

©Ahmad Tariq Sheikh
2016

i

Dedicated to My

Beloved
Paternal & Maternal Grandparents

ii

ACKNOWLEDGEMENTS

All praise is due to Allah, the most Gracious, the most Compassionate

and Merciful.

First of all I would like to thank Almighty Allah for giving me the perseverance to

finish this work. My heartfelt gratitude to my mentor and adviser Dr. Aiman

H. El-Maleh for his perpetual efforts and motivation throughout the research

phase. His meticulousness in research has a profound impact on the outcomes of

this thesis. At times, I was in an abyss, with no progress in the research. He was

always there to drag me out and put me on the right path. If it wasn’t for him, I

would have lost my way.

I am also grateful to my committee member Dr. Sadiq M. Sait for sharing

his iotas of wisdom. His three words; learn, justify and story served as a guideline

to tackle a research problem of any magnitude. His comments and feedback went

a long way in improving the quality of this thesis.

I would also like to thank my committee member Dr. Muhammad E. S.

Elrabaa for helping me with the technical aspects of the thesis and specially with

circuit level simulations. I am also thankful to Dr. Mahmood K. Niazi for

his feedback from totally different perspective which also improved the quality

iii

of this thesis. I am specially thankful to Dr. Ashraf S. Hasan Mahmoud

for agreeing to serve as a committee member at the eleventh hour. My heartfelt

prayers for Dr. Alaaeldin Amin, may Allah (SWT) give him fast recovery and

good health. Due to his health, he was unable to serve as a committee member.

I acknowledge the generous financial support provided by the KFUPM

throughout my stay here. The work in this thesis was fully supported by the

grant from Deanship of Scientific Research (DSR) at KFUPM under project #

IN131014.

I am deeply thankful to my parents for all their prayers and support throughout

my academic career until it culminated at PhD. I can never forget the support

and sacrifices of my wife through out my PhD tenure at KFUPM. She was always

there through thick and thin. The love and affection of my daughter was the

source of happiness and motivation, which kept my morals high.

Lastly, I would like to thank my friends and colleagues for their unwavering

support and guidance.

Ahmad

April 2016

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

LIST OF TABLES ix

LIST OF FIGURES xi

ABSTRACT (ENGLISH) xiv

ABSTRACT (ARABIC) xvi

CHAPTER 1 INTRODUCTION 1

1.1 An Overview of Soft Errors . 3

1.1.1 Single Event Transients . 7

1.2 Sources of Radiation . 14

1.2.1 Alpha Particles . 14

1.2.2 High-Energy Cosmic Rays 17

1.2.3 Low-Energy Cosmic Rays 19

1.3 Motivation . 20

1.4 Problem Statement . 21

1.5 Thesis Contributions . 21

1.6 Thesis Organization . 24

CHAPTER 2 LITERATURE REVIEW 25

2.1 Error Masking Types . 25

2.1.1 Logical Masking . 26

v

2.1.2 Electrical Masking . 27

2.1.3 Latching Window Masking 27

2.2 Fault Tolerance Mechanisms . 28

2.2.1 Fault Avoidance . 28

2.2.2 Fault Tolerance . 29

2.3 Soft Error Tolerance . 30

2.3.1 Hardware Redundancy Techniques 30

2.3.2 Synthesis-Based Fault Tolerance Techniques 46

2.3.3 Physical Characteristics Based Fault Tolerance Techniques 48

CHAPTER 3 SELECTIVE TRANSISTOR-REDUNDANCY

BASED FAULT TOLERANCE TECHNIQUE FOR COMBI-

NATIONAL CIRCUITS 51

3.1 Effect of Energetic Particle Strike 53

3.2 Proposed Algorithm . 57

3.2.1 Circuit Probability of Failure 58

3.2.2 Example: NAND Gate . 61

3.2.3 Selective Transistor-Redundancy (STR) Based Design . . . 64

3.2.4 Redundancy Models . 66

3.3 An Illustrative Example . 68

3.4 Experimental Results . 77

3.5 Conclusion . 88

CHAPTER 4 DOUBLE MODULAR REDUNDANCY (DMR)

BASED FAULT TOLERANCE TECHNIQUE FOR COMBINA-

TIONAL CIRCUITS 95

4.1 Proposed Double Modular Redundancy Fault Tolerance Technique 96

4.2 Improved C-Element Based DMR (DMR-CEL) 103

4.3 Experimental Results . 106

4.4 Conclusion . 111

vi

CHAPTER 5 IMPLICATIONS BASED FAULT TOLERANCE

TECHNIQUE FOR COMBINATIONAL CIRCUITS 113

5.1 Motivation . 115

5.2 Proposed Fault Tolerance Technique 118

5.2.1 Selective Transistor Redundancy Based Fault Tolerance

Technique . 119

5.2.2 Implications Based Fault Tolerance Technique 119

5.3 Illustrative Examples . 132

5.4 Experimental Results . 139

5.5 Conclusion . 145

CHAPTER 6 RELIABILITY EVALUATION 146

6.1 Reliability Evaluation Architecture 147

6.2 Probability of Fault Injection . 149

6.3 Fault Injection Mechanisms . 152

6.3.1 Transistor Level . 152

6.3.2 Gate Level . 153

6.3.3 Comparison b/w Transistor Level and Gate Level Simulations156

6.4 Reliability Evaluation of NAND Gates 156

6.4.1 NAND2 . 159

6.4.2 NAND21 . 163

6.4.3 NAND22 . 166

6.4.4 NAND23 . 169

6.4.5 NAND24 . 171

6.4.6 NAND25 . 174

6.5 Reliability Evaluation of NOR Gates 176

6.5.1 NOR2 . 177

6.5.2 NOR21 . 180

6.5.3 NOR22 . 183

6.5.4 NOR23 . 186

vii

6.5.5 NOR24 . 188

6.5.6 NOR25 . 191

6.6 Conclusion . 193

CHAPTER 7 CONCLUSION & FUTURE WORK 194

7.1 Conclusion . 194

7.2 Future Work . 198

REFERENCES 200

VITAE 215

viii

LIST OF TABLES

3.1 Parameters considered in the study. 61

3.2 Proposed CMOS implementations of 2-input NAND gate. 69

3.3 Stuck-at fault detection probabilities. 69

3.4 ipp at G1 and G2. 70

3.5 Reliability of original benchmark circuits. 79

3.6 Reliability of circuits based on proposed STR technique with vary-

ing protection thresholds against a single fault. 81

3.7 Reliability of circuits based on Lazzari [1] gate sizing technique

against a single fault. 83

3.8 Reliability of circuits based on asymmetric gate sizing technique a

against single fault. 84

3.9 Reliability of circuits based on the proposed STR technique against

prorated faults. 90

3.10 Reliability of circuits based on asymmetric gate sizing technique

against prorated faults. 91

3.11 Distribution of protection schemes. 92

3.12 Reliability of circuits based on TMR technique with prorated faults. 93

3.13 Comparison of circuit reliability for proposed STR technique with

the technique in [2]. 94

3.14 Reliabilities of circuits based on applying proposed STR technique

to circuits obtained by the technique in [2]. 94

ix

4.1 Circuit reliability and area overhead based on the proposed DMR

technique. 108

4.2 Circuit reliability and area overhead based on the combined appli-

cation of the proposed DMR and STR (Chapter 3) techniques. . . 109

4.3 Circuit reliability and area overhead based on TMR technique. . . 109

4.4 Circuit reliability and area overhead based on DMR-CEL. 110

5.1 Circuits reliability and area overhead based on proposed implica-

tion based fault tolerance technique. 140

5.2 Circuits reliability and area overhead based on STR technique

(Chapter 3) with varying protection thresholds against a single fault.142

5.3 Circuits reliability and area overhead based on proposed integrated

approach against a single fault. 144

6.1 Parameters considered in the study. 159

x

LIST OF FIGURES

1.1 Single Event Upset (SEU) effect in an SRAM memory cell. 4

1.2 NMOS transistor hit by ion particle. 6

1.3 Linear energy transfer (LET) versus depth curve for 210-MeV chlo-

rine ions in silicon [3]. 8

1.4 Charge generation and collection [4]. 9

1.5 Technology generation effect on Qcrit. 10

1.6 Monthly system SER as a function of the number of chips in the

system and the amount of embedded SRAM per chip [4]. 13

1.7 Alpha energy spectrum emitted from a thick foil of Th-232 [4]. . . 15

1.8 Effect of a single radioactive atom decay on a computer memory [5]. 16

1.9 Theoretical sea-level cosmic rays [5]. 18

2.1 Logical Masking. 26

2.2 Electrical Masking. 27

2.3 Latching window masking [6]. 28

2.4 Von Neumanns logic for 2-input NAND gate with N = 4. 32

2.5 A Triple Modular Redundant (TMR) structure. 33

2.6 Quadded logic example. 35

2.7 Partial error masking scheme [7]. 37

2.8 HICC module [8]. 38

2.9 Enhanced majority voting with parity checking at the module level [8]. 38

2.10 Enhanced HICC unit with parity checking at the module level [8]. 39

2.11 Self-voting majority circuit: schematic and standard-cell circuit [9]. 39

xi

2.12 Block diagram of: (a) NMR and (b) Soft NMR [10]. 40

2.13 Example of design diversity. 42

2.14 C-Element. 43

2.15 DMR with C-Element. 44

3.1 Effect of energetic particle strike on CMOS inverter at t = 5ns. . 55

3.2 Proposed protection schemes and their effect. 58

3.3 Stuck-at-0 case of 2-input NAND gate. 63

3.4 Stuck-at-1 case of 2-input NAND gate. 63

3.5 Example circuit. 68

3.6 Complete iteration log of example circuit. 76

3.7 Circuit POF vs. iteration. 76

4.1 A simple two-level circuit. 100

4.2 Circuit after output module duplication and addition of masking

AND gate. 101

4.3 Case 1 of 40% of the time logic “1” value is produced at the masking

gate input. 101

4.4 Case 2 of 40% of the time logic “1” value is produced at the masking

gate input. 102

4.5 Van Berkel C-Element [11]. 104

4.6 DMR-CEL: Logic cone synthesized based on true form. 104

5.1 An example circuit. 116

5.2 Illustration of having two inputs with PC markings. 130

5.3 Illustration of having two inputs with NPC markings. 130

5.4 Illustration of having two inputs with PNC markings. 131

5.5 Circuit with Implication (G4 = 0)⇒ (G6 = 0). 133

5.6 Indirect implication path discovery. 137

6.1 Reliability Evaluation Architecture. 148

6.2 Fault injection mechanism at gate-level. 155

xii

6.3 apex2 Reliability . 157

6.4 apex3 Reliability . 157

6.5 apex4 Reliability . 158

6.6 Time comparison. 158

6.7 2-input cmos NAND . 160

6.8 CMOS configuration of NAND21 gate 163

6.9 CMOS configuration of NAND22 gate 167

6.10 CMOS configuration of NAND23 gate 169

6.11 CMOS configuration of NAND24 gate 172

6.12 CMOS configuration of NAND25 gate 175

6.13 2-input cmos NOR . 177

6.14 CMOS configuration of NOR21 gate 181

6.15 CMOS configuration of NOR22 gate 184

6.16 CMOS configuration of NOR23 gate 186

6.17 CMOS configuration of NOR24 gate 189

6.18 CMOS configuration of NOR25 gate 191

xiii

THESIS ABSTRACT

NAME: Ahmad Tariq Sheikh

TITLE OF STUDY: An Integrated Approach for Soft Error Tolerance of Com-

binational Circuits

MAJOR FIELD: Computer Science & Engineering

DATE OF DEGREE: April, 2016

With fabrication technology reaching nano-scale, systems are becoming more prone

to manufacturing defects with higher susceptibility to soft errors due to the expo-

nential decrease in device feature size. Soft errors, which are caused by radioactive

decay and cosmic rays, can flip the output of a gate, resulting in a soft error if it is

propagated to the output of a circuit. This work is focused on analyzing, modeling

and designing combinational circuits for soft error tolerance with minimum area

overhead. The first idea is based on analyzing random pattern testability of faults

in a circuit and protecting sensitive transistors, whose soft error detection prob-

ability is relatively high, until a desired circuit reliability is achieved or a given

area overhead constraint is met. Transistors are protected based on duplicating

and sizing a subset of transistors necessary for providing the protection. In the

xiv

second approach, the objective is to improve reliability of combinational circuits

based on the double modular redundancy scheme. As opposed to TMR, where each

module is triplicated followed by a voter, each module in the proposed Double Mod-

ular Redundancy (DMR) scheme is duplicated followed by a AND/NAND masking

gate. Modules are synthesized by either synthesizing the true or the complement

function to maximize soft error masking. The third technique is based on taking

advantage of implication relations to maximize the masking probability of a set of

critical gates that will maximize the masking of a large number of faults in the

circuit. A logic implication denotes an invariant relationship between logic gates

in a circuit. Finally, in hybrid scheme, the transistor sizing method is applied

to both DMR and implication based technique to further improve the reliability

of these methods. Additionally, a novel gate level reliability evaluation technique

is proposed that provides similar results to reliability evaluation at the transistor

level (using SPICE) with orders of magnitude reduction in CPU time.

xv

xvi

 ملخص

 أحمد طارق شيخ الاسم:

 في الدوائر التوافقية الوقتيه الأخطاء نهج متكامل لتحمل عنوان الدراسة:

 علوم وهندسة الحاسب الاختصاص:

 2016ابريل تاريخ الشهادة:

 ارتفاع عم التصنيع في لعيوب عرضة أكثر الأنظمة أصبحت نانومترال مجال الى التصنيع تقنية وصول مع

 والتي قتية،الو الأخطاء. المصنعة الأجهزة حجم في الهائل للانخفاض نتيجة الوقتية للأخطاء للتعرض القابلية

 الى يؤدي مما البوابة قيمة عكس الى تؤدي أن يمكن الكونية، والأشببعة الإشببعاعي الانحلال بسبببب تحدث قد

 وتصببميم ونمذجة تحليل على العمل هذا يركز. الدائرة مخرجات أحد الى الوصببول الى تمكن اذا مؤقت خطأ

 تعتمد .الدائرة في الاضببببافية المسبببباحة من الأدنى الحد اسببببتخدام مع الوقتية الأخطاء لتحمل التوافقية الدوائر

 والتي ساسة،حال الترانزستورات وحماية دائرةال في عشوائيةال الأخطاء عبور قابلية تحليل على الأولى الفكرة

الوصببول وأ المطلوبة الدائرة موثوقية تحقيق يتم حتى نسبببيا، مرتفعة الوقتية للأخطاء اكتشببا احتماللديها

 زئيةج مجموعةل والتحجيم الازدواج أساس على الترانزستورات حماية تتم. ضافيةالا مساحةلل معينالى حد

 توافقيةال الدوائر موثوقية تحسبببببين هو الهد الثاني، النهج في .الحماية لتوفير اللازمة الترانزسبببببتورات من

 الوحدات تكرار عكس وعلى .مزدوجتين كدائرتين واسبببببببتخدامهما الكهربائية الدائرة تكرار أسببببببباس على

 واسبببببببتخدامهما وحدة كل تكرار يتم، (TMR)كثلاث وحدات وربطها مع ناخب واسبببببببتخدامهما الكهربائية

 عن إما وحدات تجميع تميو. (DMR) المقترح النهج في AND/NAND متبوعة ببوابة مزدوجتين كوحدتين

 على نياتالتق احدى وتسبببببببتند .حجب الأخطاء الوقتية لتعظيم مكملةال أو القيمة الحقيقيةالقيمة تجميع طريق

 الأخطاء ورعب احتمالية تقليل من قدر أقصببى تحقيق إلى الدائرة بوابات بين الموجودة العلاقات من الاسببتفادة

 في الأعطال من كبير عدد اخفاء من قدر أقصببببببى تحقيق شببببببأنها من التي الهامة البوابات من مجموعة عبر

 كل ارتكر تقنية على كل من الترانزسبببببببتور تحجيم أسبببببببلوب تطبيق يتم هجين، مخطط في وأخيرا، .الدائرة

 بوابات بين الموجودة العلاقات من الاستفادةالمقترحة وتقنية DMR مزدوجتين كوحدتين واستخدامهما وحدة

 على قيةموثوال تقييمل تقنيةتم اقتراح ذلك، إلى بالإضبببببافة .الأسببببباليب هذه موثوقية تحسبببببينمن أجل الدائرة

(برنامج سبايس دامباستخ) الترانزستور مستوى على موثوقيةال لتقييم مماثلة نتائج توفر التيو بوابةال مستوى

 بالاضافة الى تخفيض الوقت اللازم للتقييم بشكل كبير.

CHAPTER 1

INTRODUCTION

In the year 2000, mysterious system crashes started to infect the internet and

telecommunication systems across United States. The crashes mostly occurred in

the high-end Sun Microsystems servers. This incident was serious enough that it

caught the major headlines in media [12]. More recently in 2010, a small glitch in

the voyager 2 space mission forced NASA engineers to suspend its operation [13].

The root cause for both these events was found to be Soft Errors.

We are living in an era of smart phones and smart devices that have the

computing power of desktop PCs of few years back, yet, they can be occupied

in our palms. This shrinking of area is still continuing, posing challenges to the

design of efficient synthesis tools. Recent years have witnessed a tremendous

development in the field of VLSI. This development is directly correlated with

Moores law [14], which states that the number of transistors that can be fab-

ricated in a chip gets doubled every 18 months. As the CMOS technology is

continuously improving and shrinking to the nanometer scale, quantum mechani-

1

cal effects come into the picture barring the additional scaling of CMOS devices.

This has opened new avenues of research to investigate new technologies for circuit

design. Nanotechnology-based fabrication of devices and circuits promises extra

density and performance. However, studies have indicated that high-density chips,

upto an order of 1012 devices/cm2 are increasingly accompanied by manufacturing

defects and susceptible to dynamic faults during the chip operation [15,16]

Nanoscale devices are limited by several characteristics, most dominant are the

devices higher defect rates and the increased susceptibility to soft errors. These

limiting characteristics are due to two sources [17]:

1. Inherent randomness in the bottom-up manufacturing process, which results

in a large number of defective devices during the fabrication process.

2. Reduced noise tolerance of these devices which is responsible for inducting

device malfunctions by external influences like EMI (electromagnetic inter-

ference), thermal perturbations and cosmic radiations.

Generally, errors can be categorized as either permanent or transient errors.

Permanent (hard) errors may occur during manufacturing process or during the

lifetime of a device. Transient (soft) errors can arise due to multiple sources like

high-energy particles, coupling, power supply noise, leakage and temporal circuit

variations. The transient error can last for one or many clock cycles. Soft error is

a phenomena that suddenly changes the data or signal bits of an electronic system

for a specific period of time. During this time, the output of the system could

remain in an erroneous state. Once the effect of soft error is vanished, the system

2

returns to its normal operation as if nothing had happened. There is no certain

pattern regarding the occurrence of soft errors. However, the relative flux at a

terrestrial altitude is used to quantify the intensity of sources of soft errors [5].

Both of the aforementioned types of errors i.e., hard and soft errors, affect the

reliability of a circuit if they are not tolerated. Reliability of a circuit can be

defined as its ability to function properly despite the existence of such errors. In

this chapter, we discuss different manifestations that result in soft errors

1.1 An Overview of Soft Errors

Soft errors first started to appear in electronic systems in the 1970′s. It was

actually first theorized by Wallmark et al. [18] that the silicon device dimensions

would be limited to 10µm due to cosmic rays in the atmosphere. Soon, reports

emerged that highlighted the effect of cosmic-ray induced errors in space elec-

tronics [19]. Later on, the proof of cosmic-neutron-induced soft errors was also

recorded at the ground level in Cray-1 computers in 1976 [20]. Three years later in

1979, alpha-particle-induced upsets were also recorded in dynamic random mem-

ories (DRAM) [21].

Transient faults (SET/SEU) are mainly caused by cosmic-ray neutrons or al-

pha particles through the materials of ICs. They can either hit in the combina-

tional logic or flip flops of a sequential circuit block. If it happens in the combi-

national circuit it results in a Single Event Transient (SET) fault. On the other

hand, if it happens in the memory cell, it results in a Single Event Upset (SEU)

3

fault. Both SET and SEU pose serious challenges in the reliability of circuits and

require due diligence.

To understand the implications of soft errors, consider a scenario when a

charged particle strikes a sensitive region in a memory cell, such as a drain of

a transistor in the OFF operation mode. In this case, a transient current pulse is

generated that can cause a bit flip in the memory cell. A memory cell stores two

states i.e. either logic 0 or 1 values. In each state, two transistors are ON and

two are OFF. Fig. 1.1 illustrates how an energetic particle can reverse the state

of transistors in a circuit, resulting in a bit flip.

Figure 1.1: Single Event Upset (SEU) effect in an SRAM memory cell.

A single event transient (SET) occurs when a charged particle hits the com-

binational logic, resulting in a transient current pulse. This can change the logic

level of a gate. If this transient has enough width and magnitude, it can result

in an erroneous value to be latched. Once it is latched, a single event transient

becomes a single event upset (SEU). It is worth to mention that a single SET can

produce multiple transient current pulses at the output. This is due to the logic

fan-out in the circuit. Hence, SETs can produce multiple SEUs in the memory

4

elements.

For more details on how a transient soft error can change the state of transistor,

consider the NMOS transistor shown in Figure 1.2a. The transistor is assumed to

be in the OFF state. During normal operation, a current will flow from the drain

to the source that makes the transistor ON. If an alpha particle strikes the drain

of the NMOS transistor, it loses its energy as it travels along the path inside the

semiconductor material. In this period, the particle ionizes the material around

it, which results in the generation of electron-hole pairs. Consequently, the holes

are collected by the (p+) substrate and the electrons are collected by the drain as

shown in Fig. 1.2b. This results in a prompt component of current at the drain

in shape of negative pulse. If this prompt current has a high enough charge, this

will lead to discharging the voltage at the drain for a very short period of time

lasting in the order of 100 to 200 picoseconds [22]. Hence, the state of transistor

is changed to ON state in that period of time.

In the previous generations of CMOS technologies, the sizes of CMOS tran-

sistors were large enough to neglect the effect of the resulting prompted current.

However, with device dimensions shrinking to nanometer scale, SET and SEU

faults are no longer considered a small attenuation. Instead, they will be consid-

ered as normal circuit signals. Therefore, tolerance of soft and transient errors is

no longer limited to specific applications like aerospace applications, and they can

no longer be ignored.

In the following sections we will discuss different mechanisms responsible for

5

(a)

(b)

Figure 1.2: NMOS transistor hit by ion particle.

6

the occurrence of soft errors in digital systems.

1.1.1 Single Event Transients

When an energetic particle strikes a semiconductor, usually the sensitive region

is the reverse-biased pn junction [3,4]. The charge generated as a result of particle

strike is due to either direct ionization or indirect ionization. In direct ionization,

when a charged energetic particle strikes the semiconductor it frees electron-hole

pairs along its path. In indirect ionization, usually a light particle interacts with

the silicon nuclei to generate various heavy ions and charged particles, which in

turn can produce charge through direct ionization.

The distance travelled by the energetic particle in semiconductor is measured in

terms of Linear Energy Transfer (LET). The LET defines the amount of energy

loss per unit length of a particle as it passes through the material [3]. LET is

expressed in the units ofMeV/cm orMeV −cm2/mg if normalized by the material

density [23]. In silicon, energy of 3.6eV is required to generate one electron-

hole pair and the LET of 97 MeV − cm2/mg results in the charge deposition of

approximately 1pC/µm. A curve of particular interest is the LET of a particle

versus the depth it travels through the material. Fig. 1.3 shows one such example.

The peak in the charge deposition is referred to as the Bragg Peak and it occurs

when a particle reaches an energy near ≈ 20MeV − cm2/mg.

The energy of a particle is highly correlated to the amount of distance it travels

through the device. Fig. 1.4 shows the effect of particle strike on a semiconductor

7

Figure 1.3: Linear energy transfer (LET) versus depth curve for 210-MeV chlorine
ions in silicon [3].

8

Figure 1.4: Charge generation and collection [4].

material. It can be observed that, once the initial strike happens, numerous

electron-hole pairs are generated as the particle travels through the material. The

rapid collection of charge happens near the depletion region and a high current

value is observed due to drift action. The drift denotes the speed and magnitude

of current observed as a result of particle strike. Once the particle loses its energy,

the slower charge collection happens due to diffusion action. The overall current

pulse due to drift and diffusion is shown in Fig. 1.4d. Baumann [4] and Dodd

et al. [3] discussed in detail about the charge collection process in semiconductor

materials.

The effect of particle strike can be either transient (soft error) or permanent

(hard error). We will now briefly discuss each one of these error types.

Soft Errors

A single event transient (SET) occurs when a charged particle hits the com-

binational logic, resulting in a transient current pulse. This can change the logic

level of a gate. If this transient has enough width and magnitude, it can result in

9

Figure 1.5: Technology generation effect on Qcrit.

an erroneous value to be latched. The minimum amount of charge that can cause

a SET is called a Critical Charge or Qcrit of the device. Shivakumar [24] modeled

the effects of soft errors on memory devices and logic devices and demonstrated

that with increasing technology generation, soft errors will increase by orders of

magnitude in logic devices. He also showed that Qcrit is also going to be reduced

with technology improvement and with the advent of low-power devices, as evident

from Fig. 1.5.

Due to aggressive nodes and voltage scaling, the effect of transient fault is no

more constrained to a node where the incident particle strikes. This could result in

the possibility of deposited charge being simultaneously shared by multiple circuit

10

nodes in the circuit [25–27] leading to the Single Event Multiple Upsets or SEMUs,

also referred to as Multiple- Bit Upsets or MBUs [3]. Therefore, soft errors are

going to play a critical role in the reliability of modern low-power devices.

Soft Error Rate (SER) is used to quantify the amount of soft errors encountered

by a device. The SER of a device also depends on its geographical location.

Ziegler et al. [5] presented intensive experimental study over the period of 15

years to evaluate the radiation-induced soft fails in Large Scale Integrated (LSI)

electronics at different terrestrial altitudes. They observed that soft failure rates

scale directly with the cosmic ray intensity and the energy and density of cosmic

rays increases with increase in the altitude. The particle density measured at New

York is approximately 100,000/cm2/yr [5]. SER can also be expressed as Failure

in Time (FIT) or as Mean Time Between Failure (MTBF). 1 FIT is equivalent to

1 failure in 109 hours of continuous device operation. MTBF denotes the number

of hours between individual failures (1 MTBF = 114,077 FIT). Be noted that,

“failure” here is not equivalent to a “soft error”, since a “soft error” might not

always result in a system failure.

It has been observed that the SER can easily exceed 50,000 FIT/chip if not

mitigated [4]. An SER of 50,000 FIT/chip is equivalent to one soft failure every

2 years. For commodity applications, this SER is perfectly tolerable, and even

if it occurs, it goes unnoticed. However, if we consider the enterprise, defense,

telecommunication etc. systems where there are numerous number of chips per

system. Due to the nature of their functionality, the reliability requirements of

11

such systems are very high. Since all the chips are used in parallel, the situation

exacerbates due to the fact that the SER effect is multiplicative i.e., SER of one

chip is multiplied by the total number of chips to get the SER of a system. For

example, in a system with 100 chips, the SER of one soft fail every 2 years will

be reduced to one failure per week for that system [4]. Such systems must be

provided protection at any cost as their failure will cost grave financial losses to

the companies. Fig. 1.6 shows the monthly SER as a function of the number of

chips in the system and the amount of memory integrated in each chip. Chapter

2 discusses in detail about soft error tolerance techniques.

Hard Errors

If the striking particle is large enough and has high energy, it can not only

result in soft error, but it can also permanently cause defect in the system known

as Single-Event Gate Rupture (SEGR). In SEGR, the electric field across the

transistor gate oxide surpasses the the critical breakdown field allowed [28]. This

results in the permanent breakdown of oxide and causes the short circuit through

the oxide. For modern CMOS processes at ground level, SEGR is no more of a

concern. Single-Event Latchup (SEL) occurs when a particle strikes in the vicinity

of two neighboring nmos pmos transistors. It then activates the parasitic PNPN

structure formed by the nmos-pmos pair, thereby creating a short impedance path

between the power and the ground of the circuit, which could potentially de-

stroy the circuit. Once SEL occurs, it can only be removed by restarting the

power supply [28]. SEL can be removed by properly insulating each individual

12

Figure 1.6: Monthly system SER as a function of the number of chips in the
system and the amount of embedded SRAM per chip [4].

13

transistor. Silicon-on-Insulator (SOI) silicon processes provide inherent tolerance

against SEL. Sexton [29] discusses in detail about various permanent single-event

effects in semiconductor devices. The focus in this work is to deal with soft errors

only.

1.2 Sources of Radiation

In this section, we will discuss about the different sources of radiation respon-

sible for soft errors in devices. The three dominant sources of soft errors are [4]:

1. Alpha particles,

2. High-energy cosmic rays,

3. Low-energy cosmic rays.

We will now briefly discuss each dominant source one by one.

1.2.1 Alpha Particles

Alpha particles are emitted from the traces of radioactive impurities found in

the packaging material of semiconductor devices. The most common radioactive

impurities are uranium 238U, 235U and thorium 232Th. These impurities emit

alpha particles in the range of 4 to 9 MeV. An alpha particle with 10-MeV of

energy travels a distance of ≈ 100µm. Therefore, alpha particles emitted by the

packaging and device materials must be considered. Fig. 1.7 shows the energy

spectrum of alpha particles emitted from the surface of 232Th. The broad energy

14

Figure 1.7: Alpha energy spectrum emitted from a thick foil of Th-232 [4].

spectrum depicts the energy loss while travelling different random distances before

reaching the surface and being detected. The peak LET of alpha particle is 16

fC/µm. Fig. 1.8 shows the effect of a single radioactive atom decay on computer

memory. The figure is a snapshot of the readout portion of 64Kb DRAM memory

chip. Initially, the memory was filled with all ones and then a radioactive element

was brought closer to it. It was found and can also be observed that a single

alpha-particle was able to change the contents of four memory locations from

logic “1” to logic “0” [5].

There are two ways to mitigate the effect of alpha particle: 1) purification of

15

Figure 1.8: Effect of a single radioactive atom decay on a computer memory [5].

16

all production materials in close proximity to the device, 2) methods to reduce

the probability of alpha particles reaching the sensitive parts of the device [4].

Fabrication companies constantly scrutinize their manufacturing processes and

raw materials to meet the requirements of ultra low alpha i.e., alpha emission rate

from materials must be < 0.001α/h cm2. To achieve that level, 238U and 232Th

impurity level must be around 1 part per 10 billion. If manufacturing process and

packaging materials of the CMOS devices could be purified so that together they

achieve the alpha emission rate of < 0.001α/h cm2, then this corresponds to the

SER reduction of approximately 20%. Further reduction in emission rate would

be extremely expensive beyond this point as cosmic rays are still the dominant

source of soft errors in digital circuits.

1.2.2 High-Energy Cosmic Rays

High-energy cosmic rays are the most dominant source of soft errors in digital

systems. The origins of the primary cosmic rays are galactic. They react with the

Earth’s outer atmosphere, which results in the generation of cascade of secondary

particles. At sea level, less than 1% of primary flux reaches which is mostly

composed of muons, protons, neutron and pions [5]. Fig. 1.9 shows the distribution

of cosmic rays at the ground level. It can be observed that neutrons have the higher

flux component and are most likely to cause a soft error at terrestrial altitude.

The neutrons only generate energetic particles through indirect ionization when

they interact with silicon or other dopants present in the chip [4]. The neutron

17

Figure 1.9: Theoretical sea-level cosmic rays [5].

flux is highly dependent on the altitude. For example, at 10,000 ft. from sea level,

the cosmic ray flux increases 10×. However, the trend is not linear and starts to

saturate at 50,000 ft. Therefore, while designing systems to tolerate soft errors,

the altitude factor must also be taken into account as this could have a significant

impact on the perceived and real SER.

Unlike alpha particles, the effect of neutron flux cannot be reduced at the chip

level using conventional methods like shielding or high-purity materials: one foot

of concrete reduces the neutron flux by merely 1.4× [30]. Also, multibit upsets

(MBU) and single-event latchups (SEL) mainly occur due to high-energy neutrons

as the LET threshold of these events is above 16 fC/µm. Therefore, SER due to

cosmic rays must be mitigated by reducing the device sensitivity which could be

18

achieved by employing either design or process modifications.

1.2.3 Low-Energy Cosmic Rays

The third most dominant source of ionizing particles in electronic systems is

the low energy neutrons or thermal neutron generated as a result of interaction

of low-energy cosmic ray neutrons (≪ 1 MeV) and boron. Boron consists of two

isotopes: 11B (80.1% abundance) and 10B (19.9% abundance). The 10B isotope is

unstable when interacted with the neutrons and has the thermal neutron capture

cross section higher than other isotopes by three to seven orders of magnitude.

When a 10B nucleus interacts with thermal neutron, it breaks into and Lithium-7

(7Li) recoil nucleus and an alpha particle that can induce a soft error. Boron is

used as p-type dopant and also as an implant in the phosphosilicate glass (BPSG)

dielectric layers (three orders of magnitude higher than silicon). Therefore, in

conventional BPSG-bases processes, BPSG is the main source of soft errors due

to boron reactions. The SER due to 10B interaction can be reduced by either

completely eliminating the BPSG from silicon processes or by enriching BPSG

11B isotope [31]. The reaction cross-section of 11B is million times smaller than

10B and its reaction with neutron produces gamma rays which lack energy cause

any damage.

19

1.3 Motivation

In this chapter, we discussed about different manifestation responsible for the

occurrence of faults in digital systems. It is clear that soft errors are the most

challenging types of faults to encounter. With process technologies reaching nano-

levels and near threshold operating ranges, the SER due to soft errors is becoming

a dominating factor more than ever. Hard errors or permanent faults have been

dealt with improvements in the process manufacturing and to a certain extent SER

due to soft errors caused by alpha particles and low-energy cosmic rays can also

be mitigated with advanced manufacturing processes but at the expense of hefty

cost. It is shown that the major source of soft errors is the high-energy cosmic

rays which are challenging to deal with due to the variations in their energy levels

at different terrestrial altitudes.

The focus in this work is to tolearte the effect of soft errors due to high-

energy cosmic rays present in the atmosphere at sea-level. Many techniques have

been proposed in the literature to combat soft errors in digital circuits and are

discussed in detail in Chapter 2. The motivation here is to propose a set of

techniques that could reduce the effect of soft errors in combinational circuits

by selectively and smartly adding redundancy. The three proposed techniques

lie in different design space of digital circuit design. The first technique applies

protection against soft errors at the circuit/transistor-level. The second technique

applies redundancy at the gate-level. Both techniques exploit logical masking in

combinational circuits to reduce the effect of soft errors. The third technique

20

benefits from the inherent implication relations present between different gates

of a circuit for soft error tolerance. Then, integrated approach is proposed that

combines the first technique with the second and third technique further improve

the reliability of combinational circuits. Finally, a gate-level reliability evaluation

method is also proposed that achieves reliability measures very similar to the

transistor-level simulations (using SPICE) with order of magnitude less time.

1.4 Problem Statement

Given a combinational logic circuit, the objective is to increase the reliability

of this circuit against soft errors while keeping the area overhead as minimum as

possible.

1.5 Thesis Contributions

The development of an integrated soft error tolerance framework is proposed

to tolerate the soft errors in combinational circuits. The proposed framework is

developed based on the evaluation of three proposed techniques where the three

techniques are utilized to provide the required soft error tolerance at the minimum

possible area overhead. For that matter, the following objectives for this thesis

are laid out:

Selective Transistor-Redundancy (STR) Based Fault Tolerance Technique

The focus in this method is to protect only the critical transistors of a

21

circuit. Asymmetric transistor sizing is applied to the most sensitive

transistors of the circuit by considering that particles can hit any transistor

of a logic gate. The algorithm protects the sensitive transistors or the ones

with high probability of failure of the circuit. The proposed algorithm can

be utilized in two capacities; 1) apply protection until the probability of

failure (POF) of circuit reaches a certain threshold, 2) apply protection

until certain area overhead constraint is achieved. The research objective

is to quantify the reliability for different protection thresholds and area

overhead constraints.

Double Modular Redundancy (DMR) Based Fault Tolerance Technique

In this method, we propose a double modular redundancy (DMR) technique

that aims to achieve high reliability with area overhead of nearly double

the original area. This method offers significant improvement to the Triple

Modular Redundancy (TMR) technique as double instead of triple modular

redundancy is used. In this method, redundancy is applied at the gate-level

and selectively at the transistor-level. The technique is based on identifying

the probability of occurrence of logic “0” or “1” at each output of a circuit

and then synthesizing the circuit based on these probabilities.

Implication Based Redundancy Insertion Fault Tolerance Technique

The purpose of this method is to benefit from the inherent implication

relations present between different gates of a circuit for soft error tolerance.

An implication from a source gate to a target gate indicates that a value

22

assignment at the source gate forces a consistent value assignment at the

target gate. For a given target gate, source gates with high probability

of “1” or “0” in the logic cone of the target gate are identified. Then,

implication relations between the identified source gates and the target gate

are explored. If such implication relations are found, then the probability

of masking of the target gate can be increased by inserting appropriate

extra connections reflecting the identified implication. This approach

is an attractive approach as it has the least area overhead over other

approaches. However, its effectiveness relies on the ability to identify

effective implication relations.

An Integrated Soft Error Tolerance Framework Finally, an integrated

framework is developed that combines the STR technique with the DMR

and the Implication based fault tolerance technique. It is observed that

the DMR and the Implication based fault tolerance techniques are unable

to improve the reliability of circuits beyond a certain point. Therefore,

the hybrid approaches are proposed to further improve the reliability of

circuits. Additionally, the combined application of STR technique with

existing techniques results in significant improvement in reliability.

Gate level Reliability Evaluation Technique A novel method to compute

the reliability of a circuit at the gate level is proposed. The circuit level

simulations performed using SPICE are accurate but become very slow as

the circuit size increases. However, there isn’t much of an impact of cir-

23

cuit size in gate level simulations. The proposed technique bridges the gap

between the circuit level simulations and the gate-level simulations. The

proposed gate level reliability evaluation method achieves similar results in

comparison to circuit level simulations (using SPICE) with orders of mag-

nitude reduction in CPU time.

1.6 Thesis Organization

The rest of the thesis is organized into the following chapters. The litera-

ture review is presented in Chapter 2. Chapter 3 discusses the first proposed

technique i.e., Selective transistor redundancy based fault tolerance technique.

Double modular redundancy technique is presented in Chapter 4. Implications

based fault tolerance method is proposed in Chapter 5. The results and discus-

sion for each proposed method are contained in their respective chapters. A novel

reliability evaluation technique is proposed in Chapter 6. Finally, the thesis is

concluded in Chapter 7 along with the possible future directions of the current

work.

24

CHAPTER 2

LITERATURE REVIEW

In this chapter, a detailed review is presented about fault tolerance techniques.

First, a discussion about inherent error masking types in circuits is presented. Sec-

ondly, it wil be shown that fault-tolerant techniques can be classified into three

major categories: hardware redundancy, synthesis-based, and physical character-

istics based techniques. Literature review of each of the aforementioned category

will then be discussed in detail.

2.1 Error Masking Types

Although the incident alpha particles cause voltage transients, these transients

must propagate through a certain path to get latched and result in soft errors.

The following are three types of masking that shield the SEUs from propagating.

25

2.1.1 Logical Masking

Logical masking prevents the SET from propagation from fault location to

primary outputs of a circuit because of path gate inputs that stop logical transition

of the gates output. As shown in Fig. 2.1, there is a particle strike at the output

of the A1 gate which results in a wrong logic value of “1” instead of logic value

“0”. This wrong value is one of the inputs of the A2 gate.

Figure 2.1: Logical Masking.

When one of the inputs of the A2 gate is tied to logic “0”, the output of A2

gate is always logic “0” irrespective of the other input. Therefore, this input of A2

gate is called controlling input. The transient caused by the alpha particle strike

is logically masked. Hence a correct value is latched by the following memory

element.

26

2.1.2 Electrical Masking

Electrical masking attenuates or completely masks the SET signal due to elec-

trical properties of gates. The voltage transient caused by the particle strike is

attenuated as it propagates through a series of gates. The transient error gets

attenuated to an extent where it is ignored by the following memory element.

Figure 2.2: Electrical Masking.

As shown in Fig. 2.2 , the voltage pulse generated at the output of the gate

n1 attenuates as it passes through gates n2, n3 and n4. The attenuation is due to

the parasitic capacitances of succeeding gates. A pulse with duration more than

the gate delay attenuates as it propagates [6].

2.1.3 Latching Window Masking

In latching window masking, if a SET doesn’t arrive on time, then it will be

masked; this depends on the hold and setup times of the target memory element.

This is a timing-related masking technique. For a voltage transient to get latched

by a memory element, the pulse should be available exactly at the latching window.

The transient is masked if it arrives before or after the latching window. As shown

27

in Fig. 2.3, the value of “out” changes only when the glitch is available at the

latching window. In all the other cases, the output is error free.

Figure 2.3: Latching window masking [6].

2.2 Fault Tolerance Mechanisms

There are two dominant mechanisms in order to reduce soft error failure rate.

2.2.1 Fault Avoidance

The traditional approach to achieve reliability in systems is mostly based on

fault avoidance mechanisms [32]. The purpose of fault avoidance mechanism is

to ensure that a part, subsystem or a system doesn’t fail. In this mechanism,

28

defective modules are identified and replaced by other modules. Two widely used

methods to perform fault avoidance through configuration are [33]: 1):Hardware-

oriented methods, where the faulty components are replaced by a spare using ad-

ditional wires, switches and controllers, 2): Reconfiguration-oriented, where fault

avoidance is applied through reconfiguration and partial mapping modification.

There are several situations in which the fault avoidance approach clearly does not

suffice. These include situations where the frequency and duration of repair time

are unacceptable, or where the system may be inaccessible to manual maintenance

and repair activities. Fault avoidance is often used for handling defects in digital

circuits. An alternative approach to fault avoidance is that of fault tolerance.

2.2.2 Fault Tolerance

This approach involves the use of protective redundancy. A system can be

designed to be fault tolerant by incorporating additional components and special

algorithms, which attempt to ensure that occurrences of erroneous states or erro-

neous output do not result in later system failures. The degree of fault tolerance

depends on the success with which erroneous states, which corresponds to faults

are identified and detected, and the success with which such states are repaired or

replaced [34]. The fault tolerance mechanism is aimed at either to mask, or to re-

cover from faults once they have been detected [35]. This mechanism attempts to

maximize the probabilities of the three masking mechanisms i.e., logical, electrical

and latching window masking. Therefore, fault tolerant designs are required for

29

reliable systems that will operate correctly in spite of transient dynamic faults.

All fault tolerance approaches rely on some sort of redundancy; otherwise, there

is no way to guarantee that a device will not fail if a fault occurs.

2.3 Soft Error Tolerance

Fault tolerance techniques work on circuit level or higher levels of abstractions

to achieve soft error rate (SER) improvement. Fault tolerance techniques for

combinational circuits can be classified into three major categories: hardware

redundancy, synthesis-based and physical characteristics based techniques.

In this section, a survey of the current fault-tolerant methods to tolerate

SEU/SET in combinational circuits are discussed.

2.3.1 Hardware Redundancy Techniques

Hardware redundancy methods are based on adding redundant hardware. Mul-

tiple modules are used to represent the same function in order to maximize mask-

ing of errors. Multiple copies of either the entire circuit or part of the circuit

are used as redundant hardware. Redundancy can be added at the module-level,

gate level, transistor-level [36] or even at the software level. At the software level,

certain software transformations are applied to reduce the vulnerability of critical

instructions of a program [37].

30

Von Neumanns Multiplexing

John von Neumann in the 1950s [38] first initiated the idea of reliable systems

using unreliable components. His idea is based on replacing the processing unit

by multiplexed units. A unit consists of an executive stage and the restorative

stage. The basic functions of the unit are performed by the executive stage, while

the error correction is performed by the restorative stage due to the errors caused

by the executive stage. In the executive stage, a unit is replaced by N multiplexed

units having N copies of every input and output of the unit. The inputs are

randomly paired together to feed the N units. For example, consider the case

when the processing unit is a single 2-input NAND gate, with N=4, Von Neumann

multiplexing is shown in Fig. 2.4. The unit U represents a random permutation

of the input signals. The two inputs of each NAND gate are selected randomly

from the first and second inputs X and Y respectively. The restorative stage is

constructed the same way as the executive stage. However, the outputs of the

executive stage are duplicated and used as inputs for the restorative stage. Note

that, this approach will invert the result if its used only once, thus, two steps are

required. By defining some critical level ∆ such that 0 < ∆ < 1/2, if the number

of lines carrying a positive state (logic 1) is larger than (1−∆)×N , it considers

this as a positive state of the bundle, if it was less than ∆, it interprets this as

negative state (logic 0). In cases where the number of positive state lines does not

meet either of these criteria, then the output is not decided, and so a fault will

occur.

31

Figure 2.4: Von Neumanns logic for 2-input NAND gate with N = 4.

Giving a probability of failure ϵ for each gate, Von Neumanns structure requires

a large amount of redundancy and a low error rate for individual gates. For deep

logic with a gate failure probability ϵ = 0.01 and N = 100, it is shown in [39] that

a circuit failure probability in the order of 10−6 can be obtained. This required

amount of redundancy is huge and is considered impractical. In order to reduce

this large amount of redundancy, the works in [40,41] combine NANDmultiplexing

with reconfiguration.

Triple Modular Redundancy (TMR)

Triple Modular Redundancy is one of the most well-known techniques to tol-

erate soft/hard errors in combinational circuits [42, 43]. Its a special case of the

NMR system. An NMR system (also known as M-of-N system) is a system that

consists of N modules and needs at least M of them for proper operation. TMR

is a system where M=2 and N=3, which consists of three functionally identical

copies of the original circuit that feed a 2- out-of-3 majority voter as shown in Fig.

32

Figure 2.5: A Triple Modular Redundant (TMR) structure.

2.5. If 2 modules out of 3 produce expected correct results, then the majority of

the modules produces correct results, and so the error in the third module will be

masked. However, TMR suffers from high overhead in terms of area and power

(more than 200%).

In a structure where M=2 and N=3, the voter selects the majority vote. If a

single voter is used, that voter becomes a critical point of failure and the relia-

bility of the TMR structure is limited by that of the final arbitration unit (i.e.,

voter), which makes the approach difficult in the context of highly integrated

nano-systems [17]. Despite this limitation, TMR is heavily used in practice, espe-

cially when single faults are needed to be protected. Even in the case of multiple

faults, some of these faults could be masked due to electrical and logical masking

in each module.

33

Interwoven Redundant Logic and Quadded Logic

Pierce [44] suggested another scheme called interwoven redundant logic. This

scheme considers two types of faults 0→ 1 and 1→ 0 faults. The error correction

mechanism in interwoven redundant logic depends on asymmetries in the effects

of these two types of binary errors. The effect of a fault depends on the value of

the input and the type of gate. Consider a NAND gate, for an instance, if the

value of one of the inputs is 0 while it should be 1, the output of NAND gate will

be 1 regardless of the values of other inputs. In this case the output will be stuck

at 1. On the other hand, if an input value is 1 while it should be 0, the output will

depend on other inputs and the output will not be stuck. The type of faults that

cause the output to be stuck is considered as critical; the other type is subcritical

in the sense that its occurrence alone does not cause an output error. Hence,

alternating layers of NAND (or NOR) gates can correct errors by switching them

from critical to subcritical.

Quadded logic [45] is an ad hoc configuration of the interwoven redundant

logic. It requires four times as many circuits, interconnected in a systematic way,

and it corrects errors and performs the desired computation at the same time. A

quadded circuit implementation based on NAND gates replaces each NAND gate

with a group of four NAND gates, each of which has twice as many inputs as the

one it replaces. The four outputs of each group are divided into two sets of outputs,

each providing inputs to two gates in a succeeding stage. The interconnections

in a quadded circuit are eight times as many as those used in the non-redundant

34

(a) Original circuit. (b) Quadded logic circuit.

Figure 2.6: Quadded logic example.

form. In a quadded circuit, a single critical error (1 → 0) is correctable after

passing through two stages of logic and a single sub-critical error (0→ 1) will be

corrected after passing a single stage. In quadded logic, it must be guaranteed

that the interconnect pattern at the output of a stage differ from the interconnect

patterns of any of its input variables. While quadded logic guarantees tolerance

of most single errors, errors occurring at the last two stages of logic may not be

corrected. Fig. 2.6 shows an example of a quadded logic circuit.

35

Partial Error Masking Scheme Based on TMR

In [7], a partial error masking scheme is proposed based on TMR shown in Fig.

2.7. It targets the nodes with the highest soft error susceptibility. Two reduc-

tion heuristics are used to reduce soft error failure rate, namely, cluster sharing

reduction and dominant value reduction. Instead of triplicating the whole logic

as in TMR, only the nodes with highest soft error susceptibility are triplicated,

the rest of the nodes are clustered and are shared among the triplicated logic.

The dominant value reduction heuristic exploits the fact that the logic value “0”

and logic value “1” soft error susceptibility of certain primary outputs is highly

skewed. Such outputs are identified and the triplication is replaced by duplica-

tion. The 2-out-of-3 majority is replaced by AND (OR) logic. The Generalized

Modular Redundancy (GMR) [46] scheme takes into account the probability of

occurrence of each combination at the output of a circuit. The redundancy is then

added to only those combinations that have high probability of occurrence, while

the remaining combinations can be left un-protected to save area.

Fault Tolerance Based on History Index of Correct Computation

A more recent technique based on TMR maintains a history index of correct

computation (HICC) module to select the correct result [8]. Instead of using

merely majority voting to transmit results, HICC module uses the history indices

of redundant units to transmit the correct computation. It represents a measure

of a hardware units reliability. The most reliable unit is the unit with the highest

36

Figure 2.7: Partial error masking scheme [7].

history index. The computations of other redundant units that implement the

same function are ignored.

Fig. 2.8 shows an example that demonstrates the concept of the HICC module.

In the figure, an ALU module is triplicated as units A, B, and C. The result

selector decides the unit with the correct result based on stored history index of

each unit. The unit with the highest index is considered to be the most reliable

unit, and its result is transmitted. When all units have the same history index

value, a bitwise majority voting is used to decide the result. After that, the

history index of each unit is incremented by 1 if its result is identical to the result

of majority; otherwise it is decremented by 1. The HICC logic is distributed within

the modules themselves. Hence, unreliable modules are identified simultaneously

in real time and are ignored.

Maximizing the reliability of a system based on nano-devices may require a

combination of techniques [47]. Previous results that used error correcting codes

(ECCs) and TMR at the bit and module levels demonstrated that recursive TMR

37

Figure 2.8: HICC module [8].

Figure 2.9: Enhanced majority voting with parity checking at the module level [8].

at both levels has the best resilience to noise [48]. Thus, they combined redun-

dancy and reconfiguration to make the system more tolerant of faults. To increase

the fault tolerance of the error-prone decision units at the module level, a second

copy of the result is stored with an additional parity bit, as illustrated in Fig. 2.9

and Fig. 2.10. The parity checker transmits the even parity result. History indices

also have an additional parity bit. The index is updated if even parity is detected.

They have stated that without such extra redundancy at the module level, HICC

performance is deteriorated.

38

Figure 2.10: Enhanced HICC unit with parity checking at the module level [8].

Double Modular Redundancy (DMR)

Teifel [9] proposed a Double/Dual Modular Redundancy (DMR) scheme that

utilizes voting and self-voting circuits to mitigate the effects of SETs in digital

integrated circuits. A Self-voter shown in Fig. 2.11 is a 3-input majority voter

configured to vote on two external inputs and with the state of its current output.

The output of a self-voter goes high when both its inputs are high and becomes

low when both inputs are low. The output remains unchanged when inputs to the

self-voter differ.

Figure 2.11: Self-voting majority circuit: schematic and standard-cell circuit [9].

The Bayesian detection technique from the communications theory has been

39

applied to the voter in NMR, called soft NMR [10]. In comparison to NMR, voter

in Soft NMR is composed of a detector as shown in Fig. 2.12. The underlying as-

sumption in Soft NMR is that each processing element (PE) or redundant module

is a noisy channel, and the detector acts as a slicer. In most cases, it is able to

identify the correct output even when all duplicated modules are in error, but at

the expense of very high area overhead cost of the soft voter.

Figure 2.12: Block diagram of: (a) NMR and (b) Soft NMR [10].

Design diversity is a mechanism in which the redundancy is applied by imple-

40

menting functionally equivalent but structurally different designs to potentially

protect a circuit from multiple faults. Mitra et al. [49] proposed the use of de-

sign diversity mechanism in modular redundancy to detect common mode failures

(CMFs). To quantify the diversity between redundant logic, various methods

have been proposed. To understand the mechanism of design diversity, consider

an example logic function shown in Fig. 2.13 which implements the logic func-

tion Z = AB + AC in two different ways. The faults are mentioned as f1 = w

Stuck-at-0 (written as w/0) in Fig. 2.13a and f2 = y Stuck-at-0 (written as y/0)

in Fig. 2.13b. The input combinations ABC = 111, 101 and 110 will produce an

error at Z1. However, the only input combination that causes an error at Z2 is

ABC = 101. So, in a duplex system consisting of design from Fig. 2.13a and

Fig. 2.13b, only an input pattern ABC = 101 will result in the system failure or

results in the failure of both systems. Therefore, due to this input pattern, the

fault goes undetected. If we consider that all input patterns are equally likely then

the diversity value of duplex systems consisting of (f1, f2) will be 1− 1
8
= 7

8
. The

applications of diversity design in DSP and communication systems is discussed

by Reviriego et al. in [50].

Smith [51] proposed a DMR technique based on the use of a single-event tran-

sient (SET) suppressor circuit to each primary output of the circuit. The SET

suppressor consists of two gates (AND, OR) and a simple two input multiplexer

with its output connected to its own select line to select between AND(OR)

gate output when the combinational circuit primary output is logic 0(1). The

41

Figure 2.13: Example of design diversity.

AND(OR) gates are fed by the outputs of the two functionally equivalent mod-

ules and are used to suppress SET from propagating to the primary output when

the primary output is producing logic value 0(1).

A similar scheme has been proposed by Rezgui [52] to protect combinational

and sequential circuit from SETs by utilizing C-Element [53]. The C-Element [54]

is an asynchronous logic component which preserves the previous state of the

logic circuit when the two modules produce different values shown in Fig. 4.5.

The application of C-Element in modular redundancy is shown in Fig. 2.15.

Soft Errors in Sequential Circuits

El-Maleh et al. [55] proposed increasing sequential circuit reliability by intro-

ducing redundant equivalent states to states with high probability of occurrence

in sequential circuit behavioral machine. To maintain the same operation of the

unprotected FSM, the newly added redundant states have the same input, next

state, and output as the original states. Other states with low probability are

42

Figure 2.14: C-Element.

kept without protection to minimize the area overhead. The author divided the

original states of the state machine into protected states with high probability

of occurrence, and normal states with low probability of occurrence. For each

protected state, equivalent redundant states are added to guarantee single soft

fault tolerance. The author developed an algorithm to determine the number of

bits needed to encode protected, redundant and normal states. The algorithm

will also provide states codes. It was found that failure rate of sequential circuits

which involves protecting states with high probability of occurrence is less than

the ones involving protecting random or lower state probability.

43

Protected

C-Element

Y

Y

OUT

Figure 2.15: DMR with C-Element.

Defect-Tolerant Transistor Structures

A defect tolerant technique that adds redundancy at the transistor level of the

circuit is proposed in [56]. The N2 structure is a generalization of the quadded-

transistor structure. In the quadded-transistor structure, each transistor, A, is

replaced by a structure that implements either the logic function (AA) + (AA)

or the logic function (A+A)(A+A). In such structure, any single transistor defect

is tolerated. However, in the N2 structure, N blocks are connected in series such

that each block contains N parallel transistors. If number of defects is less than

or equal to (N-1), N2 structure guarantees the tolerance of all those defects. It

was shown that this technique achieves higher defect tolerance compared to gate

level based techniques such like quadded logic and TMR.

Soft error protection of combinational logic can be achieved by adding redun-

dancy at the transistor-level. Nicolaidis [57] proposed a scheme where a circuit

is duplicated containing all but last stage gate where the last stage gate is im-

plemented as a code word preserving gate. This last stage gate is either a NOT,

NAND or NOR gate with each transistor duplicated and connected in series to pre-

44

serve the fault-free state that the output had before the transient fault occurred.

More recently,

Implication Based Redundancy Addition for Fault Tolerance

Recently, there has been a growing interest to investigate the gate-level in-

variant relationships to solve multitude of CAD problems. Error detection and

correction is one of the challenging problems. For memory elements it is quite

simple as all that is required to check is the comparison of data being read and

the data that is already stored. For memories it is usually employed using error

correction codes (ECC). For logic circuits it is quite complicated to check for the

errors as the correct answer is not known a priori. To circumvent this issue in logic

circuits, Alves et al. [58–60] used logic implications for online error detection. If

any invariant relation is violated the checker hardware will detect and signal an er-

ror. This resulted in very high fault coverage with very less area overhead. Use of

logic implications for power optimization is proposed by Bahar et al. [61] in which

high-power dissipating nodes are eliminated to reduce the switching activity. This

results in the reduction of power dissipation of the entire circuit.

There has also been an interest to use logic implications for soft error tolerance.

The mechanism is simple: if a SET occurs and distorts a signal, then the added

functionally redundant wire will attenuate this effect from propagating to the

primary output. Mukhaizim et at. [62] proposed a gate-level soft error mitigation

technique by adding functionally redundant wires (FRWs). The proposed method

first finds the implication relation between the sensitive wires-the wires that have

45

high probability of fault detection-and all the other wires. The implication is

added to the target gate if it reduces the soft error rate (SER) of the entire circuit.

In order to find the implication that reduces/minimizes the sensitivity of the

target gate, fault simulation has to be repeated for each found implication between

the sources and a target. This results in significantly high computation time.

Zhou et al. [63] proposed an improvement which considered electrical and timing

window masking effect besides the logic masking. To eliminate the necessary fault

simulation in order to quantify the value of an implication in [62], the authors

in [63] employed a SER relation to do so. Additionally, the priority is given to the

non-invert implication paths as the invert implication paths costs more hardware

due to an extra inverter which introduces a new site for potential SET.

2.3.2 Synthesis-Based Fault Tolerance Techniques

In the synthesis-based techniques, the combinational circuit is restructured in

order to maximize masking properties of the circuit. Logical masking is the main

masking property to be maximized

Localized Circuit Restructuring Tolerant Technique

In [64], logic masking of errors is increased by taking the advantage of con-

ditions already present in the circuit, such as observability don’t cares. Two

techniques are used to improve reliability: dont care-based re-synthesis and local

rewriting. In the first method, high-impact nodes are identified. A node has high

impact if many observable faults flow through it. High-impact nodes are used to

46

select areas of the circuit for restructuring, in which a vulnerable node is replicated

by adding a single gate. Local rewriting is also used to optimize small sub-circuits

to obtain overall area improvements.

Reliability-Driven Dont Care Assignment Method

In [65], two algorithms are proposed to improve input error resilience. They

focus on input error due to propagated failures from previous blocks. Both algo-

rithms determine 0/1 assignments for the most critical Don’t Care (DC) terms.

Consider the correct input vector for a circuit is 0100, if a fault happens that

fails the third input, the 0110 vector will be applied to the logic circuit. If the

implementation is identical for these two vectors, then the error will be masked.

If 0110 is a don’t care, then the assignment of this minterm to either 0 or 1 will

determine the masking of an error on the third input of the 0100 vector. Given

a circuit with a set of don’t care minterms, the output after applying proposed

algorithms is the circuit with new on-set minterms, new off-set minterms and new

don’t cares set.

Redundancy Addition and Removal Technique

In [66], a framework is proposed based on redundancy addition and removal for

soft error rate (SER) reduction. It performs a series of wire addition and removal

by searching for redundant wires in the circuit. It will go through an iterative

process trying to keep wires/gates with higher masking impact and to remove

wires/gates with higher error impact; this will be guided using some metrics. The

47

masking impact takes into account the three masking mechanisms.

Sub-circuit Extraction & Synthesis

El-Maleh et al. [2] proposed a scheme in which small sub-circuits are extracted

from the original circuit, re-synthesized and merged back in the original circuit

in order to maximize the probability of logical masking when a soft error occurs.

Once each sub-circuit is extracted, the probabilities of its input vectors to occur

are computed. Based on this input occurrence probability a new two-level circuit

is produced which is then merged with the original circuit.

In [67], a circuit simplification method is proposed for error tolerant applica-

tions. In some applications such as images, video, audio and graphics many faulty

versions of a chip can be used. In this work, the original combinational circuit

is given with a defined error threshold, and the minimum area simplified circuit

version is derived such that the error it produces is within the given threshold.

2.3.3 Physical Characteristics Based Fault Tolerance

Techniques

The physical characteristics based techniques attempt to reduce SER based

on the physical characteristics to maximize the electrical masking.

Many methods found in literature attempt to reduce SER based on the physical

characteristics to maximize the electrical masking and latching-window masking.

Gate resizing strategy [68] reduces SER by modifying the W/L ratios of transistors

48

in gates. To achieve significant improvement in SER, potentially large overheads

in area, delay, and power are introduced. In [69], a related method is introduced,

which uses optimal assignments of gate sizes, threshold voltages, supply voltages,

and output capacitive loads to get better results while keeping overheads smaller.

Nevertheless, the design complexity is increased in this method in addition to

the possibility of making circuit hard to optimize at physical design. Another

scheme [70] focuses on the selection of flip-flop from a given set. It increases

the probability of preventing faulty transients from being registered by selectively

lengthening latching-windows associated with flip-flops, but it doesn’t consider

logical masking and electrical masking. A hybrid approach [71] combines flip-flop

selection with gate resizing to achieve SER improvement.

Lazzari [1] proposed an asymmetric transistor sizing technique i.e., nmos and

pmos transistors are sized independently of each other of the most sensitive gates

of the circuit, but they considered that incident particles strike only the drain of

transistors connected to the output of a gate. Sizing parallel transistors according

to the sensitivity of their corresponding series transistors can significantly improve

the fault tolerance of combinational circuits [72, 73]. Variable sizing among all

transistors in a gate is a viable option if particle strikes of varying charge are

considered. To further improve the fault tolerance, more up sizing quota is given

to the most sensitive gates [74].

A more recent technique is presented in [75] that attempts to increase electrical

masking. In this method the impact of using reliability-aware logic synthesis to

49

reduce both the pulse width and the drain area of a circuit is analyzed. The idea

here is to replace highly vulnerable cells with alternative cells or logical functions

to reduce overall vulnerability of a circuit. The pulse width and drain area are

used in this study as the reliability metrics to rank cells. The strategy is as follows:

circuits are synthesized to a given cell library, then, the frequently used and highly

vulnerable cells are identified; those identified cells are removed from library and

are replaced with alternative implementations. Thus, an improved cell library is

created.

To protect memories and latches from soft-errors, cell hardening tech-

niques [76–78] have been used. An example of this approach is a DICE memory

cell [76] that uses twice the number of original transistors (i.e., 12 transistors as

compared to 6 transistors). The limitation of these approaches is that they are

designed to tolerate soft errors in memory elements only and not in the combina-

tional logic.

50

CHAPTER 3

SELECTIVE

TRANSISTOR-REDUNDANCY

BASED FAULT TOLERANCE

TECHNIQUE FOR

COMBINATIONAL CIRCUITS

This chapter is focused on designing combinational circuits for soft error toler-

ance with minimal area overhead. The idea is based on analyzing random pattern

testability of faults in a circuit and protecting sensitive transistors, whose soft

error detection probability is relatively high, until a desired circuit reliability is

achieved or a given area overhead constraint is met. Transistors are protected

based on duplicating and sizing a subset of transistors necessary for providing the

51

protection. LGSynth’91 benchmark circuits are used to evaluate the proposed

algorithm. Simulation results show that the proposed algorithm achieves better

reliability than other transistor sizing based techniques and the Triple Modular

Redundancy (TMR) technique with significantly lower area overhead for 130nm

process technology at ground level.

It is observed that modular redundancy algorithms suffer from high area over-

head as they either duplicate or triplicate the whole system followed by a voter.

Even if the duplication or triplication is applied selectively, the area overhead is

still high. On the other hand, symmetric transistor sizing approaches incur too

much area cost, while asymmetric sizing approaches did’t consider the transient

hit at all possible locations. Asymmetric transistor sizing is applied to the most

sensitive gates of the circuit by considering that particles can hit the drain of any

transistor of a logic gate. A selective-transistor scaling method is proposed that

protects individual sensitive transistors of a circuit. A sensitive transistor is a tran-

sistor whose soft error detection probability is relatively high. This is in contrast

to previous approaches where all transistors, series transistors or those transistors

connected to the output of a sensitive gate, whose soft error detection probability

is relatively high, are protected. Transistor duplication and asymmetric transis-

tor sizing is applied to protect the most sensitive transistors of the circuit. In

asymmetric sizing, nmos and pmos transistors are sized independently. Reliability

is evaluated for different protection thresholds and area overhead constraints.

The rest of the chapter is organized as follows: Section 3.1 highlights the

52

motivation and rationale behind the proposed approach, Section 3.2 presents the

proposed selective transistor-redundancy algorithm, an illustrative example is dis-

cussed in Section , simulation results are elaborated in Section 5.4, and finally the

paper is concluded in Section 7.1.

3.1 Effect of Energetic Particle Strike

When an energetic particle strikes a semiconductor, it ionizes the region around

it, resulting in the generation of electron-hole pairs. The charge due to the particle

strike is then transported by drift and diffusion resulting in the establishment of

transient electric field i.e., SET. The change in voltage observed at the output

due to SET depends on the energy and angle of incidence of energetic particle.

Source and drain regions are the most sensitive nodes to such events due to the

large field around the junction regions which sweeps in the generated electron-holes

and result in large currents. If the energy of a striking particle is high enough, it

will flip the output of a gate resulting in a single event transient (SET) [3], [4].

To explain the selective transistor-redundancy principle, let us first consider

the effect of an energetic particle striking a CMOS inverter. When the inverter

input is LOW and the energetic particle strikes the drain of an nmos transistor,

the output voltage is temporarily lowered. Whereas, when the inverter input is

HIGH and the energetic particle strikes the drain of a pmos transistor, the output

voltage is temporarily raised. In both cases, the output logic value of the inverter

can be changed to a wrong value if enough charge is collected. This is shown

53

in Fig. 3.1, using 130nm Predictive Technology Model (PTM) [79]. Fig. 3.1a

illustrates the fault injection mechanism employed in this work. The output load

is assumed to be equal to an inverter load. The soft error is modeled by injecting

a current I of charge Q at the drain of a transistor. The direction of injected

current is from drain-to-body (bulk) in the nmos transistor and from body (bulk)-

to-drain in the pmos transistor. The double exponential current pulse I is used to

model the charge deposited due to a particle strike at the drain of nmos or pmos

transistor [80], [81] and is depicted as:

I(t) =
Q

(τf − τr)

(
e
− t

τf − e−
t
τr

)
(3.1)

Where Q is the charge deposited by a particle strike, τf denotes the falling time

of the pulse, τr denotes the rising time of injected current pulse and vary for each

process technology. The value of τf is greater than τr. The supply rail VDD is

connected to 1.3V. We will be taking 130nm technology as a case study in this

work, however, the technique is general and applicable to any process technology.

Fig. 3.1b illustrates the effect of a particle strike on the drain of an nmos

transistor when the true output of an inverter is HIGH. The particle strike at N1

will cause a sudden drop in the output voltage (≈-0.7V) of inverter. This type of

soft error will be modeled as a stuck-at-0 (sa0) fault at the output of the gate. To

protect from this fault, the pmos transistors of an inverter must be scaled enough

so that the output voltage becomes > VDD/2. Fig. 3.1c illustrates the effect of a

particle strike on the drain of a pmos transistor when the true output of an inverter

54

Vdd

N1

P1
OUT

A

A

(a) Particle strike model.

-1.3

-1

-0.7

-0.4

-0.1

0.2

0.5

0.8

1.1

1.4

0 1 2 3 4 5 6 7 8 9 10

V
o

lt
a

g
e

(V
)

Time (ns)

Effect of Particle

Strike

(b) Effect of particle strike at nmos drain.

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10

V
o

lt
a

g
e

(V
)

Time (ns)

Effect of Particle

Strike

(c) Effect of particle strike at pmos drain.

Figure 3.1: Effect of energetic particle strike on CMOS inverter at t = 5ns.

is LOW. The particle strike at P1 will cause a sudden rise in the output voltage

(≈1.9V) of inverter. This type of soft error will be modeled as a stuck-at-1 (sa1)

fault at the output of the gate. To protect from this fault, the nmos transistor of

an inverter must be scaled enough so that the output voltage becomes < VDD/2.

Now, consider the transistors arrangement shown in Fig. 3.2a where duplicate

pmos transistors are connected in parallel. The width of the redundant transistors

must also be increased to allow dissipation (sinking) of the deposited charge as

quickly as it is deposited so that the transient doesn’t achieve sufficient magnitude

55

and duration to propagate to the output. If the output is currently high and an

energetic particle hits the drain N1 of the nmos transistor (with the same current

source used in the simulations shown in Fig. 3.1), this should result in a lowered

voltage observed at the output. But due to the employed transistor configuration,

the net negative voltage effect will be compensated, as evident from Fig. 3.2b,

resulting in a spike that has lesser magnitude as compared to the one shown in

Fig. 3.1b. The spike magnitude is reduced due to increased output capacitance

and reduced resistance between VDD and the output.

Consider another arrangement of transistors in Fig. 3.2c where redundant nmos

transistors are connected in parallel. If the output is low and the incident energetic

particle strikes the drain P1 of pmos transistor, then the raised voltage effect at

the output shown in Fig. 3.1c will be reduced as observed from Fig. 3.2d. This

reduction in the spike magnitude is due to the same reasons mentioned for the

nmos transistor.

Similarly, to protect from both sa0 and sa1 faults, the transistor structures

in Fig. 3.2a and Fig. 3.2c can be combined to fully protect a NOT gate. A fully

protected NOT gate offers best hardening by design, but at the cost of higher area

overhead and power. It must be noted that the optimal size of the transistor for

SEU immunity depends on the charge Q of the incident energetic particle.

Due to aggressive nodes and voltage scaling, the effect of transient fault is no

more constrained to a node where the incident particle strikes. This could result

in the possibility of deposited charge being simultaneously shared by multiple

56

circuit nodes in the circuit [25–27] leading to the Single Event Multiple Upsets

or SEMUs, also referred to as Multiple-Bit Upsets or MBUs [3]. Consider the

inverter example in Fig. 3.1, if two particles strike at the drain of nmos and

pmos transistors simultaneously, then the charge collection at the nmos and pmos

transistors will offset each other, resulting in an insignificant change in voltage at

the output. Therefore, by duplication of transistors, it is intended to increase the

probability of multiple fault hits at the same gate, so that the victim transistors

could cancel the effect of each other. For that matter, LEAP [82] placement

technique can be utilized. This scheme places the drain contact nodes of nmos

and pmos transistors in an interleaved fashion so that multiple drain contact nodes

can act together to fully or partially suppress the SETs. Another advantage of

using parallel duplicate transistors is the defect tolerance of transistor stuck-open

faults for protected transistors.

3.2 Proposed Algorithm

In this section, the proposed selective transistor-redundancy (STR) algorithm

is presented. The algorithm protects sensitive transistors whose probability of

failure (POF) is relatively high. The proposed algorithm can be utilized in two

capacities: 1) apply protection until the POF of circuit reaches a certain threshold,

2) apply protection until certain area overhead constraint is met. We will first

discuss different relations that realize the circuit POF. These relations are then

used in the proposed algorithm.

57

Vdd

A A

A

OUT
N1

protected fault

(a) Particle hit at nmos drain, OUT=HIGH.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10

V
o

lt
a

g
e

(V
)

Time (ns)

Reduced Effect of

Particle Strike

(b) Reduced effect of particle strike at nmos drain.

Vdd

A

A A

OUT

protected fault
P1

(c) Particle hit at pmos drain, OUT=LOW.

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

0 1 2 3 4 5 6 7 8 9 10

V
o

lt
a

g
e

(V
)

Time (ns)

Reduced Effect of

Particle Strike

(d) Reduced effect of particle strike at pmos drain.

Figure 3.2: Proposed protection schemes and their effect.

3.2.1 Circuit Probability of Failure

Let us first define the probability of failure of a transistor. In all discussions,

subscripts i and j refer to gate i and transistor j, respectively. The POFij of j
th

transistor of gate i is defined as the probability of circuit failure due to a fault

hitting the transistor. It is computed using the following relation:

58

POFij = PDETij
× PHITij

(3.2)

Where PDETij
is the probability of detecting a fault hitting transistor j of gate i

at a primary output, and PHITij
is the probability that transistor j of gate i is hit

by a fault. The greater the transistor width/area is, the greater its hit probability

is.

PHITij
is computed separately for nmos and pmos transistors as they have

different drain widths. Let NWij and PWij be the width of nmos and pmos

transistors, respectively, Area be the total circuit area, then the probability of a

transistor j of gate i to be hit by a fault, PHITij
, is computed using the following

relation:

PHITij
=

Wij

Area
Wij ∈ {NWij, PWij} (3.3)

PDETij
, as defined before, depends on two factors; 1) probability of input pat-

terns for which a fault that hits the transistor is propagated to the output of a gate

i.e., controllability conditions to excite the fault, 2) stuck-at fault observability

probability of the gate at one of the primary outputs of a circuit i.e., observability

probability. PDETij
is computed using following relation:

PDETij
= PExcitationij

× PPropagationij
(3.4)

Where PExcitationij
denotes the probability that the fault is excited at gate i

59

output due to a fault hit at transistor j. PPropagationij
denotes the probability that

an error that is excited at the gate’s output is observable at one of the primary

outputs. Let S be a set of patterns for which an error that strikes transistor j is

propagated to the output of gate i, then PExcitationij
is computed as:

PExcitationij
=

|S|∑
k=1

Prob. Sk (3.5)

Where Prob. Sk denotes the probability of occurrence of kth input pattern. SPICE

tool is used to find the input patterns for which a transistor fault is excited and

observed at the gate output.

Similarly, PPropagationij
can be computed using the following relation:

PPropagationij
=

stuck − at− detection− probi
PCi

(3.6)

Where stuck − at− detection− probi defines stuck-at fault detection probability

of gate i and PCi is the controllability probability to produce logic value opposite

to the fault effect at the gate output. The fault simulator tool HOPE [83] is used

to compute the stuck-at fault detection probability and PCi of a gate i.

Finally, the circuit probability of failure POFC for a single fault is simply the

summation of POFs of all transistors n over all gates m of a circuit.

POFC =
m∑
i=1

n∑
j=1

POFij (3.7)

60

Table 3.1: Parameters considered in the study.

Technology (T) 130m = 0.13µ
nMOS width (NWij) 2× T = 0.26µ
pMOS width (PWij) 4× T = 0.52µ
Charge (Q) 0.3pC

3.2.2 Example: NAND Gate

A thorough case study for the 130nm process technology is performed to elab-

orate POFij. Here, we will consider the case of a 2-input NAND gate. The basic

process related parameters used in this study employ minimum feature size and

are shown in Table 3.1. It must be noted that in practical designs the minimum

widths of the transistors are adjusted to cater for the specifications of desired

application. The value of charge Q considered here is 0.3pC which is the worst

case charge value deposited by the 130nm process technology [68].

For NAND gates, the sa0 fault excitation probability is computed for input

patterns where the output is logic “1”. For a 2-input NAND gate, there is a max-

imum of four input combinations, {00, 01, 10, 11}. Therefore, the sa0 excitation

probability of the jth nmos transistor of gate i is computed based on the input

combinations producing logic value “1” at the output i.e., {00, 01, 10}.

Fig. 3.3 shows the CMOS structure of a 2-input NAND gate. A transient

with charge (Q) of 0.3pC injected at drain “N1” will always be propagated to the

output of the gate for input patterns {00, 01, 10}. Therefore, the fault excitation

probability for nmos transistor connected to input “A” in Fig. 3.3, computed using

Eqn. 3.5, is (3
4
) or 0.75. So, when a fault hits the nmos transistor “N1” of a 2-input

NAND gate, it will fail with a probability of (3
4
). This is because for 3 out of the

61

4 possible input combinations, the gate will fail.

Logically, the transient hit at “N2” should only be excited to the output if

and only if the value of input “A” is logic “1” i.e., for input pattern 10, implying

fault excitation probability of (1
4
) or 0.25 . However, since the fault excitation

is highly dependent on the transient charge value, it is not necessarily true that

the fault injected at “N2” will not be excited for the input patterns {00, 01}. To

overcome the uncertainty regarding the fault excitation under all possible input

combinations, transistor level simulation using SPICE is performed. Based on

SPICE simulation, the transient fault injected at drain “N2” with charge (Q)

value of 0.3pC is observed at the output for input pattern {10}, only. Therefore,

the fault excitation probability for nmos transistor “N2” connected to input “B”

is (1
4
) or 0.25. Here, stuck − at − detection − probi = PCi, because the NAND

gate is a stand alone gate and is not connected to any other gate. Therefore, any

fault excited due to a fault hit at the transistor will make the gate/circuit fail.

So, PDETN1
= 0.75 and PDETN2

= 0.25.

Fig. 3.4 illustrates the sa1 scenario when a fault hits any of the pmos transistors

P1 or P2 of a 2-input NAND gate. In this case, the fault will be observed at the

output for input pattern {11} only. Again, stuck− at− detection− probi = PCi.

Thus, the fault excitation probability due to a fault hit at pmos transistors “P1”

or “P2” is (1
4
) or 0.25. This is because the gate will fail for 1 out of 4 possible

input combinations. So, PDETP1
= PDETP2

= 0.25.

The gate failure probability of a 2-input NAND gate can be computed using

62

Vdd Vdd

A B

A

B

OUT
N1

N2

fault injection

fault injection

Figure 3.3: Stuck-at-0 case of 2-input NAND gate.

Vdd Vdd

A B

A

B

OUTfault injection
P1 P2

Figure 3.4: Stuck-at-1 case of 2-input NAND gate.

63

Eqn. (3.7) as follows:

Gate Failure Prob. =
2∑

j=1

PDETNij
× NWij

Area

+
2∑

j=1

PDETPij
× PWij

Area

=

N1,N2︷ ︸︸ ︷(
0.75× 0.26 + 0.25× 0.26

1.560

)

+

P1,P2︷ ︸︸ ︷(
2× 0.25× 0.52

1.560

)
= 0.167 + 0.167

= 0.334

3.2.3 Selective Transistor-Redundancy (STR) Based De-

sign

The selective redundancy technique is applied to protect transistors of a circuit

that have relatively high POFij. Sensitive transistors that have relatively high

probability of failure are identified based on fault simulation of random input

patterns. Different arrangements of nmos and pmos transistors are proposed for

each gate for various transistor protection scenarios.

Algorithm 1 highlights the steps of the proposed method. Initially, POF of

64

circuit under test is computed using Eqn. (3.7) by first computing the POF of each

transistor using Eqn. (3.2). The proposed algorithm applies transistor protection

until the circuit POF reaches a pre-defined protection threshold, or a certain area

overhead constraint is met. Each time, the algorithm selects a transistor with the

highest POF. The effect of a transient fault on the selected nmos(pmos) transistor

is suppressed or reduced by duplicating and scaling the widths of a subset of

transistors necessary for providing the protection. For example, in a 2-input

NAND gate, protecting an nmos transistor requires duplicating and scaling its

corresponding pmos transistor connected to the same input. However, protecting

a pmos transistor requires duplicating and scaling both of the nmos transistors

in the gate. Once a transistor is protected, the POF of all transistors in the

circuit are updated. Protecting a transistor in a gate gi affects the selection/hit

probability of all transistors in the circuit. Therefore, after protecting a transistor

in a gate, the POF of the selected transistor is reduced significantly, while the

POF of the remaining transistors may increase or reduce slightly. The circuit area,

POF of all transistors, and POFC are updated after each transistor protection

is applied. The transistor with maximum POFij is selected for protection in the

next iteration. The process is repeated until the desired protection threshold is

reached or the maximum area overhead constrain is met.

The protection threshold Th takes the value between [0%, 100%] and repre-

sents the reliability of the circuit required to be achieved. For example, a protec-

tion threshold of 99% implies applying the protection until POF of circuit is less

65

Algorithm 1 : Selective Transistor-Redundancy Algorithm

Require: Gate level circuit, Th or OverHead
1: Th : Required circuit reliability in %
2: OverHead : Required area overhead in %
3: POFij : Circuit POF due to fault hit at jth transistor of Gate i
4: POFC : Circuit probability of failure
5:

6: Compute random pattern fault detection probability of each gate gi using fault
simulator

7: For all transistors compute POFij using Eqn. (3.2)
8: Compute POFC using Eqn. (3.7)
9: TargetArea = CircuitArea + (CircuitArea × OverHead)
10: while ((POFC ≥ (1− Th))or(CircuiArea < TargetArea)) do
11: Pick a transistor transij with the highest POFij

12: Protect transij
13: Update CircuitArea
14: Update POFij of transistors using Eqn. (3.2)
15: Update POFC using Eqn. (3.7)
16: end while

than or equal to (1 − 99%) = 0.01. Increasing Th will result in more transistors

being protected and vice versa.

3.2.4 Redundancy Models

In light of Algorithm 1, let’s now explain the proposed CMOS implementations

of a 2-input NAND gate in Table 3.2. In this work, a library consisting of 2-, 3-

and 4-input NAND/NOR gates and an Inverter is considered. For brevity, the

case of a 2-input NAND gate will be discussed.

The proposed CMOS implementations of a 2-input NAND gate are shown in

Table 3.2. The first row shows the names of different implementations of a 2-input

NAND gate, while the second row shows their corresponding implementations at

the transistor level. The first numeric value “2” in the gate name (e.g. NAND21)

66

denotes the number of inputs of a gate and the second numeric value, which

ranges from 1 to 5, is used to select the proper transistor level implementation of

a 2-input NAND gate.

In CMOS implementation of NAND21, pmos transistor P1 is duplicated, scaled

and connected in parallel to protect a fault that hits the drain of nmos transistor

N1. Similarly, to protect nmos transistors N1 and N2, pmos transistors P1 and

P2 are duplicated and scaled to protect from a fault that can occur at the drain

of any of the nmos transistors. Hence, the protection type for that gate will be

NAND22.

To protect from faults hitting the drain of pmos transistors, all the nmos tran-

sistors are required to be scaled and duplicated. This is due to the fact that pmos

transistors P1 and P2 are in parallel which makes them equally sensitive to a fault.

This implementation is called NAND23. NAND24 provides protection from faults

that can occur at any of the pmos transistors or at the nmos transistor N1. Finally,

to fully protect the 2-input NAND gate, all the transistors are duplicated along

with their widths increased. This type of protection is called NAND25. So, for a

2-input NAND gate, there are 5 distinct redundancy models.

For a 2-input NOR gate, similar arrangements can be used to create its redun-

dancy model. For 3- and 4-input NAND/NOR gates, 7 and 9 redundancy models

are created, respectively. The necessity to create a variety of redundancy models

for every possible scenario is to achieve as much area savings as possible. The

number of redundancy models is technology independent and allows the proposed

67

I1

I2

I3

G1

G2

Figure 3.5: Example circuit.

algorithm to improve the reliability of circuit by applying fine grained protection

(protecting one transistor at a time) instead of protecting the whole gate at once

as has been proposed by other techniques [1,68]. It will be shown that due to this

fine granularity of protection, the area overhead can be significantly reduced.

3.3 An Illustrative Example

Let us now consider an illustrative example to elaborate the application of the

proposed selective transistor redundancy scheme given in Algorithm 1. Fig. 3.5

shows a simple benchmark circuit consisting of 3 inputs, 1 output and a pair of

2-input NAND gates. First, let’s compute all the required parameters as discussed

in previous sections. Table 3.3 and Table 3.4 show the fault detection probabilities,

controllability probabilities (PC0, PC1) and input pattern probabilities (ipp) of

all gates in the circuit.

Let’s first compute the POF of the circuit using Eqn. (3.7). With NWij =

0.26µ and PWij = 0.52µ, the total area of the circuit is 3.12µ, which is the

summation of drain areas of all the transistors. So, initially for nmos transistors,

PHITN
= 0.26

3.12
= 0.083 and for pmos transistors, PHITP

= 0.52
3.12

= 0.166.

68

Table 3.2: Proposed CMOS implementations of 2-input NAND gate.

Gate CMOS 1

NAND21

Vdd

OUT

Vdd

N2

N1

P1_1 P2P1_2

NAND22

Vdd

OUT

Vdd

P1_1 P1_2 P2_2P2_1

N1

N2

NAND23

Vdd

OUT

Vdd

P1 P2

N1_1 N1_2

N2_2N2_1

NAND24

Vdd

OUT

N1_1 N1_2

N2_1 N2_2

P1_1 P1_2

Vdd

P2

NAND

Vdd

OUT

Vdd

P2_2P2_1P1_2P1_1

N1_1 N1_2

N2_1 N2_2

1 Arrows indicate fault hit at the transistor
that is protected.

Table 3.3: Stuck-at fault detection probabilities.

Gate sa0 det. prob. sa1 det. prob. PC0 PC1
G1 0.375 0.125 0.25 0.75
G2 0.625 0.375 0.375 0.625

69

Table 3.4: ipp at G1 and G2.

Input G1 G2
00 0.25 0.125
01 0.25 0.125
10 0.25 0.375
11 0.25 0.375

Keeping Table 3.2 in perspective, transistor G2-N1 refers to the nmos transistor

directly connected to the output of gate G2, G2-N2 refers to the nmos transistor

in gate G2 with drain connected to N1 and source connected to ground. With

|S|∑
k=1

Prob. Sk = Prob00 + Prob01 + Prob10 = 0.125 + 0.125 + 0.375 = 0.625, sa0

detection prob. = 0.625, PC1 = 0.625, POFG2−N1 is computed using Eqn. (3.2)

as follows:

POFG2−N1 =
0.625× 0.625

0.625
× 0.26

3.12

= 0.625× 0.083

= 0.0521

For G2-N2,
|S|∑
k=1

Prob. Sk = Prob10 = 0.375. Therefore, POFG2−N2 will be:

POFG2−N2 =
0.375× 0.625

0.625
× 0.26

3.12

= 0.375× 0.083

70

= 0.031

For G2-P1 & G2-P2,
|S|∑
k=1

Prob. Sk = Prob11 = 0.375, sa1 detection prob. =

0.375 and PC0 = 0.375. POFG2−P1 and POFG2−P2 will be:

POFG2−P1,G2−P2 =
0.375× 0.375

0.375
× 0.52

3.12

= 0.375× 0.167

= 0.063

Similarly, POF of all transistors in gate G1 are:

POFG1−N1 =
0.75× 0.375

0.75
× 0.26

3.12

= 0.375× 0.083

= 0.0311

POFG1−N2 =
0.25× 0.375

0.75
× 0.26

3.12

= 0.125× 0.083

= 0.0104

POFG1−P1 =
0.25× 0.125

0.25
× 0.52

3.12

71

= 0.125× 0.167

= 0.0208

POFG1−P2 =
0.25× 0.125

0.25
× 0.52

3.12

= 0.125× 0.167

= 0.0208

Finally, POF of circuit, obtained by summing POF of all transistors, is 0.2915

or 29.15%.

Let’s now follow few iterations of Algorithm 1 to see how the protection is

applied to the circuit. It can be observed that G2-P1 and G2-P2 have the highest

POF, therefore, a fault on G2-P1 and G2-P2 is protected by duplicating and

increasing the widths of all the nmos transistors, as explained in Section 3.2.4.

Such kind of protection is referred to as NAND23, where both pmos transistors

are protected. Protecting G2-P1 and G2-P2 will lead to
|S|∑
k=1

Prob. Sk = 0 for both

G2-P1 and G2-P2 and ultimately POFG2−P1 = 0 and POFG2−P2 = 0. The area

of nmos transistors G2-N1 and G2-N2 will increase from 0.26 to 1.612, as each

transistor is duplicated and scaled by a factor of 3.1, implying an area overhead of

1.352 and a circuit area of 5.824. The resulting POF of transistors after protecting

G2− P1 & G2− P2 will be:

72

POFG2−N1 =
0.625× 0.625

0.625
× 1.612

5.824

= 0.625× 0.276

= 0.173

POFG2−N2 =
0.375× 0.625

0.625
× 1.612

5.824

= 0.375× 0.3239

= 0.104

POFG1−N1 =
0.75× 0.375

0.75
× 0.26

5.824

= 0.375× 0.045

= 0.017

POFG1−N2 =
0.25× 0.375

0.75
× 0.26

5.824

= 0.125× 0.045

= 0.0056

POFG1−P1 =
0.25× 0.125

0.25
× 0.52

5.824

= 0.125× 0.089

= 0.0111

POFG1−P2 =
0.25× 0.125

0.25
× 0.52

5.824

= 0.125× 0.089

= 0.0111

73

For transistors other than G2 − P1 and G2 − P2, only the hit rate at the

transistors will change as the circuit area is increased. The circuit POF after

protecting G2 − P1 and G2 − P2 is increased from 0.2915 to 0.3584 with gate

G2 protected as NAND23. The increase in circuit POF is due to the fact that

protecting pmos transistors of a NAND gate requires all the nmos transistors to be

scaled and duplicated, which makes nmos transistors more sensitive to the particle

strike due to increase in their area.

For the next iteration, G2 − N1 has the highest POF and is selected for

protection by duplicating and scaling the P1 pmos transistor of gate G2. The

required scaling factor is 2.4, computed using SPICE. The resulting POF of the

circuit is decreased from 0.3584 to 0.1895 with a circuit area of 7.8. The POF of

remaining transistors is computed to be:

POFG2−N1 =
0.375× 0.625

0.625
× 1.612

7.8

= 0.375× 0.206

= 0.077

POFG2−N2 =
0.375× 0.625

0.625
× 1.612

7.8

= 0.375× 0.206

= 0.077

POFG1−N1 =
0.75× 0.375

0.75
× 0.26

7.8

74

= 0.375× 0.033

= 0.0124

POFG1−N2 =
0.25× 0.375

0.75
× 0.26

7.8

= 0.125× 0.033

= 0.0041

POFG1−P1 =
0.25× 0.125

0.25
× 0.52

7.8

= 0.125× 0.066

= 0.0083

POFG1−P2 =
0.25× 0.125

0.25
× 0.52

7.8

= 0.125× 0.066

= 0.0083

The gate G2 is now marked as NAND24. The POF of G2 − N1 is still not

0 as there remains an input pattern 10 for which it is not protected. For the

next iteration, G2 − N2 is selected. Protecting G2 − N2 will make G2 marked

as NAND25 i.e., fully protected against a single fault, with POF of G2−N1 and

G2−N2 equal to 0 and the POF of circuit reduced to 0.0265 with a circuit area

of 9.7760. Now, only gate G1 remains for protection.

If the desired circuit POF to achieve is 1% or alternatively 99% reliability

and continuing with applying Algorithm 1, both G1 and G2 will be marked as

75

0. Initial POFC = 0.2915, Area (A) = 3.120

1. POFC = 0.3584, A = 5.82, Tr = G2-P1,G2-P2

2. POFC = 0.1895, A = 7.80, Tr = G2-N1

3. POFC = 0.0265, A = 9.77, Tr = G2-N2

4. POFC = 0.0378, A = 11.75, Tr = G1-N1

5. POFC = 0.0275, A = 14.45, Tr = G1-P2,G1-P2

6. POFC = 0, A = 16.43, Tr = G1-N2

Figure 3.6: Complete iteration log of example circuit.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180

P
O

F
 (

%
)

Iterations

misex1 misex2

Figure 3.7: Circuit POF vs. iteration.

NAND25 i.e., fully protected to achieve 100% reliability against a single fault. The

complete iterations are shown in Fig. 3.6 and include the circuit POF (POFC),

circuit Area (A) and the transistor (Tr) selected for protection in each iteration

of the algorithm.

Fig. 3.7 shows the POF of two circuits plotted over the duration of achieving

1% POF (99% reliability). It can be seen that misex1 requires around 165 itera-

tions, whereas misex2 requires around 110 iterations of the algorithm to achieve

99% reliability against a single fault.

76

3.4 Experimental Results

In this section, the impact of the proposed algorithm on the area and reliability

of LGSynth’91 benchmarks [84] is evaluated. The benchmarks consist of circuits

with varying complexity in terms of area, number of inputs and outputs. Sensitive

nodes (transistors/gates) in a circuit are identified based on the fault simulation

of random input vectors using the parallel fault simulator Hope [83]. The input

patterns are applied until stuck-at fault coverage of 95% is achieved. It was

found that 1 million random input patterns achieved more than 95% stuck-at

fault coverage for all benchmarks in this work.

Whenever cell hardening against soft errors is considered, the first step is to

select a range of particles energy against which the tolerance is sought. In this

work, it is assumed that energy of the incident particle will always result in the

maximum deposition of charge. For that matter and to compare with other sizing

techniques, the values of Q = 0.3pC, τf = 0.2ns and τr = 0.05ns are used for all

simulations in this paper. The value of charge Q = 0.3pC is the maximum charge

that could be collected by the 130nm process technology [68]. The simulations

are performed for varying protection thresholds to find the best tradeoff between

area and reliability for each circuit. The number of faults injected in a protected

circuit is prorated according to its area overhead. Algorithm 9 is used to compute

the reliability of each circuit. The number of simulations count SIM is 5000

iterations for each fault injection scenario.

The LGSynth’91 benchmark circuits used in this work are represented in two-

77

level pla formats, therefore, they are synthesized with single output optimization

using Espresso [85] tool and then mapped to 130nm technology using SIS [86]

to get the proper gate level representation of the circuit. The library used for

mapping consists of an Inverter and 2-, 3- and 4-input NAND and NOR gates.

The parameter phase in the logic synthesis process defines whether the output

function should be synthesized as an ON-set (phase=1) or an OFF-set (phase=0).

By default, each output is synthesized as an ON-set by the Espresso tool. Each

output is synthesized by synthesizing the phase with higher probability i.e., if

the output probability of 1 is higher than the probability of 0, then the value of

(phase=1) is set, otherwise, (phase=0) is set. This produces circuits with higher

reliability as shown in Table 3.5.

In Table 3.5, the first column denotes the circuit names along with the number

of inputs and outputs in each circuit. The second and third major columns report

the reliability of circuits using default synthesis settings and the proposed majority

phase synthesis mechanism. The reliability of circuits is evaluated against 1, 2

and 5 faults, respectively. The Area of a benchmark is computed by summing the

drain area of all the nmos and pmos transistors.

78

T
ab

le
3.
5:

R
el
ia
b
il
it
y
of

or
ig
in
al

b
en
ch
m
ar
k
ci
rc
u
it
s.

C
ir
cu

it
(I
n
p
u
ts
,
O
u
tp

u
ts
)

T
ru

e
P
h
a
se

S
y
n
th

e
si
s

M
a
jo
ri
ty

P
h
a
se

S
y
n
th

e
si
s

∆
A
re
a
2

A
re
a
1
(µ

)1
1
F
a
u
lt

2
F
a
u
lt
s

5
F
a
u
lt
s

O
ri
g
in
a
l
A
re
a

1
F
a
u
lt

2
F
a
u
lt
s

5
F
a
u
lt
s

al
u
4
(1
4,

8)
18
31
.4
4

96
.7
8%

92
.8
6%

83
.4
4%

14
29
.7
4

97
.8
9%

95
.8
6%

87
.4
4%

−
21
.9
3%

ap
ex
1
(4
5,

45
)

42
82
.2

96
.8
0%

92
.7
2%

82
.6
4%

46
02
.0
0

96
.7
2%

94
.2
0%

86
.4
0%

7.
47
%

ap
ex
2
(3
9,

3)
80
4.
18

99
.1
0%

97
.3
8%

94
.5
4%

60
9.
96

99
.2
0%

98
.0
4%

95
.4
2%

−
24
.1
5%

ap
ex
3
(5
4,

50
)

30
91
.9
2

96
.0
0%

93
.2
8%

84
.1
2%

30
25
.6
2

96
.8
8%

94
.7
6%

85
.6
6%

−
2.
14
%

ap
ex
4
(9
,
19
)

47
54
.1

95
.7
8%

92
.3
2%

82
.3
0%

45
75
.4
8

96
.2
0%

92
.7
4%

84
.1
6%

−
3.
76
%

b
12

(1
5,

9)
13
0.
26

88
.3
6%

78
.1
8%

54
.2
8%

12
1.
68

89
.1
0%

78
.2
2%

55
.3
0%

−
6.
59
%

cl
ip

(9
,
5)

37
2.
84

93
.2
4%

86
.4
0%

71
.4
4%

37
2.
84

93
.2
4%

86
.4
0%

71
.4
4%

0
%

co
rd
ic

(2
3,

2)
23
8.
68

98
.0
2%

96
.2
4%

90
.5
4%

24
1.
02

98
.1
0%

96
.2
8%

92
.1
4%

0.
98
%

ex
5
(8
,
63
)

94
8.
48

93
.2
8%

88
.6
4%

70
.7
0%

97
7.
34

93
.5
0%

88
.2
6%

71
.3
4%

3.
04
%

m
is
ex
1
(8
,
7)

13
9.
62

83
.4
0%

68
.9
2%

41
.7
4%

15
2.
88

84
.3
4%

71
.7
0%

48
.4
4%

9.
50
%

m
is
ex
2
(2
5,

18
)

22
5.
42

93
.3
6%

88
.0
2%

71
.8
0%

23
0.
88

93
.2
0%

88
.3
2%

69
.4
8%

2.
42
%

m
is
ex
3
(1
4,

14
)

24
10
.9
8

97
.4
8%

95
.5
6%

88
.5
8%

18
86
.8
2

97
.6
4%

95
.4
0%

88
.9
0%

−
21
.7
4%

rd
84

(8
,
4)

36
8.
94

91
.3
6%

84
.9
4%

65
.1
8%

49
6.
08

93
.3
8%

87
.2
2%

71
.4
0%

34
.4
6%

se
q
(4
1,

35
)

46
93
.2
6

98
.9
2%

98
.2
6%

95
.9
6%

49
70
.9
4

99
.0
5%

98
.2
2%

95
.7
4%

5.
92
%

sq
u
ar
5
(5
,
8)

11
1.
54

82
.5
0%

70
.0
4%

41
.0
4%

10
1.
40

83
.4
4%

69
.4
6%

42
.6
8%

−
9.
09
%

ta
b
le
3
(1
4,

14
)

30
73
.2

98
.1
2%

95
.5
2%

88
.5
4%

34
75
.6
8

98
.6
8%

97
.7
8%

94
.2
8%

13
.1
0%

ta
b
le
5
(1
7,

15
)

32
30
.7
6

97
.4
8%

96
.0
0%

88
.5
2%

35
35
.7
4

98
.7
0%

97
.7
2%

94
.5
2%

9.
44
%

z5
x
p
1
(7
,
10
)

24
8.
82

85
.9
6%

75
.3
8%

49
.3
6%

25
1.
16

87
.9
6%

75
.3
8%

52
.3
6%

0.
94
%

A
v
g
.

9
3
.6
6
%

8
8
.3
7
%

7
4
.7
1
%

9
4
.2
9
%

8
9
.2
2
%

7
7
.0
6
%

-0
.1
2
%

1
S
u
m
m
at
io
n
of

n
m
o
s
an

d
p
m
o
s
d
ra
in

w
id
th
s

2
∆
A
re
a
=

(Orig
in

a
l
A
r
ea

−
A
r
ea

1
A
r
ea

1

) ×1
00

79

Table 3.5 highlights the increase in reliability when the circuits are synthesized

w.r.t the majority phase. This is due to the increase in fault masking that may

occur as if the final gate is an OR gate and has a value of “1”, any fault propagating

through any of the other inputs will be masked. If the OR gate has at least two

inputs with a value of logic “1”, all faults propagating through any of the inputs

will be masked. Thus, synthesizing the circuit to maximize the probability of

getting a logic 1 at the final gate by synthesizing the majority phase will maximize

the probability of fault masking and hence improve reliability. Therefore, circuits

synthesized with the majority phase are the baseline circuits used in all simulations

in this work. It can be observed that for few benchmarks, reliability is above

90% for all fault injection scenarios. These benchmarks promise great reliability

improvement with slight area overhead.

Table 3.6 shows the results of applying Algorithm 1 on the benchmark circuits

and highlights the reliability of circuits for varying protection thresholds. A pro-

tection threshold of 98% implies that the circuit POF must be less than or equal

to (1 − 98%) = 0.02. Therefore, the applied protection threshold highly corre-

lates with the reliability achieved by the circuit for a single fault. In Table 3.6

under the 99% column, the minimum area overhead required for ex5 circuit to

achieve a reliability greater than or equal to 99% against a single fault is ≈ 140%.

For alu4, apex1, apex2, apex3, apex4, cordic, misex3, seq, table3 and table5

benchmarks under the 95% column in Table 3.6, zero area overhead implies that

these benchmarks achieve 95% reliability against single fault without any area

80

Table 3.6: Reliability of circuits based on proposed STR technique with varying
protection thresholds against a single fault.

Circuit
95% 98% 99%

OH1 Rel OH Rel OH Rel
alu4 0% 97.89% 20.04% 98.44% 51.84% 99.02%
apex1 0% 96.72% 12.64% 98.10% 48.81% 99.10%
apex2 0% 99.20% 0% 99.20% 0% 99.20%
apex3 0% 96.88% 13.93% 98.05% 51.57% 99.08%
apex4 0% 96.20% 25.88% 98.30% 71.88% 99.02%
b12 86.50% 95.01% 149.02% 98.03% 197.69% 99.05%
clip 14.64% 95.00% 68.61% 98.11% 119.87% 99.08%

cordic 0% 98.10% 0% 98.10% 19.53% 99.00%
ex5 19.53% 95.62% 81.73% 98.12% 139.89% 99.02%

misex1 85.68% 95.07% 175.48% 98.01% 249.35% 99.02%
misex2 14.12% 95.24% 50.29% 98.36% 92.48% 99.20%
misex3 0% 97.64% 3.33% 98.10% 34.27% 99.18%
rd84 14.16% 95.10% 56.49% 98.02% 101.21% 99.24%
seq 0% 99.05% 0% 99.05% 0% 99.05%

squar5 107.79% 95.10% 206.15% 98.06% 286.51% 99.00%
table3 0% 98.68% 0% 98.68% 0.34% 99.24%
table5 0% 98.70% 0% 98.70% 1.70% 99.32%
z5xp1 68.22% 95.06% 143.69% 98.11% 202.88% 99.06%

Avg. 22.81% 96.68% 55.96% 98.31% 92.77% 99.11%
1 Area overhead (OH) =

(
Area After Protection

Original Area
− 1

)
× 100

overhead. Similarly, apex2, seq, table3 and table5 benchmarks also achieve 98%

reliability against single fault without any protection/area overhead. Only seq

circuit achieves 99% reliability without any overhead. The average area overhead

required by the proposed algorithm to achieve 95%, 98% and 99% reliability is

22.81%, 55.96% and 92.77%, respectively.

Next, the comparison is made between the proposed technique and the asym-

metric transistor sizing technique of sensitive gates in [1]. The transistor sizing

technique proposed by Lazzari et al. [1] asymmetrically sizes the transistors con-

nected to the output of a gate i.e., nmos and pmos networks are sized indepen-

81

dently. The technique proposed by Lazzari et al. [1] is implemented as follows.

The sensitivity of a gate is measured by considering sa0 and sa1 fault detection

probabilities independently. Gates are then sorted according to their detection

probabilities. Algorithm 1 is then applied, but now the possible protections that

can be applied to a gate are restricted to transistors connected to the output of

a gate. For example, for a 2-input NAND gate possible protections are NAND21,

NAND23 and NAND24 only. After each protection applied to a gate, POFC of

circuit is updated using Eqn. 3.7. The process is repeated until the reliability/area

overhead requirement is met or all possible protections are applied to all gates.

The results of this technique are shown in Table 3.7. It can be observed

that by selectively protecting the transistors connected to the output of a gate,

benchmarks such as b12, clip, ex5, misex1, misex2, rd84, squar5 and z5xp1 are

unable to achieve 99% reliability against single fault. Benchmarks b12, misex1,

squar5 and z5xp1 are also unable to achieve 98% reliability. In addition to that,

the area overhead becomes significantly higher in comparison to the proposed STR

technique even if the required reliability measure of 99% is achieved against single

fault.

The technique in [68] protects all sensitive gates symmetrically, i.e. all tran-

sistors in a sensitive gate are protected and are equally scaled. Comparison is

also made with the technique similar to [68] based on fully protecting sensitive

gates but with protecting transistors asymmetrically. Protecting transistors asym-

metrically has an advantage over symmetric protection due to the difference in

82

Table 3.7: Reliability of circuits based on Lazzari [1] gate sizing technique against
a single fault.

Circuit
95% 98% 99%

OH OH OH Rel OH Rel
alu4 0% 97.89% 70.33% 98.01% 218.64% 99.01%
apex1 0% 96.72% 55.42% 98.01% 312.95% 99.00%
apex2 0% 99.20% 0% 99.20% 0% 99.20%
apex3 0% 96.88% 43.37% 98.00% 333.11% 99.01%
apex4 0% 96.20% 108.59% 98.00% 483.00% 99.34%
b12 186.03% 95.05% 358.85% 96.78% 358.84% 96.78%
clip 43.15% 95.07% 203.47% 98.00% 321.62% 98.47%

cordic 0% 98.10% 0% 98.10% 122.59% 99.00%
ex5 33.97% 95.02% 349.78% 98.00% 429.32% 98.22%

misex1 197.69% 95.00% 322.86% 97.06% 322.86% 97.06%
misex2 17.05% 95.01% 394.03% 98.00% 504.89% 98.36%
misex3 0% 97.64% 4.18% 98.02% 211.21% 99.10%
rd84 43.98% 95.10% 237.37% 98.07% 456.35% 98.64%
seq 0% 99.05% 0% 99.05% 0% 99.05%

squar5 197.74% 95.02% 321.85% 97.13% 321.85% 97.13%
table3 0% 98.68% 0% 98.68% 0.82% 99.01%
table5 0% 98.70% 0% 98.70% 1.30% 99.01%
z5xp1 151.57% 95.02% 323.83% 97.62% 323.83% 97.62%

Avg. 48.40% 96.63% 155.22% 98.02% 262.40% 98.50%

characteristics of nmos and pmos transistors. The sensitivity of a gate is measured

as the sum of sa0 and sa1 fault detection probabilities. Gates are then sorted

according to their detection probabilities. Algorithm 1 is then applied by fully

protecting the gate with the highest detection probability. For example, a 2-input

NAND gate will be implemented as NAND25 in Table 3.2. After each protection

applied to a gate, POFC of circuit is updated using Eqn. 3.7. The process is

repeated until the reliability/area overhead requirement is met or all gates are

fully protected.

Table 3.8 highlights the area overhead incurred by fully protecting sensitive

gates asymmetrically against a single fault. It can be observed from Table 3.6

83

Table 3.8: Reliability of circuits based on asymmetric gate sizing technique a
against single fault.

Circuit
95% 98% 99%

OH Rel OH Rel OH Rel
alu4 0% 97.89% 24.06% 98.01% 60.48% 99.18%
apex1 0% 96.72% 19.54% 98.20% 64.64% 99.28%
apex2 0% 99.20% 0% 99.20% 0% 99.20%
apex3 0% 96.88% 28.04% 98.02% 72.03% 99.18%
apex4 0% 96.20% 32.92% 98.05% 94.94% 99.12%
b12 89.40% 95.30% 173.50% 98.20% 264.83% 99.20%
clip 14.64% 95.22% 79.34% 98.11% 144.09% 99.19%

cordic 0% 98.10% 0% 98.10% 21.17% 99.06%
ex5 41.19% 95.11% 117.69% 98.19% 195.46% 99.10%

misex1 95.68% 95.19% 209.66% 98.13% 287.38% 99.10%
misex2 43.76% 95.34% 118.00% 98.06% 156.35% 99.11%
misex3 0% 97.64% 6.15% 98.10% 43.36% 99.20%
rd84 19.07% 95.01% 66.67% 98.11% 133.41% 99.02%
seq 0% 99.05% 0% 99.05% 0% 99.05%

squar5 112.46% 95.22% 231.08% 98.21% 327.28% 99.21%
table3 0% 98.68% 0% 98.68% 3.99% 99.24%
table5 0% 98.70% 0% 98.70% 4.41% 99.28%
z5xp1 72.59% 95.12% 156.79% 98.20% 235.18% 99.26%

Avg. 27.16% 96.70% 70.19% 98.30% 117.17% 99.17%

84

and Table 3.8 that the proposed technique offers less area overhead as compared

to the asymmetric technique for all protection threshold scenarios. Also, under

the 99% column header in Table 3.6 and Table 3.8, it is evident that the proposed

technique achieves significant area savings for 13 out of 18 benchmark circuits

with similar reliability measures.

The simulations are further extended to analyze circuits reliability against

multiple faults. The number of faults injected is correlated to the area of a circuit.

Table 3.9 shows the reliability achieved by prorating the 1, 2 and 5 faults for each

circuit according to its area. For example, if the area overhead is 131%, then the

actual area is increased by a factor of 2.31. So, 1, 2 and 5 faults in the original

circuit will prorate to 2.31, 4.62 and 11.55 faults in the protected circuit. For each

prorated fault, the circuit is simulated twice. For example, if the prorated faults to

be injected are 4.62, then the circuit is simulated twice, once by injecting 4 faults

and another by injecting 5 faults. The failure rate achieved by both fault injection

scenarios is then computed based on a weighted average to compute the final

failure rate/reliability. It is interesting to observe that with the prorated faults,

the average reliability achieved by the proposed method with 99% protection is

above 96% for 1 and 2 prorated faults. The reliability measures achieved by

asymmetric sizing technique against prorated faults is shown in Table 3.10. It can

be observed that the average reliability achieved by the proposed scheme under

all fault injection scenarios and for all protection thresholds are better/close to

the asymmetric gate sizing technique.

85

To further illustrate the advantage of the proposed STR technique against

techniques that fully protect sensitive gates, Table 3.11 shows the percentage

distribution of gates that have been protected with Single-Transistor protection

(1T) e.g., NAND21 from Table 3.2, Full Protection (FP) e.g., NAND25 from

Table 3.2 and No Protection (NP) for each circuit when Algorithm 1 is applied

for target reliability of 98% and 99%. It is clear from the table that for some

circuits the percentage of protected gates without full protection is significant.

This percentage is even higher than the percentage of fully protected gates such

as apex2, apex3, cordic, misex2, table3 and table5.

Table 3.12 shows the reliability achieved by TMR algorithm. TMR algorithm

is evaluated under the same conditions as for Algorithm 1. The average area

incurred by TMR is always more than three times the original area. Comparing

to TMR, it can be observed that the average reliability achieved by the proposed

scheme under all fault injection scenarios and for all protection thresholds are

far better. With 95% protection threshold and an area overhead of just 22.81%,

better reliability is achieved by the proposed algorithm than TMR. This is due to

the fact that voters in TMR technique are not protected.

To improve the reliability of the TMR technique, the majority voters are pro-

tected by fully protecting the voters using proposed STR scheme. The results for

TMR with voter protection are shown in Table 3.12b. It can be observed that

the average reliability results have significantly improved for different fault injec-

tion scenarios as compared to TMR without voter protection at the expense of

86

additional average area overhead of ≈ 28.5%. In comparison to TMR with voter

protection, the proposed STR technique with 99% protection threshold achieves

comparable reliability with a significantly lower area overhead.

For further evaluation, the proposed scheme is then compared to the

simulation-based synthesis technique [2]. The technique is based on maximizing

the probability of logical masking when a soft error occurs. This is done by ex-

tracting sub-circuits from an original multi-level circuit, and then re-synthesizing

each extracted sub-circuit to increase fault masking against a single fault, tak-

ing advantage of input probabilities and don’t care conditions. Table 3.13 shows

the reliabilities obtained based on the original circuit, the circuits synthesized

by [2] and by the application of the proposed STR technique for the same area

overhead obtained by [2]. From Table 3.13, it is clear that the final synthesized

circuits from [2] are unable to achieve 95% reliability against single fault except

for ex1010. This is a limitation of the technique in [2] as it improves reliability but

cannot achieve a given target reliability. The proposed STR technique achieves

slightly better results for all fault injection scenarios in comparison to the circuit

synthesized by the technique in [2]. However, the proposed STR technique has the

advantage that it can be applied to achieve any given target reliability or under

any given area overhead constraint.

It is worth mentioning that the technique in [2] and the proposed STR tech-

nique are complementary to each other. This is because the technique in [2] is

based on enhancing logical masking and is applied at the gate level while thr pro-

87

posed STR technique is based on protecting sensitive transistors at the transistor

level through transistor sizing. Hence, applying both techniques could produce

better results than applying any of the techniques separately. To illustrate this,

Algorithm 1 is applied on both the original circuits and the synthesized circuits

obtained by [2] with target reliability of 99%. From Table 3.14, it is clear that

the proposed technique applied on top of the synthesized circuits obtained by [2]

result in significant area savings as compared to applying STR alone on the orig-

inal circuits. This clearly indicates that the proposed method is scalable and can

be used to further improve other techniques.

3.5 Conclusion

In this chapter, a selective transistor-redundancy based fault tolerance tech-

nique for combinational circuits is proposed. The technique can be applied to

achieve a given circuit reliability or enhance the reliability of a circuit under a

given area constraint. The technique is based on estimating the failure probabil-

ity of each transistor and iteratively protecting transistors with the highest fail-

ure probability until the desired objective is achieved. Transistors are protected

based on duplicating and scaling a subset of transistors necessary for providing

the protection. Experimental results on LGSynth91 benchmarks demonstrate the

effectiveness of the proposed technique. Compared to existing transistor sizing

techniques, the proposed algorithm incurs significantly less area overhead with

similar reliability measures. Better reliability results are also achieved in compar-

88

ison to TMR with lower area overhead. Unlike TMR which has an area overhead

of at least 3 times the area overhead of the original circuit, the area overhead of

the proposed technique varies depending on the reliability of the original circuit.

For some circuits, high reliability (> 99%) is achieved with small area overhead

(< 10%). In addition, the reliability of the TMR technique has been enhanced

significantly by protecting the voters based on applying the proposed technique.

Additionally, comparison with simulation-based synthesis technique further high-

lights the merit of the proposed method.

89

Table 3.9: Reliability of circuits based on the proposed STR technique against
prorated faults.

(a) 1 prorated fault.

Circuit 95% 98% 99%

alu4 97.89% 98.11% 98.63%

apex1 96.72% 98.16% 98.66%

apex2 99.20% 99.20% 99.20%

apex3 96.88% 98.21% 98.43%

apex4 96.20% 97.85% 98.41%

b12 92.50% 95.74% 98.18%

clip 95.19% 97.39% 97.60%

cordic 98.10% 98.10% 98.98%

ex5 93.78% 96.25% 97.64%

misex1 92.62% 95.50% 97.15%

misex2 95.57% 97.33% 98.32%

misex3 97.64% 98.28% 98.61%

rd84 94.68% 97.96% 98.29%

seq 99.05% 99.05% 99.05%

squar5 91.50% 95.81% 97.10%

table3 98.68% 98.68% 99.20%

table5 98.70% 98.70% 99.08%

z5xp1 92.17% 96.22% 96.83%

Avg. 95.95% 97.59% 98.30%

(b) 2 prorated faults.

Circuit 95% 98% 99%

alu4 95.86% 96.46% 97.69%

apex1 94.20% 96.12% 97.07%

apex2 98.04% 98.04% 98.04%

apex3 94.76% 95.67% 97.30%

apex4 92.74% 95.21% 96.71%

b12 82.69% 91.39% 95.16%

clip 94.00% 94.50% 95.86%

cordic 96.28% 96.28% 97.73%

ex5 89.15% 93.49% 96.11%

misex1 83.51% 90.87% 94.57%

misex2 90.75% 94.40% 96.75%

misex3 95.40% 95.86% 97.53%

rd84 90.70% 93.83% 95.95%

seq 98.22% 98.22% 98.22%

squar5 81.17% 89.63% 94.73%

table3 97.78% 97.78% 98.05%

table5 97.72% 97.72% 97.58%

z5xp1 84.41% 91.08% 95.01%

Avg. 92.08% 94.81% 96.67%

(c) 5 prorated faults.

Circuit 95% 98% 99%

alu4 87.44% 90.26% 93.92%

apex1 86.40% 89.98% 93.47%

apex2 95.42% 95.42% 95.42%

apex3 85.66% 90.20% 93.52%

apex4 84.16% 88.12% 92.40%

b12 60.89% 79.48% 88.80%

clip 76.29% 85.16% 91.40%

cordic 92.14% 92.14% 95.25%

ex5 77.95% 83.77% 89.60%

misex1 62.12% 76.53% 86.88%

misex2 77.93% 88.25% 92.05%

misex3 88.90% 90.34% 94.37%

rd84 77.46% 86.07% 90.99%

seq 95.74% 95.74% 95.74%

squar5 58.77% 72.58% 84.07%

table3 94.28% 94.28% 95.15%

table5 94.52% 94.52% 95.99%

z5xp1 65.57% 80.45% 86.19%

Avg. 81.20% 87.40% 91.96%

90

Table 3.10: Reliability of circuits based on asymmetric gate sizing technique
against prorated faults.

(a) 1 prorated fault.

Circuit 95% 98% 99%

alu4 97.89% 97.93% 98.72%

apex1 96.72% 97.92% 98.58%

apex2 99.20% 99.20% 99.20%

apex3 96.88% 97.46% 98.59%

apex4 96.20% 97.62% 98.10%

b12 92.81% 96.13% 98.19%

clip 94.77% 97.31% 98.26%

cordic 98.10% 98.10% 99.07%

ex5 92.90% 96.70% 98.15%

misex1 92.02% 95.40% 97.28%

misex2 93.46% 97.00% 98.72%

misex3 97.64% 98.40% 98.49%

rd84 94.45% 97.51% 98.70%

seq 99.05% 99.05% 99.05%

squar5 91.59% 95.56% 97.93%

table3 98.68% 98.68% 98.93%

table5 98.70% 98.70% 99.06%

z5xp1 92.03% 95.37% 97.77%

Avg. 95.73% 97.45% 98.49%

(b) 2 prorated faults.

Circuit 95% 98% 99%

alu4 95.86% 95.71% 98.18%

apex1 94.20% 95.18% 97.36%

apex2 98.04% 98.04% 98.04%

apex3 94.76% 95.64% 97.04%

apex4 92.74% 95.43% 96.27%

b12 84.23% 91.48% 95.76%

clip 88.73% 93.99% 96.38%

cordic 96.28% 96.28% 97.92%

ex5 88.39% 92.77% 96.18%

misex1 82.55% 91.37% 95.28%

misex2 87.84% 93.75% 96.51%

misex3 95.40% 96.14% 97.60%

rd84 90.22% 93.86% 96.64%

seq 98.22% 98.22% 98.22%

squar5 82.49% 90.35% 95.40%

table3 97.78% 97.78% 98.07%

table5 97.72% 97.72% 98.25%

z5xp1 85.25% 91.48% 94.73%

Avg. 91.71% 94.73% 96.88%

(c) 5 prorated faults.

Circuit 95% 98% 99%

alu4 87.44% 90.69% 94.00%

apex1 86.40% 90.05% 93.84%

apex2 95.42% 95.42% 95.42%

apex3 85.66% 88.26% 93.16%

apex4 84.16% 88.26% 91.94%

b12 62.81% 80.45% 90.68%

clip 76.06% 85.34% 91.15%

cordic 92.14% 92.14% 94.63%

ex5 73.93% 83.93% 90.25%

misex1 63.54% 77.23% 88.88%

misex2 71.17% 83.51% 90.92%

misex3 88.90% 91.27% 93.78%

rd84 76.22% 86.37% 91.58%

seq 95.74% 95.74% 95.74%

squar5 59.87% 74.52% 86.39%

table3 94.28% 94.28% 94.89%

table5 94.52% 94.52% 95.10%

z5xp1 66.50% 81.27% 88.09%

Avg. 80.82% 87.40% 92.25%

91

Table 3.11: Distribution of protection schemes.

Circuit
of
Gates

98% 99%
1T1 Full2 NP3 1T Full NP

alu4 832 0.36% 3.25% 95.91% 0.96% 9.74% 87.98%
apex1 2723 2.75% 1.54% 95.41% 5.25% 7.27% 86.49%
apex2 372 0% 0% 100% 0.54% 0% 99.46%
apex3 1791 6.09% 1.34% 92.29% 7.26% 6.98% 83.53%
apex4 2539 3.54% 4.37% 91.77% 8.82% 12.60% 77.79%
b12 88 1.14% 22.73% 73.86% 1.14% 36.36% 60.23%
clip 228 1.32% 14.04% 83.77% 0.88% 24.12% 70.61%

cordic 163 0% 0% 100% 1.23% 1.23% 96.32%
ex5 648 10.49% 7.10% 80.09% 12.35% 17.59% 67.75%

misex1 108 0.93% 35.19% 62.04% 0% 52.78% 44.44%
misex2 151 17.22% 8.61% 70.86% 17.22% 14.57% 64.24%
misex3 1100 2.18% 0.09% 97.64% 1.73% 3.91% 93.64%
rd84 296 1.69% 14.86% 82.77% 3.38% 22.97% 72.30%
squar5 71 0% 42.25% 53.52% 0% 54.93% 40.85%
table3 1953 0% 0% 100% 0.77% 0% 99.23%
table5 2020 0% 0% 100% 1.39% 0.05% 98.51%
z5xp1 176 1.70% 33.52% 64.20% 1.70% 46.02% 49.43%
1 % of gates with single transistor protection
2 % of gates with full protection
3 % of gates with no protection

92

Table 3.12: Reliability of circuits based on TMR technique with prorated faults.

(a) TMR without voter protection.

Circuit OH 1 Fault 2 Faults 5 Faults
alu4 203.93% 99.24% 98.69% 94.67%
apex1 206.56% 98.23% 95.54% 89.50%
apex2 203.45% 98.84% 98.17% 94.09%
apex3 211.60% 96.18% 93.22% 81.57%
apex4 202.76% 99.49% 98.15% 95.67%
b12 251.92% 90.69% 80.89% 54.49%
clip 209.41% 98.11% 95.78% 84.77%

cordic 205.83% 98.83% 97.21% 95.60%
ex5 245.25% 91.15% 83.74% 62.89%

misex1 232.14% 90.81% 79.86% 51.91%
misex2 254.73% 81.55% 67.68% 36.96%
misex3 205.21% 98.78% 96.78% 90.70%
rd84 205.66% 98.75% 96.08% 84.78%
seq 204.94% 98.24% 97.28% 92.79%

squar5 255.38% 85.50% 73.56% 36.54%
table3 202.83% 99.00% 98.36% 95.33%
table5 202.98% 99.03% 98.26% 94.76%
z5xp1 225.16% 93.91% 87.78% 65.90%

Avg. 218.32% 95.35% 90.94% 77.94%

(b) TMR with voter protection.

Circuit OH 1 Fault 2 Faults 5 Faults
alu4 207.53% 99.78% 99.30% 97.07%
apex1 215.41% 99.72% 99.59% 98.05%
apex2 207.51% 99.93% 99.37% 98.44%
apex3 228.91% 99.59% 99.36% 98.22%
apex4 205.21% 99.60% 99.16% 97.91%
b12 329.44% 98.64% 95.30% 76.26%
clip 222.78% 99.75% 98.10% 90.49%

cordic 211.43% 99.79% 98.65% 95.97%
ex5 305.03% 99.67% 98.30% 96.34%

misex1 288.88% 98.53% 94.35% 73.16%
misex2 347.30% 99.37% 98.02% 92.85%
misex3 212.74% 99.73% 99.15% 97.47%
rd84 212.58% 99.47% 98.05% 89.84%
seq 210.86% 99.76% 99.63% 98.77%

squar5 356.21% 98.16% 91.33% 60.67%
table3 205.66% 99.84% 99.38% 98.53%
table5 206.14% 99.84% 99.44% 98.61%
z5xp1 268.10% 98.91% 95.87% 81.39%

Avg. 246.76% 99.45% 97.91% 91.11%

93

Table 3.13: Comparison of circuit reliability for proposed STR technique with the
technique in [2].

Circuit
Original Synthesized by [2] STR applied to Original3

Area (µ) S1 2 OH S 1P2 2P S 1P 2P
apex3 1994.46 84.16% 68.96% 31.68% 92.60% 89.18% 78.52% 93.15% 91.45% 82.78%
apex4 2532.66 87.06% 76.70% 50.79% 95.74% 92.63% 86.37% 96.20% 93.95% 87.60%
bench1 1313.52 82.32% 67.98% 34.98% 92.86% 91.18% 83.17% 93.46% 91.69% 84.10%
cps 1452.36 78.14% 59.78% 46.35% 91.64% 88.51% 77.85% 92.82% 89.33% 81.43%

duke2 535.86 79.22% 64.10% 30.86% 91.06% 87.83% 77.43% 91.90% 89.55% 78.42%
ex1010 4219.02 87.64% 79.18% 42.17% 95.52% 94.85% 89.88% 96.22% 95.75% 90.41%
exp 363.48 75.34% 56.72% 27.90% 89.48% 85.86% 74.10% 89.38% 86.98% 75.53%

misex3 883.74 87.36% 76.18% 29.30% 94.30% 93.44% 86.15% 95.12% 94.35% 85.88%
spla 475.8 81.08% 65.36% 18.85% 87.62% 86.02% 74.83% 89.92% 87.61% 75.82%
table3 991.38 85.74% 73.18% 29.19% 93.28% 92.08% 83.93% 94.12% 92.34% 85.47%
table5 1106.04 82.64% 68.56% 38.22% 94.30% 92.45% 85.69% 94.78% 92.26% 86.78%
test1 1040.52 82.00% 68.18% 37.18% 92.82% 89.95% 82.01% 93.78% 90.09% 83.60%

Avg. 82.73% 68.74% 34.79% 92.60% 90.33% 81.66% 93.40% 91.28% 83.15%
1 Single fault
2 1 prorated faults
3 STR applied to Original with area overhead constraint mentioned in column header “OH”

Table 3.14: Reliabilities of circuits based on applying proposed STR technique to
circuits obtained by the technique in [2].

Circuit
STR Applied to

Original with 99%
STR Applied to

Syntheized by [2] with 99%
OH Rel OH Rel

apex3 170.27% 99.10% 141.93% 99.05%
apex4 109.29% 99.02% 96.83% 99.10%
bench1 148.65% 99.01% 100.04% 99.09%
cps 164.66% 99.00% 160.33% 99.01%

duke2 140.69% 99.06% 135.10% 99.03%
ex1010 90.39% 99.10% 60.54% 99.01%
exp 168.03% 99.04% 149.10% 99.02%

misex3 81.65% 99.05% 75.92% 99.12%
spla 115.83% 99.05% 112.21% 99.00%
table3 89.77% 99.10% 67.00% 99.12%
table5 116.56% 99.10% 71.00% 99.13%
test1 165.14% 99.08% 115.49% 99.02%

Avg. 130.08% 99.06% 107.12% 99.06%

94

CHAPTER 4

DOUBLE MODULAR

REDUNDANCY (DMR) BASED

FAULT TOLERANCE

TECHNIQUE FOR

COMBINATIONAL CIRCUITS

The objective in this chapter is to improve reliability of combinational cir-

cuits based on the double modular redundancy scheme. As opposed to TMR,

where each module is triplicated followed by a voter, each module in the pro-

posed Double Modular Redundancy (DMR) scheme is duplicated followed by a

NAND/AND masking gate. Modules are synthesized by either synthesizing the

true or the complement function to maximize soft error masking. Secondly, the

95

proposed selective transistor redundancy technique in Chapter 3 is also applied

to the proposed DMR technique in order to further improve its reliability. In ad-

dition, improved application of DMR based on the use of C-element is illustrated.

The rest of the chapter is organized as follows. Section 4.1 discusses the moti-

vation and implementation of the proposed DMR technique, Section 4.2 discusses

modular redundancy technique that employs C-element as a voter, simulation

results are elaborated in Section 5.4 and finally, the chapter is concluded in Sec-

tion 7.1.

4.1 Proposed Double Modular Redundancy

Fault Tolerance Technique

In this Section, a double modular redundancy (DMR) fault tolerance tech-

nique is proposed targeting the achievement of high reliability with reduced area

overhead. The technique is based on identifying the probability of occurrence of

logic values “0” and “1” at each primary output of a circuit. The consideration

made here is that the circuit consists of two-level logic, represented in sum-of-

products form. Next, different cases in relation to the output value probability of

occurrence to illustrate the proposed DMR technique are discussed.

If (Prob0 > Prob1) for an output Y , then the true value of Y will be im-

plemented as a sum-of-products circuit. Furthermore, the logic cone that has Y

as an output will be duplicated and the two duplicate outputs will be combined

96

using an AND gate as a masking gate. To elaborate this rule, consider the case

when the output of a module produces a logic “0” value (case with highest prob-

ability). In this case, it is guaranteed t hat all single or multiple faults occurring

in a single module will be tolerated as the AND masking gate will produce the

correct output value due to the logic “0” value produced by the other module at

its second input. However, when the module output produces a logic “1” value

(case with lower probability), then at least one of the AND gates in the sum-of-

products representation of the Y module produces a logic “1” value. This will

mask all errors occurring on the other AND gates in the module as they are com-

bined using an OR gate which retains the correct output value. The only fault

that may not be protected for the AND gates is the one occurring on the AND

gate that produces logic value “1”, assuming that a single AND gate produces a

logic “1” value. If there are more than one AND gate producing logic value “1”,

then all faults occurring on AND gates will be protected. Faults occurring on

the OR gate in the sum-of-products module when the module produces an out-

put logic value “1” are not protected. Such unprotected faults occurring on the

OR gate and on the masking AND gate can be protected based on applying the

selective transistor redundancy (STR) technique from Chapter 3, which is based

on protecting sensitive transistors that have high detection probability by tran-

sistor duplication and sizing. Assuming two-level NAND-NAND implementation

of sum-of-products expression, faults occurring on the 2nd level NAND gate (im-

plementing the OR gate) needs to be protected when the output produced a logic

97

value “1”. This implies that the gate needs to be protected for soft errors occur-

ring on nmos transistors. As illustrated in Chapter 3, protecting nmos transistor

faults is much cheaper than protecting pmos transistor faults as for each protected

nmos transistor only the corresponding pmos transistor needs to be duplicated and

scaled.

If (Prob1 > Prob0) for an output Y , then the complement function Y will

be implemented for the output Y . The implemented Y function will then be

duplicated and the two duplicate outputs are combined using a NAND gate as a

masking gate. The rationale behind this rule is that if Prob1 > Prob0 and the

logic is implemented as Y , then Y will feed logic value “0” most of the time to the

NAND masking gate, which will provide protection against all faults occurring

in a single module. When the output produces the least probable value “0”,

Y will produce the logic value “1”, which will provide the protection of faults

occurring at all AND gates implementing the sum-of-products expression that are

not producing a logic “1” value in the case of a single AND gate producing a logic

“1” value. Implementing the function as Y for Prob1 > Prob0 using a NAND

masking gate case makes it equivalent to implementing the function Y using an

AND masking gate for the Prob0 > Prob1 case. It is worth noting that for this

case (i.e., Prob1 > Prob0), the proposed DMR technique is more effective than

the technique proposed in [7] which implements the true value of Y and combines

the two duplicate outputs using a masking OR gate. While using a masking OR

gate provides protection when the output produces the dominant logic “1” value,

98

it provides no fault protection when the output produces the logic “0” value.

Algorithm 2 highlights the steps of the proposed DMR algorithm. Circuits

are synthesized using the Espresso [85] tool and then mapped using the SIS [86]

tool to a library consisting of 2-, 3-, 4-input NAND/NOR gates and an Inverter.

While synthesizing using Espresso, having phase=0 synthesizes the OFF-set of the

corresponding output function while having phase=1 synthesizes the ON-set. By

default, the ON-set of each output is synthesized i.e., phase=1 for each output, as

shown in line 6. Once the proper gate level representation of a circuit is obtained,

Prob0 and Prob1 at each output i is computed using simulations of 1 million

random input vectors, as shown in line 7. Then, Phasei for each output i is

assigned a value based on the condition in line 9. After Phasei is computed,

the original circuit is re-synthesized with the new/updated phase value for each

output. The synthesized module for each output is then duplicated and the two

outputs are combined using AND masking gate when Phasei = 1 and using

NAND masking gate when Phasei = 0 .

As an illustrative example of the proposed DMR algorithm, let us con-

sider a single output, Y0, sum-of-products circuit composed of 4 AND gates,

G0, G1, G2, G3, and one OR gate, F0, as shown in Fig. 4.1.

For the sake of argument, let’s consider that Prob0(= 60%) > Prob1(= 40%)

at the output Y0. In this case, the logic cone having Y0 as an output will be

synthesized in sum-of-products form. Two copies of the circuit will be created

leading to two outputs Y01 and Y02. The two outputs are combined using a masking

99

Algorithm 2 : Proposed DMR Algorithm

Require: Circuit in pla format
1: Probi0 : Probability of 0 at output i
2: Probi1 : Probability of 1 at output i
3: Phasei : Phase/polarity of output i to be synthesized
4: |outputs| : Number of primary outputs in circuit
5:

6: Synthesize ON-set of each output of the circuit
7: Compute Probi0 and Probi1 of each output using simulation
8: for (i = 1→ |outputs|) do
9: if (Probi0 > Probi1) then
10: Synthesize output i with Phasei = 1
11: Duplicate synthesized output i module and connect the two outputs

using AND masking gate
12: else
13: Synthesize output i with Phasei = 0
14: Duplicate synthesized output i module and connect the two outputs

using NAND masking gate
15: end if
16: end for

G0

G1

G2

G3

F0
Y0

Figure 4.1: A simple two-level circuit.

AND gate, implemented as a NAND gate followed by an inverter as shown in

Fig. 4.2. Since 60% of the time, output values from gates F01 and F02 will be

“0”, therefore, faults occurring on any single output module will be masked 60%

of the time as the output of the non-faulty module will produce logic value “0”,

which will mask the propagation of the fault effect to the output.

Now, consider the case when 40% of the time the output of gates F01 and F02

produce logic value “1” as depicted in Fig. 4.3. To get logic “1” at the output of

100

G01

F01
Y01

G11

G21

G31

G02

F02

G12

G22

G32

Y02

Y0

0

0

Masking

gate

60% of time

Figure 4.2: Circuit after output module duplication and addition of masking AND
gate.

G01

F01
Y01

G11

G21

G31

G02

F02

G12

G22

G32

Y02

Y0

1

1

1

1

0

0

1

1

0

0

Masking

gate

25% of 40% of time

40% of time

Figure 4.3: Case 1 of 40% of the time logic “1” value is produced at the masking
gate input.

101

G01

F01
Y01

G11

G21

G31

G02

F02

G12

G22

G32

Y02

Y0

1

1

1

0

0

0

1

0

0

0

Masking

gate

75% of 40% of time

40% of time

Figure 4.4: Case 2 of 40% of the time logic “1” value is produced at the masking
gate input.

gates F01 and F02, at least one logic “1” value is required at their inputs. Let’s

assume that at least 25% of 40% of the time, constituting 10% of the total time,

at least two AND gates in each logic cone produce a logic “1” value as highlighted

in Fig. 4.3. No protection is required in this scenario because any single fault

striking any AND gate will be masked by the OR gates F01 or F02 due to having

at least one logic “1” value at their inputs.

Finally, consider the case when only one AND gate produces logic “1” value

in each logic cone as shown in Fig. 4.4, and assume that this happens for the 75%

of the 40% of time, i.e. 30% of the total time. Even in this case, for faults hitting

any of the AND gates producing logic value “0” will be masked. However, if a

fault strikes at the AND gate producing logic value “1”, then this fault will not

be masked and will be observable at the output. Considering all these scenarios,

102

it can be seen that based on the proposed DMR approach high reliability can be

achieved with nearly double the area overhead.

4.2 Improved C-Element Based DMR (DMR-

CEL)

In this section, an improved implementation of DMR is discussed where C-

element is used to combine the outputs of the two duplicate modules (DMR-CEL).

Furthermore, investigation is also performed to study the implact of transistor-

level protection applied to the C-element.

A C-element [54] consists of two inputs and one output. If both inputs are

0(1), then the output of C-element will be 0(1); otherwise the output preserves the

previously stored value. For the correct operation of the C-element, it is assumed

that once the input values become stable, they will not change their values until

the output changes. The output c of the C-element can be expressed in terms of

the inputs a and b and the complement of the current state of the output c by the

following boolean function [53]:

c = c · (a+ b) + a · b (4.1)

Several C-element implementations have been discussed and analyzed in de-

tail by Shams et al. [53]. In this work, the C-element implementation by Van

Berkel [11] is utilized and is shown in Fig. 4.5a. The advantages of this imple-

103

(a) Without protection.

C

C

(b) With protection.

Figure 4.5: Van Berkel C-Element [11].

Protected

C-Element

Y

Y

OUT

Figure 4.6: DMR-CEL: Logic cone synthesized based on true form.

mentation include being ratioless and symmetric with respect to the inputs. It

has been shown by Shams et al. [53] that symmetric implementation is the best

candidate for energy-efficient and high-speed designs.

The implementation of DMR-CEL for a circuit with a single output Y is shown

in Fig. 4.6. For this scheme, circuits are synthesized differently than the proposed

DMR scheme mentioned in Algorithm 2. Here, each output i is synthesized based

on the majority phase i.e., if(Probi0 > Probi1) then Phasei = 0 and vice versa.

For the case when Probi0 > Probi1, an inverter is added at the output Yi to get

the true output value. The logic cone of Yi is duplicated and the two outputs

are fed to the C-element to generate the final output. Synthesizing the majority

104

phase for each module has the advantage of masking many faults occurring at the

first level AND gates in a sum-of-products implementation of each output as has

been illustrated in Section 4.1.

The protected version of C-element against soft errors is shown in Fig. 4.5b,

where each transistor is duplicated and connected in parallel with each transistor

scaled (widths increased) with necessary scaling factors to provide protection. The

area of C-element using 130nm Predictive Technology Model (PTM) [79], which

is the drain width of all transistors, is 4.68µ. The protected version of C-element

shown in Fig. 4.5b has an area of 21.216µ. Therefore, the area overhead of the

protected C-element is
(
21.216
4.68
− 1

)
× 100 = 353%.

The protected C-element provides protection against soft errors provided that

both it’s inputs are error free i.e., having the same logic value. In case input values

to the C-element are not the same, i.e., one of the inputs is faulty, then a fault

hitting transistors in the C-element may or may not excite a fault at the output.

Fault excitation due to a particle strike at any of the transistors in the C-element

depends on the location of the strike and the true output value. For example,

if both inputs to the C-element (without protection) have logic value “1”, then

the true output will be logic value “1”. Now, if a particle strikes any of the pmos

transistors in the first stage (not including the transistors in the inverter), then

C will be have the logic value “1” and then C will have the logic value “0” and

the fault will propagate to the output. But, in case of the protected C-element in

Fig. 4.5b, a fault hitting any of the pmos transistors will keep the node C having

105

logic value “0” as the corresponding duplicated and scaled nmos transistors will

suppress the fault effect, which makes the output C retain its true logic value “1”.

For faults hitting transistors in the inverter connected to the output C, they are

fully protected in the protected C-element while they are not in the unprotected

version. The same arguments apply for the case when both inputs to the C-

element have logic value “0” and faults strike any of the nmos transistors in the

first stage.

4.3 Experimental Results

In this section, the impact of the proposed DMR and the improved DMR-CEL

algorithms on the area and reliability of LGSynth’91 benchmarks is evaluated. The

benchmarks consist of circuits with varying complexity in terms of area, number

of inputs and outputs. The LGSynth’91 benchmark circuits used in this work

are synthesized with single output optimization using Espresso [85] tool and then

mapped to a library that consists of an Inverter, and 2-, 3- and 4-input NAND

and NOR gates using SIS [86] tool. The reliability of a circuit is computed using

the method discussed in Chapter 6, which is based on gate-level simulation with

an accuracy of transistor-level simulation using SPICE.

The reliability of a circuit is computed against a single fault and prorated 1

and 2 faults for each circuit. The number of prorated faults is correlated to the

area overhead of a circuit. For example, if the area overhead is 131%, then the

actual area is increased from 1 to 2.31 times the original circuit. Therefore, 1, and

106

2 faults in the original circuit will prorate to 2.31 and 4.62 faults in the protected

circuit. For each prorated fault, the circuit is simulated twice and the failure

rate (FR) is computed based on a weighted average to compute the final failure

rate/reliability. For example, if the prorated faults to be injected are 4.62, then the

circuit is simulated twice, first by injecting 4 faults and then by injecting 5 faults.

The failure rate is then computed as 0.38 ∗ FR(4faults) + 0.62 ∗ FR(5faults).

For each fault injection scenario, faults are injected randomly and simulation is

performed for 5000 iterations to compute the failure rate.

Table 4.1 shows the area overhead and reliabilities of circuits based on the

proposed DMR technique against a single fault and the prorated 1, and 2 faults.

The first column denotes the circuit name along with the number of primary inputs

and outputs. The second and third columns show the area of the original circuit

and the circuit obtained by the proposed DMR technique, based on the summation

of nmos and pmos drain widths, respectively. The average area overhead of the

proposed DMR technique is 105.69%. The average reliability against a single fault

and 1 and 2 prorated faults is 98.48%, 97.02% and 94.20%, respectively.

Reliability of circuits obtained based on the proposed DMR technique can be

further enhanced based on the application of the STR technique from Chapter 3.

This technique can enhance the reliability of a circuit to any given reliability

requirement based on transistor duplication and sizing. The STR technique is

applied to the circuits obtained based on the proposed DMR technique with two

reliability thresholds: 99.5% and 99.8%. The threshold value denotes the reliabil-

107

Table 4.1: Circuit reliability and area overhead based on the proposed DMR
technique.

Circuit
(In, Out)

Area (µ)1
DMR

Area (µ)
DMR
OH2 1F3 P14 P25

alu4 (14, 8) 1429.74 3772.86 163.88% 99.20% 97.49% 96.45%

apex1 (45, 45) 4602.00 8661.12 88.20% 98.90% 97.69% 95.30%

apex2 (39, 3) 609.96 1615.38 164.83% 99.70% 99.04% 98.49%

apex3 (54, 50) 3025.62 6300.84 108.25% 98.40% 97.45% 94.59%

apex4 (9, 19) 4575.48 9550.32 108.73% 99.05% 98.27% 96.31%

clip (9, 5) 372.84 745.68 100.00% 97.35% 94.35% 88.05%

cordic (23, 2) 241.02 361.14 49.84% 99.15% 98.60% 97.50%

ex5 (8, 63) 977.34 1994.46 104.07% 96.85% 93.72% 87.42%

misex2 (25, 18) 230.88 492.96 113.51% 95.85% 90.88% 83.88%

misex3 (14, 14) 1886.82 5370.30 184.62% 99.20% 98.62% 97.02%

rd84 (8, 4) 496.08 703.56 41.82% 96.25% 94.32% 88.75%

seq (41, 35) 4970.94 9463.74 90.38% 99.65% 99.09% 97.70%

table3 (14, 14) 3475.68 6179.16 77.78% 99.50% 99.26% 99.14%

table5 (17, 15) 3535.74 6496.62 83.74% 99.60% 99.46% 98.20%

Avg. 105.69% 98.48% 97.02% 94.20%

1 Summation of nmos and pmos drain widths
2 Area overhead (OH)=

(
DMR Area

Area − 1
)
× 100

3 Single Fault
4 Prorated 1 fault
5 Prorated 2 faults

ity of a circuit required to be achieved against a single fault. It is evident from

Table 4.2 that the desired reliability threshold is achieved for all circuits with

average area overhead of 137.82% and 180.57%, respectively.

Table 4.3 shows the area overhead and reliabilities of circuits obtained based on

applying the TMR technique without and with voter protection. Voters are fully

protected based on applying the STR technique from Chapter 3. In comparison

to the TMR without voter protection, it can be observed that the proposed DMR

technique achieves better reliability for prorated faults with significantly lower

area overhead. Reliabilities of circuits designed based on TMR are reduced due to

soft errors hitting the non-protected voters especially when a circuit has a large

108

Table 4.2: Circuit reliability and area overhead based on the combined application
of the proposed DMR and STR (Chapter 3) techniques.

Circuit
99.5% 99.8%

OH 1F P1 P2 OH 1F P1 P2
alu4 181.39% 99.60% 99.12% 98.45% 224.53% 99.92% 99.45% 98.62%
apex1 97.78% 99.55% 99.08% 97.45% 133.86% 99.88% 99.23% 98.50%
apex2 164.83% 99.70% 99.04% 98.49% 171.27% 99.96% 99.70% 98.99%
apex3 122.23% 99.52% 99.20% 97.56% 179.18% 99.80% 98.81% 98.13%
apex4 123.14% 99.51% 99.13% 97.33% 184.60% 99.82% 99.33% 98.26%
clip 217.66% 99.58% 99.03% 95.45% 308.56% 99.84% 99.23% 96.45%

cordic 57.11% 99.61% 99.45% 98.89% 101.55% 99.85% 99.50% 96.03%
ex5 205.90% 99.56% 98.77% 96.16% 301.05% 99.87% 99.21% 96.44%

misex2 170.61% 99.66% 99.20% 97.10% 244.46% 99.88% 99.40% 97.80%
misex3 184.91% 99.57% 99.13% 97.67% 218.99% 99.86% 99.22% 98.54%
rd84 151.91% 99.51% 99.22% 97.88% 201.69% 99.84% 99.38% 98.20%
seq 90.46% 99.60% 99.39% 98.35% 93.84% 99.81% 99.57% 99.06%

table3 77.78% 99.50% 99.26% 99.14% 78.91% 99.83% 99.85% 99.59%
table5 83.74% 99.60% 99.46% 98.96% 85.52% 99.81% 99.74% 99.29%

Avg. 137.82% 99.58% 99.18% 97.78% 180.57% 99.86% 99.40% 98.14%

number of outputs. For TMR with voters protection, it can be observed that the

average reliability has significantly improved for different fault injection scenarios

as compared to TMR without voter protection at the expense of an additional

average area overhead of ≈ 28.5%.

Table 4.3: Circuit reliability and area overhead based on TMR technique.

Circuit
TMR without Voter Protection TMR with Voter Protection

OH 1F P1 P2 OH 1F P1 P2
alu4 203.93% 99.70% 99.24% 98.69% 207.53% 100% 99.78% 99.30%
apex1 206.56% 99.18% 98.23% 95.54% 215.41% 100% 99.72% 99.59%
apex2 203.45% 99.60% 98.84% 98.17% 207.51% 100% 99.93% 99.37%
apex3 211.60% 98.68% 96.18% 93.22% 228.91% 100% 99.59% 99.36%
apex4 202.76% 99.72% 99.49% 98.15% 205.21% 100% 99.60% 99.16%
clip 209.41% 99.42% 98.11% 95.78% 222.78% 100% 99.75% 98.10%

cordic 205.83% 99.62% 98.83% 97.21% 211.43% 100% 99.79% 98.65%
ex5 245.25% 96.90% 91.15% 83.74% 305.03% 100% 99.67% 98.30%

misex2 254.73% 93.56% 81.55% 67.68% 347.30% 100% 99.37% 98.02%
misex3 205.21% 99.12% 98.78% 96.78% 212.74% 100% 99.73% 99.15%
rd84 205.66% 99.60% 98.75% 96.08% 212.58% 100% 99.47% 98.05%
seq 204.94% 99.36% 98.24% 97.28% 210.86% 100% 99.76% 99.63%

table3 202.83% 99.66% 99.00% 98.36% 205.66% 100% 99.84% 99.38%
table5 202.98% 99.66% 99.03% 98.26% 206.14% 100% 99.84% 99.44%

Avg. 211.80% 98.84% 96.81% 93.92% 228.51% 100% 99.70% 98.96%

The average reliability of circuits designed using the combined application of

the proposed DMR technique and STR technique with 99.5% protection thresh-

old is slightly lower than the TMR technique with voter protection for all fault

109

injection scenarios with significantly less area overhead. However, with 99.8% pro-

tection threshold, reliability of circuits is comparable to the TMR technique with

voter protection but with significantly less area overhead i.e., 180.57 as compared

to 228.51.

Table 4.4: Circuit reliability and area overhead based on DMR-CEL.

Circ.
DMR-CEL (un-protected CEL) DMR-CEL (protected CEL)

OH 1F P1 P2 OH 1F P1 P2
alu4 102.62% 99.34% 98.60% 97.02% 111.87% 100% 99.96% 99.84%
apex1 104.37% 99.10% 98.16% 96.73% 119.82% 100% 99.42% 99.98%
apex2 102.30% 99.62% 98.95% 97.91% 110.43% 100% 99.96% 99.90%
apex3 107.73% 98.26% 96.72% 93.77% 135.06% 100% 98.70% 99.88%
apex4 101.84% 99.54% 99.25% 98.39% 108.35% 100% 99.55% 99.86%
clip 106.28% 98.34% 97.08% 93.34% 128.45% 100% 98.90% 99.02%

cordic 103.88% 98.84% 97.89% 95.97% 117.61% 100% 99.10% 99.63%
ex5 130.17% 93.70% 85.79% 74.75% 236.76% 100% 97.97% 94.68%

misex2 136.49% 93.68% 85.81% 74.54% 265.41% 100% 98.79% 95.32%
misex3 103.47% 99.54% 98.52% 96.79% 115.74% 100% 99.80% 98.90%
rd84 103.77% 99.14% 98.07% 95.66% 117.11% 100% 99.80% 97.50%
seq 103.30% 99.32% 98.86% 96.89% 114.94% 100% 99.80% 99.47%

table3 101.89% 99.64% 99.39% 98.62% 108.55% 100% 99.88% 99.50%
table5 101.99% 99.48% 99.19% 98.23% 109.00% 100% 99.89% 99.50%

Avg. 107.86% 98.40% 96.59% 93.47% 135.65% 100% 99.39% 98.78%

The area overhead and reliabilities of circuits based on the application of the

improved DMR-CEL technique without and with C-element protection are shown

in Table 4.4. In comparison with the results obtained for the proposed DMR

technique in Table 4.1, the proposed DMR technique achieves better results as

compared to DMR-CEL with un-protected C-element. However, the reliability

of circuits based on DMR-CEL technique with protected C-element significantly

improve as evident from Table 4.4. DMR-CEL with protected C-element offers

100% reliability against a single fault and achieves better reliability as compared to

TMR with voter protection with significantly less area overhead. It also achieves

slightly better reliability than the one based on combined application of the pro-

posed DMR and STR techniques with 99.5% protection threshold for similar area

110

overhead. However, due to the complexity of the C-element, the impact on per-

formance is higher in comparison to the proposed DMR technique where only a

masking 2-input AND or 2-input NAND gate is added at each output.

4.4 Conclusion

In this chapter, a soft error tolerant combinational circuit based on double

modular redundancy is proposed. The technique is based on identifying the prob-

ability of occurrence of logic values “0” and “1” at each primary output of a circuit.

Based on this, each output is synthesized in either the true or the complement

form, and is then duplicated and a masking AND or NAND gate is used to com-

bine the two duplicate outputs. The technique achieves higher circuit radiabilities

than TMR without voter protection with significantly lower area overhead. It is

also demonstrated that the combined application of the proposed DMR technique

with the STR technique achieves comparable circuit reliabilities with significantly

lower area overhead in comparison to TMR with fully protected voters.

Furthermore, an improved DMR based on the use of C-element (DMR-CEL) to

combine the duplicate outputs is also proposed. This scheme applies redundancy

by implementing the original and duplicated logic with majority phase. Relia-

bilities of circuits based on the proposed DMR are higher than those obtained

based on DMR-CEL without C-element protection. Reliabilities of circuits based

on DMR-CEL with protected C-element are similar to those obtained based on

TMR with voter protection with significantly lower area overhead. It also achieves

111

slightly better reliabilities than the combined application of the proposed DMR

technique and STR technique for similar area overhead with a protection threshold

of 99.5%. The advantage of the proposed DMR technique over DMR-CEL is that

it uses primitive gates as masking gates which have lower impact on performance

in comparison to the use of C-element.

112

CHAPTER 5

IMPLICATIONS BASED FAULT

TOLERANCE TECHNIQUE

FOR COMBINATIONAL

CIRCUITS

In this chapter, an integrated soft error tolerance technique based on logical

implications and transistor sizing is proposed. A set of source and target nodes

with predefined thresholds are selected and implications between these nodes are

extracted. Then, the impact of adding a functionally redundant wire (FRW) due

to each implication is evaluated. This is done based on identifying an implication

path and the gates along the implication path whose detection probabilities will

be reduced due to adding the implication FRW. Then, the gain of an implica-

tion is computed in terms of reduction in fault detection probabilities of gates

113

along an implication path. The implication with the highest gain is selected. The

process is repeated until the gain is less than a predetermined threshold. The

proposed implication-based fault tolerance technique enhances the circuit relia-

bility with minimal area overhead based on enhancing logical masking. However,

its effectiveness depends on the existence of such relations in a circuit and can

enhance circuit reliability upto a certain level. To enhance circuit reliability to

any required level, selective-transistor redundancy (STR) based technique is then

applied. This technique is based on providing fault tolerance for individual tran-

sistors with high detection probability based on transistor duplication and sizing.

Experimental results show that the proposed integrated fault tolerance technique

achieves similar reliability in comparison to applying STR alone with lower area

overhead.

The proposed implication-based fault tolerance technique is similar to the tech-

nique [63] in estimating the value of adding a FRW due to an implication. How-

ever, it is based on estimating the impact on fault detection probabilities. In

addition, detailed algorithm for identifying an implication path and the gates

along the path is provided. Furthermore, the fanouts of gates along an impli-

cation path and their reachability to the target gate is taken into consideration

during the estimation of the impact of adding an implication FRW on detection

probabilities of gates along the implication path. FRWs due to implications are

added either at the target gate or at its fanout gate allowing both invert and non-

invert implications without any restriction to the number of FRWs added at any

114

gate. This is justified as the value of each implication is estimated and a FRW due

to an implication is added if the improvement in detection probabilities of gates

along an implication path is greater than a given threshold. Also, implications

are sorted in descending order of their values and the implication with the highest

value is added first. After adding an implication, values of all other implications

are updated and the implication with the highest value is then selected.

The rest of the chapter is organized as follows. In Section 5.1 the motivation

of the proposed method is presented, in Section 5.2 the proposed fault tolerance

technique is described, an illustrative example is given in Section 5.3, experimental

results are elaborated in Section 5.4 and the paper is concluded in Section 7.1.

5.1 Motivation

In this section, the basic principles of logic implications are briefly explained.

Then, the differences between proposed technique and other related techniques

are highlighted. These are illustrated based on the examples given in [62].

A logic implication from a source gate S to a target gate T indicates a fine-

grained invariant relationship that a logic value assignment at the source gate will

always enforce a consistent value assignment at the target gate i.e., (S = u) ⇒

(T = v), where u, v ∈ (0, 1). Such forced relations can be used to mask SETs.

To illustrate this, let us consider the example circuit in Fig. 5.1. For the target

gate G8, one obvious implication is (e = 1) ⇒ (G8 = 0). This is because when

e = 1, then G3 = 1 and G8 = 0. Now, if a SET changes the value of any gate

115

G1

G2

G6

G3

G4

G7

G8

G9

G10

a

c

d

e

f

h

b

O1

Figure 5.1: An example circuit.

along the implication path i.e., G3 or G8, then the faulty value will be G8 = 1.

However, the fault will only be observable at the primary output O1 only when

G9 = 1. Now, if an inverted FRW, dotted line in Fig. 5.1, is added to realize the

implication (e = 1) ⇒ (G8 = 0), then the SET on gate G3 or G8 will always be

masked at gate G10 before being latched at the primary output O1. Similarly, a

fault hitting the added inverter flipping its value from 0 to 1 will also be masked

by G8 and will not propagate at the circuit output. However, protection is not

guaranteed when e = 0.

To reduce the impact on performance, the authors in [63] proposed to limit

the addition of FRWs to two wires for any target gate. However, this could have

a limitation on enhancing circuit fault tolerance. Hence, the proposed work is

not limited to such a restriction. For example, in the circuit of Fig. 5.1, there

are two additional implications to the target gate G8 i.e., (b = 1) ⇒ (G8 = 0)

116

and (h = 0) ⇒ (G8 = 0). So, realizing these three implications by adding

FRWs to the masking gate G10 will improve the SET of gates along three different

implication paths. A masking gate is a gate that is driven by the target gate. In

the hindsight, now the masking gate G10 becomes a 5-input AND gate. If there

exists a technology limitation or performance impact, then this gate can be split

into smaller gates.

Determination of gates along an implication path is not a trivial task. Al-

though the authors in [63] used an implication path in their analysis, no de-

tails were given for determining an implication path and the gates along the

path. An implication might propagate from the source gate forward to the tar-

get gate, might traverse backward then forward or might not have a single path.

In Fig. 5.1, the implication path for the implication (b = 1) ⇒ (G8 = 0), is

b → {G1, G2} → G6 → G8. However, the implication path for the implication

(G4 = 0) ⇒ (G8 = 0), is G4 → e → G3 → G8. Furthermore, the implication

(h = 0) ⇒ (G8 = 0) does not have a single implication path. The detection

probabilities of gates G3, G4, G5 and G7 will partially improve depending on the

applied input values. For example, when e = 1 and f = 0, detection probabilities

of these gates will not be improved by adding a FRW due to this implication at

the masking gate G10. This is because faults on these gates are already masked

by having a 1 at the output of G3. In this chapter, an algorithm for identifying

an implication path and the gates whose detection probabilities are impacted due

to adding a FRW based on a given implication is proposed.

117

The techniques in [62] and [63] add FRWs only to the masking gate driven by

the target gate. In this paper, the proposed technique adds FRWs either to the

masking gate or to the target gate after evaluating the implication type and the

type of masking gate and the target gate.

Addition of FRWs improve the reliability of logic circuits by increasing logical

masking. However, the masking gates will remain unprotected and other tech-

niques need to be employed to enhance their fault tolerance. Furthermore, fault

tolerance enhancement is constrained by the existence of such relations. In order to

further improve circuit reliability, the selective transistor sizing (STR) technique

discussed in Chapter 3 is employed, which is based on transistor duplication and

sizing to provide protection of sensitive transistors with high detection probabil-

ity. The combined application of the proposed implication based fault tolerance

technique and the STR technique requires lesser area overhead as compared to

applying STR alone.

5.2 Proposed Fault Tolerance Technique

The proposed fault tolerance technique is based on the integration of an im-

plication based fault tolerance technique and selective transistor fault tolerance

technique. Firstly, a brief discussion is made regarding the proposed selective-

transistor redundancy (STR) technique from Chapter 3. Then, the proposed

implication based fault tolerance technique is presented.

118

5.2.1 Selective Transistor Redundancy Based Fault Toler-

ance Technique

The transistor level fault tolerance technique in Chapter 3 protects individual

sensitive transistors of a circuit. A sensitive transistor is a transistor whose soft

error detection probability is relatively high. A transistor is protected if a required

criteria such as circuit probability of failure or area overhead is not met and the

probability of failure of the transistor is greater than the probability of failure of

other transistors in the circuit. The protection is applied to a transistor by dupli-

cating and sizing one or more transistors necessary for providing the protection

against particle strikes. This approach is effective in achieving a target circuit

reliability with lower area overhead as compared to other related fault tolerance

techniques.

5.2.2 Implications Based Fault Tolerance Technique

The proposed implication-based fault tolerance technique is shown in Algo-

rithm 3. Initially, the circuit is simulated with 1 million random input patterns

using HOPE [83] to get the probability of having a value of 1 and the probability

of having a value of 0 and stuck-at (i.e., stuck-at-0 and stuck-at-1) fault detection

probabilities for all gates in the circuit.

Next, the set of source gates S and the set of target gates T are identified. To

reduce the computation time and to focus on identification of potentially useful

implications, only source gates that have probability of output value i.e, proba-

119

bility of zero (P0) or probability of one (P1), greater than or equal to Th1 are

selected. It is observed from simulations that source gates that have P0 or P1

≥ 0.3 are good candidates for implication FRW addition. Similarly, target gates

that have fault detection probability≥ Th2 are selected. From simulations, a good

value of Th2 is found to be 0.4. Then, implications are identified between gates

in S and T using any implication learning technique such as direct implications

learning [87] and indirect implications learning [88–90].

Once implications are discovered, Algorithm 3 then evaluates each implication

by identifying the implication path for each implication and computing the gain in

the form of reduction of gate stuck-at fault detection probabilities for gates along

the implication path. Then the the implication with the best gain is selected and

a FRW based on the implication is added. The gain of all remaining implications

is then updated. The process of implication FRW addition is repeated until the

best implication gain Gain < 0.02. The details of each step of Algorithm 3 are

elaborated in the following subsections.

Implications Learning

There are two main methods to identify implications in a circuit and any one

of them can be employed in the proposed technique.

Direct implications are identified by assigning a value at a gate and iteratively

performing backward justification and forward propagation until every unjustified

gate is either justified, or there exist more than one possible justification for it.

FAN [87] is a well know algorithm to discover direct implications in a circuit.

120

Algorithm 3 : Implications Based Fault Tolerance Technique

1: Th1: Gate probability threshold
2: Th2: Gate Stuck-at fault detection probability threshold
3: Φ: Set of implications b/w S and T
4: Gsi → Gti : Gates along the ithimplication path
5: Gain: Path gain due to implication FRW addition
6:

7: Simulate circuit to get initial gate value and stuck-at fault detection proba-
bilities

8: Identify set of source gates, S, with Prob(si0) or Prob(si1) ≥ Th1
9: Identify set of target gates, T, with Pdet(ti) ≥ Th2
10: Extract implication relations between gates in S and T
11: //Implications evaluation
12: for (each implication ϕi ∈ Φ) do
13: Identify implication path ◃ Algorithm 6 & 7
14: Compute implication Gain ◃ Eqn. 5.3
15: end for
16: //End of Implications evaluation block
17: repeat
18: //Implications addition
19: Select implication ϕi with best gain
20: if (Gain ≥ 0.02) then
21: Add FRW for implication ϕi ◃ Algorithm 4 & 5
22: Update stuck-at fault detection prob. Gsi → Gti

23: Update Gain for all remaining implications
24: end if
25: //End of Implications addition block
26: until (Gain < 0.02)

The identification of indirect implications is much harder than the direct im-

plications and implications are identified through learning by injecting tempo-

rary values at certain gates in the circuit and then examine their logical conse-

quences [88–90].

Rules for Addition of Implications FRWs

Once an implication is selected, a FRW is added between the source and the

destination gates. Previous methods of implications FRWs addition [62, 63] only

121

Algorithm 4 : FRW Addition Rule for (S = u)⇒ (T = 1)

1: M : Masking gate; Mi: Set of inputs of Masking gate
2: T: Target gate; Ti: Set of inputs of Target gate
3: M̂ : New masking gate; T̂ : New target gate
4: FOT : Number of fanouts of target gate
5:

⊕
: Logic XOR

6:

7: if (M = AND/NAND or FOT > 1 or M=ϕ) then
8: if (T = NOT) then

9: T̂ ← NAND(Ti, (S
⊕

u))
10: else if (T = NAND) then

11: T̂ ← NAND(Ti, (S
⊕

u))
12: else if (T = OR) then

13: T̂ ← OR(Ti, (S
⊕

u))
14: end if
15: else
16: if (M = NOT) then

17: M̂ ← NOR(Mi, (S
⊕

u))
18: else if (M = OR) then

19: M̂ ← OR(Mi, (S
⊕

u))
20: else if (M = NOR) then

21: M̂ ← NOR(Mi, (S
⊕

u))
22: end if
23: end if

add FRW to the masking gate. A masking gate is a gate that is connected to the

output of the target gate of an implication. In the proposed technique, a FRW

can be added to either the masking gate or the target gate. When an implication

is added to the masking gate, the masking gate is considered as the new target

gate. Algorithm 4 and Algorithm 5 illustrate all rules required to add a FRW due

to an implication (S = u)⇒ (T = v).

Algorithm 4 illustrates the implication FRW addition rules when a source value

u implies a target value v = 1. First, the algorithm checks whether the FRW can

be added to the masking gate or not. The FRW cannot be added to the masking

122

gate if the target gate is connected to an output (i.e., there is no making gate)

or if the masking gate is of type AND/NAND. In addition, a FRW to a masking

gate is not added if the fanout of the target gate is > 1. This is because soft

errors on the target gate and other gates on the implication path may prorogate

across other fanout branches. If the FRW cannot be added to the masking gate,

then an attempt is made to add the FRW to the target gate. If the target gate is

of type NOT, then it will be changed into a NAND gate with the input of T (i.e.,

Ti) and the input S
⊕

u. The XOR operator
⊕

performs the inversion of the

source gate S when required. For example, if S = u = 1 and T = 1 and the target

gate is an inverter, then the FRW from source S must first be inverted before

being added to the NAND gate. The relation (S
⊕

u) will become S
⊕

1 ⇒ S,

which satisfies the condition for adding the FRW from source gate S to target

gate T . Similarly, when the target is a NAND gate, then an extra input with an

inverted or non-inverted source gate (S
⊕

u) is added to the target NAND gate.

Similarly, if the target gate is an OR gate, then an extra input with an inverted

or non-inverted source gate (S
⊕

u) is added to the target OR gate.

However, if the FRW can be added to the masking gate, then it is added as

follows. For T = 1, the FRW can only be added to the masking gate if it is of type

NOT, OR or NOR. Other cases will require the insertion of an OR gate, which is

avoided in this work. If the masking gate is a NOT gate, then it is converted to

a NOR gate with new inputs Mi (i.e., “T”) and (S
⊕

u). If the masking gate is

of type OR or NOR gate, then the inverted or non-inverted source gate (S
⊕

u)

123

Algorithm 5 : FRW Addition Rule for (S = u)⇒ (T = 0)

1: M : Masking gate; Mi: Set of inputs of Masking gate
2: T: Target gate; Ti: Set of inputs of Target gate
3: M̂ : New masking gate; T̂ : New target gate
4: FOT : Number of fanouts of target gate
5:

⊕
: Logic XOR

6:

7: if (M = OR/NOR or FOT > 1 or M=ϕ) then
8: if (T = NOT) then

9: T̂ ← NOR(Ti, (S
⊕

u))
10: else if (T = NOR) then

11: T̂ ← NOR(Ti, (S
⊕

u))
12: else if (T = AND) then

13: T̂ ← AND(Ti, (S
⊕

u))
14: end if
15: else
16: if (M = NOT) then

17: M̂ ← NAND(Mi, (S
⊕

u))
18: else if (M = AND) then

19: M̂ ← AND(Mi, (S
⊕

u))
20: else if (M = NAND) then

21: M̂ ← NAND(Mi, (S
⊕

u))
22: end if
23: end if

is just added to the masking gate as an extra input.

Algorithm 5 illustrates the FRW addition rules when a source value u implies a

target value of v = 0. The discussion regarding Algorithm 4 can be well extended

for the rules given in Algorithm 5.

Implication Path Identification

Once an implication is identified, the next important step is to evaluate the

impact of adding a FRW due to the implication. Almukhaizim et al. [62] used

simulation to quantify the impact on gates sensitivity when an implication FRW

is added. Although they have tried to reduce the number of simulated input

124

values, performing simulation to evaluate the value of each implication is a very

time consuming process and will not scale for large circuits. Rather than simu-

lating the circuit to evaluate the value of adding an implication FRW, Zhou et

al. [63] employed a relation to estimate the soft error rate (SER) of gates along an

implication path. However, they didn’t elaborate on how an implication path is

identified. We will show next the details of how an implication path is determined

and the gates along the implication path whose fault detection probabilities are

reduced when an implication FRW is added.

Two algorithms are proposed to determine an implication path. The first algo-

rithm, value propagation (VP), traverses gates and marks them from source gate

S to target gate T . Once the gates are marked, the implication path identification

(IPI) algorithm then determines the implication path. The VP and IPI algorithms

are illustrated in Algorithm 6 and Algorithm 7, respectively.

Value Propagation (VP) Algorithm Algorithm 6 illustrates the steps of the

VP algorithm. C and NC denote that for the current gate CG under consider-

ation, an input of the gate is having either a controlling or non-controlling logic

value. For example, an input value equal to 0 is a controlling value to a NAND

gate, whereas a value equal to 1 is a non-controlling input value. The propagating

P and non-propagating NP markings hold information regarding the probable

implication path. IP indicates the inversion polarity for the current gate, which

is 1 for NOT, NAND and NOR gates, while 0 for AND and OR gates. Algorithm 6

starts by identifying all gates reachable to the target gate i.e., gates in the cone

125

logic of T and gates reachable to the source gate. Then, the output of the source

gate is marked with the value Pu. If the value u
⊕

IP is a non-controlling value

for the source gate, then all its inputs are marked with Pu
⊕

IP . Then, all marked

inputs of the source gate reachable to the target gate are added to processQ.

Furthermore, all gates in the fanout of the source gate which are reachable to

the target gate are added to processQ. The algorithm then processes gates in

processQ until the queue becomes empty.

Next, a gate, CG, is selected from processQ. If inputs of CG are not marked

and u
⊕

IP = NC, then all inputs of CG are marked with the value Pu
⊕

IP and

inputs reachable to the target gate are added to processQ. Otherwise, if any of the

inputs of the CG is propagating with controlling value, the gate will be marked

with PC
⊕

IP . For example, if one of the inputs of an OR gate is marked with P1,

then the gate will be marked with P1. However, for a NOR gate, if one of the

inputs is marked with P1, then the gate will be marked with P0. If all inputs to

a gate are propagating P with non-controlling value NC, then it will be marked

with PNC
⊕

IP . The path will switch from P to NP if none of the inputs of the CG

has a controlling value and not all of its inputs have non-controlling values. Once

the implication path becomes NP , it will remain NP . If the marking computed

for CG is different from its previous marking, fanouts of CG reachable to T and

not reachable to S will be added into processQ

Implication Path Identification (IPI) Algorithm The implication path

identification (IPI) algorithm is applied after VP algorithm. The purpose of IPI

126

Algorithm 6 : Value Propagation (VP) Algorithm

1: P0 : Propagating 0; P1 : Propagating 1;
2: NP0: Non-propagating 0; NP1 : Non-propagating 1;
3: C : Controlling value; NC: Non-controlling value
4: u: Source gate value
5: IP : Set to 1 when a gate is inverting (i.e., NOT, NAND, NOR), otherwise

set to 0
6: processQ : Queue to process gates
7: CG : Current Gate being processed
8: MCG: Marking applied to the output of current gate
9:

10: Mark all gates reachable to the target gate T
11: Mark all gates reachable to the source gate S
12: CG = Source gate
13: MCG = Pu

14: if (u
⊕

IP = NC) then
15: Mark all inputs of CG with the value Pu

⊕
IP

16: Add all inputs of CG reachable to T to processQ
17: end if
18: Add all fanouts of CG reachable to T to processQ
19: while (processQ ̸= NULL) do
20: CG = pop(processQ);u is the value if CG
21: if (inputs of CG are not marked and u

⊕
IP = NC) then

22: Mark all inputs of CG with the value Pu
⊕

IP

23: Add all inputs of CG reachable to T to processQ
24: else if (any input to CG = PC) then
25: MCG ← PC

⊕
IP

26: else if (all inputs to CG = PNC) then
27: MCG ← PNC

⊕
IP

28: else if (any input to CG = PNC) then
29: MCG ← NPNC

⊕
IP

30: else if (any input to CG = NPC) then
31: MCG ← NPC

⊕
IP

32: else if (all inputs to CG = NPNC) then
33: MCG ← NPNC

⊕
IP

34: end if
35: if (New marking of CG ̸= It’s Previous marking) then
36: add fanouts of CG reachable to T and not reachable to S into processQ
37: end if
38: end while

127

algorithm is to determine the implication path and the gates along the path whose

detection probabilities will be impacted by adding the implication FRW. Algo-

rithm 7 highlights the steps of the IPI algorithm.

The processQ holds the list of gates to be processed in each iteration, whereas

PathG list contains gates that are part of the implication path. The set of rules

established in Algorithm 7 will now be explained. The algorithm starts with

adding the target gate to processQ. If only one input to a gate is marked with

PC , then that input is added to the processQ and the process continues. It should

be observed that if two or more inputs of a gate are marked with PC , then the

inputs of this gate are not added to processQ. Fig. 5.2 illustrates this case. For

both circuits, the value of A = 0 or A = 1 is propagated to the output. Therefore,

if 2 or more inputs of the target gate are marked with PC , then there is no need to

protect the gates along the implication path(s) as faults on gates along one path

will be masked at the target gate due to the controlling logic value of the other

input. In case if two or more inputs are marked with NPC as shown in Fig. 5.3,

then, there is also no need to protect the gates along the implication path(s) due

to the masking at the target gate provided by the controlling value of other input.

Fig. 5.4 illustrates the application of rule 2. If all inputs of the target gate

are marked with PNC , then all the inputs are added to the PathG list. Therefore,

both G1 and G2 are added to the PathG list in this case. Other rules will be

explained through illustrative examples given in the next section.

128

Algorithm 7 : Implication Path Identification (IPI) Algorithm

1: P0 : Propagating 0; P1 : Propagating 1;
2: NP0: Non-propagating 0; NP1 : Non-propagating 1;
3: C : Controlling value; NC: Non-controlling value
4: PI: Primary input
5: processQ : Queue to process gates
6: CG : Current Gate being processed
7: PathG: Implication path gates
8:

9: Add T to processQ
10: while (processQ ̸= NULL) do
11: CG = pop(processQ)
12: if (CG ̸= S and CG ̸= T) then
13: Add CG to PathG

14: end if
15: if (One input of CG is marked with PC) then
16: if (Input marked with PC is not PI and ̸∈ processQ) then
17: Add input to processQ
18: end if
19: else if (All inputs of CG are marked with PNC) then
20: for (all inputs) do
21: if (Input is not PI and ̸∈ processQ) then
22: Add input to processQ
23: end if
24: end for
25: else if (One input of CG is marked with NPC) then
26: if (Input marked with NPC is not PI and ̸∈ processQ) then
27: Add input to processQ
28: end if
29: else if (All inputs to CG = NPNC) then
30: for (all inputs) do
31: if (Input is not PI and ̸∈ processQ) then
32: Add input to processQ
33: end if
34: end for
35: end if
36: end while
37: Return PathG

129

G2

G1

G3
0 0

P0

P0

A

P0

P0

(a)

G2

G1

G3
1 1

P1

P1

A

P1

P1

(b)

Figure 5.2: Illustration of having two inputs with PC markings.

G2

G1

G3
0

NP0

NP0

NP0

NP0

(a)

G2

G1

G3
0

NP1

NP1

NP1

NP1

(b)

Figure 5.3: Illustration of having two inputs with NPC markings.

Evaluation of Implication FRW Gain

Once the implication path is determined, the next step is to evaluate the value

of adding a FRW due to an implication path based on updating the stuck-at

130

G1

G2

G3

a

b=1

c

1P1

P1

P1

P1

(a)

G1

G2

G3

a

b=0

c

0P0

P0

P0

P0

(b)

Figure 5.4: Illustration of having two inputs with PNC markings.

fault detection probabilities of gates along the implication path. If the value v

of a gate Gi along an implication path is “0”, then the stuck-at-1 (sa1) fault

detection probability of Gi is improved/modified. However, if the value of the

gate is “1”, then the stuck-at-0 (sa0) fault detection probability of gate Gi is

improved/modified. The following equation is used to update or modify the stuck-

at fault detection probability of gate Gi along an implication path.

Ĝisav = Gisav × (1− Pu)× PRP (5.1)

Where Pu denotes the probability that the source gate S has a value of u and PRP

is the percentage of reachable paths from gate Gi to the target gate T computed

using the following relation:

131

PRP =
of reachable paths Gi → T

of paths Gi → PO
(5.2)

Where “# of paths Gi → PO” denote the total number of paths from gate Gi to

primary output(s), “reachable path” denotes the number of paths from gate Gi

that are reachable to target gate T . Eqn. 5.2 is used to estimate the percentage

improvement in the fault detection probability of gate Gi as fault detection will

be improved for paths propagating through T but not across other paths not

propagating through T .

For each implication, Eqn. 5.1 is applied to update the stuck-at fault detection

probabilities of gates along the implication path. The gain of an implication is

then computed using Eqn. 5.3.

GainS→T =
∑

∀Gi∈S→T

Gisa −
∑

∀Gi∈S→T

Giŝa (5.3)

Where Giŝa denotes the new fault detection probability and Gisa denotes the old

fault detection probability of gate Gi.

5.3 Illustrative Examples

In this section, two examples are discussed in detail that encompass all aspects

of the proposed method discussed in Section 5.2. Consider the example shown in

Fig. 5.5, where an implication exists between source gate G4 and the target gate

G3. The masking gate in this example is gate G10. The first step is to determine

132

whether the FRW will be added to the target gate G6 or the masking gate. Since

the implication is of type (G4 = 0) ⇒ (G3 = 0) and the masking gate G10 is

an AND gate, therefore the FRW will be added to the masking gate. The new

target gate T is now G10. The circuit with the added FRW (dotted line) is also

shown in Fig. 5.5. The masking gate G10 now becomes a 3-input AND gate with

an extra input connected to the source gate G4.

G6

G4

G7

G8

G9

G10

d

e

f

h

G1

G2

G3

a

c

0

0

P0

P0

P0

NP0

P1

P1

P1

P1

P0

P1

P1
P1

P1

Figure 5.5: Circuit with Implication (G4 = 0)⇒ (G6 = 0).

Once the FRW is added, the next step is to determine the implication path.

Starting from the source gate, G4 is marked as propagating P with value 0 i.e.,

P0. Since source gate G4 is a NAND gate, the value of IP is equal to “1”. The

condition in line 14 of Algorithm 6 i.e., (0
⊕

1 = 1(NC)), is satisfied, therefore

all inputs of G4 are marked with P0
⊕

1 = P1. Primary inputs e and f are also

added to the processQ as they both have a reachable path to the target G10. So,

initially, G4 is marked as P0 and both primary inputs e and f are marked as P1.

G4 has only one fanout gate G7, which is reachable to the target G10, therefore

it is also added to the processQ due to the condition in line 18 of Algorithm 6.

133

The processQ now contains values {e, f,G7}.

Next, e is selected as CG from the processQ. Since e is a primary input, all

the conditions from line 21 to line 32 are skipped. However, due to the statement

in line 35 of Algorithm 6, G6 is added to the processQ, because it is the only

fanout of e reachable to the target gate G10. The other fanout of e is the source

G4, therefore it is not added to the processQ. The processQ now consists of

{f,G7, G6}. In the next iteration, f is selected as CG. Again, all marking

conditions are skipped as f is a primary input. Since the only fanout for f is

the source G4, nothing is added to the processQ. So, the processQ now contains

{G7, G6}. In the next iteration, G7 is selected as CG. Since one of the inputs of

G7 is P0, i.e., satisfying the condition in line 24 of Algorithm 6, G7 is marked as

P0 i.e., MG7 = PC=0
⊕

IP=0 = P0. Both fanouts of G7 are added to the processQ

as they are reachable to the target gate G10. The updated processQ now consists

of {G6, G8, G9}.

Gate G6 is marked as P1 as its input is marked with P1. Gate G8, which

is the fanout of G6 is now added to the processQ. Updated processQ is now

{G8, G9, G8}. The inputs to G8 are marked as P1 due to G6 and P0 due to G7,

therefore due to the condition in line 24 of Algorithm 6, G8 is marked as P1. After

both fanouts of G8 are added, the updated processQ becomes {G9, G8, G1, G2}.

One of the inputs to gate G9 is marked as P0 due to G7, therefore, due to the

condition in line 28 of Algorithm 6, the output of G9 is marked as non-propagating

NP with value 0 i.e., MG9 = NPNC=0
⊕

IP=0 = NP0. Nothing is added to the

134

processQ as the fanout of G9 is the target gate G10. In the next iteration, G8

is selected again but its marking will stay the same i.e., MG8 = P1. Thus, its

fanouts G1 and G2 are not added to the processQ. Both G1 and G2 have inputs

marked with P1, therefore both of them are marked as P1. G3 is now added to

the processQ. Finally, CG = G3 is selected for processing. All inputs of G3 are

P1 i.e., propagating with non-controlling value, therefore, due to the condition

in line 26 of Algorithm 6, G3 is marked as P0 i.e., MG3 = PNC=1
⊕

IP=1 = P0.

Nothing is added to the processQ as the fanout of G6 is the target G10. The

algorithm terminates as the processQ is now empty. The gate markings due to

VP algorithm are also shown in Fig. 5.5

Once the VP algorithm is finished, the IPI Algorithm (Algorithm 7) is applied

to determine the implication path and the gates protected by adding the implica-

tion FRW. The IPI algorithm starts from the target G10. Starting from G10, G3

is selected and is added to the processQ, as it has P0 marking, in accordance with

the rule mentioned in line 15 of Algorithm 7. Then, G3 is processed and is added

to PathG. Since both inputs of G3 are marked with P1, P with non-controlling in-

put NC = 1, therefore both G1 and G2 are added to processQ in accordance with

the rule mentioned in line 19 of Algorithm 7. Then, G1 and G2 get processed and

get added to PathG and G8 gets added to processQ. Then, gate G8 is processed

and is added to PathG. Since G8 has two inputs with markings P1 and P0, the

path with the propagating value is selected i.e., G6. Finally G6 is processed and

is added to PathG. The algorithm now terminates as the input to G6 is a primary

135

input. The implication path now consists of gates (G6→ G8→ (G1, G2)→ G3).

Once the implication path gates are identified, the next step is to update

the stuck-at fault detection probabilities of gates using Eqn. 5.1. So, for gates

along the implication path, G6sa0, G8sa0, G1sa0, G2sa0 and G3sa1 fault

detection probabilities are improved, respectively. Gate G6 has two paths to

the primary output G10 i.e., (G6 → G8 → G1 → G3 → G10) and (G6 →

G8 → G2 → G3 → G10) and all the paths are reachable to the target gate

G10. Therefore, PRP of G3 is “1”. In fact, in this example, the PRP of all

gates along the implication path is “1”. Before adding the implication FRW,

the stuck-at fault detection probabilities of gates along the implication path are

{0.281, 0.563, 0.781, 0.781, 0.781}. After the addition of the implication FRW, the

estimated stuck-at fault detection probabilities using Eqn. 5.1 along the implica-

tion path are {0.211, 0.422, 0.586, 0.586, 0.586}. Based on actual fault simulation

using HOPE [83], the improved stuck-at fault detection probabilities are found out

to be {0.188, 0.468, 0.656, 0.656, 0.656}. It is clear that the estimated values and

the values computed using HOPE [83] are close to each other. The estimated im-

plication path gain computed using Eqn. 5.3 is 0.796 while the path gain obtained

using HOPE [83] simulation is 0.563.

Let us next consider the example shown in Fig. 5.6, where an implication exists

between source wire h and the target gate G3. The masking gate in this example

is gate G10. The FRW will be added to the masking gate and the new target

gate T is now G10. The circuit with FRW (dotted line) is also shown in Fig. 5.6.

136

G6

G4

G7

G8

G9

G10

d

e

f

h

G1

G2

G3

a

c

0

0

P0 P0

NP1

NP1

NP1

NP1

NP1

NP0

P1

NP1

NP1

Figure 5.6: Indirect implication path discovery.

Starting from h, processQ consists of {G5, G9}. When selected, G5 is marked

with P1 at its input is marked with P0. When G7 is added, processQ becomes

{G9, G7}. Currently, only one input to G9 is marked as P0 due to h, therefore,

G9 is marked NP0 due to condition in line 26 of Algorithm 6. Since the output of

G9 is target G10, nothing is added to the processQ. The processQ now consists

of {G7} only. G7 is marked with NP1 as its input is a non-controlling value.

Both fanouts of G7 are added to the processQ and it will become {G8, G9}. G8

is processed next and is marked with NP1 and its fanouts are added to the queue.

processQ becomes {G9, G1, G2}. G9 is selected for the second time now and

this time both its inputs are marked as NP1 due to G7 and P0 due to h. The

marking of G9 changes from NP0 to NP1 due to the controlling input value from

G7. G1 and G2 are then processed and are also marked with NP1. The processQ

now consists of {G3} only. Finally, when selected, G3 is marked with NP0. VP

algorithm now terminates as the target is reached and processQ become empty.

The marking of gates due to VP algorithm is also shown in Fig. 5.6. It must be

137

noted that when a path becomes non-propagating NP it remain NP until the

target is reached.

The IPI algorithm is now applied to determine the implication path. It can

be observed from Fig. 5.6 that both inputs of G10 are NP . The only clue for the

IPI algorithm now is to take the path with controlling value i.e., condition in line

25 of Algorithm 7. Therefore, G3 is selected and then added to the processQ and

to PathG. All inputs of G3 have NC value, therefore, due to condition in line 29

of Algorithm 7, both G1 and G2 are added to the processQ and PathG. When

processing G1 and G2, G8 is added to the path gates list PathG and processQ.

Continuing in this fashion, G7 and G5 are also added to the PathG. Algorithm 7

now terminates as the source h is reached and also the processQ becomes empty.

The implication path now consists of gates (G5→ G7→ G8→ (G1, G2)→ G3).

So, for gates along the implication path, G5sa0, G7sa0, G8sa0, G1sa0, G2sa0

and G3sa1 fault detection probabilities are improved, respectively. Before

FRW is added, stuck-at fault detection probabilities of gates along the impli-

cation path are {0, 0, 0.563, 0.781, 0.781, 0.781}. The improved stuck-at fault

detection probabilities of implication gates computed using HOPE [83] are

{0, 0, 0.281, 0.406, 0.406, 0.406}. The estimated stuck-at fault detection probabili-

ties computed using Eqn. 5.1 are {0, 0, 0.281, 0.391, 0.391, 0.391}. The estimated

path gain computed using Eqn. 5.3 is 1.452 while the actual gain obtained using

HOPE [83] simulation is 1.407. It is clear that the estimated values are very close

to the simulated values obtained using HOPE [83].

138

It should be observed that since this is an indirect implication, not all the

identified gates along the implication path will be protected. This is because

when G4 = 1, all the identified gates by the implication path will be protected by

reducing their fault detection probabilities. However, when G4 = 0, this implies

that e = 1 and G6 = 1. Thus, faults occurring on G5 and G7 are already

masked by having G6 = 1 without adding the FRW. Thus, in this case only gates

{G8, G1, G2, G3} are protected. The IPI algorithm will identify also gates G5 and

G7 although they are partially protected.

5.4 Experimental Results

In this section, the impact of the proposed technique on the area and reliability

of LGSynth’91 [84] benchmarks is evaluated. The benchmarks consist of circuits

with varying complexity in terms of area, number of inputs and outputs. The

LGSynth’91 benchmark circuits used in this work are synthesized with single

output optimization using Espresso [85] tool and then mapped to a library that

consists of an Inverter and 2-, 3- and 4-input NAND and NOR gates using SIS [86]

tool to get the proper gate level representation of the circuit. The reliability of a

circuit is computed using the method discussed in Chapter 6

139

T
ab

le
5.
1:

C
ir
cu
it
s
re
li
ab

il
it
y
an

d
ar
ea

ov
er
h
ea
d
b
as
ed

on
p
ro
p
os
ed

im
p
li
ca
ti
on

b
as
ed

fa
u
lt
to
le
ra
n
ce

te
ch
n
iq
u
e.

C
ir
cu

it
A
re
a

1
F
a
u
lt

2
F
a
u
lt
s

P
ro

p
o
se
d

M
e
th

o
d

O
H

1
#

Im
p
.

1
F

2
%

R
e
d
.

P
1
3

P
2
3

al
u
4

14
29
.7
4

97
.8
9%

95
.8
6%

2.
73
%

41
97
.9
6%

3.
32
%

97
.9
0%

96
.1
0%

ap
ex
1

46
02
.0
0

96
.7
2%

94
.2
0%

3.
22
%

14
8

97
.5
0%

23
.7
8%

97
.3
2%

95
.6
8%

ap
ex
2

60
9.
96

99
.2
0%

98
.0
4%

1.
68
%

35
99
.5
7%

46
.2
5%

99
.5
0%

98
.7
0%

ap
ex
3

30
25
.6
2

96
.8
8%

94
.7
6%

5.
26
%

13
3

97
.3
2%

14
.1
0%

97
.1
5%

96
.1
0%

ap
ex
4

45
75
.4
8

96
.2
0%

92
.7
4%

3.
03
%

13
5

96
.8
8%

17
.8
9%

96
.4
0%

93
.8
0%

b
12

12
1.
68

89
.1
0%

78
.2
2%

12
.1
8%

15
90
.1
0%

9.
17
%

89
.4
5%

80
.2
2%

cl
ip

37
2.
84

93
.2
4%

86
.4
0%

4.
18
%

17
94
.4
4%

17
.7
5%

93
.9
7%

86
.4
0%

co
rd
ic

24
1.
02

98
.1
0%

96
.2
8%

2.
91
%

7
98
.6
6%

29
.4
7%

98
.2
0%

96
.7
0%

ex
5

97
7.
34

93
.5
0%

88
.2
6%

13
.4
9%

10
2

94
.7
6%

19
.3
8%

94
.1
1%

90
.0
3%

m
is
ex
1

15
2.
88

84
.3
4%

71
.7
0%

2.
55
%

3
88
.8
9%

29
.0
5%

88
.3
7%

73
.0
9%

m
is
ex
2

23
0.
88

93
.2
0%

88
.3
2%

7.
77
%

12
94
.5
1%

19
.2
6%

94
.1
0%

89
.5
7%

m
is
ex
3

18
86
.8
2

97
.6
4%

95
.4
0%

3.
06
%

50
98
.6
1%

41
.1
0%

98
.5
5%

96
.8
9%

rd
84

49
6.
08

93
.3
8%

87
.2
2%

5.
35
%

30
94
.6
9%

19
.7
9%

94
.3
3%

87
.6
1%

se
q

49
70
.9
4

99
.0
5%

98
.2
2%

0.
35
%

10
99
.2
0%

15
.7
9%

99
.1
5%

98
.7
6%

sq
u
ar
5

10
1.
40

83
.4
4%

69
.4
6%

5.
38
%

5
86
.7
8%

20
.1
7%

86
.2
6%

70
.3
6%

ta
b
le
3

34
75
.6
8

98
.6
8%

97
.7
8%

0.
96
%

27
98
.8
9%

15
.9
1%

98
.7
7%

98
.1
1%

ta
b
le
5

35
35
.7
4

98
.7
0%

97
.7
2%

1.
57
%

46
98
.9
1%

16
.1
5%

98
.6
4%

98
.2
2%

z5
x
p
1

25
1.
16

87
.9
6%

75
.3
8%

6.
83
%

21
90
.2
3%

18
.8
5%

89
.4
5%

75
.8
8%

A
v
g
.

9
4
.2
9
%

8
9
.2
2
%

4
.5
8
%

4
6
.5
0

9
5
.4
4
%

2
0
.9
6
%

9
5
.0
9
%

9
0
.1
2
%

1
A
re
a
ov
er
h
ea
d
(O

H
)
=

(A
r
ea

A
f
te
r
I
m
p
li
ca

ti
o
n
s
F
R
W

s
A
d
d
it
io
n

O
r
ig
in

a
l
A
r
ea

−
1) ×1

00
2
S
in
gl
e
fa
u
lt

3
P
ro
ra
te
d
1
an

d
2
fa
u
lt
s

140

The reliability of a circuit is computed against a single fault and the prorated

1 and 2 faults for each circuit. The number of prorated faults is correlated to

the area of a circuit. So, for example, if the area overhead is 131%, then the

actual area is increased by 2.31 times. Therefore, 1, 2 and 5 faults in the original

circuit will prorate to 2.31, 4.62 and 11.55 faults in the protected circuit. For

each prorated fault, the circuit is simulated twice. For example, if the prorated

faults to be injected are 4.62, then the circuit is simulated twice, first by injecting

4 faults and then by injecting 5 faults. The failure rate is then computed as

0.38 ∗FR(4faults)+ 0.62 ∗FR(5faults). For each fault injection scenario, faults

are injected randomly and simulation is performed for 5000 iterations to compute

the failure rate.

The implications are applied to a circuit until an implication gain of a circuit is

< 0.02. Based on simulations, it is observed that a threshold value of 0.02 offers the

best compromise between area overhead and reliability improvement of a circuit.

Once FRWs due to selected implications are added, the probability of failure

(POFC) of the final circuit is then computed using Eqn. 3.7. Table 5.1 shows the

circuits area overhead and reliability achieved by the proposed implication based

fault tolerance technique. The column header “# Imp.” denotes the number of

implications applied to each circuit. The column “% Red.” denotes the percentage

reduction in the failure rate of each circuit. The average reliability of all circuits

is improved as compared to the original circuits. The average area overhead

incurred as a result of implications FRWs addition is 4.58% and the average

141

number of implications is 46.50. Except for alu4 and b12, the POFC of all the

other benchmarks is reduced by at least 14%. The columns “P1” and “P2” show

the reliability of circuits against prorated 1 and 2 faults, respectively. It is clear

that the average reliability achieved by the proposed technique against prorated

faults is better than the reliability of original circuits against 1 and 2 faults.

Table 5.2: Circuits reliability and area overhead based on STR technique (Chap-
ter 3) with varying protection thresholds against a single fault.

Circuit
95% 98% 99%

OH Rel OH Rel OH Rel
alu4 0% 97.89% 20.04% 98.44% 51.84% 99.02%
apex1 0% 96.72% 12.64% 98.10% 48.81% 99.10%
apex2 0% 99.20% 0% 99.20% 0% 99.20%
apex3 0% 96.88% 13.93% 98.05% 51.57% 99.08%
apex4 0% 96.20% 25.88% 98.30% 71.88% 99.02%
b12 86.50% 95.01% 149.02% 98.03% 197.69% 99.05%
clip 14.64% 95.00% 68.61% 98.11% 119.87% 99.08%

cordic 0% 98.10% 0% 98.10% 19.53% 99.00%
ex5 19.53% 95.62% 81.73% 98.12% 139.89% 99.02%

misex1 85.68% 95.07% 175.48% 98.01% 249.35% 99.02%
misex2 14.12% 95.24% 50.29% 98.36% 92.48% 99.20%
misex3 0% 97.64% 3.33% 98.10% 34.27% 99.18%
rd84 14.16% 95.10% 56.49% 98.02% 101.21% 99.24%
seq 0% 99.05% 0% 99.05% 0% 99.05%

squar5 107.79% 95.10% 206.15% 98.06% 286.51% 99.00%
table3 0% 98.68% 0% 98.68% 0.34% 99.24%
table5 0% 98.70% 0% 98.70% 1.70% 99.32%
z5xp1 68.22% 95.06% 143.69% 98.11% 202.88% 99.06%

Avg. 22.81% 96.68% 55.96% 98.31% 92.77% 99.11%

The proposed implication based fault tolerance technique is based on enhanc-

ing logical masking and is applied at the gate level. One limitation of logical

masking techniques is that they are unable to improve the reliability of a circuit

beyond a certain point. So, in order to further improve the reliability, circuit-level

techniques such as gate/transistor resizing has to be employed. Therefore, the

142

reliability of circuits in Table 5.1 is further enhanced by applying STR technique

from Chapter 3. Table 5.2 shows the reliability and area overhead of circuits when

STR is applied to the original benchmark circuits for 95%, 98% and 99% protec-

tion threshold. Protection threshold refers to the target reliability required to be

achieved by a circuit against a single fault. In the proposed integrated approach,

the implication based fault tolerance technique is applied first followed by the

STR technique if the original circuit does not satisfy a required reliability.

Table 5.3 shows the circuits reliability and area overhead resulting from the

application of the proposed integrated approach for 95%, 98% and 99% protection

threshold. It can be observed from Table 5.3 that the area overhead is reduced for

all protection thresholds in comparison to the application of the STR technique.

This is due to the fact that the addition of FRWs increases logical masking of faults

and hence when STR is applied, fewer transistors require protection to achieve

the desired reliability. Significant area savings are achieved for b12, clip, ex5

and z5xp1 benchmarks with 95% threshold as shown in Table 5.3 in comparison

to the results in Table 5.2. With 98% threshold, alu4, apex1, apex3, b12, ex5,

and misex2 in Table 5.3 achieve significantly lower area overhead with similar

reliability in comparison to the results in Table 5.2. Similarly, for 99% threshold,

benchmarks such as alu4, apex1, apex3, apex4, b12, cordic, ex5, misex2 and

misex3 have significantly lower area overhead as compared to their counterparts

in Table 5.2, and again with similar reliability measure.

143

Table 5.3: Circuits reliability and area overhead based on proposed integrated
approach against a single fault.

Circuit
95% 98% 99%

OH Rel OH Rel OH Rel
alu4 0% 97.89% 7.23% 98.40% 29.01% 99.03%
apex1 0% 96.72% 4.26% 98.05% 31.94% 99.18%
apex2 0% 99.20% 0% 99.20% 0% 99.20%
apex3 0% 96.88% 6.17% 98.1% 37.97% 99.03%
apex4 0% 96.20% 18.19% 98.20% 57.99% 99.01%
b12 23.80% 95.11% 90.30% 98.10% 154.19% 99.09%
clip 8.45% 95.09% 58.88% 98.07% 104.13% 99.06%

cordic 0% 98.10% 0% 98.10% 13.46% 99.1%
ex5 5.26% 95.55% 58.77% 98.1% 107.86% 99.07%

misex1 77.21% 95.12% 169.29% 98.04% 253.54% 99.01%
misex2 11.26% 95.3% 33.90% 98.28% 77.18% 99.15%
misex3 0% 97.64% 1.20% 98.1% 19.49% 99.09%
rd84 16.13% 95.09% 57.31% 98.03% 98.71% 99.04%
seq 0% 99.05% 0% 99.05% 0% 99.05%

squar5 105.73% 95.10% 196.75% 98.01% 285.13% 99.02%
table3 0% 98.68% 0% 98.68% 0.20% 99.12%
table5 0% 98.70% 0% 98.70% 0.46% 99.20%
z5xp1 58.84% 95.11% 129.34% 98.09% 189.46% 99.05%

Avg. 17.04% 96.70% 46.20% 98.29% 81.15% 99.08%

144

5.5 Conclusion

In this chapter, an integrated fault tolerance technique based on the combined

application of an implication based fault tolerance technique and selective tran-

sistor redundancy technique is proposed. An implication based fault tolerance

technique has been proposed. It is based on identifying implications between a

set of candidate source and target gates. Then, for each implication the gain in

reduction of gate fault detection profitabilities is estimated. The implication with

the highest gain is selected and its corresponding functionally redundant wire

is added. The process is repeated until the gain is less than a given threshold.

Experimental results show that the proposed implication based fault tolerance

technique reduces the failure rate of circuits with an average of 20% with an av-

erage area overhead of less than 5%. Moreover, the integrated application of the

proposed implication based fault tolerance technique and the selective transis-

tor redundancy technique achieve significantly lower area overhead in comparison

to applying the selective transistor redundancy technique alone with the same

achieved reliabilities.

145

CHAPTER 6

RELIABILITY EVALUATION

A novel method to compute the reliability of a circuit at the gate level is pro-

posed in this chapter. The proposed gate level method provides similar results in

comparison to transistor level simulations (using SPICE) with orders of magni-

tude reduction in CPU time. The effect of a transient fault hitting a transistor

will be observable at one of the primary outputs with a certain probability. This

probability is a function of controllability probability i.e., existence of an input

pattern to excite a fault, and observability probability i.e., a fault excited at a site

is observable at one of the primary outputs. The motivation here is to propose

a probabilistic model that captures this effect at the gate level. The proposed

technique bridges the gap between circuit level simulations performed at the tran-

sistor level using SPICE and gate level simulations, which could be done using any

gate level simulator. Simulations performed at the gate level make an underlying

assumption that the effect of a transient fault results in a bit flip at the output

of a gate or in the memory. In this realm, we propose probability of fault

146

injection, which quantifies the probability with which a fault must be injected

at the gate level so that SPICE level and gate level simulation results are highly

matched

A thorough case study for the 130nm process technology is performed to elab-

orate the proposed reliability evaluation scheme. The basic process related pa-

rameters used in this study are shown in Table 6.1.

6.1 Reliability Evaluation Architecture

The reliability evaluation framework, shown in Fig. 6.1, consists of two ma-

jor blocks; 1) technology independent block, and 2) technology dependent block.

The purpose of the technology independent block is to analyze a given benchmark

circuit to compute three important parameters for all gates; 1) input pattern prob-

ability (.ipp) , 2) stuck-at detection probability (.prob), and 3) fault injection

probability (.inj). The input patterns observable at the input of each gate along

with their probability of occurrence and stuck-at fault detection probabilities are

computed by performing simulation of 1 million random test vectors using the

parallel fault simulator Hope [83]. The fault injection probability denotes the

probability with which a fault must be injected at the gate level as a stuck-at

fault. All of these parameters are saved in a database for later usage.

The technology dependent part consists mainly of the library gates comprising

NAND/NOR gates with varying input configurations and an INVERTER. The

purpose of this block is to observe the behavior of different process technologies,

147

netlist Analysis Engine

netlist

file

Compute Input Pattern

Probs. of all gates (.ipp)

Compute stuck-at-0 and

stuck-at-1 detection probs. of

all gates (.prob)

Compute fault injection

probs. of all gates (.inj)

Custom gate library

with 2-, 3- and 4-input

NAND/NOR gates and

an Inverter

Save .ipp,

.prob and .inj

files

Gate-level failure rate

computation Algorithm

Save technology

specific fault

propagation details for

different charge values

Use SPICE to compute

propagation prob. of each

transistor of all gates for

all possible input vectors

Technology Independent Block
Technology Dependent

Block

Figure 6.1: Reliability Evaluation Architecture.

e.g. 45nm, 32nm etc., against a specific charge value. This block computes the

effect of an induced current of charge (Q) for every transistor of the gate in the

library. The input patterns that result in a gate value flip when a transistor is hit

are then saved in the propagation (.prop) file. In fact, we can compute and save

the behavior of different technologies against different charge (Q) values, and this

has to be done only once.

Now, the fault injection probability of a gate in a circuit can be computed for

any process technology. It must be noted that the initial analysis of a circuit has

to be done only once. The only limitation to this approach is that, if a circuit

changes, the analysis for the technology independent part has to be repeated as

well.

148

The following subsections contain the detailed elaboration of the reliability

evaluation framework.

6.2 Probability of Fault Injection

The fault injection probabilities of a gate depend on the Conditional Fault Ex-

citation Probability (CFEPij) and probability of hit/selection. A general relation

to compute CFEPij of j
th transistor of a gate i can be derived as follows. Let S

be a set of patterns for which an error is excited to the output of a gate and PCi

be the controllability probability to produce a logic value opposite to the fault

effect at the gate output. Then CFEPij can be defined as:

CFEPij =

|S|∑
k=1

Prob. Sk

PCi

=
PExcitationij

PCi

(6.1)

The CFEPij of any MOS transistor depends on the process technology and the

charge of the incident particle. Therefore, in order to get the exact CFEPij

probability for each MOS transistor, transistor level simulations are performed

using SPICE.

Now, the sa0 fault injection probability of gate Gi is computed using the

following equation:

149

Gi sa0 inj. Prob =
n∑

j=1

CFEPNij
× NWij

n∑
k=1

NWik

 (6.2)

Where n is the total number of nmos transistors in gate Gi, NWij is the width of

the drain of jth nmos transistor and CFEPNij
is the conditional fault excitation

probability due to a fault hit at the jth nmos transistor of gate i.

Similarly, the sa1 fault injection probability of gate Gi is computed as follows:

Gi sa1 inj. Prob =

p∑
j=1

CFEPPij
× PWij

p∑
k=1

PWik

 (6.3)

Where p is the total number of pmos transistors in gate Gi, PWij is the width of

the drain of jth pmos transistor and CFEPPij
is the conditional fault excitation

probability due to a fault hit at the jth pmos transistor of gate i.

With PExcitationN1
= 0.75, PExcitationN2

= 0.25, PExcitationP1
= 0.25,

PExcitationP2
= 0.25, PC0 = 0.25 and PC1 = 0.75, the sa0 and sa1 injection

probabilities of a 2-input NAND gate are computed by applying Eqn. 6.2 and

Eqn. 6.3 as follows:

Gi sa0 inj. Prob. =
2∑

j=1

CFEPNij
× NWij

2∑
k=1

NWik

=
0.75
0.75
× 0.26 + 0.25

0.75
× 0.26

2∑
i=1

0.26

= 0.667

150

Gi sa1 inj. Prob. =
2∑

j=1

CFEPPij
× PWij

2∑
k=1

PWik

=
1× 0.52 + 1× 0.52

2∑
i=1

0.52

= 1

Let’s now compute the fault injection probabilities of NAND21 shown in Ta-

ble 3.2. PDETN1
is reduced to 0.25 as there is only one pattern, {10}, for which

“N1” is not protected; therefore, CFEPN1 = 0.25
0.75

= 1
3
. The sa0 fault injection

probability will be:

Gi sa0 inj. Prob. =
2∑

j=1

CFEPNij
× NWij

2∑
k=1

NWik

=
0.25
0.75
× 0.26 + 0.25

0.75
× 0.26

2∑
i=1

0.26

= 0.333

The sa0 fault injection probability of NAND21 is reduced from 0.833 to 0.333

due to protecting the fault that occurs at the drain of N1 transistor.

151

The area of P1 1 and P1 2 pmos transistors is 2.4 × PW . The sa1 fault

injection probability remains the same as computed below:

Gi sa1 inj. Prob. =
3∑

j=1

CFEPPij
× PWij

3∑
k=1

PWik

=
2× 1× 2.4× 0.52 + 1× 0.52

(
2∑

i=1

2.4× 0.52) + 0.52

= 1

6.3 Fault Injection Mechanisms

Two fault injection mechanisms are applied in this work. The first method

performs fault injection at the transistor level and measures the magnitude of

voltage Vout at the output. The second method deals with injecting the fault at

the gate level by injecting a stuck-at-0 or stuck-at-1 fault at the gate output.

6.3.1 Transistor Level

The current I of charge Q is injected at the drain of a transistor. The direction

of injected current is from drain-to-body in the nmos transistor and from body-to-

drain in the pmos transistor. The magnitude and pulse width of injected current is

modeled using Eqn. 3.1. Algorithm 8 highlights the steps of failure rate/reliability

152

computation at the transistor level. In this algorithm, a set of m transistors are

selected for fault injection using Roulette Wheel (RW) algorithm [91,92]. The RW

algorithm selects transistors that have higher area with high probability. For each

random input vector, the outputs are saved before and after the fault injection

and are then compared to check for correctness. The failure rate and reliability

of circuit are then computed after SIM simulations are performed.

Algorithm 8 : Transistor-level Failure Rate Computation

Require: Transistor-level netlist
1: SIM : Simulation Count
2: Fm : Failure rate of the circuit with m faults
3: Relm : Reliability (%) of the circuit with m faults
4: K : Failure Count
5: R : Output of circuit with no fault injection
6: Rf : Output of circuit after fault injection
7: RW : Roulette Wheel algorithm
8: K ← 0
9: for (i = 1→ SIM) do
10: Generate a random test vector V
11: Apply V to the circuit
12: Simulate the circuit and save the output in R
13: RW(m) ◃ Select m transistors using Roulette Wheel Algorithm
14: Inject faults in selected m transistors
15: Apply V to the circuit with faults injected
16: Simulate and save the output in Rf

17: if (R ̸= Rf) then increment K
18: end for
19: Fm =

(
K

SIM

)
20: Relm(%) = (1− Fm)× 100

6.3.2 Gate Level

Faults injected at the gate level assume a stuck-at fault model. When a fault

is injected at a gate output, it can be either a stuck-at-1 fault (i.e., connected

to Vdd) or a stuck-at-0 fault (i.e., connected to ground). Algorithm 9 is used to

153

Algorithm 9 : Gate-level Failure Rate Computation

Require: Gate level netlist
1: SIM : Simulation Count
2: sa0Gi

: Stuck-at-0 injection probability of Gate Gi

3: sa1Gi
: Stuck-at-1 injection probability of Gate Gi

4: R : Output of circuit with no fault injection
5: Rf : Output of circuit after fault injection
6: RW : Roulette Wheel algorithm
7: Fm : Failure rate of circuit with m faults
8: Relm : Reliability (%) of circuit with m faults
9: K : Failure Count
10: rand1(·) : Uniformly distributed random number ∼ (0,1)
11: rand2(·) : Uniformly distributed random number ∼ (0,1)
12:

13: K ← 0
14: for (i = 1→ SIM) do
15: Generate a random test vector V
16: Apply V to the circuit
17: Simulate the circuit and save the output in R
18: G←RW(m) ◃ Select m gates
19: for (j = 1→ G) do ◃ Iterate through G gates
20: if ((sa0Gj

+ sa1Gj
) == 0) then

21: Don’t inject any fault ◃ Gates protected

22: else if
(
rand1(·) ≤ sa0Gj

sa0Gj
+sa1Gj

)
then

23: if (rand2(·) ≤ sa0Gj
) then

24: Inject sa0 fault at the gate Gj output
25: end if
26: else
27: if (rand2(·) ≤ sa1Gj

) then
28: Inject sa1 fault at the gate Gj output
29: end if
30: end if
31: end for
32: Apply V to the circuit with faults injected
33: Simulate and save the output in Rf

34: if (R ̸= Rf) then increment K
35: end for
36: Fm = K

SIM

37: Relm(%) = (1− Fm)× 100

154

compute the circuit failure rate/reliability at the gate level. To inject m faults in

a circuit, m gates are selected randomly using a Roulette Wheel (RW) algorithm.

For each gate selected for fault injection, the following is performed. First, if both

the sa0 and sa1 fault inject probabilities are 0, then no fault will be injected as the

gate will be be fully protected. Otherwise, a selection is made between injecting a

sa0 fault or a sa1 fault according to the ratio of their fault injection probabilities.

The selected fault will be injected based on its fault injection probability. Fig. 6.2

illustrates the idea of injecting stuck-at-0 and stuck-at-1 fault at the gate-level.

gate2

gate1

X gate2

gate1

AND

0

(a) Stuck-at-0 fault.

gate2

gate1

X gate2

gate1

OR

1

(b) Stuck-at-1 fault.

Figure 6.2: Fault injection mechanism at gate-level.

155

6.3.3 Comparison b/w Transistor Level and Gate Level

Simulations

To illustrate the accuracy of gate-level simulations, a comparison between tran-

sistor level and gate level simulations is shown in this section for few benchmark

circuits. The transistor level simulations are performed using SPICE. Fig. 6.3-6.5

demonstrates the close match between the reliability obtained by SPICE and gate

level simulations for the three compared benchmark circuits: apex2, apex3 and

apex4. A circuit reliability is evaluated after performing 1000 iterations for each

fault injection case.

Time is another factor that must be taken into account while evaluating a

circuit for reliability. The time taken by SPICE simulations becomes exorbitantly

high as the number of transistors is increased. The apex4 benchmark took around

4 days for SPICE simulations, while it took 30 minutes of gate level simulations,

hence achieving a speedup of ≈ 167x. It can be observed from Fig. 6.6 that as the

number of transistors is increased, the speedup achieved by gate level simulations

also increases significantly.

6.4 Reliability Evaluation of NAND Gates

In this section, we will discuss different protection scenarios applied at the

transistor-level for 2-input NAND gate. Two cases have been discussed before,

but we will discuss them here again for the sake of completeness. The taxonomy

156

0.05 0.1 0.25 0.5 0.75 1 2
60

65

70

75

80

85

90

95

100

% (Area) of faults injected

R
el

ia
b

ili
ty

 (
%

)

Gate−level
Spice−level

Figure 6.3: apex2 Reliability

0.05 0.1 0.25 0.5 0.75 1 2
0

10

20

30

40

50

60

70

80

% (Area) of faults injected

R
el

ia
b

ili
ty

 (
%

)

Gate−level
Spice−level

Figure 6.4: apex3 Reliability

157

0.05 0.1 0.25 0.5 0.75 1 2
0

10

20

30

40

50

60

70

% (Area) of faults injected

R
el

ia
b

ili
ty

 (
%

)

Gate−level
Spice−level

Figure 6.5: apex4 Reliability

apex2 apex3 apex4
0

50

100

150

200

Benchmarks

S
p

ee
d

U
P 107x

32x

167x

Figure 6.6: Time comparison.

158

used here is then used by the selection algorithm mentioned in Chapter 3 to mark

gates for protection at the gate level. The basic process related parameters are

mentioned in Table 6.1.

Table 6.1: Parameters considered in the study.

Technology (T) 130m = 0.13µ
nMOS width (NWij) 2× T = 0.26µ
pMOS width (PWij) 4× T = 0.52µ
Charge (Q) 0.3pC

6.4.1 NAND2

The NAND2 is a 2-input NAND gate as shown in Fig. 6.7. The total area of

a 2-input NAND gate is;

Area = 2×NW + 2× PW

= 2× 0.26 + 2× 0.52

= 1.560

Using SPICE and applying Eqn. 6.1, set S for nmos transistors N1 and N2 is

observed to be;

SN1 = {00, 01, 10} =⇒ CFEPN1 =
0.75

0.75
= 1

159

Vdd

OUT

Vdd

N1

N2

P1 P2

fault injection

fault injection

Figure 6.7: 2-input cmos NAND

SN2 = {10} =⇒ CFEPN2 =
0.25

0.75
= 0.33

Again, it is considered that all input patterns are equally likely to occur. sa1

fault injected at any of the pmos transistor of a NAND gate will always be observed

at the gate output. Then, set S for pmos transistors P1 and P2 will be;

SP1 = {11} =⇒ CFEPP1 =
0.25

0.25
= 1

SP2 = {11} =⇒ CFEPP2 =
0.25

0.25
= 1

Now, applying Eqns. 6.2 and 6.3 to compute sa0 and sa1 injection probabilities

of a 2-input NAND gate;

160

Gi sa0 inj. Prob. =
2∑

j=1

CFEPNij
× NWij

2∑
k=1

NWik

=
1× 0.26 + 0.33× 0.26

2∑
k=1

0.26

= 0.667

Gi sa1 inj. Prob. =
2∑

j=1

CFEPPij
× PWij

2∑
k=1

PWik

=
1× 0.52 + 1× 0.52

2∑
k=1

0.52

= 1

So, at the gate level simulations, the sa0 and sa1 faults must be injected with

probabilities 0.667 and 1, respectively. PDETij
for all transistors will be;

PDETN1
=

0.75

1
= 0.75

PDETN2
=

0.25

1
= 0.25

PDETP1
=

0.25

1
= 0.25

161

PDETP2
=

0.25

1
= 0.25

The theoretical gate failure probability of 2-input NAND gate can be computed

using Eqn. 3.7 as follows:

Gate Failure Prob. =
2∑

j=1

PDETNij
× NWij

Area

+
2∑

j=1

PDETPij
× PWij

Area

=

N1,N2︷ ︸︸ ︷(
0.75× 0.26 + 0.25× 0.26

1.56

)

+

P1,P2︷ ︸︸ ︷(
2× 0.25× 0.52

1.56

)
= 0.167 + 0.167

= 0.333

Finally, gate failure probability obtained by SPICE and gate level simulations

is shown below. The results are obtained by running the reliability evaluation

algorithm. The close match between theoretical and simulated failure probability

of the 2-input NAND gate verifies the correctness of proposed fault injection

162

method.

Probability of failure (Spice) = 0.384

Probability of failure (Gate) = 0.37

6.4.2 NAND21

In NAND21, the protection of sa0 faults against the transient fault at the

drain of nmos transistor N1 is provided by duplicating the pmos transistor P1

and scaling the widths of duplicated P1 1 and P1 2 transistors by the factor λ to

suppress the transient, as shown in Fig. 6.8. To protect sa0 faults at the drain of

N1, the value of λ is increased incrementally until the output voltage V > V DD/2

and is derived empirically using SPICE.

Vdd

OUT

Vdd

N2

N1

P1_1 P2P1_2

protected fault

Figure 6.8: CMOS configuration of NAND21 gate

163

The motivation to duplicate a transistor is to make a circuit more vulnerable to

single event multiple upsets (SEMU). In SEMU, the effect of transient fault is no

more constrained to a node where the incident particle strikes. This could result in

the possibility of deposited charge being simultaneously shared by multiple circuit

nodes in the circuit. In fact, this situation is quite beneficial to the proposed

scheme. For example, if a fault hits the drain of N1 transistor of a 2-input NAND

gate and also makes any of the pmos transistor conducting due to its high current

value, then, N1 and one of the pmos transistor will start conducting. In this case,

the fault will never propagate to the output, as the two conducting transistors

will just cancel the effect of each other. Let’s now evaluate the reliability and

compute the fault injection probability of NAND21 gate.

pmos Scaling factor (λ) = 2.4

Area = 2×NW + 2× λ× PW + PW = 3.536

Then,

SN1 = {10} =⇒ CFEPN1 =
0.25

0.75
= 0.33

SN2 = {10} =⇒ CFEPN2 =
0.25

0.75
= 0.33

SP1 1,P1 2 = {11} =⇒ CFEPP1 1,P1 2 =
0.25

0.25
= 1

SP2 = {11} =⇒ CFEPP2 =
0.25

0.25
= 1

Fault injection probabilities will be;

164

Gi sa0 inj. Prob. =
2∑

j=1

CFEPNij
× NWij

2∑
k=1

NWik

=
0.33× 0.26 + 0.33× 0.26

2∑
k=1

0.26

= 0.333

The area of P1 1 and P1 2 pmos transistors is λ× PW = 2.4× PW . The sa1

fault injection probability, then, can be computed as follows;

Gi sa1 inj. Prob. =
3∑

j=1

CFEPPij
× PWij

3∑
k=1

PWik

=
2× 2.4× 0.52 + 1× 0.52

(
2∑

i=1

2.4× 0.52) + 0.52

= 1

The failure probability of NAND21 gate will be;

Gate Failure Prob. =
2∑

j=1

PDETNij
× NWij

Area

165

+
3∑

j=1

PDETPij
× PWij

Area

=

N1,N2︷ ︸︸ ︷(
0.25× 0.26 + 0.25× 0.26

3.536

)

+

P1 1,P1 2︷ ︸︸ ︷(
2× 0.25× 2.4× 0.52

3.536

)

+

P2︷ ︸︸ ︷(
0.25× 0.18

3.536

)
= 0.250

Finally, gate failure probability obtained by SPICE and gate-level simulations

is;

Probability of failure (Spice) = 0.257

Probability of failure (Gate) = 0.248

6.4.3 NAND22

In NAND22, the protection from sa0 faults against the transient hit at the

drain of nmos transistors N1 or N2 is provided by duplicating the pmos transistors

P1 and P2. The widths of duplicated P1 1, P1 2, P2 1 and P2 2 are also scaled

by the factor λ as shown in Fig. 6.9.

166

Vdd

OUT

Vdd

P1_1 P1_2 P2_2P2_1

N1

N2

protected fault

protected fault

Figure 6.9: CMOS configuration of NAND22 gate

pmos Scaling factor (λ) = 2.4

Area = 2×NW + 4× λ× PW = 5.512

Then,

SN1 = ϕ =⇒ CFEPN1 = 0

SN2 = ϕ =⇒ CFEPN2 = 0

SP1 1,P1 2 = {11} =⇒ CFEPP1 1,P1 2 = 1

SP2 1,P2 2 = {11} =⇒ CFEPP2 1,P2 2 = 1

Fault injection probabilities will be;

Gi sa0 inj. Prob. =
2∑

j=1

CFEPNij
× NWij

2∑
k=1

NWik

167

= 0

The area of each of P1 1, P1 2, P2 1 and P2 2 pmos transistors is λ× PW =

2.4× PW . The sa1 fault injection probability, then, can be computed as follows;

Gi sa1 inj. Prob. =
4∑

j=1

CFEPPij
× λPWij

4∑
k=1

λPWik

=
2× λ× 0.52 + 2× λ× 0.52

4∑
k=1

λ× 0.52

= 1

The failure probability of NAND22 gate will be;

Gate Failure Prob. =
2∑

j=1

PDETNij
× NWij

Area

+
4∑

j=1

PDETPij
× PWij

Area

= 0 +

P1 1,P1 2,P2 1,P2 2︷ ︸︸ ︷(
4× 0.25× λ× 0.52

5.512

)
= 0.226

168

Finally, gate failure probability obtained by SPICE and gate level simulations

is

Probability of failure (Spice) = 0.226

Probability of failure (Gate) = 0.231

6.4.4 NAND23

NAND23 provides protection from sa1 faults only by duplicating and scaling all

the nmos transistors. Fig. 6.10 shows the arrangement of transistors in NAND23.

Vdd

OUT

Vdd

P1 P2

N1_1 N1_2

N2_2N2_1

protected faults

Figure 6.10: CMOS configuration of NAND23 gate

nmos Scaling factor (λ) = 3.1

169

Area = 4× λ×NW + 2× PW = 4.264

Then,

SN1 1,N1 2 = {00, 01, 10} =⇒ CFEPN1 1,N1 2 =
0.75

0.75
= 1

SN2 1,N2 2 = {10} =⇒ CFEPN2 1,N2 2 =
0.25

0.75
= 0.333

SP1 = ϕ =⇒ CFEPP1 = 0

SP2 = ϕ =⇒ CFEPP2 = 0

Fault injection probabilities will be;

Gi sa0 inj. Prob =
2∑

j=1

CFEPNij
× NWij

2∑
k=1

NWik

=
2× 1× λ× 0.26 + 2× 0.333× λ× 0.26

4∑
k=1

λ× 0.26

= 0.833

Gi sa1 inj. Prob =
2∑

j=1

CFEPPij
× PWij

2∑
k=1

PWik

= 0

170

The failure probability of NAND23 gate will be;

Gate Failure Prob. =
4∑

j=1

PDETNij
× NWij

Area

+
2∑

j=1

PDETPij
× PWij

Area

=

N1 1,N1 2︷ ︸︸ ︷
2× 0.75× λ× 0.26+

N2 1,N2 2︷ ︸︸ ︷
2× 0.25× λ× 0.26

4.264
+ 0

= 0.473

Finally, gate failure probability of NAND23 obtained by SPICE and gate level

simulations is found to be;

Probability of failure (Spice) = 0.474

Probability of failure (Gate) = 0.480

6.4.5 NAND24

NAND24 provides protection from faults that can occur at any of the pmos

transistors or at the first nmos transistor i.e N1. Fig. 6.11 shows the arrangement

171

of transistors in NAND24.

Vdd

OUT

N1_1 N1_2

N2_1 N2_2

P1_1 P1_2

Vdd

P2

Figure 6.11: CMOS configuration of NAND24 gate

nmos Scaling factor (λ1) = 3.1

pmos Scaling factor (λ2) = 2.4

Area = 4× λ1 ×NW + 2× λ2 × PW + PW = 6.240

Then,

SN1 1,N1 2 = {10} =⇒ CFEPN1 1,N1 2 =
0.25

0.75
= 0.33

SN2 1,N2 2 = {10} =⇒ CFEPN2 1,N2 2 =
0.25

0.75
= 0.33

SP1 1,P1 2 = ϕ =⇒ CFEPP1 1,P1 2 = 0

SP2 = ϕ =⇒ CFEPP2 = 0

Fault injection probabilities will be:

172

Gi sa0 inj. Prob. =
4∑

j=1

CFEPNij
× λ1NWij

4∑
k=1

λ1NWik

=
2× 1

3
× λ1 × 0.26 + 2× 1

3
× λ1 × 0.26

4∑
k=1

λ1 × 0.26

= 0.333

sa1 injection probability will be zero as they are protected.

Gi sa1 inj. Prob. =
3∑

j=1

CFEPPij
× λ2PWij

3∑
k=1

λ2PWik

= 0

The failure probability of NAND24 gate will be:

Gate Failure Prob. =
4∑

j=1

PDETNij
× λ1NWij

Area

+
2∑

j=1

PDETPij
× λ2PWij

Area

=

N1 1,N1 2︷ ︸︸ ︷
2× 0.25× λ1 × 0.26+

N2 1,N2 2︷ ︸︸ ︷
2× 0.25× λ1 × 0.26

6.240

173

= 0.129

Finally, gate failure probability of NAND24 obtained by SPICE and gate level

simulations is found to be;

Probability of failure (Spice) = 0.130

Probability of failure (Gate) = 0.135

6.4.6 NAND25

The redundancy and scaling of transistors in NAND25 combines the NAND22

and NAND23 schemes to protect from both sa0 and sa1 faults. Fig. 6.12 shows

the CMOS representation of NAND25.

nmos Scaling factor (λ1) = 3.1

pmos Scaling factor (λ2) = 2.4

Area = 4× λ1 ×NW + 4× λ2 × PW = 8.216

Fault injection probabilities will be zero for both sa0 and sa1 faults as they

will be suppressed by transistors arrangement in NAND25.

174

Vdd

OUT

Vdd

P2_2P2_1P1_2P1_1

N1_1 N1_2

N2_1 N2_2

Figure 6.12: CMOS configuration of NAND25 gate

Gi sa0 inj. Prob. =
4∑

j=1

CFEPNij
× λ1NWij

4∑
k=1

λ1NWik

= 0

Gi sa1 inj. Prob. =
4∑

j=1

CFEPPij
× λ2PWij

4∑
k=1

λ2PWik

= 0

The failure probability of NAND25 gate will be;

175

Gate Failure Prob. =
4∑

j=1

PDETNij
× λ1NWij

Area

+
4∑

j=1

PDETPij
× λ2PWij

Area

= 0 + 0

= 0

Finally, gate failure probability of NAND25 obtained by SPICE and gate level

simulations is found to be;

Probability of failure (Spice) = 0

Probability of failure (Gate) = 0

6.5 Reliability Evaluation of NOR Gates

In this section, we will discuss different protection scenarios applied at the

transistor level for 2-input NOR gate.

176

6.5.1 NOR2

The NOR2 is a 2-input NOR gate as shown in Fig. 6.13. The total area of a

2-input NOR gate is;

OUT

Vdd

P2

P1

N1 N2

fault injection

fault injection

Figure 6.13: 2-input cmos NOR

Area = 2×NW + 2× PW

= 2× 0.26 + 2× 0.52

= 1.560

Using SPICE and applying Eqn. 6.1, set S for pmos transistors P1 and P2 is

observed to be:

177

SP1 = {01, 10, 11} =⇒ CFEPP1 =
0.75

0.75
= 1

SP2 = {01} =⇒ CFEPP2 =
0.25

0.75
= 0.333

sa0 fault injected at any of the nmos transistor of a NOR gate will always be

observed at the gate output. Then, set S for nmos transistors N1 and N2 will be;

SN1 = {00} =⇒ CFEPN1 =
0.25

0.25
= 1

SN2 = {00} =⇒ CFEPN2 =
0.25

0.25
= 1

Now, applying Eqn. 6.2 and Eqn. 6.3 to compute sa0 and sa1 injection prob-

abilities of a 2-input NOR gate;

Gi sa0 inj. Prob. =
2∑

j=1

CFEPNij
× λNWij

2∑
k=1

NWik

=
1× 0.26 + 1× 0.26

2∑
k=1

0.26

= 1

178

Gi sa1 inj. Prob. =
2∑

j=1

CFEPPij
× PWij

2∑
k=1

λPWij

=
1× 0.52 + 1× 0.52

2∑
k=1

0.52

= 0.667

So, at the gate level simulations, the sa0 fault must always be selected while

sa1 fault, if selected, must be injected with probability 0.667.

PDETij
for all transistors will be:

PDETN1
=

0.25

1
= 0.25

PDETN2
=

0.25

1
= 0.25

PDETP1
=

0.75

1
= 0.75

PDETP2
=

0.25

1
= 0.25

The theoretical failure probability can be computed using Eqn. Circuit Prob-

ability of Failure as follows:

179

Gate Failure Prob. =
2∑

j=1

PDETNij
× NWij

Area

+
2∑

i=1

PDETPij
× PWij

Area

=

N1,N2︷ ︸︸ ︷(
2× 0.25× 0.26

1.560

)
+

P1,P2︷ ︸︸ ︷(
0.75× 0.52 + 0.25× 0.52

1.560

)
= 0.083 + 0.333

= 0.416

Finally, gate failure probability of NOR2 obtained by SPICE and gate level

simulations is shown below and shows that the theoretical failure probability and

empirical gate failure probabilities are very close to each other.

Probability of failure (Spice) = 0.413

Probability of failure (Gate) = 0.418

6.5.2 NOR21

In NOR21, the protection from sa1 faults against the transient fault at the

drain of pmos transistor P1 is provided by duplicating the nmos transistor N1

180

and scaling the widths of duplicated N1 1 and N1 2 by the factor λ, as shown

in Fig. 6.14. For protection against sa1 faults, the value of λ is increased incre-

mentally until the output voltage (V) < VDD/2 and is derived empirically using

SPICE.

OUT

Vdd

P1

P2

N1_1 N1_2 N2

protected fault

Figure 6.14: CMOS configuration of NOR21 gate

nmos Scaling factor (λ) = 2

Area = 2× λ×NW +NW + 2× PW = 2.340

Then,

SN1 1,N1 2 = {00} =⇒ CFEPN1 1,N1 2 = 1

SN2 = {00} =⇒ CFEPN2 = 1

SP1 = {01} =⇒ CFEPP1 =
0.25

0.75
= 0.33

SP2 = {01} =⇒ CFEPP2 =
0.25

0.75
= 0.33

181

The area of N1 1 and N1 2 pmos transistors is λ×NW = 2×NW . The sa0

and sa1 fault injection probability is computed as follows;

Gi sa0 inj. Prob. =
3∑

j=1

CFEPNij
× λNWij

3∑
i=1

λNWik

=
2× λ× 0.26 + 1× 0.26

(
2∑

k=1

λ× 0.26) + 0.26

= 1

Gi sa1 inj. Prob. =
2∑

j=1

CFEPPij
× λPWij

2∑
k=1

λPWik

=
0.33× 0.52 + 0.33× 0.52

2∑
k=1

0.52

= 0.333

The failure probability of NOR21 gate will be;

Gate Failure Prob. =
3∑

j=1

PDETNij
× λNWij

Area

+
2∑

i=1

PDETPij
× PWij

Area

182

=

N1 1,N1 2︷ ︸︸ ︷(
2× 0.25× λ× 0.26

2.340

)
+

N2︷ ︸︸ ︷(
0.25× 0.26

2.340

)

+

P1,P2︷ ︸︸ ︷(
0.25× 0.52 + 0.25× 0.52

2.340

)
= 0.250

Finally, gate failure probability obtained by SPICE and gate level simulations

is

Probability of failure (Spice) = 0.252

Probability of failure (Gate) = 0.241

6.5.3 NOR22

In NOR22, the protection from sa1 faults against the transient hit at the drain

of pmos transistors P1 or P2 is provided by duplicating the nmos transistor N1

and N2. The widths of duplicated N1 1, N1 2, N2 1 and N2 2 are also scaled by

the factor λ as shown in Fig. 6.15.

pmos Scaling factor (λ) = 2

Area = 4× λ×NW + 2× PW = 3.120

183

OUT

Vdd

 P1

P2

N1_1 N1_2 N2_1 N2_2

protected fault

protected fault

Figure 6.15: CMOS configuration of NOR22 gate

Then,

SN1 1,N1 2 = {00} =⇒ CFEPN1 1,N1 2 = 1

SN2 1,N2 2 = {00} =⇒ CFEPN2 1,N2 2 = 1

SP1 = ϕ =⇒ CFEPP1 = 0

SP2 = ϕ =⇒ CFEPP2 = 0

The area of each of N1 1, N1 2, N2 1 and N2 2 nmos transistors is λ×NW =

2×NW . The sa0 fault injection probability, then, can be computed as follows;

Gi sa0 inj. Prob. =
4∑

j=1

CFEPNij
× λNWij

4∑
k=1

λNWik

=
2× λ× 0.26 + 2× λ× 0.26

4∑
k=1

λ× 0.26

184

= 1

Gi sa1 inj. Prob. =
2∑

j=1

CFEPPij
× PWij

2∑
k=1

PWik

=
0× 0.52 + 0× 0.52

2∑
k=1

0.52

= 0

The failure probability of NOR22 gate will be;

Gate Failure Prob. =
4∑

j=1

PDETNij
× λNWij

Area

+
2∑

i=1

PDETPij
× PWij

Area

=

N1 1,N1 2︷ ︸︸ ︷(
2× 0.25× λ× 0.26

3.120

)
+

N2 1,N2 2︷ ︸︸ ︷(
2× λ× 0.25× 0.26

3.120

)
+ 0

= 0.167

Finally, gate failure probability obtained by SPICE and gate level simulations

is

185

Probability of failure (Spice) = 0.168

Probability of failure (Gate) = 0.169

6.5.4 NOR23

NOR23 provides protection from sa0 faults only by duplicating and scaling the

pmos transistors. Fig. 6.16 shows the arrangement of transistors in NOR23 gate.

OUT

Vdd

N1 N2

P1_1

P2_1 P2_2

P1_2

protected faults

Figure 6.16: CMOS configuration of NOR23 gate

nmos Scaling factor (λ) = 4.4

Area = 2×NW + 4× λ× PW = 9.672

Then,

186

SN1 = ϕ =⇒ CFEPN1 = 0

SN2 = ϕ =⇒ CFEPN2 = 0

SP1 1,P1 2 = {01, 10, 11} =⇒ CFEPP1 1,P1 2 =
0.75

0.75
= 1

SP2 1,P2 2 = {01} =⇒ CFEPP2 1,P2 2 =
0.25

0.75
= 0.333

Fault injection probabilities will be;

Gi sa0 inj. Prob. =
2∑

j=1

CFEPNij
× NWij

2∑
k=1

NWik

=
0× 0.26 + 0× 0.26

2∑
k=1

0.26

= 0

Gi sa1 inj. Prob. =
4∑

j=1

CFEPPij
× λPWij

4∑
k=1

λPWik

=
2× 1× λ× 0.52 + 2× 1× λ× 0.52

4∑
k=1

λ× 0.52

= 0.833

187

The failure probability of NOR23 gate will be:

Gate Failure Prob. =
2∑

j=1

PDETNij
× NWij

Area

+
4∑

i=1

PDETPij
× λPWij

Area

= 0 +

P1 1,P1 2︷ ︸︸ ︷
2× 0.75× λ× 0.52+

P2 1,P2 2︷ ︸︸ ︷
2× 0.25× λ× 0.52

9.672

= 0.473

Finally, gate failure probability of NOR23 obtained by SPICE and gate level

simulations is found to be:

Probability of failure (Spice) = 0.477

Probability of failure (Gate) = 0.470

6.5.5 NOR24

NOR24 provides protection from all sa0 faults by duplicating and scaling the

pmos transistors, but provide protection from sa1 faults only if the transient hits

188

pmos transistor P1. Fig. 6.17 shows the arrangement of transistors in NOR24

gate.

Vdd

P2_1 P2_2

P1_1 P1_2

N1_1 N1_1 N2

OUT

Figure 6.17: CMOS configuration of NOR24 gate

nmos Scaling factor (λ1) = 2

pmos Scaling factor (λ2) = 4.4

Area = 2× λ1 ×NW +NW + 4× λ2 × PW = 10.452

Then,

SN1 1,N1 2 = ϕ =⇒ CFEPN1 1,N1 2 = 0

SN2 = ϕ =⇒ CFEPN2 = 0

SP1 1,P1 2 = {01} =⇒ CFEPP1 1,P1 2 =
0.25

0.75
= 0.33

SP2 1,P2 2 = {01} =⇒ CFEPP2 1,P2 2 =
0.25

0.75
= 0.33

Fault injection probabilities will be;

189

Gi sa0 inj. Prob. =
3∑

j=1

CFEPNij
× λ1NWij

3∑
k=1

λ1NWik

= 0

Gi sa1 inj. Prob. =
4∑

j=1

CFEPPij
× λ2PWij

4∑
k=1

λ2PWik

=
2× 0.33× λ2 × 0.52 + 2× 0.33× λ2 × 0.52

4∑
k=1

λ2 × 0.52

= 0.333

The failure probability of NOR24 gate will be:

Gate Failure Prob. =
2∑

j=1

PDETNij
× λ1NWij

Area

+
4∑

i=1

PDETPij
× λ2PWij

Area

= 0 +
4∑

i=1

PDETPij
× λ2PWi

Area

=

P1 1,P1 2︷ ︸︸ ︷
2× 0.25× λ2 × 0.52+

P2 1,P2 2︷ ︸︸ ︷
2× 0.25× λ2 × 0.52

10.452

190

= 0.219

Finally, gate failure probability of NOR24 obtained by SPICE and gate level

simulations is found to be;

Probability of failure (Spice) = 0.218

Probability of failure (Gate) = 0.220

6.5.6 NOR25

The redundancy and scaling of transistors in NOR25 combines the NOR22

and NOR23 schemes to protect from both sa0 and sa1 faults. The Fig. 6.18 shows

the CMOS representation of NOR25.

OUT

Vdd

P2_1

P2_1

P2_2

P2_1

N1_1 N1_2 N2_1 N2_2

Figure 6.18: CMOS configuration of NOR25 gate

191

nmos Scaling factor (λ1) = 2

pmos Scaling factor (λ2) = 4

Area = 4× λ1 ×NW + 4× λ2 × PW = 11.232

Fault injection probabilities will be zero for both sa0 and sa1 faults as they

will be suppressed by transistors arrangement in NOR25.

Gi sa0 inj. Prob. =
4∑

j=1

CFEPNij
× λ1NWij

4∑
k=1

λ1NWik

= 0

Gi sa1 inj. Prob. =
4∑

j=1

CFEPPij
× λ2PWij

4∑
k=1

λ2PWik

= 0

The failure probability of NOR25 gate will be:

Gate Failure Prob. =
4∑

j=1

PDETNij
× λ1NWij

Area

+
4∑

i=1

PDETPij
× λ2PWij

Area

192

= 0 + 0

= 0

Finally, gate failure probability of NOR25 obtained by SPICE and gate level

simulations is found to be:

Probability of failure (Spice) = 0

Probability of failure (Gate) = 0

6.6 Conclusion

In this chapter we discussed about the reliability evaluation framework em-

ployed in this work to compute the reliability of proposed techniques. It is ob-

served that the proposed gate-level technique achieves reliability measures very

close to the transistor-level simulations (performed using SPICE) with orders of

magnitude less CPU time. Finally, in depth study of each transistor-level protec-

tion scheme is discussed in detail for 2-input NAND and NOR gates. The same

idea can be extended for the 3,4-input NAND and NOR gates.

193

CHAPTER 7

CONCLUSION & FUTURE

WORK

7.1 Conclusion

The development of an integrated soft error tolerance framework to mitigate

soft errors in combinational circuits is implemented in this work. The framework

consists of three techniques. Each technique applies redundancy in different de-

sign space of digital system for soft error tolerance. Additionally, to evaluate the

reliability of logic circuits, a novel reliability evaluation technique is also imple-

mented that achieves reliability measures similar to the circuit level simulations

(using SPICE) with orders of magnitude less CPU time. Following objectives are

achieved in this work:

Selective Transistor-Redundancy (STR) Based Fault Tolerance Technique

In this method, a selective transistor-redundancy based fault tolerance

194

technique for combinational circuits is implemented. The technique can

be applied to achieve a given circuit reliability or enhance the reliability

of a circuit under a given area constraint. The technique is based on esti-

mating the failure probability of each transistor and iteratively protecting

transistors with the highest failure probability until the desired objective

is achieved. Transistors are protected based on duplicating and scaling a

subset of transistors necessary for providing the protection. Experimental

results on LGSynth91 benchmarks demonstrate the effectiveness of the

proposed technique. Compared to existing transistor sizing techniques, the

proposed algorithm incurs significantly less area overhead with similar relia-

bility measures. Better reliability results are also achieved in comparison to

TMR with lower area overhead. Unlike TMR which has an area overhead of

at least 3 times the area overhead of the original circuit, the area overhead

of the proposed technique varies depending on the reliability of the original

circuit. For some circuits, high reliability (¿ 99%) is achieved with small

area overhead (¡ 10%). In addition, the reliability of the TMR technique

has been enhanced significantly by protecting the voters based on applying

the proposed technique. Additionally, comparison with simulation based

synthesis technique further highlights the merit of the proposed method.

Double Modular Redundancy (DMR) Based Fault Tolerance Technique

In this method, a soft error tolerance technique for combinational circuits

based on double modular redundancy is implemented. The technique is

195

based on identifying the probability of occurrence of logic values 0 and 1 at

each primary output of a circuit. Based on this, each output is synthesized

in either the true or the complement form, and is then duplicated and

a masking AND or NAND gate is used to combine the two duplicate

outputs. The technique achieves higher circuit radiabilities than TMR

without voter protection with significantly lower area overhead. We have

also demonstrated that the combined application of the proposed DMR

technique with STR technique achieves comparable circuit reliabilities

with significantly lower area overhead in comparison to TMR with fully

protected voters.

Furthermore, an improved DMR method based on the use of C-element

(DMR-CEL) to combine the duplicate outputs is also implemented. This

scheme applies redundancy by implementing the original and duplicated

logic with majority phase. Reliabilities of circuits based on the proposed

DMR are higher than those obtained based on DMR-CEL without C-element

protection. Reliabilities of circuits based on DMR-CEL with protected C-

element are similar to those obtained based on TMR with voter protection

with significantly lower area overhead. It also achieves slightly better re-

liabilities than the combined application of the proposed DMR technique

and STR technique for similar area overhead with a protection threshold of

99.5%. The advantage of the proposed DMR technique over DMR-CEL is

that it uses primitive gates as masking gates which have lower impact on

196

performance in comparison to the use of C-element.

Implication Based Redundancy Insertion Fault Tolerance Technique

An implication based fault tolerance technique has been implemented. It

is based on identifying implications between a set of candidate source and

target gates. Then, for each implication the gain in reduction of gate fault

detection profitabilities is estimated. The implication with the highest gain

is selected and its corresponding functionally redundant wire is added. The

process is repeated until the gain is less than a given threshold. Experi-

mental results show that the proposed implication based fault tolerance

technique reduces the failure rate of circuits with an average of 20% with an

average area overhead of less than 5%. Moreover, the integrated application

of the proposed implication based fault tolerance technique and the selective

transistor redundancy technique achieve significantly lower area overhead

in comparison to applying the selective transistor redundancy technique

alone with the same achieved reliabilities. The combined application of

implication and STR based soft error tolerance technique results in less

area overhead in comparison to if STR is applied alone.

An Integrated Soft Error Tolerance Framework Finally, an integrated

framework is developed that combines the STR technique with the DMR

and the Implication based fault tolerance technique. It is observed that the

DMR and the Implication based fault tolerance techniques are unable to

improve the reliability of circuits beyond a certain point. Therefore, the

197

hybrid approaches consisting of DMR+STR and Implication+STR are also

implemented. It is observed that the hybrid method significantly improves

the reliability, and in case of Implication+STR, it even results in less area

overhead in comparison to if STR is applied alone.

Gate-level Reliability Evaluation Technique A novel method to compute

the reliability of a circuit at the gate level is implemented. The circuit

level simulations performed using SPICE are accurate but become very slow

as the circuit size increases. However, there isn’t much of an impact of cir-

cuit size in gate level simulations. The proposed technique bridges the gap

between the circuit level simulations and the gate-level simulations. The

proposed gate level reliability evaluation method achieves similar results in

comparison to transistor level simulations with orders of magnitude reduc-

tion in CPU time.

7.2 Future Work

As for the future work, following directions can be adopted:

• So far, researchers are used to apply a single technique for soft error tol-

erance. It has been observed in this work that if gate level soft error tol-

erance techniques are combined with the transistor sizing technique, then,

this results in better reliability improvement with lower area overhead in

comparison to if any of the technique is applied alone. In transistor sizing

198

technique, it is always very costly to protect for the fault on parallel tran-

sistors. The reason for this is that, all the corresponding series transistors

have to be duplicated and scaled and this results in significantly higher area

overhead just to protect only one type of fault. So, the future direction here

is to apply protection for the faults on parallel transistors at the gate level

(using modular redundancy, enhancing logical masking etc) fault tolerance

techniques. In order to protect the faults on transistors connected in series,

transistor sizing technique (STR) can be applied.

• Another future direction could be the potential application of the proposed

Double-Modular Redundancy (DMR) scheme in high speed circuits like

arithmetic circuits. DMR guarantees at least 95% reliability. For the re-

maining 5% failure rate, a fault detection module can be developed to detect

a fault when it occurs and then the previous instruction is executed again.

199

REFERENCES

[1] C. Lazzari, G. Wirth, F. Kastensmidt, L. Anghel, and R. Reis, “Asymmetric

transistor sizing targeting radiation-hardened circuits,” Electrical Engineer-

ing, vol. 94, no. 1, pp. 11–18, 2012.

[2] A. H. El-Maleh and K. A. K. Daud, “Simulation-based method for synthe-

sizing soft error tolerant combinational circuits,” IEEE Transactions on Re-

liability, vol. 64, no. 3, pp. 935–948, Sept 2015.

[3] P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-event

upset in digital microelectronics,” IEEE Transactions on Nuclear Science,

vol. 50, no. 3, pp. 583–602, June 2003.

[4] R. Baumann, “Radiation-induced soft errors in advanced semiconductor tech-

nologies,” IEEE Transactions on Device and Materials Reliability, vol. 5,

no. 3, pp. 305–316, Sept 2005.

[5] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin,

M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E.

LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman,

200

B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat,

T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein, and C. W. Wahaus,

“IBM experiments in soft fails in computer electronics (1978-1994),” IBM

Journal of Research and Development, vol. 40, pp. 3–18, 1996.

[6] B. S. Gill, “Design and analysis methodologies to reduce soft errors in

nanometer vlsi circuits,” Doctoral Dissertation, Dept. Elect. Eng., Case

Western Reserve University, 2006.

[7] K. Mohanram and N. Touba, “Partial error masking to reduce soft error

failure rate in logic circuits,” in Proceedings of the 18th IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, Nov 2003, pp.

433–440.

[8] Y. Dotan, N. Levison, and D. Lilja, “Fault tolerance for nanotechnology de-

vices at the bit and module levels with history index of correct computation,”

IET Computers & Digital Techniques, vol. 5, no. 4, pp. 221–230, July 2011.

[9] J. Teifel, “Self-voting dual-modular-redundancy circuits forsingle-event-

transient mitigation,” IEEE Transactions on Nuclear Science, vol. 55, no. 6,

pp. 3435–3439, Dec 2008.

[10] E. Kim and N. Shanbhag, “Soft n-modular redundancy,” IEEE Transactions

on Computers, vol. 61, no. 3, pp. 323–336, March 2012.

[11] K. van Berkel, “Beware the isochronic fork,” Integration, the {VLSI} Journal,

vol. 13, no. 2, pp. 103 – 128, 1992.

201

[12] D. Lyons, “http://www.forbes.com/global/2000/1113/0323026a.html,”

2000.

[13] I. Klotz, “http://news.discovery.com/space/private-spaceflight/nasa-finds-

cause-of-voyager-glitch.htm,” 2010.

[14] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Pro-

ceedings of the IEEE, vol. 86, 1998.

[15] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A defect-tolerant

computer architecture: Opportunities for nanotechnology,” Science, vol. 280,

no. 5370, pp. 1716–1721, 1998.

[16] N. Cohen, T. Sriram, N. Leland, D. Moyer, S. Butler, and R. Flatley, “Soft

error considerations for deep-submicron cmos circuit applications,” in Inter-

national Electron Devices Meeting, IEDM ’99, Dec 1999, pp. 315–318.

[17] J. Han, “Fault-tolerant architectures for nanoelectronic and quantum de-

vices,” Doctoral Dissertation, Delft University of Technology, 2004.

[18] J. Wallmark and S. Marcus, “Maximum packing density and minimum size

of semiconductor devices,” in 1961 International Electron Devices Meeting,

vol. 7, 1961, pp. 34–34.

[19] D. Binder, E. Smith, and A. Holman, “Satellite anomalies from galactic cos-

mic rays,” IEEE Transactions on Nuclear Science, vol. 22, no. 6, pp. 2675–

2680, Dec 1975.

202

[20] E. Normand, J. Wert, H. Quinn, T. Fairbanks, S. Michalak, G. Grider,

P. Iwanchuk, J. Morrison, S. Wender, and S. Johnson, “First record of single-

event upset on ground, cray-1 computer at los alamos in 1976,” IEEE Trans-

actions on Nuclear Science, vol. 57, no. 6, pp. 3114–3120, Dec 2010.

[21] T. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic

memories,” IEEE Transactions on Electron Devices, vol. 26, no. 1, pp. 2–9,

Jan 1979.

[22] D. Mavis and P. Eaton, “Soft error rate mitigation techniques for modern

microcircuits,” in 40th Annual Reliability Physics Symposium Proceedings,

2002., 2002, pp. 216–225.

[23] Test procedures for the measurement of single-event effects in semiconductor

devices from heavy ion irradiation. Arlington, VA: EIA, 1996. [Online].

Available: https://cds.cern.ch/record/1373656

[24] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Modeling

the effect of technology trends on the soft error rate of combinational logic,”

in Proceedings of the International Conference on Dependable Systems and

Networks, DSN ’2002, 2002, pp. 389–398.

[25] B. Olson, D. Ball, K. Warren, L. Massengill, N. Haddad, S. Doyle, and D. Mc-

Morrow, “Simultaneous single event charge sharing and parasitic bipolar con-

duction in a highly-scaled sram design,” IEEE Transactions on Nuclear Sci-

ence, vol. 52, no. 6, pp. 2132–2136, Dec 2005.

203

[26] N. Seifert, B. Gill, V. Zia, M. Zhang, and V. Ambrose, “On the scalability of

redundancy based ser mitigation schemes,” in Proceedings of the IEEE Inter-

national Conference on Integrated Circuit Design and Technology, ICICDT

’07, May 2007, pp. 1–9.

[27] O. Amusan, L. Massengill, M. Baze, B. Bhuva, A. Witulski, J. Black, A. Bal-

asubramanian, M. Casey, D. Black, J. Ahlbin, R. Reed, and M. McCurdy,

“Mitigation techniques for single-event-induced charge sharing in a 90-nm

bulk cmos process,” IEEE Transactions on Device and Materials Reliability,

vol. 9, no. 2, pp. 311–317, June 2009.

[28] H. H. K. Lee, “Circuit and layout techniques for soft-error-resilient digital

cmos circuits,” Master’s thesis, 09/2011 2011.

[29] F. Sexton, “Destructive single-event effects in semiconductor devices and ics,”

IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 603–621, June 2003.

[30] J. Dirk, M. Nelson, J. Ziegler, A. Thompson, and T. Zabel, “Terrestrial

thermal neutrons,” Nuclear Science, IEEE Transactions on, vol. 50, no. 6,

pp. 2060–2064, Dec 2003.

[31] R. Baumann and T. Hossain, “Electronic device and process achieving

a reduction in alpha particle emissions from boron-based compounds

essentially free of boron-10,” Mar. 7 1995, uS Patent 5,395,783. [Online].

Available: http://www.google.com/patents/US5395783

204

[32] A. Avižienis, “Design of fault-tolerant computers,” in Proceedings of the

Fall Joint Computer Conference, November 14-16, 1967., ser. AFIPS ’67

(Fall). New York, NY, USA: ACM, 1967, pp. 733–743. [Online]. Available:

http://doi.acm.org/10.1145/1465611.1465708

[33] H. Konoura, Y. Mitsuyama, M. Hashimoto, and T. Onoye, “Implications

of reliability enhancement achieved by fault avoidance on dynamically re-

configurable architectures,” in 21st International Conference on Field Pro-

grammable Logic and Applications, Sept 2011, pp. 189–194.

[34] T. Anderson and B. Randell, Computing Systems Reliability. Cambridge

University Press, 1979.

[35] P. K. Lala, Ed., Self-checking and Fault-tolerant Digital Design. San Fran-

cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[36] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori,

and N. Wehn, “Reliable on-chip systems in the nano-era: Lessons learnt

and future trends,” in Proceedings of the 50th Annual Design Automation

Conference, DAC ’13, 2013, pp. 99:1–99:10.

[37] S. Rehman, F. Kriebel, M. Shafique, and J. Henkel, “Reliability-driven

software transformations for unreliable hardware,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 11,

pp. 1597–1610, Nov 2014.

205

[38] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms

from unreliable components,” Automata Studies, vol. 34, pp. 43–98, 1956.

[39] Y. Qi, J. Gao, and J. A. B. Fortes, “Markov chains and probabilistic

computation-a general framework for multiplexed nanoelectronic systems,”

IEEE Transactions on Nanotechnology, vol. 4, no. 2, pp. 194–205, March

2005.

[40] J. Han and P. Jonker, “A defect-and fault-tolerant architecture for

nanocomputers,” Nanotechnology, vol. 14, no. 2, p. 224, 2003. [Online].

Available: http://stacks.iop.org/0957-4484/14/i=2/a=324

[41] A. S. Sadek, K. Nikoli, and M. Forshaw, “Parallel information and

computation with restitution for noise-tolerant nanoscale logic networks,”

Nanotechnology, vol. 15, no. 1, p. 192, 2004. [Online]. Available:

http://stacks.iop.org/0957-4484/15/i=1/a=037

[42] D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems (3rd Ed.): De-

sign and Evaluation. Natick, MA, USA: A. K. Peters, Ltd., 1998.

[43] A. Namazi and M. Nourani, “Reliability analysis and distributed voting for

nmr nanoscale systems,” in Proceedings of the 2nd International Design and

Test Workshop, IDT ’2007, Dec 2007, pp. 130–135.

[44] W. Pierce, Failure-Tolerant Computer Design. Elsevier Science, 2014. [On-

line]. Available: https://books.google.com.sa/books?id=B6biBQAAQBAJ

206

[45] P. A. Jensen, “Quadded nor logic,” IEEE Transactions on Reliability, vol.

R-12, no. 3, pp. 22–31, Sept 1963.

[46] A. H. El-Maleh and F. C. Oughali, “A generalized modular redundancy

scheme for enhancing fault tolerance of combinational circuits,” Microelec-

tronics Reliability, vol. 54, no. 1, pp. 316 – 326, 2014.

[47] S. K. Shukla and R. I. Bahar, Eds., Nano, Quantum and Molecular Comput-

ing: Implications to High Level Design and Validation. Norwell, MA, USA:

Kluwer Academic Publishers, 2004.

[48] A. Kleinosowski, V. V. Pai, V. Rangarajan, P. Ranganath, K. Kleinosowski,

M. Subramony, and D. J. Lilja, “Exploring fine-grained fault tolerance for

nanotechnology devices with the recursive nanobox processor grid,” IEEE

Transactions on Nanotechnology, vol. 5, no. 5, pp. 575–586, Sept 2006.

[49] S. Mitra and E. McCluskey, “Combinational logic synthesis for diversity in

duplex systems,” in Proceedings of the International Test Conference, ITC

’2000, 2000, pp. 179–188.

[50] P. Reviriego, C. Bleakley, and J. Maestro, “Diverse double modular redun-

dancy: A new direction for soft-error detection and correction,” IEEE Trans-

actions on Design & Test, vol. 30, no. 2, pp. 87–95, April 2013.

[51] F. Smith, “A new methodology for single event transient suppression in flash

{FPGAs},” Microprocessors and Microsystems, vol. 37, no. 3, pp. 313–318,

2013.

207

[52] S. Rezgui, J. WANG, E. Tung, B. Cronquist, and J. McCollum, “New

methodologies for set characterization and mitigation in flash-based fpgas,”

IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2512–2524, Dec

2007.

[53] M. Shams, J. Ebergen, and M. Elmasry, “Modeling and comparing cmos

implementations of the c-element,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 6, no. 4, pp. 563–567, Dec 1998.

[54] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in Pro-

ceedings of an International Symposium on the Theory of Switching. Cam-

bridge, MA: Harvard University Press, April April 1959, pp. 204–243.

[55] A. H. El-Maleh and A. S. Al-Qahtani, “A finite state machine based fault tol-

erance technique for sequential circuits,” Microelectronics Reliability, vol. 54,

no. 3, pp. 654 – 661, 2014.

[56] A. El-Maleh, B. Al-Hashimi, A. Melouki, and F. Khan, “Defect-tolerant n2-

transistor structure for reliable nanoelectronic designs,” IET Computers &

Digital Techniques, vol. 3, no. 6, pp. 570–580, November 2009.

[57] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue

nanometer technologies,” in Proceedings of the 17th IEEE VLSI Test Sym-

posium, VTS ’1999, 1999, pp. 86–94.

[58] N. Alves, A. Buben, K. Nepal, J. Dworak, and R. I. Bahar, “A cost effec-

tive approach for online error detection using invariant relationships,” IEEE

208

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 29, no. 5, pp. 788–801, May 2010.

[59] N. Alves, Y. Shi, J. Dworak, R. I. Bahar, and K. Nepal, “Enhancing online

error detection through area-efficient multi-site implications,” in IEEE 29th

VLSI Test Symposium (VTS), 2011, May 2011, pp. 241–246.

[60] K. Nepal, N. Alves, J. Dworak, and R. I. Bahar, “Using implications for

online error detection,” in IEEE International Test Conference, 2008. ITC

2008., Oct 2008, pp. 1–10.

[61] R. I. Bahar, E. T. Lampe, and E. Macii, “Power optimization of technology-

dependent circuits based on symbolic computation of logic implications,”

ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 3, pp. 267–293, Jul.

2000. [Online]. Available: http://doi.acm.org/10.1145/348019.348028

[62] S. Almukhaizim and Y. Makris, “Soft error mitigation through selective ad-

dition of functionally redundant wires,” IEEE Transactions on Reliability,

vol. 57, no. 1, pp. 23–31, March 2008.

[63] B. Zhou, S. Thambipillai, andW. Zhang, “Soft error mitigation through selec-

tion of noninvert implication paths,” in NASA/ESA Conference on Adaptive

Hardware and Systems (AHS), 2014, July 2014, pp. 77–82.

[64] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P. Hayes, “Enhancing

design robustness with reliability-aware resynthesis and logic simulation,” in

209

2007 IEEE/ACM International Conference on Computer-Aided Design, Nov

2007, pp. 149–154.

[65] M. R. C. A. Zukoski and K. Mohanram, “Reliability-driven don’t care as-

signment for logic synthesis,” in Design, Automation & Test in Europe Conf.

Exhib. (DATE), Mar 2011, pp. 1–6.

[66] K. C. Wu and D. Marculescu, “Soft error rate reduction using redundancy

addition and removal,” in Asia and South Pacific Design Automation Conf.

(ASPDAC), Mar 2008, p. 559564.

[67] D. Shin and S. K. Gupta, “A new circuit simplification method for error

tolerant applications,” in 2011 Design, Automation & Test in Europe, March

2011, pp. 1–6.

[68] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden combinational

logic,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 25, no. 1, pp. 155–166, Jan 2006.

[69] Y. S. Dhillon, A. U. Diril, A. Chatterjee, and A. D. Singh, “Analysis and op-

timization of nanometer cmos circuits for soft-error tolerance,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 5, pp.

514–524, May 2006.

[70] V. Joshi, R. R. Rao, D. Blaauw, and D. Sylvester, “Logic ser reduction

through flip flop redesign,” in 7th International Symposium on Quality Elec-

tronic Design (ISQED’06), March 2006, pp. 6 pp.–616.

210

[71] R. R. Rao, D. Blaauw, and D. Sylvester, “Soft error reduction in combina-

tional logic using gate resizing and flipflop selection,” in 2006 IEEE/ACM

International Conference on Computer Aided Design, Nov 2006, pp. 502–509.

[72] W. Sootkaneung and K. K. Saluja, “Sizing techniques for improving soft error

immunity in digital circuits,” in Proceedings of ISCAS, vol. 232, 2010.

[73] ——, “On techniques for handling soft errors in digital circuits,” in IEEE

International Test Conference (ITC), 2010, Nov 2010, pp. 1–9.

[74] ——, “Soft error reduction through gate input dependent weighted sizing in

combinational circuits,” in 12th International Symposium on Quality Elec-

tronic Design (ISQED), March 2011, pp. 1–8.

[75] D. B. Limbrick, D. A. Black, K. Dick, N. M. Atkinson, N. J. Gaspard, J. D.

Black, W. H. Robinson, and A. F. Witulski, “Impact of logic synthesis on soft

error vulnerability using a 90-nm bulk cmos digital cell library,” in South-

eastcon, 2011 Proceedings of IEEE, March 2011, pp. 430–434.

[76] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design for

submicron cmos technology,” IEEE Transactions on Nuclear Science, vol. 43,

no. 6, pp. 2874–2878, Dec 1996.

[77] M. Nicolaidis, R. Perez, and D. Alexandrescu, “Low-cost highly-robust hard-

ened cells using blocking feedback transistors,” in Proceeding of the 26th IEEE

VLSI Test Symposium, VTS ’2008, April 2008, pp. 371–376.

211

[78] S. Lin, Y.-B. Kim, and F. Lombardi, “A 11-transistor nanoscale cmos memory

cell for hardening to soft errors,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 19, no. 5, pp. 900–904, May 2011.

[79] “Predictive technology model for spice, http:// ptm.asu.edu/.”

[80] A. Dharchoudhury, S.-M. Kang, H. Cha, and J. Patel, “Fast timing simulation

of transient faults in digital circuits,” in Proceedings of the IEEE/ACM In-

ternational Conference on Computer-Aided Design, ICCAD ’1994, Nov 1994,

pp. 719–726.

[81] G. Messenger, “Collection of charge on junction nodes from ion tracks,” IEEE

Transactions on Nuclear Science, vol. 29, no. 6, pp. 2024–2031, Dec 1982.

[82] H.-H. K. Lee, K. Lilja, M. Bounasser, P. Relangi, I. Linscott, U. Inan, and

S. Mitra, “Leap: Layout design through error-aware transistor positioning

for soft-error resilient sequential cell design,” in Proceedings of the IEEE

International Reliability Physics Symposium (IRPS), May 2010, pp. 203–212.

[83] H. K. Lee and D.-S. Ha, “Hope: An efficient parallel fault simulator for syn-

chronous sequential circuits,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 15, no. 9, pp. 1048–1058, Sep 1996.

[84] “Lgsynth’91 benchmark circuits, http://ddd.fit.cvut.cz/prj/benchmarks/.”

[85] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and G. D.

Hachtel, Logic Minimization Algorithms for VLSI Synthesis. Norwell, MA,

USA: Kluwer Academic Publishers, 1984.

212

[86] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Sis:

A system for sequential circuit synthesis,” EECS Department, University of

California, Berkeley, Tech. Rep. UCB/ERL M92/41, 1992.

[87] H. Fujiwara and T. Shimono, “On the acceleration of test generation algo-

rithms,” IEEE Transactions on Computers, vol. C-32, no. 12, pp. 1137–1144,

Dec 1983.

[88] M. H. Schulz, E. Trischler, and T. M. Sarfert, “Socrates: a highly efficient

automatic test pattern generation system,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 7, no. 1, pp. 126–137,

Jan 1988.

[89] M. H. Schulz and E. Auth, “Improved deterministic test pattern genera-

tion with applications to redundancy identification,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 7, pp.

811–816, Jul 1989.

[90] W. Kunz and D. K. Pradhan, “Recursive learning: a new implication tech-

nique for efficient solutions to cad problems-test, verification, and optimiza-

tion,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 13, no. 9, pp. 1143–1158, Sep 1994.

[91] S. M. Sait and H. Youssef, Iterative Computer Algorithms with Applications

in Engineering: Solving Combinatorial Optimization Problems, 1st ed. Los

213

Alamitos, CA, USA: IEEE Computer Society Press, 1999.

[92] ——, VLSI Physical Design Automation: Theory and Practice. World Sci-

entific, 1999.

214

Vitae

• Name: Ahmad Tariq Sheikh

• Nationality: Pakistani

• Date of Birth: December 2, 1983

• Email: atsheikh@protonmail.com

• Permenant Address: Islamabad, Pakistan.

Education

• Ph.D Computer Science & Engineering, KFUPM, Dhahran, Saudi Arabia.

April 2016.

• MS Electrical Engineering, College of Electrical & Mechanical Engineering

(NUST), Rawalpindi, Pakistan. September 2008.

• BS Computer Science (System Engineering), University of Engineering &

Technology, Lahore, Pakistan. April 2005.

Journal Publications

1. Ahmad T. Sheikh, Aiman H. El-Maleh, Muhammad E.S. Elrabaa and Sadiq

M. Sait, “Selective Transistor-Redundancy Based Fault Tolerance Technique

for Combinational Circuits”. IEEE Transactions on VLSI.

215

2. Ahmad T. Sheikh, Aiman H. El-Maleh, “Double Modular Redundancy

(DMR) Based Fault Tolerance Technique for Combinational Circuits”. Sub-

mitted to Integration, the VLSI Journal.

3. Ahmad T. Sheikh, Aiman H. El-Maleh, “An Integrated Fault Tolerance

Technique for Combinational Circuits Based on Implications and Transistor

Sizing”. Submitted to Microelectronics Reliability.

4. Aiman H. El-Maleh, Ahmad T. Sheikh, Sadiq M. Sait, “Binary particle

swarm optimization (BPSO) based state assignment for area minimization

of sequential circuits”, Applied Soft Computing, Volume 13, Issue 12, De-

cember 2013, Pages 4832-4840, ISSN 1568-4946, http://dx.doi.org/10.

1016/j.asoc.2013.08.004.

5. Sait, S., Sheikh, A. & El-Maleh, A. “Cell Assignment in Hybrid

CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm”.

Journal of Applied Research and Technology, Volume 11, No. 5, Pages

653-664, 2013.

Conference Publications

1. Ahmad T. Sheikh, Aiman H. El-Maleh, “Selective Transistor-Redundancy

Based Fault Tolerance Technique for Combinational Circuits”. Ph.D Forum,

Design Automation and Test in Europe (DATE), Gernoble, France. March

9-13, 2015.

216

2. Ahmad T. Sheikh, Aiman H. El-Maleh, “An Integrated Approach for Soft

Error Tolerance of Combinational Circuits”. WIP Poster Presentation, 51st

Design Automation Conference (DAC), San Francisco, CA 94103. June 1-5,

2014.

3. Sheikh, A. & Sheikh, S. “Efficient Variants of Square Contour Algorithm

for Blind Equalization of QAM Signals”. Proceedings of World Academy of

Science: Engineering & Technology, Volume 51, Pages 184-192, 2009.

Patents

1. Ahmad T. Sheikh and Aiman H. El-Maleh, “METHOD OF FAULT

TOLERANCE IN COMBINATIONAL CIRCUITS”, USPO application

number 15/015654 (Patent Pending)

217

