dehydrogenation selectivity and the 

overall two step selectivity. It shows a fluctuating pattern as shown in Fig.4.4. This is due 

to the inability of Co to improve butadiene selectivity probably due to its weak strength in 

facilitating H2 abstraction in both 1st and 2nd step dehydrogenation. 
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Fig.4.4. Comparison of catalytic performance for binary main metal in (Ni-Co)-Bi-O 

catalyst, Catalyst: 20 wt% main metal-30 wt% Bi-O/Al2O3, Reaction condition: 450 oC, 

O2/n-C4H10 = 2.0 

 

Fe-Co binary metal oxide system was also investigated and the results shows that the 

catalyst performance directly depicts the properties of the two sole metal oxides. Co oxide 

property improves the n-butane conversion higher than sole metal Fe catalyst and Fe oxide 

acts to improve butadiene selectivity. Main selectivity of DH, OC and PO also lies between 

that of the two sole metals as shown in Table 4.1. 

4.1.3 Ternary Metal (Ni-Fe-Co) Catalyst 

The three sole metal oxide investigated were combined with a view of testing their overall 

effect on the catalyst performance. Fe and Co substituted 50 % of Ni as shown in Table 

4.1. The ternary metal combination resulted in high performance mainly due to double 

improvements of Ni in the butadiene selectivity by Fe due to its redox ability and in n-

butane conversion by Co due to its high surface area and easy accessibility to active sites. 

Main dehydrogenation selectivity decreases with ternary metal combination resulting to an 

increase in oxygenate and cracking selectivity possibly due to slight change in catalyst 

acidity. Partial oxidation selectivity also decreases with ternary metal combination. The 
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variation of the main selectivity with ternary metal substitution is clearly shown in Fig.4.5. 

Also the ternary metal combination shows clear improvement in butadiene selectivity at 

both 1st and 2nd step dehydrogenations which is mainly due to change in acid and base sites 

due to the hierarchical nanoparticle cohabitation of main metal (Ni, Fe and Co) oxide, 

Bi2O3 and Al2O3 support. 

                                                                                                                                                                
Fig.4.5. Comparison of catalytic performance for ternary main metal in (Ni-Fe-Co)-Bi-O 

catalyst, Catalyst: 20 wt% main metal-30 wt% Bi-O/Al2O3, Reaction condition: 450 oC, 

O2/n-C4H10 = 2.0 

 

4.1.4 Catalytic Performance using 1-butene Feedstock 

1-butene feed was used in order to confirm the activity and selectivity of the improved 

ternary metal (Ni-Fe-Co) catalyst for 2nd step dehydrogenation compared to the standard 

sole metal (Ni) catalyst. The result is presented in Table 4.2 and it clearly shows an 

improvement in butadiene selectivity but with same activity. Butadiene selectivity at both 

temperatures and for the two feed stocks is depicted clearly in Fig. 4.6. 
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Fig. 4.6: Performance of sole Ni catalyst and ternary metal catalyst with two different feed 

stocks. 

 

Table 4.2 also shows that no oxygenate and cracking (OC) as well as partial oxidation (PO) 

products formed at the 2nd step dehydrogenation. It is also clear that dehydrogenation 

selectivity is the same for both catalysts but different butadiene selectivity which shows 

difference in isomerization selectivity by the two catalysts. Sole Ni catalyst shows higher 

isomerization compared to the ternary catalyst due to strong acid sites present in the former 

but absent in the latter catalyst as was revealed by NH3 Temperature programmed 

desorption. 
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Table 4.2: Comparison between n-butane and 1-butene as feedstock for metal species in 

(Ni, Ni-Fe-Co)-Bi-O catalyst, Catalyst: 20 wt% (Ni, Ni-Fe-Co)-30 wt% Bi-O/Al2O3, 

Reaction condition: O2/n-C4H10 = 2.0  

Main metal 20Ni 10Ni-5Fe-5Co 

Feed nC4 1C4
= nC4 1C4

= 

Reaction temperature: oC 400  450  400  450  400  450  400  450  

nC4 or 1C4= conversion 15.0 24.0 72.0 74.3 16.4 28.5 69.6 74.3 

BD 35.2 36.4 45.6 41.3 51.7 46.3 49.4 47.7 

DH+ 94.2 75.1 95.8 93.4 85.1 66.9 95.1 93.3 

OC 4.1 23.7 3.3 4.3 14.5 32.9 2.9 4.3 

PO 1.7   1.2 0.8 2.3 0.4 0.2 2.0 2.4 

BD/DH+ 37.4 48.5 47.6 44.2 60.7 69.2 51.9 51.1 

BD yield 5.3 8.7 32.8 30.6 8.5 13.2 34.4 35.4 

*1 DH+: dehydrogenation and isomerization, BD: butadiene, OC: oxygenate and the cracked, 

PO: partial oxidation. *2 selectivity at 1st step dehydrogenation, *3 selectivity at 2nd step 

dehydrogenation 

  

4.1.5 Improved Catalyst Stability 

Ternary metal (Ni-Fe-Co) catalyst with the best performance was subjected to stability test 

under standard conditions: 450 oC, O2/n-C4H10 = 2.0, in order to test its suitability or 

otherwise for long period of time usage with little decline in performance. The results 

shows that the catalyst is stable for 10 h as time on stream. 
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Fig.4.7. Stability of (10Ni-5Fe-5Co)-30Bi-O/Al2O3 catalyst with time-on-stream 

 

It is clear from Fig. 4.7 that the catalyst shows stable activity with little decrease in 

butadiene selectivity mainly due to decline in 2nd step dehydrogenation selectivity as it 

shows steep fall with time compared to the 1st step dehydrogenation selectivity and this is 

possibly caused by active sites poisoning caused by carbon deposits thereby reducing the 

redox cycle efficiency. Also, main selectivity of dehydrogenation, oxygenate formation 

and partial oxidation shows an approximate constant trend with slight increase in the 

overall dehydrogenation selectivity. 

4.2 CATALYST CHARACTERIZATION 

This section further discussed the various characteristics of the catalyst including their 

surface area, active sites interaction with support, redox property, crystallinity as well as 

acid-base properties that determined their suitable performance or otherwise for the 

oxidative dehydrogenation reactions.  
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4.2.1 Surface area and pore structure  

The BET surface area and the pore structure for all the catalysts (sole metal, binary metal 

and ternary metal combination) are shown in Table 4.3. All the catalysts exhibited a lower 

surface area based on weight of catalyst relative to the Al2O3 support. The same trend is 

also observed in the pore surface area and pore volume. The catalysts surface area together 

with pore structure were also computed based on part weight of support due to metal oxides 

impregnation. It also shows that surface areas and pore volumes are still lower than that of 

the support due to pore volume shrinkage caused by metal oxide dispersion on the pore 

surface. 

Table 4.3.  Physical properties of 20wt% metal (Ni, Fe and Co)-30wt%Bi-O/Al2O3 

catalysts. 

Catalyst 

 (20wt%metal-

30wt%Bi-

O/Al2O3) 

Metal species 

BET surface area Pore surface area Pore volume 

Average 

pore 

diameter 

[m2/g- 

catalyst]a 

[m2/g- 

support]b 

[m2/g- 

catalyst]c 

[m2/g- 

support]d 

[cm3/g- 

catalyst]e 

[cm3/g- 

support]f 
[nm]g 

20Ni 136 218 157 251 0.38 0.61 9.6 

20Fe 169 269 191 304 0.45 0.71 9.4 

20Co 124 199 150 241 0.36 0.59 9.7 

10Fe10Ni 169 270 193 307 0.42 0.67 8.8 

10Co10Ni  143 229 161 257 0.38 0.61 9.5 

10Fe10Co 153 245 178 284 0.43 0.68 9.6 

5Fe5Co10Ni 165 263 184 294 0.41 0.65 8.8 

aBET surface area, c,e,gSurface area, pore volume and average pore diameter measured using BJH isotherm, b,d,f Surface area and pore 

volume calculated by volume based Al2O3 using the equation: SA or PV×[(MOx/M)+100]/100, where M=metal wt%; MOx=metal oxide 

wt%; SA = Surface Area; PV = Pore Volume. 
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Pore size distribution was plotted as shown in Fig. 4.8 to further see the influence of metal 

impregnation and dispersion on the pore structure (pore size distribution) of the catalyst 

relative to that of the support. Metal oxide dispersion lead mainly to constant/less pore 

diameter of the catalysts compared to that of the support. It can also be seen that sole metals 

(Ni, Fe, Co) have closer pore size distribution to the alumina support due to their low 

dispersion on the support compared to binary metal and ternary metal combinations that 

resulted in higher metal oxides dispersion.  

 

Fig. 4.8: Pore surface area distribution for the main metal composition (mono, binary and 

ternary of Ni, Fe and Co) in main metal-Bi-O/Al2O3 catalyst. 

 

It is clear from Fig.4.8 that metal species combination as is the case with binary metals (Ni-

Fe, Ni-Co and Fe-Co) and ternary metal (Ni-Fe-Co) reduces the average pore diameter to 

lower value compared to the sole metals (Ni, Fe, Co) case which is due to the effect metal 

mixing has on porosity. Ni and Fe sole metals are more highly dispersed in the support 

pores than Co due to its larger particles. Main metal species only lead to the change in pore 

size distribution because Bi2O3 contribution is the same in all the catalysts considered. It is 

also clear from Table 4.3 and Fig. 4.8 that ternary metal combination shows the least pore 

diameter and lowest pore size distribution which is mainly due to the coexistence of 
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different particle sizes of Ni, Fe and Co as well as an increased metal dispersion on the 

support. This findings clearly support the catalyst performance results as discussed earlier.  

4.2.2 X-ray Diffraction 

The x-ray diffraction (XRD) patterns of the catalysts for sole metal, binary metal and 

ternary metal combination are presented in Fig.4.9. XRD gives information mainly about 

phases present in a catalyst, crystal sizes and crystal amount (crystallinity). Intensity of 

diffraction peaks (peak height) signifies sample crystallinity while peak width signifies 

crystal sizes.  

 

Fig.4.9: X-ray diffraction pattern for the main metal composition (mono, binary and ternary 

of Ni, Fe and Co) in main metal-Bi-O/Al2O3 catalyst 

 

Jermy et al [30] studied NiO peaks in 20Ni-30Bi-O/Al2O3 and 20Ni-O/Al2O3 and found 

that no peaks of NiO was observed in 20Ni-30Bi-O/Al2O3 indicating that NiO is highly 

dispersed with a crystal size of 3 nm which cannot be detected by XRD, it only works to 
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promote Bi2O3 transition from tetragonal β-phase to monoclinic α-phase as compared to 

30Bi-O/Al2O3 that showed only β-phase which is highly crystalline and active for 

butadiene formation. Hence, diffraction angle of 25o to 35o was chosen to clearly show the 

characteristics peaks of Bi2O3 phase transition due to the proximity of phases angles of 

27.15o and 27.38o for α and β phase respectively. Standard catalyst (20Ni-30Bi-O/Al2O3) 

calcined at 590 oC shows α-Bi2O3 of 40 % and β-Bi2O3 of 60 % as reported by Jermy et al 

[56], this was used as a basis for comparing the metal species (Fe/Co) substituted catalysts. 

For the sole metals (Ni, Fe, Co), both Fe and Co catalysts shows lower diffraction peak 

indicating less crystallinity and α-Bi2O3 of higher percentage with broader peak width 

resulting from their smaller crystal sizes compared to Ni catalyst, where Fe and Co metal 

species make Bi2O3 less active as an oxygen supplier. 

For the binary metal and ternary metals, it is clear that with the percentage increase of Ni 

substitution by Fe and Co, the peak height decreases and peak width broadens mainly due 

to increased metal oxide dispersion caused by the substitution. This property coupled with 

the substitution influence on the redox property and acid/base character as will be 

discussed, strongly determines the overall catalyst performance. 

4.2.3 Temperature Programmed Desorption (NH3/CO2-TPD) 

This techniques were used to determine the acidity/basicity of the catalysts in which NH3-

TPD is for acidic character and CO2-TPD for basic character. The values (acid and base 

amount) obtained for the metal species substitution (sole metal, binary metal and ternary 

metal) are as shown in Table 4. The amount of acid/base related to NH3/CO2 desorbed was 

deconvolved to three strengths of weak, moderate and strong acid/base. 
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NH3-TPD has spectra showing first desorption peak between 100-250 oC which is a region 

of weak acid fraction followed by a region of moderate acid fraction at temperature 

between 250-400 oC and then a peak at > 400 oC indicating strong acid fraction. Catalysts 

of higher acid sites shows low dehydrogenation selectivity but favors oxygenate and 

cracking selectivity. Butadiene selectivity is not only determined by the acid sites in a 

catalyst but by the optimum acidic/basic sites ratio with higher basicity favoring desired 

butadiene production as reported by Raju et al [70] . Fig. 4.10 shows the plot for NH3/CO2-

TPD for the metal species investigated. 

 

Fig. 4.10: NH3 and CO2-temperature programmed desorption for the main metal 

composition (mono, binary and ternary of Ni, Fe and Co) in main metal-Bi-O/Al2O3 

catalyst 

 

It is clear from Fig. 4.10 that the sole metals showed regions on weak acid fraction and 

medium acid fraction which makes them have high acidity and their resulting relative low 

butadiene selectivity. Binary metals showed an improved butadiene selectivity due to their 
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high weak acid fraction with little or no medium acid fraction. Ternary metal combination 

shows only weak acid fraction hence its highest butadiene selectivity.  

For CO2-TPD, two distinct peaks are mainly observed at (150-170 oC) and (300-400 oC) 

indicating weak and strong basic sites respectively and this results mainly due to the 

interaction of CO2 with the surface hydroxyl groups. It is also clear from Fig. 4.10 that sole 

metals show mainly regions of weak base fraction with low moderate/strong base fractions. 

Ternary metal combination showed a reduced weak base fraction with a broad and enlarged 

moderate base fraction. 

Table 4.4: Metal species substitution temperature programmed analysis (NH3 and CO2-

TPD) 

Catalyst  

CO2-TPD 

Base amount [mmol/g]*1 

NH3-TPD 

Acid amount [mmol/g]*2 

I II III Total I II III Total 

20Ni 0.073 - 0.173 0.246 0.115 0.169 0.097 0.381 

20Fe 0.061 - 0.123 0.184 0.072 0.049 - 0.121 

20Co 0.067 - 0.134 0.201 0.176 0.202 0.095 0.473 

10Fe10Ni 0.107 - 0.254 0.361 0.077 0.056 - 0.133 

10Co10Ni 0.087 - 0.124 0.211 0.159 0.093 0.059 0.311 

10Fe10Co 0.086 - 0.140 0.226 0.155 0.094 0.071 0.320 

5Fe5Co10Ni 0.114 0.234 - 0.348 0.131 0.077 0.052 0.260 

*1: I (170 oC peak): weak base, II (300 oC peak): moderate base, III (400 oC peak): 

strong base *2: I (100-250 oC): weak acid, II (250-400 oC): moderate acid, III (>400 
oC): strong acid 
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From Table 4.4, it can be seen that the total acidity/basicity directly determines the 

performance of the catalysts mainly in butadiene and oxygenate/cracking products 

selectivity as well as 1st and 2nd step dehydrogenation selectivities. High basicity and low 

acidity favors dehydrogenation selectivity while the reverse favors oxygenate and cracking 

products formation. Jermy et al [56] reported the proposed reaction route and catalyst 

active sites for oxidative dehydrogenation of n-butane to butadiene over a Ni-Bi-O/Al2O3, 

and based on our findings, it became a fact that substituting Ni with Fe or/and Co in binary 

and ternary metal combination leads to basicity moderation and reduction in acidic strength 

resulting to improved 1st and 2nd step dehydrogenation selectivity, followed by butadiene 

selectivity. The presence of Fe in the ternary catalyst added to its basic character that 

improves H2 abstraction from both n-butane and butene intermediate hence improving the 

selectivity to butadiene. Co presence improves the activity due to its acidic character that 

helps improves butene intermediate desorption with an overall increase in the catalyst 

activity.  

4.2.4 Temperature Programmed Reduction 

This is used to determine the extent of catalytic active sites reducibility which strongly 

determines the catalyst activity. It is obtained using the reduction peak maxima as well as 

the amount of H2 uptake (mmol/g). Peak position depends on calcination temperature as 

reported by Jermy et al [56] and the study shows that four peaks are involved corresponding 

to I (low), II (low-middle), III (high-middle) and IV (high) H2 consumption temperature. 

The changes in reduction temperature are related to the state of NiO, Bi2O3 and support 

nanoparticles interaction. The 1st two peaks are related to NiO species, 3rd reduction peak 

is associated to Ni and Bi oxide species reduction and the final peak corresponds to isolated 
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bismuth oxide species. It has also been proven that NiO species are reduced mainly by n-

butane and butene intermediate and are re-oxidized by lattice oxygen species without 

oxygenate formation. The presence of oxygen enhances Ni redox cycle and reduces coke 

deposition caused by excessive reduced Ni species. Fig. 4.11 shows the TPR profiles of 

the catalysts studied. 

 

Fig.4.11: H2-temperature programmed reduction for the main metal composition (mono, 

binary and ternary of Ni, Fe and Co) in main metal-Bi-O/Al2O3 catalyst. 

 

From Fig.4.11 it can be seen that all the metal substituted catalysts showed lower reduction 

temperature peaks indicating the presence of more reducible species which agrees with the 

report by Ajayi et al [47] and is due to increased metal species interaction. Mechanism of 

dehydrogenation performed by redox cycle of sole main metal Ni species with Bi2O3 has 

been explained by Jermy et al [56]. Combined main metal species caused reducibility to 
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shifts to low and middle temperature region which has high concentration of oxygen 

species making reduction/oxidation very easy and hence favors oxygenate and cracking 

products formation. The results presented in Table 4.1 show high OC selectivity by all the 

mono, binary and ternary metals compared to the sole Ni catalysts. 

4.3 Modeling of Reaction on Metal (Ni-Fe-Co) Oxide Species 

Catalytic performance in oxidation reactions depends mainly on the acid/base character 

and the redox properties of the catalyst. Acidic/basic ratio of a catalyst is very important as 

it influence its hydrogen abstraction capability. Basicity of a catalyst is needed for alpha 

position methyl carbon hydrogen atom removal from n-butane. For selective butadiene 

production, the catalyst should have acidic character for adsorption of butene as well as 

basic sites for selective protons withdrawal. Metal species combination leads to adjusted 

acid and base sites preferable for highly selective oxidative dehydrogenation mainly due 

to the hierarchical nano-particle cohabitation of the main metal (Ni, Fe and Co) oxide, 

Bi2O3 and Al2O3 as represented in Fig. 4.12. 
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Fig. 4.12. Model of concerted metal effect on acid-base cohabitation over ternary metal 

(Ni-Fe-Co)-Bi oxide/ Al2O3 catalysts for oxidative dehydrogenation of n-butane (C4
0) to 

butadiene (C4
2=) 

 

4.4 Ni-(Mo-W-Bi)-O Catalyst 

Bi2O3 has been shown to be the main oxygen supplier (oxygen mobile oxide) for the Ni 

redox cycle in oxidative dehydrogenation of n-butane to butadiene using Ni-Bi-O/Al2O3 

catalyst. In order to confirm that role, Mo and W were used to partially/totally substitute 

Bi from the standard catalyst (20Ni30Bi-O/Al2O3). The obtained result is tabulated in Table 

4.5. 
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Table 4.5: Comparison of catalytic performance for various metal in Ni-(Bi, Mo, W)-O 

catalysts, Catalyst: 20 wt% Ni-30 wt% Bi-O/Al2O3, Reaction condition: 450 oC, O2/n-

C4H10 = 2.0  

Catalyst main metal  30Bi 13.77Mo 30W 4.6Mo20Bi 9.18Mo10Bi  10W20Bi 20W10Bi 

n-C4H10 conversion 

[%] 
20.1 16.2 18.5 15.8 10.4 23.2 20.7 

Selectivity*1 [C%]         

DH 89.4 29.0 13.6 74.5 56.4 70.5 40.6 

         1-C4H8 18.7  4.5  2.6  14.3  9.4 11.2  6.1 

          BD 43.3  13.2  4.5  34.3 26.5 36.9 20.8 

OC 9.2 16.4 18.8 10.8 9.4 12.9 20.0 

PO 1.5 54.7 67.6 14.8 34.2 16.6 39.3 

BD/DH % 48.5 45.6 32.9 46.1 47.0 52.3 51.3 

(1-C4H8 + BD)/DH 

%*2 
69.4 61.3 51.9 65.3 63.7 68.2 66.3 

BD/(1-C4H8 + BD) 

%*3 
69.8 74.4 63.3 70.6 73.9 76.8 77.3 

BD yield 8.7 2.1 0.8 5.4 2.8 8.5 4.3 

*1 DH: dehydrogenation, BD: butadiene, OC: oxygenate and the cracked, PO: partial oxidation.*2 

selectivity at 1st step dehydrogenation, *3 selectivity at 2nd step dehydrogenation 

 

Many researchers have reported the use of Bi-Mo promoted multicomponent oxide 

catalysts for the ODH of butenes to butadiene with good performance [65], [71]–[74]. 

Jermy et al [56] have shown that Bi/Ni atomic ratio required for an optimum performance 

of the standard catalyst is 0.42. Hence weight percent of both Mo and W were calculated 

while maintaining this ratio. From Table 4.5, it can be seen that the activities of Bi, Mo and 

W oxides is in the order Bi > W > Mo which is mainly due to the interaction of the active 

metal species (Ni) and the support (Al2O3) with the oxides. The oxides acts as oxygen 
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supplier for the oxidation/reduction cycle of the NiO. Bi2O3 compared to the other oxides 

also show a very high dehydrogenation selectivity of 89.4 [C%] with MoO3 and WO3 

favoring partial oxidation and oxygenate and cracking products formation. This is due to 

their inability to cause efficient hydrogen abstraction from both n-butane and butene 

intermediate and that consequently leads to their very low butadiene selectivity. As evident 

from the reaction scheme in Fig.2.4, for partial oxidation as well as oxygenate and cracking 

routes, excess amount of oxygen is needed which is an indication that MoO3 and WO3 

oxides supplied an uncontrolled oxygen amount that favor those reactions. Consequently, 

both catalysts of MoO3 and WO3 showed low 1st and 2nd step dehydrogenation selectivities. 

Binary combination of the oxides (Bi-Mo and Bi-W) showed performance which is 

intermediate of the two extremes of the two oxides. Even though partial substitution of Bi 

with W showed an improved activity possibly due to the increased dispersion and enhanced 

accessibility to active sites but it still shows low dehydrogenation as well as butadiene 

selectivity. This shows that the redox cycle of the metal reduces with Bi substitution 

thereby increasing selectivity to undesired partial oxidation and cracking products. 

The trend of Mo-Bi performance is as shown in Fig. 4.13. It is clear from the figure that 

butadiene selectivity decreases with increased loading of Mo. The conversion also 

decreases with a slight increase when Mo completely substitutes Bi. Conversely, partial 

oxidation increases with increasing Mo weight percent which clearly indicates that Ni-

MoO3 is more selective towards COx products formation. This is because of the interaction 

of the oxides which facilitates oxidation reaction in preference to dehydrogenation. This is 

also related to acidity/basicity character of the catalyst as will be revealed by NH3/CO2 

temperature programmed desorption. 



58 

 

Butadiene overall selectivity and 1st and 2nd selectivities showed an almost constant trend 

with increase in Mo content. 

Fig.4.13. Comparison of catalytic performance for metal species in Ni-(Mo-Bi)-O catalyst, 

Catalyst: 20 wt% Ni-30 wt% Bi-O/Al2O3, Reaction condition: 450 oC, O2/n-C4H10 = 2.0  

 

In order to study further, the influence of substituting Bi with Mo on the catalytic 

performance, O2/n-C4H10 molar ratio of 1, 2 and 4 were studied at a reaction temperature 

of 400oC as shown in Fig.4.14. Conversion increases clearly with increase in the molar 

ratio with a great increment in the case of only Bi and Mo. This increment is because excess 

oxygen activates n-butane feed especially for other competitive reactions of partial 

oxidation and oxygenate and cracking. 
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Fig.4.14. Comparison of catalytic performance for metal species in Ni-(Mo-Bi)-O catalyst, 

Catalyst: 20 wt% Ni-30 wt% Bi-O/Al2O3, Reaction condition: 400 oC  

 

Main dehydrogenation selectivity decreases with increase in O2/n-C4H10 molar ratio with 

20Ni13.77Mo catalyst showing the greatest decrease of less than 20[C%] for O2/C4 = 4.0, 

which is due to decrease in catalyst selectivity towards dehydrogenation reaction and hence 

butadiene formation, on the contrary, partial oxidation increases. The trend of W-Bi 

performance shown in Fig. 4.15. It is clear from the figure that butadiene selectivity 

decreases with increased loading of W. The conversion increases with partial substitution 

of Bi with W indicating that there is an enhanced dispersion with W and Bi, this decreases 

for only W showing that Bi is more active than W which agrees with the report of Solsona 

et al [75] who reported that catalyst activity and reducibility decreases with increase in W 

content in Ni-W-O mixed metal oxide catalyst when used for the ODH of ethane. 

Conversely, partial oxidation increases with increasing W weight percent which clearly 

indicates that Ni-WO3 is more selective towards COx products formation. This is because 

of the interaction of the oxides which facilitates oxidation (partial/complete) reaction in 
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preference to dehydrogenation. This is also related to acidity/basicity character of the 

catalyst as will be revealed by NH3/CO2 temperature programmed desorption. 

 

Fig.4.15. Comparison of catalytic performance for metal species in Ni-(W-Bi)-O catalyst, 

Catalyst: 20 wt% Ni-30 wt% Bi-O/Al2O3, Reaction condition: 450 oC, O2/n-C4H10 = 2.0  

 

Butadiene overall selectivity as well as 1st and 2nd selectivities showed an almost constant 

trend for partial W substitution but decreased further for only W. To study further the 

influence of substituting Bi with W on the catalytic performance, O2/n-C4H10 molar ratio 

of 1, 2 and 4 were studied at a reaction temperature of 400oC as shown in Fig.4.16. 

Conversion increases clearly with increase in the molar ratio for all the substitution both 

partial and full even though Bi still maintained higher conversion at the higher O2/C4 ratio. 

This increment is because excess oxygen activates n-butane feed especially for other 

competitive reactions of partial oxidation and oxygenate and cracking. 
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Fig.4.16. Comparison of catalytic performance for metal species in Ni-(W-Bi)-O catalyst, 

Catalyst: 20 wt% Ni-30 wt% Bi-O/Al2O3, Reaction condition: 400 oC  

 

It is clear from the figure that main dehydrogenation selectivity decreases with increase in 

molar ratio showing that as the amount of oxygen increases all the catalysts tends to show 

reduced dehydrogenation selectivity. The case of Ni-W shows a very low dehydrogenation 

selectivity which further decreases as the molar ratio increases but on the contrast favors 

partial oxidation as shown in Table 4.5. Butadiene selectivity also decreases for the W 

substitution with increase in the molar ratio which is clearly the opposite of Bi catalyst that 

showed an increase in BD selectivity with increase in molar ratio. For 30wt% W, BD 

selectivity remained at less than 10 [C%] for all the molar ratios studied, this shows that 

W-rich catalysts are not selective for dehydrogenation reactions but rather oxidation 

products. This agrees with the reports by Solsona et al [75], [76] which shows the reaction 

networks for W-rich catalysts clearly favoring COx products. 
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4.4.1 Catalyst Characterization 

4.4.1.1 Surface area and pore structure  

The physical properties of all the catalysts (BET surface area and pore structure) are shown 

in Table 4.6. All the catalysts exhibited a lower specific surface area based on weight of 

catalyst but maintained almost a constant value when compared per gram of the Al2O3 

support especially at total Bi substitution by Mo and W. The same trend is also observed 

in the pore surface area and pore volume. This agrees with the report by Abello et al [77], 

[78] and Heracleous et al [79]. The decrease in the specific surface area has been attributed 

to the partial coverage of the pores of the support by molybdenum species and also the 

presence of W heteroatom that prevents NiO crystallization as reported by Solsona et al 

[75]. It can also be concluded that the lower surface areas and pore volumes are due to pore 

volume shrinkage caused by metal oxide dispersion on the pore surface. 
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Table 4.6.  Physical properties of 20wt%Ni-30wt% (Bi, Mo, W)-O/Al2O3 catalysts. 

Catalyst 

 (20wt%metal-

30wt%Bi-

O/Al2O3) 

Metal species 

BET surface area Pore surface area Pore volume 

Average 

pore 

diameter 

[m2/g- 

catalyst]a 

[m2/g- 

support]b 

[m2/g- 

catalyst]c 

[m2/g- 

support]d 

[cm3/g- 

catalyst]e 

[cm3/g- 

support]f 
[nm]g 

Al2O3 283   - 331   - 0.85   - 10.3 

30Bi 136 218 157 251 0.38 0.61 9.6 

13.77Mo 194 284 206 301 0.48 0.70 9.3 

30W 182 297 210 342 0.47 0.76 8.9 

4.6Mo20Bi 166 256 186 287 0.45 0.69 9.6 

9.18Mo10Bi  187 281 212 319 0.48 0.71 9.0 

10W20Bi 159 255 187 300 0.46 0.73 9.8 

20W10Bi 174 281 199 322 0.49 0.80 9.9 

aBET surface area, c,e,gSurface area, pore volume and average pore diameter measured using 

BJH isotherm, b,d,f Surface area and pore volume calculated by volume based Al2O3 using 

the equation: SA or PV×[(MOx/M)+100]/100, where M=metal wt%; MOx=metal oxide 

wt%; SA = Surface Area; PV = Pore Volume. 

4.4.1.2 X-ray Diffraction 

The x-ray diffraction (XRD) patterns of the catalysts for Mo and W substituting Bi 

partially/totally are presented in Fig.4.17. XRD reveals the phases present in a catalyst, 

crystal sizes and crystal amount (crystallinity). Catalysts crystallinity are detected by the 

intensity of diffraction peaks (peak height) while peak width signifies crystal sizes.  
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Fig.4.17a: X-ray diffraction pattern for Mo substituting Bi in Ni-Bi-O/Al2O3 catalyst 

 

 

 

Fig.4.17b: X-ray diffraction pattern for the W substituting Bi in Ni-Bi-O/Al2O3 catalyst 

 

Mo and W compounds mainly showed no diffraction lines due to their amorphous nature 
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et al that studied Mo/ Al2O3 catalysts for the ODH of propane and revealed that the XRD 

of impregnated Mo catalysts only showed characteristic peaks of the support (Al2O3) [77]. 

No peaks of NiO was observed which agrees also with the report by Jermy et al [30]. 

Heracleous et al also reported that Mo-containing compounds were not detected by XRD 

due to their amorphous nature [34]. Mo and W catalysts showed almost no peaks for the 

case of full substitution indicating that no Bi2O3 is present and clearly reveals their 

amorphous nature and dispersion on the support. This also reveals that they showed lower 

selectivity to butadiene because of their inability to maintain the oxygen supply that 

stabilizes the redox cycle of the active specie. For the partial substitution, the peak height 

decreases with increasing Mo content indicating less crystallinity and the peak width 

broadens which signifies smaller crystal sizes. For W substitution, the peak height remains 

almost constant but shifted slightly from the β-Bi2O3 phase angle indicating the appearance 

of new crystalline phases which also agrees with the report by Solsona et al [76]. 

4.4.1.3 Temperature Programmed Desorption (NH3/CO2-TPD) 

As explained earlier, these techniques are used to determine the acidity/basicity of the 

catalysts in which NH3-TPD is for acidic character and CO2-TPD for basic character. For 

the case of Mo and W substituting Bi, the amount of NH3 and CO2 desorbed are shown in 

Table 4.7. The amount of acid/base related to NH3/CO2 desorbed was deconvolved to three 

strengths of weak, moderate and strong acid/base. 

Cracking and partial oxidation selectivities are favored by catalysts with higher acid sites 

with low dehydrogenation selectivity. Butadiene selectivity is favored by higher basicity 

or a relatively low acidic/basic ratio of a catalyst. Table 4.7 clearly shows that the acidity 

increases with increasing substitution with sole Mo/W having the highest acidity (acidic 
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sites) and on the contrary the basic character decreases. Fig. 4.18 shows the plot for 

NH3/CO2-TPD for the various substituted catalysts species. 

 

 

Fig. 4.18: NH3 and CO2-temperature programmed desorption for the substitution of Bi by 

Mo and W in 20Ni-30Bi-O/Al2O3 catalyst. 
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From Fig. 4.18, it is clear that the total substitution of Bi by Mo and W gave catalysts with 

the three regions of weak, medium and strong acid fractions which makes them have high 

acidity and their resulting relative low butadiene selectivity. Partial substitution of Mo/Bi 

and W/Bi catalysts showed an improved butadiene selectivity due to their weak and 

medium acid fractions only. The reverse is obtained for the case of CO2-TPD as shown in 

Fig. 4.18, Mo and W rich catalysts show mainly regions of weak base fraction and moderate 

base fractions which further decreases as the substitution percentage increases. This further 

explains why Mo/W substituted showed a consistent decrease in dehydrogenation as well 

as butadiene selectivities.  
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Table 4.7: Metal species substitution temperature programmed analysis (NH3 and CO2-

TPD) 

Catalyst  

CO2-TPD 

Base amount [mmol/g]*1 

NH3-TPD 

Acid amount [mmol/g]*2 

I II III Total I II III Total 

30Bi 0.073 - 0.173 0.246 0.115 0.169 0.097 0.381 

13.77Mo 0.190 0.251 0.147 0.588 - 0.076 - 0.076 

30W 0.380 0.208 0.183 0.771 0.003 0.058 - 0.061 

4.6Mo20Bi 0.147 0.130 - 0.277 0.024 0.165 - 0.189 

9.18Mo10Bi  0.186 0.097 0.072 0.355 0.004 0.071 - 0.075 

10W20Bi 0.138 0.184 - 0.322 0.041 0.047 - 0.088 

20W10Bi 0.294 0.191 - 0.485 0.017 0.078 - 0.095 

*1: I (170 oC peak): weak base, II (300 oC peak): moderate base, III (400 oC peak): 

strong base *2: I (100-250 oC): weak acid, II (250-400 oC): moderate acid, III (>400 
oC): strong acid 

  

4.5 Role of Different Supports 

The effects of different support on the activity (conversion) and butadiene selectivity in 

Ni-Bi-O metal species under the typical reaction condition: 450 
o
C, O2/n-C4H10 = 2.0 are 

shown in Table 4.8. The dehydrogenation products includes (DH: 1-butene, t-2-butene, cis-

2-butene, 1,3-butadiene: BD), oxygenate formation and cracking products (OC: carboxylic 

acids and lighter olefins), and partial oxidation (PO: CO and H2). The other gases CO2, 

CH4, C2H6 and C3H8 were also detected but in negligible quantities. 
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Table 4.8: Comparison of catalytic performance for various metal in Ni-Bi-O catalysts, 

Catalyst: 20 wt% Ni-30 wt% Bi-O/Different supports, Reaction condition: 450 oC, O2/n-

C4H10 = 2.0 

Catalyst supports Al2O3 SiO2 Mesocarbon  Silicalite MCM41 MSU foam 

n-C4H10 conversion [%] 24.0 15.7 24.5 12.4 12.9 26.1 

Selectivity*1 [C%]        

DH 75.1 87.8 35.5 71.0 82.3 86.6 

         1-C4H8 15.7 28.3 14.0  30.1 15.5 16.6 

          BD 36.4 35.5 12.7  18.0 44.2 50.8 

OC 23.7 8.2 64.5 24.0 10.4 11.8 

PO 1.2 4.0 0.0 5.0 7.3 1.6 

BD/DH % 48.5 40.4 35.7 25.4 53.7 58.7 

(1-C4H8 + BD)/DH %*2 69.4 72.6 75.1 67.8 72.5 77.8 

BD/(1-C4H8 + BD) %*3 69.8 55.6 47.6 37.4 74.1 75.4 

BD yield 8.7 5.6 3.1 2.2 5.7 13.2 

*1 DH: dehydrogenation, BD: butadiene, OC: oxygenate and the cracked, PO: partial 

oxidation,*2selectivity at 1st step dehydrogenation, *3 selectivity at 2nd step dehydrogenation 

 

The order of the butadiene selectivity as the catalyst support is MSU foam > MCM41 

>Al2O3 > SiO2 > Silicalite > Mesocarbon, while n-butane conversion is MSU foam > 

Mesocarbon > Al2O3 > SiO2 > MCM41=Silicalite. As for main reaction selectivity, DH 

selectivity Al2O3 has the highest followed by SiO2 while mesocarbon has the least DH 

selectivity while the opposite trend is observed in OC selectivity, this shows that 

mesocarbon support serve as a more selective catalyst for cracking owing mainly due to its 

high acidic character and least contribution to active species redox cycle, it shows good 

conversion because of the availability of high surface area for good dispersion. Siliceous 
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materials (SiO2, MSU foam and MCM41) on the other hand showed good butadiene 

selectivity but have weak activity, this is due to their inability to activate n-butane and 1-

butene for proper conversion. Silicalite which is a polymorph of silica having a structure 

analogous to zeolites also shows low conversion and butadiene selectivity.  Additionally, 

PO selectivity remains negligibly small in all the supports studied. This fact shows the Ni-

Bi-O metal oxides cannot perform efficiently without the support as catalyst for the ODH 

of n-butane to butadiene. Fig. 4.19 depicts clearly the role of supports for the ODH reaction. 

 

Fig.4.19. Comparison of catalytic performance for different supports species in Ni-Bi-O 

catalyst, Catalyst: 20 wt% Ni-30 wt% Bi-O/support, Reaction condition: 450 oC, O2/n-

C4H10 = 2.0 

Among the supports, butadiene selectivity over MSU foam in O2/n-C4H10 ratio: 2.0 at 450 

oC was the highest (50.8 C%) with the highest n-butane conversion (26.1%) followed by 

Al2O3, and MCM41. In particular Al2O3 support showed comparatively less tendency 

towards oxygenate and partial oxidation product selectivity. Contrarily mesocarbon 
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support catalyst has a strong tendency toward OC: oxygenate formation followed by 

cracking (64.5 C%). Fig. 4.20 shows the main selectivities (DH, OC and PO) for the 

different supports studied. 

 

Fig.4.20. Comparison of catalytic performance for different supports species in Ni-Bi-O 

catalyst, Catalyst: 20 wt% Ni-30 wt% Bi-O/support, Reaction condition: 450 oC, O2/n-

C4H10 = 2.0  

 

In Table 4.8, selectivity parameters inside dehydrogenation for selective conversion from 

n-butane to butadiene through 1-butene intermediate are also shown as (1-C4H8 + BD)/DH: 

selectivity at 1st step dehydrogenation, BD/(1-C4H8 + BD): selectivity at 2nd step 

dehydrogenation, and BD/DH: two step total selectivity, = (1-C4H8 + BD)/DH x BD/(1-

C4H8 + BD), based on the concept for selective conversion from n-butane to butadiene 

shown in Fig. 3. B) 1-butene intermediate. The values of the parameters in Table 1 shows 

as for that for the different support system the values of the selectivity at 1st step 

dehydrogenation: (1-C4H8 + BD)/DH are similarly around 70%, while the values of the 
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selectivity at 2nd step dehydrogenation: BD/(1-C4H8 + BD) varies from 75.4% with MSU 

foam to 37.4% for silicalite which shows that the later has a very low tendency of 

enhancing H2 abstraction from butene intermediate. From the result, MSU foam shows the 

highest value of the two step total selectivity: BD/DH (58.7%).  Fig.4.21 shows clearly 

how the 1st and 2nd step dehydrogenation as well total selectivity varies from one support 

to the other. 

 

Fig.4.21. Comparison of catalytic performance for different supports species in Ni-Bi-O 

catalyst, Catalyst: 20 wt% Ni-30 wt% Bi-O/support, Reaction condition: 450 oC, O2/n-

C4H10 = 2.0 

4.6 Support Modification with Magnesia (MgO) 

Acidic or basic property of the support controls the catalyst selectivity and reactivity due 

to their influence on reactants adsorption and product desorption. Catalyst with acidic 

support favor basic reactant adsorption and acidic product desorption, hence with 

controlled acidic character of support, a catalyst can be designed with higher selectivity in 

oxidative dehydrogenation reaction. Appropriate modification of support by MgO led to 
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an increase in the surface nickel active sites which could easily be reduced and also 

prevented the formation of NiAl2O4 spinel species [80].To confirm this, Al2O3 and SiO2 

supports that have shown good dehydrogenation tendencies were modified with magnesia 

(basic oxide) and the effect is as shown in Table 4.9. 

Table 4.9: Comparison of catalytic performance for various supports in Ni-Bi-O catalysts, 

Catalyst: 20 wt% Ni-30 wt% Bi-O/MgO-supports, Reaction condition: 450 oC, O2/n-C4H10 

= 2.0  

Metal species 20Ni30Bi 20Ni30Bi 
10Ni5Fe5Co 

30Bi 
20Ni30Bi 20Ni30Bi 20Ni30Bi 10Ni5Fe5Co30Bi 

Support Al2O3 SiO2 Al2O3 
MgO-

Al2O3 

MgO-

SiO2 

MgO-

fumed 

SiO2 

MgO-fumed 

SiO2 

n-C4H10 

conversion [%] 
24.0 15.7 28.5 20.2 15.0 20.3 14.8 

Selectivity*1 

[C%]  
       

DH 75.1 87.8 66.9 65.0 84.3 87.2 89.8 

         1-C4H8 15.7 28.3 8.4 16.0 22.7 23.3 16.8 

          BD 36.4 35.5 46.3 28.6 34.2 40.8 42.8 

OC 23.7 8.2 32.9 35.0 10.0 9.2 10.2 

PO 1.2 4.0 0.2 0.0 5.7 3.6 0.0 

BD/DH % 48.5 40.4 69.2 44.0 40.6 46.8 47.7 

(1-C4H8 + 

BD)/DH %*2 
69.4 72.6 81.8 68.6 67.5 73.5 66.4 

BD/(1-C4H8 + 

BD) %*3 
69.8 55.6 84.6 64.2 60.2 63.7 71.9 

BD yield 8.7 5.6 13.2 5.8 5.1 8.3 6.3 
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 From Table 4.9, it can be seen that modifying Al2O3 with MgO has no effect on the catalyst 

conversion as it is maintained at 20% but reduces its ability to selectively enhance 

butadiene production, main dehydrogenation selectivity decreases from 89.4 [C%] to 65.0 

[C%] with a resulting increase in oxygenate and cracking products selectivity from 9.2 

[C%] to 35.0 [C%], this shows that magnesia modification on Al2O3 affects its 

acidity/basicity ratio which determines its H2 abstraction ability. MgO modification shows 

little effect on SiO2 support in both its activity and butadiene selectivity, this shows that 

the catalyst acidity/basicity ratio is not affected by the modification. Similarly active metal 

species (Ni) redox cycle remain unaltered. MgO modification on fumed SiO2 also shows 

no effect on the catalyst activity but increases butadiene selectivity, the non-porosity of the 

fumed silica makes the activity almost constant because there is no effect on metal species 

dispersion. Fig.22 shows the various catalysts activities and butadiene selectivity.  
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Fig.22. Comparison of catalytic performance for different MgO-supports species in Ni-Bi-

O catalyst, Catalyst: 20 wt% Ni-30 wt% Bi-O/MgO-support, Reaction condition: 450 oC, 

O2/n-C4H10 = 2.0  

 

Ternary metal composition (10Ni-5Fe-5Co)-30Bi supported on Al2O3 and MgO-fumed 

SiO2 shows that the active metal species gives a better activity on the Al2O3 support due to 

the high surface area available for metal-support interaction compared to the MgO-fumed 

SiO2 support which has less metal-support interaction and hence low activity. Main 

dehydrogenation selectivity of the ternary catalyst is higher with fumed SiO2 than with 

Al2O3 which is because mild acidity of the latter act to increase oxygenate and cracking 

selectivity of the catalyst which is 32.9 [C%] as compared to 10.2 [C%] for the MgO-fumed 

SiO2. Fig.4.23 clearly shows how the main reaction selectivities of DH, OC and PO varies 

from unmodified and modified catalysts. 
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Fig.4.23. Comparison of catalytic performance for different MgO-supports species in Ni-

Bi-O catalyst, Catalyst: 20 wt% Ni-30 wt% Bi-O/MgO-support, Reaction condition: 450 
oC, O2/n-C4H10 = 2.0 

 

All the catalysts showed low partial oxidation selectivity with SiO2 and MgO-SiO2 having 

slightly higher values. For all the catalysts studied, ternary metal combination supported 

on Al2O3 showed the highest overall selectivity as well as 1st and 2nd step dehydrogenation 

selectivities which is an indication of its ability to abstract H2 from both n-butane and 

butene intermediate because of the cooperation of the active metal species (Ni, Fe, Co) in 

enhancing dispersion and reducibility. Fig.4.24 compares the inside selectivities of both 

the MgO modified and unmodified catalysts. 
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Fig.4.24. Comparison of catalytic performance for different MgO-supports species in Ni-

Bi-O catalyst, Catalyst: 20 wt% Ni-30 wt% Bi-O/MgO-support, Reaction condition: 450 
oC, O2/n-C4H10 = 2.0 

 

4.6.1 Catalyst Characterization. 

4.6.1.1 Surface area and pore structure  

The BET surface area and pore structure of all the catalysts obtained from MgO support 

modifications are shown in Table 4.10. All the modified catalysts showed a lower specific 

surface area based on weight of catalyst compared to that of unmodified catalysts which 

indicates that basic oxide modification has negative effect on the catalysts surface area and 

the area further decreases with increasing basic oxide content which agrees with the report 

by Siddhartha et al [80]. The same trend is also observed in the pore surface area and pore 
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volume especially in the case of modified fumed SiO2 support due to its non-porous nature. 

It can also be concluded that the lower surface areas and pore volumes are due to pore 

volume shrinkage caused by metal oxide dispersion as well as the strong interaction of 

MgO with the active metal phases which affects the nature of the metal crystallite. 

Table 4.10.  Physical properties of 20wt%Ni-30wt% Bi-O/MgO-supports catalysts. 

Catalyst 

 (20wt%metal-

30wt%Bi-

O/Al2O3) 

Metal species 

BET surface area Pore surface area Pore volume 

Average 

pore 

diameter 

[m2/g- 

catalyst]a 

[m2/g- 

support]b 

[m2/g- 

catalyst]c 

[m2/g- 

support]d 

[cm3/g- 

catalyst]e 

[cm3/g- 

support]f 
[nm]g 

Al2O3 283   - 331   - 0.85   - 10.3 

20Ni30Bi 136 218 157 251 0.38 0.61 9.6 

10Ni5Fe5Co 165 263 184 294 0.41 0.65 8.8 

Ni/MgO-Al2O3 124 197 146 232 0.37 0.58 10.1 

Ni/MgO-SiO2 135 215 141 225 0.45 0.71 12.6 

Ni/MgO-

fumed SiO2  89 142 87 138 0.56 0.90 26.0 

NiFeCo/MgO-

fumed SiO2 77 122 75 119 0.60 0.96 32.3 

aBET surface area, c,e,gSurface area, pore volume and average pore diameter measured using 

BJH isotherm, b,d,f Surface area and pore volume calculated by volume based Al2O3 using 

the equation: SA or PV×[(MOx/M)+100]/100, where M=metal wt%; MOx=metal oxide 

wt%; SA = Surface Area; PV = Pore Volume. 

4.6.1.2 X-ray Diffraction 

The x-ray diffraction (XRD) patterns of the catalysts having MgO modified supports are 

shown in Fig.4.25. As discussed in the earlier part, the phases present in a catalyst, crystal 
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sizes and crystal amount (crystallinity) are revealed by XRD. The crystallinity of the 

catalysts are detected by the intensity of diffraction peaks (peak height) and crystal sizes 

are determined by the peak width.  

 

Fig.4.25: X-ray diffraction pattern for the MgO modifying supports Ni-Bi-O/supports 

catalyst 

 

From Fig. 4.25, it is clear that MgO modification on Al2O3 support reduces the β-Bi2O3 

phase (active phase for butadiene formation) but in contrary increases the α-Bi2O3 phase. 

This explains why BD selectivity decreases for the modified support relative to the 

unmodified, because the Ni redox cycle is not stabilized due to the inefficient O2 supply by 

Bi2O3. For the case of MgO-fumed SiO2 support, Bi2O3 peak reduces and almost 

disappeared for the case of ternary metals, this clearly indicates that the phase becomes 

highly dispersed in the support phase and only the peaks corresponding to the supports are 

observed. 
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4.6.1.3 Temperature Programmed Desorption (NH3/CO2-TPD) 

The amount of NH3 and CO2 desorbed for the case of MgO modified supports catalysts are 

presented in Table 4.11. The amount of acid/base related to NH3/CO2 desorbed was 

deconvolved to three strengths of weak, moderate and strong acid/base. Fig. 4.26 shows 

the plot for NH3/CO2-TPD for the various substituted catalysts species. 

                                  

 

Fig. 4.26: NH3 and CO2-temperature programmed desorption for the MgO support 

modifications in Ni-Bi-O/supports catalysts. 
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From Fig. 4.26, it can be concluded that MgO modification of the supports lead to a 

reduction in the catalyst acidity which resulted in an increase in the BD selectivity of the 

catalysts due to the increased in H2 abstraction from both n-butane and butenes 

intermediate by the catalysts. The case of CO2-TPD for the catalysts did not really show a 

clear improvement especially for the case of SiO2 and fumed SiO2 supports which 

conclusively indicates that MgO modification on the supports plays little role in the catalyst 

basic character, but improves on overall the basic/acidic ratio which is required for high 

BD selectivity.  

Table 4.11: MgO support modifications temperature programmed analysis (NH3 and CO2-

TPD) 

Catalyst  

CO2-TPD 

Base amount [mmol/g]*1 

NH3-TPD 

Acid amount [mmol/g]*2 

I II III Total I II III Total 

20Ni 0.073 - 0.173 0.246 0.115 0.169 0.097 0.381 

10Ni5Fe5Co 0.114 0.234 - 0.348 0.131 0.077 0.052 0.260 

Ni/MgO-

Al2O3 
0.174 - - 0.174 0.234 0.086 0.034 0.354 

Ni/MgO-SiO2 0.076 - - 0.076 0.069 0.015 0.004 0.088 

Ni/MgO-

fumed SiO2  
0.058 - - 0.058 0.041 0.027 0.006 0.074 

NiFeCo/MgO-

fumed SiO2 
0.047 0.021 - 0.068 0.055 0.015 0.004 0.074 

*1: I (170 oC peak): weak base, II (300 oC peak): moderate base, III (400 oC peak): 

strong base *2: I (100-250 oC): weak acid, II (250-400 oC): moderate acid, III (>400 
oC): strong acid 

  



82 

 

4.7 Stability Test of Catalysts with Good Performance 

Catalysts with the best performance under the various groups studied were subjected to 

stability test under standard conditions: 450 oC, O2/n-C4H10 = 2.0, in order to test their 

suitability for long period of time usage (10 h time on stream). This is in order to confirm 

whether they have satisfied the three properties that determine catalyst performance 

(Activity, selectivity and stability). The catalysts are: 

4.7.1 20Ni-30Bi-O/Al2O3 catalyst 

This catalyst is highly stable under both reaction and regeneration conditions which is 

mainly due to the cohabitating nature of its oxides which greatly enhanced the redox cycle 

and present great resistance to most forms of deactivation. Also, the support used has high 

surface area and is very stable under the temperature range for most catalytic reactions. 

Fig. 4.27 shows the stability diagram of the catalyst showing how the conversion, butadiene 

selectivity, main selectivities as well as inside selectivities varies with time on stream. 

  
Fig.4.27.   Stability of 20Ni-30Bi-O/Al2O3 catalyst with time-on-stream 
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From the Fig.4.27, it can be seen that the catalyst activity remain stable around 20% even 

after the 10h reaction time. Butadiene selectivity, main dehydrogenation selectivity, 

oxygenate and cracking selectivity and partial oxidation selectivity remained at 40[C%], 

90[C%], <10[C%] and negligible respectively. Similarly, 1st and 2nd dehydrogenation 

selectivity steps also remained at constant values for the whole period. This can be 

attributed to the efficient redox cycle system by the active species of the catalyst as well as 

an efficient metal-support interaction as well as good usage of gas phase oxygen to burn 

off carbon deposits that may otherwise lead to coking thereby deactivating the catalyst by 

poisoning its active sites. 

4.7.2 20Ni-30Bi-O/MSU foam   

The stability diagram of the catalyst is shown in Fig.4.28, the catalyst shows a continuous 

decline in activity from almost 40% to less than 20% after the 10h time on stream. This is 

a strong indication that the catalyst has no stable performance hence it deactivates fast. 

 

Fig.4.28.   Stability of 20Ni-30Bi-O/MSU foam catalyst with time-on-stream 
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The catalyst has the same metal species composition as 20Ni-30Bi-O/Al2O3, the only 

difference is the type of support. This clearly shows that metal-support interaction 

including dispersion and reducibility of active species on the support as well as the 

acidic/basic character of the metal/support plays a great role in the overall catalytic 

performance. MSU foam is a meso structured silica having a very high surface area, hence 

supposed to show great dispersion of active species but pore blockage by unwanted 

materials lead to the decline in performance. The catalyst showed an improved main 

dehydrogenation selectivity but a declining butadiene selectivity. 

4.7.3 20Ni-30Bi-O/MgO-fumed SiO2 

The performance of the catalyst after 10h time on stream is shown in Fig.4.29, it can be 

seen that the catalytic activity declines continuously from almost 35% to less than 10%. 

This indicates clearly that the catalyst is not very stable because it deactivates relatively 

fast. 
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Fig.4.29.   Stability of 20Ni-30Bi-O/MgO-fumed SiO2 catalyst with time-on-stream 

 

Fumed-SiO2 support is a finely divided non-porous and highly pure silica powder with 

particle size in the range of 40 to 50 nm and surface area of about 200 to 400 m2/g. It is 

classified as an acidic oxide which is not required for dehydrogenation ability of a catalyst. 

MgO modification reduces the acidity thereby enhancing the catalyst selectivity and 

reactivity, due to its strong influence on reactants adsorption and product desorption. This 

is why the catalyst showed an improved main dehydrogenation selectivity but a decline in 
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4.7.4 10Ni-5Fe-5Co-30Bi-O/MgO-fumed SiO2 

Fig. 4.30 shows the stability diagram of the catalyst, it shows a continuous reduction in 

activity from almost 30% to 10% after the 10h time on stream. This is a due to its fast 

deactivation indicating its low stability. The catalyst has the same support as 20Ni-30Bi-

O/MgO-fumed SiO2 hence followed the same trend in most of the selectivities (main and 

inside), the only difference is in the active metal species composition, where 20Ni is 

replaced with 10Ni-5Fe-5Co, this acts only to stabilize the butadiene selectivity relative to 

the 20Ni catalyst because the combination improves redox cycle due to the ability of Fe to 

switch easily from Fe2+ to Fe3+ and vice versa.  

 

Fig.4.30.   Stability of (10Ni-5Fe-5Co)-30Bi-O/MgO-fumed SiO2 catalyst with time-on-

stream 
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4.8 KINETIC MODELLING OF n-BUTANE ODH OVER 10Ni5Fe5Co30Bi/Al2O3 

4.8.1 Model Development 

A good kinetic model should contain low reaction steps as well as kinetic parameters but 

sufficient to describe the basic features of the reaction under study [81],[82]. Oxidative 

dehydrogenation of n-butane to butadiene has many reactions steps including consecutive 

and side reactions, this were simplified by lumping all cracked products which are methane, 

ethane, ethene, propane and propene as one entity. Also, butene isomers (1-butene, cis-2-

butene and trans-2-butene) were also considered as one entity (C4 olefin). Partial oxidation 

scheme that produces CO and H2 were detected in very small quantities, hence neglected. 

Scheme one was 1st proposed which involves dehydrogenation and direct cracking of 

paraffin (n-butane) as shown below; 

  C4H10 + ½ O2                  k1            C4H8 + H2O + ½ O2                  k2            C4H6 + H2O                                                                                                                                                                                                                    

                                     k3                                                                                                    

                                              Cracking products 

Scheme one: Dehydrogenation and Cracking of n-butane 

This was later modified after it failed to give reasonable parameter estimation. Scheme two 

was later developed which makes more sense due to the fact that it is easier to crack olefins 

than paraffins especially at the low ODH reaction temperature of 350 to 450oC. 
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 C4H10 + ½ O2                  k1            C4H8 + H2O + ½ O2                  k2            C4H6 + H2O 

                                                                                           k3 

                                                                                                   Cracking products 

 

Scheme two: Dehydrogenation of n-butane and cracking of butene intermediate 

 

Table 4.12: Product distribution of n-butane ODH over ternary metal catalyst 

Temp 
(oC) 

Contact 
time (τ) 

Weight fraction  

yo ynb ybd ybu ycr 

Conv 

[X] 

 

 

350 

52.71 1.00 0.9658 0.0057 0.0310 0.0006 0.0342 

80.82 1.00 0.9441 0.0110 0.0444 0.0017 0.0560 

105.41 1.00 0.9223 0.0163 0.0578 0.0028 0.0777 

133.52 1.00 0.9207 0.0178 0.0571 0.0037 0.0794 

158.12 1.00 0.9190 0.0193 0.0563 0.0045 0.0810 

 

 

375 

52.71 1.00 0.9513 0.0097 0.0372 0.0018 0.0487 

80.82 1.00 0.9183 0.0223 0.0544 0.0044 0.0817 

105.41 1.00 0.8853 0.0348 0.0715 0.0069 0.1147 

133.52 1.00 0.8808 0.0403 0.0698 0.0077 0.1193 

158.12 1.00 0.8762 0.0457 0.0681 0.0085 0.1238 

 

 

400 

52.71 1.00 0.9152 0.0235 0.0557 0.0046 0.0848 

80.82 1.00 0.8925 0.0352 0.0650 0.0061 0.1076 

105.41 1.00 0.8697 0.0468 0.0743 0.0076 0.1303 

133.52 1.00 0.8544 0.0708 0.0617 0.0112 0.1457 

158.12 1.00 0.8390 0.0947 0.0491 0.0148 0.1610 

52.71 1.00 0.8853 0.0404 0.0644 0.0083 0.1147 
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425 

80.82 1.00 0.8614 0.0586 0.0673 0.0109 0.1386 

105.41 1.00 0.8375 0.0767 0.0702 0.0134 0.1625 

133.52 1.00 0.8331 0.0901 0.0559 0.0188 0.1670 

158.12 1.00 0.8286 0.1035 0.0415 0.0241 0.1714 

 

The experimental results were modelled using power law model and based on the 

assumption that catalyst deactivation is negligible due to the presence of gas phase oxygen 

as a co-feed and for the fact that the reactor is a fixed bed, the total reaction rate for each 

chemical specie i expressed by ri was evaluated by adding up all the reaction rates at every 

step j in which the specie i is involved.  

                             ri = 
dFi

dw
 ……………………………………………………1 

                     Fi = υ Ci and τ = w/FTm 

Also, for a fixed bed reactor, the concentration of species can be calculated using the 

expression as reported by Tazul et al [83] 

                              Ci = 
yi FTm

MWi x υ
 ………………………………………………..2 

Hence after simplifications, we have the following sets of mole balance (differential 

equations) obtained from scheme two. 

Rate of disappearance of n-butane, rnB; 

                 -rnB = −
dYnB

dτ
= k1 CnB

1/2 * MWnB ………………………………..3 
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Rate of appearance and disappearance of butene intermediate, rBu; 

                 rBu = 

dYBu

dτ
= (k1 CnB

1/2  – k2 CBu
1/2 – k3 CBu

1/2  )* MWBu ………………..4 

Rate of appearance of butadiene, rBd; 

                 rBd = 

dYBd

dτ
= k2 CBu

1/2 * MWBd ………………………………………….5 

Rate of appearance of cracked products, rCr; 

                 rCr = 

dYCr

dτ
= k3 CBu

1/2 * MWCr …………………………………………..6 

Where Yi is the mass fraction of specie i, Ci is the concentration of specie i, MWi is the 

molecular weight of specie i. 

w is the catalyst weight which was varied from 0.15 to 0.45 g while maintaining constant 

total mass flow rate (FTM) into the reactor. The activation energy of each reaction step j, Ej 

is related to the temperature dependent rate constant by the Arrhenius equation. 

                                         kj = koj exp [
− 𝐸𝑗 

𝑅𝑇
] …………………………………………7a 

koj is the pre-exponential factor. Re-parameterization of the Arrhenius equation helps in 

reducing parameter interaction during modelling as reported in many literatures [67], [84], 

[85]. Hence we have; 

                                         kij = k0,ij exp [
− 𝐸𝑖𝑗 

𝑅
 (

1

𝑇
 - 

1

𝑇0
)] ……………………………….7b 

Where T0 is the average temperature of the experimental runs temperature. 
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4.8.2 Model Assumptions 

 Mass transfer limitation is negligible 

 Negligible catalyst deactivation 

 Excess gas phase oxygen, hence negligible conversion 

 Effectiveness factor is unity 

 Model assumes only catalytic conversion. 

4.8.3 Determination of Model Parameters and Model Discrimination 

The kinetic parameters were estimated using non-linear regression analysis. For model 

evaluation, mole balance equations were combined with temperature dependent specific 

reaction rate constants with the concentration of various species expressed in terms of 

weight fraction as obtained from the online GC. The resulting ordinary differential 

equations were then solved numerically in conjunction with a least square fitting of the 

experimental n-butane oxidative dehydrogenation data obtained from the fixed bed reactor. 

MATLAB ODE45 subroutine (Runge-Kutta-Gill method) was used for parameter 

estimation. For accurate and reliable model and model parameters, the experiments were 

conducted at four different reaction temperatures (350, 375, 400 and 425oC) and five 

different contact times based on catalyst weight of 0.15, 0.23, 0.30, 0.38 and 0.45 g. The 

criteria for model evaluation is based on the fact that all the rate parameters agrees with 

physical principles and the optimization criteria is based on minimum sum of squares 

defined as;  

                   SS= √∑ (𝐶𝑖, exp −𝐶𝑖, 𝑚𝑜𝑑)𝑛
𝑖=1

2
   …………………………………….8 
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Model discrimination was based on; 

 Lower sum of squares 

 Correlation coefficient closer to one 

 Lower confidence intervals for the estimated parameters. 

The values of the model parameters together with their corresponding 95% confidence 

intervals are presented in Table 4.13. It can be seen from the table that the estimated 

apparent activation energies of 2nd step dehydrogenation and cracking are 68.8 and 88.5 

kJ/mol respectively. This was expected because the ternary metal catalyst 

(10Ni5Fe5Co30Bi/Al2O3) is more selective towards dehydrogenation than cracking, hence 

the lower activation energy. 
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Table 4.13: Estimated values of kinetic parameters at 95% confidence intervals 

Parameters Values Model 

discrimination 

Values 

k1
o
 (mol/gcat.min) 0.857 ± 0.014 

 

Correlation 

coefficient, R2 

0.9993 

k2
o
 (mol/gcat.min) 1.93 ± 0.089 

 

Sum of squares, SS 0.0076 

k3
o
 (mol/gcat.min) 0.198 ± 0.048 

 

  

E1  (kJ/mol) 

 

34.4 ± 2.42 

 

  

E2  (kJ/mol) 

 

68.8 ± 7.57 

 

  

E3  (kJ/mol) 

 

 88.5 ± 41.16 

 

  

 

n-C4 conversion was plotted against contact time as shown in Fig.4.31 for both the 

experimental and model predicted values. It can be seen that the model agrees reasonably 

to the experimental data especially at low reaction temperatures and low conversion which 

is due to the fact that at higher temperatures and higher conversions, more complicated 

model is required to clearly represents the data as this one is a simplified model that lumps 

many products together. 
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Fig. 4.31: Conversion of n-butane against contact time for both experimental and model 

predicted. 

 

Also, Butadiene and cracking products mass fractions were also compared for the 

experimental and model predicted case and it shows a good fitting as shown in Figs. 4.32a 

and 4.32b respectively, which also validates the developed model. 
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Fig. 4.32a: Experimental vs model predicted values for butadiene yield. 

 

 

Fig. 4.32b: Experimental vs model predicted values for cracked products yield. 
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To further show overall agreement between the experimental data and model predicted 

values, a parity plot as shown in Fig. 4.33 was plotted. It can be concluded from the Figure 

that the model reasonably predicts the oxidative dehydrogenation reaction over the ternary 

metal catalyst and also the model discrimination values of 0.9993 and 0.0076 for 

correlation coefficient (R2) and sum of squares respectively further give credit to the 

developed model. 

 

Fig. 4.33: Parity plot between the experimental data and model predicted values. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

The investigation on the effect of main metal species (Ni, Fe and/Co)-Bi-O/Al2O3 catalysts 

on n-butane oxidative dehydrogenation to butadiene showed that binary (Ni-Fe, Ni-Co, Fe-

Co) and ternary (Ni-Fe-Co) combination of main metal (Ni, Fe and Co) metals positively 

influenced the activity and selectivity. The ternary metal combination gave the highest 

selectivity to butadiene with high activity and stability which is mainly due to double 

improvements of Ni in butadiene selectivity by Fe due to its improved redox cycle and n-

butane conversion by Co due to its high surface and an increased accessibility to active 

sites by its nanoparticle. The catalyst characterization showed that hierarchical nano-

particle cohabitation of main metal (Ni, Fe, Co) oxide, Bi2O3 and Al2O3 support cooperates 

to enhanced butadiene selectivity at both 1st and 2nd dehydrogenation steps. This was 

evident from the low reduction temperature and moderate acidic/basic catalytic character 

with temperature programmed H2 reduction and CO2/NH3 temperature programmed 

desorption respectively. Substituting Bi (active as oxygen supplier) with Mo and W gave 

a declined performance which revealed the fact that Ni as an active specie for 

dehydrogenation does not interact well with Mo and W and hence its redox ability and 

dispersion were affected with a resultant inefficiency of H2 abstraction from both n-butane 

and 1-butene intermediate. The different supports investigated displayed different 

performance with MSU foam having the highest activity and selectivity even when 

compared to Al2O3 due to high dispersion ability of the active species by the support, but 
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deactivates faster which is why it was not used as a basis support for the investigations. 

Modifying Al2O3 and SiO2 supports with a view of moderating their acidic/basic character 

which plays great role in desired product (butadiene) selectivity showed little improvement 

and resulted to a decrease in catalyst stability. The various catalyst stability is in the order 

20Ni30Bi-O/Al2O3 = 10Ni5Fe5Co30Bi-O/Al2O3 > 20Ni30Bi-O/MSU foam > 20Ni30Bi-

O/MgO-fumed SiO2 = 10Ni5Fe5Co30Bi-O/MgO-fumed SiO2. Kinetic data for n-butane 

oxidative dehydrogenation over 10Ni5Fe5Co30Bi-O/Al2O3 were obtained in the fixed bed 

reactor. Simple power law model was used to estimate the various kinetic parameters. The 

model reasonably fits the experimental data with a correlation coefficient of 0.9993 and a 

sum of squares value of 0.0076. The apparent activation energies of 2nd step 

dehydrogenation and cracking are 68.8 and 88.5 kJ/mol and shows good 95% confidence 

intervals which further confirms that the improved catalyst is more selective towards 

dehydrogenation than cracking. 

5.2 RECOMMENDATIONS 

The following are recommended for further research work on oxidation of n-butane to 

butadiene using metal-supported catalyst 

 Other preparation methods like precipitation should be investigated in order to 

compare which method will enhance active metal-support interaction for better 

catalyst performance. 

 Other characterization techniques like Raman spectroscopy, FTIR, UV-vis, 

HAADF EDX mapping should also be used in order to clearly reveal the active 

metal species interaction that led to the good performance of the improved catalyst.  
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 Surface science chemistry of NiO, Bi2O3, FeO, Co3O4 and Al2O3 should further be 

examined in order to improve the catalyst performance. 

 One pot hydrothermal synthesis of the active metal species in the form of 

hydrotalcites should be investigated 
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